Go to the first, previous, next, last section, table of contents.


6 The MySQL access privilege system

MySQL has an advanced but non-standard security/privilege system. This section describes how it works.

6.1 General security

Anyone using MySQL on a computer connected to the Internet should read this chapter to avoid mistakes people do.

Under "security" we mean that our site, not only MySQL is protected against all types of applicable attacks: eavesdropping, altering, playback and Denial of Service. We do not cover all aspects of availability and fault tolerance here.

There are some security logic in MySQL: Access control lists (ACL-s) and SSL encrypted connections but much more is depending on overall usage of MySQL. Also most of this chapter isn't MySQL dependant at all. Same rules apply for most applications.

When you running a site, designing software or just doing something with MySQL then try to follow these rules:

6.2 How to make MySQL secure against crackers

When you connect to a MySQL server, you should normally use a password. The password is not transmitted in clear text over the connection.

All other information is transferred as text that can be read by anyone that is able to watch the connection. If you are concerned about this, you can use the compressed protocol (in MySQL 3.22 and above) to make things much harder. To make things even more secure you should install ssh (see http://www.cs.hut.fi/ssh). With this, you can get an encrypted TCP/IP connection between a MySQL server and a MySQL client.

To make a MySQL system secure, you should strongly consider the following suggestions:

The following mysqld options affect security:

--secure
IP numbers returned by the gethostbyname() system call are checked to make sure they resolve back to the original hostname. This makes it harder for someone on the outside to get access by simulating another host. This option also adds some sanity checks of hostnames. The option is turned off by default in MySQL 3.21 since it sometimes takes a long time to perform backward resolutions. MySQL 3.22 caches hostnames and has this option enabled by default.
--skip-grant-tables
This option causes the server not to use the privilege system at all. This gives everyone full access to all databases! (You can tell a running server to start using the grant tables again by executing mysqladmin reload.)
--skip-name-resolve
Hostnames are not resolved. All Host column values in the grant tables must be IP numbers or localhost.
--skip-networking
Don't allow TCP/IP connections over the network. All connections to mysqld must be made via Unix sockets. This option is unsuitable for systems that use MIT-pthreads, because the MIT-pthreads package doesn't support Unix sockets.

6.3 What the privilege system does

The primary function of the MySQL privilege system is to authenticate a user connecting from a given host, and to associate that user with select, insert, update and delete privileges on a database.

Additional functionality includes the ability to have an anonymous user and to grant privileges for MySQL-specific functions such as LOAD DATA INFILE and administrative operations.

6.4 MySQL user names and passwords

There are several distinctions between the way user names and passwords are used by MySQL, and the way they are used by Unix or Windows:

6.5 Connecting to the MySQL server

MySQL client programs generally require that you specify connection parameters when you want to access a MySQL server: the host you want to connect to, your user name and your password. For example, the mysql client can be started like this (optional arguments are enclosed between `[' and `]'):

shell> mysql [-h host_name] [-u user_name] [-pyour_pass]

Alternate forms of the -h, -u and -p options are --host=host_name, --user=user_name and --password=your_pass. Note that there is no space between -p or --password= and the password following it.

Note: Specifing a password on the command line is not secure! Any user on your system may then find out your password by typing a command like: ps auxww. See section 4.15.4 Option files.

mysql uses default values for connection parameters that are missing from the command line:

Thus, for a Unix user joe, the following commands are equivalent:

shell> mysql -h localhost -u joe
shell> mysql -h localhost
shell> mysql -u joe
shell> mysql

Other MySQL clients behave similarly.

On Unix systems, you can specify different default values to be used when you make a connection, so that you need not enter them on the command line each time you invoke a client program. This can be done in a couple of ways:

If connection parameters are specified in multiple ways, values specified on the command line take precedence over values specified in configuration files and environment variables, and values in configuration files take precedence over values in environment variables.

6.6 Keeping your password secure

It is inadvisable to specify your password in a way that exposes it to discovery by other users. The methods you can use to specify your password when you run client programs are listed below, along with an assessment of the risks of each method:

All in all, the safest methods are to have the client program prompt for the password or to specify the password in a properly-protected `.my.cnf' file.

6.7 Privileges provided by MySQL

Privilege information is stored in the user, db, host, tables_priv and columns_priv tables in the mysql database (that is, in the database named mysql). The MySQL server reads the contents of these tables when it starts up and under the circumstances indicated in section 6.11 When privilege changes take effect.

The names used in this manual to refer to the privileges provided by MySQL are shown below, along with the table column name associated with each privilege in the grant tables and the context in which the privilege applies:

Privilege Column Context
select Select_priv tables
insert Insert_priv tables
update Update_priv tables
delete Delete_priv tables
index Index_priv tables
alter Alter_priv tables
create Create_priv databases, tables or indexes
drop Drop_priv databases or tables
grant Grant_priv databases or tables
references References_priv databases or tables
reload Reload_priv server administration
shutdown Shutdown_priv server administration
process Process_priv server administration
file File_priv file access on server

The select, insert, update and delete privileges allow you to perform operations on rows in existing tables in a database.

SELECT statements require the select privilege only if they actually retrieve rows from a table. You can execute certain SELECT statements even without permission to access any of the databases on the server. For example, you could use the mysql client as a simple calculator:

mysql> SELECT 1+1;
mysql> SELECT PI()*2;

The index privilege allows you to create or drop (remove) indexes.

The alter privilege allows you to use ALTER TABLE.

The create and drop privileges allow you to create new databases and tables, or to drop (remove) existing databases and tables.

Note that if you grant the drop privilege for the mysql database to a user, that user can drop the database in which the MySQL access privileges are stored!

The grant privilege allows you to give to other users those privileges you yourself possess.

The file privilege gives you permission to read and write files on the server using the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements. Any user to whom this privilege is granted can read or write any file that the MySQL server can read or write.

The remaining privileges are used for administrative operations, which are performed using the mysqladmin program. The table below shows which mysqladmin commands each administrative privilege allows you to execute:

Privilege Commands permitted to privilege holders
reload reload, refresh, flush-privileges, flush-hosts, flush-logs, flush-tables
shutdown shutdown
process processlist, kill

The reload command tells the server to reread the grant tables. The refresh command flushes all tables and opens and closes the log files. flush-privileges is a synonym for reload. The other flush-* commands perform functions similar to refresh but are more limited in scope, and may be preferable in some instances. For example, if you want to flush just the log files, flush-logs is a better choice than refresh.

The shutdown command shuts down the server.

The processlist command displays information about the threads executing within the server. The kill command kills server threads. You can always display or kill your own threads, but you need the process privilege to display or kill threads initiated by other users.

It is a good idea in general to grant privileges only to those users who need them, but you should exercise particular caution in granting certain privileges:

There are some things that you cannot do with the MySQL privilege system:

6.8 How the privilege system works

The MySQL privilege system ensures that all users may do exactly the things that they are supposed to be allowed to do. When you connect to a MySQL server, your identity is determined by the host from which you connect and the user name you specify. The system grants privileges according to your identity and what you want to do.

MySQL considers both your hostname and user name in identifying you because there is little reason to assume that a given user name belongs to the same person everywhere on the Internet. For example, the user bill who connects from whitehouse.gov need not be the same person as the user bill who connects from microsoft.com. MySQL handles this by allowing you to distinguish users on different hosts that happen to have the same name: you can grant bill one set of privileges for connections from whitehouse.gov, and a different set of privileges for connections from microsoft.com.

MySQL access control involves two stages:

The server uses the user, db and host tables in the mysql database at both stages of access control. The fields in these grant tables are shown below:

Table name user db host
Scope fields Host Host Host
User Db Db
Password User
Privilege fields Select_priv Select_priv Select_priv
Insert_priv Insert_priv Insert_priv
Update_priv Update_priv Update_priv
Delete_priv Delete_priv Delete_priv
Index_priv Index_priv Index_priv
Alter_priv Alter_priv Alter_priv
Create_priv Create_priv Create_priv
Drop_priv Drop_priv Drop_priv
Grant_priv Grant_priv Grant_priv
References_priv
Reload_priv
Shutdown_priv
Process_priv
File_priv

For the second stage of access control (request verification), the server may, if the request involves tables, additionally consult the tables_priv and columns_priv tables. The fields in these tables are shown below:

Table name tables_priv columns_priv
Scope fields Host Host
Db Db
User User
Table_name Table_name
Column_name
Privilege fields Table_priv Column_priv
Column_priv
Other fields Timestamp Timestamp
Grantor

Each grant table contains scope fields and privilege fields.

Scope fields determine the scope of each entry in the tables, i.e., the context in which the entry applies. For example, a user table entry with Host and User values of 'thomas.loc.gov' and 'bob' would be used for authenticating connections made to the server by bob from the host thomas.loc.gov. Similarly, a db table entry with Host, User and Db fields of 'thomas.loc.gov', 'bob' and 'reports' would be used when bob connects from the host thomas.loc.gov to access the reports database. The tables_priv and columns_priv tables contain scope fields indicating tables or table/column combinations to which each entry applies.

For access-checking purposes, comparisons of Host values are case insensitive. User, Password, Db and Table_name values are case sensitive. Column_name values are case insensitive in MySQL 3.22.12 or later.

Privilege fields indicate the privileges granted by a table entry, that is, what operations can be performed. The server combines the information in the various grant tables to form a complete description of a user's privileges. The rules used to do this are described in section 6.10 Access control, stage 2: Request verification.

Scope fields are strings, declared as shown below; the default value for each is the empty string:

Field name Type
Host CHAR(60)
User CHAR(16)
Password CHAR(16)
Db CHAR(64) (CHAR(60) for the tables_priv and columns_priv tables)

In the user, db and host tables, all privilege fields are declared as ENUM('N','Y') -- each can have a value of 'N' or 'Y', and the default value is 'N'.

In the tables_priv and columns_priv tables, the privilege fields are declared as SET fields:

Table name Field name Possible set elements
tables_priv Table_priv 'Select', 'Insert', 'Update', 'Delete', 'Create', 'Drop', 'Grant', 'References', 'Index', 'Alter'
tables_priv Column_priv 'Select', 'Insert', 'Update', 'References'
columns_priv Column_priv 'Select', 'Insert', 'Update', 'References'

Briefly, the server uses the grant tables like this:

Note that administrative privileges (reload, shutdown, etc.) are specified only in the user table. This is because administrative operations are operations on the server itself and are not database-specific, so there is no reason to list such privileges in the other grant tables. In fact, only the user table need be consulted to determine whether or not you can perform an administrative operation.

The file privilege is specified only in the user table, too. It is not an administrative privilege as such, but your ability to read or write files on the server host is independent of the database you are accessing.

The mysqld server reads the contents of the grant tables once, when it starts up. Changes to the grant tables take effect as indicated in section 6.11 When privilege changes take effect.

When you modify the contents of the grant tables, it is a good idea to make sure that your changes set up privileges the way you want. For help in diagnosing problems, see section 6.15 Causes of Access denied errors. For advice on security issues, section 6.2 How to make MySQL secure against crackers.

A useful diagnostic tool is the mysqlaccess script, which Yves Carlier has provided for the MySQL distribution. Invoke mysqlaccess with the --help option to find out how it works. Note that mysqlaccess checks access using only the user, db and host tables. It does not check table- or column-level privileges.

6.9 Access control, stage 1: Connection verification

When you attempt to connect to a MySQL server, the server accepts or rejects the connection based on your identity and whether or not you can verify your identity by supplying the correct password. If not, the server denies access to you completely. Otherwise, the server accepts the connection, then enters stage 2 and waits for requests.

Your identity is based on two pieces of information:

Identity checking is performed using the three user table scope fields (Host, User and Password). The server accepts the connection only if a user table entry matches your hostname and user name, and you supply the correct password.

Values in the user table scope fields may be specified as follows:

Non-blank Password values represent encrypted passwords. MySQL does not store passwords in plaintext form for anyone to see. Rather, the password supplied by a user who is attempting to connect is encrypted (using the PASSWORD() function) and compared to the already-encrypted version stored in the user table. If they match, the password is correct.

The examples below show how various combinations of Host and User values in user table entries apply to incoming connections:

Host value User value Connections matched by entry
'thomas.loc.gov' 'fred' fred, connecting from thomas.loc.gov
'thomas.loc.gov' '' Any user, connecting from thomas.loc.gov
'%' 'fred' fred, connecting from any host
'%' '' Any user, connecting from any host
'%.loc.gov' 'fred' fred, connecting from any host in the loc.gov domain
'x.y.%' 'fred' fred, connecting from x.y.net, x.y.com,x.y.edu, etc. (this is probably not useful)
'144.155.166.177' 'fred' fred, connecting from the host with IP address 144.155.166.177
'144.155.166.%' 'fred' fred, connecting from any host in the 144.155.166 class C subnet

Since you can use IP wildcard values in the Host field (e.g., '144.155.166.%' to match every host on a subnet), there is the possibility that someone might try to exploit this capability by naming a host 144.155.166.somewhere.com. To foil such attempts, MySQL disallows matching on hostnames that start with digits and a dot. Thus, if you have a host named something like 1.2.foo.com, its name will never match the Host column of the grant tables. Only an IP number can match an IP wildcard value.

An incoming connection may be matched by more than one entry in the user table. For example, a connection from thomas.loc.gov by fred would be matched by several of the entries just shown above. How does the server choose which entry to use if more than one matches? The server resolves this question by sorting the user table after reading it at startup time, then looking through the entries in sorted order when a user attempts to connect. The first matching entry is the one that is used.

user table sorting works as follows. Suppose the user table looks like this:

+-----------+----------+-
| Host      | User     | ...
+-----------+----------+-
| %         | root     | ...
| %         | jeffrey  | ...
| localhost | root     | ...
| localhost |          | ...
+-----------+----------+-

When the server reads in the table, it orders the entries with the most-specific Host values first ('%' in the Host column means ``any host'' and is least specific). Entries with the same Host value are ordered with the most-specific User values first (a blank User value means ``any user'' and is least specific). The resulting sorted user table looks like this:

+-----------+----------+-
| Host      | User     | ...
+-----------+----------+-
| localhost | root     | ...
| localhost |          | ...
| %         | jeffrey  | ...
| %         | root     | ...
+-----------+----------+-

When a connection is attempted, the server looks through the sorted entries and uses the first match found. For a connection from localhost by jeffrey, the entries with 'localhost' in the Host column match first. Of those, the entry with the blank user name matches both the connecting hostname and user name. (The '%'/'jeffrey' entry would have matched, too, but it is not the first match in the table.)

Here is another example. Suppose the user table looks like this:

+----------------+----------+-
| Host           | User     | ...
+----------------+----------+-
| %              | jeffrey  | ...
| thomas.loc.gov |          | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-
| Host           | User     | ...
+----------------+----------+-
| thomas.loc.gov |          | ...
| %              | jeffrey  | ...
+----------------+----------+-

A connection from thomas.loc.gov by jeffrey is matched by the first entry, whereas a connection from whitehouse.gov by jeffrey is matched by the second.

A common misconception is to think that for a given user name, all entries that explicitly name that user will be used first when the server attempts to find a match for the connection. This is simply not true. The previous example illustrates this, where a connection from thomas.loc.gov by jeffrey is first matched not by the entry containing 'jeffrey' as the User field value, but by the entry with no user name!

If you have problems connecting to the server, print out the user table and sort it by hand to see where the first match is being made.

6.10 Access control, stage 2: Request verification

Once you establish a connection, the server enters stage 2. For each request that comes in on the connection, the server checks whether you have sufficient privileges to perform it, based on the type of operation you wish to perform. This is where the privilege fields in the grant tables come into play. These privileges can come from any of the user, db, host, tables_priv or columns_priv tables. The grant tables are manipulated with GRANT and REVOKE commands. See section 7.26 GRANT and REVOKE syntax. (You may find it helpful to refer to section 6.8 How the privilege system works, which lists the fields present in each of the grant tables.)

The user table grants privileges that are assigned to you on a global basis and that apply no matter what the current database is. For example, if the user table grants you the delete privilege, you can delete rows from any database on the server host! In other words, user table privileges are superuser privileges. It is wise to grant privileges in the user table only to superusers such as server or database administrators. For other users, you should leave the privileges in the user table set to 'N' and grant privileges on a database-specific basis only, using the db and host tables.

The db and host tables grant database-specific privileges. Values in the scope fields may be specified as follows:

The db and host tables are read in and sorted when the server starts up (at the same time that it reads the user table). The db table is sorted on the Host, Db and User scope fields, and the host table is sorted on the Host and Db scope fields. As with the user table, sorting puts the most-specific values first and least-specific values last, and when the server looks for matching entries, it uses the first match that it finds.

The tables_priv and columns_priv tables grant table- and column-specific privileges. Values in the scope fields may be specified as follows: