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 Chapter 4: Applications of Thermodynamics to the
Earth

4.1 Introduction
n the previous 2 chapters, we developed the fundamental thermodynamic relationships and saw
how they are applied to geochemical problems.  The tools now in our thermodynamic toolbox are
sufficient to deal with most of the phenomena we will encounter in the second half of this book.

They are not sufficient, however, to deal with all geochemical problems.  In this chapter, will add a
final few thermodynamic tools.  These allow us to deal with non-ideal behavior and exsolution phe-
nomena in solids and silicate liquids.  With that, we can use thermodynamics to determine the pres-
sure and temperature at which rock assemblages formed, certainly one of the most useful applications
of thermodynamics to geology.  Along the way, we will see how thermodynamics is related to one of
the most useful tools in petrology: phase diagrams.  Finally, we return to the question of non-ideal
behavior in electrolyte solutions and examine in more depth the problems of ion association and sol-
vation and how this affects ion activities.  Deviations from ideal behavior tend to be greater in solu-
tions of high ionic strength, which includes such geologically important solutions as hydrothermal
and ore-forming fluids, saline lake waters, metamorphic fluids, and formation and oil field brines.
We briefly examine methods of computing activity coefficients at ionic strengths relevant to such flu-
ids.

4.2 Activities in Non-Ideal Solid Solutions

4.2.1 Mathematical Models of Real Solutions: Margules Equations

Ideal solution models often fail to describe the behavior of real solutions; a good example is water
and alcohol, as we saw in Chapter 3.  Ideal solutions fail spectacularly when exsolution occurs, such
as between oil and vinegar, or between orthoclase and albite, a phenomenon we will discuss in more
detail shortly.  In non-ideal solutions, even when exsolution does not occur, more complex models are
necessary.

Power, or Maclaurin, series are often a convenient means of expressing complex mathematical func-
tions, particularly if the true form of the function is not known.  This approach is the basis of
Margules  equations, a common method of calculating excess free energy.  For example, we could
express the excess volume as a power series:

  V A BX CX DX= + + + +2 2
2

2
3 K 4.1

where X2 is the mole fraction of component 2.
Following the work of Thompson (1967), Margules equations are used extensively in geochemistry

and mineralogy as models for the behavior of non-ideal solid solutions.  We will consider two
variants of them: the symmetric and asymmetric solution models.

4.2.1.1 The Symmetric Solution Model

In some solutions, a sufficient approximation of thermodynamic functions can often be obtained by
using only a second order power series, i.e., in equ. 4.1, D = E = ... = 0.  Now in a binary solution, the ex-
cess of any thermodynamic function should be entirely a function of mole fraction X2 (or X1, however
we wish to express it).  Put another way, where X2 = 0, we expect V

Ð
 ex = 0.  From this we can see tha t

the first term in Equ. 4.1, A, must also be 0.  Thus equation 4.1 simplifies to:
V BX CX= +2 2

2 4.2
                                                
  Named for M. Margules, who first used this approach in 1895.

I
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The simplest solution of this type would be one that is symmetric about the midpoint, X2 = 0.5; this
is called a Symmetric Solution.  In essence, symmetry requires that:

BX2 + CX2
2 = BX1 + CX1

2 4.3
Substituting  (1 Ð X2) for X1 and expanding, we have:

BX2 + CX2
2  = B – BX2 + C – 2CX2 + C CX2

2 4.4
Collecting terms and rearranging:

B(2X2 – 1) =  C(1 – 2X2) 4.5
which reduces to B = Ð C.  Letting WV = B in equation 4.2, we have:

V W X W X W X X X X Wex V V V V= − = − =2 2
2

2 2 1 21( ) 4.6
W is known as an interaction parameter (recall that non-ideal behavior arises from interactions be-
tween molecules or atoms), and depends on temperature, pressure, and the nature of the solution, but
not on X.  Expressions similar to 4.2Ð4.6 may be written for enthalpy, entropy, and free energy; for ex-
ample:

G X X Wex G= 1 2 4.7
The WG term may be expressed as: WG = WU + PWV – TWS = WH – TWS 4.8
The WH term can be written as: WH = WU + PWV

so that 4.8 may also be written: WG = WH – TWS 4.8a
The temperature and pressure dependence of WG are then

∂
∂
W

T
WG

P
s





 = − 4.9

∂
∂
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V





 = 4.10

Regular solutionsà are a special case of symmetric solutions where:
Ws = 0 and therefore WG = WH

 From equation 4.9, we see that WG is independent of temperature for regular solutions.  Regular solu-
tions correspond to the case where ∆Sex = 0, i.e., where ∆Smixing = ∆Sideal.  Examples of such solutions in-
clude electrolytes with a single, uncoupled, anionic or cationic substitution, e.g., CaCl2ÑCaBr2, or
solid solutions where there is a single substitution in just one site (e.g., Mg2SiO4ÑFe2SiO4).

Setting equation 4.7 equal to equation 3.66, we have for binary solutions:

G X X W RT X Xex G= = +[ ]1 2 1 1 2 2ln lnλ λ 4.11

For a symmetric solution we have the additional constraint that at X2 = X1, λ1= λ2.  From this rela-
tionship it follows that:

RT X Wi j Gln λ = 2 4.12
This leads to the relationships:

µ = µ + +1 1 1 2
2o RT X X WGln 4.13

µ = µ + +2 2 2 1
2o RT X X WGln 4.13a

The symmetric solution model should reduce to RaoultÕs and HenryÕs Laws in the pure substance and
infinitely dilute solution respectively.  We see that as X1→ 1 equations 4.13 and 4.13a reduce respec-
tively to:

µ = µ +1 1 1
o RT Xln 4.14

µ = µ + +2 2 2
o RT X WGln 4.15

Equation 4.14 is RaoultÕs Law; letting:
µ* = µ° + WG

                                                
à  The term regular solution is often used to refer to symmetric solutions.  In that case, what we termed a
regular solution is called a strictly regular solution.
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or WG = RT ln h
then 4.15 is HenryÕs Law.  Thus the
interaction parameter can be related to
the parameters of HenryÕs Law, and
activity coefficient.  In the Margules
representation, a solution that is ideal
throughout is simply the special case
where A= B = C = D = ... = 0.

4.2.1.2 The Asymmetric Solution
Model

Many real solutions, for example
mineral solutions with asymmetric
solvi, are not symmetric.  This corre-
sponds to the case where D in equation
4.01 is nonzero; i.e., we must carry the
expansion to the third order. It can be
shown that in this case the excess free
energy in binary solutions is given by:
G W X W X X Xex G G= +( )

1 22 1 1 2 4.16
(You can satisfy yourself that this
may be written as a power-series to
the third order of either X1 or X2.)  The
two coefficients are related to the
Henry's Law constants:

W RT hG i i ii
= µ − µ =* lno 4.17

and also depend on pressure.  Activity
coefficients are given by:

RT W W X

W W X

i G G j

G G j

j i

i j

ln ( )

( )

λ = −

+ −

2

2

2

3
4.18

where j=2 when i =1 and visa versa.
As for the symmetric solution model,
the interaction parameters of the
asymmetric model can be expressed as
the sum of the WU, WV, and WS inter-
action parameters to account for tem-
perature and pressure dependencies.

The alkali feldspars (NaAlSi3O8

ÐKAlSi3O8) are an example of a solid
solution exhibiting asymmetric exsolu-
tion.   Figure 4.1 shows the ∆Greal,
∆Gideal, and ∆Gexcess for the a lkal i
feldspar solid solution computed for
600¡ C and 200 MPa using the
asymmetric solution model of Thompson and Waldbaum (1969).  ∆Gexcess is computed using equation
4.16, ∆Gideal is computed using equation 3.30.  Figure 4.2 shows ∆Greal computed for a series of tempera-
tures.  Perhaps a clearer picture of how ∆G will vary as a function of both composition and tempera-
ture can be obtained by plotting all 3 variables simultaneously, as in Figure 4.3.
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Figure 4.1.  Alkali feldspar solid solution computed at 600¡ C
and 200 MPa (2 kb) using the data of Thompson and
Waldbaum (1969).  ∆Greal = ∆Gideal + ∆Gexcess.
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Figure 4.2.  ∆Greal of alkali feldspar solution computed for a se-
ries of temperatures and 200 MPa.
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4.3 Exsolution
Phenomena

Now consider a binary
system, such as NaAlSi3O8Ñ
KAlSi3O8 in the example above,
of components 1 and 2, each of
which can form a pure phase,
but also together form a solution
phase, which we will call c.
The condition for spontaneous
exsolution of components 1 and 2
to form two phases a and b is
simply that Ga + Gb < Gc.  Figure
4.5a illustrates the variation of
Gexcess, Gmixture,  and Gideal in this
hypothetical system.  Gmixture is
simply the free energy of a
mechanical mixture of phases a
and b (e.g., orthoclase and a l -
bite), which are the phases of
pure components 1 and 2, and Greal

is equal to Gexcess + Gideal.  So long
as Greal is less than Gmixture, a
solution is stable relative to
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Figure 4.3.  ∆G surface for the alkali-feldspar solid solution as a
function of the mole fraction albite and temperature.

Example 4.1: Computing Activities Using Margules Parameters
Compute the activi ty of albi te in an

albi te (Ab) and orthoclase (Or) sol id
solution (alkal i  feldspar) as a function
of the mole fraction of albi te from XAb =
0 to 1 at 600¡ C and 200 MPa.  Use the
asymmetric solution model  and the data
of Thompson and Waldbaum (1969)
given below.

Answer:  Our fi rst step is to calculate
WG for each  end member where WG = WH

+ WvP Ð WST.  Doing so, we find WGAb =
10.344 kJ and WGOr = 18.938 kJ.  We can
then calculate the activi ty coefficient as
a function of XAb and XOr from equ. 4.19.
The activi ty is then computed from a =
λXAb.  The results are plotted in Figure
4.4.
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Figure 4.4.  Activi ty and activi ty coefficient of albi te
in alkal i  feldspar sol id solution computed at 600¡ C
and 200 MPa using the asymmetric solution model  of
Thompson and Waldbaum (1969).

Alkal i  Feldspar Margules Parameters
Ab Or

WV (J/MPa-mol) 3.89 4.688
WS (J/mol) 19.38 16.157
WH (kJ/mol) 26.485 32.105
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pure phases a and b.  You can see that Gideal is always
less than Gmixture, so as long as the Gexcess term is not too
great, and there will be complete solution.

We can write out the equation for the (molar) free
energy in a binary solution as:

  G = X1µ1
o+ X2µ2

o+ RT X1lnX1+ X2lnX2

+ RT X1lnλ1 + X2lnλ2
4.19

Substituting Gexcess for the last term and differentiating
with respect to X2, we obtain:

 ∂G

∂X2

= µ2
o - µ1

o + RT
X2

X1

∂Gexcess

∂X2

4.20

This is the equation for the slope of the curve of G vs.
X2.  The second derivative is:

 
∂2G

∂X2
2

=
RT

X1X2

+
∂2Gexcess

∂X2
2

4.21

This tells us how the slope of the curve changes with
composition.  For an ideal solution, Gexcess is 0, the sec-
ond derivative is always positive, and the free energy
curve is concave upward.  But for real solutions Gexcess

can be positive or negative.  Gexcess depends on the
lambda terms, or interaction parameters, which in turn
depend on composition (for non-Henry's Law solutions).
If for some combination of T and X (and P), the second
derivative of Gexcess becomes negative and its absolute
value is greater than the RT/X1X2 term, inflection
points appear in the G-X curve.  Exsolution is
thermodynamically favored (Figure 4.5b) in this
situation.

Suppose now that phases a and b are not pure sub-
stances, but are each limited solutions of both compo-
nents 1 and 2, as is illustrated in Figure 4.5b.  Two in-
flection points appear, one at X 2

a and one at X 2
b .  We

can draw a straight line that is tangent to the free en-
ergy curve at both inflection points.  This line is the
free energy of a mechanical mixture of the two limited
solutions a and b.  Phase a is mostly component 1, but
contains X 2

a of component 2.  Similarly, phase b is
mostly component 2 but contains 1 Ð X 2

b of component 1.
The mechanical mixture of a and b has less free energy
than a single solution phase everywhere between
X 2

a and X 2
b .  It is therefore thermodynamically more

stable, so exsolution can occur in this region.
Since the free energy of ideal mixing becomes less

negative with decreasing temperature (Figure 3.6),
many solids show complete solution at higher tem-
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Figure 4.5.  (a) Schematic isothermal, iso-
baric G-X plot for a real solution showing ∆G
of mechanical mixing, ideal mixing and ex-
cess mixing.  (b)  Sum of ideal and excess mix-
ing free energies shown in (a).  Tangents to
the minima give the chemical potentials in
immiscible phases a and b.  (c).   T-X plot for
same system as in (b).  Solid line is the
solvus, dashed line is the spinodal .
Exsolution may not occur between the
spinodal and solvus because the free energy
can locally increase during exsolution.  From
Nordstrom and Munoz (1986).
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perature and decreasing miscibility at lower temperature.  In Figure 4.2, we can see inflection points
developing at about 650¡ C the alkali feldspar solution.  The inflection points become more marked
and occur at increasingly different values of XAb as temperature decreases.  Figure 4.5c shows a
schematic drawing of a temperatureÐcomposition plot in which there is complete solution at higher
temperature with a widening two-phase region at lower temperatures.  The boundary between the
two-phase and one-phase regions is shown as a solid line and is known as the solvus.

The analysis of exsolution above is relevant to immiscible liquids (e.g., oil and vinegar, silicate
and sulfide melts) as well as solids.  There is a difference, however.  In solids, exsolution must occur
through diffusion of atoms through crystal lattices, while in liquids both diffusion and advection
serve to redistribute components in the exsolving phases.  As exsolution begins, the exsolving phases
begin with the composition of the single solution and must rid themselves of unwanted components.  In
a solid, this only occurs through diffusion, which is very slow.  This leads to a kinetic barrier that of-
ten prevents exsolution even though 2 exsolved phases are more stable than 1 solution.  This is illus-
trated in Figure 4.6.  For example, consider a solution of composition C.  It begins to exsolve pro-
tophases of A and B, which initially have compositions A« and B«.  Even though a mechanical mix-
ture of A and B will have lower free energy than solution phase C, A« and B«, the initial products of
exsolution, have higher free energy than C.  Furthermore, as exsolution proceeds and these phases
move toward compositions A and B, this free energy excess becomes larger.  Thus exsolution causes a
local increase in free energy and therefore cannot occur.  This problem is not encountered at com-
position CÕ though, because a mixture of the exsolving protophases AÓ and BÓ has lower free energy
than original solution at C«.  Thus the actual limit for exsolution is not inflection points such as B but
at inflection points (where ∂2G/∂X2 = 0)
such as S.  The locus of such points is plot-
ted in Figure 4.5c as the gray line and is
known as the spinodal.

4.4 Thermodynamics and
Phase Diagrams

A phase diagram is a representation of
the regions of stability of one or more
phases as a function of two or more ther-
modynamic variables such as tempera-
ture, pressure, or composition.  In other
words, if we plot 2 thermodynamic vari-
ables such as temperature and pressure or
temperature and compositio, we can de-
fine an area on this plot where a phase of
interest is thermodynamically stable.
Figure 4.7 is an example of a T-P phase
diagram for a 1 component system: SiO2.
The diagram shows the SiO2 phase stable
for a given combination of pressure and
temperature.  Figure 4.8 is an example of a
simple T-X diagram for the two com-
ponent system diopside-anorthite
(CaMgSi2O6 or clinopyroxene and Ca-
plagioclase, CaAl2Si2O8; two of the more
common igneous rock forming minerals).  In
multicomponent systems we must always
be concerned with at least 3 thermody-
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Figure 4.6.  A small portion of a G-X plot illustrating
the origin of the spinodal.  The process of exsolution of
two phases from a single solid solution must overcome an
energy barrier.  As exsolution from a solution of composi-
tion C begins, the two exsolving phases have composi-
tions that move away from C, e.g., AÕ and BÕ.  But the
free energy of a mechanical mixture of AÕ and B« has
greater free energy, by ∆Gunmix than the original single
solution phase.  Exsolution will therefore be inhibited
in this region.  This problem does not occur if the origi-
nal solution has composition CÕ.
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namic variables: P, T, and X.  Thus any T-X
phase diagram will be valid for only one
pressure, 1 atm (≈ 1 bar = 105 Pa) in this case.
Of course, with a three dimensional drawing
it is possible to represent both temperature
and pressure as well as composition in a bi-
nary system.

It should not surprise you at this point to
hear that the phase relationships in a
chemical system are a function of the
thermodynamic properties of that system.
Thus phase diagrams, such as Figures 4.7 and
4.8, can be constructed from thermodynamic
data.  Conversely, thermodynamic informa-
tion can be deduced from phase diagrams.

LetÕs now see how we can construct phase
diagrams, specifically T-X diagrams, from
thermodynamic data.  Our most important
tool in doing so will be the G Ð X diagrams
that we have already encountered.  T h e
guiding rule in constructing phase diagrams
from G

Ð
  Ð X diagrams is that the stable

phases are those that combine to give t h e
lowest G

Ð
 .  Since a G

Ð
  Ð X diagram is valid for

only one particular temperature, we will
need a number of G

Ð
  Ð X diagrams at different temperatures to construct a single T Ð X diagram (we

could also construct P Ð X diagrams from a number of G
Ð

  Ð X diagrams at different pressures).  Before we
begin, we will briefly consider the thermodynamics of melting in simple systems.

4.4.1 The Thermodynamics of Melting

One of the more common uses of phase
diagrams is the illustration of melting rela-
tionships in igneous petrology.  LetÕs con-
sider how our thermodynamic tools can be
applied to understanding melting relation-
ships.  We begin with melting in a simple
one component system, for example quartz.
At the melting point, this system will con-
sist of two phases: a solid and a melt.  At
the melting point, the liquid and solid are in
chemical equilibrium.  Therefore, according
to equation 3.17: µl = µs.

The Gibbs Free Energy of melting, ∆Gm,
must be 0 at the melting point (and only a t
the melting point).  Since

∆Gm = ∆Hm - Tm∆Sm 4.22
and ∆Gm = 0 at Tm, then:

∆Hm = Tm∆Sm
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Figure 4.7  P-T phase diagram for SiO2.  This system
has 1 component but 7 phases.  L designates liquid,
dashed lines indicate where phase boundaries are un-
certain.  The αÑβ quartz transition is thought to be
partially second order, that is, it involves only
stretching and rotation of bonds rather than a com-
plete reformation of bonds as occurs in first order
phase transitions.
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Figure 4.8.  Phase diagram (T-X) for the two component
system diopside-anorthite at 1 atm.  Four combinations
of phases are possible as equilibrium assemblages: liq-
uid (L), liquid plus diopside (L + Di), liquid plus anor-
thite (L + An), and diopside plus anorthite.
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where ∆Hm is the heat (enthalpy) of melting or fusion*, Tm is the melting temperature, and ∆Sm is the
entropy change of melting.  Thus the melting temperature of a pure substance is simply:

 
Tm =

∆Hm

∆Sm

4.23

This is a very simple, but very important, relationship.  This equation tells us that temperature of
melting of a substance is the ratio of the enthaply change to entropy change of melting.  Also, if we
can measure temperature and enthalpy change of the melting reaction, we can calculate the entropy
change.

In equation 3.64 we found that addition of a second component to a pure substance depresses the
melting point.  Assuming ∆Sm and ∆Hm are independent of temperature, we can express this effect as:

  Ti,m

T
= 1 –

Rlnai
l

∆Si,m

4.24

Since enthalpies of fusion, rather than entropies, are the quantities measured, equation 4.24 may
be more conveniently expressed as:

  Ti,m

T
= 1 –

Ti,mRlnai
l

∆Hi,m

4.25

The pressure dependence of the melting point is given by the Clapeyron Equation:
dT
dP  = 

∆Vm
∆Sm

 4.26

Precisely similar relationships hold for vaporization (boiling).  Indeed, the temperature and pres-
sure boundaries between any two phases, such as quartz and tridymite, calcite and aragonite, etc., de-
pend on thermodynamic properties in an exactly analogous manner.  

4.4.2 Thermodynamics of Phase Diagrams for Binary Systems

In a one component system, a phase boundary, such as the melting point, is univariant since at tha t
point two phases coexist and Ä = c- p + 2 = 1 - 2 + 2 = 1.  Thus specifying either temperature or pressure
fixes the other.  A three phase point, e.g., the triple point of water, is invariant.  Hence simply from
knowing that three phases of water coexist (i.e., knowing we are at the triple point), we know the
temperature and pressure.

In binary systems, the following phase assemblages are possible according to the Gibbs Phase Rule
(ignoring for the moment gas phases):

Phases Free compositional variables

Univariant 2 solids + liquid, 2 liquids + solid, 3 solids or liquids 0
Divariant 1 solid + 1 liquid, 2 solids, 2 liquids 0
Trivariant 1 solid or 1 liquid 1

When a G
Ð

 -X diagram is drawn, it is drawn for a specific temperature and pressure, i.e., G
Ð

 -X are iso-
baric and isothermal.  Thus we have already fixed two variables, and the compositions of all phases
in univariant and divariant systems are fixed by virtue of our having fixed T and P.  Only in trivari-
ant systems are we free to choose the composition of a phase on a G

Ð
 -X diagram.

                                                
* The heat of fusion is often designated by ∆Hf.  I have chosen to use the subscript m to avoid confusion
with heat of formation, for which we have already been using the subscript f.
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Figure 4.10 is schematic diagram of a
two component, one phase (trivariant)
system, in which there is complete solu-
tion between component 1 and component
2.  This phase might be either a liquid, or
a solid such as plagioclase.  The composi-
tion of the phase may fall anywhere on
the curve.  Of course, since this diagram
applies only to one temperature, we can-
not say from this diagram alone tha t
there will be complete solution at a l l
temperatures.

Figure 4.11 illustrates four possible
divariant systems.  The first case (Figure
4.11a) is that of a liquid solution of com-
position L' in equilibrium with a solid of
fixed composition S2 (pure component 2).
Because the system is divariant, there
can be only one possible liquid composi-
tion since we have implicitly specified P
and T.  As usual, the equilibrium condi-
tion is described by µl

i  = µs
i  (equation 3.17) 

.  For i = 2, this means the tangent to the
free energy curve for the melt must inter-

Example 4.2: Calculating Melting Curves
Using the data given below and assuming (1)

that the melt is an ideal solution and (2) diopside
and anorthite solids are pure phases, calculate a T-
X phase diagram for melting of an anorthite-diop-
side mixture.

Answer: Solving equation 4.25 for T, and replac-
ing activity with mole fraction (since we may
assume ideality), we have:

  

T
H

H
T R X

i m

i m

i m
i

=
∆

∆ −
,

,

,
ln l

4.27

We then calculate T for every value of XAn and XDi.  This produces two curves on a T-X plot, as
shown in Figure 4.09.  The curves intersect at the eutectic, or lowest point at which melt may exist
in the system.

Comparing our result with the actual phase relationships determined experimentally
(Figure 4.9), we see that while the computed phase diagram is similar to the actual one, our
computed eutectic occurs at XDi = 0.70 and 1335¡ C and the actual eutectic occurs at XDi ≈ 0.56 and
1274¡ C.  The difference reflects the failure of the several assumptions we made.  First, and most
importantly, silicate liquids are not ideal solutions.  Second, the entropies and enthalpies of
fusion tend to decrease somewhat with decreasing temperature, violating the assumption we
made in deriving equation 4.25.  Third, the diopside crystallizing from anorthite-diopside
mixtures is not pure, but contains some Al and an excess of Mg.

Tm ∆Hm

¡ C joules/mole
Diopside 1391 138100
Anorthite 1553 136400

(Data from Stebbins et al., 1983)
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Figure 4.09.  Computed phase diagram for the system
Anorthite-Diopside (CaAl2Si2O8ÐCaMgSi2O6).  The
eutectic occurs at XDi = 0.7 and 1334¡C.  The dashed lines
beyond the eutectic give the apparent melting points of
the components in the mixture.
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sect the X2 = 1 line at µ 2
s as is shown.  In other words, the

chemical potential of component 2 in the melt must be
equal to the chemical potential of component 2 in the
solid.  Again, this diagram is valid for only one tem-
perature; at any other temperature, the free energy
curve for the liquid would be different, but the composi-
tion of this new liquid in equilibrium with solid S2

would still be found by drawing a tangent from S2 to the
free energy curve of the liquid.  At sufficiently high
temperature, the tangent would always intersect below
S2.  The temperature at which this first occurs is the
melting temperature of S2 (because it is the point a t

which the free energy of a liquid of pure 2
is less than the solid).  The shaded region
shows the compositions of systems tha t
will have a combination of solid S2 and
liquid LÕ as their equilibrium phases as
this temperature.

We can also think of the tangent line
as defining the free energy of a mechani-
cal mixture of S2 and LÕ.  In the range of
compositions denoted by the shaded re-
gion, this mixture has a lower free energy
than the liquid solution, hence at equilib-
rium we expect to find this mixture rather
than the liquid solution.

Figure 4.11b illustrates a system with a
liquid plus a solid solution, each of which
has its own G-X curve.  Again, the equilib-
rium condition is µ i

l = µ i
s so the composi-

tions of the coexisting liquid and solid are
given by a tangent to both curves.  Since
the system is divariant and we have
fixed P and T the compositions of the solu-
tions are fixed.  All system compositions
in the shaded region can be accommodated
by a mixture of liquid and solid.  Composi-
tions lying to the left of the region would
have only a liquid; compositions to the
right of the shaded region would be ac-
commodated by a solid solution.

Figure 4.11c illustrates the case of two
immiscible solids (pure components 1 and
2)  The molar free energy of the system is
simply that of a mechanical mixture of S1

0 1X2

L

X2X1

G

Figure 4.10.  Molar free energy vs. com-
position (G

Ð
  Ð X2) for a one phase system

which exhibits complete solution of ei-
ther a liquid or solid.
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Figure 4.11.  Plot of molar free energy vs. composition (G
Ð

  Ð
X2) for two phase (divariant) systems.  (a) shows a liquid
solution (L) in equilibrium with a solid (S2) of pure X2.
The shaded area shows the range of composition of
systems for which LÕ and S2 will be the equilibrium
phases as this temperature.  (b) is the case of where both
solid and liquid have variable composition.  Equilibrium
compositions at this temperature are determined by find-
ing a tangent to both free energy curves.  LÕ and SÕ will be
the equilibrium phases for systems having compositions
in the shaded area.  (c) is the case of 2 immiscible solids.
These solids will coexist at equilibrium over the entire
compositional range at this temperature.
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and S2: a straight line drawn between the
free energy points of the two phases.

Figure 4.11d illustrates the case of a lim-
ited solution.  We have chosen to illustrate
a solid solution, but the diagram would ap-
ply equally well to the case of two liquids of
limited solubility.

Figure 4.12a shows the case of two solid
solutions plus one liquid.  The chemical po-
tential of each component in each phase
must be equal to the chemical potential of
that component in every other phase, so
chemical potentials are given by tangents to
all three phases.  This is an univariant sys-
tem, specifying either temperature, pres-
sure, or the composition of a phase fixes
other variables in the system.  Because of
this, if we move to a slightly higher or low
temperature at fixed pressure one of the

phases must be eliminated in a phase elimination reaction.  If the liquid is eliminated, the diagram
represents the eutectic, the lowest temperature at which the liquid can exist.  Moving to a higher
temperature would result in elimination of one of the solids.  If, alternatively, one of the solids is
eliminated by moving to lower temperature, and a liquid is stable both above and below this point,
the point would be known as a peritectic.  Figure 4.12b is a eutectic in a system where the two solids
are the phases of pure components 1 and 2.  A line drawn between the free energies of the pure compo-
nents is also tangent to the liquid curve.

4.4.2.1 An Example of a Simple Binary System with Complete Solution: Albite–Anorthite

Phase diagrams in T-X space can be constructed by analyzing G-X diagrams at a series of tempera-
tures.  Let's examine how this can be done in the case of a relatively simple system of two components
albite (NaAlSi3O8) and anorthite (CaAl2Si2O8) whose solid (plagioclase) and liquid exhibit com-
plete solid solution.  Figure 4.13 shows G-X diagrams for various temperatures as well as a T-X phase
diagram for this system.  Since both the solid and liquid exhibit complete solution, we need to con-
sider G-X curves for both.  

We start at the highest point at which liquid and solid coexist, Tm (T1) for anorthite.  Here the
solid and liquid curves both have the same value at XAn = 1; i.e., they are at equilibrium.  A G-X plot
above this temperature would show the curve for the liquid to be everywhere below that of the solid,
indicating the liquid to be the stable phase for all compositions.

At a somewhat lower temperature (T2), we see that the curves for the solid and liquid intersect a t
some intermediate composition.  To the right, the curve for the solid is lower than that of the liquid,
and tangents to the solid curve extrapolated to both XAb=1 and XAn=1 are always below the curve for
the liquid, indicating the solid is the stable phase.  As we move toward Ab (left) in composition, tan-
gents to the solid curve eventually touch the curve for the liquid.  The point where the tangent
touches each curve gives composition of the liquid and the solid stable at this temperature.  In the
compositional range between the points where the tangent touches the two curves, the tangent is be-
low both curves, thus a mechanical mixture of solid and liquid is stable over this compositional range
at this temperature.  For compositions to the left of the point where the tangent touches the liquid
curve, the liquid curve is lower than both the solid curve and a tangent to both, so it is stable relative
to both the solid and any mixture of solid and liquid.

(a) (b)

0 1X2 0 1X2

L'

L

S2S1

S2 L

L'

S1

S2
G

Figure 4.12.  Two univariant systems.  The first is
that of a liquid plus two solid solutions, the second is
that of two pure solids and a liquid.  Since these sys-
tems are univariant, they occur only at one fixed T i f
P is fixed.
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Going to progressively lower tempera-
tures (e.g., T3), the points where a tangent
intersects the two curves moves toward
Ab (to the left).  Eventually, at a suffi-
ciently low temperature (T4), the curve
for the solid is everywhere below that of
the liquid and only solid solution is sta-
ble.  By extracting information from G-X
curves at a number of temperatures, it is
possible to reconstruct the phase diagram
shown at the bottom of Figure 4.13.

Since both the solid and liquid show
complete miscibility in this system, we
can assume that both solutions are ideal
and do an approximate mathematical
treatment.  We recall that the condition
for equilibrium was:

µ i
α = µ i

β

We can express the chemical potential of
each component in each phase as:

  µi
α= µi

oα+ RTlnXi
α 4.28

Combining these relationships, we have:
  

µAb
o s– µAb

o l = RTln
XAb

l

XAb
s

4.29

 

µAn
o s– µAn

o l = RTln
XAn

l

XAn
s

4.30

Here our standard states are the pure end
members of the melt and solid.  The left
side of each of these equations corre-
sponds to the free energy change of melt-
ing, thus:

 
∆Gm

Ab=RTln XAb
s

XAb
lXAb

s

XAb
l 4.31

 
∆Gm

An=RTln XAn
s

XAn
lXAn

s

XAn
l 4.32

Both sides of these equations reduce to 0 if and only if X i
l  = X i

s  = 1 and T = Tm.  Rearranging:
 

XAb
s = XAb

l e∆Gm

Ab
/RT 4.33

 
XAn

s = XAn
l e∆Gm

An
/RT 4.34

Thus the fraction of each component in the melt can be predicted from the composition of the solid and
thermodynamic properties of the end members.  Since X  An

l = 1 Ð X  Ab
l and X An

s = 1 Ð X Ab
s , we can combine

equations 4.33 and 4.34 to obtain:
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 1–XAb
l e∆Gm

An/RT= 1–XAb
l e∆Gm

Ab/RT 4.35

and rearranging yields:

 
XAb

l =
1 – e∆Gm

An/RT

e∆Gm
Ab/RT – e∆Gm

An/RT
4.36

The point is that the mole fraction of any component of any phase in this system can be predicted from
the thermodynamic properties of the end-members.  We must bear in mind that we have treated this
as an ideal system; i.e., we have ignored any Gexcess term.  Nevertheless, the ideal treatment is rela-
tively successful for the plagioclase system.

4.5 Geothermometry and Geobarometry
An important task in geochemistry is estimating the temperature and pressure at which mineral

assemblages equilibrate.  The importance extends beyond petrology to tectonics and all of geology.
Here we take a brief look at the thermodynamics underlying geothermometry and geobarometry.

Geothermometry and geobarometry involve two nearly contradictory assumptions.  The first is
that the mineral assemblage of interest is an equilibrium one, the second is that the system did not re-
equilibrate during the passage through lower P and T conditions which brought the rock to the surface
where it could be collected.  As we will see in the next chapter, reaction rates depend exponentially
on temperature, hence these assumptions are not quite as contradictory has they first seem. In this sec-
tion, we will focus only on ÒchemicalÓ thermobarometers.  In Chapter 9, we will see that tempera-
tures can also be deduced from the distribution of isotopes between phases.

4.5.1 Theoretical considerations

In general, geobarometers and geothermometers make use of the pressure and temperature depend-
ence of the equilibrium constant, K.  In Section 3.9 we found that ∆G¡ = -RT ln K.  Assuming that ∆Cp

and ∆V of the reaction are independent of temperature and pressure, we can write:
 ∆G˚ = ∆H T, Pref

o – T∆S T,Pref

o + ∆VT,Pref

o (P – Pref) = –RTlnK 4.37
where the standard state of all components is taken as the pure phase at the temperature and pres-
sure of interest, and the enthalpy, entropy and volume changes are for the temperature of interest and
a reference pressure (generally 0.1 MPa).  

Differentiation of this equation with respect to temperature and pressure leads to the following
relations:

 ∂lnK
∂T P

=
∆H Pref

o + ∆V˚(P – Pref)

RT2
4.38

and
 ∂lnK
∂P T

=
∆V
RT

4.39

These equations provide us with the criteria for reactions that will make good geothermometers and
geobarometers.  For a good geothermometer, we want the equilibrium constant to depend heavily on T,
but be approximately independent of P.  Looking at equation 4.38, we see this means the ∆H term
should be as large as possible and the ∆V term as small as possible.  A fair amount of effort was de-
voted to development of a geothermometer based on the exchange of Fe and Mg between olivine and
pyroxenes in the late 1960Õs.  The effort was abandoned when it was shown that the ∆H for this reac-
tion was very small.  As a rule, a reaction should have a ∆Hû of at least 1 kJ to be a useful geother-
mometer.  For a good geobarometer, we want the ∆V term to be as large as possible.  Even though the
rhodonite ([Mn,Fe,Ca]SiO3) and pyroxmangite ([Mn,Fe]SiO3) pairs commonly occur in metamorphic
rocks, the reaction rhodonite → pyroxmangite does not make a useful geobarometer because the ∆V of
reaction is only 0.2 cc/mol.  In general, a reaction should have a ∆V of greater than 2 cc/mol if it is to
be used for geobarometry.
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The following discussion presents a few examples of useful chemical geothermometers and geo-
barometers (since most reactions are both temperature and pressure dependent, it is perhaps more ac-
curate to use the term ÒthermobarometerÓ).  It is not an exhaustive treatment, nor should it be inferred
that those examples discussed are in any way superior to other geothermometers and geobarometers.
Reviews by Essene (1982, 1989) and Bohlen and Lindsley (1987) summarize a wide range of igneous and
metamorphic thermobarometers.

4.5.2 Practical Thermobarometers

4.5.2.1 Univariant Reactions and Displaced Equilibria
We can broadly distinguish 3 main types of thermobarometers.  The first is the univariant reac-

tion, in which the phases have fixed compositions.  They are by far the simplest, and often make
good geobarometers as the ∆V of such reactions is often large.  Examples include the graphite-dia-
mond transition, any of the SiO2 transitions (Figure 4.7), and the transformations of Al2SiO5, shown in
Figure 4.14.  While such thermobarometers are simple, their utility for estimating temperature and
pressure is limited.  This is because exact temperatures and pressures can be obtained only if two or
more phases coexist, for example, kyanite and andalusite in Figure 4.14.  If kyanite and andalusite
are both found in a rock, we can determine either temperature or pressure if we can independently de-
termine the other.  Where 3 phases, kyanite, sillimanite, and andalusite coexist the system is in-
variant and P and T are fixed.  If only one phase occurs, for example sillimanite, we can only set a
range of values for temperature and pressure.  Unfortunately, the latter case, where only 1 phase is
present, is the most likely situation.  It is extremely rare that kyanite, sillimanite, and andalusite
occur together.

The term displaced equilibria refers to variations in the temperature and pressure of a reaction
that results from appreciable solid solution in one or more phases.  Thermobarometers based on this
phenomenon are more useful than univari-
ant reactions because the assemblage can
coexist over a wide range of P and T condi-
tions.  In the example shown in Figure 4.15,
the boundaries between garnet-bearing,
spinel-bearing, and plagioclase-bearing as-
semblages are curved, or ÒdisplacedÓ as a
result of the solubility of Al in enstatite.  In
addition to the experimental calibration,
determination of P and T from displaced
equilibria requires (1) careful determina-
tion of phase composition and (2) an accu-
rate solution model.

Geobarometers based on the solubility of
Al in pyroxenes have been the subject of ex-
tensive experimental investigations for the
past 25 years.  The general principal is i l -
lustrated in Figure 4.15, which shows the
concentration of Al in orthopyroxene (opx)
coexisting with olivine (forsterite) and an
aluminous phase, anorthite, spinel, or gar-
net.  The Al content of opx depends almost
exclusively on pressure in the presence of
anorthite, is essentially independent of
pressure in the presence of spinel, and de-
pends on both temperature and pressure in
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Figure 4.14.  Phase diagram for Al2SiO5 (Kkyanite-
sillimanite-andalusite) as determined by Holdaway
(1971).  Due to sluggish reaction kinetics, the exact po-
sition of these phase boundaries remains somewhat
uncertain.
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the presence of garnet.  Orthopyroxene-
garnet equilibria has proved to be a par-
ticularly useful geobarometer.

Garnet is an extremely dense phase.
So we might guess that the ∆V of reac-
tions that form it will be comparatively
large, and therefore that it is poten-
tially a good geobarometer.  The concen-
tration of Al in opx in equilibrium with
garnet may be used as a geobarometer i f
temperature can be independently deter-
mined.  Although there has been a good
deal of subsequent work and refinement
of this geobarometer, the underlying
thermodynamic principles are perhaps
best illustrated by considering the origi-
nal work of Wood and Banno (1973).

Wood and Banno (1973) considered
the following reaction:
Mg2Si2O6 + MgAl2SiO6 ® Mg3Al2Si3O12 4.40
 Opx Solid Solution ®   Pyrope Garnet

In developing a geobarometer based on this reaction, they had to overcome a number of problems.
First, the substitution of Al in orthopyroxene is a coupled substitution.  For each atom of Al substitut-
ing in the M1 octahedral site, there must be another Al atom substituting for SiO2 in the tetrahedral
site.  Second, there was a total lack of thermodynamic data on the MgAl2SiO6 phase component.
Data was lacking for a good reason: the phase does not exist and cannot be synthesized as a pure
phase.  Another problem was the apparent non-ideal behavior of the system, which was indicated
by orthopyroxenes in Fe- and Ca-bearing systems containing less alumina than in pure MgO systems a t
the same pressure.

The equilibrium constant for reaction 4.40 is:
 

K =
a Mg 3Al 2Si 3O12

a Mg 2Si 2O6
a MgAl 2SiO6

4.41

where the activities in the denominator represent the activities of the enstatite and the hypotheti-
cal aluminous enstatite phase components in the enstatite solid solution.  In the pure MgO system
(i.e., no CaO, FeO, MnO, etc.), the numerator, the activity of pyrope, is 1, of course, and we may
write:

 ∆G° = RTln a Mg 2Si 2O6
a MgAl 2SiO6

= ∆H 1 bar
o –T∆S T

o + (P–1)∆V° 4.42

(compare equation 4.37).  For an ideal case, this may be rewritten as:
 RTln X Mg 2Si 2O6

X MgAl 2SiO6
= ∆H 1 bar

o – T∆S T
o + (P–1)∆V° 4.43

Wood and Banno first estimated thermodynamic parameters (∆H, ∆S, and ∆V for aluminous pyrox-
ene) from experimental data.  They dealt with the non-ideality in two ways.  First, they assumed
ideal solution behavior at 1 bar and assumed all non-ideality associated with substitution of Al in or-
thopyroxene at higher pressure could be accounted for in the volume term in 4.42, which they rewrote
as:

 VMg 3Al 2Si 3O12

o –VMg 2Si 2O6

opx –VMgAl 2SiO6

opx = ∆V° 4.44

As for non-ideality related to substitution of Ca and Fe in the system, they noted that non-idealities
of most silicate systems were of similar size and magnitude and hence the activity coefficients for
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garnet tend to cancel those for orthopyroxene.  Furthermore, the ∆V and ∆H terms are both large and
tend to reduce the errors due to non-ideal behavior.

Since equation 4.42 contains temperature as well as pressure terms, it is obvious that the tempera-
ture must be known to calculate pressure of equilibration.  In the same paper, Wood and Banno (1973)
provided the theoretical basis for estimating temperature from the orthopyroxeneÐclinopyroxene
miscibility gap.  Thus in a system containing garnet, orthopyroxene and clinopyroxene, both tempera-
ture and pressure of equilibration may be estimated from the composition of these phases.

This geobarometer-geothermometer is commonly used to estimate the temperature and pressure
(depth) of equilibration of mantle-derived garnet lherzolite xenoliths.  One of the first applications
was by Boyd (1973), who calculated P and T for a number of xenoliths in South African kimberlites,
and hence reconstructed the geotherm in the mantle under South Africa.

4.5.2.2 Solvus Equilibria

 Solvus Equilibria provides a second kind of
thermobarometer.  Generally, these make better
geothermometers than geobarometers.  A good
example is the ortho- and clinopyroxene system,
illustrated in Figure 4.16.  The two-pyroxene
solvus has be the subject of particularly inten-
sive experimental and theoretical work because
ortho- and clinopyroxene coexist over a wide
range of conditions in Mg, Fe-rich rocks of the
crust and upper mantle.

One of the inherent thermodynamic difficul-
ties with this type of geothermometer is tha t
since it involves exsolution, ideal solution mod-
els will clearly be very poor approximations.
Thus considerable effort has been made to de-
velop solution models for the pyroxenes.  Sev-
eral factors further complicate efforts to use the
pyroxene solvus as a thermobarometer.  The first
is the existence of a third phase, pigeonite ( a
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Figure 4.16.  Phase relationships in the system
Mg2Si2O6 (enstatite) Ñ CaMgSi2O6 (diopside)
system (after Lindsley, 1983).
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Figure 4.17.  Comparison of calculated (solid lines) and experimentally observed (red dashed lines)
phase relationships between clino- and orthopyroxene shown in the Ôpyroxene quadrilateralÕ, a part of
the CaSiO3ÐMgSiO3ÐFeSiO3 system.  Di:  diopside, En:  enstatite, Hd: hedenbergite, Fs: ferrosilite.
Lines show the limit of solid solution at the corresponding temperatures (¡ C).  Experiments show solid
solution to be complete in the iron end-members at 700 ¡ C.
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low-Ca clinopyroxene), at high temperatures and low pressures; the second is that the system is not
strictly binary: natural pyroxenes in igneous rocks are solutions of Mg, Ca, and Fe components.  The
presence of iron is problematic because of the experimental difficulties encountered with Fe-contain-
ing systems.  These difficulties include the tendency both for iron to dissolve in the walls of commonly
used platinum containers and for Fe2+ either to oxidize to Fe3+ or to reduce to metallic iron, depending
on the oxygen fugacity.  In addition, other components, particularly Na and Al are often present in
the pyroxenes, as we have just seen.

Despite its complexities, the system has been modeled with some success using a symmetric solu-
tion model developed by Wood (1987).  There are two octahedral sites in both ortho- and clinopyrox-
enes, generally called M1 and M2.  Ca2+ occurs only  in the M2 site, while Fe and Mg can occupy either
site.  Ignoring pigeonite and components other than Ca, Mg and Fe, we can treat mixing in the M2 and
M1 sites separately.  Mixing in the M2 site can be treated as a ternary Mg, Fe, and Ca solution.  In a
symmetric ternary solution consisting of components A, B, and C, the activities of the components may
be calculated from:

  
RTln γ

A
= XB

2
WG

AB
+ XC

2
WG

AC
+ XBXC WG

AB
+ WG

AC
– WG

BC 4.45

where W G
AB is the A-B binary interaction parameter, etc.  Mixing of Fe and Mg between the M1 and

M2 sites was treated as a simple exchange reaction:
FeM2+ MgM1 ® FeM1 + MgM2

with ∆H of 29.27 kJ/mol and ∆S of 12.61 j/mol. Using this approach, Wood calculated the tempera-
ture dependence of the solvus in shown in Figure 4.17.  The model fits experimental observation rea-
sonably well for the Mg-rich pyroxenes, but significant deviations occur for the Fe-rich pyroxenes.

4.5.2.3 Exchange Reactions

The third type of thermobarometer we will consider is the exchange reaction.  These thermo-
barometers depend on the exchange of two species between phases.  We will consider two examples of
these.

The Roeder and Emslie olivine-liquid geothermometer is a rather simple one based on the equilib-
rium between magma and olivine crystallizing from it.  Consider the exchange reaction:

  MgOl+Feliq
2+ ® Mgliq+Feol

2+

where Ol denotes olivine and liq denotes liquid.  We can write the equilibrium constant for this reac-
tion as:

 
K D =

X FeO
Ol X MgO

liq

X FeO
liq X MgO

Ol
4.46

Recalling our criteria for a good geothermometer, we can guess that this reaction will meet at least
several of these criteria.  First, olivine exhibits complete solid solution, so we might guess we can
treat it as an ideal solution, which turns out to be a reasonably good assumption.  We might also guess
that the molar volumes of forsterite and fayalite and of their melts will be similar, meaning the ∆ V
term, and hence pressure dependence, will be small.  As it turns out, the ∆H term, which is related to
the difference in heats of fusion of forsterite and fayalite, is also relatively small, so the exchange
reaction itself is a poor geothermometer.  However, we can consider two separate reactions here:

MgOliq → MgOOl      and      FeOliq → FeOOl

and we can write two expressions for KD.  This was the approach of Roeder and Emslie (1970), who
deduced the following relations from empirical (i.e., experimental) results:
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log

X MgO
Ol

X MgO
Liq

=
3740

T
– 1.87 4.47

 
log

X FeO
Ol

X FeO
Liq

=
3911

T
– 2.50 4.48

These KD's are much more temperature dependent than for the combined exchange reaction.
Subtracting equation 4.47 from 4.48 yields:

 
logK D =

171
T

– 0.63 4.49

where KD is defined as in equation 4.46.  Note that these equations have the form of equation 3.95.
Roeder and Emslie (1970) used these equations to construct the diagram in Figure 4.18.

The iron-titanium oxide system evaluated by Buddington and Lindsley (1964) was one of the first
means of obtaining quantitative estimates of crystallization temperatures of igneous rocks.  It is im-
portant not only because it is useful over a wide range of temperatures and rock types, but also because
it yields oxygen fugacity as well.  Figure 4.19 shows the TiO2ÐFeOÐFe2O3 (rutileÐw�stiteÐhematite)
ternary system.   The geothermometer is based on the reaction:

yFe2TiO4 + (1 -y)Fe3O4  + 
1
4 O2 → y(FeTiO3) + (

3   
2  - y)Fe2O3 4.50
   

which describes equilibrium between the ulvospinelÐmagnetite (titanomagnetite) and ilmen-
iteÐhematite solid solution series.  The equilibrium constant expression may be written as:
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Fig. 4.18.  Olivine saturation surface constructed by Roeder and Emslie (1970).
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Example 4.3. Calculating Magma Temperatures Using the Olivine
Geothermometer
From the electron microprobe analysis of glass of a mid-ocean ridge basalt and its coexisting oli-

vine microphenocryst, calculate the temperature at which the olivine and liquid equilibrated:
Answer:  We will answer this assuming the glass composition rep-

resents that of the liquid and using equations 4.47 and 4.48.  To use the
equations, we will have to convert the analysis of the glass from
weight percent to mole fraction.

LetÕs setup a spreadsheet to do these calculations.  First we must
deal with the Fe analysis.  The analysis reports only iron as FeO.
Generally, about 10% of the iron in a basaltic magma will be present as
ferric iron (Fe2O3), so we will have to assign 10% of the total iron to
Fe2O3.  To do this, we  get the weight percent FeO simply by multiply-
ing the total FeO by 0.9.  To get weight percent Fe2O3, we multiply total
FeO (11.1%) by 0.1, then multiply by the ratio of the molecular weight
of Fe2O3 to FeO and divide by 2 (since there are 2 Fe atoms per Ômol-

eculeÕ).
Now we are ready to cal-

culate the mole fractions.
WeÕll set up a column with
molecular weights and divide
each weight percent by the
molecular weight to get the
number of moles per 100 grams.
To convert to mole fraction, we
divide the number of moles by
the sum of the number of
moles.

Since the mole fraction of
Mg in olivine is equal to the
mole fraction of forsterite, we
need only convert percent to
fraction (i.e., divide by 100).
The mole fraction of FeO in
olivine is simply 1 Ð XM g O.
Thus XMgO (ol) = 0.82 and  XFeO (ol)

= 0.18.  Now we are ready to calculate temperatures.  We can calculate 2 temperatues: one from
MgO, and the other from FeO.  The temperature based on the FeO exchange is:

 T
X
X

FeO

FeO
Ol

FeO
liq

=








 +

3911

2 50log .

      and that based on MgO is: T
X

X

MgO

MgO
Ol

MgO
liq

=












+

3740

1 87log .

We find that the temperatures of the two methods agree within 6¡, which is fairly good.  This in-
dicates the analyzed olivine probably was in equilibrium with the liquid.

SiO2 50.3
Al2O3 14.3
ΣFeO 11.1
MgO 7.2
CaO 11.5
Na2O 2.6
K2O 0.23
MnO 0.20
TiO2 1.71
Total 99.02
Mol % Fo in Ol 82

wt% w/10% ferric Mol. wt moles mol frac.
SiO2 50.3 50.3 60.09 0.8371 0.5265
Al2O3 14.3 14.3 1 0 2 0.1402 0.0882
total FeO 11.1 11.1
FeO 9.99 71.85 0.1390 0 . 0 8 7 5
Fe2O3 1.22 157.7 0 .0077 0.0049
MgO 7.8 7.8 40.6 0 .1921 0 . 1 2 0 8
CaO 11.5 11.5 56.08 0.2051 0.1290
Na2O 2.6 2 .6 61.98 0.0419 0.0264
K2O 0.23 0.23 94.2 0.0024 0.0015
MnO 0.2 0.2 70.94 0.0028 0.0018
TiO2 1.71 1.71 79.9 0 .0214 0.0135
Total 99 .74 99.85 1.590 1.000
XMgO-Ol 0 . 8 2
XFeO-Ol 0 . 1 8

TMgO 1 3 8 4 k e l v i n 1 1 1 1 °C
TFeO 1 3 9 0 k e l v i n 1 1 1 7 °C

 
K =

a FeTiO3

y a Fe 2O3

3/2–y

a Fe 2TiO4

y a Fe 3O4

1–y ƒO2

1/4
4.51



W. M. White Geochemistry

Chapter 4: Applications of Thermodynamics

«© 1999 W. M. White 132 October 4, 1999

The original Buddington and Lindsley geother-
mometer was based on empirical (experimental) ob-
servations of compositional dependence on oxygen fu-
gacity and temperature, as shown in Figure 4.20.  Hav-
ing values for the compositions of the titanomagnetite
and ilmenite phases, one simply read T and ÄO2 from
the graph.  To understand the system from a thermo-
dynamic perspective, it is better to consider the two
fundamental reactions occurring separately in this sys-
tem:

2Fe3O4 + 
1
2 O2 → 3Fe2O3 4.52

FeTiO3 + FeO → Fe2TiO4 4.53
The first reaction is the oxidation of ferrous iron to

ferric iron.  The second reaction is the partitioning of
Fe between the titanomagnetite phase and the ilmen-
ite phase.

Several investigators have studied the iron-tita-
nium oxides attempting to improve upon the work of
Buddington and Lindsley (1964).  The approach of

Spencer and Lindsley (1981) was
to consider two reactions:

Fe3O4 + FeTiO3 ® Fe2TiO4 + Fe2O3

Magnetite + Ilmenite ®
Ulvospinel + Hematite
and:

4Fe3O4 + O2 ® 6Fe2O3

The first reaction represents a
temperature dependent exchange
between the titanomagnetite and
ulvospinel solutions; the second
reaction is the oxidation of mag-
netite to hematite.  They mod-
eled the ilmenite as a binary
asymmetric Margules solution
and titanomagnetite as a binary
asymmetric Margules solution be-
low 800¡ C and as an ideal binary
solution above 800¡ C.  They mod-
eled configurational entropy
based ordering of Fe2+, Fe3+, and
Ti4+ in the ilmenite lattice struc-
ture (they assumed Fe3+ mixed
randomly with Ti4+ in ÔAÕ sites
and Fe3+ and Fe2+ randomly in ÔBÕ
sites).  The ∆G of reactions above
were written as:

Fe2TiO4

TiO2

FeO

FeTiO3

Fe3O4 Fe2O3

ilmenite–hematite s.s.

ulvospinel–

magnetite s.s.

Figure 4.19.  The TiO2ÐFeOÐFe2O3 ternary
system.  Phases are: FeO: w�stite; Fe2O3:
hematite; TiO2: rutile; Fe2TiO4: ulvospinel;
Fe2O4: magnetite; FeTiO3: ilmenite.  The sys-
tem also includes the FeTi2O5ÑFe2TiO5 solu-
tion, which is not shown.
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Figure 4.22.  Relationship of composition of coexisting titano-
magnetite and ilmenite to temperature and oxygen fugacity.
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–

∆G˚
RT

= ln
XUsp

α (1 – XIlm)α

(1 – XUsp)
αXIlm

α

  

+ ln γ Usp
α γ Hem

α

γ Mt
α γ Ilm

α 4.54

and:

  

–
∆G˚
RT

= ln
XHem

6α

XMt
4α

+ ln
γHem

6α

γMt
4α

– ln ƒO2
4.55

The α parameter is related to the number of sites involved in the exchange; Spencer and Lindsley as-
sumed α was 2 for ilmenite and 1 for titanomagnetite.  The excess free energy was expressed in the
usual way for an asymmetric solution (equation 4.16):

 Gex= WG1
X 2 + WG2

X 1 X 1X 2

for each solution series. When pressure is neglected, the free energy interaction parameter expression
(equation 4.08) simplifies to:

WG = WH – TWS  4.56

Values for WH and WS were obtained from least-squares fits to experimental data.  The parameters
obtained are listed in Table 4.1.

Substituting equations 4.56 and 4.16 into the free energy of solution expression (∆Gexcess = ∆Gideal Ð
∆Greal), the following equation can be obtained:

 
T (K) =

AWH
Usp – BWH

Mt – CWH
Ilm+ DWH

Hem + ∆H˚

AWS
Usp– BWS

Mt– CWS
Ilm + DWS

Hem+∆S˚–RlnKexch
4.57

Oxygen fugacity is determined as:
 

log (ƒO2
) = log(MH) + (12 ln(1 – X ilm) – 4ln(1– X Usp) +

1
RT

[8X Usp
2 (X Usp – 1)WG

Usp

+ 4X Usp
2 (1 – 2X Usp)W G

MT +12X Ilm
2 (1 – X Ilm)WG

Ilm

– 6X Ilm
2 (1 – 2X Ilm)WG

Hem])/2.303

4.58

where:
A X X B X X C X X D X XUsp Usp Usp Usp Ilm Ilm Ilm Ilm= − + = − = − + = −3 4 1 3 2 3 4 1 3 22 2 2 2, , ,

 
Kexh = (X UspX Hem

2 )
X MtX Ilm

2(X UspX Hem
2 )

X MtX Ilm
2 , ∆H exch

o = 27.799 kJ /mol, ∆S exch
o = 4.1920 J /mol

and MH is the magnetite-hematite buffer:      log (MH) = 13.966 Ð 24634/T.
We have reviewed just a few of the available thermobarometers in use.  These were selected to i l -

Table 4.1. Margules Parameters for Ilmenite and Titanomagnetite Solid Solutions
Usp Mag Ilm Hem

(<800 ¡ C) (<800¡ C)

WH (joules) 64835 20798 102374 36818
WS (joules) 60.296 19.652 71.095 7.7714
WG (>800¡  C) (joules) 0 0
∆So

Usp (joules) 10.724
∆Ho

Usp (joules) -3073
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lustrate the underlying principals.  There are, however, many thermobarometers in use by geochem-
ists and petrologists.  Some of these are listed in Table 4.2.

Example 4.4: Using the Iron-Titanium Oxide Geothermometer
An electron microprobe analysis of oxide phases in an andesite reveals that there is 68 mole per-

cent of ulvospinel in an ulvospinelÐmagnetite phase and 93.3% of ilmenite in an illmenite-hematite
phase.  Calculate the temperature and ÄO2 at which these phases equilibrated.

Answer:  We can use equations 4.57
and 4.58 to answer this question.  The
data in Table 4.2 are relevant to the
binary asymmetric solution model for
the system below 800¡ C.  Above 800¡ C,
an ideal solution is assumed for the
ulvospinel-magnetite phase, so the in-
teraction parameters for this phase go
to 0.  But if we donÕt know the tempera-
ture, how do we know which equation to
use?  We begin by computing tempera-
ture using the parameters for less than
800¡ C.  If the temperature computed in
this way is greater than 800¡ C (1073
K), we set the WH and WS for ulvospinel
and magnetite to 0 and recompute.

Once we have temperature, we can
compute the WG terms using the rela-
tionship WG = WHÐ T W S, bearing in
mind that WGusp = WGMt = 0 if the tem-
perature is greater than 800¡ C.  With
these values in hand, we can use equa-
tion 4.58 to calculate the ÄO 2. Our
spreadsheet is shown on the right.
These data we taken from one of
Spencer and LindsleyÕs (1981)
experiments, performed at 938¡ C and
log ÄO2  = -12.76.  Our calculations are in
good agreement with the experimental
observation.

XUsp XIlm
0.68 0.933

∆H 2 7 7 9 9
∆S 4.192
R 8.314

Interaction Parameters
WHU 6 4 8 3 5 WSU 60.296
WHM 2 0 7 9 8 WSM 19.652
WHI 1 0 2 3 7 4 WSI 71.095
WHH 3 6 8 1 8 WSH 7.7714

A - 0 . 3 3 2 8
B 0.0272
C - 0 . 1 2 0 5 3
D 0.745467
K 0.010958

T= (A*WHU-B*WHM-C*WHI+D*WHH+∆H)
(A*WSU-B*WSM–C*WSI+D*WSH+∆S-R*ln(K)

T (<800) 1 2 8 1 K 1 0 0 8 °C
T (>800) 1 2 0 5 K 9 3 2 °C

WG=WH-T*WS
WGU - 7 8 2 9 . 5 2 WGI 16695.29
WGM - 2 8 8 5 . 2 1 WGH 27452.45

MH - 6 . 4 7
LogƒO2 (<800) - 1 2 . 5 8

Lo gƒO2 (>800) - 1 2 . 6 9

4.6 Thermodynamic Models of Magmas
Silicate liquids have played an extremely important role in the development of the Earth, as

well as other bodies in the solar system.  As we shall see, the EarthÕs crust formed as melts from the
mantle rose to the surface and cooled.  Thus an understanding of igneous processes is an essential part
of earth science.  Until the last decade or two, the primary approach to igneous petrology was obser-
vational and experimental.  Results of melting experiments in the laboratory were used to interpret
observations on igneous rocks.  This approach has proved highly successful and is responsible for most
of our understanding igneous processes.  However, such an approach has inherent limitations: virtu-
ally every magma is unique in its composition and crystallization history.  Yet the experimental data
base is limited: it is not practical to subject each igneous rock to melting experiments in the labora-
tory.  Realizing this, igneous petrologists and geochemists turned to thermodynamic models of sil i-
cate melts as a tool to interpret their evolution.  With a proper ÔmodelÕ of the interaction of various
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components in silicate melts and adequate
thermodynamic data, it should be possible to predict
the equilibrium state of any magma* under any given
set of conditions.  The obstacles in developing proper
thermodynamic models of silicate liquids, however,
have been formidable.  Because they are stable only a t
high temperatures, obtaining basic thermodynamic
data on silicate liquids is difficult.  Furthermore,
silicate liquids are very complex solutions, with 8 or
more elements present in high enough concentrations to
affect the properties of the solution.  Nevertheless,
sufficient progress has been made on these problems
that thermodynamics is now an important tool of
igneous petrology.

4.6.1 Structure of Silicate Melts

As was the case for silicate solids and electrolyte
solutions, application of thermodynamics to silicate
liquids requires some understanding of the interactions
that occur on the atomic level.  Thus we will once
again have to consider the microscopic viewpoint be-
fore developing a useful thermodynamic approach.  In
this section, we briefly consider the nature of silicate
melts on the atomic level.

 Most, though not all, of our knowledge of the struc-
ture has come from studies of glasses rather than
melts.  While the thermodynamic properties of sil i-
cate liquids and their respective glasses differ, other
studies have confirmed the general structural simi-
larities of glasses and liquids.  Spectral studies of

                                                
* A magma consists not only of a liquid, but any suspended gas or crystalline phases as well.

Table 4.2.  Commonly Used Thermobarometers
Reaction Type Reference
Garnet=BiotiteFe-Mg exchange (Ferry and Spear, 1978)
(Fe,Mg)3Al2Si3O12 ® K(Mg,Fe)AlSi3O10(OH)2

Plagioclase = Garnet + Kyanite + Quartz displaced equilibria (Ghent, 1976; Koziol
3(Ca,Na)Al2Si2O8 ® (Fe,Ca)3Al2Si3O12 + 2Al2SiO5 + SiO2 and Newton, 1988)
Garnet + Quartz = Plagioclase  + Wollastonite displaced equilibria (Gasparik, 1984b)
(Fe,Ca)3Al2Si3O12  + SiO2  ® (Ca,Na)Al2Si2O8 + 2CaSiO3

Calcite = Dolomite solvus equilibria Goldsmith and Newton (1978)
CaCO3 ® (Ca,Mg)CO3

Calcite = Aragonite univariant (Johannes and Puhan, 1971)
CaCO3 ® CaCO3

Ilmenite + Al2SiO5 = Garnet + Rutile + Quartz displaced equilibria (Bohlen et al., 1983)
3FeTiO3 + Al2SiO5 ® 3TiO2 + (Fe,Ca)3Al2Si3O12 + SiO2

Hercynite + Quartz = Garnet + Sillimanite displaced equilibria (Bohlen et al., 1986)
FeAl2O4 + 5SiO2 ® Fe3Al2Si3O12 + Al2SiO5

a

b

bridging
oxygens

non-bridging
oxygens

DimerMonomer

Figure 4.21.  Silicate structures.  a: Short
range silicate structures in melts resemble
those in solids.  Individual tetrahedra may
be linked by bridging oxygens and linked to 2
silicon atoms.  b.  Unit in silicate melts may
include monomers, with no bridging oxygens,
and  dimers, where only 1 of 4 oxygens in
each tetrahedra are ÔbridgingÕ.
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glasses, which in some respects can be viewed as supercooled liquids, have revealed that silicate
liquids have structures rather similar to those of silicate solids.  In fact, the principal difference
between silicate liquids and solids is the absence of long-range ordering in the former; short range
ordering is similar.  As in silicate minerals, the primary structural element of silicate liquids is the
silicon tetrahedron (see Fig. 1.11), consisting of a silicon atom surrounded by four oxygens.  As in
silicate minerals, tetrahedra may be linked by a shared oxygen, called a bridging oxygen; not
surprisingly, unshared oxygens are termed non-bridging (Figure 4.21a).  Unlinked silica tetrahedra,
that is those with no bridging oxygens, are termed monomers, SiO 4

4−  (Figure 4.21b). Two tetrahedra
linked by a single oxygen are termed dimers and have the formula Si2O 7

6− .  Tetrahedra may also be
linked by two oxygens to form infinite chains; these have a chemical formula of SiO 3

2− .  In silicates
such as quartz and feldspar, the tetrahedra are all linked into a framework, and all oxygens are
shared.  All these structural can be present in silicate glasses.

The degree to which the silica tetrahedra are linked, or polymerized , in silicate liquids affects
chemical and physical properties.  The degree of polymerization in turn depends on other cations pre-
sent.  These may be divided into two groups, network formers and network modifiers.  Relatively
small, highly charged cations such Al3+ and Fe3+ (more rarely, Ti4+, P3+, B3+ as well) often substitute
for silicon in tetrahedral sites and, along with Si, are termed network formers.  The other common ca-
tions of natural silicate liquids, Ca2+, Mg2+, K+, Na+, and H+, are network modifiers.  These ions cannot
substitute for silicon in tetrahedra and their positive charges can only be balanced by non-bridging
oxygens.  Addition of these ions disrupts the linkages between silica tetrahedra.  Thus as silicate
melts become richer in these network modifiers they become progressively depolymerized.  This is i l -
lustrated in Figure 4.22, which compares the structure of pure silica glass (liquid) and a silica-rich
glass (liquid).  Melt structure in turn affects the physiochemical properties of the melt.  For example,
SiO2Ðrich melts tend to have low densities and high viscosities.  As ions such as MgO or CaO are
added to the melt, viscosity decreases and density increases as the polymer structure is disrupted.

4.6.2 Magma Solution Models

Advances on several fronts have moved thermodynamic modeling of magmas from an academic cu-

Bridging oxygen ion

Network-forming ion

Nonbridging oxygen ion

Network-modifying

(a) (b)

Figure 4.22.  (a) structure of pure silica glass and (b) a silica-rich glass
with additional component ions.
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riosity to useful petrological tool.  First, spectroscopic (mainly Raman and infrared spectroscopy, both
of which are sensitive to atomic and molecular vibrations) studies are revealing  the structure of sil i-
cate melts, which provides the theoretical basis for thermodynamic models.  Second, more sophisti-
cated thermodynamic models more accurately reflect interactions in silicate melts.  Third, the ther-
modynamic data base has become more complete and more accurate.  Finally, the wide accessibility
and power of computers and appropriate programs have made the extensive matrix calculations in-
volved in these models possible.

Several factors complicate the task of thermodynamic modeling of magmas.  First, magmas are so-
lutions of many components (typically 8 or more).  Second, the solids crystallizing from magmas are
themselves solutions.  Third, magmas crystallize over a substantial temperature range (as much as
400-500¡ C, more in exceptional cases).  Furthermore, crystallization may occur over a range of pres-
sures as a magma ascends through the Earth, and crystallization may be accompanied by melting and
assimilation of the surrounding ÔcountryÕ rock.  Despite these complications several models that are
sufficiently accurate to be useful to petrologists have been published, most notably those of Ghiroso
(Ghiorso et al., 1983; Ghiroso and Sack, 1995) and Nielsen and Dungan (1983).  The goal of these mod-
els is to describe the phases and their proportions crystallizing from a cooling magma, and the result-
ing evolution of liquid composition.  In the section below, we briefly consider the model of Ghiorso.

4.6.2.1 The Regular Solution Model of Ghiorso and Others

  Ghiorso (Ghiorso et al., 1983; Ghiorso, 1987; Ghiorso and Sack, 1995) noted that silicate liquids
have substantial compositional regions in which immiscibility occurs and therefore argued that sim-
plest model that might be able to describe them is the regular solution model. As we saw earlier in
the chapter, regular solution models attempt to describe excess functions with interaction, or Mar-
gules, parameters.  The Margules equation for excess Gibbs Free Energy for many components is:

  Gex =
1

2
XiXjWG

ij∑
j, j≠i

∑
i

4.59*

and the Gibbs Free Energy is:
  G = Xiµi

o∑
i

+RT XilnXi∑
i

+
1

2
XiXjWG

ij∑
j, j≠i

∑
i

4.60†

The chemical potentials of individual components are:
  µi = µi

o + RT lnXi + XjWG
ij∑

j, j≠i

–
1

2
XjXkWG

jk∑
k, k≠j

∑
j, j≠k

4.61

and the activity coefficients are:
   RT ln λ i

= XjWG
ij∑

j, j≠i

–
1

2
XjXkWG

jk∑
k, k≠j

∑
j, j≠k

4.62

Having chosen a general form for the solution model, the next step is to select the components.  For
practical reasons, Ghiorso et al. (1983) placed all components on an 8-oxygen basis.  Ghiorso and Sack
(1995) chose oxides that are more familiar to igneous petrologist  as components of the liquid phase:
SiO2, TiO2, Al2O3, Fe2O3, MgCr2O4, Fe2SiO4, Mg2SiO4, CaSiO3, Na2SiO3, KAlSiO4, Ca3(PO4)2, and
H2O.  For components of solid phases, they chose pure end-member phase  components (e.g., MgSiO3 in
orthopyroxene).

The next task is to find values for the interaction parameters.  These can be calculated from solid-
liquid equilibria experiments.  The principle involved is an extension of that we used in constructing

                                                
* The 12  term arises because the sum contains both XiXjW

ij
G   =Wji

G  terms  and XjXiW
ij
G  and Wij

G   =Wji
G  .

  For clarity, we have simplified Ghioso's equation by neglecting H2O, which they treated separately.
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phase diagrams:  when a solid and liquid are in equilibrium, the chemical potential of each compo-
nent in each phase must be equal.  Since thermodynamic properties of the solids of involved are
available (determined using standard thermodynamics techniques), the thermodynamic properties of
the co-existing liquid may be calculated.

The reaction of a solid phase, ϕ, with the melt can be described with a set of p reactions of the
form:

   ϕp ® υp,iciΣ
i

4.63

where ϕp is the pth end member component of phase  ϕ, ci refers to the formula for the ith component in
the liquid and νp,k refers to the stoichiometric coefficient of this component.  Thus for reaction of oli-
vine with the liquid, we have two versions of 4.63:

(Mg2SiO4)Ol ® 2MgO_  + SiO2-_ 4.63a

and (Fe2SiO4)Ol ® 2FeO_  + SiO2-_ 4.63b

We can express the Gibbs Free Energy change for each of these reaction as:
  ∆Gr = ∆Gϕp

o
+ RT νp,ilnaiΣ

i
– RT ln aϕp

4.64

where a k
l is the activity of the oxide component in the liquid and ϕP refers to phase component p in

phase ϕ.  ∆G
Ð

 r is, of course, 0 at equilibrium.  For example, for reaction 4.63a above, we have:
  ∆Gr = 0 = ∆GFo

o
+ RT [2lnaMgO + lnaSi2O

] – RT ln aFo

where the subscript Fo refers to the forsterite (Mg2SiO4) component in olivine and the superscript
_ _ refers to the liquid phase.  Expanding the liquid activity term, we have:

  0 = ∆Gϕp

o
+ RT νp, ilnXiΣ

i
+ νp, ilnλ iΣ

i
– RT ln aϕp

4.65

Substituting 4.62 for the activity coefficient term in 4.65 and rearranging to place the ÒknownsÓ on the
left-hand side, we have:

  
–∆Gϕp

o + RT ln aϕp
– νp, iRT lnXiΣ

i
= νp,i WG

i,jXjΣ
j

n
Σ
i

–1
2 WG

k,jXkXjΣ
k

Σ
j

4.66

The quantities on the left-hand side of the equation are terms that can be calculated from the compo-
sitions of coexisting solids and liquids and solution models of the solids.  The right hand side contains
the unknowns.  One statement of equation 4.66 can be written for each component in each solid phase
at a given temperature and pressure.  With enough experiments, values for the interaction parameters
can be extracted from the phase relations.  Ghiorso et al. (1983) and Ghiorso and Sack (1995) used a
statistical technique called least squares  to determine the interaction parameters from a large num-
ber of published experimental data.  Ghiorso and Sack (1995) also noted that the absence of a phase
in an experiment provides thermodynamic information about that phase, i.e., that its free energy
must be higher than that of the phases that are present.  Their approach made use of this informa-
tion as well, though discussion of that aspect of their method would take us too far afield.  The inter-
action parameters they determined are listed in Table 4.3.

With values for the interaction parameters, the model can then be used to predict the assemblage
of solids, their compositions, and the liquid composition that will be present in the system as a func-
tion of temperature and pressure.  The equilibrium condition for a magma, as for any other system, is

                                                
  ÔLeast squaresÕ are numerical techniques that attempt to minimize the square of the difference
between calculated and observed value of some parameter.  The square is taken to give greater weight
to large deviations.  Thus least squares techniques yield results where there are relatively few large
deviations between the calculated and observed value of the parameter of interest.  We discuss this
technique further in Chapter 8.
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the condition where Gibbs Free Energy is at a
minimum.  Thus the problem becomes finding
a composition for the liquid and coexisting
solids that minimizes G at a particular tem-
perature and pressure.  In other words, we
want to find values of G_  and Gφ1, Gφ2, ... Gφn

such that Gsys is minimal where:
   Gsys = Gl + GφΣ

φ
4.67

Inherent in the problem is finding which
solids will be in equilibrium with the liquid
for a given bulk system composition at speci-
fied temperature and pressure.  In GhiorsoÕs
approach, an initial guess is made of the
state of the system.  This is done by taking
the liquid composition as equal to the system
composition and estimating what phases are
likely to be in equilibrium with this liquid.
Then G is expanded as a 3-term Taylor Se-
riesà about that initial point, N«, where N« is
the composite vector containing the mole
fractions describing the compositions of a l l
phases in the system.  The second term in the
expansion is the first derivative of G with
respect to ni, the moles of component i, which
is simply the chemical potential.  A mini-
mum of G occurs where the first derivative is

                                                
à  A Taylor series expansion of a function Ä(z) in the vicinity of some point z = a has the form:

 
ƒ(z) = ƒ(a) +

(z – a)
1!

ƒ’(a) +
(z – a)2

2!
ƒ"(a) +

where ÄÕ and ÄÓ are the first and second derivitives of Ä with respect to z.

Table 4.3. Interaction Parameters for the Ghiorso Regular Solution Model
SiO2 TiO2 Al2O3 Fe2O3 MgCr2O4 Fe2SiO4 Mg2SiO4 CaSiO3 Na2SiO3 KAlSiO4 Ca3(PO4)

TiO2 26267

Al2O3 --39120 -29450

Fe2O3 8110 -84757 -17089
MgCr2O4 27886 -72303 -31770 21606

Fe2SiO4 23661 5209 -30509 -179065 -82972
Mg2SiO4 3421 -4178 -32880 -71519 46049 -37257

CaSiO3 -864 -35373 -57918 12077 30705 -12971 -31732

Na2SiO3 -99039 -15416 -130785 -149662 113646 -90534 -41877 -13247

KAlSiO4 -33922 -48095 -25859 57556 75709 23649 22323 -17111 6523
Ca3(PO4)2 613892 25939 52221 -4214 5342 87410 -23209 37070 15572

H2O 30967 81879 -16098 31406 28874 35634 20375 --96938 10374 43451
Values are in kJ/mol.  From Ghiorso and Sack (1995).
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Figure 4.23.  Calculated compositional evolution of
magmas from Thingmuli, Iceland using the regular
solution model of Ghiorso compared with actual
analyses plotted on a FeOÐMgOÐNa2O+K2O (ÒAFMÓ)
ternary diagram.  Solid line is for 0.1 MPa pressure,
dashed line is for 200 MPa pressure.  Both assume ÄO2 on
the FMQ buffer.  From Ghiorso and Carmichael (1985).
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0.  Thus the second term, the chemical potentials, is set
to 0 and solution sought by successive iterations.  After
each iteration N« is reset to the composition found in the
most recent iteration.  This approach clearly involves
repetitive matrix calculations and would not be practi-
cal without a computer, but they can easily be per-
formed on the current generation of workstations.

Figure 4.23 and 4.24 illustrate application of the
Ghiorso model.  Figure 4.23 compares the calculated
compositional evolution during fractional crystalliza-
tion of magmas from Thingmuli, eastern Iceland, with
actual analyses.  During fractional crystallization,
solid phases are isolated from the liquid and therefore
do not continue to equilibrate with the magma after
they have formed.  Figure 4.24a shows the calculated
cumulative proportions of spine, olivine, pigeonite, pla-
gioclase, and clinopyroxene that crystallizing from the
meteorite Shergotty as well as the composition of the
remaining liquid as a function of temperature.  This cal-
culation assumes that all solids remain in equilibrium
with the melt as it continues to cool, a process referred to
as equilibrium crystallization.

The latest version of the Ghiorso model, embodied in
a computer program called ÒMELTSÓ that runs of a vari-
ety of UNIX workstations, has recently been made
available to the scientific community through the
World Wide Web (WWW) (URL: Òhttp://msgmac.
geology.washington.edu/MeltsWWW/Melts.htmlÓ).  I t
should become a common tool for petrologists in the
future.

4.6.2.2 The Two Lattice Model of Nielsen and Dungan

Nielsen and Dungan (1983) approached the problem of modeling the behavior of silicate melts
quite differently.  Their model is based upon a structural model of silicate melts developed by Bot-
tinga and Weill (1972) to predict melt viscosities.  The Bottinga and Weill model is based upon the
observation that components in silicate melts can be divided into network formers and network modi-
fiers.  Nielsen and Dungan modeled silicate melts as a mixture of two solutions, or quasi-lattices: one
lattice, or solution, consists of the network-forming components and the other of the network-modify-
ing components, hence the name Òtwo lattice modelÓ.  Within each solution, components are assumed
to mix ideally.  The two lattices, or solutions are assumed to exist entirely independently of each
other, so all effects related to the mixing of the two lattices are ignored.

Having established this framework, the next task is to decide upon the components and assign
them to either the network forming solution of the network modifying one.  SiO2 is, of course, assigned
exclusively to the network-forming solution, and MgO, FeO, CaO, TiO2, MnO, and CrO1.5 are assigned
to the network-modifying solution.  However, experimental evidences suggests that Al and Fe3+ can be
both network modifiers and network formers, and that Na and K can complex with network -forming
Al.  Thus Nielsen and Dungan combined Na and K with aluminum to form components NaAlO2 and
KAlO2.  Any excess Al is assigned to the network modifying solution as AlO1.5.  Any excess Na and K
are combined with Fe3+ to form components NaFeO2 and NaFeO2; Fe3+ is otherwise assigned to the
network-modifying solution as FeO1.5.  Activities are then calculated assuming ideality, e.g.:
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Figure 4.24.  (a) Cumulative mineral pro-
portions and liquid composition predicted
by the ÒMELTSÓ model of Ghiorso and
Sack (1975) compared with experimental
determined values of Stolper and McSween
(1979) for the Shergotty meteorite.
Shergotty is one of the SNC class of mete-
orites believed to have come from Mars
(see Chapter 10).  From Ghiorso et a l .
(1994).
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 a NaAlO2
= X NaAlO2

NF = X Na/(X Na + X K + X Si) 4.68

  a MgO = X MgO
NM = X MgO / X NMΣ 4.69

where NF and NM refer to network-formers and network-modifiers respectively.  Equilibrium con-
stants for reaction between components in the melt and in various possible minerals were extracted
from experimental data using linear regression.  Their expressions for the equilibrium constant have
the form:

ln K = 
a
T  + b 4.70

with parameters a and b being the slope and intercept of the regression results.  From Chapter 3, we
can identify parameter a with Ð∆Hr/R and parameter b with ∆Sr/R.  Nielsen and Dungan did not con-
sider the effects of pressure, and their model is restricted to mineral-melt equilibria at or close to a t -
mospheric pressure.

The Nielsen and Dungan Two Lattice Model is substantially simpler than Ghiorso and has a num-
ber of theoretical weaknesses.  The assumption of ideality is one such weakness, given that silicate
liquids can exhibit immiscibility.  A more seriously weakness is its inability to predict true activi-
ties.  In the Nielsen and Dungan model, for example, adding MgO to the liquid does not decrease the
activity of SiO2, which is certainly incorrect.  Despite these theoretical shortcomings, the model has
been widely applied with considerable success, with many, though not all magma compositions (the
Ghiroso model also does not work for all compositions).  Furthermore, their model predicts trace ele-
ment behavior as well, as we shall see in Chapter 7.  Computer programs for the Nielsen and Dungan
Model that run on personal computers are available on the Geochemical Earth Reference Model
(GERM) Web Site (http://www-ep.es.llnl.gov/germ/model-tools.html).

4.7 Reprise: Thermodynamics of Electrolyte Solutions
We discussed the nature of electrolyte solutions and introduced one approach to dealing with their

non-ideality, namely the Debye-H�ckel activity coefficients, in Section 3.7.  We also noted a number
of theoretical weaknesses in the Debye-H�ckel approach and that this approach is restricted to
fairly dilute solutions (ionic strengths less than 0.1 M).  In this section we will return to the problem
of electrolyte solutions and examine the causes of non-ideal behavior in high ionic strength solutions
in more detail.  Before doing so, however, we need to introduce a new variation on our now-familiar
thermodynamic parameters, namely mean ionic quantities.

4.7.1 Mean Ionic Quantities

Consider an aqueous NaCl solution.  In Chapter 3 we saw that the thermodynamic properties of a
salt are related to those of its component ions by:

ΨAB ≡ νAΨA + νBΨB (3.73)
So, for example, the chemical potential of NaCl in solution is:

  µNaCl = µNa+ + µCl–

which we can express as:
  µNaCl = µNa+

o + µCl–o + RT(ln aNa+ + ln aCl–) 4.71

or:   µNaCl = µNa+
o + µCl–o + RTln (mNa+ mCl–) + RTln (γNa+ γCl–)

Though we can certainly determine the concentrations of Na and Cl in solution, how do we independ-
ently determine their activity coefficients?  Since we cannot create a pure Na+ solution or a pure ClÐ

one, we cannot say what part of the non-ideality of NaCl solution is due to Na+ and what part is due
to ClÐ.  The practical solution then is to assign all non-ideality equally to both ions.  This leads to the
concept of the mean ion activity coefficient:
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  γ± = (γNa+γCl–)1/2 4.72

Thus the mean activity coefficient of a salt is the multiplicative mean of the activity coefficients of
its component ions.  Equation 4.71 then becomes:

  µNaCl = µNa+
o + µCl–o + RT[ln(mNa+ mCl–) + lnγ±

2]

Equation 4.72 is valid for 1:1 salts (i.e., 1 cation for each anion).  A general expression for the mean ac-
tivity coefficient of a salt of composition Aν+BνÐ is:

  γ± = (γ+
ν+γ–

ν–)1/ν 4.73

where ν is the sum of the component positive and negative ions:

ν = ν+ + νÐ 4.74
Mean activity coefficients have the advantage that they are readily measurable (through electro-
chemical means or solubility, for example).  Given a well-behaved salt, such as KCl, where the rela-
tionship γÐ =γ+ appears to hold, it is then possible to determine single ion activity coefficients.  For
example, we can obtain γNa+ in our NaCl solution by first determining γClÐ  in KCl*:

γCl– = γK– = γ±KCl

then determining the mean ion activity coefficient of NaCl experimentally in a solution of the same
ionic strength and calculating γNa+ as:

  
γNa+ =

γ±NaCl
2

γCl–

We can extend the concept of mean ionic quantities to other thermodynamic variables as well.  The
mean ionic potential , µ±, is defined as:

 
  

µ = ν+µ+ ν–µ– 4.75

Thus the mean ionic potential is simply
the arithmetic mean of the potential of
the individual ions weighted by their
stoichiometric coefficients.  We could also
express the mean ionic potential as:

  
µ± = µ±

o +
RT(ln a+

ν+ + lna–
ν–)

4.76

Rearranging once more, we obtain:
  µ± = µ±

o + RTln (a+
ν+ a–

ν–)1/ν 4.77

Comparing this relationship with
equation 4.71, we define a mean ionic
activity  such that:

  
a± = a+

ν
+

a–
ν

– 1/ ν
4.78

We can also define mean ionic molalities
such that a± = γ±m±.  Substituting a+ =
γ+m+, and a– = γ–m–, we find the mean

                                                
* The use of KCl as a reference for determining mean ion activity coefficients is based on the observation
that K+ and ClÐ have about the same effective radius and ion mobility and is known as the MacInnes
Convention.  Like that of Debye-H�ckel, however, this approach breaks down at high ionic strength.

Example 4.5: Calculating Single Ion Activity
Coefficients from Mean Ionic Activity
Coefficients
The measured mean ionic activity coefficient of KCl in
a solution of 1.0 m ionic strength is 0.604; that of CaCl2

in a solution of the same ionic strength is 0.449.  W h a t
is the activity coefficient of Ca2+?  Assume γClÐ = γKÐ.

Answer: We begin by noting that γClÐ = γKÐ =
γ±KCl and therefore that γClÐ = 0.607.  According to equ.
4.73, the mean ion activity coefficient for CaCl2 is re-
lated to the single ion activity coefficients as:

  γ±CaCl2
= (γCa+

1 γCl–2 )1/3

  Solving this for γCa2+ we have:
  

γCa+ =
γ±CaCl2

3

γCl–2
= 0.4493

0.6042
= 0.248
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ionic molality is then:
  m± = (m+

ν+ m–
ν–)1/ν 4.79

and the mean ionic activity coefficient is:
  γ± = (γ+

ν+ γ–
ν–)1/ν

4.80
Mass balance requires that: m+ = ν+m    and  m– = ν–m
Substituting this into equation 4.79, we see that:

  m± = m(ν+
ν+ ν–

ν–)1/ν 4.81

LetÕs returning to our NaCl example.  Dissociation is essentially complete  and  ν+ and νÐ are unity,
so that:

mNa+ = mNaCl and mCl– = mNaCl

Since ν = 2: m±NaCl = mNaCl
2  = mNaCl

Mean ionic molality is simply equal to molality for a completely dissociated salt consisting of mono-
valent ions such as NaCl.
 The mean ionic activity coefficient, or the stoichiometric activity coefficient as itÕs sometimes re-
ferred to, of NaCl would be the square root of the product of the component activity coefficients ac-
cording to equation 4.78, as would the mean ionic activity.   The individual ion activities can be mea-
sured in a number of ways.  Therefore, the above relationships allow calculation of the mean ionic ac-
tivity coefficient from measurable quantities.

For strong electrolytes, i.e., salts that com-
pletely dissociate, it can also be shown that
mean activity coefficient and mean activity of
the salt are related to its activity coefficient
and activity by:

  γ = γ±
ν 4.82

and   a = a±
ν 4.83

We can modify the Debye-H�ckel equations to
obtain mean ion activity coefficients as fol-
lows:
Debye-H�ckel Extended Law:

  
log10 γ ± =

-Az+ z– I

1 + Bå I
4.84

Limiting Law:
  log10 γ ± = -Az+ z– I 4.85

where � is taken as the sum of the radii of the
anion and cation, i.e., � = �+ + �Ð.

4.7.1.1 Relationship between Activity and
Molality of a Salt

LetÕs consider the relationship between ac-
tivity and molality of a salt in an electrolyte
solution such as a NaCl solution.  Figure 4.27a

Example 4.6: Mean Ionic Parameters for
a fully dissociated electrolyte

If the molality of a CaCl2 solution is 0.3 M
and the activity coefficients of Ca2+ and ClÐ are
0.5 and 0.7 respectively, calculate the activity
and mean ionic molality of CaCl2 in the solution.
Assume that CaCl2 fully dissociates.

Answer:  For CaCl2, ν+ = 1, νÐ = 2, and ν = 3.
So we can use equation 3.58 to calculate mean
ionic molality:

m± CaC l2 = mCaCl2 1122 1/3
= 41/4mCaCl2

Substituting 0.3 for m, we find that m± = 0.4762
M.

We then use equation 4.81 to calculate the
mean ionic activity coefficient:

  
γ ± = (γ +

ν
+

γ –
ν

–

)
1/ν

= (0.5
1
0.7

2)
1/3

= 0.625

The mean ionic activity is then:
  a± = γ±m± = 0.625 × 0.4762 = 0.2980

and the activity of CaCl2 is:
  acaCl2

= a±
ν

= γ±m± = 0.2980
3

= 0.0263 M
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illustrates this relationship.  What we immediately notice is that the slope in the HenryÕs Law re-
gion is essentially zero, which is not at all what we expect for HenryÕs Law behavior.

  It can easily be shown that the relationship in 4.25a is a simple consequence of the dissociation of
the NaCl into Na+ and Cl- ions.    From 3.75 we have:

µNaCl ≡ µNa
+
(aq)  + µCl

-
(aq) 4.86

Substituting this into equation 3.45, we obtain:
 µNaCl = µNa

+
o + µCl

–
o + RT ln aNa

+ + RT ln aCl
–

In the reference state of infinitely dilute solution, mi = ai, so that:
 µNaCl = µNa

+
o + µCl

–
o + RT ln mNa

+ + RT ln mCl
– 4.87

Furthermore, charge balance requires that:
mNa+ = mCl- = mNaCl 4.88

Substituting 4.88 into 4.87 and rearranging:
 µNaCl = µNaCl

o + 2RT ln mNaCl

= µNa+
o + µCl–

o + RT ln mNaCl
2

4.89

Comparing this equation with equation 3.45, we see that

aNaCl ∝  m
2
NaCl 

When we plot activity versus the square of molality, we obtain a linear relationship (Fig. 4.25b).
Generalizing this result for dissociation of a substance into a positive ion A and negative ion B ,

such as:

Aν+Bν- ® ν+Az+ + ν–Bz–

the relationship between activity of a salt and its mo-
lality is:

aA B   ∝  m
ν
A B  4.90

For example, ν is 3 for CaCl2, 4 for FeCl3, etc.
Now letÕs see what happens if we substitute the mean

ion activity for activity.  Since:
  a±

ν = a

We  have:   a±
ν ∝ mAB

ν or   a± ∝ mAB

This is the relationship we observed in Figure 4.25, so we
see that the mean ionic activity accounts for the effects
of dissociation.

4.7.2 Activities in High Ionic Strength
Solutions

As we noted in Chapter 3, there are two phenomena
that are not considered in the Debye-H�ckel approach
that result in inaccuracies in the Debye-H�ckel equation
at ionic strengths above about 0.1 m.   This is illustrated
in Figure 4.26, which shows the experimentally deter-
mined mean ion activity coefficient for NaCl as a func-
tion of ionic strength and temperature.  At low tempera-
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Figure 4.25.  (a) Relationship between
activity and molality of NaCl in
aqueous solution.  The activity is very
low and the ÒHenryÕs Law SlopeÓ is
almost 0 at low concentrations.  (b)
Relationship between activity and the
square of molality of NaCl in aqueous so-
lution.
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tures, the activity begins to increase about
ionic strengths of 1 m, whereas Debye H�ckel
predicts continual decrease.  The activities
of many electrolytes eventually exceed 1 a t
high concentrations.  The difference between
the observed activity coefficients and those
predicted by the Debye-H�ckel equation are
due to the effects of ion association and
solvation.  Debye and H�ckel explicitly
assumed complete dissociation, i.e., no ion
associations.  While their treatment
included in a general way the dielectric
properties of water, it neglected the effects
of solvation.  As we noted in Chapter 3, the
effects of both ion association and solvation
become increasingly important with
increasing ionic strength.  It should be no
surprise then that the Debye-H�ckel
treatment breakdown at high ionic strength.
Here we will consider these effects in greater
detail.

Correction for the Concentration of
Water

At low and moderate ionic strength, we
can assume that the mole fraction of water in
solution is 1 (1 k/l).  For example in seawa-
ter, with an ionic strength of 0.7, the mole
fraction of water about 0.99.  Generally, ac-
tivity coefficients and equilibrium constants

are not known within 1%, so the error introduced by this assumption is still small compared to other
errors.  In higher ionic strengths, however, this assumption is increasingly invalid (for example, at a
molality of 3, the mole fraction of water has decreased below 0.95), and this must be taken into
account.  A convenient way to do this is to incorporate it into the activity coefficient.  The corrected
activity coefficient is:

  γcorr =
γ

(1 + 0.018Σi mi)
4.91

4.7.2.1 Effects of Solvation

Water molecules bound to ions in solvation shells have lost their independent translational motion
and move with the ion as a single entity.  These water molecules are effectively unavailable for reac-
tion, hence solvation has the effect of reducing the activity of water, which increases the apparent
concentration, or activity, of the solutes.  In addition to solvation, i.e., the direct association of some
water molecules with the ion, the charge of the ion causes collapse of the water structure beyond the
solvation shell.

For a solution consisting of a single salt, Robinson and Stokes (1959) proposed the contribution of
solvation to the mean ion activity coefficient could be expressed as:

  log γ±
solv = – h

ν log aw – log (1 – 0.018hm) 4.92
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Figure 4.26.  Observed mean ion activity coefficient,
γ±, of NaCl as a function of ionic strength and tem-
perature (solid lines; data from Helgeson, 1981)
compared with value predicted by the Debye-
H�ckel Law (computed as (γNa+γClÐ)1/2).
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where γsolv
±   is the solvation contribution to the mean ion activity coefficient, h is the number of moles

of water molecules bound to each mole of salt, aw is the activity of water, m is the concentration of the
salt in solution, and ν is a defined in equation 4.74 (i.e., total moles of ions produced upon dissolution
of a mole of salt).  Table 4.3 listed estimated values for the solvation number, i.e., number of water
molecules in the solvation shell of each ion.  From these, the value of h for equ. 4.91 can be calculated.
The activity of water can be adequately estimated as:

aw = 1 – 0.04m
Figure 4.27 illustrates the effect of solvation on the activity coefficient.  As may be seen, solvation
substantially affects the activity coefficient at ionic strengths above about 0.5 m.

4.7.2.2 Effects of Ion Association

An ion pair can be considered to have formed when ions approach closer than some critical dis-
tance, rc, where the electrostatic energy, which tends to bind them, exceeds twice the thermal energy,

which tends to move them apart.  When this
happens, the ions are electrostatically
bound and their motions are linked.  They
are said to form an ion pair.  The thermal
energy of an ion is kT and electrostatic inter-
action energy is:

  
Uelectro. =

q1 q2
4πε r

4.93

The ratio of these two energies when the
distance is less than the critical one is then:

  Uelectro
Utherm

=
z1 z2e2

4πε0εrrkT
> 2 4.94

We can use this equation to solve for the
critical distance rc:

  
rc =

z1 z2e2

8πε0εr kT
4.95

For two singly charged ions, the critical dis-
tance is 3.57 �.  In a 1 molar solution, the av-
erage separation between ions is about 12 �,
so even in such a relatively concentrated so-
lution, ion pairs will not form between singly
charged ions.  Indeed, the critical distance is
smaller than the combined Debye-H�ckel
radii of all pairs of singly charged ions.

Thus we do not expect ion associations to form from
pairs of singly charged ions under most circumstances.
In contrast, the critical distance for ion association
between a singly and a doubly charged ion is 70 �,
considerably greater than the sum of their Debye-
H�ckel radii.  It also exceeds the average separation
of ions in a 0.01 m solution (about 55 �), so that even
in dilution solutions, we would expect significant ion
pair formation for multiply charged ions.

As we saw earlier, all ions in solution are sur-
rounded by a solvation shell of water molecules.  This
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Figure 4.27.  Comparison of the electrostatic contribu-
tion to the mean ion activity coefficient of NaCl
(calculated by the Debye-H�ckel Extended Law),
the solvation contribution (calculated from equation
4.91 assuming h = 4) and the sum of the two.

Table 4.3. Ion Solvation Numbers

Species h Species h
Li+ 2.3 OHÐ 7.6
Na+ 3.3 FÐ 6.7
K+ 2.3 ClÐ 2.7
Rb+ 2.3 Br_ 1.7
Mg2+ 8.9 CO 3

2− 14.4
Ca2+ 8.9 SO 4

2− 10.4
Cd2+ 6.3
Ba2 + 9.2
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solvation shell may or may not be disrupted when ion pair formation occurs (Fig. 4.28).  If it is not dis-
rupted, and the two solvation shells remain intact, an outer sphere ion pair (also called an outer
sphere complex) is said to have formed.  If water molecules are excluded from the space between the
ions, an inner sphere ion pair (or complex) is said to have formed.

For some purposes, ion pairs can be treated as distinct species having charge equal to the algebraic
sum of the charge of the ions involved.  These can be included, for example, in calculation of ionic
strength to obtain a somewhat more accurate estimate of activities.  On the other hand, ion pairs, in-
cluding neutral ones, can be highly dipolar and may behave as charge-separated ions.

Ion associations affect activities in two ways.  First, associated ions are less likely to participate
in reactions, thus reducing the activity of the ions involved.  Second, ion association reduces the ionic
strength of the solution, and hence reduces the extent of electrostatic interactions among ions.  This
has the effect of increasing activity.  To understand the first effect, consider the case where if a cer-
tain fraction of the free ions reassociates to form ion pairs, e.g.:

ν+Az+ + ν–Bz–  ® (Aν+Bν-)
o
aq 

where the û indicates neutrality and the subscript aq a dissolved aqueous species. A salt that only
partially dissociates in solution is called a weak electrolyte.  Let α be the fraction of the ions tha t
associate to form ion pairs or complexes. The associate of this fraction of ions as ion pairs will be
thermodynamically equivalent to that fraction of the substance not dissociating to begin with.  The
fraction of free ions is then 1 Ð α.  Equation 4.80 becomes:

m+ = (1 – α)ν+m and  m– = (1 – α)ν–m 4.96
where m is the molality of the solute.  We can rewrite equation 4.78 as:

  a± = [(γ+m+)ν+
(γ–m–)ν–

]1/ν 4.97
Substituting 4.95 into 4.96 and rearranging, we obtain:  

a = γν+

γν– 1/ν
(1 – α)ν+m

ν+

(1 – α)ν–m
ν– 1/ν

A little more rearranging and we have:  
a = γν+

γν– 1/ν
{1 – α}m ν++ ν–

ν+ ν+

ν– ν– 1/ν

Finally, since ν = ν+ + νÐ, we obtain:

+
– + –

Outer Sphere Ion Pair Inner Sphere Ion Pair

Solvation shells intact Partial disruption of solvation shells Disruption of solvation shells

+ –

Figure 4.28.  In formation of ion pairs, the solvation shells may remain intact or be partially or totally
disrupted.  The former results in an outer sphere ion pair, the latter results in an inner sphere ion pair.
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a = γν+

γν– 1/ν
(1 – α)m ν+ ν+

ν– ν– 1/ν
4.98

We can recognize the last term as m±.  Since a± = γ±m±, we see that the mean ionic activity coefficient
will be

  γ± = (1 – α)(γ+
ν+γ–

ν–)1/ν 4.99

for an incompletely dissociated electrolyte.  Thus the mean ion activity coefficients are reduced by a
factor of 1 ÐÊα.  Provided we have appropriate stability constants for the ion pairs or complexes, α can
be calculated and an appropriate correction applied.

Now consider a CaSO4 solution of which some fraction of the Ca2+ and SO 4
2− ions, α , associate to

form CaSO 4
o .  The ionic strength of the this solution would be

  
I =

(1 – α)
2

(4 mCa2+ + 4 mSO4
2–)

Thus the ionic strength is reduced by a factor of 1 - α as well.
Ion pairs and complexes need not be neutral species (AlCl2+, for example).  When they are not, they

will contribute to ionic strength.  A general expression for ionic strength taking account of ion associa-
tions must include charged ion pairs and complexes:

  I = 1
2

(1 – αi)Σ
i = 1

mizi
2 + cnzn

2Σ
n = 1

4.100

where α i is the fraction of each ion involved in ion associations, and cn is the concentration of each ion
pair or complex and zn is its charge.  We could use this result directly in the Debye-H�ckel equation to
make an improved estimate of ionic strength,
and hence of the single ion activity coeffi-
cient.

Figure 4.29 illustrates the effect of ion
pair formation for a hypothetical CaCl2 so-
lution in which some fraction of the ions com-
bine to form ion pairs. The fraction of Ca2+

ions forming CaClÐ was assumed to increase
linearly with ionic strength up to the maxi-
mum value shown.

If the formation of ion pairs depends on
the ratio of thermal to electrostatic energy,
we might expect that ion pair formation will
decrease with temperature,  However, the
relative permittivity of water decreases
with temperature, allowing increased elec-
trostatic interaction between ions, and this
effect dominates over the increased thermal
energy of ions.  As a result, the extent of ion
association increases with temperature.  In-
creasing pressure, on the other hand, favors
dissociation of ions.

4.7.2.2 Alternative Expressions for
Activity Coefficients

There have been a number of attempts to
develop working equations that account for
all the effects on activity coefficients a t

0

0.1
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0.4

0.5

0.6
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0.8

0 1 2 3 4 5
I (apparent)

γ±

αmax = 0.2

αmax  = 0

αmax  = 0.4

Figure 4.29.  Effects of ion association on the activity
coefficient.  Mean ion activity coefficient of CaCl2 for
varying extends of ion association.  Fraction of Ca2+

ions forming CaClÐ was assumed to increase linearly
with ionic strength up to a maximum value (αmax) at I
= 5 m.  Solid line shows electrostatic term (Debye-
H�ckel) after correction for ion association, dashed
line shows the combined electrostatic and solvation
term.
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high ionic strength.  Many of these are ultimately based on the specific ion interaction theory of
Br¿nsted (1922).  Br¿nsted proposed an equation of the form:

  log γi = αm1/2 + β im 4.101
where α  is a constant that is independent of the solute ions and β is the Òspecific ion interaction pa-
rameterÓ and is different for each ionic species.  Guggenheim (1935) replaced the first term on the
right with a simplified form of the Debye-H�ckel equation and the second term with the summation
ion-ion interaction parameters:

  
log γi =

–zi
2A I

1 + I
+2 β ik mkΣ

k 1
4.102

where βικ  is parameter describing the interactions between ions i and k.  For natural waters with
many species, the Guggenheim equation becomes complex.  Truesdell and Jones (1974) proposed the fol-
lowing simplified version of this equation:

  
log γi =

–Azi
2 I

1 + Båi I
+ biI 4.103

The first term on the right is identical in form to Debye-H�ckel; the second term is similar to the
Br¿nsted specific ion interaction term.  Truesdell and Jones determined parameters � and b empiri-
cally.  Table 4.5 lists these parameters for some common ions.  Figure 4.30 compares mean activity co-
efficient of calculated with the Debye-H�ckel, Davies, and Truesdell-Jones equations with the ac-
tual measured values.  The Truesdell-Jones equations fit these observations very well.  This is not a l -
ways the case, however.  The fit for Na2CO3, for example is little better than for Debye-H�ckel.

Example 4.7. Activity Coefficients in a Brine
The following concentrations were measured in a shield brine from Sudbury,
Canada at 22¡ C.  Calculate the activity coefficients of these species using the
Truesdell-Jones equation.
Answer: Our first task is to convert g/kg  to molal concentrations.  We do this by
dividing by molecular weight.  Next, we need to calculate ionic strength
(equation 3.73) which we find to be 5.9 m.  Calculation of activity coefficients is
then straightforward using the parameters in Tables 3.2 and 4.6.  Finally, we
apply a correction for the decreased concentration of water (equation 4.91).  Our
final spreadsheet is shown below.

Species Conc
g/kg

N a 18.9
K 0.43
Ca 63.8
Mg 0.078
SO4 0.223
HCO3 0.042
Cl 162.7

ä m z �_TJ b_TJ log (gamma) ganma gamma corr
N a 18.9 0.822 1 5 0.165 0.728 5.341 4.741
K 0.43 0.017 1 3.5 0.015 -0.238 0.579 0.514
Ca 63.8 1.595 2 5 0.165 -0.017 0.963 0.855
Mg 0.078 0.003 2 5.5 0.2 0.264 1.836 1.630
SO4 0.223 0.002 2 5 -0.04 -1.229 0.059 0.052
HCO3 0.058 0.001 1 5.4 0 -0.233 0.585 0.519
Cl 162.7 4.590 1 3.5 0.015 -0.238 0.579 0.514

m 7.030 A 0.5092
I 5.913 B 0.3283
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Other equations include those developed
by Pitzer (1979) and the National Bureau of
Standards.  While these equations are gen-
erally more accurate than the above, their
complexity places them  beyond the scope of
this book.  The interested reader is referred
to any of several texts on geochemical ther-
modynamics that treat them (Nordstrom and
Munoz, 1986; Flectcher, 1993; Anderson and
Crerar, 1993) as well as the original litera-
ture.
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Problems

1.  Kyanite, andelusite, and silimanite (all po-
lymorphs of Al2SiO5) are all in equilibrium a t
500¡C and 376 MPa. Use this information and
the following to construct an approximate
temperature-pressure phase diagram for the
system kyanite-sillamanite-andelusite.  As-
sume ∆V and ∆S are independent of temperature and pressure.  Label each field with the phase pres-
ent.

2.   Show that:  Gexcess = WG1
X2 + WG2

X1 X1X2 may be written as a 4 term power expansion, i.e.:

 Gex = A + BX 2 + CX 2
2 + DX 2

3

3.  Construct G-barÐX diagrams for a a regular solution with W= 12 kJ (W is the interaction perameter
in a non-ideal solution) at 100¡ temperature intervals from 200 to 700¡ C.  Sketch the corresponding
phase diagram.

4.  Interaction parameters for the enstatite-diopside solid solution have been determined as follows:
WH-En = 34.0 kJ/mol, WH-Di = 24.74 kJ/mol (assume WV and WS are 0).

V
Ð

 S
φ (cm3) (J/K-mol)

kyanite 44.09 242.30
andelusite 51.53 251.37
sillmanite 49.90 253.05
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a.) Use the asymmetric solution model to calculate ∆Greal as a function of X2 (let diopside be compo-
nent 2) curves for this system at 100 K temperature from 1000 K to 1500 K.  Label your curves.

b.) What is the maximum mole fraction of diopside that can dissolve in enstatite in this tempera-
ture range:?

c.) Sketch the corresponding T-X phase diagram.

5. Sketch G-barÐX diagrams for 1600¡ C, 1500¡ C, 1300¡ C, and 1250¡ C for the system Diopside-Anor-
thite (Figure 4.8).  Draw tangents connecting the equilibrium liquids and solids.

6. Suppose you conduct a 1 atm melting experiment on a plagioclase crystal.  Predict the mole fractions
of anorthite in the liquid and solid phases at a temperature of 1425¡ C.  Assume both the liquid and
solid behave as ideal solutions.  Albite melts at 1118¡ C, anorthite at 1553¡C.  ∆Hm for albite is 54.84
kJ/mol; ∆Hm for anorthite is 123.1 kJ/mol.

8.  Given the following 2 analyses of basaltic glass and coexisting olivine phenocrysts, determine  the
KD for the MgO ® FeO exchange reaction, and calculate the temperatures at which the olivine crys-
tallized using both MgO and FeO.  Assume Fe2O3 to be 10 mole% of total iron (the analysis below in-
cludes only the total iron, calculated as FeO; you need to calculate from this the amount of FeO by
substracting an appropriate amount to be assigned as Fe2O3).  Note that the mole % Fo in olivine is
equivalent to the mole % Mg or MgO.  (HINT: you will need to calculate the mole fraction of MgO and
FeO in the liquid).

Glass (liquid) composition:

Sample TR3D-1 DS-D8A
 (wt % oxide) (wt % oxide)

SiO2 50.32 49.83
Al3O2 14.05 14.09
ΣFe as FeO 11.49 11.42
MgO 7.27 7.74
CaO 11.49 10.96
Na2O 2.3 2.38
K2O 0.10 0.13
MnO 0.17 0.20
TiO2 1.46 1.55

  olivine
Mole % Fo (=mole % Mg) 79 81

8. Determine the temperature and oxygen fugacity of equilibration for the following set of coexisting
iron-titanium oxides in lavas from the Azores:

titanomagnetite s.s. phase ilmenite s.s. phase
mole percent magnetite mole percent hematite

G-4 groundmass 29.0 10.3
SJ-8 phenocrysts 41.9 13.0
SM-28 microphenocrysts 54.5 7.0
T-8 groundmass 33.7 8.1
F-29 microphenocrysts 36.2 6.0
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Make a plot of ÄO2 vs. temperature using your results and compare with Fig. 3.21.  What buffer do
the data fall near?

7.  Starting from equations 4.23 and 4.62, use the fundamental relationships between free energy, en-
tropy, enthalpy, and the equilibrium constant to derive the temperature dependence of the
titanÐomagnetiteÐilmentite exchange (equation 4.63).

10. In a melt having a composition, in wt %, of:
SiO2 58.12% TiO2 0.92%
Al2O3 16.47% Fe2O3 1.82%
MgO 5.62% FeO 9.94% CaO 7.11%

Use the Ghiorso regular solution model and the interaction parameters in Table 4.3 to:
a.) calculate the G

Ð
 ex and ∆G

Ð
 mixing for this composition at 1300¡C.

b.) calculate the activity of Si4O8 at this temperature.

11.  An analysis of an oil field brine from Mississippi with a temperature of
150¡ C is shown to the right.  Calculate the activities  of these species a t
that temperature using the Truesdell-Jones equation.

12. Show that for a strong electrolyte, i.e., one in which dissociation is
complete and:

m– = ν–m and m+ = ν+m
where m is the molality of the solute component An+Bn-, that:

m± = m ν+
ν+

ν–
ν– 1/ν

13.  Mean ionic activity coefficients were measured for the following solu-
tions at an ionic strength of 3: γKCl = 0.569, γNaCl = 0.734, γNa2CO3 = 0.229.  As-
suming γClÐ = γKÐ = γ±KCl, what is the activity coefficient of CO 3

2− ?

14. Calculate the electrostatic and solvation contributions to the mean ionic
activity coefficient of MgCl2 at concentrations of 0.0033, 0.01, 0.033, 0.05, 0.1,
0.33, 0.5, and 1 using the Debye-H�ckel equation and Robinson and Stokes
(equ. 4.91) equ. respectively. Plot results, as well as γelect+solv = γelect*γsolv
as a function of ionic strength.

15.  Calculate the mean ionic activity coefficient for NaCO3 using the Debye-
H�ckel and Truesdell-Jones equations and compare your results with the ob-
served values to the right.  Overall, which fits the data better?

Species Conc
g/kg

Na+ 63.00
K+ 6.15
Mg2+ 2.77
Ca2+ 44.6
ClÐ 200.4
SO2-

4  0.13
HCOÐ

3 0.03

I, m
γ±

observed
0.001
0.003 0.887
0.006 0.847
0.01
0.015 0.78
0.03 0.716
0.06 0.644
0.1
0.15 0.541
0.3 0.462
0.6 0.385
1
1.5 0.292
3 0.229
6 0.182
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