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Scientific method

Although there are many fine textbooks on quantum field theory, they all have
various shortcomings. Instinct is claimed as a basis for most discussions of quantum
field theory, though clearly this topic is too recent to affect evolution. Their subjectiv-
ity more accurately identifies this as fashion: (1) The old-fashioned approach justifies
itself with the instinct of intuition. However, anyone who remembers when they first
learned quantum mechanics or special relativity knows they are counter-intuitive;
quantum field theory is the synthesis of those two topics. Thus, the intuition in this
case is probably just habit: Such an approach is actually historical or traditional,
recounting the chronological development of the subject. Generally the first half (or
volume) is devoted to quantum electrodynamics, treated in the way it was viewed in
the 1950’s, while the second half tells the story of quantum chromodynamics, as it
was understood in the 1970’s. Such a “dualistic” approach is necessarily redundant,
e.g., using canonical quantization for QED but path-integral quantization for QCD,
contrary to scientific principles, which advocate applying the same “unified” methods
to all theories. While some teachers may feel more comfortable by beginning a topic
the way they first learned it, students may wonder why the course didn’t begin with
the approach that they will wind up using in the end. Topics that are unfamiliar
to the author’s intuition are often labeled as “formal” (lacking substance) or even
“mathematical” (devoid of physics). Recent topics are usually treated there as ad-
vanced: The opposite is often true, since explanations simplify with time, as the topic
is better understood. On the positive side, this approach generally presents topics
with better experimental verification.

(2) In contrast, the fashionable approach is described as being based on the in-
stinct of beauty. But this subjective beauty of art is not the instinctive beauty of
nature, and in science it is merely a consolation. Treatments based on this approach
are usually found in review articles rather than textbooks, due to the shorter life ex-
pectancy of the latest fashion. On the other hand, this approach has more imagination
than the traditional one, and attempts to capture the future of the subject.

A related issue in the treatment of field theory is the relative importance of con-
cepts vs. calculations: (1) Some texts emphasize the concepts, including those which
have not proven of practical value, but were considered motivational historically (in
the traditional approach) or currently (in the artistic approach). However, many ap-
proaches that were once considered at the forefront of research have faded into oblivion
not because they were proven wrong by experimental evidence or lacked conceptual



attractiveness, but because they were too complex for calculation, or so vague they
lacked predicitive ability. Some methods claimed total generality, which they used to
prove theorems (though sometimes without examples); but ultimately the only useful
proofs of theorems are by construction. Often a dualistic, two-volume approach is
again advocated (and frequently the author writes only one of the two volumes): Like
the traditional approach of QED volume + QCD volume, some prefer concept volume
+ calculation volume. Generally, this means that gauge theory S-matrix calculations
are omitted from the conceptual field theory course, and left for a “particle physics”
course, or perhaps an “advanced field theory” course. Unfortunately, the particle
physics course will find the specialized techniques of gauge theory too technical to
cover, while the advanced field theory course will frighten away many students by its
title alone.

(2) On the other hand, some authors express a desire to introduce Feynman graphs
as quickly as possible: This suggests a lack of appreciation of field theory outside of
diagrammatics. Many essential aspects of field theory (such as symmetry breaking
and the Higgs effect) can be seen only from the action, and its analysis also leads to
better methods of applying perturbation theory than those obtained from a fixed set
of rules. Also, functional equations are often simpler than pictorial ones, especially
when they are nonlinear in the fields. The result of over-emphasizing the calculations
is a cookbook, of the kind familiar from some lower-division undergraduate courses
intended for physics majors but designed for engineers.

The best explanation of a theory is the one that fits the principles of scientific
method: simplicity, generality, and experimental verification. In this text we thus
take a more economical or pragmatic approach, with methods based on efficiency
and power. Unattractiveness or counter-intuitiveness of such methods become ad-
vantages, because they force one to accept new and better ways of thinking about
the subject: The efficiency of the method directs one to the underlying idea. For
example, although some consider Einstein’s original explanation of special relativity
in terms of relativistic trains and Lorentz transformations with square roots as be-
ing more physical, the concept of Minkowski space gave a much simpler explanation
and deeper understanding that proved more useful and led to generalization. Many
theories have “miraculous cancelations” when traditional methods are used, which
led to new methods (background field gauge, supergraphs, spacecone, etc.) that not
only incorporate the cancelations automatically (so that the “zeros” need not be cal-
culated), but are built on the principles that explain them. We place an emphasis
on such new concepts, as well as the calculational methods that allow them to be
compared with nature. It is important not to neglect one for the sake of the other,
artificial and misleading to try to separate them.
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As a result, many of our explanations of the standard topics are new to textbooks,
and some are completely new: For example, (1) we derive the Foldy-Wouthuysen
transformation by dimensional reduction from an analogous one for the massless case
(subsections 1IB3,5). (2) We derive the Feynman rules in terms of background fields
rather than sources (subsection VC1); this avoids the need for amputation of exter-
nal lines for S-matrices or effective actions, and is more useful for background-field
gauges. (3) We obtain the nonrelativistic QED effective action, used in modern treat-
ments of the Lamb shift (because it makes perturbation easier than the older Bethe-
Salpeter methods), by field redefinition of the relativistic effective action (subsection
VIIIB6), rather than fitting parameters by comparing Feynman diagrams from the
relativistic and nonrelativistic actions. (In general, manipulations in the action are
easier than in diagrams.) (4) We present a somewhat new method for solving for
the curvature in general relativity that is slightly easier than all previous methods
(subsections IXA2,C5). There are also some completely new topics, like: (1) the anti-
Gervais-Neveu gauge, where spin in U(N) Yang-Mills is treated in almost the same
way as internal symmetry — with Chan-Paton factors (subsection VIB4); (2) the
superspacecone gauge, the simplest gauge for QCD (subsection VIB7); and (3) a new
“(almost-)first-order” superspace action for supergravity, analogous to the one for
super Yang-Mills (subsection XB1).

We try to give the simplest possible calculational tools, not only for the above
reasons, but also so group theory (internal and spacetime) and integrals can be per-
formed with the least effort and memory. (Some traditionalists may claim that the
old methods are easy enough, but their arguments are less convincing when the order
of perturbation is increased. Even computer calculations are more efficient when left
as a last resort.) We give examples of (and excercises on) these methods, but not
exhaustively. We also include more recent topics (or those more recently appreciated
in the particle physics community) that might be deemed non-introductory, but are
commonly used, and are simple and important enough to include at the earliest level.
For example, the related topics of (unitary) lightcone gauge, twistors, and spinor
helicity are absent from all field theory texts, and as a result no such text performs
the calculation of as basic a diagram as the 4-gluon tree amplitude. Another missing
topic is the relation of QCD to strings through the random worldsheet lattice and
large-color (1/N) expansion, which is the only known method that might quantita-
tively describe its high-energy nonperturbative behavior (bound states of arbitrarily

large mass).

This text is meant to cover all the field theory every high energy theorist should
know, but not all that any particular theorist might need to know. It is not meant as

an introduction to research, but as a preliminary to such courses: We try to fill in the
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cracks that often lie between standard field theory courses and advanced specialized
courses. For example, we have some discussion of string theory, but it is more oriented
toward the strong interactions, where it has some experimental justification, rather
than quantum gravity and unification, where its usefulness is still under investigation.
We do not mention statistical mechanics, although many of the field theory methods
we discuss are useful there. Also, we do not discuss any experimental results in detail;
phenomenology and analysis of experiments deserve their own text. We give and apply
the methods of calculation and discuss the qualitative features of the results, but do
not make a numerical comparison to nature: We concentrate more on the “forest”
than the “trees”.

Unfortunately, our discussions of the (somewhat related) topics of infrared-diver-
gence cancelation, Lamb shift, and the parton model are sketchy, due to our inability
to give fully satisfying treatments — but maybe in a Second Edition?

Unlike all previous texts on quantum field theory, this one is available for free over
the Internet (as usual, from xxx.lanl.gov and its mirrors), and may be periodically
updated. Errata, additions, and other changes will be posted on my web page at

|http://insti.physics.sunysb.edu/ siegel /plan.html| until enough are accumulated for

a new edition. Electronic distribution not only makes it more available, but easier
to update to new editions, and you don’t have to bother to lug your copy with you
when you go anywhere (like home) that has a computer (so you can access it from
a cartridge/diskette or the internet). It also offers the option of reading it on the
computer, which saves space and trees (and the figures are nicer in color). The
PDF version allows searches that are more general than the Index, and includes an
“outline” window with clickable “bookmarks” that is more convenient than the Table
of Contents, as well as the usual web links to xxx.lanl.gov (and a couple of other

places).

Highlights

This text also differs from others in most of the following ways: (1) We place a
greater emphasis on mechanics in introducing some of the more elementary physical
concepts of field theory: (a) Some basic ideas, such as antiparticles, can be more sim-
ply understood already with classical mechanics. (b) Some interactions can also be
treated through first-quantization: This is sufficient for evaluating certain tree and
one-loop graphs as particles in external fields. Also, Schwinger parameters can be
understood from first-quantization: They are useful for performing momentum inte-
grals (reducing them to Gaussians), studying the high-energy behavior of Feynman
graphs, and finding their singularities in a way that exposes their classical mechanics
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interpretation. (¢) Quantum mechanics is very similar to free classical field the-
ory, by the usual “semiclassical” correspondence between particles (mechanics) and
waves (fields). They use the same wave equations, since the mechanics Hamiltonian
or Becchi-Rouet-Stora-Tyutin operator is the kinetic operator of the corresponding
classical field theory, so the free theories are equivalent. In particular, (relativistic)
quantum mechanical BRST provides a simple explanation of the off-shell degrees
of freedom of general gauge theories, and introduces concepts useful in string theory.
As in the nonrelativistic case, this treatment starts directly with quantum mechanics,
rather than by (first-)quantization of a classical mechanical system. Since supersym-
metry and strings are so important in present theoretical research, it is useful to have
a text that includes the field theory concepts that are prerequisites to a course on
these topics. (For the same reason, and because it can be treated so similarly to
Yang-Mills, we also discuss general relativity.)

(2) We also emphasize conformal invariance. Although a badly broken sym-
metry, the fact that it is larger than Poincaré invariance makes it useful in many
ways: (a) General classical theories can be described most simply by first analyzing
conformal theories, and then introducing mass scales by various techniques. This
is particularly useful for the general analysis of free theories, and for constructing
actions for supergravity theories. (b) Quantum theories that are well-defined within
perturbation theory are conformal (“scaling”) at high energies. (A possible excep-
tion is string theories, but the supposedly well understood string theories that are
finite perturbatively have been discovered to be hard-to-quantize membranes in dis-
guise nonperturbatively.) This makes methods based on conformal invariance useful
for finding classical solutions, as well as studying the high-energy behavior of the
quantum theory, and simplifying the calculation of amplitudes. (c) Theories whose
conformal invariance is not (further) broken by quantum corrections avoid certain
problems at the nonperturbative level. Thus conformal theories ultimately may be
required for an unambiguous description of high-energy physics.

(3) We make extensive use of two-component (chiral) spinors, which are ubiqui-
tous in particle physics: (a) The method of twistors (more recently dubbed “spinor
helicity”) greatly simplifies the Lorentz algebra in Feynman diagrams for massless
(or high-energy) particles with spin, and it’s now a standard in QCD. (Twistors
are also related to conformal invariance and self-duality.) On the other hand, most
texts still struggle with 4-component Dirac (rather than 2-component Weyl) spinor
notation, which requires gamma-matrix and Fierz identities, when discussing QCD
calculations. (b) Chirality and duality are important concepts in all the interactions:
Two-component spinors were first found useful for weak interactions in the days of

4-fermion interactions. Chiral symmetry in strong interactions has been important
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since the early days of pion physics; the related topic of instantons (self-dual solutions)
is simplified by two-component notation, and general self-dual solutions are expressed
in terms of twistors. Duality is simplest in two-component spinor notation, even when
applied to just the electromagnetic field. (c¢) Supersymmetry still has no convincing
experimental verification (at least not at the moment I'm typing this), but its the-
oretical properties promise to solve many of the fundamental problems of quantum
field theory. It is an element of most of the proposed generalizations of the Standard
Model. Chiral symmetry is built into supersymmetry, making two-component spinors
unavoidable.

(4) The topics are ordered in a more pedagogical manner: (a) Abelian and non-
abelian gauge theories are treated together using modern techniques. (Classical grav-
ity is treated with the same methods.) (b) Classical Yang-Mills theory is discussed be-
fore any quantum field theory. This allows much of the physics, such as the Standard
Model (which may appeal to a wider audience), of which Yang-Mills is an essential
part, to be introduced earlier. In particular, symmetries and mass generation in the
Standard Model appear already at the classical level, and can be seen more easily from
the action (classically) or effective action (quantum) than from diagrams. (c¢) Only
the method of path integrals is used for second-quantization. Canonical quantization
is more cumbersome and hides Lorentz invariance, as has been emphasized even by
Feynman when he introduced his diagrams. We thus avoid such spurious concepts as
the “Dirac sea”, which supposedly explains positrons while being totally inapplica-
ble to bosons. However, for quantum physics of general systems or single particles,
operator methods are more powerful than any type of first-quantization of a classical
system, and path integrals are mainly of pedagogical interest. We therefore “review”
quantum physics first, discussing various properties (path integrals, S-matrices, uni-
tarity, BRST, etc.) in a general (but simpler) framework, so that these properties need
not be rederived for the special case of quantum field theory, for which path-integral
methods are then sufficient as well as preferable.

(5) Gauge fizing is discussed in a way more general and efficient than older meth-
ods: (a) The best gauge for studying unitarity is the (unitary) lightcone gauge. This
rarely appears in field theory texts, or is treated only half way, missing the important
explicit elimination of all unphysical degrees of freedom. (b) Ghosts are introduced
by BRST symmetry, which proves unitarity by showing equivalence of convenient
and manifestly covariant gauges to the manifestly unitary lightcone gauge. It can be
applied directly to the classical action, avoiding the explicit use of functional determi-
nants of the older Faddeev-Popov method. It also allows direct introduction of more
general gauges (again at the classical level) through the use of Nakanishi-Lautrup
fields (which are omitted in older treatments of BRST), rather than the functional



averaging over Landau gauges required by the Faddeev-Popov method. (c) For non-
abelian gauge theories the background field gauge is a must. It makes the effective
action gauge invariant, so Slavnov-Taylor identities need not be applied to it. Beta

functions can be found from just propagator corrections.

(6) Dimensional regularization is used exclusively (with the exception of one-loop
axial anomaly calculations): (a) It is the only one that preserves all possible sym-
metries, as well as being the only one practical enough for higher-loop calculations.
(b) We also use it exclusively for infrared regularization, allowing all divergences to
be regularized with a single regulator (in contrast, e.g., to the three regulators used
for the standard treatment of Lamb shift). (c¢) It is good not only for regularization,
but renormalization (“dimensional renormalization”). For example, the renormaliza-
tion group is most simply described using dimensional regularization methods. More
importantly, renormalization itself is performed most simply by a minimal prescrip-
tion implied by dimensional regularization. Unfortunately, many books, even among
those that use dimensional regularization, apply more complicated renormalization
procedures that require additional, finite renormalizations as prescribed by Slavnov-
Taylor identities. This is a needless duplication of effort that ignores the manifest
gauge invariance whose preservation led to the choice of dimensional regularization in
the first place. By using dimensional renormalization, gauge theories are as easy to
treat as scalar theories: BRST does not have to be applied to amplitudes explicitly,

since the dimensional regularization and renormalization procedure preserves it.

(7) Perhaps the most fundamental omission in most field theory texts is the
expansion of QCD in the inverse of the number of colors: (a) It provides a gauge-
invariant organization of graphs into subsets, allowing simplifications of calculations
at intermediate stages, and is commonly used in QCD today. (b) It is useful as a
perturbation expansion, whose experimental basis is the Okubo-Zweig-lizuka rule.
(c) At the nonperturbative level, it leads to a resummation of diagrams in a way that

can be associated with strings, suggesting an explanation of confinement.

Notes for instructors

This text is intended for reference and as the basis for a full-year course on rela-
tivistic quantum field theory for second-year graduate students. A preliminary version
of the first two parts was used for a one-year course I taught at Stony Brook. The
chapter on gravity and pieces of early chapters cover a one-semester graduate rela-
tivity course I gave several times here — I used most of the following: TA, IB3, IC2,
ITA, IITA-C5, VIBI1, IX, XIA2-4, XIB4-5. The prerequisites (for the quantum field
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theory course) are the usual first-year courses in classical mechanics, classical elec-
trodynamics, and quantum mechanics. For example, the student should be familiar
with Hamiltonians and Lagrangians, Lorentz transformations for particles and elec-
tromagnetism, Green functions for wave equations, SU(2) and spin, and Hilbert space.
Unfortunately, I find that many second-year graduate students (especially many who
got their undergraduate training in the USA) still have only an undergraduate level
of understanding of the prerequisite topics, lacking a working knowledge of action
principles, commutators, creation and annihilation operators, etc. While most such
topics are briefly reviewed here, they should be learned elsewhere.

There is far more material here than can be covered comfortably in one year,
mostly because of included material that should be covered earlier, but rarely is.
Ideally, a modern curriculum for field theory students should include: (1) courses on
classical mechanics, nonrelativistic quantum mechanics, and classical electrodynamics
in the first semester of graduate study, without overly reviewing aspects that should
have been covered in undergraduate study (and in particular avoiding the enormous
overlap of the last two subjects due to both covering primarily the solution of wave
equations); (2) in the second semester, statistical mechanics as the sequel to clas-
sical, relativistic quantum mechanics as the sequel to nonrelativistic, and classical
nonabelian field theory (Yang-Mills and gravity) as the sequel to classical electrody-
namics; (3) in the second year, one year of quantum field theory, and at least one
semester on “phenomenology” (model-building and direct comparison with observa-
tions, including those for general relativity and cosmology); and (4) in the third year,
more specialized courses, such as a semester on supersymmetry and strings. Unfor-
tunately, in practice little of relativistic quantum mechanics and classical field theory
(other than electromagnetism) will have been covered previously, which means they
will comprise half of the “quantum” field theory course, while the true quantum field
theory will be squeezed into the last half.

One way to cut the material to fit a one-year course is to omit Part Three, which
can be left for a third semester on “advanced quantum field theory”; then the first
semester (Part One) is classical while the second (Part Two) is quantum. Further-
more, the ordering of the chapters is somewhat flexible: The “flow” is indicated by
the following “3D” plot:

classical — quantum
. symmetry  fields quantize loop
lower spin B I 11 v VII
ose
NS
! X X1
higher spi
igher spin < I

Fermi II IAY VI VIII
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where the 3 dimensions are spin (“j”), quantization (“A”), and statistics (“s”): The
three independent flows are down the page, to the right, and into the page. (The third
dimension has been represented as perpendicular to the page, with “higher spin” in
smaller type to indicate perspective, for legibility.) To present these chapters in the
1 dimension of time we have classified them as jhs, but other orderings are possible:

ghs: TIIIIIV V VI VII VIIT IX X XI XII
gsh: TIII'V VIIII IV VI VIIT IX XI X XII
hys: TIIIIIIVIX XV VI XI XII VII VIII
hsy: TIIIIIIX IV XV XI VI XII VII VIII
sgh . TIII V VII IX XI II IV VI VIII X XII
shy: TIIIIX V XI VII [T IV X VI XII VIII

(However, the spinor notation of II is used for discussing instantons in III, so some
rearrangement would be required, except in the jhs, hijs, and hsj cases.) For exam-
ple, the first half of the course can cover all of the classical, and the second quantum,
dividing Part Three between them (hjs or hsj). Another alternative (jsh) is a one-
semester course on quantum field theory, followed by a semester on the Standard
Model, and finishing with supergravity and strings. Although some of these (espe-
cially the first two) allow division of the course into one-semester courses, this should
not be used as an excuse to treat such courses as complete: Any particle physics
student who was content to sit through another entire year of quantum mechanics in

graduate school should be prepared to take at least a year of field theory.

Notes for students

Field theory is a hard course. (If you don’t think so, name me a harder one at this
level.) But you knew as an undergraduate that physics was a hard major. Students
who plan to do research in field theory will find the topic challenging; those with less
enthusiasm for the topic may find it overwhelming. The main difference between field
theory and lower courses is that it is not set in stone: There is much more variation in
style and content among field theory courses than, e.g., quantum mechanics courses,
since quantum mechanics (to the extent taught in courses) was pretty much finished
in the 1920’s, while field theory is still an active research topic, even though it has had
many experimentally confirmed results since the 1940’s. As a result, a field theory
course has the flavor of research: There is no set of mathematically rigorous rules to
solve any problem. Answers are not final, and should be treated as questions: One
should not be satisfied with the solution of a problem, but consider it as a first step
toward generalization. The student should not expect to capture all the details of
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field theory the first time through, since many of them are not yet fully understood
by people who work in the area. (It is far more likely that instead you will discover
details that you missed in earlier courses.) And one reminder: The only reason for
lectures (including seminars and conferences) is for the attendees to ask questions
(and not just in private), and there are no stupid questions (except for the infamous
“How many questions are on the exam?”). Only half of teaching is the responsibility
of the instructor.

Outline

The preceding Table of Contents lists the three parts of the text: Symmetry,
Quanta, and Higher Spin. Each part is divided into four chapters, each of which has
three sections, divided further into subsections. Each section is followed by references
to reviews and original papers. Excercises appear throughout the text, immediately
following the items they test: This purposely disrupts the flow of the text, forcing
the reader to stop and think about what he has just learned. These excercises are
interesting in their own right, and not just examples or memory tests. This is not a
crime for homeworks and exams, which at least by graduate school should be about
more than just grades.

The first part of the text focuses on symmetry: The Poincaré group is special
relativity, and is sufficient to find all free equations of motion for particles and fields.
Internal symmetries include both global ones, used for classifying particles, and local
ones, which describe the interactions of fields.

The first chapter discusses global symmetry, both spacetime and internal. Space-
time symmetries covered include not only Poincaré but also Galilean (i.e., nonrel-
ativistic, used as an introduction) and conformal (broken in nature, but still very
useful). Parity, time reversal, and even charge conjugation are described simply in
terms of classical mechanics. Lightcone bases are introduced. Some general proper-
ties of Lie algebras are summarized, including fermions and anticommuting numbers.
Classical groups are described using tensor methods and index notation, including
Young tableaux. Dirac gamma matrices appear as coordinates for orthogonal groups.
The color and flavor symmetries of the particles of the Standard Model, and observed
light hadrons, are given as examples.

The second chapter extends the first chapter’s treatment of spacetime symmetry
to include spin. The methods introduced in this chapter are the most efficient ones for
handling Lorentz indices in QCD (or even pure Yang-Mills theory). Two-component
spinor notation is introduced by the rotation group in three (space) dimensions: Ten-
sor notation avoids Clebsch-Gordan-Wigner coefficients. The study of the simple
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algebraic properties of 2x2 matrices is extended straightforwardly from three dimen-
sions to four, and applied to simple examples in free field theory. The conformal
group gives an easy and unified way to find massless free field equations in general,
and dimensional reduction does the same for masses. As an application, we discuss
the Foldy-Wouthuysen transformation (and its massless analog) for arbitrary spin,
with minimal electromagnetic coupling to spin 1/2 as an example. (The case of non-
minimal coupling will be useful in chapter VIII for the Lamb shift.) Twistors, related
to conformal invariance and self-duality, yield a convenient and covariant method to
solve the massless equations, and also explain helicity. The chapter concludes with a
discussion of the general properties of supersymmetry and its representations, using

superspace and supertwistors.

Local symmetries are covered in the third chapter. It begins with a discussion
of the action principle, including fermions and constrained systems, applied to the
simple free examples given earlier (spins 1/2 and 1). The concepts of gauge invariance
and gauge fixing are introduced through the simple case of the (spinless) relativistic
particle, whose classical mechanics will prove useful later in understanding several
features of Feynman diagrams. As an example, classical pair creation and annihilation
is examined. Finally, pure Yang-Mills theory is analyzed, including some solutions to
the classical field equations. Twistors are used to study self-duality and instantons.

The lightcone gauge is used as a unitary gauge, and in combination with self-duality.

Gauge symmetry is coupled to lower spins in chapter four. Following an intro-
duction to spontaneous symmetry breakdown of global symmetries, nonlinear sigma
models are considered as low-energy theories, particularly in the study of chiral sym-
metry, and gauge invariance is used in their general construction. The use of scalars
to generate mass for vectors is illustrated first by the free case of the Stiickelberg
model, generalized to the Higgs model, and applied to the Standard Model. Families
and Grand Unified Theories are also described, as well as the basics for construct-
ing actions for supersymmetric theories in superspace (including a brief discussion of

extended supersymmetry).

The second part of the text covers the quantum aspects of field theory, as revealed
through perturbation theory. Although some have conjectured that nonperturbative
approaches might solve the renormalization difficulties found in perturbation, all ev-

idence indicates these features survive in the complete theory.

Chapter five focuses on the method of quantization of classical theories based
on path integrals. The chapter begins by considering various properties of quantum
physics in a general context — relation to canonical quantization, Wick rotation,

unitarity, and causality — so that these items need not be repeated in the more
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specialized and complicated cases of field theory. Path integrals are then applied
to classical mechanics to explain the Stiickelberg-Feynman propagator. Path integra-
tion of field theory produces a generating functional of background fields for Feynman
diagrams, as well as its connected and one-particle-irreducible parts. We use back-
grounds fields instead of sources exclusively: All uses of Feynman diagrams involve
either the S-matrix or the effective action, both of which require the removal of ex-
ternal propagators, which is equivalent to replacing sources with fields. The classical
(tree) graphs are shown to give the perturbative solution to the classical field equa-
tions. Also described are the properties of the classical action needed for unitarity, the
diagrammatic translation of unitarity and causality, the definition of cross sections,
the relation of Landau singularities to classical mechanics, and the use of the quark
line rules for dealing with group theory in graphs easily. Throughout the chapter

simple examples are given from scalar theories.

Complications that arise from quantization of gauge theories are described in the
sixth chapter. BRST symmetry is the easiest way to gauge fix, and makes unitarity
clear by relating general gauges to unitary gauges. Again a general discussion is
given in the framework of quantum physics and canonical quantization, including
the relation of Hamiltonian and Lagrangian approaches, so that later field theory
can be addressed covariantly with path integrals. Various gauges are considered for
Yang-Mills fields: radial, Lorentz, Landau, Fermi-Feynman, unitary, renormalizable,
Gervais-Neveu, anti-Gervais-Neveu, super Gervais-Neveu, spacecone, superspacecone,
background-field, and Nielsen-Kallosh. The spacecone gauge is used as the simplest
method to calculate graphs in massless theories, with examples given from (massless)
QCD, including the 4-gluon and 5-gluon tree amplitudes. The Fermi-Feynman gauge
is used to calculate all the 4-point tree amplitudes of QED, and their differential
cross sections. The supergraph rules are derived for supersymmetric theories, and
the locality of the effective action in the anticommuting coodinates is shown to imply

nonrenormalization theorems.

General features of higher orders in perturbation theory due to momentum inte-
gration are examined in chapter seven. Renormalization is explained (but not proven),
and dimensional regularization is applied. Tadpole integrals are used to explain di-
mensional transmutation through the example of the effective potential. The running
of couplings with energy is shown through the evaluation of one-loop massless and
massive propagator corrections. Some simple overlapping two-loop divergences are
used to illustrate renormalization of subdivergences. The renormalization group equa-
tions are introduced via dimensional regularization. The problems solved perturba-
tively by renormalization are shown to reappear upon resummation of the expansion.

Instantons and IR and UV renormalons are analyzed through a Borel transform in
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the coupling, and the resultant ambiguities are related to nonperturbative vacuum
values of composite fields. The expansion in the inverse of the number of colors is an
approach to this problem, related to string theory, that also has uses at finite orders

of perturbation.

Chapter eight applies these methods to gauge theories. Propagator corrections in
QED and QCD are used to analyze the one-loop conformal anomaly and its relation to
asymptotic freedom. Finite N=1 supersymmetric theories are considered as a solution
to the renormalon problem. The Schwinger model is given as another example from
two dimensions, illustrating interesting features at one loop such as bound states,
bosonization, and the axial anomaly. The axial anomaly is then evaluated more
generally, and considered in four dimensions in relation to constraints on electroweak
models and electromagnetic pion decay. The nonrelativistic form of the effective
action useful for finding the Lamb shift (including the anomalous magnetic moment) is
given as an example of vertex corrections. Finally, the production of hadrons through
electron-positron annihilation, deep inelastic scattering, and Drell-Yan scattering are

briefly described as applications of perturbative QCD.

Part Three treats general spins, particularly spin 2, which ultimately must be
included in any complete theory of nature. Such spins are observed experimentally

for bound states, but may be required also as fundamental fields.

Gravity is described through the theory of general relativity in chapter nine.
The classic experimental tests are described, including cosmology. The treatment
used is closely related to that applied to Yang-Mills theory, and differs from that
of most texts on gravity: (1) We emphasize the action for deriving field equations
for gravity (and matter), rather than treating it as an afterthought. (2) We make
use of local (Weyl) scale invariance for cosmological solutions, gauge fixing, field
redefinitions, and studying conformal properties. In particular, other texts neglect the
(unphysical) dilaton, which is crucial in such treatments (especially for generalization
to supergravity and strings). (3) While most gravity texts leave spinors till the end,
and treat them briefly, our discussion of gravity is based on methods that can be
applied directly to spinors, and therefore to supergravity and superstrings. (4) Our
method of calculating curvatures for purposes of solving the classical field equations
is somewhat new, but probably the simplest, and is directly related to the simplest

methods for super Yang-Mills theory and supergravity.

The approach of the previous chapter is generalized straightforwardly to super-
gravity in chapter ten. Actions with matter are constructed, and are analyzed in
superspace, and in terms of component fields using component expansion and sep-

aration of superconformal breaking (“compensator”) terms. The spin-3/2 particle
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is given mass by the superhiggs effect, and no-scale supergravity provides a model
whereby the would-be resultant cosmological constant vanishes naturally. Extended
supergravity is analyzed through general properties of extended supersymmetry and
by reduction from higher dimensions.

Strings are proposed in chapter eleven as an approach to studying the most im-
portant yet least understood property of QCD: confinement. Other methods have
been proposed to study this phenomenon, but none have achieved explicit results for
more than low hadron energy, which no more exhibits confinement than chemistry
disproves the existence of free nuclei. Known string theories are not suitable for de-
scribing hadrons quantitatively, but are useful models of observed properties, such
as Regge behavior. The classical and quantum theory of the simplest such model is
analyzed, and qualitative features expected of general theories are described. The dis-
cretization of the worldsheet of the string into a sum of Feynman diagrams is shown
to exhibit features relevant to a string theory of hadrons.

The final chapter gives a general derivation of free actions for any gauge theory,
based on adding equal numbers of commuting and anticommuting ghost dimensions
to the lightcone formulation of the Poincaré group. The usual ghost fields appear as
components of the gauge fields in anticommuting directions, as do necessary auxiliary
fields like the determinant of the metric tensor in gravity. Gauge fixing to the Fermi-
Feynman gauge is automatic. The “antifields” and “antibracket” of the Zinn-Justin-
Batalin-Vilkovisky method appear naturally from the anticommuting coordinate that
is the first-quantized ghost of the Klein-Gordon equation.

Following the body of the text (and preceding the Index) is the AfterMath, con-

taining conventions and some of the more important equations.

Acknowledgments

I thank everyone with whom I have discussed field theory, especially Gordon
Chalmers, Marc Grisaru, Marcelo Leite, Martin Rocek, Jack Smith, George Sterman,
and Peter van Nieuwenhuizen. More generally, I thank the human race, without
whom this work would have been neither possible nor necessary.

December 20, 1999



Xviil

Comprehensive, traditional
Complete texts; use canonical quantization for QED, then path integrals for QCD

1 S. Weinberg, The quantum theory of fields, 3 v. (Cambridge University, 1995,6,97)
609+4-489+c.500 pp.:
First volume just QED; second volume contains many interesting topics; third
volume supersymmetry. By one of the developers of the Standard Model.

2 M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory
(Addison-Wesley, 1995) 842 pp.:
Many applications; style similar to Bjorken and Drell.

3 M. Kaku, Quantum field theory: a modern introduction (Oxford University, 1993)
785 pp-:
Includes introduction to supergravity and superstrings.

4 C. Itzykson and J.-B. Zuber, Quantum field theory (McGraw-Hill, 1980) 705 pp.
(but with lots of small print):
Emphasis on QED.

Somewhat specialized
Basics, plus thorough treatment of an advanced topic

5 J. Zinn-Justin, Quantum field theory and critical phenomena, 3rd ed. (Clarendon,
1996) 1008 pp.:
First 1/2 is basic text, with interesting treatments of many topics, but no S-matrix
examples or discussion of cross sections; second 1/2 is statistical mechanics.

6 G. Sterman, An introduction to quantum field theory (Cambridge University,
1993) 572 pp.:
First 3/4 can be used as basic text, including S-matrix examples; last 1/4 has
extensive treatment of perturbative QCD, emphasizing factorization.

Basic; few S-matrix examples
Should be supplemented with a “QED /particle physics text”

7 L.H. Ryder, Quantum field theory, 2nd ed. (Cambridge University, 1996) 487 pp.:
Includes introduction to supersymmetry.

8 D. Bailin and A. Love, Introduction to gauge field theory, 2nd ed. (Institute of
Physics, 1993) 364 pp.:
All the fundamentals.

9 P. Ramond, Field theory: a modern primer, 2nd ed. (Addison-Wesley, 1989)
329 pp.:
Short text on QCD: no weak interactions or Higgs.



Xix

Classics
Older but unconventional treatments from their originators; no Yang-Mills or Higgs

10 N.N. Bogoliubov and D.V. Shirkov, Introduction to the theory of quantized fields,
3rd ed. (Wiley, 1980) 620 pp.:
Ahead of its time (1st English ed. 1959); early treatments of path integrals, causal-
ity, background fields, and renormalization of all field theories (not just QED).
11 R.P. Feynman, Quantum electrodynamics: a lecture note and reprint volume (Ben-
jamin, 1961) 198 pp.:
Original treatment of quantum field theory as we know it today, but from me-
chanics; includes reprints of original articles (1949).

QED /particle physics

Numerous Feynman diagram calculations; no Yang-Mills or Higgs

12 B. de Wit and J. Smith, Field theory in particle physics, v. 1 (Elsevier Science,
1986) 490 pp.:
Oriented toward experimentalists (but wait till v. 2, due any day now...).

13 A.I. Akhiezer and V.B. Berestetskii, Quantum electrodynamics (Wiley, 1965) 868

pp.:
Extensive examples of lower-order QED diagrams.

Advanced topics

For further reading; including brief reviews of some standard topics

14 Theoretical Advanced Study Institute in Elementary Particle Physics (TASI) pro-
ceedings, University of Colorado, Boulder, CO (World Scientific):
Annual collection of summer school lectures on recent research topics.

15 W. Siegel, Introduction to string field theory (World Scientific, 1988) 244 pp.:
Reviews lightcone, BRST, gravity, first-quantization, spinors, twistors, strings;
besides, I like the author.

16 S.J. Gates, Jr., M.T. Grisaru, M. Rocek, and W. Siegel, Superspace: or one thou-
sand and one lessons in supersymmetry (Benjamin/Cummings, 1983) 548 pp.:
Covers supersymmetry, spinor notation, lightcone, Stiickelberg fields, gravity,
Weyl scale, gauge fixing, background-field method, regularization, and anoma-
lies; same author as previous, plus three other guys whose names sound familiar.
May soon be available for free where you found this book.



PART ONE: SYMMETRY

The first four chapters present a one-semester course on “classical field theory”.
Perhaps a more accurate description would be “everything you should know before
learning quantum field theory”. This is basically a study of global and local symme-
tries: Classical dynamics represents only a certain limit of quantum dynamics, and not
the one usually emphasized, but most of the symmetries of classical physics survive
quantization. The phenomenon of symmetry breaking, and the related mechanisms of
mass generation, can also be seen at the classical level. In perturbative quantum field

theory, classical field theory is simply the leading term in the perturbation expansion.

Continuous symmetry is one of the most fundamental and important concepts
of physics. In the framework of an action principle (which is required in quantum
physics), it is equivalent to conservation laws, which have been a cornerstone of physics
since Newton. From a practical viewpoint, it simplifies calculations by relating differ-
ent solutions to equations of motion, and allowing these equations to be written more
concisely by treating independent degrees of freedom as a single entity. In particular,
local (“gauge”) symmetries, which allow independent transformations at each coordi-
nate point, are basic to all the fundamental interactions: All the fundamental forces

are mediated by particles described by Yang-Mills theory and its generalizations.

Symmetries are the result of a redundant, but useful, description of a theory.
(Note that here we refer to symmetries of a theory, not of a solution to the theory.) For
example, translation invariance says that only differences in position are measurable,
not absolute position: We can’t measure the position of the “origin”. There are two
ways to deal with this: (1) Choose an origin; i.e., make a “choice of coordinates”.
For example, place an object at the origin; i.e., choose the position of an object at
a certain time to be the origin. (2) Work only in terms of differences of coordinates,
which are “translationally invariant”. Although the latter choice is more physical,
the former is usually more convenient: The use of redundant variables, together with
symmetry, often gives a simpler description of a theory. Another example is quantum
mechanics, where the arbitrariness of the phase of the wave function can be considered
a symmetry: Although quantum mechanics can be reformulated in terms of phase-
invariant probabilities, currents, or density matrices instead of wave functions, and
this can be useful for some purposes of exposing physical properties, formulating and
solving the Schrodinger equation is simpler in terms of the wave function. The same
applies to “local” symmetries, where there is an independent symmetry at each point

of space and time: For example, quarks and gluons have a local “color” symmetry,



and are not (yet) observed independently in nature, but are simpler objects in terms
of which to describe strong interactions than the observed hadrons (protons, neutrons,
etc.), which are described by color-invariant products of quark/gluon wave functions,
in the same way that probabilities are phase-invariant products of wave functions.
(Note that in quantum mechanics there is a subtle distinction between observed and
observer that can obscure this symmetry if the observer is not invariant under it. This
can always be avoided by choosing to define the observer as invariant: For example,
the detection apparatus can be included as part of the quantum mechanical system,
while the observer can be defined as some “remote” recorder, who may be abstracted
as even being translationally invariant. In practice we are less precise, and abstract
even the detection apparatus to be invariant: For example, we describe the scattering
of particles in terms of the coordinates of only the particles, and deal with the origin

problem as above in terms of just those coordinates.)

Note that “global” (time-, and usually space-independent) symmetries can elim-
inate a variable, but not its time derivative. For example, translation invariance
allows us to fix (i.e., eliminate) the position of the center of mass of a system at some
initial time, but not its time derivative, which is just the total momentum, whose
conservation is a consequence of that same symmetry. A local symmetry, being time
dependent, may allow the elimination of a variable at all times: The existence of this

possibility depends on the dynamics, and will be discussed later.

Of particular intrerest are ways in which symmetries can be made manifest. Fre-
quently in the literature “manifest” is used vacuously; a “manifest symmetry” is an
obvious one: If you know the group, the representation under consideration doesn’t
need to be stated, but can be seen from just the notation. (In fact, one of the main
uses of index notation is just to manifest the symmetry.) Formulations where global
and local symmetries are manifest simplify calculations and their results, as well as
clarifying their meaning.

One of the main uses of manifest symmetry is rarely needing to explicitly perform
a specific symmetry transformation. For example, one might need to examine a rela-
tivistic problem in different Lorentz frames. Rather than starting with a description
of the problem in one frame, and then explicitly transforming to another, it is much
simpler to start with a manifestly covariant description, make one choice of frame,
then make another choice of frame. One then never uses the messy square roots of the
familiar Lorentz contraction factors (although they may appear at the end from kine-

matic constraints). A more extreme example is the corresponding situation for local
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symmetries, where such transformations are intractable in general, and one always

starts with the manifestly covariant form.

I. GLOBAL

In the first chapter we study symmetry in general, concentrating primarily on

spacetime symmetries, but also discussing general properties that will have other

applications in the following chapter.

....................... A. COORDINATES ......................

In this section we discuss the Poincaré (and conformal) group as coordinate trans-
formations. This is the simplest way to represent it on the physical world. In later

sections we find general representations by adding spin.

1. Nonrelativity

We begin by reviewing some general properties of symmetries, including as an
example the symmetry group of nonrelativstic physics. In the Hamiltonian approach
to mechanics, both symmetries and dynamics can be expressed conveniently in terms
of a “bracket”: the Poisson bracket for classical mechanics, the commutator for quan-
tum mechanics. In this formulation, the fundamental variables (operators) are some
set of coordinates and their canonically conjugate momenta, as functions of time.
The (Heisenberg) operator approach to quantum mechanics then is related to classi-
cal mechanics by identifying the semiclassical limit of the commutator as the Poisson
bracket: For any functions A and B of p and ¢, the quantum mechanical commutator
is
0A 0B B 0B 8A) L oM
Opm O¢™  Opm Oq™

In other words, the true classical limit of AB — B A is zero, since classically functions

AB—BA:—ih(

commute; thus the semiclassical limit is defined by

1
lim {ﬁ(AB - BA)]

(which is really a derivative with respect to h). We therefore define the bracket for

the two cases by

.(8A 0B 0B 0A

—i B O - o 8qm) semiclassically

(A, B] =
AB — BA quantum mechanically
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The semiclassical definition of the bracket then can be applied to classical physics
(where it was originally discovered). Classically A and B are two arbitrary functions
of the coordinates ¢ and momenta p; in quantum mechanics they can be arbitrary

«:
7

operators. We have included an in the classical normalization so the two agree

in the semiclassical limit. We generally use (natural/Planck) units A = 1, so mass is
measured as inverse length, etc.; when we do use an explicit 7, it is a dimensionless
parameter, and appears only for defining Jeffries-Wentzel-Kramers-Brillouin (JWKB)

expansions or (semi)classical limits.

Our indices may appear either as subscripts or superscripts, with preferences to
be explained later: For nonrelativistic purposes we treat them the same. We also use
the Einstein summation convention, that any repeated index in a product is summed

over (“contracted”); usually we contract a superscript with a subscript:
A"By =Y A"B,
m
The definition of the bracket is equivalent to using

[Dm, q"] = —i0,,,

(where 6" is the “Kronecker delta function”: 1 if m = n, 0 if m # n) together with

the general properties of the bracket
[A, B] = —[B, 4], [A>B]T: _[AT>BT]

[[A, B],Cl+[[B,C], Al + [[C, A], B] = 0
[A, BC| = [A, B]C' + B[A, C]

The first set of identities exhibit the antisymmetry of the bracket; next are the “Ja-
cobi identities”. In the last identity the ordering is important only in the quantum
mechanical case: In general, the difference between classical and quantum mechanics
comes from the fact that in the quantum case operator reordering after taking the

commutator results in multiple commutators.

Infinitesimal symmetry transformations are then written as
0A =[G, A], A =A+0A

where G is the “generator” of the transformation. More explicitly, infinitesimal gen-

erators will contain infinitesimal parameters: For example, for translations we have

G=¢ép = 6x'=ilGa]=¢
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where €' are infinitesimal numbers.

The most evident physical symmetries are those involving spacetime. For nonrel-
ativistic particles, these symmetries form the “Galilean group”: For the free particle,
those infinitesimal transformations are linear combinations of

7

M=m, P =p, Jij=uwxpj=wip;j—xp, E=H= o

» Vi=ma; —pit

in terms of the position ' (: = 1,2,3), momenta p;, and (nonvanishing) mass m,
where [ij] means to antisymmetrize in those indices, by summing over all permuta-
tions (just two in this case), with plus signs for even permutations and minus for odd.
(In three spatial dimensions, one often writes .J; = %Eijk;e]jk to make J into a vector.
This is a peculiarity of three dimensions, and will lose its utility once we consider rela-
tivity in four spacetime dimensions.) These transformations are the space translations
(momentum) P, rotations (angular momentum — just orbital for the spinless case)
J, time translations (energy) F, and velocity transformations (“Galilean boosts”)
V. (The mass M is not normally associated with a symmetry, and is not conserved
relativistically.)

Excercise TA1.1
Let’s examine the Galilean group more closely. Using just the relations for
[z, p] and [A, BC| (and the antisymmetry of the bracket):

a Find the action on z; of each kind of infintesimal Galilean transformation.

b Show that the nonvanishing commutation relations for the generators are
i, B = i0kiPy, g Vil = a0V, [ TN = i)
[Pi> VJ] = _i(sijM> [H> VZ] = —ib;

For more than one free particle, we introduce an m, z¢, and p; for each particle
(but the same t), and the generators are the sums over all particles of the above ex-
pressions. If the particles interact with each other the expression for H is modified, in
such a way as to preserve the commutation relations. If the particles also interact with
dynamical fields, field-dependent terms must be added to the generators. (External,
nondynamical fields break the invariance. For example, a particle in a Coulomb po-
tential is not translation invariant since the potential is centered about some point.)
Note that for N particles there are 3N coordinates describing the particles, but still
only 3 translations: The particles interact in the same 3-dimensional space. We can
use translational invariance to fix the position of any one particle at a given time, but

not the rest: The differences in position are translationally invariant. On the other
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hand, it is often useful not to fix the position of any particle, since keeping this invari-
ance (and the corresponding redundant variables) allows all particles to be treated
equally. We might also consider using the differences of positions themselves as the
variables, allowing a symmetric treatment of the particles in terms of translationally
invariant variables: However, this would require applying constraints on the variables,
since there are 3N(N-1)/2 differences, of which only 3(N-1) are independent. We will
find similar features later for “local” invariances: In general, the most convenient
description of a theory is with the invariance; the invariance can then be fixed, or

invariant combinations of variables used, appropriately for the particular application.

The rotations (or at least their “orbital” parts) and space translations are exam-
ples of coordinate transformations. In general, generators of coordinate transforma-

tions are of the form
G=X@)p = 6¢(z)=i[G ¢] =N

where 9; = 0/9z" and ¢(x) is a “scalar field” (or “spin-0 wave function”), a function

of only the coordinates.

In classical mechanics, or quantum mechanics in the Heisenberg picture, time
development also can be expressed in terms of the Hamiltonian using the bracket:
%A = {% +iH, A] = %A—i—z’[H, A
(The middle expression with the commutator of /9t makes sense only in the quantum
case, and is not defined for the Poisson bracket.) Again, this general relation is
equivalent to the special cases, which in the classical limit are Hamilton’s equations
of motion: o OH P S
%:Z[Haqm]:%7 %:Z[Hapm]:_ﬁq—m
The Hamiltonian has no explicit time dependence in the absence of time-dependent
nondyamical fields (external potentials whose time dependence is fixed by hand,
rather than by introducing the fields and their conjugate variables into the Hamilto-
nian). Consequently, time development is itself a symmetry: Time translations are
generated by the Hamiltonian; the 9/0t term in d/dt term can be dropped when

acting on operators without explicit time dependence.

Invariance of the theory under a symmetry means that the equations of motion

are unchanged under the transformation:

dAY' _ dA
dt ) dt
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To apply our above translation of infinitesimal transformations into bracket language,

we define 6(d/dt) by
d d d
“a)l=5(2 2 5A
s(5a)=a(G)a+ 50

In the quantum case we can write

R

which follows from the Jacobi identity using B = iG and C' = 0/0t+iH, and inserting
A into the blank spaces of the commutators above. (The classical case can be treated
similarly, except that the time derivatives are not written as brackets.) We then find

that the generator of a symmetry transformation is conserved (constant), since

=o(3)- [ )= [% |

Excercise TA1.2
Show that the generators of the Galilean group are conserved, using the rela-
tion d/dt = 0/0t + i[H, | for the hamiltonian H of a free particle. Solve the
equations of motion for z(¢) and p(t) in terms of initial conditions, and substi-
tute into the expression for the generators to give an independent derivation

of their time independence.

In the cases where time dependence is not involved, symmetries can be treated
in almost exactly the same way either classically or quantum mechanically using the
corresponding bracket (Poisson or commutator), by using the properties that they
have in common. In particular, the fact that a symmetry generator G = A" (z)pp,
is conserved means that we can solve for a component of p in terms of the constant
(G, and substitute the result into the remaining equations of motion. For example,
translation invariance of a potential in a particular direction means that component
of the momentum is a constant (dp;/dt = —0H/dq' = 0), rotational invariance
about some axis means that component of angular momentum is a constant (d.J/dt =
—0H/00 = 0), etc.

2. Fermions

As we know experimentally, and we will see follows from relativistic field theory,
particles with half-integral spins obey Fermi-Dirac statistics. Let’s therefore consider
the classical limit of fermions: This will lead to generalizations of the concepts of

brackets and coordinates. Bosons obey commutation relations, such as [z, p|] = if;
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in the classical limit they just commute. Fermions obey anticommutation relations,

such as {¢, (T} = h for a single fermionic harmonic oscillator, where
(A, B} = AB + BA

is the anticommutator. So, in the truly classical (not semiclassical) limit they an-
ticommute, (T + (T¢ = 0. Actually, the simplest case is a single real (hermitian)

fermion: Quantum mechanically, or semiclassically, we have

h={¢ & =2¢

while classically €2 = 0. There is no analog for a single boson: [z,z] = 2? — 2% = 0.
This means that classical fermionic fields must be “anticommuting”: Two such objects
get a minus sign when pushed past each other. As a result, the product of two

fermionic quantities is bosonic, while fermionic times bosonic gives fermionic.

Excercise TA2.1
Show

[B,C]=[A,D]=0 = [AB,CD]=3%{A,C}B,D]+ i[A, C|{B,D}

To work with wave functions that are functions of anticommuting numbers, we
first must understand how to define general properties of functions of anticommuting
variables. For instance, given a single anticommuting variable 1), we need to be able
to Taylor expand functions in v, e.g., to find a basis for the states. We therefore have

an anticommuting derivative 0/0%, satisfying

() -

from either anticommutativity or the fact functions of ¥ terminate at first order in .
We also need a v integral to define the inner product; indefinite integration turns out
to be enough. The most important property of the integral is integration by parts;

then, when acting on any function of 1,

0 0
dp — =0 = dp = —
[ 5 feo=5
where the normalization is fixed for convenience. This also implies

() = ¢

Excercise TA2.2

Prove this is the most general possibility for anticommuting integration by
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considering action of integration and differentiation on the most general func-

tion of ¢ (which has only two terms).

In general, when Taylor expanding a function of anticommuting variables we must
preserve the statistics: If we Taylor expand a quantity that is defined to be commuting
(bosonic), then the coefficients of even powers of anticommuting variables will also be
commuting, while the coefficients of odd powers will be anticommuting (fermionic),
to maintain the commuting nature of that term (the product of the variables and
coefficient). Similarly, when expanding an anticommuting quantity the coefficients of

even powers will also be anticommuting, while for odd powers it will be commuting.

We can now consider operators that depend on both commuting (¢™) and anti-

commuting (¢*) classical variables,
CI)M — (¢m7 wu)

Classically they satisfy the “graded” commutation relations (anticommutation if both
elements are fermionic, commutation otherwise), not to be confused with the Poisson
bracket,

classically [P, OV} =0  ¢MP" =g " = ¢ Y™ = PP PP = 0

This relation is then generalized to the the graded quantum mechanical commutator

or Poisson bracket by
[@M &N} = QMY QMNQpy = 6

where () is constant, hermitian, and “graded antisymmetric”:

Q(MN] =0: Q(mn) = Q[;w] = Oy + Qo =0
For the standard normalization of canonically conjugate pairs of bosons

¢m — ¢ia — (qz7pz)

and self-conjugate fermions, we choose

QOHv — (Sl“/; Qia,jﬂ — 6ijc«a,87 C«a,@ — ( O(z))

Because of signs resulting from ordering anticommuting quantities, we define

derivatives unambiguously by their action from the left:

0

— N =4y
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The general Poisson bracket then can be written as

. : _ 0 v 9
semiclassically [A, B} = _qu)MQ 8<I>NB

Since derivatives are normally defined to act from the left, there is a minus sign from
pushing the first derivative to the left if A and that particular component of 9/0®M

are both fermionic.

Excercise TA2.3

Let’s examine some properties of fermionic oscillators:
a For a single set of harmonic oscillators we have
{a,a'} =1, {a,a} = {a’,a'} =0
Show that the “number operator” afa has the property
{a, e”“T“} =0

(Hint: Since this system has only 2 states, the easiest way is to check the

action on those states.)

b Define eigenstates of the annihilation operator (“coherent states”) by

al¢) = ¢l¢)

where ( is anticommuting. Show that this implies

8 /
a*|<>=—a—<|<>, ) =e'10), SO = ¢+ ), 2™ ) = [aC),

(€ley =, 1= / dcrdC e<IC)C]

Define wave functions in this space, ¥(¢) = (¢|¥). Taylor expand them in
¢, and compare this to the usual two-component representation using |0) and

a'|0) as a basis.

¢ Define the “supertrace” by
str(4) = [ derdc el
Find the relation between any operator in this space and a 2x2 matrix, and

find the expression for the supertrace in terms of this matrix.

d Repeat part b for the bosonic oscillator ([a, a'] = 1), where the Hilbert space
is infinite-dimensional, paying attention to signs, etc. Show that the analog

of part ¢ defines the ordinary trace.
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e For two sets of fermionic oscillators, we define
{ai,a"} = {ay,a’y} =1, other {, } =0

Show that the new operators

ay = ay, Gy = 1%,

(and their Hermitian conjugates) are equivalent to the original ones except
that one set of the new oscillators commutes (not anticommutes) with the
other ([a@,a’s] = 0, etc.), even though each set satisfies the same anticom-
mutation relations with itself ({a;,a’1} = 1, etc.). Thus, choice of statistics
is relevant only for particles in the same state: at most one fermion, but
unlimited bosons. (This change of oscillator basis is called a “Klein trans-
formation”. It can be useful for discrete sets of oscillators, but not for those
labeled by a continuous parameter, because of the discontinuity in the com-

mutation relations when the two labels are equal.)

3. Lie algebra

Since the same symmetries can be expressed in terms of different kinds of brackets
for classical and quantum theories, it can be useful to work with just those properties
that the Poisson bracket and commutator have in common, i.e., those that involve

only the bracket of two operators, not just their ordinary product:
@A+ 6B,C] = alA,C| + §[B,C] for numbers a, 3 (distributivity)

A, B] = —[B, 4] (antisymmetry)
[A,[B,C]]+ [B,[C, A]]+ [C,[A,B]] =0  (Jacobi identity)

with similar expressions (differing only by signs) for anticommutators or mixed com-

mutators and anticommutators.

Excercise IA3.1
Find the generalizations of the Jacobi identity using also anticommutators,
corresponding to the cases where 2 or 3 of the objects involved are considered

as fermionic instead of bosonic.

These properties also give an abstract definition of a form of multiplication, the
“Lie bracket”, which defines a “Lie algebra”. (The first property is true of algebras

in general.) Other Lie brackets include those defined by another, associative, form of
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multiplication, such as matrix multiplication, or operator (infinite matrix) multipli-
cation as in quantum mechanics: In those cases we can write [A, B] = AB— BA, and
use the usual properties of multiplication (distributivity and associativity) to derive
the properties of the Lie bracket. (Another familiar example in physics is the “cross”
product for three-vectors; however, this can also be expressed in terms of matrix
multiplication.) The most important use of Lie algebras for physics is for describing

(continuous) infinitesimal transformations, especially those describing symmetries.

Excercise IA3.2
Using only the commutation relations of the generators of the Galilean group
(excercise IA1.1), check all the Jacobi identities.

For describing transformations, we can also think of the bracket as a derivative:
The “Lie derivative” of B with respect to A is defined as

LB = [A, B

As a consequence of the properties of the Lie bracket, this derivative satisfies the
usual properties of a derivative, including the Leibniz rule. (In fact, for coordinate
transformations the Lie derivative is really a derivative with respect to the coordi-

nates.)

We can now define finite transformations by exponentiating infinitesimal ones:
A'm(1ticLa)A = A =lim(1+ ieLg) A = eF6 A
In cases where we have [A, B] = AB — BA, we can also write
LG A — G fe—iCG

This follows from replacing G on both sides with aG and taking the derivative with
respect to «, to see that both satisfy the same differential equation with the same
initial condition. We then can recognize this as the way transformations are performed
in quantum mechanics: A linear transformation that preserves the Hilbert-space inner
product must be unitary, which means it can be written as the exponential of an

antihermitian operator.
Just as infinitesimal transformations define a Lie algebra with elements A, finite
ones define a “Lie group” with elements

g = ei®

The multiplication law of two group elements follows from the fact the product of
two exponentials can be expressed in terms of multiple commutators:

1
A+B+5[A,B]+...
eAeB — ATB+3[ABl+
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We now have the mathematical properties that define a group, namely: (1) a product,
so that for two group elements g; and g2, we can define g;go, which is another element
of the group (closure), (2) an identity element, so g/ = Ig = g, (3) an inverse, where
g9t =g lg =1, and (4) associativity, g1(g293) = (9192)gs. In this case the identity

is 1 = ¢Y, while the inverse is (e)™! = e~

Since the elements of a Lie algebra form a vector space (we can add them and

multiply by numbers), it’s useful to define a basis:
G=dG = g=c2C

The parameters o' then also give a set of (redundant) coordinates for the Lie group.
(Previously they were required to be infintesimal, for infintesimal transformations;
now they are finite, but may be periodic, as determined by topological considerations
that we will mostly ignore.) Now the multiplication rules for both the algebra and

the group are given by those of the basis:
[Gi, Gj) = —ifi* Gy,

for the (“structure”) constants f;;* = — f;;*, which define the algebra/group (but are
ambiguous up to a change of basis). They satisfy the Jacobi identity

G, Gj], Gyl =0 = f[ijlfk]lm =0

A familiar example is SO(3) (SU(2)), 3D rotations, where f;;* = €1, if we use G; =
s€iikeJin-

Another useful concept is a “subgroup”: If some subset of the elements of a group
also form a group, that is called a “subgroup” of the original group. In particular, for
a Lie group the basis of that subgroup will be a subset of some basis for the original

group. For example, for the Galilean group J;; generate the rotation subgroup.

Excercise TA3.3
Let’s examine the subgroup of the Galilean group describing (spatial) coor-

dinate transformations — rotations and spatial translations:

a Show that the infinitesimal transformations are given by
(S.Ti = .’L'jEji + éi, €ij = —¢€j;

where the €’s are constants.

b Exponentiate to find the finite transformations

' =N 4N
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¢ Show that A/ must satisfy
AikAjl(Skl - 5ij

both to preserve the scalar product, and as a consequence of exponentiating.
(Hint: Use matrix notation, and find the equivalent relation between A and
A7)

d Show that the last equation implies det A = +1, while exponentiating can
give only det A =1 (since +1 can’t change continuously to —1). What is the
physical interpretation of a transformation with det A = —17 (Hint: Consider

a simple example.)

These results can be generalized to include anticommutators: When some of the
basis elements G; are fermionic, the corresponding parameters o' are anticommuting
numbers, the structure constants are defined by [G;, G;}, etc.. Then G = o'G; is
bosonic term by term, as is g, so bosons transform into bosons and fermions into
fermions, but Taylor expansion in the a’s will have both bosonic and fermionic co-
efficients. (For example, for 04 = €B, if A is bosonic, then so is €B, but if also € is
fermionic, then B will also be fermionic.)

«:n
7

For some purposes it is more convenient to absorb the in the infinitesimal

transformation into the definition of the generator:
G — —iG = (A=[G,Al=LcA g=¢c% [GiGj]=[;"CGy

This affects the reality properties of G: In particular, if g is unitary (gg' = I), as
usually required in quantum mechanics, g = €'“ makes G hermitian (G = GT), while
g = €% makes G antihermitian (G = —GT). In some cases anithermiticity can be
an advantage: For example, for translations we would then have P, = 0; and for
rotations J;; = x[;0;), which is more convenient since we know the 4’s in these (and
any) coordinate transformations must cancel anyway. On the other hand, the U(1)
transformations of electrodynamics (on the wave function for a charged particle) are
just phase transformations g = e¥ (where  is a real number), so clearly we want the
explicit 7; then the only generator has the representation G; = 1. In general we’ll find
that for our purposes absorbing the ¢’s into the generators is more convenient for just

spacetime symmetries, while explicit ¢’s are more convenient for internal symmetries.
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4. Relativity

The Hamiltonian approach singles out the time coordinate. In relativistic theories
time can be treated on equal footing with space, and it is useful to take advantage of
this fact, so that the full Poincaré invariance is manifest. So, we treat the time ¢ and
spatial position 7' together as a four-vector (or D-vector in D—1 space and 1 time
dimension)

2" = (2% 2") = (¢, 2")

where m = 0,1, ...,3 (or D—1), i = 1,2, 3. Since the energy F and three-momentum

p' are canonically conjugate to them,
P’ 27) = —id¥,  [E,t] = +i
we define the 4-momentum as
P = (E.p) = 0", P =0np”; [P = =™, [p, "] = =0,

where we raise and lower indices with the “Minkowski metric”, in an “orthonormal

basis”,
0o 1 2 3
Of-1 0 0 O
11 0 1.0 O
hmn = = Po= _pO =—F
21 0 0 1 0
3\ 0 0 0 1

in four spacetime dimensions, with obvious generalizations to higher dimensions.
(Sometimes the metric with signs + — —— is used; we prefer — + ++ because it
is more convenient for quantum calculations.) Therefore, we now distinguish upper
and lower indices in general: At least for position and momentum, the upper-indexed
2™ and p™ have the usual physical interpretation (so z,, and p,, have extra signs).
This is consistent with our previous nonrelativistic notation, since 3-vector indices do

not change sign upon raising or lowering.

Of course, we could have done that much nonrelativistically. Relativity is a
symmetry of kinematics and dynamics: In particular, a free, spinless, relativistic
particle is completely described by the constraint

pP+m?=0

where we define the covariant square

P> =" = "D N = — (") + (pY)
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Our relativistic symmetry must leave this constraint invariant: Thus the metric de-
fines the norm of a vector (and an invariant inner product). Therefore, to preserve
Lorentz invariance it is important that we contract only an upper index with a lower
index. For similar reasons, we have
0
-~ Qam’

so quantum mechanically p,, = —i0,,.

Om

Oma” = 6",

Unlike the positive-definite nonrelativistic norm of a 3-vector V¢, for an arbitrary

4-vector V™ we can have

< timelike
V2 =30: lightlike /null
> spacelike

In particular, the 4-momentum is timelike for massive particles (m? > 0) and lightlike
for massless ones (while “tachyons”, with spacelike momenta and m? < 0, do not exist,

for reasons that are most clear from quantum field theory).

The quantum mechanics will be described later, but the result is that this con-
straint can be used as the wave equation. The main qualitative distinction from the

nonrelativistic case in the constraint

nonrelativistic: —2mE +p*> =0

relativistic: —E*4+m?>+p? =0

is that the equation for the energy F = p" is now quadratic, and thus has two
solutions:

P’ = tw, w=+/(p")? + m?
Later we’ll see how the second solution is interpreted as an “antiparticle”. We also
use (natural/Planck) units ¢ = 1, so length and duration are measured in the same
units; ¢ then appears only as a parameter for defining nonrelativistic expansions and
limits.

The translations and Lorentz transformations make up the Poincaré group, the
symmetry that defines special relativity. (The Lorentz group in D—1 space and 1
time dimension is the “orthogonal” group “O(D—1,1)". The “proper” Lorentz group
“SO(D—1,1)”, where the “S” is for “special”, transforms the coordinates by a matrix
whose determinant is 1. The Poincaré group is ISO(D—1,1), where the “I” stands
for “inhomogeneous”.) For the spinless particle they are generated by coordinate

transformations Gy = (P, Jup):

P, = Pa, Jab = TaPy)



A. COORDINATES 17

(where also a,b = 0,...,3). Then the fact that the physics of the free particle is

invariant under Poincaré transformations is expressed as
[pa>p2 + m2] = [Jab>p2 + m2] =0

Writing an arbitrary infinitesimal transformation as a linear combination of the gen-
erators, we find

ox™ =a"e," + €M, Emn = —€nm

where the €’s are constants. Note that antisymmetry of €,,, does not imply antisym-
metry of €,," = €,,,n"", because of additional signs. (Similar remarks apply to Ju.)

Exponentiating to find the finite transformations, we have
2’m = annm + ]\m7 AmpAnqnpq = Nm

The same Lorentz transformations apply to p™, but the translations do not affect
it. The condition on A follows from preservation of the Minkowski norm (or inner
product), but it is equivalent to the antisymmetry of €,,” by exponentiating A = e°

(compare excercise IA3.3).

Since dx®p, is invariant under the coordinate transformations defined by the Pois-
son bracket (the chain rule, since effectively p, ~ 3,), it follows that the Poincaré

invariance of p? is equivalent to the invariance of the line element
ds? = —dx™dz" Ny,

which defines the “proper time” s. Spacetime with this indefinite metric is called
“Minkowski space”, in contrast to the “Euclidean space” with positive definite metric

used to describe nonrelativistic length measured in just the three spatial dimensions.

For the massive case, we also have

dz®
ds

For the massless case ds = 0: Massless particles travel along lightlike lines. However,

a

p=m

we can define a new parameter 7 such that

B dz®
- dr

is well-defined in the massless case. In general, we then have

a

p

S =mT

While this fixes 7 = s/m in the massive case, in the massless case it instead restricts

s = 0. Thus, proper time does not provide a useful parametrization of the world
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line of a classical massless particle, while 7 does: For any piece of such a line, d7 is
given in terms of (any component of) p* and dxz®. Later we'll see how this parameter
appears in relativistic classical mechanics, and is useful for quantum mechanics and
field theory.

Excercise 1A4.1
The relation between x and p is closely related to the Poincaré conservation

laws:

a Show that
dP, =dJ; =0 = p[adxb] =0

and use this to prove that conservation of P and J imply the existence of a

parameter 7 such that p® = dz®/dr.

b Consider a multiparticle system (but still without spin) where some of the
particles can interact only when at the same point (i.e., by collision; they
act as free particles otherwise). Define P, = Y p, and Jy, = Zx[apb] as the
sum of the individual momenta and angular momenta. Show that momentum

conservation implies angular momentum conservation,
Apa =0 = AJab =0

where “A” refers to the change from before to after the collision(s).

Special relativity can also be stated as the fact that the only physically observable
quantities are those that are Poincaré invariant. (Other objects, such as vectors,
depend on the choice of reference frame.) For example, consider two spinless particles
that interact by collision, producing two spinless particles (which may differ from the
originals). Without loss of generality, we can describe this process in terms of just
the momenta. (Quantum mechanically, this is automatically a complete description;
classically, the position is found by p = dx/dr.) All invariants can be expressed in
terms of the masses and the “Mandelstam variables” (not to be confused with time

and proper time)

S = —(pl —l—p2)2, = —(pl —p3)2, U = —(p1 —p4)2

where we have used momentum conservation, which shows that even these three

quantities are not independent:

4

pi=-mi, piAp=pstp = stttu=Y mj
=1
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(The explicit index now labels the particle, for the process 14+2—3+4.) The simplest
reference frame to describe this interaction is the center-of-mass frame (actually the
center of momentum, where the two 3-momenta cancel). In that Lorentz frame, using
also rotational invariance, momentum conservation, and the mass-shell conditions, the

momenta can be written in terms of these invariants as

b1 = ﬁ(%(s + m% - m%), )‘127 07 0)

P2 = ﬁ(%(s + mg - m%)? _)‘127 07 O)

Py = ﬁ(%(s +m3 —m3), 34 cos 0, A4 5in 6, 0)

Py = %(%(s +mi — m%), —A34 050, — X34 5in 0, 0)
s g S 25t = (S md)s + (= md) (md — )

41234
Ny = gls = (my +my)?][s — (mr —my)?]
The “physical region” of momentum space is then given by s > (m; + mg)? and
(m3 +my4)?, and |cos 6] < 1.

Excercise 1A4.2
Derive the above expressions for the momenta in terms of invariants in the

center-of-mass frame.

Excercise TA4.3
Find the conditions on s,¢ and u that define the physical region in the case

where all masses are equal.

For some purposes it will prove more convenient to use a “lightcone basis”

+ - 23

+( 0 =1 0 0
+ 1 0 1 - _1 O OO 2 +, — 2\2 3\ 2
pm =5 £p = Nmn = o pr=="2p"p +(P°)+p
5 ) S (p°)"+(»°)

3\0 0 0 1

and similarly for the “lightcone coordinates” (%, 22 23). (“Lightcone” is an unfor-
tunate but common misnomer, having nothing to do with cones in most usages.) In
this basis the solution to the mass-shell condition p? + m? = 0 can be written as
s )Pm?
P =D = 2

(where now ¢ = 2,3), which more closely resembles the nonrelativistic expression.
(Note the change on indices + < — upon raising and lowering.) A special lightcone
basis is the “null basis”,

+

pt =50 Ep), v =50 i), P=50"+ip)
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+ -t t
+({ 0 -1 0 O
= = _01 8 8 (1) . ==t + 2
t\0 0 10
where the square of a vector is linear in each component. (We often use “ 7 to

indicate complex conjugation.)

Excercise 1A4.4
Show that for p*> + m? = 0 (m? > 0, p* # 0), the signs of p™ and p~ are

always the same as the sign of the canonical energy p°.

Excercise 1A4.5
Consider the Poincaré group in 1 extra space dimension (D space, 1 time)
for a massless particle. Interpret p™ as the mass, and p~ as the energy.
Show that the constraint p?> = 0 gives the usual nonrelativistic expression
for the energy. Show that the subgroup of the Poincaré group generated by
all generators that commute with p* is the Galilean group (in D—1 space
and 1 time dimensions). Now nonrelativistic mass conservation is part of
momentum conservation, and all the Galilean transformations are coordinate
transformations. Also, positivity of the mass is related to positivity of the

energy (see excercise 1A4.4).

5. Discrete: C, P, T

By considering only symmetries than can be obtained continuously from the iden-
tity (Lie groups), we have missed some important symmetries: those that reflect some
of the coordinates. It’s sufficient to consider a single reflection of a spacelike axis,
and one of a timelike axis; all other reflections can be obtained by combining these
with the continuous (“proper, orthochronous”) Lorentz transformations. (Spacelike
and timelike vectors can’t be Lorentz transformed into each other, and reflection of
a lightlike axis won’t preserve p? + m?2.) Also, the reflection of one spatial axis can
be combined with a 7 rotation about that axis, resulting in reflection of all three
spatial coordinates. (Similar generalizations hold for higher dimensions. Note that
the product of an even number of reflections about different axes is a proper rotation;
thus, for even numbers of spatial dimensions reflections of all spatial coordinates are
proper rotations, even though the reflection of a single axis is not.) The reversal of the
spatial coordinates is called “parity (P)”, while that of the time coordinate is called

“time reversal” (“T”; actually, for historical reasons, to be explained shortly, this is
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usually labeled “CT”.) These transformations have the same effect on the momen-
tum, so that the definition of the Poisson bracket is also preserved. These “discrete”
transformations, unlike the proper ones, are not symmetries of nature (except in cer-
tain approximations): The only exception is the transformation that reflects all axes
(“CPT”).

While the metric 7, is invariant under all Lorentz transformations (by defini-

tion), the “Levi-Civita tensor”

Emnpq totally antisymmetric, o123 = —€12B =1

is invariant under only proper Lorentz transformations: It has an odd number of
space indices and of time indices, so it changes sign under parity or time reversal.
Consequently, we can use it to define “pseudotensors”: Given “polar vectors”, whose
signs change as position or momentum under improper Lorentz transformations, and

scalars, which are invariant, we can define “axial vectors” and “pseudoscalars” as
_ BbCCDd _ AaBbCCDd
‘/a = €abed ) ¢ = €abed

which get an extra sign change under such transformations (P or CT, but not CPT).

There is another such “discrete” transformation that is defined on phase space,
but which does not affect spacetime. It changes the sign of all components of the
momentum, while leaving the spacetime coordinates unchanged. This transformation
is called “charge conjugation (C)”, and is also only an approximate symmetry in
nature. (Quantum mechanically, complex conjugation of the position-space wave
function changes the sign of the momentum.) Furthermore, it does not preserve the
Poisson bracket, but changes it by an overall sign. (The misnomer “CT” for time
reversal follows historically from the fact that the combination of reversing the time
axis and charge conjugation preserves the sign of the energy.) The physical meaning
of this transformation is clear from the spacetime-momentum relation of relativistic
classical mechanics p = m dx/ds: It is proper-time reversal, changing the sign of s.
The relation to charge follows from “minimal coupling”: The “covariant momentum”
m dz/ds = p + qA (for charge q) appears in the constraint (p + qA)? +m? = 0 in an

electromagnetic background; p — —p then has the same effect as ¢ — —q.

In the previous subsection, we mentioned how negative energies were associated
with “antiparticles”. Now we can better see the relation in terms of charge conjuga-
tion. Note that charge conjugation, since it only changes the sign of 7 but does not
effect the coordinates, does not change the path of the particle, but only how it is

parametrized. This is also true in terms of momentum, since the velocity is given by
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p'/p°. Thus, the only observable property that is changed is charge; spacetime prop-
erties (path, velocity, mass; also spin, as we’ll see later) remain the same. Another
way to say this is that charge conjugation commutes with the Poincaré group. One
way to identify an antiparticle is that it has all the same kinematical properties (mass,
spin) as the corresponding particle, but opposite sign for internal quantum numbers
(like charge). (Another way is pair creation and annihilation: See subsection I1IB5
below.) Quantum mechanically, we can identify a particle with its antiparticle by
requiring the wave function or field to be invariant under charge conjugation: For

example, for a scalar field (spinless particle), we have the reality condition

o(x) = o*(x)

or in momentum space, by Fourier transformation,

which implies the particle has charge zero (neutral).

All these transformations are summarized in the table:

c|cT P|\T CP|PT CPT
s|—|+ +|- —-|—- +
tl+|—- +|- +|- -
Z+|+ —|+ —-|—- -
E|l—-|— +[+ —-|+ -
pl—-|+ —-|- +|+ -

(The upper-left 3x3 matrix contains the definitions, the rest is implied.)

However, from the point of view of the “particle” there is some kind of kinematic
change, since the proper time has changed sign: If we think of the mechanics of a
particle as a one-dimensional theory in 7 space (the worldline), where z(7) (as well
as any such variables describing spin or internal symmetry) is a wave function or field
on that space, then 7 — —7 is T on that one-dimensional space. (The fact we don’t
get CT can be seen when we add additional variables: For example, if we describe
internal U(N) symmetry in terms of creation and annihilation operators a'* and aj,
then C mixes them on both the worldline and spacetime. So, on the worldline we
have the “pure” worldline geometric symmetry CT times C = T.) Thus, in terms of
“zeroth quantization”,

worldline T « spacetime C'
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On the other hand, spacetime P and C'T" are simply internal symmetries with respect

to the worldline (as are proper, orthochronous Poincaré transformations).

6. Conformal

Although Poincaré transformations are the most general coordinate transforma-
tions that preserve the mass condition p? + m? = 0, there is a larger group, the
“conformal group”, that preserves this constraint in the massless case. Transforma-

tions A\ that satisfy
(N (2)pa, P*] = ¢()p?

for some ¢ also preserve p? = 0, although they don’t leave p? invariant. Equivalently,

we can look for coordinate transformations that scale
dx? = ¢(x)da?

Excercise IA6.1
Find the conformal group explicitly in two dimensions, and show it’s infinite
dimensional (not just the SO(2,2) described below). (Hint: Use lightcone

coordinates.)

This symmetry can be made manifest by starting with a space with one extra

space and time dimension:

vi=WytyT) = P =ytyae = () - 2Ty

where (y%)? = 3%, uses the usual D-dimensional Minkowski-space metric 7,
and the two additional dimensions have been written in a lightcone basis (not to
be confused for the similar basis that can be used for the Minkowski metric itself).
With respect to this metric, the original SO(D—1,1) Lorentz symmetry has been
enlarged to SO(D,2). This is the conformal group in D dimensions. However, rather
than also preserving (D+2)-dimensional translation invariance, we instead impose the

constraint and invariance
y* =0, oyt =yt
This reduces the original space to the “projective” (invariant under the ( scaling)

lightcone (which in this case really is a cone).

These two conditions can be solved by

yd =ew?, wt = (21, 12%2,)
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Projective invariance then means independence from e (y™), while the lightcone con-
dition has determined y~. y? = 0 implies y - dy = 0, so the simplest conformal
invariant is

dy? = (edw + wde)? = e*dw® = e*dx®

where we have used w? = 0 = w - dw = 0. This means any SO(D,2) transformation

on y2 will simply scale dz?, and scale e? in the opposite way:

2
dx? = (%) dx?
e

in agreement with the previous definition of the conformal group.

The explicit form of conformal transformations on 2% = y*/y* now follows from

their linear form on y*, using the generators
GAB =y iB) fryP) = ik

of SO(D,2) in terms of the momentum r,4 conjugate to y“. (These are defined the
same way as the Lorentz generators J% = x[apb].) For example, G*~ just scales x°.
(Scale transformations are also known as “dilatations”.) We can also recognize G™* as
generating translations on z*. The only complicated transformations are generated
by G~%, known as “conformal boosts” (acceleration transformations). Since they
commute with each other (like translations), it’s easy to exponentiate to find the
finite transformations:

y =,  G=uyo"

for some constant D-vector v® (where 94 = 9/0y”). Since the conformal boosts act
as “lowering operators” for scale weight (+ — a — —), only the first three terms in

the exponential survive:

Gy~ =0, Gy* =v"y~, Gyt =v"y, =

e T e e T e T s P o (U T

7%+ %”Ua.’L'Q

- 1+v-x+ tv2?

la

using 2 = y*/y*, y~ [yt = 2.

Excercise 1A6.2
Make the change of variables to z* = y*/y*, e = y*, z = %yZ. Express
r4 in terms of the momenta (p,,n,s) conjugate to (z% e, z). Show that the
conditions y? = y4r4 = r?> = 0 become z = en = p? = 0 in terms of the new

variables.
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Excercise TA6.3

Find the generator of infinitesimal conformal boosts in terms of z* and p,.

We actually have the full O(D,2) symmetry: Besides the continuous symmetries,
and the discrete ones of SO(D—1,1), we have a second “time” reversal (from our

second time dimension):

+ - a z”
yre -y = 2t e -

1.2
5T
This transformation is called an “inversion”.

Excercise 1A6.4
Show that a finite conformal boost can be obtained by performing a transla-

tion sandwiched between two inversions.

Excercise IA6.5
The conformal group for Euclidean space (or any spacetime signature) can be
obtained by the same construction. Consider the special case of D=2 for these
SO(D+1,1) transformations. (This is a subgroup of the 2D superconformal
group: See excercise IA6.1.) Use complex coordinates for the two “physical”
dimensions:

1 1 .2
z= 5z +ix”)

Sl

a Show that the inversion is

2= ——
Z*

b Show that the conformal boost is (using a complex number also for the boost

vector)
z

ST + v*z

Excercise IA6.6
Any parity transformation (reflection in a spatial axis) can be obtained from
any other by a rotation of the spatial coordinates. Similarly, when there is
more than one time dimension, any time reversal can be obtained from another
(but time reversal can’t be rotated into parity, since a timelike vector can’t be
rotated into a spacelike one). Thus, the complete orthogonal group O(m,n)
can be obtained from those transformations that are continuous from the
identity by combining them with 1 parity transformation and 1 time reversal
transformation (for mn#0). For the conformal group, find the rotation (in
terms of an angle) that rotates between the two time directions, and express

its action on z*. Show that for angle 7 it produces a transformation that is
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the product of time reversal and inversion. Use this to show that inversion is
related to time reversal by finding the continuum of conformal transformations

that connect them.

Although conformal symmetry is not observed in nature, it is important in all
approaches to field theory: (1) First of all, it is useful in the construction of free the-
ories (see subsections IIB1-4 below). All massive fields can be described consistently
in quantum field theory in terms of coupling massless fields. Massless theories are a
subset of conformal theories, and some conditions on massless theories can be found
more easily by finding the appropriate subset of those on conformal theories. This is
related to the fact that the conformal group, unlike the Poincaré group, is “simple”:
It has no nontrivial subgroup that transforms into itself under the rest of the group
(like the way translations transform into themselves under Lorentz transformations).
(2) In interacting theories at the classical level, conformal symmetry is also important
in finding and classifying solutions, since at least some parts of the action are confor-
mally invariant, so corresponding solutions are related by conformal transformations
(see subsections IIIC5-7). Furthermore, it is often convenient to treat arbitrary theo-
ries as broken conformal theories, introducing fields with which the breaking is asso-
ciated, and analyze the conformal and conformal-breaking fields separately. This is
particularly true for the case of gravity (see subsections IXA7,B5,C2-3,XA3-4,B5-7).
(3) Within quantum field theory at the perturbative level, the only physical quantum
field theories are ones that are conformal at high energies (see subsection VIIIC1).
The quantum corrections to conformal invariance at high energy are relatively sim-
ple. (4) Beyond perturbation theory, the only quantum theories that are well defined
may be just the ones whose breaking of conformal invariance at low energy is only
classical (see subsections VIIC2-3,VIIIA5-6). Furthermore, the largest possible sym-
metry of a nontrivial S-matrix is conformal symmetry (or superconformal symmetry
if we include fermionic generators). (5) Self-duality (a generalization of a condition
that equates electric and magnetism fields) is useful for finding solutions to classical
field equations as well as simplifying perturbation theory, and is closely related to
“twistors” (see subsections 11B6-7,C5,I1IC4-7). In general, self-duality is related to
conformal invariance: For example, it can be shown that the free conformal theories
in arbitrary even dimensions are just those with (on-mass-shell) field strengths on
which self-duality can be imposed. (In arbitrary odd dimensions the free conformal

theories are just the scalar and spinor.)
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............................. B. INDICES ............................

In the previous section we saw various spacetime groups (Galilean, Poincaré,
conformal) in terms of how they acted on coordinates. This not only gave them a
simple physical interpretation, but also allowed a direct relation between classical
and quantum theories. However, as we know from studying rotations in quantum
theory in terms of spin, we will often need to study symmetries of quantum theories

for which the classical analog is not so useful or perhaps even nonexistent.

We therefore now consider some general results of group theory, mostly for con-
tinuous groups. We use tensor methods, rather than the slightly more powerful but
greatly less convenient Cartan-Weyl-Dynkin methods. Much of this section should
be review, but is included here for completeness; it is not intended as a substitute for
a group theory course, but as a summary of those results commonly useful in field

theory.

1. Matrices

Matrices are defined by the way they act on some vector space; an nxn matrix
takes one n-component vector to another. Given some group, and its multiplication
table (which defines the group completely), there is more than one way to represent
it by matrices. Any set of matrices we find that has the same multiplication table as
the group elements is called a “representation” of that group, and the vector space on
which those matrices act is called the “representation space.” The representation of
the algebra or group in terms of explicit matrices is given by choosing a basis for the
vector space. If we include infinite-dimensional representations, then a representation
of a group is simply a way to write its transformations that is linear: ¢ = M1 is
linear in ¥. More generally, we can also have a “realization” of a group, where the
transformations can be nonlinear. These tend to be more cumbersome, so we usually
try to make redefinitions of the variables that make the realization linear. A precise
definition of “manifest symmetry” is that all the realizations used are linear. (One
possible exception is “affine” or “inhomogeneous” transformations ¢’ = My + Mo,
such as the usual coordinate representation of Poincaré transformations, since these
transformations are still very simple, because they are really still linear, though not

homogeneous.)

For convenience, we write matrices with a Hilbert-space-like notation, but unlike
Hilbert space we don’t necessarily associate bras directly with kets by Hermitian

conjugation, or even transposition. In general, the two spaces can even be different
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sizes, to describe matrices that are not square; however, for group theory we are
interested only in matrices that take us from some vector space into itself, so they
are square. Bras have an inner product with kets, but neither necessarily has a norm
(inner product with itself): In general, if we start with some vector space, written
as kets, we can always define the “dual” space, written as bras, by defining such an
inner product. In our case, we may start with some representation of a group, in
terms of some vector space, and that will give us directly the dual representation. (If
the representation is in terms of unitary matrices, we have a Hilbert space, and the

dual representation is just the complex conjugate.)

So, we define column vectors |1)) with a basis |7}, and row vectors (| with a
basis (;|, where I = 1,...,n to describe nxn matrices. The two bases have a relative

normalization defined so that the inner product gives the usual component sum:

) =10 =Xl () =6 = ) =x"vn () =y () =X
These bases then define not only the components of vectors, but also matrices:
M =Ml GIM)T) = My

where as usual the I on the component (matrix element) M;” labels the row of the
matrix M, and J the column. This implies the usual matrix multiplication rules,

inserting the identity in terms of the basis,
I="Y x|l = (MN)/"=(M")(xIN") = M N’
Closely related is the definition of the trace,
tr M = (;|M|"y = M/" = tr(MN)=tr(NM)

(We’ll discuss the determinant later. The bra-ket notation is really just matrix nota-

tion written in a way to clearly distinguish column vectors, row vectors, and matrices.)

Thus, for example, we can easily translate transformation laws from matrix no-

tation into index notation just by using a basis for the representation space:
I I\, T I I\ T
9" =1"g9s"  GIN) =11)Gy
G =a'G;, Olg)=iGly) = |Nid (G)"vs = 6¢r =i (Gi)r'ib,
The dual space isn’t needed for this purpose. However, for any representation of a

group, the transpose
(MT)IJ — MJI
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of the inverse of those matrices also gives a representation of the group, since

G192 = g3 = (gl)T_1(92)T_1 = (QB)T_l
[G1,Go) =G5 = [-GT,-GI]=-G¥

This is the dual representation, which follows from defining the above inner product

to be invariant under the group:
=0 = o' =i’ (G,
The complex conjugate of a complex representation is also a representation, since

N =95 = gFep"=g*
[G1>G2] =G = [G1*>G2*] = G3*

From any given representation, we can thus find three others from taking the dual

and the conjugate: In matrix and index notation,

V=g =gy
=@ Y= g_l.JIW
Y =g*p ¢; = g*ij¢j

W= =gt Ty

since (g71)T, g*, and (¢~1)T (but not g7, etc.) satisfy the same multiplication algebra
as ¢, including ordering. We use up/down and dotted/undotted indices to denote
the transformation law of each type of index; contracting undotted up indices with
undotted down indices preserves the transformation law as indicated by the remaining
indices, and similarly for dotted indices. These four representations are not necessarily
independent: Imposing relations among them is how the classical groups are defined

(see subsections IB4-5 below).

2. Representations

For example, we always have the “adjoint” representation of a Lie group/algebra,

which is how the algebra acts on its own generators:
G=d'G, A=0G = §A=ilG A =Fdf;"Cy

= 0 = - (Gy)', (Gy)* =if"
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This gives us two ways to represent the adjoint representation space: as either the
usual vector space, or in terms of the generators. Thus, we either use the matrix
A = ('G; (for arbitrary representation of the matrices G;, or treating G; as just

abstract generators), and write 0A = i[G, A], or we can write A as a row vector,
(Al=08"GI = 0{Al=—i(AIG= (| = —iB"al (G)i' (il

The adjoint representation also provides a convenient way to define a (symmetric)

group metric invariant under the group, the “Cartan metric”:
nij = tra(GiG;) = — fae fi*

For “Abelian” groups the structure constants vanish, and thus so does this metric.
“Semisimple” groups are those where the metric is invertible (no vanishing eigenval-
ues). A “simple” group has no nontrivial subgroup that transforms into itself under
the rest of the group: Semisimple groups can be written as “products” of simple
groups. “Compact” groups are those where it is positive definite (all eigenvalues pos-
itive); they are also those for which the invariant volume of the group space is finite.

For simple, compact groups it’s convenient to choose a basis where
)
nij = C4(Sij

for some constant ¢4 (the “Dynkin index” for the adjoint representation). For some

general irreducible representation R of such a group the normalization of the trace is

c
trr(GiGy) = crdy; = f%’

Now the proportionality constant cg/ca is fixed by the choice of R (only), since we

have already fixed the normalization of our basis.

In general, the cyclicity property of the trace implies, for any representation, that
0= tr([G:, Gy]) = —ifi"tr(Gy)
so tr(G;) = 0 for semisimple groups. Similarly, we find
fiik = Fiitw = i tra([Gy, G4]Gy)

is totally antisymmetric: For semisimple groups, this implies the total antisymmetry
of the structure constants f;;*, up to factors (which are absent for compact groups in

a basis where 7;; ~ 0;;). This also means the adjoint representation is its own dual.
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(For example, for the compact group SO(3), we have 7;; = —emejn = 26;5.) Thus,

we can write A in a third way, as a column vector
|A) =06 = ) ni

We can also do this for Abelian groups, by defining an invertible metric unrelated to
the Cartan metric: This is trivial for Abelian groups, since the generators themselves

are invariant, and thus so is any metric on them.

An identity related to the trace one is the normalization of the value kg of the

“Casimir operator” for any particular representation,
ﬂijGiGj = kRI

Its proportionality to the identity follows from the fact that it commutes with each
generator:

[ G;Gr, Gi] = =i f7*{G;, G} = 0

using the antisymmetry of the structure constants. (Thus it takes the same value on
any component of an irreducible representation, since they are all related by group

transformations.) By tracing this identity, and contracting the trace identity,

Z—jdA = t?"R(nijGiGj) = deR

= kr=

CAdR
where dr = trg(l) is the dimension of that representation.

Although quantum mechanics is defined on Hilbert space, which is a kind of com-
plex vector space, more generally we want to consider real objects, like spacetime
vectors. This restricts the form of linear transformations: Specifically, if we absorb
i's as ¢ = eY, then in such representations G itself must be real. These represen-
tations are then called “real representations”, while a “complex representation” is
one whose representation isn’t real in any basis. A complex representation space can
have a real representation, but a real representation space can’t have a complex rep-
resentation. In particular, coordinate transformations (of real coordinates) have only
real representations, which is why absorbing the i’s into the generators is a useful
convention there. For semisimple unitary groups, hermiticity of the generators of the
adjoint representation implies (using total antisymmetry of the structure constants
and reality of the Cartan metric) that the structure constants are real, and thus the
adjoint representation is a real representation. More generally, any real unitary rep-

resentation will have antisymmetric generators (G = G* = —-G' = G = —-G7T). If
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the complex conjugate representation is the same as the original (same matrices up
to a similarity transformation g* = MgM '), but the representation is not real, then
it is called “pseudoreal”. (An example is the spinor of SU(2), to be described in the

next section.)

For any representation g of the group, a transformation g — goggy L on every
group element g for some particular group element gy clearly maps the algebra to
itself, and preserves the multiplication rules. (Similar remarks apply to applying the
transformation to the generators.) However, the same is true for complex conjugation,
g — ¢*: Not only are the multiplication rules preserved, but for any element g

* is also an element. (This can be shown,

of that representation of the group, g
e.g., by defining representations in terms of the values of all the Casimir operators,
contructed from various powers of the generators.) In quantum mechanics (where
the representations are unitary), the latter is called an “antiunitary transformation”.
Although this is a symmetry of the group, it cannot be reproduced by a unitary

transformation, except when the representation is (pseudo)real.

A very simple way to build a representation from others is by “direct sum”. If we
have two representations of a group, on two different spaces, then we can take their
direct sum by just putting one column vector on top of the other, creating a bigger
vector whose size (“dimension”) is the sum of that of the original two. Explicitly, if
we start with the basis |*) for the first representation and |“') for the second, then
the union (|*),]")) is the basis for the direct sum. (We can also write ') = (|*), |*')),
where t = 1,....om; / =1,...,n; I =1,...,m,m+1,...,m + n.) The group then acts

on each part of the new vector in the obvious way:

/

=1, x=1")x gy =1%ag" gI")=1")gu"

= |‘Ij> = |L>wL ©® |L/>XU = |¢> ® |X> or (‘I/) N (;i)

K
gl = g & ") g xo or (g) = (gf) gfn/)
(We can replace the & with an ordinary + if we understand the basis vectors to be
now in a bigger space, where the elements of the first basis have zeros for the new
components on the bottom while those of the second have zeros for the new compo-
nents on top.) The important point is that no group element mixes the two spaces:
The group representation is block diagonal. Any representation that can be written
as a direct sum (after an appropriate choice of basis) is called “reducible”. For exam-

ple, we can build a reducible real representation from an irreducible complex one by
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just taking the direct sum of this complex representation with the complex conjugate

representation. Similarly, we can take direct sums of more than two representations.

A more useful way to build representations is by “direct product”. The idea there
is to take a colummn vector and a row vector and use them to construct a matrix,
where the group element acts simultaneously on rows according to one representation
and columns according to the other. If the two original bases are again |*) and |*'),

the new basis can also be written as |') = |*) (I = 1,..., mn). Explicitly,

/

) =100)%w, 9D e)=1"eNe'se" = g™ =9 9"
or in terms of the algebra
GLL/ ke GLH(SL/H/ + 6LHGL/H/

A familar example from quantum mechanics is rotations (or Lorentz transformations),
where the first space is position space (so ¢ is the continuous index ), acted on by
the orbital part of the generators, while the second space is finite-dimensional, and is
acted on by the spin part of the generators. Direct product representations are usually
reducible: They then can be written also as direct sums, in a way that depends on

the particulars of the group and the representations.

Consider a representation constructed by direct product: In matrix notation
Gi=G,l'+1®G,
Using tr(A ® B) = tr(A)tr(B), and assuming tr(G;) = tr(G}) = 0, we have
tr(GiGy) = tr(I')tr(GiGy) + tr(1)tr(GiGY)

For example, for SU(N) (see subsection IB4 below) we can construct the adjoint rep-
resentation from the direct product of the N-dimensional, “defining” representation
and its complex conjugate. (We also get a singlet, but it will not affect the result for
the adjoint.) In that case we find

t?”A(GiGj) = QNt?”D(GiGj) = —_— = —

For most purposes, we use trp(G;G;) = 6;; (cp = 1) for SU(N), so ¢4 = 2N.
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3. Determinants

We now ‘“review” some properties of determinants that will prove useful for the
group analysis of the following subsections. Determinants can be defined in terms of

the Levi-Civita tensor €. As a consequence of its antisymmetry,

€ totally antisymmetric, €19 ., = =1 = ejl,_,Jnejl"'I" = (5[{}1 . 6§Z]

since each possible numerical index value appears once in each €, so they can be

matched up with d’s. By similar reasoning,

Kl...Kmfl...In_m — 6[1 In—m

1
mEKl...ijl...Jn_mE [J1 e Jn—m]

where the normalization compensates for the number of terms in the summation.

This tensor is used to define the determinant:
J 1 odn J Jn J Jn
det M[ = HEJl...Jnel Mh 1---M]n = EJI...JnMjl 1---M]n :Ejl,jndetM

since anything totally antisymmetric in n indices must be proportional to the € tensor.

This yields an explicit expression for the inverse:

(MY, = ey o ehIn g T2 My o (det M)~

1T (n=1)!

From this follows a useful expression for the variation of the determinant:

o
—~ det M = (MY, det M
8M1Jd€t ( )" det

which is equivalent to

§In det M =tr(M~'6M)

Replacing M with eM gives the often-used identity
§In det M =tr(e™MseM) =tr M = det M ="M

where we have used the boundary condition for M = 0. Finally, replacing M in
the last identity with (n(1 + L) and expanding both sides to order L™ gives general

expressions for determinants of n X n matrices in terms of traces:

det(1+ L) = gm0+l et [ = %(t?" " — 2(+_2)!(tr LH(tr L)" 2 + .

Excercise IB3.1
Use the definition of the determinant (and not its relation to the trace) to

show
det(AB) = det(A)det(B)
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These identities can also be derived by defining the determinant in terms of a
Gaussian integral. We first collect some general properties of (indefinite) Gaussian

integrals. The simplest such integral is

d2 ) 2m do 00
—xe_xﬂ:/ / dr re "2 = / due =1
T

D D/2
— / —2?/2 _ dr oT/2)  — (12_33 L. / 1
2’/T D/2 2 2

The complex form of this integral is

/dDZ* dDZ —|Z|2
— e =1
(2mi)P

by reducing to real parameters as z = (v + 4y)/v/2. These generalize to integrals

involving a real, symmetric matrix S or a Hermitian matrix H as

dPz Tg dPz*dP> .
—zt Sx/2 __ det S 1/2 / —2"Hz _ H -1
/(Q,N)D/Q € = (det S)~ @) e (det H)

by diagonalizing the matrices, making appropriate redefinitions of the integration
variables, and identifying the determinant of a diagonal matrix. Alternatively, we
can use these integrals to define the determinant, and derive the previous definition.
The relation for the symmetric matrix follows from that for the Hermitian one by
separating z into its real and imaginary parts for the special case H = S. If we treat
z and z* as independent variables, the determinant can also be understood as the
Jacobian for the (dummy) variable change z — H~'z, 2* — z*. More generally, if
we define the integral by an appropriate limiting procedure or analytic continuation
(for convergence), we can choose z and z* to be unrelated (or even separate real

variables), and S and H to be complex.

Excercise IB3.2
Other properties of determinants can also be derived directly from the integral

definition:

a Find an integral expression for the inverse of a (complex) matrix M by using

the identity
8 TM
0= . —2z'Mz
/ 8ZI(ZJ e )

b Derive the identity ¢ In det M = tr(M~'6M) by varying the Gaussian defi-

nition of the (complex) determinant with respect to M.
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An even better definition of the determinant is in terms of an anticommuting
integral (see subsection [A2), since anticommutativity automatically gives the anti-
symmetry of the Levi-Civita tensor, and we don’t have to worry about convergence.

We then have, for any matrix M,
/ dPt dP¢ e ME = det M

where (T can be chosen as the Hermitian conjugate of ¢ or as an independent variable,
whichever is convenient. From the definition of anticommuting integration, the only
terms in the Taylor expansion of the exponential that contribute are those with the
product of one of each anticommuting variable. Total antisymmetry in ¢ and in (7
then yields the determinant; we define “d”¢t dP(” to give the correct normalization.
(The normalization is ambiguous anyway because of the signs in ordering the d(’s.)
This determinant can also be considered a Jacobian, but the inverse of the commuting

result follows from the fact that the integrals are now really derivatives.

Excercise IB3.3

Divide up the range of a square matrix into two (not necessarily equal) parts:

(e v)

and do the same for the (commuting or anticommuting) variables used in

In block form,

defining its determinant. Show that

A B
det (C D) =det D -det(A— BD'C) =det A-det(D —CA™'B)

a by integrating over one part of the variables first (this requires off-diagonal

changes of variables of the form y — y + Oz, which have unit Jacobian), or

b by first proving the identity
A BY (I BD! A—-BD7'C 0 1 0
C D) \o I 0 D)\D'C I
We then have, for any antisymmetric (even-dimensional) matrix A,
/ d?P¢ =€ A2 = pf A, (PfA)? =det A

by the same method as the commuting case (again with appropriate definition of the
normalization of d*P¢; the determinant of an odd-dimensional antisymmetric matrix

vanishes, since det M = det M"'). However, there is now an important difference: The
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“Pfaffian” is not merely the square root of the determinant, but itself a polynomial,

since we can evaluate it also by Taylor expansion:
_ _1 _§L.Ip
PfAp; = DD € AL AIQD—1[2D

which can be used as an alternate definition. (Normalization can be checked by

examining a special case; the overall sign is part of the normalization convention.)

4. Classical groups

The rotation group in three dimensions can be expressed most simply in terms
of 2x2 matrices. This description is the most convenient for not only spin 1/2, but
all spins. This result can be extended to orthogonal groups (such as the rotation,
Lorentz, and conformal groups) in other low dimensions, including all those relevant

to spacetime symmetries in four dimensions.

There are an infinite number of Lie groups. Of the compact ones, all but a finite
number are among the “classical” Lie groups. These classical groups can be defined
easily in terms of (real or complex) matrices satisfying a few simple constraints. (The
remaining “exceptional” compact groups can be defined in a similar way with a little
extra effort, but they are of rather specialized interest, so we won’t cover them here.)
These matrices are thus called the “defining” representation of the group. (Sometimes
this representation is also called the “fundamental” representation; however, this term
has been used in slightly different ways in the literature, so we will avoid it.) These

constraints are a subset of:

volume: Special: det(g) =1
hermitian: Unitary: gYTgt =71 (YT ="7)
metric: (anti)symmetric: { Orthogonz.ll: gng” =1 " =n)
Symplectic: 9" =Q (QF = -Q)
reality: { Real g% = ngn”
pseudoreal (*):  g* = QgQ!

where ¢ is any matrix in the defining representation of the group, while YT, 7, Q are
group “metrics”, defining inner products (while the determinant defines the volume,
as in the Jacobian). For the compact cases T and 7 can be chosen to be the identity,
but we will also consider some noncompact cases. (There are also some uninteresting
variations of “Special” for complex matrices, setting the determinant to be real or its

magnitude to be 1.)
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Excercise IB4.1
Write all the defining constraints of the classical groups (S, U, O, Sp, R,

pseudoreal) in terms of the algebra rather than the group.

Note the modified definition of unitarity, etc. Such things are also encountered
in quantum mechanics with ghosts, since the resulting Hilbert space can have an
indefinite metric. For example, if we have a finite-dimensional Hilbert space where

the inner product is represented in terms of matrices as
(¥lx) = 1Ty
then “observables” satisfy a “pseudohermiticity” condition
(WHx) = (H¢lx) = TH=HT
and unitarity generalizes to
UylUx) = (wlx) = UTU=T

Similar remarks apply when replacing the Hilbert-space “sesquilinear” (vector times
complex conjugate of vector) inner product with a symmetric (orthogonal) or anti-
symmetric (symplectic) bilinear inner product. An important example is when the
wave function carries a Lorentz vector index, as expected for a relativistic description

of spin 1; then clearly the time component is unphysical.

The groups of matrices that can be constructed from these conditions are then:

GL(n,C) [SL(n,C)] U: [S]U(ny,n-) U R *
(S)I;:[SS]&(;’?) O [[SJ0mn) | SO*(2n)
R: GL(n) [SL(n)] Sp Sp(2n) USp(2n,2n_)
*: [SJU*(2n)

Of the non-determinant constraints, in the first column we applied none (“GL” means
“general linear”, and “C” refers to the complex numbers; the real numbers “R” are
implicit); in the second column we applied one; in the third column we applied three,
since two of the three types (unitarity, symmetry, reality) imply the third. (The
corresponding groups with unit determinant, when distinct, are given in brackets.)
These square matrices are of size n, ny+n_, 2n, or 2n,;+2n_, as indicated. n; and
n_ refer to the number of positive and negative eigenvalues of the metric T or 7.

O(n) differs from SO(n) by including “parity”-type transformations, which can’t be



40 I. GLOBAL

obtained continuously from the identity. (SSp(2n) is the same as Sp(2n).) For this
reason, and also for studying “topological” properties, for finite transformations it
is sometimes more useful to work directly with the group elements g, rather than
parametrizing them in terms of algebra elements as g = ¢’“. U(n) differs from SU(n)
(and similarly for GL(n) vs. SL(n)) only by including a U(1) group that commutes
with the SU(n): Although U(1) is noncompact (it consists of just phase transforma-
tions), a compact form of it can be used by requiring that all “charges” are integers
(i.e., all representations transform as 1’ = €%} for group parameter 0, where ¢ is an

integer defining the representation).

Of these groups, the compact ones are just SU(n), SO(n) (and O(n)), and USp(2n)
(all with n_=0). The compact groups have an interesting interpretation in terms of
various number systems: SO(n) is the unitary group of nxn matrices over the real
numbers, SU(n) is the same for the complex numbers, and USp(2n) is the same for
the quaternions. (Similar interpretations can be made for some of the noncompact
groups.) The remaining compact Lie groups that we didn’t discuss, the “exceptional”
groups, can be interpreted as unitary groups over the octonions. (Unlike the classical
groups, which form infinite series, there are only five exceptional compact groups,

because of the restrictions following from the nonassociativity of octonions.)

5. Tensor notation

Although historically group representations have usually been taught in the no-
tation where an m-component representation of a group defined by nxn matrices is
represented by an m-component vector, carrying a single index with values 1 to m,
a much more convenient and transparent method is “tensor notation”, where a gen-
eral representation carries many indices ranging from 1 to n, with certain symmetries
(and perhaps tracelessness) imposed on them. (Tensor notation for a covering group
is generally known as “spinor notation” for the corresponding orthogonal group: See
subsection IC5.) This notation takes advantage of the property described above for
expressing arbitrary representations in terms of direct products of vectors. In terms
of transformation laws, it means we need to know only the defining representation,
since the transformation of this representation is applied to each index. There are
at most four vector representations, by taking the dual and complex conjugate; we
use the corresponding index notation. Then the group constraints simply state the
invariance of the group metrics (and their complex conjugates and inverses), which

thus can be used to raise, lower, and contract indices:
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volume: Special: et In
hermitian: Unitary: i
metric: Orthogonal: n'’

anti)symmetric:
(anti)sy { Symplectic: Q7

{ Real: n.’

lity:
reay pseudoreal (*): Q.7

As a result, we have relations such as

a7y =nt o QU <I| = 17
We also define inverse metrics satisfying

s = X Qs =TI =]

(and similarly for contracting the second index of each pair). Therefore, with uni-
tarity /(pseudo)reality we can ignore complex conjugate representations (and dotted
indices), converting them into unconjugated ones with the metric, while for orthogo-

nality /symplecticity we can do the same with respect to raising/lowering indices:

Unitary: w’: = T’:ij
Orthogonal: ! = nflp;
Symplectic: ! = QI

Real: . = niJwJ
pseudoreal (*): ), = Qi‘]wj

For the real groups there is also the constraint of reality on the defining representation:
/) = f — .= .‘]
=) =, =01

Excercise IB5.1
As an example of the advantages of index notation, show that SSp is the same
as Sp. (Hint: Write one € in the definition of the determinant in terms of {2’s
by total antisymmetrization, which then can be dropped because it is enforced
by the other €. One can ignore normalization by just showing det M = det I.)

For SO(ny,n_), there is a slight modification of a sign convention: Since then

I..

indices can be raised and lowered with the metric, ¢/~ is usually defined to be the

result of raising indices on €;_, which means

€o.n=1 = €*"=detn=(-1)"



42 I. GLOBAL

Then €’ should be replaced with (—1)"=¢’ in the equations of subsection IB3: For
example,

€€l = (2176 0

We now give the simplest explicit forms for the defining representations of the
classical groups. The most convenient notation is to label the generators by a pair
of fundamental indices, since the adjoint representation is obtained from the direct
product of the fundamental representation and its dual (i.e., as a matrix labeled by
row and column). The simplest example is GL(n), since the generators are arbitrary
matrices. We therefore choose as a basis matrices with a 1 as one entry and 0’s
everywhere else, and label that generator by the row and column where the 1 appears.
Explicitly,

GL(n): (Gr)x" =610 = Gr7 =)

This basis applies for GL(n,C) as well, the only difference being that the coefficients
ain G = a;’G ;! are complex instead of real. The next simplest case is U(n): We can
again use this basis, although the matrices G/ are not all hermitian, by requiring
that o’ be a hermitian matrix. This turns out to be more convenient in practice
than using a hermitian basis for the generators. A well known example is SU(2),
where the two generators with the 1 as an off-diagonal element (and 0’s elsewhere)
are known as the “raising and lowering operators” Ji, and are more convenient than
their hermitian parts for purposes of contructing representations. (This generalizes
to other unitary groups, where all the generators on one side of the diagonal are
raising, all those on the other side are lowering, and those along the diagonal give the

maximal Abelian subalgebra, or “Cartan subalgebra”.)

Representations for the other classical groups follow from applying their defini-
tions to the GL(n) basis. We thus find

SL(n):  (Gr)x" =010k — 3oio = Gl =)l = ;071" )kl
SO(n): (Gr)*t = 6[11(65] = G =)l
Sp(n) : (Gi)*F =665 = Gr=lu)l
As before, SL(n,C) and SU(n) use the same basis as SL(n), etc. For SO(n) and Sp(n)
we have raised and lowered indices with the appropriate metric (so SO(n) includes

SO(ny,n_)). For some purposes (especially for SL(n)), it’s more convenient to impose

tracelessness or (anti)symmetry on the matrix «, and use the simpler GL(n) basis.

Excercise IB5.2
Our normalization for the generators of the classical groups is the simplest,

and independent of n (except for subtracting out traces):
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a Find the commutation relations of the generators (structure constants) for the
defining representation of GL(n) as given in the text. Note that the values of

all the structure constants are 0, +¢. Show that
Cp — 1

(see subsection 1B2).

b Consider the GL(m) subgroup of GL(n) (m<n) found by restricting the range
of the index of the above defining representation. Show the structure con-
stants are the same as those given by starting with the above representation
of GL(m).

¢ Find the structure constants for SO(n) and Sp(n).

d Directly evaluate kpca (= 6“G;G;) for SL(n), SO(n), and Sp(n), and compare
with CDdA/dD.

Excercise IB5.3

A tensor that pops up in various contexts is
dijk = tT(Gi{G]’, Gk})

It takes a very simple form in terms of defining indices:

a Show that for SU(n) this tensor is determined to be, up to an overall normal-
ization (that depends on the representation),

tr (G {GL”,Gr”}) ~ [(231)+(312)]—%[(132)+(213)+(321)]+%(123)

RN A A
(1jk) = 511,15]],2(515
from just the total symmetry of d;j. (and G;! = 0), since the only invariant
tensor available is 5}] . (If €7y were used, €'’ would also be required, to

balance the number of subscripts and superscripts; but their product can be

expressed in terms of just d’s also.)

b Check this result by using the explicit G’s for the defining representation, and

determine the proportionality constant for that representation.

With the exception of the “spinor” representations of SO(n) (to be discussed
in subsection IC5, section ITA, and subsection XC1), general representations can be
obtained by reducing direct products of the defining representations. This means they
can be described by objects with multiple indices (up/down, dotted /undotted), where
each index is that of a defining representation, and satisfying various (anti)symmetry

and tracelessness conditions on the indices.
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Excercise IB5.4
Consider the representations of SU(n) obtained from the symmetric and an-
tisymmetric part of the direct product of two defining representations. For
simplicity, one can work with the U(n) generators, since the U(1) pieces will

appear in a simple way.

a Using tensor notation for the generators (G e ) xr MV, find their explicit rep-

resentation for these two representations.

b By evaluating the trace, show that the Dynkin index for the two cases is

Cog =1 —2, cs=n-+2

¢ Show the sum of these two is consistent with the argument at the end of
subsection IB2. Show each case is consistent with n=2, and the antisymmetric
case with n=3, by relating those cases to the singlet, defining, and adjoint

representations.
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................... C. REPRESENTATIONS ..................

We now consider some of the more useful representations, as explicit examples
of the results of the previous section. In particular, we consider symmetries of the

quark model.

1. More coordinates

We began our “review” of group theory by looking at how symmetries were rep-
resented on coordinates. We now return to coordinates as a special case (particular
representation) of the general results of the previous section. The idea is that the
coordinates themselves are already a representation of the group, and the wave func-
tions are functions of these coordinates. For example, for ordinary rotations we use
wave functions that depend on position or momentum, which transforms as a vec-
tor. (This is not always the case: For example, in our description of the conformal
group the usual space and time coordinates transformed nonlinearly, and not just
by multiplication by constant matrices unless the extra two coordinates were intro-
duced.) This is the basic distinction between classical mechanics and classical field
theory: Mechanics uses the coordinates themselves as the basic variables, while field
theory uses functions of the coordinates. (Similarly, in quantum mechanics the wave
functions are functions of the coordinates, while in quantum field theory the wave

functions are “functionals” of functions of the coordinates.)

In general, the construction of such a “coordinate representation” starts with a
given matrix representation (usually finite dimensional) (G;);’/ and then defines a

new representation

Gi = q"(Gi)r"ps; 1.’y =067, la,q} = [p,p} =0

for some objects ¢ and p, which are interpreted as either coordinates and their con-
jugate momenta (up to a factor of ), or as creation and annihilation operators: The
latter nomenclature is used when the boundary conditions allow the existence of a
state |0) called the “vacuum”, satisfying p|0) = 0, so we can define the other states
as functions of ¢ acting on |0). (If the coordinates are fermionic, the distinction is
moot, since by the usual Taylor expansion the Hilbert space is finite dimensional. See
excercise [A2.3.) It is easy to check that G; satisfy the same commutation relations
as ;. In particular, if the matrices are in the adjoint representation, ¢* can be inter-
preted as the group coordinates themselves: This follows from considering the action
of an infinitesimal transformation on the group element g(q) = €'’ (or just the Lie

algebra element G(q) = ¢'G;).
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If we write these results in bra/ket notation, since

~

G, q'] =7 (G) S, [Giypr] = — (G py
it is more natural to look at the action on bras:

al=d"Gl, p)="Np = Gilgd = {qGi Gilp) = —GCilp)

Note that this vector space is coordinate space itself, not the space of functions of
the coordinates; it is the same space on which G; is defined. (Of course, G, is defined
on arbitrary functions of the coordinates; it has a reducible representation bigger
than (G;);7. Effectively, (G;);” is represented on the space of functions linear in the

coordinates.) Then, for example
G1GQ<C]| = Gl (C]|G2 = (C]|G1G2
is obviously equivalent, while (ignoring any extra signs for fermions)
G1G2|p> = —GlG2|p> = —G2él|p> = GG |p)

at least gives an equivalent result for the commutator algebra [Gy, G5, This is the

expected result for the dual representation G; — —G7T.

Interesting examples are given by using the defining representation for GG. For

example, the commonly used oscillator representation for U(n) is
U(n) : GIJ = aTJaD [a17 aTJ} = 6}]

where the oscillators can be bosonic or fermionic. For the SO and Sp cases, because
we can raise and lower indices, and because of the (anti)symmetry on the indices, the
interesting possibility arises to identify the coordinates with their momenta, with the

statistics appropriate to the symmetry:
Sp(n):  Gry = 3zqzn, |21,27) = Qs

SO(n) . Gry= 3w sy =00

For SO(n) the representation is finite dimensional because of the Fermi-Dirac statis-
tics, and is called a “Dirac spinor” (and 7 the “Dirac matrices”). If the opposite
statistics are chosen, the coordinates and momenta can’t be identified: For example,

bosonic coordinates for SO(n) give the usual spatial rotation generators Gr; = x;0y.

Excercise IC1.1
Use this bosonic oscillator representation for U(2)=SU(2)®@U(1), and use the
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SU(2) subgroup to describe spin. Show that the spin s (the integer or half-
integer number that defines the representation) itself has a very simple ex-
pression in terms of the U(1) generator. Show this holds in the quantum
mechanical case (by interpreting the bracket as the quantum commutator),
giving the usual s(s+1) for the sum of the squares of the generators (with ap-
propriate normalization). Use this result to show that these oscillators, acting
on the vacuum state, can be used to construct the usual states of arbitrary

spin s.

Excercise IC1.2
Considering SO(2n), divide up 7, into pairs of canonical (and complex) con-
jugates a; = (11 +1iv2)/V2, etc., so {a,a’} = 1. Write the SO(2n) generators
in terms of aa, a'a’, and a'a. Show that the a'a’s by themselves generate a
U(n) subgroup. Decompose the Dirac spinor into U(n) representations. Show
that the product of all the +’s is related to the U(1) generator, and commutes
with all the SO(2n) generators. Show that the states created by even or odd
numbers of a'’s on the vacuum don’t mix with each other under SO(2n), so

the Dirac spinor is reducible into two “Weyl spinors”.

2. Coordinate tensors

Many groups can be represented on coordinates. Depending on the choice of
coordinates, the coordinates may transform nonlinearly (i.e., as a realization, not a
representation), as for the D-dimensional conformal group in terms of D (not D+2)
coordinates. However, given the nonlinear transformation of the coordinates, there
are always representations other than the defining one (scalar field) that we can im-
mediately write down (such as the adjoint). We now consider such representations:
These are useful not only for the spacetime symmetries we have already considered,
but also for general relativity, where the symmetry group consists of arbitrary coor-
dinate transformations. Furthermore, these considerations are useful for describing
coordinate transformations that are not symmetries, such as the change from Carte-

sian to polar coordinates in nonrelativistic theories.

When applied to quantum mechanics, we write the action of a symmetry on a
state as 69 = iGv (or ¢’ = %)), but on an operator as A = i[G, A] (or A" =
e!“Ae%). In classical mechanics, we always write A = i[G, A] (since classical
objects are identified with quantum operators, not states). However, if G = X0, is

a coordinate transformation (e.g., a rotation) and ¢ is a scalar field, then in quantum
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notation we can write
5p(z) =[G, 0] = Gp = A"0pnd (¢ = %™ =e9)

since the derivatives in G just differentiate ¢. (For this discussion of coordinate
transformations we switch to absorbing the i’s into the generators.) The coordinate

transformation G has the usual properties of a derivative:
G, f(x)|=Gf = Gfifo=I[G, fife] =(GhH)f2+ [1Gfa
e fify = €% frf2e7C = (€9 fre™C) (e fae™C) = (9 f1)(e“ fo)

and similarly for products of more functions.

The adjoint representation of coordinate transformations is a “vector field” (in the
sense of a spatial vector), a function that has general dependence on the coordinates

(like a scalar field) but is also linear in the momenta (as are the Poincaré generators):
G=XN"(2)0p, V=V"2)0, = 0V=[GV]=N"0,V"—=V"0,\")0,

= VT =N"09,V" - V"9, \"

The same result follows if we use the Poisson bracket instead of the quantum me-

chanical commutator, replacing 0,, with ip,, in both G and V.

Finite transformations can also be expressed in terms of transformed coordinates

themselves, instead of the transformation parameter:
() = e Mm@ (z) = ¢/ (e A" x)

as seen, for example, from a Taylor expansion of ¢, using e %¢’ = e~“¢’e“. We then
define

S =) = o =N

This is essentially the statement that the active and passive transformations cancel.
However, in general this method of defining coordinate transformations is not con-
venient for applications: When we make a coordinate transformation, we want to
know ¢'(x). Working with the “inverse” transformation on the coordinates, i.e., our
original e,

ey = ¢(z) = eY(x) = ¢(3(2))

So, for finite transformations, we work directly in terms of Z(x), and simply plug this

z

into ¢ in place of z (z — Z(x)) to find ¢’ as a function of x.
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Similar remarks apply for the vector, and for derivatives in general. We then use
P=eC% = 9 =e%e"
where 0" = 0/0x’, since 'z’ = 0x = 9. This tells us
V™ (2)0p = e V™ (2)0eC = V'™(2")0),

or V'(z') = V(z). Acting with both sides on 2,

83;./771

oxm

Vm(x') = V(x)

On the other hand, working in terms of Z is again more convenient: Since for D=0 /0%

O = €C0pe ™0 = [(8”;(;"))_1] n On

m

we have, for example,

(V™08) (2) = (VD) () = V™ (3(2)) [(82—;”) ] 0,6(E())

m

which yields an explicit expression for the transformed fields.

A “differential form” is defined as an infinitesimal W = da™W,,(z). Its transfor-
mation law under coordinate transformations, like that of scalar and vector fields, is
defined by W’(2') = W (x). For any vector field V = V"™ (2)0,,, V"W, transforms as

a scalar, as follows from the “chain rule” d = dx""0,, = dz™0,,. Explicitly,

ox™

83;./m

W (2) = W()

or in infinitesimal form

W = N0 Wy + W0 A™

Thus a differential form is dual to a vector, at least as far as the matrix part of coor-
dinate transformations is concerned. They transform the same way under rotations,
because rotations are orthogonal; however, more generally they transform differently,
and in the absence of a metric there is not even a way to relate the two by raising or

lowering indices.

Higher-rank differential forms can be defined by antisymmetric products of the
above “one-forms”. These are useful for integration: Just as the line integral [ W =
[ dz™W,, is invariant under coordinate transformations by definition (as long as we

choose the curve along which the integral is performed in a coordinate-independent
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way), so is a totally antisymmetric Nth-rank tensor (“N-form”) W,,, ..., integrated

on an N-dimensional subspace as

OxrPL OxPN
or'™ Qx'mn

/dxml ct d.’L'mNWmlu.mN : W/ (:L./) = Wpl'"pN (:L.)

mi-my

where the surface element dz™* - - - dz™ is interpreted as antisymmetric. (The signs
come from switching initial and final limits of integration, as prescribed by the “ori-
entation” of the hypersurface.) This is clear if we rewrite the integral more explicitly

in terms of coordinates o’ for the subspace: Then

/alxm1 s dx™N W iy (T) = /dail e dJiN/Wil...iN(J) = /dNJ eil'"iNWil...iN(J)

where
—~ ox™ Ox™N

Wil...iN(O') = 80-i1 .. 80-1‘]\;

is the result of a coordinate transformation that converts N of the x’s to ¢’s, an

Wiy oomn ()

interpretation of the functions x(o) that define the surface. Then any coordinate
transformation on & — 2’ (not on o) will leave W (o) invariant. In particular, if the
subspace is the full space, so we can look directly at f dNx €™ mN, o We see
that a coordinate transformation generates from W an N-dimensional determinant

exactly canceling the Jacobian resulting from changing the integration measure d” .

Excercise 1C2.1

For all of the following, use the exponential form of the finite coordinate trans-
formation: Show that any (local) function of a scalar field (without explicit x
dependence additional to that in the field) is also a scalar field (i.e., satisfies
the same coordinate transformation law). Show that the transformation law
of a vector field or differential form remains the same when multiplied by a
scalar field (at the same ). Show that V¢ = V™0,,¢ is a scalar field for any
scalar field ¢ and vector field V. Show that [V, W] is a vector field for any
vector fields V' and W.

Excercise I1C2.2
Examine finite coordinate transformations for integrals of differential forms
in terms of Z rather than z’. Find the explicit expression for W’'(x) in terms

of W(Z(x)), etc., and use this to show invariance:

mi-my

/dxml coedx™W! (z) = /diml cdTN Wy (T)

= /dwml---dmeWml...mN(x)
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where in the last step we have simply substituted * — x as a change of integra-
tion variables. Note that, using the & form of the transformation rather than
2’, the transformation generates the needed Jacobain, rather than canceling

one.

From the above transformation law, we see that the curl of a differential form is

also a differential form:

b Wi () = Oy, (07, 272) -+ (B 7PN ) Wiy ()

[m1 " ma--my] - YIma m
= [0 Ws-opn1 ()] (0, 2) - -+ (O, 2P)

because the curl kills 0’0’z terms that would appear if there were no antisymmetriza-
tion. Objects that transform “covariantly” under coordinate transformations, without
such higher derivatives of x (or A in the other notation), like scalars, vectors, differen-
tial forms and their products, are called (coordinate) “tensors”. Getting derivatives of
tensors to come out covariant in general requires special fields, and will be discussed
in chapter IX. An important application of the covariance of the curl of differential
forms is the generalized Stokes’ theorem (which includes the usual Stokes’ theorem

and Gauss’ law as special cases):

/dxﬂh e dme+1m8[m1Wm2'~~mN+l] - %d.’lﬁml o dmeWml"'mN

where the second integral is over the boundary of the space over which the first is
integrated. (We use the symbol “¢” to refer to boundary integrals, including those
over contours, which are closed boundaries of 2D surfaces.)

3. Young tableaux

We now return to our discussion of finite-dimensional representations. In the
previous section we gave the machinery for describing them using index notation,
but examined only the defining representation in detail. Now we analyze general
irreducible representations.

All the irreducible finite-dimensional representations of the groups SU(N) can be
described by tensors with lower N-valued indices with various (anti)symmetrizations.
(An upper index can be replaced with N—1 lower indices by using the Levi-Civita
tensor.) Although detailed calculations require explicit use of these indices, three
properties can be more conveniently discussed pictorially: (1) the (anti)symmetries
of the indices, (2) the dimension (number of independent components) of the repre-
sentation, and (3) the reduction of the direct product of two representations (which

irreducible representations result, and how many of each).
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A “Young tableau” is a picture representing an irreducible representation in terms
of boxes arranged in a regular grid into rows and columns, such that the columns are

aligned at the top, and their depths are nonincreasing to the right: for example,

Each box represents an index, with antisymmetry among indices in any column, and
symmetry among indices in any row. More precisely, since one can’t simultaneously
have these symmetries and antisymmetries, it corresponds to the result of taking any
arbitrary tensor with that many indices, first symmetrizing the indices in each row,
and then antisymmetrizing the indices in each column (or vice versa; symmetrizing
and then antisymmetrizing and then symmetrizing again gives the same result as
skipping the first symmetrization, etc.). This gives a simple way to classify and
symbolize each representation. (We can denote the singlet representation, which has
no boxes, by a dot.) Note that the deepest column should have no more than N—1
boxes for SU(N) because of the antisymmetry.

To calculate the dimension of the representation for a given tableau, we use the
“factors over hooks” rule: (1) Write an “N” in the box in the upper-left corner, and
fill the rest of the boxes with numbers that decrease by 1 for each step down and
increase by 1 for each step to the right. (2) Draw (or picture in your mind) a “hook”
for each box — a “I'” with its corner in the box and lines extending right and down

out of the tableau. (3) The dimension is then given by the formula

. . integer written there
dimension = H - -

# boxes intersected by its hook
each box

For the previous example, we find (listing boxes first down and then to the right)
N N-1N-2N-3N+1 N N-1 N+2 N+1 N+3 N+2 N+14
8 6 3 1 6 4 1 4 2 3 1 1

The direct product of two Young tableaux A®B is analyzed by the following rules:
First, label all the boxes in B by putting an “a” in each box in the top row, “b” in
the second row, etc. Then, take the following steps in all possible ways to find the
Young tableaux resulting from the direct product: (1) Add all the “a” boxes from B
to the right side and bottom of A, then “b” to the right and bottom of that, etc., to
make a new Young tableaux. Any two tableaux constructed in this way with the same
arrangement of boxes but different assignment of letters are considered distinct, i.e.,
multiple occurences of the same representation in the direct product. (2) No more

than 1 “a” can be in any column, and similarly for the other letters. (3) Reading from
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right to left, and then from top to bottom (i.e., like Hebrew/Arabic), the number of

a’s read should always be > the number of b’s, b’s > ¢’s, etc. For example,

el -F@ ooy

Note that A®B always gives the same result as BQA, but one way may be simpler
than the other. For a given value of N, a column of N boxes is equivalent to none
(again by antisymmetry), while more than N boxes in a column gives a vanishing

tableau.

Excercise IC3.1

Calculate
HeH

Check the result by finding the dimensions of all the representations and

adding them up.

These SU(N) tableaux also apply to SL(N): Only the reality properties are dif-
ferent. Similar methods can be applied to USp(2N) (or Sp(2N)), but tracelessness
(with respect to the symplectic metric) must be imposed in antisymmetrized indices,
so these trace pieces must be separated out when considering the above rules. (L.e.,
consider USp(2N)CSU(2N).) Similar remarks apply to SO(N), which has a symmet-
ric metric, but there are also “spinor” representations (see below). The additional
irreducible representations then can be constructed from taking direct products of

the above with the smallest spinors, and removing the “gamma-matrix” traces.

4. Color and flavor

We now consider the application of these methods to “internal symmetries” (those
that don’t act on the coordinates) in particle physics. The symmetries with experi-
mental confirmation involve only the unitary groups (U and SU) of small dimension.
However, we will find later that larger unitary groups can be useful for approxima-
tion schemes. (Also, larger unitary and other groups continue to be investigated for

unification and other purposes, which we consider in later chapters.)

The “Standard Model” describes all of particle physics that is well confirmed
experimentally (except gravity, which is not understood at the quantum level). It
includes as its “fundamental” particles: (1) the spin-1/2 quarks that make up the
observed strongly interacting particles, but do not exist as asymptotic states, (2) the
weakly interacting spin-1/2 leptons, (3) the spin-1 gluons that bind the quarks to-

gether, which couple to the charges associated with SU(3) “color” symmetry, but also
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are not asymptotic, (4) the spin-1 particles that mediate the weak and electromag-
netic interactions, which couple to SU(2)®@U(1) “flavor”, and (5) the yet unobserved
spin-0 Higgs particles that are responsible for all the masses of these weakly interact-
ing particles. These particles, along with their masses (in GeV) and (electromagnetic)
charges (Q = Q + AQ), are:

s = % s=1
color: — || quark (3) lepton (1) color: — |l gluon | electroweak
flavor (AQ) || (Q =) (@Q=-3) flavor (Q) || (8) (1)
+1 u (.005) |z (< 1078) 0 g (0) |v(<2-107%)
-1 d (.009) | e (.0005109991) 0 Z (91.187)
+3 c (1.4) v, (<.00017) +1 W (80.4)
~1 s (18) | (.10565839)
+1 1 (174)  |vs (<.0182) s=0
—1 b(4.7) |7 (1.7770) (Q=0) H (>775)

The quark masses we have listed are the “current quark masses”, the effective masses
when the quarks are relativistic with respect to their hadron, and act as almost free.
Nonrelativistic quark models use instead the “constituent quark masses”, which in-
clude potential energy from the gluons. This extra potential energy is about .30
GeV per quark in the lightest mesons, .35 GeV in the lightest baryons; there is also
a contribution to the binding energy from spin-spin interaction. Unlike electrody-
namics, where the potential energy is negative because the electrons are free at large
distances, where the potential levels off (the top of the “well”), in chromodynamics
the potential energy is positive because the quarks are free at high energies (short
distances, the bottom of the well), and the potential is infinitely rising. Masslessness
of the gluons is implied by the fact that no colorful asymptotic states have ever been
observed. We have divided the spin-1/2 particles into 3 “families” with the same
quantum numbers (but different masses). Within each family, the quarks are similar
to the leptons, except that: (1) the masses and average charges (Q) are different,
(2) the quarks come in 3 colors, while the leptons are colorless, and (3) the neutrinos,
to within experimental error, are massless, so they have half as many components
as the massive fermions (1 helicity state each, instead of 2 spin states each). This
means that each lepton family has 1 SU(2) doublet and 1 SU(2) singlet. For symme-
try (and better, quantum mechanical, reasons to be explained later), we also assume
the quarks have 1 SU(2) doublet, but therefore 2 SU(2) singlets. (Some experiments

have indicated small masses for neutrinos: This would require generalization of the
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Standard Model, such as models with parity broken by interactions. Some examples

of such theories will be discussed in subsection IVBA4.)

We first look at the color group theory of the physical states, which are color
singlets. The fundamental unobserved particles are the spin-1 “gluons”, described by
the Yang-Mills gauge fields, and the spin-1/2 quarks. Suppressing all but color indices,
we denote the quark states by ¢°, and the antiquarks by ¢';, where the indices are those
of the defining representation of SU(n), and its complex conjugate. The quarks also
carry a representation of a “flavor” group, unlike the gluons. The simplest flavorful
states are those made up of only (anti)quarks, with indices completely contracted by
one factor of an SU(n) group metric: From the “U” of SU(n), we can contract defining
indices with their complex conjugates, giving the “mesons”, described by ¢;q" (quark-
antiquark), which are their own antiparticles. From the “S” of SU(n), we have the
“baryons”, described by €;, i, q"...¢" (n-quark), and the antibaryons, described by
the complex conjugate fields. All other colorless states made of just (anti)quarks
can be written as products of these fields, and therefore considered as describing
composites of them. Thus, we can approximate the ground states of the mesons by
q"i(x)q'(x), which describe spins 0 and 1 because of the various combinations of spins
(from 3 ® 3 = 0 1). The first excited level will then be described by ¢ 5(] (where

AOB = AOB — (9A)B

and picks out the relative momentum of the two quarks): It includes spins 0, 1, and 2,
etc., where each derivative introduces orbital angular momentum 1. (Similar remarks
apply to baryons.) We can also have flavorless states made from just gluons, called
“glueballs”: The ground states can be described by F;7F}*, where each F is a gluon
state (in the adjoint representation of SU(n)), and includes spins 0 and 2 (from the
symmetric part of 1 ® 1). Because of their flavor multiplets and (electroweak) inter-
actions, many mesons and baryons corresponding to such ground and excited states
have been experimentally identified, while the glueballs’ existence is still uncertain.
Actually, quarks and gluons can almost be observed independently at high energies,
where the “strong” interaction is weak: The energetic particle appears as a “jet” —
a particle of high energy accompanied by particles of much lower energy (perhaps
too small to detect) in color-singlet combinations. (Depending on the available decay
modes, the jet might not be observed until after decaying, but still within a small

angle of spread.)

We now look at the flavor group theory of the physical hadronic states. In contrast

to the previous paragraph, we now suppress all but the flavor indices. Mesons M,/ =
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q'i¢’ are thus in the adjoint representation of flavor U(m) (m ® m, where m is the
defining representation and m its complex conjugate), for both the spin-0 and the
spin-1 ground states. The baryons are more complicated: For simplicity we consider
SU(3) color, which accurately describes physics at observed energies. Then the color
structure described above results in total symmetry in combined flavor and Lorentz
indices (from the antisymmetry in the color indices, and the overall antisymmetry for

Fermi-Dirac statistics). Thus, for the 3-quark baryons, the Young tableaux

@@BH@D:D

for SU(m) flavor are accompanied by the same Young tableaux for spin indices: In
nonrelativistic notation, the first tableau, being totally antisymmetric in flavor in-
dices, is also totally antisymmetric in the three two-valued spinor indices, and thus
vanishes. Similarly, the last tableau describes spin 3/2 (total symmetry in both types
of indices), while the middle one describes spin 1/2. Since only 3 flavors of quarks
have small masses compared to the hadronic mass scale, hadrons can be most conve-
niently grouped into flavor multiplets for SU(3) flavor: The ground states are then,
in terms of SU(3) flavor multiplets, 8®1 for the pseudoscalars, 8®1 for the vectors, 8
for spin 1/2, and 10 for spin 3/2.

Excercise IC4.1
What SU(flavor) Young tableaux, corresponding to what spins, would we have

for mesons and baryons if there were 2 colors? 4 colors?

However, the differing masses of the different flavors of quarks break the SU(3)
flavor symmetry (as does the weak interaction). In particular, the mass eigenstates
tend to be pure states of the various combinations of the different flavors of quarks,
rather than the linear combinations expected from the flavor symmetry. Specifically,
the linear combinations predicted by an 8@®1 separation for mesons (trace and traceless
pieces of a 3®3 matrix) are replaced with particles that are more accurately described
by a particular flavor of quark bound to a particular flavor of antiquark. (This is
known as “ideal mixing”.) The one exception is the lighest mesons (pseudoscalars),
which are more accurately described by the 81 split, for this restriction to the 3
lighter flavors of quarks, but the mass of the singlet differs from that naively expected
from group theory or nonrelativistic quark models. (This is known as the “U(1)
problem”.) The solution is probably that the singlet mixes strongly with the lightest
psuedoscalar glueball (described by tr e“deFachd); the mass eigenstates are linear
combinations of these two fields with the same quantum numbers. In any case, the

most convenient notation for labeling the entries of the matrix M,/ representing the



C. REPRESENTATIONS 57

various meson states for any particular spin and angular momentum of the quark-
antiquark combination is that corresponding to the choice we gave earlier for the
generators of U(n): Label each entry by a separate name, where the complex conjugate
appears reflected across the diagonal. These directly correspond to the combination
of a particular quark with a particular antiquark, and to the mass eigenstates, with
the possible exception of the entries along the diagonal for the 3 lightest flavors,
where the mass eigenstates are various linear combinations. (However, the SU(2) of
the 2 lightest flavors is only slightly broken by the quark masses, so in that case the
combinations are very close to the 3®1 split of SU(2).)

For example, for the lightest multiplet of mesons (spin 0, and relative angular mo-
mentum 0 for the quark and antiquark, but not all of which have yet been observed),
we can write the U(6) matrix (for the 6 flavors of the 3 known families)
uw ud uc us ut ub

du dd dc ds dt db

cu ¢d c¢cc ¢es ¢t cb

M =
su sd Sc S§s st Sb
tu td tc ts tt tb
bu bd bc bs bt bb
U d c S t b
s 77(.1395700) D°(1.8646) K~(.49368) T° B~(5.279)
d | xtm) DT (1.8693) K°(.49767) T+ B°(5.279)
¢ | D°(") D (") 7.(2.980)  D;(1.9685) T° B
5| K KO D¥(v) e TS B
t |10 T IO T Ty
b \B*(") B°(") Bf B Ty m

where (approximately)

e = 75 (.1349764) + 5[ (.9578) + n(.5473)]

na=—m + 50 +n), 0= 50 —n)

in terms of the mass eigenstates (observed particles), with masses again in GeV,

and ditto marks refer to the transposed entry. (We have neglected the important
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contribution from the glueball.) For the corresponding spin-1 multiplet,

U d c S t b
u [ w, p~(.7700) D*0(2.0067) K* (.8917) T*° B*~(5.325)
d pr) wa D*+(2.0100) K*°(.8961) T*+ B*9(5.325)
i ¢ | D) D* () J/(3.0688) D*; T*0  B*;
s | Kr(y K¥O(v) DX $(1.019413) T*F B*
f’ T*O T*— T*(C) T*S— 0 T*b—
b \ B*t(v) B*0(w) B*F B*9 T*F  1(9.4604)

where

W = [ (T819) + P (TT00)],  wa = L — )

(with §s = ¢, ideal mixing, also approximate).

5. Covering groups

The orthogonal groups O(n;,n_) are of obvious interest for describing Lorentz
symmetry in spacetimes with n, space and n_ time dimensions, or conformal sym-
metry in spacetimes with n;—1 space and n_—1 time dimensions. This means we
should be interested in O(n) for n<6, and their “Wick rotations”: transformations
that put in extra factors of ¢ to change some signs on the metric. Coincidentally, these
are just the cases where the Lie algebras of the orthogonal groups are equivalent to
those of some algebras for smaller matrices. The smaller representation then can be

¢

identified as the “spinor” representation of that orthogonal group. Since the “vec-
tor”, or defining representation space of the orthogonal group, itself is represented as
a matrix with respect to the other group (i.e., the state carries two spinor indices),
the other group may include certain phase transformations (such as —1) that cancel
in the transformation of the vector. The other group is then called the “covering”
group for that orthogonal group, since it includes those missing transformations in
its defining representation. (As a result, its group space also has a more interesting

topology, which we won’t discuss here.)

One way to discover these covering groups is to first count generators, then try
to construct explicitly the orthogonal metric on matrices. SO(n) has n(n—1)/2 gen-
erators (antisymmetric matrices), Sp(n) has n(n+1)/2 (symmetric), and SU(n) has
n?—1 (traceless). (These are hermitian generators, since we applied reality or her-
miticity.) So, for some group SO(n), we look for another group that has the same
number of generators. Then, if the new group is defined on mxm matrices, we look

for conditions to impose on an mxm matrix (not necessarily the adjoint) to get an
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n-component representation. This is easy to do by inspection for small n; for large n
it’s easy to see that it can’t work, since m will be of the order of n, and the simple
constraints will give of the order of n? components instead of n. We then construct
the norm of this matrix M as tr(MTM), which is just the sum of the absolute value
squared of the components, for SO(n), and the other orthogonal groups by Wick

rotation. (Wick rotation affects mainly the reality conditions on M)

The identifications for the Lie algebras are then:

SO(2) = U(1), SO(1,1) = GL(1)
SO(3) = SU(2) = SU*(2) = USp(2), SO(2,1) = SU(1,1) = SL(2) = Sp(2)
SO(4) = SU(2)®SU(2), SO(3,1) = SL(2,C) = Sp(2,C), S0O(2,2) = SL(2)®SL(2)
SO(5) = USp(4), SO(4,1) = USp(2,2), SO(3,2) = Sp(4)
) =

SO(6) = SU(4), SO(5,1) = SU%(4), SO(4,2) = SU(2,2), SO(3,3) = SL(4)

Note that the Euclidean cases are all unitary, while the ones with (almost) equal
numbers of space and time dimensions are all real. There are also some similar

relations for the pseudoreal orthogonal groups:
SO*(2) = U(1), SO*(4) = SU(2)®SL(2), SO*(6) = SU(3,1), SO*(8) = SO(6,2)

The norm and conditions for an m-spinor of SO(nyn_) are:

n_=1 0 1 2 3
min norm symmetry : z7 = reality : z* =
1|2 2'z 2z (=2
2|3 2927 0658 z —€z€ z
4 207 2% pewp —ez€ 2T z
415 22580 | —2 (2%%Q0 = 0) || Sez | 2e(T2Y) z
6 299274550 —z tez —QzQ | 2e(T2Y) | 2

Note that in all but the 2D cases the norms are associated with determinants: For
D=3 and 4 the norm is given by the determinant, while for D=5 and 6 we use the

fact that the determinant of an antisymmetric matrix is the square of the Pfaffian.

Excercise IC5.1
Show that for D=5 zze and 2zQ€) give the same norm. (Hint: Consider
Qasllyg).)
Unfortunately, for SO(n) for larger n, the spinor is as least as large as, and usu-
ally larger than, the vector. In general, the spinor is like the “square root” of the

vector, in that the vector can be found by taking the direct product of two spinors.
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It is impossible to find the spinor representation by taking direct products of vec-

tors. This situation occurs only for orthogonal groups: In all other classical groups,

all (finite-dimensional) representations are among those obtained from multiple di-

rect products of vectors. Furthermore, in those cases the “irreducible” representa-

tions (those that can’t be divided into smaller representations) can be picked out by

(anti)symmetrization, and by separating trace and traceless pieces (where traces are

taken with the group metrics). Fortunately, for the above cases of orthogonal groups,

we can perform the same construction starting with the spinor representations, since

those are the “vectors” of non-orthogonal groups.
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I1. SPIN

Special relativity is simply the statement that the laws of nature are symmetric

under the Poincaré group. Free relativistic quantum mechanics or field theory is then
equivalent to a study of the representations of the Poincaré group. Since the con-
formal group is a classical group, while its subgroup the Poincaré group is not, it is
easier to first study the conformal group, which is sufficient for finding the massless
representations of the Poincaré group. The massive ones then can be found by di-
mensional reduction, which gives them in the same form as occurs in interacting field
theories. In four spacetime dimensions we use the covering group of the conformal
group, which is the easiest way to include spinors. These methods extend straight-
forwardly to supersymmetry, a symmetry between fermions and bosons that includes

the Poincaré group.

.................. A. TWO COMPONENTS .................

Although we have already specialized to spacetime symmetries, we have consid-
ered arbitrary spacetime dimensions. We have also noted that many of the lower-
dimensional Lie groups have special properties, especially with regard to covering
groups. In this section we will take advantage of those features; specifically, we ex-
amine the physical case D=4, where the rotation group is SO(3)=SU(2), the Lorentz
group is SO(3,1)=SL(2,C), and the conformal group is SO(4,2)=SU(2,2).

1. 3-vectors

The most important nontrivial Lie group in physics is the rotations in three
dimensions. It is also the simplest nontrivial example of a Lie group. This makes
it the ideal example to illustrate the properties discussed in the previous chapter,
as well as lay the groundwork for later discussions. We have already mentioned the
orbital part of rotations, i.e., the representation of rotations on spatial coordinates.
In this chapter we discuss the spin part; this is really the same as finding all (finite

dimensional, unitary) representations.

A useful way to understand spin, or general representations of the rotation group
in three dimensions of space, is to consider properties of 2x2 matrices. (This way
also generalizes in a very simple way to relativity, in three space and one time dimen-
sions.) Consider such matrices to be hermitian, which is natural from the quantum

mechanical point of view. Then they have four real components, one too many for a
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three-vector (but just right for a relativistic four-vector), so we restrict them to also
be traceless:
V=V trvV=0

The simplest way to get a single number out of a matrix, besides taking the trace, is
to take the determinant. By expanding a general matrix identity to quadratic order

we find an identity for 2x2 matrices
det(I + M) = e""U+M) — 9 det M = tr(M?) — (tr M)?

It is then clear that in our case —det V' is positive definite, as well as quadratic, so

we can define the norm of this 3-vector as
V|? = —2det V =tr(V?)

This can be compared easily with conventional notation by picking a basis:

Vi V2 —4V3 . A
V:%(vum e ):V'J > et V=37

where ¢ are the Pauli ¢ matrices, up to normalization. As usual, the inner product

follows from the norm:
V+W]P= |V +|W]*+2V - W
= V- -W=detV +det W—det(V+W)=tr(VIW)
Applying our previous identities for determinants to 2x2 matrices, we have
MCM*C =1 det M, M~ =COM*C(det M)™*
where we now use the imaginary, hermitian matrix

=)

i 0
If we make the replacement M — eM and expand to linear order in M, we find

M+CM'C=1tr M

This implies
trv=0 & (VO)=VC

i.e., the tracelessness of V' is equivalent to the symmetry of VC. Furthermore, the

combination of the trace and determinant identities tell us

M>=MtrM—Tdet M = V?=—IdetV =IV]
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Here by “V*” we mean the square of the matrix, while “|V[*’= (V*)? is the square

of the norm (neither of which should be confused with the component V? = V§2.)

Again expressing the inner product in terms of the norm, we then find
{V,\wi=V-w)i

Furthermore, since the trace of a commutator of two finite matrices is traceless, and
picks up a minus sign under hermitian conjugation, we can define an outer product

(vectorx vector = vector) by
[V, W] = V2iV x W
Combining these two results,

VIV = 5(V- W)+ iV x W

In other words, the product of two traceless hermitian 2x2 matrices gives a real trace
piece, symmetric in the two matrices, plus an antihermitian traceless piece, antisym-
metric in the two. Thus, we have a simple relation between the matrix product, the
inner (“dot”) product and the outer (“cross”) product. Therefore, the cross product
is a special case of the Lie bracket, or commutator. This way of treating vectors

(except for factors of “4”) is basically Hamilton’s “quaternions”.

Excercise ITA1.1

Check this result in two ways:

a Show the normalization agrees with the usual outer product. Using only the
above definition of V' x W, along with {V,W} = (V- W)I, show

—IV x W= ([V.W])? = —I[[VPW[ = (V- W)?]

b Use components, with the above basis.

Excercise ITA1.2
Write an arbitrary two-dimensional vector in terms of a complex number as
V= %(vm — ivy).

a Show that the phase (U(1)) transformation V' = Ve generates the usual
rotation. Show that for any two vectors V; and V5, V;*V5; is invariant, and
identify its real and imaginary parts in terms of well known vector prod-
ucts. What kind of transformation is V' — V*, and how does it affect these

products?
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b Consider two-dimensional functions in terms of z = %(m +iy) and z* =
%(m — 1y). Show by the chain rule that 0, = %(&C —i0,). Write the real
and imaginary parts of the equation 0,V = 0 in terms of the divergence and

curl. (Then V is a function of just z.)

¢ Consider the complex integral

dz

9 Vv
where “§” is a “contour integral”: an integral over a closed path in the
complex plane defined by parametrizing dz = du(dz/du) in terms of some
real parameter u. This is useful if V' can be Laurent expanded as V(z) =
Yoo cn(z — z0)™ inside the contour about a point z, there, since by con-
sidering circles z = z + re? we find only the 1/(z — z) term contributes.
Show that this integral contains as its real and imaginary parts the usual line
integral and “surface” integral. (In two dimensions a surface element differs
from a line element only by its direction.) Use this fact to solve Gauss’ law

in two dimensions for a unit point charge as £ = 1/z.

Excercise ITA1.3
Consider electromagnetism in 2x2 matrix notation: Define the field strength
as a complex vector F = v/2(E + iB). Write partial derivatives as the sum
of a (rotational) scalar plus a (3-)vector as 0 = %I Oy + V, where 0; = 0/0t
is the time derivative and V is the partial space derivatives written as a
traceless matrix. Do the same for the charge density p and (3-)current j as
J = —%I p + 7. Using the definition of dot and cross products in terms of
matrix multiplication as discussed in this section, show that the simple matrix
equation OF = —J, when separated into its trace and traceless pieces, and

its hermitian and antihermitian pieces, gives the usual Maxwell equations
V-B=0, V-E=p, VXE+0B=0, VXB-0F=j

(Note: Avoid the Pauli o-matrices and explicit components.)

2. Rotations

One convenience of representing three-vectors as 2x2 instead of 3x1 is that rota-
tions are easier to write. Since vectors are hermitian, we expect their transformations
to be unitary:

V' =uvut, Ul=U"!
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It is easily checked that this preserves the properties of these matrices:
VY =@wvuht =v',  tr(V)=tr(UVU ) =tr(UUV) =tr(V) =0
Furthermore, it also preserves the norm (and thus the inner product):
det(V') = det(UVU ™) = det(U)det(V)(det U)™ = det V

Unitary 2x2 matrices have 4 parameters; however, we can elimimate one by the
condition

det U =1

This eliminates only the phase factor in U, which cancels out in the transformation
law anyway. Taking the product of two rotations now involves multiplying only 2x2

matrices, and not 3x3 matrices.

We can also write U in exponential notation, which is useful for going to the

infinitesimal limit:

U=¢e% = G'=G, trG=0

This means that G itself can be considered a vector. Rotations can be parametrized
by a vector whose direction is the axis of rotation, and whose magnitude is (1/v/2x)

the angle of rotation:
V' =eVe 0 = V=[G, V] =-V2G xV
We also now see that the Lie bracket we previously identified as the cross product is

the bracket for the rotation group.
Excercise ITA2.1

Evaluate the elements of the matrix ¢’“ in closed form for a diagonal generator

G. Generalize this result to arbitrary G. (Hint: Use rotational invariance.)

The hermiticity condition on V' can also be expressed as a reality condition:

V=Vl and trV=0 = V*=-CVC, (VC)*=CVC)C

« ko

where is the usual complex conjugate. A similar condition for U is

U'=U" and detU=1 = U*=CUC

which is also a consequence of the fact that we can write U in terms of a vector as
U = ¢V, As a result, the transformation law for the vector can be written in terms

of V(' in a simple way, which manifestly preserves its symmetry:

(vey =uvutc =uvae)ur
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Excercise ITA2.2
Write an arbitrary rotation in two dimensions in terms of the slope (dy/dz) of
the rotation (the slope to which the x-axis is rotated) rather than the angle.
(This is actually more convenient to measure if you happen to have a ruler,
which you need to measure lengths anyway, but not a protractor.) This avoids
trigonometry, but introduces ugly square roots. Show that the square roots
can be eliminated by using the slope of half the angle of transformation as
the variable. Show the relation to the variables used in writing 3D rotations

in terms of 2x2 matrices. (Hint: Consider U and V(' diagonal.)

3. Spinors

Note that the mapping of SU(2) to SO(3) is two-to-one: This follows from the
fact V' =V when U is a phase factor. We eliminated continuous phase factors from
U by the condition det U = 1, which restricts U(2) to SU(2). However,

det(Ie?) =e?” =1 = ¢ =41

for 2x2 matrices. More generally, for any SU(2) element U, —U is also an element of
SU(2), but acts the same way on a vector; i.e., these two SU(2) transformations give
the same SO(3) transformation. Thus SU(2) is called a “double covering” of SO(3).
However, this second transformation is not redundant, because it acts differently on

half-integral spins, which we discuss in the following subsections.

The other convenience of using 2x2 matrices is that it makes obvious how to
introduce spinors — Since a vector already transforms with two factors of U, we

define a “square root” of a vector that transforms with just one U:
W=Up =yl =yl

where ¢ is a two-component “vector”, i.e., a 2x1 matrix. The complex conjugate of

a spinor then transforms in essentially the same way:
(CY*) = CURY* = U(C¥)

Note that the antisymmetry of C' implies that 1) must be complex: We might think
that, since C'Y* transforms in the same way as 1, we can identify the two consistently

with the transformation law. But then we would have

¥ =Cy* =C(CY*)* = CC*p = —
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Thus the representation is pseudoreal. The fact that Ci* transforms the same way

under rotations as ¢ leads us to consider the transformation
Y = Cy*

Since a vector transforms the same way under rotations as 11", under this transfor-

mation we have

V' =CV*C = -V
which identifies it as a reflection.

Another useful way to write rotations on ¢ (like looking at V' C instead of V') is
(wrey = wrew
This tells us how to take an invariant inner product of spinors:
V=Up, X'=Ux = @@'Cx)=@"Cx)

In other words, C' is the “metric” in the space of spinors. An important difference of
this inner product from the familiar one for three-vectors is that it is antisymmetric.

Thus, if ¢» and y are anticommuting spinors,
PTCx = —X"CTy = x"CY

where one minus sign comes from anticommutativity and another is from the anti-
symmetry of C'. Thus, it makes sense to take the norm of an anticommuting spinor
as YT C1, which would vanish if ¢ were commuting. Of course, since rotations are

unitary, we also have the usual 11 as an invariant, positive definite, inner product.

4. Indices

The best way to discuss general spins is to use index notation, rather than matrix

notation. Then a spinor rotates as
Ve = Uag
with two-valued indices o = @, ©. The inner product is defined by
¥ *Xa = ¥ Cpax’ = —tax®
where we have defined raising and lowering of indices by

wa = wﬂcﬂom ¢a = Caﬂwﬂ
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Cap = —Cpa = —C* = C" = ()
paying careful attention to signs. (In general, we fix signs by using a convention of

contracting indices from upper-left to lower-right.) Then objects with many indices

transform as the product of spinors:

! UL U5 .. . U\f Ase.

af.y =

An infinitesimal transformation is then a sum:
—i6Anp.y = Go’Asp.y + G’ Ans.y + oo+ G Anp s
This is also true for Cy,g, even though it is an invariant constant:
t5=Us"Us’Crs = Cup det U = Cag
A more interesting case is the vector: The transformation law is

Vig = Us"Us"Vys

«

where V3 is the symmetric VC' considered earlier (in contrast to the antisymmetric
C).

There is basically only one identity in index notation, namely
0 = 5C1apCys = CagCihs + CpyCas + CraCis

The expression vanishes because it is antisymmetric in those indices, and thus the
indices must all have different values, but there are three two-valued indices. Another

way to write this identity is to use the definition of C? as the inverse of Cyg:
5 _ sy 50 5
CortCPT =00 = (C,p07"° = 6[1%1 = 0403 — 5géa

This tells us that antisymmetrizing in any pair of indices automatically contracts

sums over) them: Contracting this identity with an arbitrary tensor A.s,
& 2!
Apag) = CapC" Ays = —CapA,

That means that we need to consider only objects that are totally symmetric in their
free indices. This gives all spins: Such a field with 2s indices describes spin s; we have

already seen spins 0, 1/2, and 1.

We have defined the transformation law of all fields with lower indices by con-
sidering the direct product of spinors. Transformations for upper indices follow from

multiplication with C*?: They all follow from

wla — w,@(U—l)ﬂa
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Since the vertical position of the index indicates the form of the transformation law,

we define

Yo = ()*
where the “ 7 indicates complex conjugation. Thus, a hermitian matrix is written
as

Ma’g = (Mﬂa)* = Mﬂa = Ma,@ = Mﬂa

So, for a vector we have

Vag = Vap = Vaa

Spin s is usually formulated in terms of a (2s+1)-component “vector”. Then
one needs to calculate Clebsch-Gordan-Wigner coefficients to construct Hamiltonians
relating different spins. For example, to couple two spin-1/2 objects to a spin-1 object,
one might write something like V. ¥T3y. The matrix elements of the Pauli matrices
o are the CGW coefficients for the spin-1 piece of % ® % = 16 0. This method gets
progressively messier for higher spins. On the other hand, in spinor notation such a
term would be simply Vaﬂ&axg; no special coefficients are necessary, only contraction
of indices. Similarly the decomposition of products of spins involves only the picking

out of the various symmetric and antisymmetric pieces: For example, for 1 ® 1,

YaXs = 5(VXs) T VX)) = 5%0X8) — Capth Xy = Vap + CapS

where (af) means to symmetrize in those indices, by adding all permutations with
plus signs. We have thus explicitly separated out the spin-1 and spin-0 parts V' and
S of the product. The square roots of various integers that appear in the CGW
coefficients come from permutation factors that appear in the normalizations of the

various fields/wave functions that appear in the products: For example,
Aaﬂvgam — |A@@@|2 + 3|A@@6|2 + 3|A@ee|2 + |Aeee|2

In the spinor index method, the square roots never appear explicitly, only their squares
appear in normalizations: For example, in calculating a probability for A ® B — C,

we evaluate

(A® B|C){(C|A® B)
(AJA)(B|B)(C|C)

where A, B, and C' each have 2s indices for spin s, and (|) means contracting all

indices (with the usual complex conjugation).
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5. Lorentz

Consider now the general 2x2 hermitian matrix

Ve Vi o+ Vi Va—iV
V) .=Vi= =L = V,(c%) .
V)5 (Vt V_) ﬁ(VQHVg Vo—Vl) (%)

where we distinguish the right spinor index by a dot because it will be chosen to
transform differently from the left one. For comparison, raising both spinor indices
with the matrix C' as for SU(2), and the vector indices with the Minkowski metric (in
either the orthonormal or null basis, as appropriate — see subsection IA4), we find
another hermitian matrix

(1) (V+ Vt*) . ( VOr vl v24vs

V2

I :Va aa,@.
vt V- V2 v vo—v1) (@)

In the orthonormal basis, o, are the Pauli matrices and the identity, up to normal-
ization. They are also the Clebsch-Gordan-Wigner coefficients for spinor®spinor =
vector. In the null basis, they are completely trivial: 1 for one element, 0 for the rest,
the usual basis for matrices. In other words, they are simply an arbitrary way (ac-
cording to choice of basis) to translate a 2x2 (hermitian) matrix into a 4-component

vector.

Examining the determinant of (either version of) V', we find the correct Minkowski

norms:
—2det V ==2VTV"+2VIV"* = (V)2 + (V')? + (V?)* + (V?)* = V?

Thus Lorentz transformations will be those that preserve the hermiticity of this matrix

and leave its determinant invariant:
VI =gVg', detg=1

(det g could also have a phase, but that would cancel in the transformation.) Thus g

is an element of SL(2,C). In terms of the representation of the Lie algebra,
g=¢e% trG=0
Thus the group space is 6-dimensional (G has three independent complex compo-

nents), the same as SO(3,1) (where gng” =n = (Gn)T = —Gn).
Excercise ITA5.1

SL(2,C) also can be seen (less conveniently) from vector notation:

a Consider the generators

IS = L £ ieapea )
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of SO(3,1). Find their commutation relations, and in particular show
[JH), JE)] = 0. Express Jéf) in terms of Ji(f). Show Ji(f) have the same
commutation relations as J;;. Finally, take a general infinitesimal Lorentz

)

transformation in terms of J,;, and rewrite it in terms of Ji(f , paying special

attention to the reality properties of the coefficients. This demonstrates that
the algebra of SO(3,1) is the same as that of SU(2)®SU(2), but Wick rotated
to SL(2,C).
b Apply the same procedure to SO(4) and SO(2,2) to derive their covering
groups.
Excercise ITA5.2

Consider relativity in two dimensions (one space, one time):

a Show that SO(1,1) is represented in lightcone coordinates by
2t = Az, ¥ =A"ta

for some (nonvanishing) real number A, and therefore SO(1,1) = GL(1). Write
this one Lorentz transformation, in analogy to excercise ITA1.2a on rotations
in two space dimensions, in terms of an analog of the angle (“rapidity”) for
those transformations that can be obtained continuously from the identity.

Do the relativistic analog of excercise I1A2.2.

b Still using lightcone coordinates, find the parity and time reversal transfor-
mations. Note that writing A as an exponential, so it can be obtained con-
tinuously from the identity, restricts it to be positive, yielding a subgroup of
GL(1). Explicitly, what are the transformations of O(1,1) missing from this
subgroup? Which of P, (C)T, and (C)PT are missing from these transforma-

tions, and which are missing from GL(1) itself?

In index notation, we write for this vector

V' = g%V
af 9 gﬂ Y6

while for a (“Weyl”) spinor we have
Wa = gaﬂwﬂ

The metric of the group SL(2,C) is the two-index antisymmetric symbol, which is

also the metric for Sp(2,C): In our conventions,

Cap = —Cpa = -0 = Cos= (7 75)
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We also have the identities
det L, = 1C*PC 5L, L’ = (tr L)* — Ltr(L?), (L7Y)s" = C*PC 5L, (det L)™
Apg) = CapCPAss,  Apapy =0

discussed earlier in this section. As there, we use the metric to raise, lower, and

contract indices: )
wa = wﬂcﬂom ¢a- = wﬂcﬂ'&
VW = VeI
These results for SO(3,1) = SL(2,C) generalize to SO(4) = SU(2)®@SU(2) and
SO(2,2) = SL(2)®SL(2). As described earlier, the reality conditions change, so now

SO(4): (V)Y =Vv7C,.Cpp,  SO2,2): (Vo yx =y

consistent with the (pseudo)reality properties of spinors for SU(2) and SL(2), where
we now use unprimed and primed indices for the two independent group factors
(V —gVy).
Excercise ITA5.3
Take the explicit 2x2 representation for a vector given above, change the
factors of ¢ to satisfy the new reality conditions for SO(4) and SO(2,2), and

show the determinant gives the right signatures for the metrics.

A common example of index manipulation is to use antisymmetry whenever pos-
sible to give vector products. For example, from the fact that V8170 Cé-ﬂ- is antisym-
metric in ay we have that

8 1 2
Ve Vw- =505V
where the normalization follows from tracing both sides. Similarly,
VW L WV =60V W
V8 V8 7
It then follows that
Vesw évw =60V W — Waf’vé)vw =V -Wve - ly2yed
Y Y

Antisymmetry in vector indices also implies some antisymmetry in spinor indices.
For example, the antisymmetric Maxwell field strength F,, = —F},, after translating
vector indices into spinor, can be separated into its parts symmetric and antisymmet-
ric in undotted indices; antisymmetry in vector indices (now spinor index pairs) then
implies the opposite symmetry in dotted indices:

—C.. fl. —1p .
(F(a,@) ) C’;éfa,@ + Ca,@f’;y fa,@ QFa,yﬂ

By

F ..
[aB](76)

N

o8 o T
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Thus, an antisymmetric tensor also can be written in terms of a (complex) 2x2

matrix.

We also need to define complex (hermitian) conjugates carefully because C' is

imaginary, and uses indices consistent with transformation properties:
&a = Wa)* = &o.z = _(wa)*> Waiﬁa)T = &a&&

V= (v o pod g
where we have used the spacetime coordinates as an example of a real vector (her-

mitian 2x2 matrix). In general, hermitian conjugation properties for any Lorentz

representation are defined by the corresponding product of spinors: For example,
() = Y@OD = _Egh) o FaB = _(fodyx
More generally, we find

(T(al---an(ﬂ}...ék))f — (= 1)IUD 2D 2 (B ) (1)

As we’ll see later, most spinor algebra involves, besides spinors, just vectors and
antisymmetric tensors, which carry only two spinor indices, so matrix algebra is often
useful. When using bra-ket notation for 2-component spinors, it is often convenient
to distinguish undotted and dotted spinors. Furthermore, since spinor indices can
be raised and lowered, we can always choose the bras to carry upper indices and the
kets lower, consistent with our index-contraction conventions, to avoid extra signs
and factors of C. We therefore define (see subsection IB1)

Wl =9l 1) =1"a;  [l=v", W] =1,

«

V=Wl = VE==IV 0l f=I 6 = =10
As a result, we also have

Wx) = () = % [ =¥ W)t =[x
WIVI =9 Valxs  @lf) =¥ faxs

VIV + WV* = (V- W)I

where we have used the anticommutativity of the spinor fields. From now on, we use
this notation for the matrix representing a vector V' (V,?), rather than the one with
which we started (V7).
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Excercise I1TA5.4

Consider the generators
G5 = xﬂ“;@a& + 1P|

and their Hermitian conjugates, where 9 . = 9/0x*°. Show their algebra
closes. What group do they generate? Find a subset of these generators that

can be identified with (a representation of) the Lorentz group.

Since we have exhausted all possible linear transformations on spinors (except for
scale, which relates to conformal transformations), the only way to represent discrete

Lorentz transformations is as antilinear ones:
Vo=V, (= —V2ny)

From its index structure we see that n is a vector, representing the direction of the

reflection. The product of two identical reflections is then, in matrix notation
P’ =2n(np*)F =n*p = n?=41

where we have required closure on an SL(2,C) transformation (£1). Thus n is a unit
vector, either spacelike or timelike. Applying the same transformation to a vector,

where V' transforms like 1)*y?, we write in matrix notation
V= —2nV*n=n?V —2(n-V)n

(The overall sign is ambiguous, and depends on whether it is a polar or axial vector.)
This transformation thus describes parity (actually CP, because of the complex con-
jugation). In particular, to describe purely CP without any additional rotation (i.e.,
exactly reflection of the 3 spatial axes), in our basis we must choose a unit vector in

the time direction,

\/ﬁnaﬂ. _ 504,@. - w/a _ QZ (&/o} — a)

«

=yl -y,
Ba

which corresponds to the usual in vector notation, since in our basis

o’ = g2,
Ba

To describe time reversal, we need a transformation that does not preserve the com-

plex conjugation properties of spinors: For example, CPT is

wla — wa) &/,@ — _QZ,G = V/ = _V
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(The overall sign on V' is unambiguous.)

In principle, whenever we work on a problem with both spinors and vectors we
could use a mixed vector-spinor notation, converting between the usual basis for
vectors and the spinor-index basis with identities such as

0.0 = §b o .075. = 57(55:
o b a’ o a a 3
However, in practice it’s much simpler to use spinor indices exclusively, since then
one needs no o-matrix identities at all, but only the trivial identities for the matrix
C that follow from its antisymmetry. For example, converting the vector index on
the o matrices themselves into spinor indices (a — «/3), they become trivial:

(%)

_ 5os0
v % 65
(This is the same as saying an orthonormal basis of vectors has the components

(V*), = 05 when the components are defined with respect to the same basis.)

Thus, the most general irreducible (finite-dimensional) representation of SL(2,C)
(and thus SO(3,1)) has an arbitrary number of dotted and undotted indices, and is

totally symmetric in each: A Treating a vector index directly as a

dotted-undotted pair of indice(sal('é.ag"f),(ftl'f no)zo'z, which is just a funny way of labeling
a 4-valued index), we can translate into spinor notation the two constant tensors of
SO(3,1): Since the only constant tensor of SL(2,C) is the antisymmetric symbol, they
can be expressed in terms of it:

= CugC.-,
n A& 6

€ . . P —
ao,3B,77,08

When we work with just vectors, these can be expressed in matrix language:
VW =tr(VIW¥*)
€abedVWPXY L = e(V,W, X, Y) =i tr(VIWEXY* — Y*XTV*V)

Excercise ITA5.5
Prove this expression for the e tensor (in either index or matrix version)
by (1) showing total antisymmetry, (2) explicitly evaluating a nonvanishing

component.
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6. Dirac

The Dirac spinor we encountered earlier is a 4-component reducible representation

in D=4: in terms of two (“left” and “right”) two-component spinors,

- (:5)
wRo'z

The Hermitian metric YT that defines the (Lorentz-invariant) Dirac spinor inner prod-

uct
TV = UITY = %o + hoe., T =TT = (42 99)

0 9P
T= =2
(Caﬂ 0 ) Yo

takes the simple form

The Dirac matrices are given by

A 0 Vv
= 'V: @ =
V=1 (vﬂ& o) (—v* 0)

where the indices have been chosen to insure that the v matrices always take a Dirac

spinor to the same type of spinor. Since {V, W} = —V - W, the v matrices satisfy
{7 ="

The extra sign is the result of normalizing the 7’s to be pseudohermitian with respect
to the metric: ToY~! = 4. This Dirac spinor can be made irreducible by imposing

a reality condition that relates vy, and 1r: The resulting “Majorana spinor” is then

Ve
W:%(%)

The product of all the ’s is a pseudoscalar:
—i6? 0
_ 22 ab.c.d __ 1 o .
V-1 = 41 €abedY VTV Y _\/§< 0 2(5’6>
(This is usually called “y5” in the literature for D = 4, or “yp” for D # 4. We have

renamed it for consistency with dimensional reduction.) It can be used to project a

Dirac or Majorana spinor onto its two two-component spinors:
, 10 00
M = 3(I £ V2iy1) = (00): (o1)

Various identities for these matrices can be derived directly from the anticommu-

tation relations: For example,

VY ==2,  Yva=d¢  V'dPra=a-b, Y4y, =
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tr(l) =4, tr(dp) = —2a - b, tr(¢h¢d) =a-bc-d+a-db-c—a-cb-d

The trace identities follow from the fact that the only way to get a nonvanishing trace
out of a product of v matrices is when there are terms proportional to the identity;
since {v%,7*} = —n?, this only happens when the indices are pairwise identical. The
above results then follow from examination of relevant special cases. (Traces of odd
numbers of v matrices vanish. An exception is y_;, until it is rewritten in terms of

its definition as the product of the other y-matrices.)

Although use of the anticommutation relations is convenient for generalization of
such identities to arbitrary dimensions, 2-spinor bra-ket notation is easier for deriving
4D identities. Since a Dirac spinor is the direct sum of a Weyl spinor and its complex
conjugate, we write

U=+ s U =Ykl 91l
In this notation, there is no need to use a spinor metric T, just as in Minkowski
4-vector bra-ket notation there is no need for an explicit matrix to represent the
Minkowski metric: It is included implicitly in the definition of the inner product
for the basis elements ((4|p) = 7Map O (a|g) = Capg). Thus hermitian conjugation is
automatically pseudohermitian conjugation, etc.: ¥ is W', from the effect of hermitian

conjugating the basis vectors along with the components of the spinors they multiply.

(See subsections IB4-5.) We then have simply

ST pY | Y I B FOR TS § PR S YON R | I LY

o = Tl
where we have replaced the vector index a — aﬂ. on Yg.
Excercise ITA6.1
Use this representation for the v matrices and projection operators Il for all
of the following:
a Derive

Fyaﬂ¢i1 “ee ¢i2n+1")/aﬂ. = ¢i2n+1 “ee ¢i1

10y =~ (o) = o1 (g )

b Rederive the trace identities above. (Hint: For the last identity, use the
identity Cr,gC4)5 = 0 repeatedly.)
¢ Show that
tr[(Ily — H—)”Yaa-”yﬂﬂ-’yw-”yéé] = T i
by comparison with the expression of the previous subsection for e.
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7. Chirality /duality

I, are often called “chiral projectors”; 2-component spinors (not paired into
Dirac spinors) are often called “chiral spinors”, and appear in “chiral theories”; the
two 2-component spinors of a Dirac spinor are often labeled as having left and right
“chirality”; etc. When these two halves decouple, a theory can have a “chiral sym-
metry”

Vi = "
Since chirality is closely related to parity (chiral spinors can represent CP, but need to
be doubled to allow C, and thus P), Dirac spinors are often used to describe theories
where parity is preserved, or softly broken, or to analyze parity violation specifically,

using y_; to identify it.

A similar feature appears in electrodynamics. We first translate the theory into
spinor notation: The Maxwell field strength Fy; is expressed in terms of the vector po-
tential (“gauge field”) A,, with a “gauge invariance” in terms of a “gauge parameter”
A with spacetime dependence. The gauge transformation d A4, = —0,\ becomes

A=A .-0 .\
af ap af

where 0 5= d/ 8xaﬂ. . It leaves invariant the field strength Fo, = 0, Ay:

F..=0.4A.-0.4 .=YF .+ F .
av,38 ay gy ps v al (aB) 6] + [aﬁ](vé))
= Clifas+ Capl o fas = 30,349

Maxwell’s equations are
s ~J .
9 ,;f,@a Jav
They include both the field equations (the hermitian part) and the “Bianchi identi-
ties” (the antihermitian part).
Excercise ITA7.1
We already saw VIW* + W V* gave the dot product; show how VIW* — WV*
is related to the “cross product” Vi,Wy.

Excercise ITA7.2
Write Maxwell’s equations, and the expression for the field strength in terms
of the gauge vector, in 2x2 matrix notation, without using C’s. Combine

them to derive the wave equation for A.

Maxwell’s equations now can be easily generalized to include magnetic charge by

allowing the current J to be complex. (However, the expression for F' in terms of A is
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no longer valid.) This is because the “duality transformation” that switches electric
and magnetic fields is much simpler in spinor notation: Using the expression given

above for the 4D Levi-Civita tensor using spinor indices,
Féb = %EabchCd = f(;ﬂ = _Z.faﬂ

More generally, Maxwell’s equations in free space (but not the expression for F' in

terms of A) are invariant under the continuous duality transformation
f &ﬂ = ap

(and J' . =€?J 5 in the presence of both electric and magnetic charges).
af [eF

Excercise ITA7.3
Prove the relation between duality in vector and spinor notation. Show that

F, + i%eabch @ contains only fap and not fﬂ
«

Excercise I1TA7.4

How does complexifying J 5 modify Maxwell’s equations in vector notation?
«

In even time dimensions, Wick rotation kills the ¢ (or —i) in the spinor-index
expression for €,g 467 ¢ mer. Since the (discrete and continuous) duality transformation
now contains no %, we can impose self-duality or anti-self-duality; i.e., that fog or fos

vanishes, since they are now independent and real instead of complex conjugates.

These continuous chirality and duality symmetries on the field strengths generalize
to the free field equations for arbitrary massless fields in four dimensions. For reasons
to be explained in the following section, they distinguish the two polarizations of the
waves described by such fields. They are closely related to conformal invariance: In
higher dimensions, where not all free, massless theories are conformal (even on the

mass shell), these symmetries exist exactly for those that are conformal.
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The general procedure for finding arbitrary representations of the Poincaré group
relevant to physics is to: (1) Describe spin 0. As we have seen, this means starting
with the coordinate representation, which is reducible, and apply the constraint p? +
m? = 0 to get an irreducible one. (2) Find arbitrary, finite-dimensional, irreducible
representations of the Lorentz group. This we have done in the previous section.
(3) Take the direct product of these two representations of the Poincaré group, which
give the orbital and spin parts of the generators. (The spin part of translations
vanishes.) We then need a further constraint to pick out an irreducible piece of this

product, which is the subject of this section.

1. Field equations

We first show how the derivation above of the massless particle from the confor-
mal particle for spin 0 can be generalized to all “spins”, i.e., all representations of
the Poincaré group in arbitrary dimensions. There is a way to do this in terms of
classical mechanics for all representations of the conformal group, by generalizing the
description of the classical spinning particle. However, by analyzing the conformal
particle quantum mechanically instead, applying a set of constraints, it will be clear
how to generalize from conformal particles to general massless particles by weakening
the constraints. The general idea is that the symmetry group for massive particles is
the Poincaré group, while that for massless particles includes also scale transforma-
tions, and finally conformal particles have also conformal boosts. So, starting with
the conformal group and dropping anything to do with conformal boosts will give
massless particles. Massive particles then follow from dimensional reduction: adding
a further spatial dimension and fixing its component of momentum to a constant,
the mass, so p*> — p?> + m2. The equation p? + m? = 0, as an operator equation
acting on a field or wave function is the “Klein-Gordon (or relativistic Schrédinger)
equation”. States or fields that satisfy this (and the other) field equation are called
“on-(mass-)shell”, while those that don’t (or for which the equations haven’'t been

imposed) are “off-shell”.

We begin with a general representation of the conformal group SO(D,2) in terms
of generators G 45, where A, B are D+2-component vector indices. We then impose

constraints that are the conformally covariant form of p? = 0: Identifying

(G+Q,Gab,G+_,G_Q) — (pa) Jab7A,Ka)
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(where A = (%,a)) as the generators for translations, Lorentz transformations, di-

latations, and conformal boosts, we see that

gAB _ %GC(AGCB) . ﬁnABGCDGCD -0

is an irreducible piece of the product GG (symmetric and traceless) and includes:

(g-f—-f—7 g—f—a7 gab7 g—l——’ g—a7 g——) — (p27 % Jab7 pb} + %{A, pa}7 )

(13 2

where all have terms containing K.

Excercise IIB1.1
Work out all the G’s in terms of P, J, A, and K.

In general theories, even massless ones, it is not always possible to have invariance
under conformal boosts. (We’ll see examples of this insubsection IXA7.) However, all
massless theories are scale invariant, at least at the free level. (In D=4, free massless
theories can always be made conformal on shell. However, the fact that even these
theories can have actions that are not invariant under conformal boosts proves that it
is sufficient to add just dilatations to the Poincaré group. Furthermore, the fact that
conformal boosts are not always an invariance in D>4 means that dropping them will
give results in a dimension-independent form.) Therefore, only G™+ and G™* can be
defined in general massless theories, but we’ll see that these are sufficient to define
the kinematics. The former is just the masslessness condition, which we used to pick

the constraints in the first place.

As we saw earlier, A just scales % We can therefore write the relevant generators

as
pazﬁa7 Jab:l'[aﬁb]+sab, A:%{xa,ga}‘i‘w—l:xa@aﬁ—wﬁ—%

(We have used the antihermitian form of the generators.) The “scale weight” w+ 22
is the real “spin” part of A, just as S, is the spin part of the angular momentum
Jap. To preserve the algebra it must commute with everything, and thus we can
set it equal to a constant on an irreducible representation. We’ll see shortly that
its value is actually determined by the spin Sg,. It is the engineering dimension of
the corresponding field. It has been normalized for later convenience; the value of
w depends on the representation of S%, but is independent of D. The dilatation
generator A is not exactly antihermitian because the integration measure d”z isn’t
invariant under scaling. This is another reason w is determined, by the free action.
The form we have given preserves reality of fields. The commutation relations for the

spin parts, and the total generators, are the same as those for the orbital parts; e.g.,

[Sa, 5] = 6155



82 II. SPIN

(A convenient mnemonic for evaluating this commutator in general is to use S% —
2129 instead.)

Excercise 11B1.2
Find an expression for K® in terms of z, 0, S, and w that preserves the
commutation relations. Evaluate all the constraints G, and express the inde-

pendent ones in terms of just 9, S, and w (no x).

Substituting the explicit representation of the generators into the constraint G,
and using the former constraint P2 = 0 (when acting on wave functions on the right),

we find that all  dependence drops out, leaving for G the condition

Sabﬁb +wd, =0

(paying careful attention to quantum mechanical ordering). This equation is the
general field equation for all spins (acting on the field strength), in addition to the

Klein-Gordon equation (which is redundant except for spin 0).

Excercise I1IB1.3
Define spin for the conformal group by starting in D+2 dimensions: In terms

of the (D+2)-dimensional coordinates y* and their derivatives 4,
Gap = yja0p) + Sap
Besides the previous conditions
y'=0"={y" 04} =0

impose the constraints, in analogy to the D-dimensional field equations, and

taking into account the symmetry between y and 0,
SaPyp +wys = Sa%05 + wda =0

Show that the algebra of constraints closes, if we include the additional con-
straint

%S(ACSB)C + w(w + %)77,43 =0

13 2

Solve all the constraints with explicit y’s for everything with an upper “—
index, reducing the manifest symmetry to SO(D—1,1), in analogy to the way
y? = 0 was solved to find y~. Write all the conformal generators in terms of

Za, Og, Sap, and w.
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2. Examples

We now examine the constraints S,°0, + wd, = 0 in more detail. We begin by

looking at some simple (but useful) examples. The simplest case is spin 0:
Sw=0 = w=0
The next simplest case (for arbitrary dimension) is the Dirac spinor:
Sap= =310 = SO+ wly = =770y + (w — 3)0a

= ~%0, =0, w:%

where we have separated out the pieces of the constraint that are irreducible with
respect to the Lorentz group (e.g., by multiplying on the left with y*). This gives
the (massless) “Dirac equation” @¥ = 0. The next case is the vector: In terms of the
basis |V) = V“|,), the spin is

Sab = [1a) (vl

However, the vector yields just another description of the scalar:

Excercise I1B2.1
Apply the field equations for general field strengths to the case of a vector
field strength.

a Find the independent field equations (assuming the field strength is not just
a constant)
8[an] = O, 8‘1Fa = O, w=1

Note that solving the first equation determines the vector in terms of a scalar,
while the second then gives the Klein-Gordon equation for that scalar, and
the third fixes the weight of the scalar to be the same as that found by starting
with a scalar field strength.

b Solve the second equation first to find a gauge field that is not a scalar.

All other representations can be built up from the spinor and vector. As our final

example, we consider the case where the field is a 2nd-rank antisymmetric tensor,
(SuF)! =6 Ry =
(82"0y + w0a) Fea = 30, Fra) — 00" Fup + (w — 1)0uF o
= OuFrg=0"Fp=0, w=1

which are Maxwell’s equations, again separating out irreducible pieces (e.g., by tracing

and antisymmetrizing).
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Excercise 11B2.2
Verify the representation of Lorentz spin given above for Fj; by finding the

commutation relations implied by this representation.

Excercise I11B2.3
Consider the field equations in 4D spinor notation for a general field strength,

totally symmetric in its m undotted indices and n dotted indices,
By . _ _g.hy . _ _ _1
Sa 8,@’; m@a’; = So-é 8’)/,@. nﬁ’yo-é = O, w = 2(m + n)
where the spin acts on spinors as

(Sa)y = Coabpy, (5,500 = Caatbs (Sagh); = (5,;0), = 0)

a Show this implies

b Translate the field equations into vector notation (in terms of Sy ), finding

5,20, + wd, = 0 and an axial vector equation.

¢ Show that the two equations are equivalent by deriving the equations of part

a from S,%0, + w0, = 0 alone, and from the axial equation alone.

In each case, choosing the wrong scale weight w would imply the field was con-
stant. Note that we chose the field strength F,, to describe electromagnetism: The
arguments we used to derive field equations were based on physical degrees of free-
dom, and did not take gauge invariance into account. In chapter XII we use more
powerful methods to find the gauge covariant field equations for the gauge fields, and

their actions.

3. Solution

Free field equations can be solved easily in momentum space. Then the simplest
way to do the algebra is in the “lightcone frame”. This is a reference frame, obtained

by a Lorentz transformation, where a massless momentum takes the simple form
p* = doip"

(using only rotations), or the even simpler form p* = 40¢ (using also a Lorentz
boost), where again =+ is the sign of the energy. In that frame the general field
equation S,°0, + wd, = 0 reduces to

S =0, w=S9""
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The constraint S~ = 0 determines ST~ to take its maximum possible value within
that irreducible representation, since S~ is the raising operators for S™=: For any

eigenstate of ST,
STy =hlh) = ST(STR)) = (STSTT ST, ST R) = (h+1)(ST'R))

The remaining constraint then determines w: It is the maximum value of S™~ for

that representation. By parity (4 < —), —w is the minimum, so
w > 0; w=0 <& S§%=0

since if ST~ = 0 for all states then S* = 0 by Lorentz transformation. As we have
seen by other methods (but can easily be derived by this method), w = % for the
Dirac spinor and w = 1 for the vector; since general representations can be built from
reducing direct products of these, we see that w is an integer for bosons and half-
integer for fermions. If we describe a general irreducible representation by a Young
tableau for SO(D—1,1) (with tracelessness imposed), or a Young tableau times a
spinor (with also 7-tracelessness v, , = 0), then it is easy to see from the results
for the spinor and vector, and antisymmetry in rows, that w is simply the number
of columns of the tableau (its “width”), counting a spinor index as half a column:

2

St~ just counts the maximum number of “—” indices that can be stuck in the boxes
describing the basis elements. (In fact, Dirac spinor ® Dirac spinor gives just all

possible 1-column representations.)

This leaves undetermined only S¥ and S*°. However, S* (“creation operator”)
is canonically conjugate to S~ (“annihilation operator”), so its action has also been
fixed:

[S_i, S+j] — §W gt + G

(5% vanishes for i = j, so ST and S~ are conjugate, though not “orthonormal”. The
constant ST~ was fixed above to be nonvanishing, except for the trivial case of spin
0.)

Thus only the “little group” SO(D—2) spin S% remains nontrivial: The original
irreducible representation of SO(D—1,1) Lorentz spin S% was a reducible representa-
tion of SO(D—2) spin S%; the irreducible SO(D—2) representation with the highest
value of ST~ is picked out of this SO(D—1,1) representation. This solution also gives
the field strength in terms of the gauge field: Working with just the highest-S*—-

weight states is equivalent to working with the gauge field, up to factors of 9.
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As an explicit example, for spin 1/2 we have simply v~ W = 0, which kills half the
components, leaving the half given by v*W. For spin 1, we find

prab:O = F =0

= only FT"#0
pleFt =0 = only FT*#0 } Y 7

In the “lightcone gauge” A* = 0, we have F'™" = 9T A, so the highest-weight part of
Fa is the transverse part of the gauge field. The general pattern, in terms of field
strengths, is then to keep only pieces with as many as possible upper + indices and
no upper — indices (and thus highest ST~ weight). In terms of the vector potential,
we have

Fo o plogtl = only A" 40

The general rule for the gauge field is to drop =+ indices, so the field becomes an
irreducible representation of SO(D—2). All + indices on the field strength are picked
up by the momenta, which also account for the scale weight of the field strength: All

gauge fields have w = 0 for bosons and w = 1 for fermions.

Excercise IIB3.1
Using only the anticommutation relations {v¢,7%} = —n?, construct projec-

tion operators from «*: These are operators II; that satisfy

1,00, = 6,10, (no Z) Yo =1

Because of time reversal symmetry v+ < —y~ (or parity v© < v7), these

project onto two subspaces equal in size.

A method equivalent to using the lightcone frame is to perform a unitary trans-
formation U on the spin that is the inverse of the transformation on the coordi-
nates/momentum that would take us to the lightcone frame: We want a Lorentz

transformation A,’ on the field equations, which are of the form
Oupy = 0, 0," = S.> +wé?
that has the effect
UOLU ™ = ASONMYy,  Aopp=p,,  p*=68pt =
0= U0 U = ALOM py = A0S, = Ol =0

If |¢) satisfies the original constraint, then U|y) will satisfy the new one. If we like,
we can always transform back at the end. This is equivalent to a gauge transformation
in the field theory.
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It is easy to check that the appropriate operator is
U = ST/t
Any operator V* that transforms as a vector under S,
[Sab7 Vc] _ V[anb]c

but commutes with p, is transformed by U into UVU ! = V' as

(p')?
2(pt)?

as follows from explicit Taylor expansion, which terminates because S** act as low-

ve=vt,  vVievigvtl o oy oy vl Ly
pr pr

ering operators (as for conformal boosts in subsection IA6). This yields the desired
result / R
Vip, =V —
p Pat 5 5P
when we impose the field equation p? = 0.
Excercise 11B3.2

Check this result by performing the transformation explicitly on the con-

straint. Before the transformation, the lightcone decomposition of the con-

straint is

(=St +w)pt +STp' =0
—S"pt + S fwp' — STpT =0
STt + (=S +w)p” =0
Show that after this transformation, the constraint becomes
(=S +w)pt =0

2
i - i iP
—S"pt 4+ (=St +w)p —%S+p—+:0

S_sz + (—S+_ + w)p_ — S+_p_+ — §S+1pzp3 =0
Clearly these imply
w=S"", STt =0

with p? = 0.

On the other hand, if instead of using the lightcone identification of ™ as “time”,
we choose to use the usual 2° for purposes of finding the evolution of the system, then

we want to consider transformations that do not involve p°, instead of not involving
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the “energy” p~. Thus, by p’-independent rotations alone, the best we can do is to
choose

pP=0 p=w

i.e., we can fix the value of the spatial momentum, but not in a way that relates to

the sign of the energy. The result is then
P’ >0 pt= 5ip+
PP <0: pt=48"p

The result is similar to before, but now the positive and negative energy solutions are

separated: In this frame the field equations reduce to

P >0: SP=0, ST =w

P<0: ST=0 St =—-w
Thus, while w takes the same value as before, now the positive-energy states are
associated with the highest weight of S*~, while the negative-energy ones go with
the lowest weight (and nothing between). The unitary transformation that achieves
this result is a spin rotation that rotates S in the field equations with the same
effect as an orbital transformation that would rotate (p',p’) — (w,0). By looking at

the special case D = 3 (where there is only one rotation generator), we easily find

the explicit transformation
U=exp {tan_l (@) Sliﬁ]
p 1P|
Excercise I1IB3.3

Perform this transformation:

a Find the action of the above transformation on an arbitrary vector V. (Hint:
Look at D = 3 to get the transformation on the “longitudinal” part of the

vector.) In particular, show that
V%, =V, P =60p" + dfw
b Show the field equations are transformed as
SOapa + wpo — S0y wpo _ po(w B %0310) B %SlOpQ
Slapa + wpl - %pi(wsli B poSoZ‘) + pl(w B %0310)

S, +wpt = —[09 — — L pipi(wSY — p0S%) + pi(w — p’ g10
w(w+pl) w
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Note that the first equation gives the time-dependent Schrodinger equation,

with Hamiltonian
H— i(slopl . Soipi) _ iSlOw

This diagonalizes the Hamiltonian H (in a representation where S is diag-

onal). Thus the only independent equations are
pP=0  SU=c)w, S —e(p")s =0
leading to the advertised result.

¢ Find the transformation that rotates to the p’ direction instead of the 1 di-

rection, so
H— -1l

7]
4. Mass

So far we have considered only massless theories. We now introduce masses
by “dimensional reduction”, identifying mass with the component of momentum in
an extra dimension. As with the extra dimensions used for describing conformal
symmetry, this extra dimension is just a mathematical construct used to give a simple
derivation. (Theories have been postulated with extra, unseen dimensions that are
hidden by “compactification”: Space curls up in those directions to a size too small
to detect with present experiments. However, no compelling reason has been given

for why the extra dimensions should want to compactify.)

The method is to: (1) extend the range of vector indices by one additional spatial
direction, which we call “—17; (2) set the corresponding component of momentum to
equal the mass,

P-1=m

and (3) introduce extra factors of i to restore reality, since 0_; = ip_1 = im, by
a unitary transformation. Since all representations can be constructed by direct
products of the vector and spinor, it’s sufficient to define this last step on them. For

the scalar this method is trivial, since then simply p? — p? + m?.

For the spinor, since any transformation on the spinor index can be written in
terms of the gamma matrices, and the transformation must affect only the —1 direc-
tion, we can use only v_;. (For even dimensions, we can identify the v_; of dimen-
sional reduction with the one coming from the product of all the other +’s, since in

odd dimensions the product of all the ’s is proportional to the identity.) We find

U=erp(—m-1/2V2) 1 71— 71, Ya— —V27-1%
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We perform this transformation directly on the spin operators appearing in the con-
straints, or the inverse transformation on the states. Dimensional reduction, followed

by this transformation, then modifies the massless equation of motion as
i) — i) —my 1 — =2y (i) + 2%)

50 i =0 — (i + 75)¥ = 0.

The prescription for the vector is
U=ep(zin| ")) [T —dl™), (== (=1

with the other basis states unchanged. This has the effect of giving each field a —i

for each (—1)-index. For example, for Maxwell’s equations

0ol Dol (redundant)
8[(1Fbc] - . .
8[an]_1 + imPFy —2(8[an]_1 — mFy)

8bFab - { 8bFab + /l.mFa_l R { 8bFab + mFa_l

0F_1, —i0"F_1, (redundant)
Note that only the mass-independent equations are redundant. Also, F,_; appears
explicitly as the potential for F,;, but without gauge invariance. Alternatively, we
can keep the gauge potential:

Fup=0,A Fupy=04A

Fup = 0uAy — b [a<1b] . - .b [a<1b] .

F, 1 =0,A_1 —imA, —iF, 1 = —i(0,A_1 + mA,)
This is known as the “Stiickelberg formalism” for a massive vector, which maintains
gauge invariance by having a scalar A_; in addition to the vector: The gauge trans-
formations are now

SA 52 0As = =0\ 0As = —0OuA
a = —UgA — . - . .
0A_1 = —imA —10A_1 = —imA
Excercise I11B4.1
Consider the general massive field equations that follow from the general

massless ones by dimensional reduction. One of these is

S_10, +wim =0
(before restoring reality). This scalar equation alone gives the complete field
equations for w=1/2 and 1 (antisymmetric tensors), 0 being trivial.

a Show that for w=1/2 it gives the (massive) Dirac equation.

b Expanding the state over explicit fields, find the covariant field equations it

implies for w=1. Show these are sufficient to describe spins 0 (vector field
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strength: see excercise 11B2.1) and 1 (F,; and F,_ ;). Note that S™'* act as
generalized  matrices (the Dirac matrices for spin 1/2, the “Duffin-Kemmer

matrices” for w=1), where

Sab — _[S—la7 S—lb]

¢ Show that these covariant field equations imply the Klein-Gordon equation
for arbitrary antisymmetric tensors. Show that in D=4 all antisymmetric
tensors (coming from 0-5 indices in D=5) are equivalent to either spin 0 or

spin 1, or trivial. (Hint: Use €gpeq.)

d Consider the reducible representation coming from the direct product of two

Dirac spinors, and represent the wave function itself as a matrix:
SV = SUP 4 TSV

where i = (—1,a) and S is the usual Dirac-spinor representation. Using the
fact that any 4x4 (in D=4) matrix can be written as a linear combination of
products of y-matrices (antisymmetric products, since symmetrization yields
anticommutators), find the irreducible representations of SO(4,1) in ¥, and

relate to part c.

Excercise 11B4.2
Solve the field equations for massive spins 1/2 and 1 in momentum space by

going to the rest frame.

The solution to the general massive field equations can also be found by going
to the rest frame: The combination of that and dimensional reduction is, in terms of

the massive analog of lightcone components,
pt=50+p ) =vem, pm =00 -p) =0, p'=0

where p’ are now the other D—1 (spatial) components. This fixing of the momentum
is the same as the lightcone frame except that p' has been replaced by p~!, and
thus p’ now has D—1 components instead of D—2. The solution to the constraints is
thus also the same, except that we are left with an irreducible representation of the
“little group” SO(D—1) as found in the rest frame for the massive particle, vs. one

of SO(D—2) found in the lightcone frame for the massless case.
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5. Foldy-Wouthuysen

The other frame we used for the massless analysis, which involved only energy-
independent rotations, can also be applied to the massive case by dimensional reduc-
tion. The result is known as the “Foldy-Wouthuysen transformation”, and is useful for
analyzing interacting massive field equations in the nonrelativistic limit. Replacing
p' — p~! = m in our previous result, we have for the free case

U=exp {tan_l (@) S_lip—:] , UHU ' = 15719,
m i v
For purposes of generalization to interactions, it was important that in the free trans-
formation (1) we used only the spin part of a rotation, since the orbital part could
introduce explicit  dependence, and (2) we used only rotations, since a Lorentz
boost would introduce p° dependence in the “parameters” of the transformation,

which could generate additional p° (time derivative) terms in the field equation.

Excercise IIB5.1
Perform this transformation for the Dirac spinor, and then apply the reality-

restoring transformation to obtain
H — \/i’yow

We then can use the diagonal representation vy = (é _OI) /v/2. (We can de-
fine this representation, up to phases, by switching vy and v_; of the usual
representation.) In general the reality-restoring transformation will be unnec-
essary for any spin, since applying the field equation S~ = £w picks out a

representation of the “little group” SO(D—1).

In the interacting case the result generally can’t be obtained in closed form, so it is
derived perturbatively in 1/m. The goal is again a Hamiltonian diagonal with respect
to S710, to preserve the separation of positive and negative energies; we then can set
S710 = w to describe just positive energies. We thus choose the transformation to
cancel any terms in H that are off-diagonal, which come from odd total numbers of
“~1” and “0” indices from the spin factors in any term: i.e., odd numbers of S%
and S7' (e.g., the S%p; term in the original H). For example, for coupling to an
electromagnetic field, the exponent of U is generalized by covariantizing derivatives
(minimal coupling 0 — V = 0+iA), but also requires field-strength (£ and B) terms
to cancel certain ones of those generated from commutators of these derivatives in

the transformation:

Vi=0"+iA" = [V, V] =iF®
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Before performing this transformation explicitly for the first few orders, we con-
sider some general properties that will allow us to collect similar terms in advance.
(Few duplicate terms would appear to the order we consider, but they breed like
rabbits at higher orders.) We start with a field equation F that can be separated into

“even” terms &€ and “odd” ones O, each of which can be expanded in powers of 1/m:

F=E+0O: Szim‘”fn, OZim_”On
n=0

n=-—1

Note that the leading (m™!) term is even; thus we choose only odd generators to

transform away the odd terms in F, perturbatively from this leading term:
o
F'=eFe®  G=) m™"Gy,
n=1

Since F’ is even while GG is odd, we can separate this equation into its even and odd

parts as
F' = cosh(Lg)E + sinh(Ls)O
0 = sinh(Lg)E + cosh(Lqz)O
(with Lo = [G, | as in subsection IA3). Since we can perturbatively invert any

Taylor-expandable function of L that begins with 1, we can use the second equation

to give a recursion relation for G,: Separating the leading term of F,
E=mé& 1 + AE, —m|G,E_1] =[G, AE] + L coth(Ls)O

which we can expand in 1/m [after Taylor expanding Lq coth(L¢)] to give an expres-
sion for [G,,&_1] to solve for G,. We can also use the implicit solution for [G, &]

directly to simplify the expression for F':
F' =& +tanh(ALe)O
For example, to order 1/m? we have for F’
Fi=E&4, Fo = &o, Fi =& + 3[G1, O]

Fy =&+ 5(Ga, Oo] + 5[G1, O4]

To this order we therefore need to solve

—[G1,E-1] = Oy, =[Gy, 1] = O1 + [G1, &)
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For our applications we will always have
6_1 — _53—10

unchanged by interactions. We have oversimplified things a bit in the above deriva-
tion: For general spin we need to consider more than just even and odd terms; we

need to consider all eigenvalues of S~19:
(S~ F] = sF,

and find the transformation that makes 7’ commute with it (s = 0). The procedure
is to first divide into even and odd values of s, as above, then to divide the remaining
even terms in F' into twice even values of s (multiples of 4) as the new & and twice
odd as the new (', which are transformed away with the new twice odd G’, and so
on. This very rapidly removes the lower nonzero values of |s| (1 — 2 — 4 — ...),
which has a maximum value of 2w (from the operators that mix the maximum value
S0 = o with the minimum S™'% = —w). For example, for the case of most interest,
the Dirac spinor, the only eigenvalues (for operators) are 0 and +1, so the original
even part does commute with S™1°, and the procedure need be applied only once.
Furthermore, terms in F of eigenvalue s can be generated only at order m!=* or
higher; so at any given order the procedure rapidly removes all undesired terms for
any spin.

Since the terms we want to cancel are exactly the ones with nonvanishing eigen-
values of S71°, they can always be written as [G, S719] for some G, so we can always

find a transformation to eliminate them:
(ST, Go) = G = Gy = —2{[G, AE] + L coth(Ls)O} s

(This is just diagonalization of a Hermitian matrix in operator language.) In partic-
ular for the Dirac spinor, since £ 1 has only +1 eigenvalues, it’s easy to see that not
only do all even operators commute with it, but all odd operators anticommute with

it. (Consider the diagonal representation of £_1: {(; %), (28)} = 0.) We then have

simply
w = % = (6_1)2 =1 = [S_l,AS] = {6_1, O} = {S_l,G} =0
= mG=—{[G,AE] + Lg coth(Ls)O}E_4

As a final step, we can apply the usual transformation

_ imtS—10/w
U() =€
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which commutes with all but the p° term in & to have the sole effect of canceling
&_1, eliminating the rest-mass term from the nonrelativistic-style expression for the

energy.

For the minimal electromagnetic coupling described above, we have besides £_;
S() = ’/TO, O() = iSOi’/Ti

where we have written 7* = p* + A® (instead of 7* = —iV*®, to save some i’s). There
are no additional terms in F for minimal coupling for spin 1/2, but later we’ll need to
include nonminimal effective couplings coming from quantum (field theoretic) effects.
There are also extra terms for spins 0 and 1 because the field strength is not the same
as the fundamental field, so we’ll treat only spin 1/2 here, but we’ll continue to use
the general notation to illustrate the procedure. Using the above results, we find to
order 1/m? for F’
G, = Sl Gy = wS% F%

in agreement with with the free case up to field strength terms. The diagonalized
Schrodinger equation is then to this order, including the effect of Uy,
F.=0, Fy=1°, F = —i[%{S‘”, SOV FY 4 S710(7")?)
= —4{{S", Y@ FY) — SU{IF", )
For spin 1/2 we are done, but for other spins we would need a further transformation

(before Up) to pick out the part of Fj that commutes with S™!9 (by eliminating the
twice odd part); the final result is

Fy = ({57, 571} — (%, SN0 FY) + SUGFY, )]

It can also be convenient to translate into 4+ notation (as for the massless case, but
with index 1 — —1): We then write

Fli=0, Fo=71"  Fl=—5 ST, STHFY+ 5 (n")]
Fy = S0, 5 HO ) - SUGFY, ni)
In this notation the eigenvalue of ST~ = S~19 for any combination of spin operators

can be simply read off as the number of — indices minus the number of 4.

Excercise 11B5.2
Find the Hamiltonian for spin 1/2 in background electromagnetism, expanded
nonrelativistically to this order, by substituting the appropriate expressions

for the spin operators in terms of 7 matrices, and applying ST~ = 4w on
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the right for positive/negative energy. (Ignore the reality-restoring transfor-
mation.) y-matrix algebra can be performed directly with the spin operators:

For the Dirac spinor we have the identities
580" = 30008 —maen™ = {SM, 577} = 36 —2895*"
6. Twistors

Besides describing spin 1/2, spinors provide a convenient way to solve the condi-
tion p? = 0 covariantly: Any hermitian matrix with vanishing determinant must have
a zero eigenvalue (consider the diagonalized matrix), and so such a 2x2 matrix can
be simply expressed in terms of its other eigenvector. Absorbing all but the sign of

the nontrivial eigenvalue into the normalization of the eigenvector, we have
pPP=0 = p*=+p7p’

for some spinor p®. Since p° is the (canonical) energy, the + is the sign of the energy.
This explains why time reversal (actually CT in the usual terminology) is not a linear
transformation. Note that p® is a commuting object, while most spinors are fermionic,
and thus anticommuting (at least in quantum theory). Such commuting spinors are

called “twistors”.

Excercise IIB6.1
Show that, in terms of its energy E and the angular direction (0, ¢) of its

3-momentum, a massless particle is described by the twistor
_ ol/4 0 —id)2 0 0 id)2
p* = 2Y4\/|E|(cosbe /%, sinfe'?/?)

One useful way to think of twistors is in terms of the lightcone frame. In spinor
notation, the momentum is

p = (30)

If we write an arbitrary massless momentum as a Lorentz transformation from this
lightcone frame, then the twistor is just the part of the SL(2,C) matrix that con-
tributes: ) ) ) ) ) ) )

P =p"9,g = £000%0,°5 = £95°9," = +p"p’
For this reason, the twistor formalism can be understood as a Lorentz covariant form

of the lightcone formalism.

The twistor construction thus gives a covariant way of constructing wave functions

satisfying the mass-shell condition (Klein-Gordon equation) for the massless case,
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[y = 0, where 0 = 9> = —p%. We simply Fourier transform, and use the twistor
expression for the momentum, writing the momentum-space wave function in terms

of twistor variables (“Penrose transform”):

P(x) = / @pad’plexp(iz"pap )X+ (Pas pg) + exp(=i2""pap )X (Pas D)

where x4 describe the positive- and negative-energy states, respectively. (The integral

over p. can be performed also, effectively taking the Fourier transform with respect

to that variable only, treating +2*%p, as the conjugate.
g g

We can extend the matrix notation of subsection IIA5-6 to twistors:

(e

l=p" Ip)=pa; [pl=0" Ipl=0p,

P=Ippl, —P*=I[pl(p|

As a result, we also have for twistors

(pq) = —(ap), [pq] = —lqpl; (pq)(rs) +(qr)(ps) + (rp){gs) = 0; {(pa)* = [qp]

These properties do not apply to physical, anticommuting spinors, where (1) =
+{x1), and (¥y) # 0.

Another natural way to understand twistors is through the conformal group. We
have already seen that the conformal group in D dimensions is SO(D,2). Since this
group in four dimensions is the same as SU(2,2), it’s simpler to describe its general
representations (and in particular spinors) in SU(2,2) spinor notation. Then the
simplest way to generate representations of this group is to use spinor coordinates:
We therefore write the generators as (see subsection IC1)

GA® = (P —Lo5¢°¢

where we have subtracted out the trace piece to reduce U(2,2) to SU(2,2) and, consis-
tently with the group transformation properties under complex conjugation, we have
chosen the complex conjugate of the spinor to also be the canonical conjugate: The
Poisson bracket is defined by

[Ca, ¢F) = 04
To compare with four-dimensional notation, we reduce this four-component spinor by
recognizing it as a particular use of the Dirac spinor. Using the same representation
as in subsection ITA6, we write
0 C&f})

A_ (o —o s = . f.lB_
C - (p , W )7 CA_ (wompo')a T - (Ca’g 0
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Now the Poisson brackets are

[wmpﬂ] = 557 [(D&,ﬁé] = 5ﬂ

«

The group generators themselves reduce to

oDy Wald s, aWp), D, W, awa ﬂ@—Q
PaP 5 Pl Pg@s, P Wa TP WG

which are translations, conformal boosts, SL(2,C) generators and their complex con-

jugates, and dilatations.

Another kind of twistor, related to position space instead of momentum space,
follows from this (D+2)-coordinate description of conformal symmetry for D=4 (see
subsection IA6). In practice, it’s more convenient to work with invariances than con-
straints. In this case, we can solve the lightcone constraint on Wick-rotated D=3+3
or 5+1 space, replacing 6-component conformal vector indices with 4-component con-

formal spinor indices, with a position-space twistor:

2_ 1 AB, CD _

Aa B
Y = z€ABcDY Y “

= AP = A

where A is an SL(4) (or SU*(4)) index and « is an SL(2) (or SU(2)) index, and z4*
is real (with either two real or two pseudoreal indices). (Here the SL groups apply
to 3+3 dimensions, the SU groups to 5+1.) Whereas y had 6 — 1 = 5 components
due to the constraint, z has 4 -2 — 3 = 5 components due to the SL(2) (SU(2)) gauge
invariance of the above relation to y. These coordinates reduce to the usual by an

SL(2) transformation:
A= (), 2% = A" 2" =  SL(2) gauge \o” = A",

where e = \2.

Excercise I11B6.2
Substitute this spinor-notation z(\,z) into y ~ z? and compare with the

vector-notation y(e, x) of subsection TAG.

7. Helicity
A sometimes-useful way to treat the transverse spin operators S is in terms of
Wabe = %p[a*]bc] = %p[a‘sbc]

which reduces to S¥ in the rest frame, and (like the field equations) can be written

in terms of just the Poincaré generators. This is the part of S, whose commutator
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with the field equations is proportional to the field equations (i.e., it preserves the

constraints). In D=4 this is the “Pauli-Lubaiiski (axial) vector”
Wa = %Wdeebcda

We can choose our states to be eigenstates of a component of it: For example, for
massless states W9/PY is called the “helicity”. For massive states the helicity is
defined as WO9/|P|, but is less useful, especially since it is undefined (0/0) in the rest
frame. In that case one instead chooses a component in terms of a (momentum-

dependent axial) vector s* as s*W,, where s*P, = 0 and s* = 1/m?

Excercise IIB7.1
Show in both the massless and massive cases that W, reduces to the little
group generators on shell by going to the appropriate reference frame.
The twistor representation of the conformal group does not give the most general
representation, but it does give all the (free) massless ones. The reason it gives

massless ones is that this representation satisifies the constraint (see subsection I1B1)
G P = G °Gy™ — traces = 0

which includes p? = 0 as well as all the equations that follow from p? = 0 by conformal

transformations. As a consequence, this representation also satisfies
GACGB — trace = hG 4P

where h is the helicity. This equation may be more recognizable in SO(4,2) notation,

as

EABCDEFGCDGEF — Z'hGAB

oo

This equation includes, as its lowest mass-dimension part (as defined by dilatations),

the Pauli-Lubanski vector
We = Lledap, J,=ihP

(The “i” appears in the last two equations only when we use the antihermitian form of
the generators Gap and Jg.) Although any massless representation of the conformal
group satisfies the above conditions (see excercise 11B2.3), the twistor representation
satisfies the unusual property that helicity is realized as a linear transformation on the
coordinates: For the twistors the implicit definition of helicity can be solved explicitly
to give

h= YA Y = 5CAU+1 = L(p°wa — 17@;)
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which is exactly the U(1) transformation of U(2,2)=SU(2,2)®@U(1). (This is similar
to SU(2) in terms of “twistors”: See excercise IC1.1.) On functions of p, and p., it

effectively just counts half the number of p,’s minus p.’s.

Excercise ITB7.2
These results are pretty clear from symmetry, but we should do some algebra

to check coefficients:

a Use the definition of the action of the Lorentz generators on a vector operator

in vector and spinor notations,

[Jab> ‘/c] = ‘/[anb]d [Ja,@> Vyé] = ‘/(aé. B)v> [*]02/63 Vyé] = Vy(&cﬂ')g
to derive
J . .=—XCupsJ..+C..J,
wags = " 2(Casd s+ C s dag)

b Express Jy, and P, in terms of the twistors pa, p:, wa, @ (with normalization
of Jup fixed by its action on the twistors themselves), and plug into e P.J = ih P

to derive the above expression of A in terms of twistors.

The simple form of the helicity in the twistor formalism is another consequence
of it being a covariantized lightcone formalism. In the lightcone frame, there is still
a residual Lorentz invariance; in particular, a rotation about the spatial direction in
which the momentum points leaves the momentum invariant. This is another defini-
tion of the helicity, as the part of the angular momentum performing that rotation.
(Only spin contributes, since by definition the momentum is not rotated.) Since the
product of two Lorentz transformations is another one, this rotation can be inter-
preted as a transformation acting on the Lorentz transformation to the lightcone
frame, i.e., on the twistor, such that the momentum is invariant. This is simply a
phase transformation:

18 _ e’ 0)7 B o if, a
o (0 o0 agy = pr=e"p
We can generalize the Penrose transform in a simple way to wave functions car-

rying indices to describe spin:

e (2) = | Ppod?Pe Dy DanPe Do
wal...amﬂl..ﬂn() / PalPg Pay**PoanP; Py

x [exp(iz’pap ;) X+ (Pa; Pg) + exp(—i* pap ;) X~ (Pa: D)

For the integral to give a nonvanishing result, the integrand must be invariant under

the U(1) transformation generated by the helicity operator h: In other words, x4+ must
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have a transformation under h, i.e., a certain helicity, that is exactly the opposite that
of the explicit p factors that carry the external indices to give a contribution to the
integral, since otherwise integrating over the phase of p, would average it to zero.
(Explicitly, if we derive the helicity by acting on the Penrose transform, this minus
sign comes from integration by parts.) This means that ¢ (x) automatically has a

certain helicity, half the number of dotted minus undotted indices:
h=3in-m)  [w=4m+n)

as given by the above twistor operator expression acting on y+. (Alternatively, com-
paring the z-space form of the Pauli-Lubansky vector, its action plus that of the
twistor-space one must vanish on |*)p,, so the helicity is again minus the twistor-

space helicity operator acting on the prefactor.)

Since, after restricting to the appropriate helicity, the integral over this phase is
trivial, we can also eliminate it by replacing the “volume” integral over the twistor

or its complex conjugate (but not both) with a “surface” (boundary) integral:

/ d*po — 7{ p*dpa

(Alternatively, we can insert a d-function in the helicity.) The result is equivalent to

the usual integral over the three independent components of the momentum.

This generalization of the Penrose transform implies that ¢ (z) satisfies some
equations of motion besides p? = 0, namely
o L=pV =
PRV s =P e
which are also implied by S,°0, + w9, = 0 (see excercise [1B2.3). Besides Poincaré

invariance, these equations are invariant under the phase transformation

/ i2h6
. — w . .
a..py..6 a..py..6

that generalizes duality and chiral transformations. We also see that (anti-)self-
duality and chirality are related to helicity. Another way to understand the twistor
result is to remember its interpretation as a Lorentz transformation from the light
cone: In the light cone frame, where p+J; is the only nonvanishing component of paa‘
the above equations of motion imply the only nonvanishing component of 1)1 anfy By
is ¢++-F which can be identified with X+ (for ptt > 0) or x— (for Pt < 0).
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.................... C. SUPERSYMMETRY ...................

We'll see later that quantum field theory requires particles with integer spin to be
bosons, and those with half-integer spin to be fermions. This means that any sym-
metry that relates bosonic wave functions/fields to fermionic ones must be generated
by operators with half-integer spin. The simplest (but also the most general, at least
of those that preserve the vacuum) is spin 1/2. Supersymmetry is a major ingredi-
ent in the most promising generalizations of the Standard Model. In this section we
look at representations, generalizing the results of the previous sections for Poincaré

symmetry.

1. Algebra

From quantum mechanics we know that for any operator A

(W{A, AT}e) = (] Aln) (n| AT|¢) + (V] AT|n)(n] Al¢))

=" (nl At + [(nl Al)[?) > 0

from inserting a complete set of states. In particular,
{A, AT =0 = A=0

from examining the matrix element for all states |¢). This means the anticommuta-

tion relations of the supersymmetry generators must be nontrivial.

We are then led to anticommutation relations of the form, in Dirac (Majorana)

notation,
{e.at=p o {a,4'} =p"%V27

(We use translations instead of internal symmetry or Lorentz generators because of
dimensional analysis: Bosonic fields differ in dimension from fermionic ones by half

integers.) Note that this implies the positivity of the energy:
tr{q.q"} = V2p* tr(vuo) = V2" tr(3{7w0}) = P Yy tr 1

Similar arguments imply that the supersymmetry generators are constrained, just
as the momentum is constrained by the mass-shell condition. For example, in the

massless case,
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In four dimensions the commutation relations can be written in terms of irre-

ducible spinors as
{qa> qﬂ} = paﬂ> {C], C]} = {Cj, CY} =0

This generalizes straightforwardly to more than one spinor, carrying a U(N) index:
{a:% 3"} = &]p™”
2. Supercoordinates

Since the momentum is usually represented as coordinate derivatives, we natu-
rally look for a similar representation for supersymmetry. We therefore introduce
an anticommuting spinor coordinate #%. Because of the anticommutation relations ¢
can’t be simply 9/06, but the modification is obvious:

0 1 0 .0 15 0

fo=—i 392 g =il 41y
0> 2 O a o6 2

We can also express supersymmetry in terms of its action on the “supercoordinates”:

Using the hermitian infinitesimal generator ¢“q, + Ea.qa-,
5% =€, 509 =e*,  62°0 = Li(e"0° + &6%)

Note that (¢®)7 = 67&7 (ga)T = —q.-.

[}
We can also define “covariant derivatives”: derivatives that (anti)commute with

(are invariant under) supersymmetry. These are easily found to be

b= i1ghy . a = g

8904 af e} 8 éa p ,@o.z

Besides overall normalization factors of ¢, leading to the opposite hermiticity condition
(d*)T = _(]&7 these differ from the ¢’s by the relative sign of the two terms. These
changes combine to preserve

{d* d°} = p*P

as a result of which p is also a covariant derivative as well as being a symmetry

generator (as for the Poincaré group), but now (d,)" = —i—a?a-.

In classical mechanics, the fact that 9/0z commutes with translations is “dual” to
the fact that the infinitesimal change dx, or the finite change x — 2/, is also invariant
under translations. Furthermore, the d’Alembertian OO = (9/0x)? being Poincaré

invariant is dual to the line element ds®* = —(dz)? being invariant. This allows the
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construction of the action from z?. In the supersymmetric case the infinitesimal

invariants under the ¢’s (and therefore p) are
oo, Bt dr®P + Li(dev)8P + Li(ddP)e
and the corresponding finite ones (by integration) are
o — 00, g5 pof - B Ligeg 4 LigPg

Although these can be used to construct classical mechanics actions, their quantiza-
tion is rather complicated. Just as for particles of one particular spin, direct treatment
of the quantum mechanics has proven much simpler than deriving it by quantization

of a classical system.

Excercise I1C2.1
Check explicitly the invariance of the above infinitesimal and finite differences
under supersymmetry.

Now that we have a (super)coordinate representation of the supersymmetry gen-
erators, we can examine the wave functions/fields that carry this representation. Such
“superfields” can be Taylor expanded in the #’s with a finite number of terms, with
ordinary fields as the coefficients. For example, if we expand a real (hermitian) scalar
superfield

®(x,0,0) = ¢(x) + 0°a(x) + 090 (x) + .

and also expand its supersymmetry transformation
0 = e + € + %z‘eaéﬂﬁaﬂ-qb + %z‘ea'e%ﬂ&qb .
we find the component field transformations
06 = o+ €Y., Oihy = —Lie®d Ot Sy = 50,0+

which mix the different spins.

An alternative, and more convenient, way to define the 6 expansion is by use of

the covariant derivatives. Using “|” to mean “|s—¢”, we can define

¢:CI)|7 wa:(daq)”? &':(d&q))h

There is some ambiguity at higher orders in 6 because the d’s don’t anticommute, and
this can be resolved according to whatever is convenient for the particular problem,
avoiding field redefinitions in terms of fields appearing at lower order in #: Since

the field equations must be covariant under supersymmetry (otherwise there is no
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advantage to using superfields), they must be written with the covariant derivatives.
Then one defines the component expansions by choosing the same ordering of d’s as
appear in the field equations (where relevant), which gives the component expansion
of the field equations the simplest form. It also gives a convenient method for deriving

supersymmetry transformations, since the d’s anticommute with the ¢’s:
o[(d...d®)|] = [d...d(d®P)]| = [d...d(ieq®P)]| = [(ieq)d...dDP]| = [(ed)d...dD]|

where we have used the fact that ¢ = —id + 0-stuff, where the 6-stuff is killed by
evaluating at # = 0, once it has been pulled in front of all the #-derivatives. Covariant
derivatives can also be used for integration, since [df = /00 = d up to an z-

derivative, which can be dropped when also integrating f dx.

3. Supergroups

We saw certain relations between the lower-dimensional classical groups that
turned out to be useful for just the cases of physical interest of rotational (SO(D—1)),
Lorentz (SO(D—1,1)), and conformal (SO(D,2)) groups. In particular, the Poincaré
group, though not a classical group, is a certain limit (“contraction”) of the groups
SO(D,1) and SO(D—1,2), and a subgroup of the conformal group. Similar remarks
apply to supersymmetry, but because of its relation to spinors, these classical “su-
pergroups” (or “graded” classical groups) exist only for certain lower dimensions, the
same as those where covering groups for the orthogonal groups exist. In higher di-
mensions the supergroups do not correspond to supersymmetry, at least not in any

way that can be represented on physical states.

We’ll consider only the graded generalization of the classical groups that appear
in the bosonic case. The basic idea is then to take the group metrics and combine

them in ways that take into account the difference in symmetry between bosons and

fermions:
Unitary: TAB
OrthoSymplectic: MAB
) B
Real: 3
pseudoreal (*): Q/-‘B

where 7 is symmetric and (2 antisymmetric, as before, while M is graded symmetric:

For A = (a, a) with bosonic indices a and fermionic ones «,

MUWB) =0 M®— M = MY — M = M*® + M =0
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Again we have inverse metrics, e.g.,
M™ My ;= 0]

With respect to the usual index-contraction convention (no extra grading signs when
superscript is contracted with subscript immediately following), we should take the

ordering of indices on d as ;7.

There is no analog of the € tensor, at least for finite-dimensional groups, since it
would have an infinite number of indices when totally symmetric. However, “special”
supergroups can still be defined by generalizing the definition of trace and determinant
to supermatrices. One convenient way to do this is by using Gaussian integrals, since
this is a common way that such expressions will arise. As a generalization of the

bosonic and fermionic identities we therefore define the “superdeterminant”
(sdet M)~ = N/al,zJr dz =M

where “N” is a normalization factor defined so sdet I = 1. By explicitly evaluating
the integral, separating out the commuting and anticommuting parts, we find (see
excercise 1B3.3)
sdet A BY det A _ det(A—BD7'C)
C D) det(D—CA-B) det D
The “supertrace” (see also excercise IA2.3c) then can be defined by generalizing the
(eM) — elr M.

bosonic identity det
sdet(eM) = esir M
str(Ma®) = (= 1)*"Mp* = M,* — M, =tr A—tr D
follows, as in the bosonic case, from ¢ In sdet M = str(M~*§M), which is derived by
varying the Gaussian definition.

A useful identity for superdeterminants can be derived by starting with the fol-
lowing identity for the inverse of a matrix for which the range of the indices has been

divided into two pieces:

a b\' _ [(a=bd7'e)™t (c—dba)T!
c d S\ (b—ac'd)" (d—ca D)
We have assumed all the submatrices are square and invertible; equivalent expressions,

which are more useful in other cases, can be derived easily by multiplying and dividing

by the submatrices: For example,

(0 1) (e e
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From either of these we immediately see

A B\! A B A B . 1
= -~ = = sdet =det Adet D = ———
C D C D C D det D det A

The graded generalizations of the classical groups are then
GL(m|n,C) [SL(m|n,C),SSL(n|n,C)]

U: [SJU(m4,m_|n) [SSU(ny,n_|n;+n_)]
OSp: OSp(m|2n,C)

R: GL(m|n) [SL(m|n),SSL(n|n)]

* [SJU*(2m|2n) [SSU*(2n|2n)]

U & OSp

R: OSp(m4,m_|2n)
*: OSp*(2m|2n)

where “(m|n)” refers to m bosonic and n fermionic indices, or vice versa. In the
matrices of the defining representation, the elements with one bosonic index and one
fermionic are anticommuting numbers, while those with both indices of the same kind

are commuting. In particular, the commuting parts give the bosonic subgroups:

GL(m[n,C) > GL(m,C)®GL(n,C)
SL(mn,C) O GL(m,C)®SL(n,C)
SSL(n|n,C) O SL(n,C)®SL(n,C)
Umym_|n) O U(my,m_)®U(n)
SUmym_n) O U(mg,m_)®SU(n)
SSU(ny,n_|ny+n_) O SU(n4,n_)®@SU(ni+n_)
OSp(m|2n,C) D SO(m,C)®Sp(2n,C)
GL(m|n) D> GL(m)®GL(n)
SL(mn) D GL(m)®SL(n)
SSL(njn) > SL(n)®SL(n)
U*(2m[2n) O U*(2m)®@U*(2n)
SU*(2m|2n) D U*(2m)®SU*(2n)
SSU*(2n[2n) D  SU*(2n)®@SU*(2n)
OSp(my,m_|2n) DO SO(my,m_)®Sp(2n)
OSp*(2m[2n) D SO*(2m)®USp(2n)
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When the commuting and anticommuting dimensions are equal, we can impose trace-
lessness conditions on both bosonic parts of the generators separately (“SS”: tr A =
tr D = 0). This is related to the fact str(I) = 0 in such cases.

4. Superconformal

Since the conformal group is a classical group, its supersymmetric generalization
should be a classical supergroup. Because the fermionic generators must include the
supersymmetry generators, which are spinors, the representation of the conformal
group that appears in the defining representation of the supergroup must be the spinor
representation. However, we have seen that only for n<6 (where covering groups exist)
and n=8 (where the spinor of SO(8) is another of its defining representations) can
the spinor representation of SO(n) be defined by classical group restrictions. This

implies that the superconformal group exists only in D<4 and D=6.

The relevant supergroups can be identified easily by looking at the bosonic sub-

groups:

D =3: OSp(NJ4)
4: SU(2,2IN) (or SSU(2,2[4))
6 :

OSp*(8J2N)

(We consider only D>2, since the conformal group is infinite-dimensional in D<2.)
These three cases of D=3,4,6 are special for a number of reasons: In particular,
these three supergroups can be related to SU(N|4) over the division algebras: the
real numbers, complex numbers, and quaternions, respectively. (Similar remarks
apply to their important classical bosonic subgroups: the conformal, Lorentz, and
rotation groups. Attempts have been made to extend these results to the octonions
for D=10, but with less success, and there seems to be no superconformal group for
that case.) However, just as in the case of the Hilbert space of quantum mechanics,
the complex numbers seems to be the best of these “division algebras”, having the
analytic properties the real numbers lack, while avoiding the noncommutativity of
the quaternions. We'll see later that nontrivial interacting (local, classical) conformal
field theories exist only in D<4.

For example, for D=4 we find that the bosonic generators are the conformal group
and the internal symmetry group U(N) (or SU(4) for N=4), while the fermionic gener-
ators include supersymmetry (N spinors) and its fraternal twin, “S-supersymmetry”.
As supersymmetry is the “square root” of translations, so S-supersymmetry is the

square-root of conformal boosts.
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Excercise I1C4.1
For D=4, write the (graded) commutation relations of the superconformal
generators. Decompose them into representations of the Lorentz group, and

find their commutation relations.

5. Supertwistors

We saw that a simple way to find representations of SO(4,2) was to use the
coordinate representation for SU(2,2): The resulting twistors gave all massless rep-
resentations (p? = 0 for all helicities). This method generalizes straightforwardly to

the superconformal groups: The generators are
Ga" =(PC

(For the SU case we should also subtract out the trace, but that generator commutes

with the rest anyway.) The coordinates and their conjugate momenta satisfy
[5147 CB} = 65

¢4 is then in the defining representation of the supergroup, while the wave function,

which is a function of {, contains more general representations.

For D=3, the reality condition sets ( = (, so the (’s are the graded generalization
of Dirac v matrices. In fact, the anticommuting (’s are the v matrices of the SO(N)
subgroup of the OSp(N|4). On the other hand, the commuting (’s carry the index of
the defining representation of Sp(4), so they are a spinor of SO(3,2), the 3D conformal
group: They are the bosonic twistor, and can be used in a similar way to the 4D

twistors discussed earlier.

For D=4, there is a U(1) symmetry acting on ¢ under which G4? is invariant,

generated by (—1)1G 4%, as in the bosonic case: This is the “superhelicity”.

For D=6, ( is pseudoreal. In general, for pseudoreal representations of groups it is
often convenient to introduce a new SU(2) under which the pseudoreal representation
¢4 and its equivalent complex conjugate representation ¢ B QéA transform as a doublet
(SU(2) spinor). This is also obvious from construction, since half of the components
are related to the complex conjugate of the other half. We then can write

A= (CAJCTBQEA) _ Eékgék_m; QE_U;AZ' _ QéAC«ki7 NABBE _ ) fAB ik

GaP = Picu
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(Thus, OSp*(2m|2n)COSp(4n}4m), and SO*(2m)CSp(4n), USp(2n)CSO(4m).) This

means there is now an SU(2) symmetry on (, generated by
Gi = M)

under which G4® is invariant. This is the 6D version of superhelicity. In the D=6
light cone, the manifest part of Lorentz invariance is SO(D—2)=S0O(4)=SU(2)®SU(2).
This is one of those SU(2)’s.

We now concentrate on D=4 (although our methods generalize straightforwardly
to D=3 and 6). The simplest way to find (massless) representations of 4D super-
symmetry is to generalize the Penrose transform. Just as twistors automatically
satisfy the massless field equations in D=4, supertwistors automatically satisfy their
supersymmetric generalization. The supertwistor is the defining representation of
SU(2,2|N). The SU(2,2) part is the usual twistor, while the SU(N) part is the usual
fermionic creation and annihilation operators for SU(N). Thus, to relate superspace

to supertwistors, we write

D= 00 . — AP
P 5 EPaD;

o

Gia = —10ia + %éf@aﬂ. — £a;Pa, 672 = —2'52 + %Qwﬁﬂa- — +a''p

This determines the Penrose transform from superspace to supertwistors:

= (xaﬂ — i%@iaéf)paﬁﬂ- + 0"%a;p,

where we have used “chiral superfields” (trivial dependence on #) without loss of
generality. (Instead of treating a; as coordinates to be integrated, we can also treat
them as operators; we then make the ’s functions of af, and replace the integration
with vacuum evaluation (0] |0).) As for ordinary twistors, this result can be related
to the lightcone: For given momentum, we can choose the lightcone frame p® = g
then ¢” = +a;, while ¢ = 0 is a result of the supertwistor formalism automatically
incorporating pg = 0.
Excercise IIC5.1
Find the Penrose transform for D=3. (Warning: The anticommuting part
of the twistor is now like Dirac matrices rather than creation/annihilation

operators.)
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Taylor expanding in a; (and thus 6°*, producing terms antisymmetric in i...j and
symmetric in a...[3), the states then carry the index structure ¢, ¢;, ¢ij, ..., éi, é, totally

antisymmetric, and terminating with another singlet, where

7 P i 1 P
¢ = %6” zN¢i1~~~i1\r> ¢zl = (N_l)!Ezl 1N¢i2~~~iN7

From our discussion of helicity in subsection IIB7, we see that the states also decrease
in helicity by 1/2 for each a (i.e., ignoring , each §°* comes with a p,, simply because
it adds an undotted index). Taking the direct product with any helicity (coming from
the explicit p,’s and p.’s carrying the external Lorentz indices), we see that the states
have helicity h,h —1/2,h — 1, ..., h — N/2, with multiplicty (]X) for helicity h — n/2:

state || helicity (Poincaré) | multiplicity [SU(N)]
¢ h 1
i h—3 N
N(N—
o h—1 1)
n N
Gir-wi, h=3 (W)
ol h—Y 41 N
o h—=% 1

This multiplet structure is carried separately by x4 and by x_, which are related
by charge (complex) conjugation, one describing the antiparticles of the other, as for
ordinary twistors. (The existence of both multiplets also follows from CPT invariance,
which is required for local actions, to be discussed in subsection IVB1. Here we
generalized from the Penrose transform, which contained both terms as a consequence
of being the most general solution to S%p, + wp® = 0, which is CPT invariant.)
Because of the values of the helicities, we can impose a reality condition, identifying
all states with helicity j as the complex conjugates of those with —j, only for —h =
h—N/2 — h = N/4, when N is a multiple of 4. We can also get larger representations
by taking the direct product of these smallest representations of supersymmetry with
representations of U(N), in which case the fields will carry those additional SU(N)

indices.

Excercise I1C5.2
For D=4, show that “supergravity”, the supersymmetric theory with helicities

of magnitude 2 and lower, can exist only for N<8. Show that the relevant
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representation for N=8, if real, is the same as the one (complex) for N=7.
Find the analogous statements for “super Yang-Mills”, with helicities 1 and

less.

The explicit form of the reality condition is somewhat complicated in terms of
the chiral superfields, because they are really field strengths of real gauge fields.
(Consider, for example, expressing reality of A . in terms of f,3 in the case of elec-
tromagnetism.) However, in terms of the twis%or variables, charge conjugation can
be expressed as

C: D ()L

where the transformation on a; is required because it carries the SU(N) “charge”.
Since this violates “chirality” in these variables (dependence on a and not a'), it is

accomplished by Fourier transformation:
€ xale) =€ [ dt o agpre
for some “charge conjugation matrix” C' (in case the field carries an additional index).
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ITI. LOCAL

In the previous chapters we considered symmetries acting on coordinates or wave

functions. For the most part, the transformations we considered had constant param-
eters: They were “global” transformations. In this chapter we will consider mostly
field theory. Since fields are functions of spacetime, it will be natural to consider
transformations whose parameters are also functions of spacetime, especially those
that are localized in some small region. Such “local” or “gauge” transformations are

fundamental in defining the theories that describe the fundamental interactions.

............................ A. ACTIONS ...........................

A fundamental concept in physics, of as great importance as symmetry, is the
action principle. In quantum physics the dynamics is necessarily formulated in terms
of an action (in the path-integral approach), or an equivalent Hamiltonian (in the
Heisenberg and Schrédinger approaches). Action principles are also convenient and
powerful for classical physics, allowing all field equations to be derived from a single

function, and making symmetries simpler to check.

1. General

We begin with some general properties of actions. (For this subsection we’ll re-
strict ourselves to bosonic variables; however, in the following subsection we’ll find
that the only modification for fermions is a more careful treatment of signs.) Gen-
erally, equations of motion are derived from actions by setting their variation with
respect to their arguments to vanish:

65[¢] = S[p+d¢] — S[¢] =0

Here the variables ¢ are themselves functions of time; thus, S is a function of functions,
a “functional”. A general principle of mechanics is “locality”, that events at one time
directly affect only those events an infinitesimal time away. (In field theory these
events can be also only an infinitesimal distance away in space.) This means that the

action can be expressed in terms of a Lagrangian:

sm:/ﬁme

where L at time ¢ is a function of only ¢(¢) and a finite number of its derivatives. For

more subtle reasons, this number of time derivatives is restricted to be no more than
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two for any term in L; after integration by parts, each derivative acts on a different

factor of ¢. The general form of the action is then

L() = — 16" " grun () + 6™ A (0) + U(0)

W

where means J/0t, and the “metric” g, “vector potential” A, and “scalar po-
tential” U are not to be varied independently when deriving the equations of motion.
(Specifically, 60U = (6¢™)(0U/d¢™), etc. Note that our definition of the Lagrangian
differs in sign from the usual.) The equations of motion following from varying an

action that can be written in terms of a Lagrangian are

0S 0S
0=05= [dt 6¢"— = —=0
[#o e =
where we have eliminated (5¢Em terms by integration by parts (assuming d¢ = 0 at the
boundaries in t), thereby defining the “functional derivative” §5/d¢™, and used the

fact that d¢(t) is arbitrary at each value of ¢. For example,

S:—/dt%CP = 0:55:—/dtcjécj:/dt(5q)c‘i - 2

e lpu— 0 P O
0q 1
Excercise IT1TA1.1

Find the equations of motion for ¢™ from the above general action in terms

of the external fields g, A, and U (and their partial derivatives with respect

to ¢).
Sometimes the functional derivative is defined in terms of that of the variable
itself: s6m(t)
=0"0(t—t

where 6" is the usual Kronecker delta function, while §(¢t — t’) is the “Dirac delta
function”. It’s not really a function, since it takes only the values 0 or oo, but a

“distribution”, meaning it’s defined only by integration:

[ sste—e = 1)
If we apply this definition of the Dirac ¢ to d¢/d¢, we obtain the previous definition
of the functional derivative. (Consider, e.g., S = [dt f¢.)

Such actions can be reduced to ones that are only linear in time derivatives
by introducing additional variables. First, separate out the subspace where g is

invertible, with coordinates ¢ (¢™ = (¢',1")); the Lagrangian is then written as
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This Lagrangian gives equivalent equations of motion to
L'(q.p.) = [=4'pi + 0" Al + 5397 (i + Ai) (p; + Aj) + U]

where ¢ is the inverse of g;;. (Many other forms are possible by redefinitions of
p.) Eliminating the new variables p by their equations of motion gives back L(q, ).
Note that this works only because p’s equations of motion are algebraic: For example,
eliminating « from the Lagrangian —2p-+4p? by the equation of motion z = p is illegal
(it would give the trivial action S = [ dt $p®), since it would require solving for the
time dependence of x. On the other hand, p is given explicitly in terms of the other
variables by its equations of motion without inverting time derivatives, so eliminating

it does not lose any of the dynamics. (It is an “auxiliary variable”.)

The result is a Hamiltonian form of the Lagrangian:
L (®) = i®™ Ay (D) + H(P)
in terms of the Hamiltonian H, where ® = (¢, p, ). It has the “gauge invariance”
dAN = O A (D)

(where 9y = 9/0PM), since that adds only a total derivative term iA. Clearly A
will introduce a modification of the Poisson bracket if it is not linear in ® (e.g., as
when we make independent nonlinear redefinitions of coordinates and momenta on
the usual form of the Lagrangian). To determine this modification we compare the

equation of motion as defined by a Poisson bracket,
oM = —i[®M H] = —i[dM oNoyH
with that following from varying the action,
—i®N Fynr + 0 H =0, Fun = OprAng

to find
[CI)M7CI)N] — (f-—l)NM

where “F~!7 is the inverse on the maximal subspace where F is invertible. The
variables in the directions where F vanishes are “auxiliary”, since they appear without
time derivatives: Their equations of motion are not described by the Poisson bracket.
In particular, if they appear linearly in H they are “Lagrange multipliers”, whose

variation imposes algebraic constraints on the rest of ®.
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Finally, we can make redefinitions of the part of ® describing the invertible sub-

space so that A is linear:
Ay =10V0yy = Ly(®) = LidMONQyy + H(D)

where (2 is a constant, hermitian, antisymmetric (and thus imaginary) matrix. For
some purposes it is more convenient to assume this Hamiltonian form of the action

as a starting point. We now have the canonical commutation relations as

QMN

where is the inverse of {2xy; on the maximal subspace:

QMNQPN — HPM

for the projection operator II for that subspace.

Excercise I1TA1.2
For electromagnetism, define J — F 4+ iB. Show that Maxwell’s equations
(in empty space) can be written as two equations in terms of J Interpret
the equation involving the time derivative as a Schrodinger equation for the
wave function J, and find the Hamiltonian operator. Define the obvious inner
product f d3x J* . J: What physical conserved quantity does this represent?

(Note that, unlike electrons, the number of photons is not conserved.)

Note that the requirement of the existence of a Hamiltonian formulation deter-
mines that the kinetic term for a particle in the Lagrangian formulation go as z?
and not zz. Although such terms give the same equations of motion, they are not
equivalent quantum mechanically, where boundary terms (dropped when using inte-
gration by parts for deriving the equations of motion) contribute. Furthermore, the

Hamiltonian form of the action

S:/dtH—dxipi

shows that the energy H relates to the time in the same way the momentum relates to
the coordinates, except for an interesting minus sign that is explained only by special

relativity.
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2. Fermions

In nonrelativistic quantum mechanics, spin is usually treated as a quantum effect,
rather than being derived from classical mechanics. Although it is possible to derive
spin from classical mechanics, in general it is rather cumbersome, and involves first
introducing a large number of spins and then constraining away all the undesired ones,
whereas in the quantum mechanics one can just directly introduce some particular
representation of the spin angular momentum operators. The one nontrivial exception
is spin 1/2.

We know from quantum mechanics that the spin variables for spin 1/2 are de-
scribed by the Pauli 0 matrices. Since they satisfy anticommutation relations, and
are represented by finite-dimensional matrices, they are interpreted as fermionic. We
have already seen that classical fermions are described by anticommuting numbers,

so we begin by considering general quantization of such objects.

We can now consider actions that depend on both commuting and anticommuting
classical variables, @ = (¢™, "), where now ¢ refers to the bosonic variables and 1)
to the fermionic ones. The Hamiltonian form of the Lagrangian can again be written
as

L (®) = LidMoNQy,, + H(D)

When € is invertible, the graded bracket is defined by (see subsection [A2)

(@M oV} = pQMYN MV Qpy = 6
To describe spin 1/2, we therefore look for particle actions of the form
Su = / dt[—i'p: + 3" + H(w,p, )]
This corresponds to using
M = (¢™; ) = (¢ ") = (¢, 5 )
Qi = Qiajp = 0:;Cas, Qu = Qi = 04, Qi = Qun =0
The fundamental commutation relations are then
(@', p) = ihdj, {7} =hd"  ([z,2] = [p,p] = [z, 9] = [p,¥] = 0)

We recognize 1 as the Pauli 0 matrices (the Dirac matrices of subsection IC1 for the
special case of SO(3)), ¥* = vho'. The free Hamiltonian is just
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as for spin 0: Spin does not affect the motion of free particles.

A more interesting case is coupling to electromagnetism: Quantum mechanically,
the Hamiltonian can be written in the simple form

% 5 Az T 2
o W'lpi + qA)]} _ g A'z)
mh
in terms of the vector and scalar potentials A and A°. The classical expression is not
as simple, because the commutation relations must be used to cancel the 1/h before

taking the classical limit. This is an example of “minimal coupling”,
H(p;) — H(p; + qA;) — qA°

However, this prescription works only if H for spin 1/2 is written in the above form:
Using the commutation relations before or after minimal coupling gives different re-
sults. The form we have used is justified only by considering the nonrelativistic limit
of the relativistic theory.

Excercise I1TA2.1
Use the multipication rules of the ¢ matrices to show that the quantum me-
chanical Hamiltonian for spin 1/2 in an electromagnetic field can be written
as a spin-independent piece, identical to the spin-0 Hamiltonian, plus a term
coupling the spin to the magnetic field.

3. Fields

The field equations for all field theories (e.g., electromagnetism) are wave equa-
tions. Wave equations also follow from mechanics upon quantization. Although
classical field theory and quantum mechanics are not equivalent in their physical in-
terpretation, they are mathematically equivalent in that they have identical wave
equations. This is true not only for the free theories, but also for particles in external
fields, and without direct self-interactions. This is no accident: Classical field theory
and classical mechanics are two different limits of quantum field theory. They are
both called classical limits, and written as i — 0, but since £ is really 1, this limit

depends on how one inserts i’s into the quantum field theory action.

The wave equation in quantum mechanics is the Schrodinger equation. The cor-
responding field theory action is then simply the one that gives this wave equation

as the equation of motion, where the wave function is replaced with the field:

Sp = / d'z ¥ (—id, + H )
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As usual (cf. electromagnetism), the field is a function of space and time; thus, we
integrate d*z = dt dx over the three space and one time dimensions. The Hamilto-
nian is some function of coordinates and momenta, with the replacement p; — —i0;

where 0; = 0/dz" are the space derivatives and 9, = 0/t is the time derivative.

The Hamiltonian can contain coupling to other fields. For a general Hamilto-
nian quadratic in momenta, in a notation implied by the corresponding Lagrangian

quadratic in time derivatives,
H = %gij(—iﬁi + Az)(—lﬁj + A]) +U

where ¢, A;, and U are now interpreted as fields, and thus depend on both z* and ¢,
as does 1. In the case ¢ = 6%, we can identify A; and U as the three-vector and scalar
potentials of electromagnetism, and we can add the usual action for electromagnetism
to the action for ¢). The action then can be varied also with respect to A and U to
obtain Maxwell’s equations with a current in terms of ¢) and ¥*. We can also treat
¢¥ as a field, in which case it and parts of A and U are the components of the

gravitational field.

Field theory actions can be quantized in the same ways as mechanics ones. In
this case, we recognize the W% term as a special case of the PP term in the
generic Hamiltonian form of the action discussed earlier. Thus, 1 (z%) and ¥*(z;)
have replaced z* and p; as the variables; x’ is now just an index (label) on ¢ and ¥*,
just as ¢ was an index on ' and p’. The field-theory Hamiltonian is then identified

as
Hyl, 0] = / e M, H = rHY

In field theory the Hamiltonian will always be a space integral of a “Hamiltonian
density” H.

We can now define the two classical limits of quantum field theory. If we put in

h in the generic way for actions,
Sft — h_lsft

then we define the classical limit 4 — 0 as classical field theory, since in that limit

the classical field equations are preserved. On the other hand, if we put in A’s as
8i — h@z, 8;5 - hat

which gives the usual i dependence associated with the Schrodinger equation, then
the classical limit A — 0 gives classical mechanics. This defines classical mechanics

as the macroscopic limit, the limit of large distances and times.
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A convenient way to implement this limit is to introduce the mechanics action
S = [dt(—2'p; + H) into the field theory, and then take the limit & — 0 after the
replacement

S —hts

on the mechanics action instead of on the derivatives. The mechanics action can be
introduced when solving the field equations: The solution to the wave equation can
be expressed in terms of the propagator, which in turn can be written in terms of the

mechanics action or Hamiltonian.

More generally, we can define actions that are not restricted to be quadratic in

any field. The Hamiltonian density H(¢,z") or Lagrangian density L(¢,z?),

Slg] = / it &z Llo(t, 7))

should be a function of fields at that point, with only a finite number (usually no
more than two) spacetime derivatives. This is the definition of locality used for gen-
eral quantum systems in subsection IITA1, but extended from derivatives in time to
also those in space. Although this condition is not always used in nonrelativistic
field theory (for example, when long-range interactions, such as Coulomb or gravita-
tional, are described without attributing them to fields), it is crucial in relativistic
field theory. For example, global symmetries lead by locality to local (current) conser-
vation laws. Locality is also the reason that spacetime coordinates are so important:
Translation invariance says that the position of the origin is an unphysical, redundant

variable; however, locality is most easily used with this redundancy.

Field equations are derived by the straightforward generalization of the variation
of actions defined in subsection I1TA1: As follows from treating the spatial coordinates

in the same way as discrete indices,

, 0S
— 3 m i
4S = /dt d°x 09" (t, x )(5¢m(t,xi)
For example,
S:—/dtd%lq;? S B
2 (5¢

4. Relativity

Generalization to relativistic theories is straightforward, except for the fact that
the Klein-Gordon equation is second-order in time derivatives; however, we are fa-
miliar with such actions from nonrelativistic quantum mechanics. As usual, we need
to check the sign of the terms in the action: Checking the positivity of the Hamil-

tonian (i.e., the energy), we see from the general relation between the Lagrangian
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and Hamiltonian (subsection IIIA1) that the terms without time derivatives must be

positive; the time-derivative terms are then determined by Lorentz covariance.

At this point we introduce some normalizations and conventions that will prove
convenient for Fourier transformation and other reasons to be explained later. When-

ever D-dimensional integrations are involved (as should be clear from context), we

dPx dPp
= | e /dp/

d(x—2") = ( 27T)D/25D( — ), (27T)D/25D(p P)

use

In particular, this normalization will be used in Green functions and actions. For

example, these implicit 27’s appear in functional variations:

555/dm6¢— o(z") = d6(x — ')

¢;‘¢<>

The action for a real scalar is then

5 /dx L, L=2%06)°+V()

where V(¢) > 0, and we now write L for the Lagrange density. In particular, V =
Lm2¢? for the free theory. The free field equation is then p? + m? = -0+ m? = 0,
replacing the nonrelativistic —id;+H = 0. For a complex scalar, we replace %¢¢ — XX

in both terms.

We know from previous considerations (subsection 1IB2) that the field equation
for a free, massless, Dirac spinor is v- 0¥ = 0. The generalization to the massive case
(subsection 1IB4) is obvious from various considerations, e.g., dimensional analysis;
the action is

S = /dx (i@ + VolAd
in arbitrary dimensions, again using the notation @ = v - 0. In four dimensions, we

can decompose the Dirac spinor into its two Weyl spinors (see subsection ITAG6):
L=9(d+ TV = (7i0° 1o + V30 s0ra) + T (UiRa + V70 ,,)
For the case of the Majorana spinor, the 4D action reduces to that for a single Weyl
spinor,
- / do [<i6°0_ 6 + b (6 a + 050, )]

0

Note that in our conventions Jaﬂ. = %%g (and similarly for the opposite indices, since

o%. = ag’&), so that the time derivative term is always proportional to T(—idp)1, as

«
nonrelativistically (previous subsection).
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A scalar field must be complex to be charged (i.e., a representation of U(1)):

From the gauge transformation

we find the minimal coupling (for ¢ = 1)
S, = [ do 310+ AN + d?lx?
This action is also invariant under charge conjugation
C:x— x* A——-A
which changes the sign of the charge, since x* = e " y*.

Excercise I111A4.1
Let’s consider the semiclassical interpretation of a charged particle as de-

scribed by a complex scalar field v, with Lagrangian

L

s(IVYP +m?yf?)
a Use the semiclassical expansion in i defined by
V — hd + iqA, v — \/ﬁe_is/h

Find the Lagrangian in terms of p and § (and the background field A), order-
by-order in A (in this case, just h° and h?).

b Take the semiclassical limit by dropping the A* term in L, to find
L — p3[(—=08 + qA)* + m?]
Vary with respect to S and p to find the equations of motion. Defining
p=—08

show that these field equations can be interpreted as the mass-shell condition
and current conservation. Show that A couples to this current by varying L

with respect to A.
The spinor field also needs doubling for charge. (Actually, the doubling can be

avoided in the massless case; however, problems show up at the quantum level, related
to the fact that there is no charge conjugation transformation without doubling.) The

gauge transformations are similar to the scalar case, and the action again follows from
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minimal coupling, to an action that has the global invariance (A = constant in the

absence of A):
p= Mg = e g
S.= [ do (=10 + 4,05 + Dh(-i0, 5~ A )i+ H(050ma+ Vi)
The current is found from varying with respect to A:
I = G — PR
Charge conjugation
C Y] < Yy, A— —A
(which commutes with Poincaré transformations) changes the sign of the charge and

current.

Excercise 111A4.2

Show that this action can be rewritten in Dirac notation as
S, = /dm U(ig — A+ Z5)0
and find the action of the gauge transformation and charge conjugation on

the Dirac spinor.
As a last example, we consider the action for electromagnetism itself. As before,
we have the gauge invariance and field strength

A=A .-0 .\
af ap af

= —0 A .= f.+C.. _lg A7
Fa&,,@é. = 80";14,85. 8,@6140‘7 Ca,@f’;é + C,;gfa’& fa,@ 28((1714@

We can write the action for pure electromagnetism as
Sa= /dx ﬁfaﬁfag = /dx ﬁfuﬂf&ﬂ- = /dx éF”bFab

dropping boundary terms, with the overall sign again determined by positivity of the
Hamiltonian, where e is the electromagnetic coupling constant, i.e., the charge of the
proton. (Other normalizations can be used by rescaling A ﬂ) Maxwell’s equations
follow from varying the action with a source term added:
S:SA+/dx AT o = L0 fen = .
ap e ¥ ay
Excercise I1TA4.3
By plugging in the appropriate expressions in terms of A, (and repeatedly
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integrating by parts), show that all of the above expressions for the electro-

magnetism action can be written as
Sa = —/dx ﬁ[fLDA—l—(@-A)Q]

Excercise I111A4.4
Find all the field equations for all the fields, found from adding to S4 all the

minimally coupled matter actions above.

The energy-momentum tensor for electromagnetism is much simpler in this spinor
notation, and follows (up to normalization) from gauge invariance, dimensional anal-
ysis, Lorentz invariance, and the vanishing of its trace. It has a form similar to that
of the current in electrodynamics:

N I
a,@&é._ leaﬂf’;é
Note that it is invariant under the duality transformations of subsection IIA7 (as is

the electrodynamic current under chirality).

We have used conventions where e appears multiplying only the action S4, and

not in the “covariant derivative”
V =0+iqA

where ¢ is the charge in units of e: e.g., ¢ = 1 for the proton, ¢ = —1 for the electron.

Alternatively, we can scale A, as a field redefinition, to produce the opposite situation:
A—eA: Su —>/dm 1F?, V — 0 +igeA

The former form, which we use unless noted otherwise, has the advantage that the
coupling appears only in the one term Sy, while the latter has the advantage that the
kinetic (free) term for A is normalized the same way as for scalars. The former form
has the further advantage that e appears in the gauge transformations of none of the
fields, making it clear that the group theory does not depend on the value of e. (This
will be more important when generalizing to nonabelian groups in section I1IC.)
Note that the massless part of the kinetic (free) terms in these actions are scale
invariant (in arbitrary dimensions, when the dimension-independent forms are used),
when the fields are assigned the scale weights found from conformal arguments in

subsection I1B2.
Excercise I11A4.5

Using vector notation, minimal coupling, and dimensional analysis, find the
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mass dimensions of the electric charge e in arbitrary spacetime dimensions,

and show it is dimensionless only in D = 4.

An interesting distinction between gravity and electromagnetism is that static
bodies always attract gravitationally, whereas electrically they repel if they are like
and attract if they are opposite. This is a direct consequence of the fact that the
graviton has spin 2 while the photon has spin 1: The Lagrangian for a field of integer
spin s coupled to a current, in an appropriate gauge and the weak-field approximation,
is

_4%!¢a1-..asm¢almas + i¢a1masja1-..as

where the sign of the first term is fixed by unitarity in quantum field theory. (Clas-
sically the sign can also be related to positivity of the energy.) From a scalar field in

the semiclassical approximation (see excercise I1IA4.1 above), starting with
Jal...as ~ w*@al . 8asw
where “A0B” means “A0B — (0A)B”, we see that the current will be of the form

s

Jal"'as ~ ppal s p

for a scalar particle, for some p. (The same follows from comparing the expressions
for currents and energy-momentum tensors for particles as in subsection I11B4 below.
The only way to get vector indices out of a scalar particle, to couple to the vector
indices for the spin of the force field, is from momentum.) In the static approximation,
only time components contribute: We then can write this Lagrangian as, taking into
account ng = —1,

—(—1)84%%...05%...0 + i%...op(po)s

where E/ = p® > 0 for a particle and < 0 for an antiparticle. Thus the spin-dependence
of the potential /force between two particles goes as (—FE1FE»)®. It then follows that
all particles attract by forces mediated by even-spin particles, and a particle and
its antiparticle attract under all forces, while repulsion will occur for odd-spin forces
between two identical particles. (We can substitute “particles of the same sign charge”
for “identical particles”, and “particles of opposite sign charge” for “particle and its

antiparticle”, where the charge is the coupling constant appropriate for that force.)

Excercise I111A4.6

Show that the above current is conserved,
gy J 7% =0

(and the same for the other indices, by symmetry) if ¢ satisfies the free Klein-

Gordon equation (massless or massive).
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5. Constrained systems

Constraints not only frequently appear in nonrelativistic physics, but are a general
feature of relativistic particles, so we now give a brief description of how they are
incorporated into actions. Consider a general action, with constraints, in Hamiltonian

form:

S = /dt(—q‘mpm +H), H=Hy(q,p)+ XGilq,p)

(For simplicity, we consider all physical variables to be bosonic for this subsection,
but the method generalizes straightforwardly paying careful attention to signs.) This
action is a functional of ¢, p,,, \?, which are in turn functions of ¢, where m and i run
over any number of values. We can think of this as describing a nonrelativistic particle
with coordinates ¢ and momenta p in terms of time ¢, but the form is general enough to
apply to relativistic theories. The ¢p term tells us p is canonically conjugate to ¢; the
rest of the action gives the Hamiltonian, usually quadratic in momenta. The variables
A\ are “Lagrange multipliers”, whose variation in the action implies the constraints
G; = 0. We then can interpret Hy; as the usual (“gauge invariant”) Hamiltonian. We
also require that the transformations generated by the constraints close, and that the

Hamiltonian be invariant:
(G, Gy] = —ifi;"Gr, [Gi, Hy] =0

(More generally, we can allow [G;, Hy,;] = —if7G;.) This says that the constraints
don’t imply any new constraints that we might have missed, and that the “energy”

represented by Hy; is invariant under these transformations.

We then find that the action is invariant under the canonical transformations

o(q,p) =i[¢'Gi, (¢,p)] = ¢ =( o Opm = ngm
0=s(L)_5s 9+ H ) =i(6A)G; —il'G; + NGy, (G
“\ar) " N\ar ) T s 36

= ON =+ Ay

(with §(d/dt) defined as in subsection IA1), where 0/0t acts on the “explicit” ¢
dependence (that in everything except ¢ and p): For general expressions, the total

time derivative and total variation are given by commutators as

d o .
A= S ATiH Al 5A=6A TG, A
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where dy acts on everything except ¢ and p. The action then varies under these
transformations as the integral of a total derivative, which vanishes under appropriate
boundary conditions:

d .
(SSH = /dt%[—(éqm)pm + Csz] =0

The simplest example is the case with one constraint, which is linear in the vari-
ables: If the constraint is p, the gauge transformation is g = A, so we gauge ¢ = 0
and use the constraint p = 0. In general, this means that for every degree of freedom
we can gauge away, the conjugate variable can be fixed by the constraint. Thus,
for each constraint we eliminate 3 variables: the variable fixed by the constraint, its
conjugate, and the Lagrange multiplier that enforced the constraint, which has no
conjugate. (In the Lagrangian form of the action the conjugate may not appear ex-
plicitly, so only 2 variables are eliminated.) As another example, for a nonrelativistic
particle constrained to a sphere, G = (z')?—1, we can change to spherical coordinates,
apply the constraint to eliminate the radial coordinate, and use the gauge invariance
to eliminate the radial component of the momentum, leaving an unconstrained the-
ory in terms of angles and their conjugates. In most cases in field theory a similar

procedure can be applied: The result is called a “unitary gauge”.

The standard example of a relativistic constrained system is in field theory —
electromagnetism. Its action can be written in “first-order (in derivatives) formalism”

by introducing an auxiliary field G:
F? - F*-G* - F*— (G- F)?=2GF - G*

where in the first step we added a trivial term for G and in the second step made
a trivial redefinition of G, so elimination of G' by its algebraic equation of motion
returns the original Lagrangian. The Hamiltonian form comes from eliminating only

G;; by its field equation, since only Fp; contains time derivatives:
2GF — G? — (Fy)? — 4Goi Foi + 2(Go,)?
= —4A;Go; + [2(Goi)? + (Fiy)?] — 4400 Go;

which we recognize as the three generic terms for the action in Hamiltonian form,
with Go; as the canonical momenta for A;, and Ay as the Lagrange multiplier. The

constraint is Gauss’ law, and it generates the usual gauge transformations.

Thus A" are also gauge fields for the gauge (time-dependent) transformations (¥ ().
They allow construction of the gauge-covariant time derivative
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It is convenient to transform the gauge fields away using these gauge transformations,
so H = Hg,. However, with the usual boundary conditions ffooo dt \is gauge invariant
under the linearized transformations, so the most we could expect is to gauge A’ to

constants. More precisely, the group element

T {exp (—2’ /_ Z dt )\i(t)Gi)}

is gauge invariant, where “7” is time ordering, meaning we write the exponential of
the integral as the product of exponentials of infinitesimal integrals, and order them
with respect to time, later time intervals going to the left of earlier ones. (We treat
G; quantum mechanically or use Poisson brackets when combining the exponentials.)
This is the quantum mechanical version of the time development resulting from the
corresponding term in the classical action. It is also the phase factor coming from

the infinite limit of the covariant time translation

¢
e PV — T {exp (—2/ dt’ )\i(t')Gi)} e ko
t—k

—kV(%) a5 the product of

as seen from reordering the time derivatives when writing e
exponentials of infinitesimal exponents. This allows us to write the explicit gauge

transformation

t
e~ — T {exp (—2' / dt’ )\i(t’)Gi)} — e~ BOVO AN AL — ¢

to
= V/(t) = 2OV (t)e ™ = =A%y (1)eAD% = V(1) = 9, + i\ (to)G;

(where we define 0; to vary t while keeping t — to fixed). Thus, we can gauge A to
its value at a fixed time #,. Another way to see this is that varying A’ in the action
at a fixed time gives G; = 0 at that time, but the remaining field equations imply
éi =0, so G; = 0 always, and X\’ is redundant at other times. This means that if we

carelessly impose ' = 0 at all times, we must also impose G; = 0 at some fixed time.

Note that this special gauge transformation itself has a very simple gauge trans-

formation: Transforming the A in A by an arbitrary finite transformation (*(t),

e~ () _ i ()G g —il(t) il (t0)Gi

consistent with the transformation law of V'(t) above. Thus, applying the trans-
formation A to any gauge-dependent quantity ¢ gives a gauge-independent quantity
¢' (¢, A), which is invariant under the local transformations ((¢) and transforms only
under the “global” transformations ((¢y). Thus, fixing the gauge A(t) = 0 is equivalent

to working with gauge-invariant quantities.
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Fixing an invariance of the action is not unique to gauge invariances: Global
invariances also need to be fixed, although the procedure is so trivial we seldom
discuss it. For example, even in nonrelativistic systems Galilean invariance needs to
be fixed: When analyzing a specific problem, we often choose some object to be at
rest (velocity transformations), choose another to be oriented or moving in a specific
direction (rotations), and choose a specific event to happen at the origin of space and
time (translations). Alternatively, we can work with Galilean invariants, just as in
gauge theories we can work with gauge invariants; however, in practice, for explicit
calculations (as opposed to discussing general properties), it is more convenient to fix

the invariance, as this allows simplification of the equations.
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........................... B. PARTICLES ..........................

The simplest relativistic actions are those for the mechanics (as opposed to field
theory) of particles. These also give the simplest examples of gauge invariance in rela-
tivistic theories. Later we will find that various properties of the quantum mechanics

of these actions help to explain some features of quantum field theory.

1. Free

For nonrelativistic mechanics, the fact that the energy is expressed as a function of
the three-momentum is conjugate to the fact that the spatial coordinates are expressed
as functions of the time coordinate. In the relativistic generalization, all the spacetime
coordinates are expressed as functions of a parameter 7: All the points that a particle
occupies in spacetime form a curve, or “worldline”, and we can parametrize this curve
in an arbitrary way. Such parameters generally can be useful to describe curves: A
circle is better described by z(6), y() than y(z) (avoiding ambiguities in square roots),

and a cycloid can be described explicitly only this way.

The action for a free, spinless particle then can be written in relativistic Hamil-

tonian form as
Sy = /dT[—i"mpm + U%(pQ + m2)]

where v is a Lagrange multiplier enforcing the constraint p? + m? = 0. This ac-
tion is very similar to nonrelativistic ones, but instead of z(t), p;(t) we now have

“wo”
.

x™(7), pm(7), v(T) (Where now means d/dr). The gauge invariance generated by
p? +m? is

ox =_Cp, Iop=0, 5v:§:

A more recognizable form of this invariance can be obtained by noting that any

action S(¢?) has invariances of the form

5¢A:€A3ﬁ AB _ _ BA

dpB’

which have no physical significance, since they vanish by the equations of motion. In

this case we can add
dr =e€e(x —vp), dp=ep, ov=0

and set ¢ = ve to get
dr =ex, Op=cep, Ov=ev)
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We then can recognize this as a (infinitesimal) coordinate transformation for 7:
() =x(r), P =p(r), dr'' (") =dr v(T); T'=71—€(7)

The transformation laws for  and p identify them as “scalars” with respect to these
“one-dimensional” (worldline) coordinate transformations (but they are vectors with
respect to D-dimensional spacetime). On the other hand, v transforms as a “density”:
The “volume element” dr v of the world line transforms as a scalar. This gives us
a way to measure length on the worldline in a way independent of the choice of 7

parametrization. Because of this geometric interpretation, we are led to constrain
v >0

so that any segment of the worldline will have positive length. Because of this re-
striction, v is not a Lagrange multiplier in the usual sense. This has significant
physical consequences: p* + m? is treated neither as a constraint nor as the Hamil-
tonian. While in nonrelativistic theories the Schrédinger equation is (F — H)Y = 0
and Gyp = 0 is imposed on the initial states, in relativistic theories (p* + m?)y = 0
is the Schrodinger equation: This is more like H1) = 0, since p? already contains the

necessary I dependence.

The Lagrangian form of the free particle action follows from eliminating p by its
equation of motion vp = x:

Sy = /d’i’ Lom? — v '2?)
For m # 0, we can also eliminate v by its equation of motion v=222 + m? = 0:
S:m/dT\/—iQ:m/\/—dxzzm/ds:ms

The action then has the purely geometrical interpretation as the proper time; how-
ever, this last form of the action is awkward to use because of the square root, and
doesn’t apply to the massless case. Note that the v equation implies ds = m(dr v),
relating the “intrinsic” length of the worldline (as measured with the worldline vol-
ume element) to its “extrinsic” length (as measured by the spacetime metric). As a
consequence, in the massive case we also have the usual relation between momentum
and “velocity”
m dx™

= m—-
b ds

(Note that p° is the energy, not po.)
Excercise IIIB1.1

Take the nonrelativistic limit of the Poincaré algebra:
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a Insert the speed of light ¢ in appropriate places for the structure constants of

the Poincaré group (guided by dimensional analysis) and take the limit ¢ — 0

to find the algebra of the Galilean group.

Do the same for the representation of the Poincaré group generators in terms
of coordinates and momenta. In particular, take the limit of the Lorentz
boosts to find the Galilean boosts.

Take the nonrelativistic limit of the spinless particle action, in the form ms.
(Note that, while the relativistic action is positive, the nonrelativistic one is

negative.)

Excercise I11B1.2

Consider the following action for a particle with additional fermionic variables

~ and additional fermionic constraint v - p:

Sy = /dT(—i"mpm — 27" Y + Svp? 4Ny - p)
where A is also anticommuting so that each term in the action is bosonic.
Find the algebra of the constraints, and the transformations they generate
on the variables appearing in the action. Show that the “Dirac equation”

v - p|¥) = 0 implies p*|¥) = 0. Find the Lagrangian form of the action as

usual by eliminating p by its equation of motion. (Note A* = 0.)

Excercise I11B1.3

Consider a “supercoordinate” X™ that is a function of both a fermionic vari-

able ¢ and the usual 7:
X™(7,¢) = 2™ () +i¢y™(7)

where the Taylor expansion in ¢ terminates because ¢ = 0. Identify x with
the usual z, and v with its fermionic partner introduced in the previous
problem. In analogy to the way - p was the square root of the T-translation
generator %pQ, we can define a square root of 9/97 by the “covariant fermionic
derivative” 9 9 9

:8_C+iC§ = DQ:Z'E

We also want to generalize v in the same way as z, to make the action inde-

pendent of coordinate choice for both 7 and . This suggests defining
E=v"4i(\
and the gauge invariant action

Sy, = / drd¢ $E(D*X™)DX,,
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Integrate this action over (, and show this agrees with the action of the

previous problem after suitable redefinitions (including the normalization of
[ dg).

The (D+2)-dimensional (conformal) representation of the massless particle (sub-

section IAG6) can be derived from the action
S = /dT (=97 + M)
where A is a Lagrange multiplier. This action is gauge invariant under
Sy=ej—Léy, SA=eA+2A+ L€

If we vary A to eliminate it and y~ as in subsection IA6, the action becomes

S:—/d’i' %62332

which agrees with the previous result, identifying v = e~2, which also guarantees

v > 0.

Excercise I1IB1.4
Find the Hamiltonian form of the action for y: The constraints are now %2,
r?, and y - r, in terms of the conjugate r to y (see excercise 1A6.2). Find
the gauge transformations in the standard way (see subsection IITA5). Show
how the above Lagrangian form can be obtained from it, including the gauge

transformations.

Using instead the corresponding twistor (subsection IIB6) to satisfy y* = 0, the

massless, spinless particle now has a single term for its mechanics action:
S = /d’i‘ iEABCDZ.AaZ.BaZCﬂZD,g

Unlike all other relativistic mechanics actions, all variables have been unified into just

z, without the introduction of square roots.

Excercise IIIB1.5
Expressing 2 in terms of A\,* and 2 as in subsection IIB6, show this action

reduces to the previous one.
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2. Gauges

Rather than use the equation of motion to eliminate v it’s more convenient to use
a gauge choice: The gauge v = 1 is called “affine parametrization” of the worldline.
Note that the gauge transformation of v, dv = C , has no dependence on the coordi-
nates z and momenta p, so that choosing the gauge v = 1 avoids any extraneous x
or p dependence that could arise from the gauge fixing. (The appearance of such de-
pendence will be discussed in later chapters.) Since ' = [ dr v, the intrinsic length,
is gauge invariant, that part of v still remains when the length is finite, but it can be
incorporated into the limits of integration: The gauge v = 1 is maintained by C =0,
and this constant ¢ can be used to gauge one limit of integration to zero, completely
fixing the gauge (i.e., the choice of 7). We then integrate fOT, where T' > 0 (since
originally v > 0), and 7" is a variable to vary in the action. The gauge-fixed action is
then

T
SH,GF = / d’i‘[—.i'mpm + %(pQ -+ m2)]
0

In the massive case, we can instead choose the gauge v = 1/m; then the equations
of motion imply that 7 is the proper time. The Hamiltonian p*/2m + constant then

resembles the nonrelativistic one.

Another useful gauge is the “lightcone gauge”

2+
=
which, unlike the Poincaré covariant gauge v = 1, fixes 7 completely; since the gauge
variation &(x/pt) = ¢, we must set ( = 0 to maintain the gauge. Also, the gauge
transformation is again x and p independent. In lightcone gauges we always assume
pt # 0, since we often divide by it. This is usually not too dangerous an assumption,

since we can treat p* = 0 as a limiting case (in D>2).

We saw from our study of constrained systems that, for every degree of freedom we
can gauge away, the conjugate variable can be fixed by the constraint that generates
that gauge invariance: In the case where the constraint is p, the gauge transformation
is 0¢g = A, so we gauge ¢ = 0 and use the constraint p = 0. In lightcone gauges the
constraints are almost linear: The gauge condition is 7 = p™7 and the constraint is
p~ = ..., so the Lagrange multiplier v is varied to determine p~. On the other hand,
varying p~ gives

op- = wv=1

so this gauge is a special case of the gauge v = 1. An important point is that we used

only “auxiliary” equations of motion: those not involving time derivatives. (A slight
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trick involves the factor of p™: This is a constant by the equations of motion, so we
can ignore p* terms. However, technically we should not use that equation of motion;
instead, we can redefine z= — x~ + ..., which will generate terms to cancel any p*

terms.) The net result of gauge fixing and the auxiliary equation on the action is

o
SH,GF = / dT[i_p”L — xzpz -+ %(p’? + m2)]
—00

where 2% = (2%, 27, 2"), etc. In particular, since we have fixed one more gauge degree
of freedom (corresponding to constant (), we have also eliminated one more constraint
variable (7', the constant part of v). This is one of the main advantages of lightcone

gauges: They are “unitary”, eliminating all unphysical degrees of freedom.

Excercise IT1IB2.1
Another obvious gauge is 7 = 2°, which works as well as the lightcone gauge
as far as eliminating worldline coordinate invariance is concerned. (The same
is true for 7 = n-x for any constant vector n.) Unfortunately, the same is not
true for the auxiliary equations of motion: After using the gauge condition,
p? appears without time derivatives, so it and v can be eliminated by their
equations of motion. Show this gauge is consistent only for p° > 0. The
resulting square root is awkward except in the nonrelativistic limit: Take it,

and compare with the usual nonrelativistic mechanics.

3. Coupling

One way to introduce external fields into the mechanics action is by considering

the most general Lagrangian quadratic in 7 derivatives:
S = /dT[—%v_lgmn(aj)a}mi” + Ap(2)2™ + vo(z)]

In the free case we have constant fields g, = mn, Am = 0, and ¢ = %mz. The v
dependence has been assigned consistent with worldline coordinate invariance. The
curved-space metric tensor ¢,,, describes gravity, the D-vector potential A,, describes
electromagnetism, and ¢ is a scalar field that can be used to introduce mass by

interaction.

Excercise ITIB3.1
Use the method of the problem III1B1.3 to write the nonrelativistic action
for a spinning particle in terms of a 3-vector (or (D—1)-vector) X*(7,¢) and
the fermionic derivative D. Find the coupling to a magnetic field, in terms

of the 3-vector potential A;(X). Integrate the Lagrangian over (. Show
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that the quantum mechanical square of ¢[p; + A;(x)] is proportional to the

Hamiltonian.

Excercise I11B3.2
Derive the Lorentz force law by varying the Lagrangian form of the action for
the relativistic particle, in an external electromagnetic field (but flat metric),

with respect to x.

This action also has very simple transformation properties under D-dimensional

gauge transformations on the external fields:
OGmn = € OpGmn + GpmOn) €, 0Ay, = O, Ay + ApOne? — O, 00 = 0,0

= Splz]+6SL[z] = Si[z + €] — Mwy) + M)

where we have integrated the action [ dr and set () = x;, x(1y) = 7. These

transformations have a very natural interpretation in the quantum theory, where

/Dx e = (wp|;)

Then the A transformation of A is canceled by the U(1) (phase) transformation

¥/(@) = NO()

in the inner product

(s} = / gy (g]) s (sl = / digd; () (@ |y e )

while the e transformation associated with ¢,,, is canceled by the D-dimensional

coordinate transformation

V'(x) =Yz +¢€)
4. Conservation

There are two types of conservation laws generally found in physics: In mechanics
we usually have global conservation laws, of the form ¢ = 0, associated with a

symmetry of the Hamiltonian H generated by a conserved quantity Q:

0= 6H = i[Q, H) = —Q

On the other hand, in field theory we have local conservation laws, since the action

for a field is written as an integral [ dPx of a Lagrangian density that depends only
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on fields at =, and a finite number of their derivatives. The local conservation law
implies a global one, since
dPx d [ d° 'z .
OnJ"=0 = 0=[ ——=0pJ"~— [ —=J"=0Q=0
/ (2m)D/2 dt | (2m)P/2 @
where we have integrated over a volume whose boundaries in space are at infin-
ity (where J vanishes), and whose boundaries in time are infinitesimally separated.

Equivalently, the global symmetry is a special case of the local one.

A simple way to derive the local conservation laws is by coupling gauge fields: We
couple the electromagnetic field A,, to arbitrary charged matter fields ¢ and demand
gauge invariance of the matter part of the action, the matter-free part of the action
being separately invariant. We then have

0= 58 — / iz {(Mm)g% + (5¢)5§—£4
using just the definition of the functional derivative §/§. Applying the matter field
equations 9.5y /0¢ = 0, integration by parts, and the gauge transformation §A,, =
—0OmA, we find
o= () = =B gy
Similar remarks apply to gravity, but only if we evaluate the “current”, in this case the
energy-momentum tensor, in flat space gm,, = Mmn, since gravity is self-interacting.

We then find
0SSy

6gmn dmn="mn
where the normalization factor of —2 will be found later for consistency with the

T = 2

9T =0

particle. In this case the corresponding “charge” is the D-momentum:

D—
pm— d 13: TOm
(2m)D/2
In particular we see that the condition for the energy in any region of space to be

nonnegative is
TOO Z 0

To apply this to the action for the particle in external fields, we must first dis-
tinguish the particle coordinates X (7) from coordinates x for all of spacetime: The
particle exists only at x = X(7) for some 7, but the fields exist at all . In this

notation we can write the mechanics action as
S, = / dx [ — G () / dr §(z — X)lo ' X" X"

+An(z) / dr §(z — X)X™ + ¢(x) / dr §(z — X)v]
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using [ dx 6(z — X (7)) = 1. We then have

J(x) = / dr §(z — X)X™

T = / dr §(z — X)o ' X" X"

Note that 7% > 0 (since v > 0). Integrating to find the charge and momentum:

Q= /dT 5(z° — X0)X° = /dXO e(X)5(z° — X°) = €(p")

P — / dr 52 — X LXOXm — / X0 e(X0)5(2° — X0 1 X™ = ()"

where we have used p = v X (for the free particle), where p is the momentum
conjugate to X, not to be confused with P. The factor of €(p°) (e(u) = u/|u| is the

sign of u) comes from the Jacobian from changing integration variables from 7 to X°.

The result is that our naive expectations for the momentum and charge of the
particle can differ from the correct result by a sign. In particular p°, which semi-
classically is identified with the angular frequency of the corresponding wave, can
be either positive or negative, while the true energy P° = |p°| is always positive, as
physically required. (Otherwise all states could decay into lower-energy ones: There
would be no lowest-energy state, the “vacuum”.) When p° is negative, the charge @
and dX°/dr are also negative. In the massive case, we also have dX°/ds negative.
This means that as the proper time s increases, X° decreases. Since the proper time
is the time as measured in the rest frame of the particle, this means that the particle
is traveling backward in time: Its clock changes in the direction opposite to that of
the coordinate system x™. Particles traveling backward in time are called “antiparti-
cles”, and have charges opposite to their corresponding particles. They have positive

true energy, but the “energy” p° conjugate to the time is negative.

Excercise I11B4.1
Compare these expressions for the current and energy-momentum tensor to
those from the semiclassical expansion in excercise I1IA4.1. (Include the in-

verse metric to define the square of —0,,S + gA,, there.)
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5. Pair creation

Free particles travel in straight lines. Nonrelativistically, external fields can alter
the motion of a particle to the extent of changing the signs of spatial components of
the momentum. Relativistically, we might then expect that interactions could also
change the sign of the energy, or at least the canonical energy p”. As an extreme case,
consider a worldline that is a closed loop: We can pick 7 as an angular coordinate
around the loop. As 7 increases, X° will either increase or decrease. For example, a
circle in the 2% 2! plane will be viewed by the particle as repeating its history after
some finite 7, moving forward with respect to time z° until reaching a latest time ¢y,
and then backward until some earliest time ¢;. On the other hand, from the point of
view of an observer at rest with respect to the 2™ coordinate system, there are no
particles until 2° = ¢;, at which time both a particle and an antiparticle appear at
the same position in space, move away from each other, and then come back together

and disappear. This process is known as “pair creation and annihilation”.

Whether such a process can actually occur is determined by solving the equations
of motion. A simple example is a particle in the presence of only a static electric
field, produced by the time component A° of the potential. We consider the case of a
piecewise constant potential, vanishing outside a certain region and constant inside.
Then the electric field vanishes except at the boundaries, so the particle travels in
straight lines except at the boundaries. For simplicity we reduce the problem to two
dimensions:

A= -V for 0 < 2t < L, 0 otherwise

for some constant V. The action is, in Hamiltonian form,
Sy = /dT (=™ + v [(p + A + ]}
and the equations of motion are

pm = _U(p + A)nﬁmAn = pO =LK

(p+AP=-m?> = p :j:\/(E+AO)2—m2

viii=p+A = vlat=p, vi'=E+A°
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where F is a constant (the canonical energy at z' = oo) and the equation p' = ...
is redundant because of gauge invariance. We assume E > 0, so initially we have a
particle and not an antiparticle.

We look only at the cases where the worldline begins at 2° = 2! = —oo (lower

left) and continues toward the right till it reaches 2° = 2! = +o00 (upper right), so
that p! = v=!'2! > 0 everywhere (no reflection). However, the worldline might bend
backward in time (2 < 0) inside the potential: To the outside viewer, this looks
like pair creation at the right edge before the first particle reaches the left edge; the
antiparticle then annihilates the original particle when it reaches the left edge, while
the new particle continues on to the right. From the particle’s point of view, it has
simply traveled backward in time so that it exits the right of the potential before it
enters the left, but it is the same particle that travels out the right as came in the

left. The velocity of the particle outside and inside the potential is

B2 —m2
! B — 5 outside
dz® —e o2
\/(E V) m inside
E-V

From the sign of the velocity we then see that we have normal transmission (no

antiparticles) for £ > m + V and F > m, and pair creation/annihilation when
V—-m>E>m = V >2m

The true “kinetic” energy of the antiparticle (which appears only inside the potential)
is then —(E — V) > m.
Excercise I1IB5.1

This solution might seem to violate causality. However, in mechanics as well

as field theory, causality is related to boundary conditions at infinite times.

Describe another solution to the equations of motion that would be inter-

preted by an outside observer as pair creation without any initial particles:

What happens ultimately to the particle and antiparticle? What are the al-

lowed values of their kinetic energies (maximum and minimum)? Since many

such pairs can be created by the potential alone, it can be accidental (and not

acausal) that an external particle meets up with such an antiparticle. Note

that the generator of the potential, to maintain its value, continuously loses

energy (and charge) by emitting these particles.
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......................... C. YANG-MILLS ........................

The concept of a “covariant derivative” allows the straightforward generalization
of electromagnetism to a self-interacting theory, once U(1) has been generalized to a

nonabelian group. Yang-Mills theory is an essential part of the Standard Model.

1. Nonabelian

The group U(1) of electromagnetism is Abelian: Group elements commute, which
makes group multiplication equivalent to multiplication of real numbers, or addition
if we write U = e'®. The linearity of this addition is directly related to the linearity
of the field equations for electromagnetism without matter. On the other hand, the
nonlinearity of nonabelian groups causes the corresponding particles to interact with
themselves: Photons are neutral, but “gluons” have charge and “gravitons” have

weight.

In coupling electromagnetism to the particle, the relation of the canonical mo-
mentum to the velocity is modified: Classically, the covariant momentum is dx/dr =
p + qA for a particle of charge ¢ (e.g., ¢ =1 for the proton). Quantum mechanically,

the net effect is that the wave equation is modified by the replacement
00—V =0+iqA

which accounts for all dependence on A (“minimal coupling”). This “covariant deriva-
tive” has a fundamental role in the formulation of gauge theories, including gravity.
Its main purpose is to preserve gauge invariance of the action that gives the wave
equation, which would otherwise be spoiled by derivatives acting on the coordinate-

dependent gauge parameters: In electromagnetism,
P=ep, A=A-0N = (Vi) =NVy)
or more simply
V/ — eique—iqA

(More generally, ¢ is some Hermitian matrix when 1 is a reducible representation of
u().)

Yang-Mills theory then can be obtained as a straightforward generalization of elec-
tromagnetism, the only difference being that the gauge transformation, and therefore

the covariant derivative, now depends on the generators of some nonabelian group.

We begin with the hermitian generators

Gy, Gj] = —ifi/" G, Gt =G,
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and exponentiate linear combinations of them to obtain the unitary group elements
g = \= )G Nk =\ = gl =g7!

We then can define representations of the group (see subsection IB1)
=, Pl =ple™ (Giv)a = (Gi)a" s

For compact groups charge is quantized: For example, for SU(2) the spin (or, for
internal symmetry, “isospin”) is integral or half-integral. On the other hand, with
Abelian groups the charge can take continuous values: For example, in principle the
proton might decay into a particle of charge = and another of charge 1 — 7w. The
experimental fact that charge is quantized suggests already semiclassically that all

interactions should be descibed by (semi)simple groups.

If X\ is coordinate dependent (a local, or “gauge” transformation), the ordinary

partial derivative spoils gauge covariance, so we introduce the covariant derivative
Vo =04+ iAq, A, = AG;

Thus, the covariant derivative acts on matter in a way similar to the infinitesimal

gauge transformation,
0pa =iNGia™p,  Vaha = 0ua +iAJGiavs

Gauge covariance is preserved by demanding it have a covariant transformation law
V' =e?Ve™ = §A=—[V,\=-0\—i[4,)]

The gauge covariance of the field strength follows from defining it in a manifestly

covariant way:
Vo, Vi) =iFy = F =e?Fe™,  Fy=Fy'Gi=0,Ay +i[Ad, A
= Fa' = 0LAy + Ad A" [

The Jacobi identity for the covariant derivative is the Bianchi identity for the field
strength:
0= [V[m [Vlh VC]]] = i[v[m Fbc]]

(If we choose instead to use antihermitian generators, all the explicit i’s go away;
however, with hermitian generators the ¢’s will cancel with those from the derivatives
when we Fourier transform for purposes of quantization.) Since the adjoint represen-

tation can be treated as either matrices or vectors (see subsection IB2), the covariant
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derivative on it can be written as either a commutator or multiplication: For example,

we may write either or [V, F] or VF, depending on the context.

Actions then can be constructed in a manifestly covariant way: For matter, we
take a Lagrangian Ly o(0,) that is invariant under global (constant) group trans-

formations, and couple to Yang-Mills as
LM7()(8,w) - LM,A - LM,O(V>w)

(This is the analog of minimal coupling in electrodynamics.) The representation we
use for G; in V, = 9, + iA'G; is determined by how 1 represents the group. (For
an Abelian group factor U(1), G is just the charge ¢, in multiples of the g for that

factor.) For example, the Lagrangian for a massless scalar is simply
Lo = 3(V¢)!(Va0)

(normalized for a complex representation).

For the part of the action describing Yang-Mills itself we take (in analogy to the

U(1) case)
La(Ay) = g F"Foymy;

where 7;; is the Cartan metric (see subsection IB2). This way of writing the action
is independent of our choice of normalization of the structure constants, and so gives
one unambiguous definition for the normalization of the coupling constant g. (It is
invariant under any simultaneous redefinition of the fields and the generators that
leaves the covariant derivative invariant.) Generally, for simple groups we can choose

to (ortho)normalize the generators G; with the condition
Tij = €Aij

for some constant c4; for groups that are products of simple groups (semisimple),
we might choose different normalization factors (but, of course, also different ¢’s) for
each simple group. For Abelian groups (U(1) factors) n;; = 0, but then the gauge
field has no self-interactions, so the normalization of the coupling constant is defined

only by matter terms in the action, and we can replace 7;; with ¢;; in the above.

Usually it will prove more convenient to use matrix notation: Choosing some

convenient representation R of G; (not necessarily the adjoint), we write
LA(AZ) = S%t?”R FabFab
IR

The normalization of the trace is determined by R, and thus so is the normalization

convention for the coupling constant; a change in the representation used in the action
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can also be absorbed by a redefinition of the coupling. For example, comparing the
defining and adjoint representations of SU(N) (see subsection 1B2),

La= gztrp FFu = gztra F*Fu, = g4 =2Ngp

In general, we specify our normalization of the structure constants by fixing cgr for
some R, and our normalization of the coupling constant by specifying the choice of
representation used in the trace (or use explicit adjoint indices). As a rule, we find

the most convenient choices of normalization are

cp =1, g=9p

(see subsection IB5).

Excercise ITIC1.1
Write the action for SU(N) Yang-Mills coupled to a massless (2-component)
spinor in the defining representation. Make all (internal and Lorentz) indices

explicit (no “tr”, etc.), and use defining (N-component) indices on the Yang-
Mills field.

We have chosen a normalization where the Yang-Mills coupling constant g appears
only as an overall factor multiplying the £’ term (and similarly for the electromagnetic
coupling, as discussed in previous chapters). An alternative is to rescale A — gA and
F — gF everywhere; then V = 9 +igA and F = A +ig[A, A], and the F? term has
no extra factor. This allows the Yang-Mills coupling to be treated similarly to other
couplings, which are usually not written multiplying kinetic terms (unless analogies to
Yang-Mills are being drawn), since (almost) only for Yang-Mills is there a nonlinear

symmetry relating kinetic and interaction terms.

Current conservation works a bit differently in the nonabelian case: Applying
the same argument as in subsection IIIB4, but taking into account the modified
(infinitesimal) gauge transformation law, we find

0Sm
- A
Since 0,,J™ # 0, there is no corresponding covariant conserved charge.

Excercise ITIC1.2
Let’s look at the field equations:

J" V™ =0

a Using properties of the trace, show the entire covariant derivative can be

integrated by parts as

/dx tr(A[V, B]) = —/dx tr([V, A]B), /da: PIVy = —/dl“ (V)x
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for matrices A, B and column vectors 1, x.

b Show
OF = V0 Ay

¢ Using the definition of the current as for electromagnetism (subsection I11B4),

derive the field equations with arbitrary matter,
23V Fou=Ja
d Show that gauge invariance of the action S, implies
V4VPE,) =0

Also show this is true directly, using the Jacobi identity, but not the field

equations. (Hint: Write the covariant derivatives as commutators.)

e Expand the left-hand side in the field, as

;_Q%Vbea = %%81)8[1)14&] - ja

g

where j contains the quadratic and higher-order terms. Show the noncovari-

ant current
ja = Ja + ja

is conserved. The j term can be considered the gluon contribution to the
current: Unlike photons, gluons are charged. Although the current is gauge
dependent, and thus physically meaningless, the corresponding charge can
be gauge independent under situations where the boundary conditions are

suitable.

2. Lightcone

Since gauge parameters are always of the same form as the gauge field, but with
one less vector index, an obvious type of gauge choice (at least from the point of view
of counting components) is to require the gauge field to vanish when one vector index

is fixed to a certain value. Explicitly, in terms of the covariant derivative we set
n-V=n-0 = n-A=0

for some constant vector n®. We then can distinguish three types of “axial gauges”:
(1) “Arnowitt-Fickler”, or spacelike (n? > 0), (2) “lightcone”, or lightlike (n* = 0),

and “temporal”, or timelike (n? < 0). By appropriate choice of reference frame, and
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with the usual notation, we can write these gauge conditions as V! = 9, V™ = 9,
and V? = 9°.

One way to apply this gauge in the action is to keep the same set of fields, but
have explicit n dependence. A much simpler choice is to use a gauge choice such as
Ap = 0 simply to eliminate A, explicitly from the action. For example, for Yang-Mills
we find

Ag=0 = Fy=4, = L(Fa)=—-2(4)+i(Fy)

.
(13

where ” here refers to the time derivative. Canonical quantization is simple in
this gauge, because we have the canonical time-derivative term. However, the gauge
condition can’t be imposed everywhere, as seen for the corresponding gauge for the
one-dimensional metric in subsection II1B2, and in our general discussion in subsec-
tion IIIA5: Here we can generalize the time-ordered integral for the temporal gauge

to an integral path-ordered with respect to a straight-line path in the n direction:
e—ka(m) _ e—iA(:ﬁ,x—kn)e—kn@7 e—iA(m,x—kn) — P |:€$p (—Z/ dz’ - A(.’L'/)):|

Applying this gauge transformation to n - V, as in subsection IIIA5, fixes n - A to a

T

—kn

constant with respect to n - 9; the effect on all of V is:
V’(.T) _ eiA(m,x—lm)V(x)e—iA(m,x—lm) PN V’(.T +kn) = ek”'v(m)V(x)e—’m'V(m)

For example, for the temporal gauge, if we choose “z” to be on the initial hypersurface

2% = to, then we can choose k =t — ¢y so that V' is evaluated at arbitrary time ¢:
Vi (@) = [(€VoOV, (2)e V) o] kg0

By Taylor expanding in k, this gives an explicit expression for A, at all times in terms
of A,, and F};, and its covariant time-derivatives, evaluated at some initial time, but
with simply Ag(¢, ") = Ao(to, 2"). Thus, we still need to impose the Ay field equation

Vi, Az] = (0 as a constraint at some initial time.

Excercise ITIC2.1
Show explicitly that the field equations for A; following from the action for
Yang-Mills in the gauge Ay = 0 (see excercise I1IC1.2 for J = 0) imply that

the time derivative of the constraint [V, Az] = ( vanishes.

In the case of the lightcone gauge we can carry this analysis one step further.
In subsection IIB3 we saw that lightcone formalisms are described by massless fields
with (D—2)-dimensional (“transverse”) indices. In the present analysis, gauge fixing

alone gives us, again for the example of pure Yang-Mills,

At =0 = FH=0tAl, Fr~—9tA~, F =0 A — [Vi,A_]
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S H(FU? = 30T AT - 40T A @ A - [V, AT]) + L(FYY?

1
8
In the lightcone formalism 0~ (—0;) is to be treated as a time derivative, while
0% can be freely inverted (i.e., modes propagate to infinity in the x* direction, but
boundary conditions set them to vanish in the x~ direction). Thus, we can treat A~
as an auxiliary field. The solution to its field equation is

A

1 . .
= o5V, AT

which can be substituted directly into the action:

S A B '
LE? = JA 0T AN L) = V0T A 5 [V, 0 AT
= LADA' 4 AL AT iy (0A) 00 )

— [Ai,Aj]2+ i[Ai,ﬁjLAi]%[Aj,@’LAj]

1
8

We can save a couple of steps in this derivation by noting that elimination of any
auxiliary field, appearing quadratically (as in going from Hamiltonian to Lagrangian

formalisms), has the effect
L =1az® +bx+c— —Ltar®|or 000 + Llo=o
In this case, the quadratic term is (F'~)?, and we have
L(Foby2 = L(FUY2 — Lp+ip=i _ L(p4)2 o L(Fi)2 (g% AT) (9~ AT) + L(F)?

where the last term is evaluated at

. . 1 ) ]
0= [Vm F+a] = _9tFt— [Vﬂ F+z] s Ft— o [Vz, F—i—z]
= L=g(F9) 30T 07 AT = J[V', 0" Al 55 V7, 0" )

as above.

In this case, canonical quantization is even simpler, since interpreting 0~ as the
time derivative makes the action look like that for a nonrelativistic field theory, with
a kinetic term linear in time derivatives (as well as interactions without them). The
free part of the field equation is also simpler, since the kinetic operator is now just
. (This is true in general in lightcone formalisms from the analysis of free theories
in chapter XII.) In general, lightcone gauges are the simplest for analyzing physical
degrees of freedom (within perturbation theory), since the maximum number of de-

grees of freedom is eliminated, and thus kinetic operators look like those of scalars.
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On the other hand, interaction terms are more complicated because of the nonlo-
cal Coulomb-like terms involving 1/0%: The inverse of a derivative is an integral.
(However, in practice we often work in momentum space, where 1/p* is local, but
Fourier transformation itself introduces multiple integrals.) This makes lightcone
gauges useful for discussing unitarity (they are “unitary gauges”), but inconvenient
for explicit calculations. However, in subsection VIB6 we’ll find a slight modification
of the lightcone that makes it the most convenient method for certain calculations.
(In the literature, “lightcone gauge” is sometimes used to refer to an axial gauge
where AT is set to vanish but A~ is not eliminated, and D-vector notation is still
used, so unitarity is not manifest. Here we always eliminate both components and

explicitly use (D — 2)-vectors, which has distinct technical advantages.)

Although spin 1/2 has no gauge invariance, the second step of the lightcone
formalism, eliminating auxiliary fields, can also be applied there: For example, for a
massless spinor in D=4, identifying §9° = 9~ as the lightcone “time” derivative, we
vary &é (or ¢°) as the auxiliary field:

il = &é@@éwe 4 &é@@éw@ _ &é@@éw@ _ &é@@éwe
S o= Lﬁeéw@

HDD
o gDy
1098

This tells us that a 4D massless spinor, like a 4D massless vector (or a complez scalar)
has only 1 complex (2 real) degree of freedom, describing a particle of helicity +1/2
and its antiparticle of helicity —1/2 (£1 for the vector, 0 for the scalar), in agreement
with our general discussion of helicity in subsection [IB7. On the other hand, in the
massive case we can always go to a rest frame, so the analysis is in terms of spin
(SU(2) for D=4) rather than helicity. For a massive Weyl spinor we can perform the
same analysis as above, with the modifications
L— L+ Loy + %% = L= &éM

V2 i9®0

where we have dropped some terms that vanish upon using integration by parts and

w@

the antisymmetry of the fermions. So now we have the two states of an SU(2) spinor,
but these are identified with their antiparticles. This differs from the vector: While
for the spinor we have 2 states of a given energy for both the massless and massive
cases, for a vector we have 2 for the massless but 3 for the massive, since for SU(2)

spin s has 2s+1 states.
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Excercise IT11C2.2
Show that integration by parts for 1/0 gives just a sign change, just as for 0.

In general dimensions, massless particles are representations of the “little group”
SO(D—2) (the helicity SO(2) in D=4), as described in subsection IIB3. Massive
particles represent the little group SO(D—1), corresponding to dimensional reduction

from an extra dimension, as described in subsection 11B4.

3. Plane waves

The simplest nontrivial solutions to nonabelian field equations are the general-
izations of the plane wave solutions of the free theory. We begin with general, free,
massless theories, as analyzed in subsection IIB3. In the lightcone frame only p* is
nonvanishing. In position space this means the field strength depends only on x~.
This describes a wave traveling at the speed of light in the positive ! direction, with
no other spatial dependence (i.e., a plane wave). We allow arbitrary dependence on
x~, corresponding to a superposition of waves with parallel momenta (but different
values of pT). While its dependence on only x~ solves the Klein-Gordon equation,
Maxwell’s equations are solved by giving the field strength as many upper + indices

as possible, and no upper —’s.

Generalizing to interactions, we notice that the Yang-Mills field equations and
Bianchi identities differ from Maxwell’s equations only by the covariantization of the
derivatives (at least for pure Yang-Mills). Because Maxwell’s equations were satisfied
by just restricting the index structure, we can do the same for the covariant derivatives
by assuming that only V* is novanishing on the field strengths. In other words, we
can solve the field equations and Bianchi identities by choosing the only nontrivial

components of the gauge fields to be those in V+.

The final step is to solve the relation between covariant derivative and field
strength. This is simple because the index structure we found implies the only non-

trvial commutators are
[0, V1] =iF"™, 07, V] =0
In particular, this implies that the gauge fields have no 2% dependence, and only a
very simple dependence on z¢. We find directly
At ="' F't(27)
where F""(27) is unrestricted (other than the explicit index structure and coordinate

dependence). Of course, this result can also be used in the free theory, although it

differs from the usual lightcone gauge.



C. YANG-MILLS 153

4. Self-duality

The simplest and most important solutions to the field equations are those that

are invariant under the “duality” symmetry that relates electric and magnetic charge:
[V, V] = £Leuea[VE, VY
Applying the self-duality condition twice, we find
Capefel = +5[Ca(5(‘f]

which requires an even number of time dimensions. For example, since the action
is usually Wick rotated anyway for perturbative purposes, we might assume that
we should do the same for classical solutions that are not considered as “small”
fluctations about the usual vacuum. (Such a Euclidean definition of field theory
has been considered for a mathematically rigorous formalism, called “constructive
quantum field theory”, since the Gaussian path integrals for scalars and vectors are
then well-defined and convergent. However, other spins, such as for fermions or
gravity, are a problem in this approach.) Alternatively, we can replace €gpq With
1€apeq and complexify our fields. The self-duality condition, when combined with the
Bianchi identities, implies the field equations: For Yang-Mills,

VieFig =0 = 0=45"V,Fy = 1V pepoef F = Vo 17

Since the self-duality condition is only first-order in derivatives, it’s easier to solve

than the usual field equations.

Plane wave solutions provide a simple example of self-duality, since the field
strengths can easily be written as the sum of self-dual and anti-self-dual parts: In
Minkowski space we define the self-dual part as helicity +1 ( f&ﬂ-), and anti-self-dual
as —1 (fap). For example, for a wave traveling in the “1” direction, the F*? F i ['+?
components give the two self-dualities for Yang-Mills, describing helicities £1 (the

two circular polarizations).

Before further analyzing solutions to the self-duality condition, we consider ac-
tions that use self-dual fields directly. This will allow us to describe not only theories
whose only solutions are self-dual, but also more standard theories as perturbations
about self-duality, and even massive theories. The most unusual feature of this ap-
proach is that complex fields are used without their complex conjugates, since this
is implied in D=3+1 by self-duality. (Alternatively, we can Wick rotate to 2+2 di-

mensions, where all Lorentz representations are real.) There are two stages to this
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approach: (1) Use a first-order formalism where the auxiliary field is self-dual. The
usual first-order actions for spin 1/2 (Weyl or Dirac) already can be interpreted in
this way, where “self-duality” means “chirality”. (2) For the massive theory, elimi-
nate the non-self-dual field (as an auxiliary field, as allowed by the mass term), so
that the dynamics is described by the self-dual field, which was formerly considered

as auxiliary. The massless theory then can be treated as a limiting case.

The simplest (and perhaps most useful) example is massive spin 1/2 coupled in

a real representation to Yang-Mills fields:
I = wTa,ivaaQZOZ 4 %ﬁm(wTawa 4 &Ta&oz)

where the transposition (“I”) refers to the Yang-Mills group index (with respect to
which the spinors are column vectors). Note that 1) must be a real representation of
this group (A? = —A) for the mass term to be gauge invariant (unless the mass term
includes scalars: see the following chapter). Even though ¢ and 1) are complex conju-
gates, they can be treated independently as far as field equations are concerned, since
they are just different linear combinations of their real and imaginary parts. (Com-
plex conjugation can be treated as just a symmetry, related to unitarity.) Noticing
that the quadratic term for ¢ has no derivatives, we can treat it as an auxiliary field,
and integrate it out (i.e., eliminate it by its equation of motion, which gives an explicit

local expression for it):
L — = L2370 = m®)iha + 307 fa 1]
where we have used the identity
Va'V2 = 3{V", V23 +5[Va", V] = —3000 — if”

whose simplicity followed from 1 being a real representation of the Yang-Mills group.
(Of course, we could have eliminated 1 instead, but not both.) For convenience we

also scale ¥ by a constant
Y= 27

to find the final result
L — =3O - m?)a — 2 % f. 5

Now the massless limit can be taken easily. This action resembles that of a scalar, plus
a “magnetic-moment coupling”, which couples the “(anti-)self-dual” (chiral) spinor
1o to only the (anti-)self-dual part f,s of the Yang-Mills field strength.
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For the same reason, the kinetic operator can be written in terms of just the

self-dual part S, of the spin operator:
L=—-"(@O—m?—if*Ss.)¢
This operator is of the same form found by squaring the Dirac operator:
—2y? = =2(v- V)’ = —~({7", 7"} + [1", ")) Va Vs = O — iF* S,

except for the self-duality. The simple form of this result again depends on the
reality (parity invariance) of the Yang-Mills representation; although this squaring
trick can be applied for complex representations (parity violating), the coupling does
not simplify. This is related to the fact that real representations are required for our

derivation of the self-dual form.

In the special case where the real representation is the direct sum of a complex
one 14, with its complex conjugate ¥_, (as for quarks in the Standard Model, or

electrons in electrodynamics), we can rewrite the Lagrangian as
Lc = _% -{a(D - mQ)w—a - -{aifaﬂw—ﬂ

The method can also be generalized to the case of scalar couplings, but the action

becomes nonpolynomial.

For spin 1, we start with the massless case. We can write the Lagrangian for
Yang-Mills as
L =tr(G* f,5 — %gQGiﬂ)

where G, is a (anti-)self-dual auxiliary field. Although this action is complex, elim-
inating G by its algebraic field equation gives the usual Yang-Mills action up to a
total derivative term (€%*“*F,, F,;), which can be dropped for purposes of perturbation
theory. For g = 0, this is an action where G acts as a Lagrange multiplier, enforcing
the self-duality of the Yang-Mills field strength.

If we simply add a mass term

L, =

PN

()42

then A can be eliminated by its field equation, giving a nonpolynomial action of the
form

L+ Ly — —3(0G)[(%)* + G (0G) — 39°G”

Just as the spin-1/2 action contained only a 2-component spinor describing the 2
polarizations of spin 1/2, this action contains only the 3-component G,g, describing

the 3 polarizations of (massive) spin 1.
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Excercise ITIC4.1
Find the Abelian part of this action. Show the free field equation is
(0 —m?*)Gap = 0 (without gauge fixing).

5. Twistors

In four dimensions with an even number of time dimensions, the “Lorentz” group
factorizes (into SU(2)? for D=4+40 and SL(2)? for D=2+2). This makes self-duality
especially simple in spinor notation: For Yang-Mills (cf. electromagnetism in subsec-
tion ITA7),

(Ve O = icefr (20 = 0)
where we have written primes instead of dots to emphasize that the two kinds of
indices transform independently (instead of as complex conjugates, as in D=3+1). For
purposes of analyzing self-duality within perturbation theory, we can use a lightcone
method that breaks only one of the two SL(2)’s (or SU(2)’s), by separating out its
indices into the & and & components:

Ve v =0 = Vv =0%

where we have chosen a lightcone gauge: The vanishing of all field strengths for the

covariant derivative V& says that it is pure gauge (as seen by ignoring all but the

[S]e]

/ .
29 coordinates). We now solve

[V[@a/7 V@]ﬂ/] -0 - V@o/ _ 860/ + i@@a/¢
i.e., VO — 9% has vanishing curl, and is therefore a gradient. We therefore have
AP =0, A% =0%¢; Y = —i0% 0% ¢

These can also be written in terms of an arbitrary constant twistor €* (= d2 above)
as
AP = 7 (e, ), f8 = 70 (iee50)

The final self-duality condition [V, V%] = 0 then gives the equation of motion

10¢ + (0% ¢)(0%w¢) =0

Excercise ITIC5.1
Show that the sign convention for Wick rotation of the Levi-Civita tensor

consistent with the above equations is

Fab = %eabchCda Faa/,@,@/ = Ca,@fa/,@/ =
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eaa/,@,@/’y’y/éﬁ/ = Caﬂc’yéca/é/cﬂ/’y/ — Caﬁcﬂ’yca/ﬂ/c’y/é/

Excercise IT1C5.2
Look at the action G*/f,5 for self-dual Yang-Mills in the lightcone gauge,
using the results above. Show that this action is equivalent to the lightcone
action for ordinary Yang-Mills (subsection IIIC2), with some terms in the

interaction dropped.

At least for 4D Yang-Mills, advantage can be taken of the conformal invariance
of the classical interacting theory by using a formalism where this invariance is man-
ifest. We saw in subsection TA6 that classical mechanics could be made manifestly
conformal by use of extra coordinates. Covariant derivatives can be defined in terms
Aa

(

of projective lightcone coordinates, but the twistor coordinates z see subsections

IIB6 and IIIB1) are more useful. The self-dual covariant derivatives then satisfy

[V a0, Vs = iCopfas

in direct analogy to 4D spinor notation. This equation also can be solved by the
lightcone method used above, but now this method breaks only the internal SL(2)
symmetry, leaving SL(4) conformal symmetry manifest. More general self-dual field
strengths in this twistor space are also of the form f4 _ p, totally symmetric in the

indices. We also need to impose the constraint on the field strength
2 fup =0

(and similarly for the more general case) to restrict the range of indices to the usual
4D spinor indices (in which the field strengths are totally symmetric). Self-duality
implies the Bianchi identity

VidaSBc =0

which also generalizes to the other field strengths, and is the equivalent of the usual
first-order differential equations (Dirac, Maxwell, etc.) satisfied by 4D field strengths.
As usual, it in turn implies the interacting Klein-Gordon equation, which in the

Yang-Mills case is
V14" Vaafep = —ilfeia, fp)

The Bianchi together with the z index constraint imply the constraint on coordinate
dependence
(ZAavAg + 5§)f6c =0

which eliminates dependence on all but the usual 4D coordinates. These four equa-

tions are generically satisified by self-dual field strengths. The self-duality itself of the
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field strengths is a consequence of their total symmetry in their indices, and the fact
that they are all lower (SL(4)) indices. (The z index constraint then reduces them to
SL(2) Weyl indices all of the same chirality.)

Excercise ITIC5.3

Derive the last three equations from the previous two (self-duality and z f=0).

Excercise ITIC5.4
Show that non-self-dual Yang-Mills is conformally invariant in D=4 by extend-
ing the (442)-dimensional formalism of subsections IA6 and IIIB1 (especially
excercise [1IB1.4): Show the field strength

Fupc = —i3y14[Ve, V|
satisfies the gauge covariances
§As = —[Va, N — ya)
and Bianchi identities
YaFksep) = Viakpep =0
The duality transformation
Fapc — geapcperF """
then suggests the field equations
Y Fapc = V*Fapc =0
in addition to the usual constraint
y*Fapc =0

By reducing to D=4 coordinates with the aid of the above yF’ conditions, show
F reduces to the usual field strength, and the remaining equations reduce to

the usual gauge transformation, Bianchi identity, duality, and field equation.
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6. Instantons

Another interesting class of self-dual solutions to Yang-Mills theory are “instan-
tons”, so called because the field strength is maximum at points in spacetime, unlike
the plane waves, whose wavefronts propagate from and toward timelike infinity. A
particular subset of these can be expressed in a very simple form by the 't Hooft
ansatz in terms of a scalar field: In twistor notation, choosing the Yang-Mills gauge
group GL(2) (in 242 dimensions, or SU(2)®GL(1) for 4+0),

iAAaLH = —(SZQL\LZTL ¢ = iAAaLL = —8Aaln ¢

so the GL(1) piece is pure gauge, and has been included just for convenience. Note
that this ansatz ties the SL(2) twistor index with the SL(2) gauge group indices (¢, k),
but in this notation the index that carries the spacetime (conformal) symmetry is free.
Imposing the self-duality condition on the field strength, and separating out the terms

symmetric and antisymmetric in AB, we find
ifas” = — 504" Op) "
¢ 04%Opatp = 0

The “field equation” for ¢ is just the twistor version of the (free) Klein-Gordon
equation, and its solution is the projective lightcone version of 4D point sources (see

subsection TAG6): Since for any two 6D lightlike vectors y and ¢’
y=ce(z,1,32%) = y-y =—zec(x—2)

we have the solution
k1

6= (-t yr=0
i=1

with y given in terms of z as before, and y; are constant null vectors. “k” is the number
of instantons. (The one term for k = 0 is pure gauge.) The usual singularities in
the Klein-Gordon equation at y = 1; are killed by the extra factor of ¢! in the field

equation.

Excercise ITICG6.1
Let’s check the Klein-Gordon equation for y # y; directly in twistor space.
We will need the identity

yi=0 = YiasYico) =0 (no Z)

i
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in the product
Y-Yi = %yAByiAB
Prove this identity in two ways:

a Show it follows from the definition

2 1 _ABCD
ZE

Y, = YiABYicD

b Show it follows from plugging in the solution to the lightlike condition,
YiaB = 2iA" ZiBa
¢ Now use the identity to show the above solution satisfies its field equation by

evaluating the z derivatives.

We can rewrite this in the usual 4D coordinates by transforming from z4* to A\

and 2" as 24, = A" (6%, 2,*) (see subsection 11B6):
dZAaAAaLH _ dx;w/Alw/Ln + [(d)\ay))\—lyﬂ]zAﬂAAwn — dl.;w/Alw/Ln - Z')\—lyLdX-cV

where in the first step we have used the expression for z in terms of A and z, and in

the second we used the result that
(ZAaﬁAg + 5g)¢ =0

We now recognize that the gauge transformation that gets rid of all but the “x
components” of A (whose existence is guaranteed by the condition z4% f45 = 0) uses

A itself as the gauge parameter:
dZAaAAOéLK _ _i)\—lyLd)\nV + )\—IVL(dZAaA;laVH))\HN

The net result is that A can be reduced to an ordinary 4-dimensional expression by

just setting A = § in the original expression. Then

: . . 1

LA = —0,0,0ln ¢, ¢ = ; @ — 1)
with y in terms of z and a scale factor (worldline metric) e as in subsections A6
and IT1IB1 (and dropping an overall factor that doesn’t contribute to A). Note that,
unlike the expression in twistor space, where conformal invariance is manifest, here

Lorentz invariance is tied to the Yang-Mills symmetry.

Excercise I11C6.2
Show in 4D coordinates that the gauge-invariant quantity ¢r(f?) is finite at
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the points © = z;, where A is singular. (This means that the gauge choice is

singular, not physical quantities.)

Another important property of instantons is that they give finite contributions to

the action. In vector notation, we have

d*z d*x
[ab — %eadech - 9= #t?"/ FabFab — Lt?”/ eabchachd

(27)2 1642 (2)2
The last expression can be reduced to a boundary term, since

1 1

§t?n F[achd] = gé[aBbcd]
in terms of the “Chern-Simons form”

B = tT(%A[aﬁbAc] + Z%A[QA(,AC])

Excercise I11C6.3
Although the Chern-Simons form is not manifestly invariant, its variation is,

up to a total derivative:

a Show that its general variation is

0B = % tT[((SA[a)FbC] — 8[(114(,(5146]]

b Show the gauge transformation of B is

dBape = _%8[61)\176]7 Aab = %tr()\ﬁ[aAb])

If we assume boundary conditions such that F' drops off rapidly at infinity, then

A must drop off to pure gauge at infinity:
iAm — 8 Ong

Since instantons always deal with an SU(2) subgroup of the gauge group, we’ll assume
now for simplicity that the whole group is itself SU(2). Then the action can be given
a group theory interpretation directly, since the integral over the surface at infinity
is an integral over the 3-sphere, which covers the group space of SO(3), and thus half
the group space of SU(2). Explicitly,

_ 1 3 1 _mnpq
S = b § o LB,

S 74 Po L™ 0,8) (5 0,8) (& Oug)
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= g2 7{ I etr(g 71 0,2) (g 0:8)(8 k)
where in the last step we have switched to coordinates for the 3-sphere, using the fact
[ d*z €™ f, 0, is independent of coordinate choice. In fact, in the case where g is
a one-to-one map between the 3-sphere and the group SO(3), this last expression is
just the definition of the invariant volume of the SO(3) group space. In that case, the
integral gives just the volume of the 3-sphere (27%). In general, the map g will cover
the SU(2) group space an integer number ¢ of times, and thus cover the SO(3) group
space 2q times, so the result will be
q

where we have used the fact that self-dual solutions have ¢ > 0 while anti-self-dual
have ¢ < 0.

(Anti-)self-dual solutions give relative minima of the action with respect to more

general field configurations:

0<tr / L(Fup & SeapeaF™)? = tr / (F? £ e Fry)

q is an integer, and thus can’t be changed by continuous variations: It is a topological
property of finite-action configurations. Thus the self-dual solutions give absolute
minima for a given topology. (All these solutions will be given implicitly by twistor
construction in the following subsection. Note that our normalization for the structure
constants of SU(2) differs from the usual, since we use effectively tr(G;G;) = §;;
instead of the more common tr(G;G;) = %6ij, which would normalize the structure
constants as in SO(3): fix = €5 The net effect is that our ¢g* contains a relative
extra factor of 1/2, in addition to the effective extra factors coming from our different

normalization of the action.)

Excercise IT1C6.4
Explicitly evaluate the integral for the instanton number ¢ for the solutions
of the ’t Hooft ansatz. Show that the asymptotic form can be expressed in
terms of (g),® = 2. (det g # 1 because of the GL(1) piece.) Note that
there are boundary contributions not only at * = oo but also around the
singular points = x;, which are of the same form but opposite sign. (Since

the singular parts of A are pure gauge, they cancel in F'.)

At the quantum level, instantons are important mostly because they are an ex-
ample of fields that don’t fall off rapidly at infinity, and thus contribute to [ eFF.



C. YANG-MILLS 163

However, once the restriction on boundary conditions is relaxed, there can be many
such field configurations. The instantons are then distinguished by the fact that they
are the minimal action solutions for a given topology; this makes them important for

describing low-energy behavior.

7. ADHM

Much more general solutions of this form can be constructed using twistor meth-
ods. (In fact, they can be shown to be the most general self-dual solutions that fall
off fast enough at infinity in all directions.) The first step of the Atiyah-Drinfel’d-
Hitchin-Manin (ADHM) construction is to introduce a scalar square matrix in a larger
group space

Ut = (ur', vria) (I' = (1,i))

The index « is the usual two-valued twistor index, for SU(2) in Euclidean space or
SL(2) in 242 dimensions. The other indices are

¢ (H) I(G) i
SO(N) SO(N+4k) GL(2K)
SU(N) (SL(N)) SU(N+2k) (SL(N+2k)) | GL(k,C)
USp(2N) (Sp(2N)) | USp(2N+2k) (Sp(2N+2k)) | GL(k)

The index ¢ is for the defining representation of the Yang-Mills group H, which is
any of the compact classical groups for Euclidean space, but is its real Wick rotation
for 2+2 dimensions. The index [ is for the defining representation of the group G,
a larger version of H, where k is the instanton number. Finally, the index i is for a

general linear group. We also have the matrix
Uy = (u',0")

For the SO and (U)Sp cases both U matrices are real, for the SU case they are complex
conjugates of each other, and for the SL case they are real and independent. We next
relate the two U’s by

I K K I I L I
uu" =9, U vra =0 vaur =0, Vi = CgaGii

so they are almost inverses of each other, except that the “metric” ¢ is not constrained

to be a Kronecker . We then write the gauge field as a generalization of pure gauge:

Z.AAOCLK/ = ungAocujji
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(This is similar to the method used for nonlinear ¢ models of coset spaces G/H as

discussed in subsection IVA3 below, except for g.)

Self-duality then follows from requiring a certain coordinate dependence of the

U’s: This is fixed by giving the explicit dependence of the v’s as
Viia = inAZAom UIi/a = in/AZAa

where the b’s are constants. The orthonormality conditions on the U’s then implies

the constraint on the b’s

b i abrisy = 0

as well as determining the u’s in terms of the b’s (with much messier dependence than
the v’s), and thus A. Note that the z dependence of u can be written in terms of just

x, as follows from rewriting the uv orthogonality as (after multiplying by z)
u! briay® = urb yay?® =0

and noting scale invariance. Then the x components of A can also be written in
terms of just x. We then can check the self-duality condition by calculating f: The

orthonormality condition on the U’s can be written as
87 = ur'u’, +vng" v g
where ¢% is the inverse of ¢;7. Then schematically we have
1F = 0iA+iAiA
= (0u)(0u) — (Ou)uu(du)
= (Ou)vgv(Ou)

= u(0v)g(0v)u
= ubgbu

or more explicitly
ifag” = —(u!bria) g™ (ws"b g

where self-duality is Flaa,88 = Capfas. We can also directly show A% fap = 0.
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8. Monopoles

Instantons are essentially O-dimensional objects, localized near a point in 4-
dimensional spacetime (or many points for multi-instanton solutions). Another type
of solution is 1-dimensional; this represents a particle (with a 1D worldline). Unlike
the plane-wave solutions, which represent the massless particles already described
explicitly by fields in the action, we now look for time-independent solutions, which

describe massive (since they have a rest frame), bound-state particles.

Looking at time-independent solutions is similar to the dimensional reduction
that we considered in subsection IIB4 to introduce masses into free theories, only
(1) this mass vanishes, and (2) we reduce the time dimension, not a spatial one. In
our case, the dimensional reduction of a 4-vector (the Yang-Mills potential) gives a
3-vector and a scalar, both in the adjoint representation of the group. Let’s consider
the reduction in Euclidean space, so the scalar kinetic term comes out with the right

sign. Then the 4D Yang-Mills action reduces as
sta — 55+ 1V o)

where we have labeled the scalar Ay = ¢ and by dimensional reduction dy — 0. Note
that this is the same action that would have been obtained by starting out with Yang-
Mills coupled to an adjoint scalar in four dimensions, either Minkowski or Euclidean,
and choosing the gauge Ag = 0. Thus, time-independent solutions to Euclidean
Yang-Mills theory are also time-independent solutions to Minkowskian Yang-Mills
coupled to an adjoint scalar (although not the most general, since the gauge Ay = 0
is not generally possible globally, especially when we assume time independence of
even gauge-dependent quantities). In particular, this means that time-independent
solutions to self-dual Yang-Mills are also solutions of Minkowskian Yang-Mills cou-
pled to an adjoint scalar. This allows us to use the first-order differential equations
and topological properties of self-dual Yang-Mills theory to find physical bound-state

particles in this vector-scalar theory.

Dimensionally reducing the (Euclidean) self-duality condition, we have
—[Vi, 8] = 5€ijnFji

As for instantons, the simplest solutions are for SU(2). As for the 't Hooft ansatz,
we look for a solution that is covariant under the combined SU(2) of the gauge group
and 3D rotations: In SO(3) vector notation for both kinds of indices (using the SO(3)

normalization of the structure constants [iG;,iG;] = €;1i1G),

¢i = wi0(r), (Ai); = eiparA(r)
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(We know to use an € tensor in A because of covariance under parity.) The self-

duality equation then reduces to two nonlinear first-order differential equations (the

coefficients of d;; and z;z;/r?):

—p—12Ap=2A+71A", —ry +1r2Ap=—rA +r:A°

After some massaging, we find the change of variables

¢=1L4ryp, A=1+7r4

leads to the simplification

§=-A  N=-Ap

@ then can be eliminated, giving an equation for A. Making a final change of variables,

b=AT" = e - ()= -1

we can guess the solution (with regularity at r = 0)

Y=k tsinh(kr) = A= %2 (#}nk?ﬂ) - 1) , p= T%[k?" coth(kr) — 1]

Excercise ITICS8.1
Repeat this calculation in spinor notation:

a In Fuclidean space we can choose Jgﬂ/ ~ Cqp. Show that we can then write

the 4-vector potential for the monopole as
i(Aap)™® = 002" Ay (r) + 52" A (r)

which is symmetric in neither o3 nor vé. (Compare the 't Hooft ansatz in

subsection I11C6.) However, %7 is now symmetric from dropping z°.

b Impose self-duality, where
s 5 5 5
Ouapr”’ = %5(7&5@ = 0,053 — %CagCV

from subtracting out the 9yz" piece. Derive the resulting equations for A.,

and show they agree with the above for
A = —3(A+ o)

In general, the Lagrangian of a Euclidean theory is the Hamiltonian of the

Minkowskian theory (with the sign conventions we introduced in subsection I1T1A1),
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since Wick rotation changes the sign of the kinetic energy and not the potential en-
ergy. In our case, this means the Minkowskian energy of the Yang-Mills + adjoint
scalar theory can be evaluated in terms of the same topological expression we used for
instantons: From the previous subsection, using S = f dt E and 0y = 0, we evaluate

in Fuclidean space

167292

E = fdQUi %" Bojk, €Y Boji — —eiitr(opF) = 2 tr(@[V, ¢]) = 0; tr(¢?)

where we have used an integration by parts to simplify B. (Compare excercise
ITIIC6.3a.) Since at spatial infinity

k1 1
¢i — ;i (7 2 Aij — _eijkka_Q
and effectively ¢ d®c; — 4mra;, we find

||

Jo
27 g?

Also by similar arguments to those used for instantons, we see that any solutions with
boundary conditions A — 0, |¢| — |k| as » — oo have energy at least as great as

this. There is also a topological interpretation to this energy: Writing it as

E = —ﬁf{d%i €ijitr((9) k)

we see that the energy is proportional to the magnetic flux, i.e., the “magnetic charge”
of the monopole. (The asymptotic value (¢) of ¢ picks out a direction in isospace,
reducing SU(2) to U(1).) As in electromagnetism, magnetic charge is quantized in
terms of electric charge. However, for compact gauge groups, electric charge is also
quantized. (For the usual U(1), charges are arbitrary, but for SU(2), any component
of the isospin is quantized.) The energy is thus quantized in terms of k: It is a

multiple of the energy we found for the single monopole above.

Excercise ITICS8.2
Perform a singular gauge transformation that makes (¢) point in a constant
(rather than radial) direction in isospin (SU(2)) space. Show that the isospin
component of the asymptotic form of A describes a U(1) magnetic monopole:

magnetic flux radiating outward from the origin.
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IV. MIXED

In this chapter we consider ways in which gauge symmetry combines with global

symmetries for new effects. The interplay between global internal symmetries of scalar
and spinor theories and local symmetries of Yang-Mills is important for understanding

mass generation for all spins, and is fundamental for the Standard Model.

.................. A. HIDDEN SYMMETRY .................

Symmetries, especially local ones, are clearly very important in the formulation of
interactions. However, symmetries are not always apparent in nature: For example,
while most symmetries prefer massless particles, of all the observed particles the only
massless ones are the graviton, photon, and neutrinos. Furthermore, of the massive
ones, none with different properties have the same mass, although some are close (e.g.,
the proton and neutron). There are three solutions to this problem: (1) The symmetry
is not a property of nature, but only an approximate symmetry. Some terms in the
action are invariant under the symmetry, but other terms violate it. We can treat such
“explicit symmetry breaking” by first studying the symmetry for the invariant terms,
and then treating the breaking terms as a perturbation. (2) Although the laws of
physics are symmetric, nature is an asymmetric solution to them. In particular, such
a solution is the “vacuum”, or state of lowest energy, with respect to which all other
states are defined. This case is called “spontaneous symmetry breaking”. (3) The
particles in terms of which these laws are formulated are not those observed in nature.
For example, the hydrogen atom is most conveniently described in terms of a proton
and an electron, but in its low-energy physics only the atom itself is observed as a
separate entity: The U(1) symmetry related to charge is not seen from the neutral
atoms. The more extreme case where such particles always appear in bound states is

known as “confinement”.

Generally, such broken symmetries are at least partially restored at high energies.
For example, if the symmetry breaking introduces masses, or mass differences between
related particles, then the symmetry may become apparent at energies large with
respect to those masses. Similarly, a hydrogen atom excited to an energy much larger

than its lower energy levels will ionize to reveal its constituent particles.

It often is possible to change to a set of variables that are invariant under a
local symmetry. For example, if we can define everywhere a variable that transforms
as 0¢(x) = A(z), then it can be used to everywhere undo the invariance. We can

choose the “gauge” A\ = —¢, transforming ¢ to 0 everywhere, leaving no residual
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invariance, or we can work with composite, invariant variables: E.g., ¢/ = e™ is
replaced (invertibly) with 1& = e, so qﬂ’ — qj

1. Spontaneous breakdown

We first consider symmetry breaking by the vacuum, known as “spontaneous
breakdown”. The action is invariant under the symmetry, but the vacuum state is not:
Thus, the symmetry acting on the vacuum produces other zero-energy solutions to
the field equations, but this symmetry is not apparent when considering perturbation
about the vacuum. In this case, although the symmetry is broken, there are obvious
residual effects, particularly if the breaking can be considered as “small” with respect

to some other effects.

The “Goldstone theorem” is an important statement about the effect of symme-
try breakdown: If a continuous global symmetry is spontaneously broken, then there
is a corresponding massless scalar. The proof is simple: Consider a (relative) mini-
mum of the potential, as the vacuum. By definition, we have spontaneous symmetry
breaking if this minimum is not invariant under the continuous symmetry: i.e., ap-
plying infintesimal symmetry transformations gives a curve of nearby states, which
have the same energy, because the transformations are a symmetry of the theory. But
the mass of a scalar, by definition, is given by the quadratic term in its potential,
i.e., the second derivative of the potential evaluated at the vacuum value. (The first
derivative vanishes because the vacuum is a minimum.) So, if we look at the scalar
defined to parametrize this curve of constant energy in field space, its mass vanishes.

(This field may be a function of the given fields, such as an angle in field space.)

We can also formulate this more mathematically, for purposes of calculation:
Consider a theory with potential V' (¢?). (The Lagrangian is V plus derivative terms.
For simplicity we consider just scalars.) The masses of the scalars are defined by
the quadratic term in the potential, expanding about a minimum, the vacuum. The

statement of symmetry of the potential means that
symmetry 06" =('(¢) = 0=6V =_0V  forall ¢

where we allow nonlinear symmetries, and 9; = 9/9¢". Differentiating, and then

evaluating at this minimum,
(0;V) =0 at minimum ¢ = (¢)

= 0= {(0;(C'aV)) = {(0;¢)N(B:V)) + (¢'9:0,V) = (¢")(8:0;V')
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where here the vacuum value ( ) classically means to just evaluate at ¢ = (¢). (So
classically (AB) = (A)(B).) Spontaneous symmetry breaking means the vacuum
breaks the symmetry: If this symmetry is broken, then (%) # 0, so it is a nontrivial

eigenvector of (9;0;V) (the mass matrix) with vanishing eigenvalue. So, we can write

¢ = (¢") + x{C") + ...
where Y is a massless field.

The simplest example is a single free, massless field, V' = 0. Then ( is simply a

constant. The simplest choice of vacuum is just (¢) = 0, which breaks the symmetry:
L= i(8¢)2, d0¢ = constant, () =0
Then ¢ is a “Goldstone boson”.

The simplest nontrivial example, and a useful one, is a complex scalar with the
potential
V(¢) = iX°(|¢]* — 3m?*)?
This is invariant under phase transformations d¢ = i(¢. There is a continuous set of
minima at |¢| = m/v/2. We choose (¢) = m/v/2; then the Goldstone theorem tells
us that the imaginary part of ¢ is the Goldstone field. Explicitly, separating the field

into its real and imaginary parts,

o=Js(m+v+ix) = V=m0 + X¥mp?+x°) + 5N (%" +x°)
where (¢) = (x) = 0. We could also use the nonlinear separation of the field into
magnitude and phase, ¢ = (m + p)e?/v/2: Then 6 drops out of the potential, and
its transformation (p is invariant) is the same as that of the free massless scalar. If

¢ had been real, then only the discete symmetry ¢ <+ —¢ would have been broken,
and there would be no Goldstone boson.

Excercise IVA1.1

Write the complete action in terms of p and 6.

Note that this model would naively seem to have a tachyon (state with negative
(mass)?) if we had expanded about (¢) = 0. However, since the vacuum is defined
always as a minimum in the potential (or the energy), the true states always have
nonnegative (mass)?. This is the case for positive spins for similar reasons: We saw in
subsection 1IB4 that free massive theories follow from massless ones by dimensional
reduction from one extra spatial dimension. If we had used an extra time dimension
instead, as required for the “wrong sign” for the mass term in p? + m?, there would
also be wrong signs for Lorentz indices, resulting in kinetic terms with arbitrarily

negative energy.
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2. Sigma models

The Goldstone mechanism thus produces massive particles as well as massless
ones, at least for polynomial potentials, to which we are restricted by quantum con-
siderations, to be discussed later. We now look for approximations to polynomial
scalar actions that eliminate the massive fields, but still take them into account
through their equations of motion, in the limit where their masses tend to infinity.
For example, in the above simple model, we can take the limit A — oo, which takes
the 1 mass (Am) to infinity. In this limit, the potential energy can remain finite only
if it vanishes: |¢|*> = %mQ. (In quantum language, the potential’s contribution to the
path integral is just ([ V) in that limit. Alternatively, we can neglect the kinetic
energy for |¢| in comparison to the mass or potential, and then eliminate |¢| through
its equation of motion in this approximation.) We can also enforce this limit directly

by using a Lagrangr multiplier field A:
L =406 + A6l — tm?)

The solution to the constraint is ¢ = %ew, and the action then describes just a free,

real scalar 6.

A less trivial example is a nonabelian generalization of this example: Consider
¢ as a vector of an internal SO(n) symmetry. (The previous example was the case
SO(2).) The Lagrangian is then

L = 3(09)" + 3A(¢" —m?)

The usual way to solve quadratic constraints without introducing square roots is to

use the identity
(1+i)’* = (1 +d2?)* = (20)*+ (1 —2%) = (1 +2%)

This is often used for trigonometric substitutions or simplifying integrals. For exam-
ple, when an integrand has a v/1 — 22, substituting © = sin # eliminates the square
root at the price of requiring trigonometric identities, which in turn are usually solved
by making a second variable change to y = tan(6/2). On the other hand, the above
identity suggests making instead the variable change x = 2y /(1 + y?), which actually
gives the same result, more directly, as the previous two-step method. (This identity
can also be used for finding integer solutions to the Pythagorean theorem: A right
triangle with two shorter sides of integer lengths 2mn and m? —n? has the hypotenuse

m? + n?, where m,n are integers.)
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We then can solve the constraint ¢? = m? with the coordinates for the sphere in

terms of an SO(n—1) vector x,
1.2
x  l-gx
1+ X 1+ aX
Then the kinetic term (now the whole action) becomes

(0x)°
2(09)* = iWQW

Another way to obtain this result is to use the solution of subsection TA6 to the
constraint
0=y ="’ -2y~ = y=e@"1,31%

Then the desired constraint
(y")* + (¥ =1

follows from further constraining

1:y0:612(1+%x2) = e=

Sl

2da?

= dy =édet = —F——
! (143277

yielding the above result for z = y/ v/2. We thus have a nonpolynomial action, each

term having derivatives. The original SO(n) symmetry is nonlinearly realized on the

“angle” variables y, and the vacuum ((x) = 0) spontaneously breaks the symmetry

to SO(n-1). The constant m acts as a dimensionful coupling, as seen by scaling

X — Xx/m to give the kinetic term the standard normalization.

A complex generalization of this model is described by the Lagrangian
L= 3|Vo[ + A(lg]* —m?)

where ¢ is now a complex n-component vector, V is a U(1)-covariant derivative
(Vo = (0 +1A)¢), and A is a Lagrange multiplier enforcing that ¢ has magnitude
m. This model thus has a U(n) symmetry. Since A has no kinetic term (F?), we can

eliminate it by its algebraic field equation:
L — 5100 + 52 (6'09) + A(lof — m?)

where we have applied the constraint |¢|> = m? (or shifted A to cancel terms propor-

tional to |¢|> —m?). Since the U(1) gauge was not fixed yet, we still have local U(1)
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invariance even without an explicit gauge field. We can use this invariance to fix the
phase of one component of ¢, and use the constraint from A to fix its magnitude. In

terms of the remaining (n—1)-component complex vector Y,

A
14+ Ix P 1+ ZIxP?

L1, 20X 0
IR IOt
4

(Alternatively, we can solve the constraint and fix the gauge first, then eliminate
A by its field equation.) This model is known as the CP(n—1) model (“complex
projective”).

Another example that will prove more relevant to physics is to generalize ¢ to an

n®n matrix: We then consider the Lagrangian
L = tr[3(96)1 - (99) + $X2(616 — m’1)’)

(where I is the identity matrix). Since ¢'¢ is hermitian and positive definite, the

minimum of the potential is at ¢'¢p = m?I, and we can choose
(6) =ml
using the SU(n)®SU(n)®U(1) invariance
¢ =ULoUgr ™"

(We can include the U(1) in either Uy, or Ug.) The vacuum then spontaneously breaks

this invariance to SU(n):
(@) =(¢) = UL=Ur
In the large-mass limit, we get the constraint
plo=m*l = ¢=mU UU=I, ({U)=1I, L— im’r[(0U)"(0U)]

so the field U itself is now unitary.
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3. Coset space

The appearance of the scalar fields (Goldstone bosons) as group elements can
be generalized directly in terms of the effective theory, without reference to massive
fields. Such a theory should be considered as a low-energy approximation to some
unknown theory. Although the unknown theory may be better behaved at high
energies quantum mechanically (see later), the low-energy effective theory can be
determined from just (broken) symmetry. We therefore assume a symmetry group G
that is broken down to a subgroup H by the vacuum. (I.e., the vacuum is invariant
under the subgroup H, but not the full group G.) We are interested in only the
Goldstone bosons, associated with all the generators of the group G less those of
H. These fields are thus coordinates for the “coset space” G/H: They correspond to
elements of the group G, but elements related by the subgroup H are identified.

Explicitly, we first write the field g as an element of the group G, either by
choosing a matrix representation of the group (as in the U(N) example above), or

explicitly expanding over the group generators G7y:
g = €i¢7 ¢ = ¢I(-r)GI
We then “factor” out the subgroup H by introducing a gauge invariance for that

subgroup:
g =gh b=t

in terms of the H generators H,, which are a subset of G;:
GI = (HL7 7—;)

where T; are the remaining generators, corresponding to G/H. In particular, we can
choose
gauge ¢' =0 = ¢ =¢'T;

However, G should still be a global invariance of the theory, though not of the vacuum.
We therefore assume the global transformation
/
g = gog

where gq is an element of the full group G, but is constant in z. The vacuum (g) = [
is then invariant under the global subgroup go = h™!, where thus A is constant and

go €H (i.e., G is spontaneously broken to H).

We then attempt to construct a field strength invariant under the global group

as an element of the Lie algebra of G:

g 10,9 = 0y +iA H, +iF'T; =V, +iF'T;



A. HIDDEN SYMMETRY 177

This can be evaluated in the ¢ parametrization as multiple commutators, as usual: A
and F' are both nonpolynomial functions of ¢, but with only one derivative. We have
absorbed A into a covariant derivative V because of the remaining transformation

law under the local group H:
(V+iF) =h"'(V+iF)h = V' =h"'Vh, F' =h"'Fh

where we have assumed [H,, T;] ~ Tj. (In particular, this is true for compact groups,
where the structure constants are totally antisymmetric: Then f,; =0 = f. = 0.)

Then the action invariant under global and local transformations can be chosen as
2 2
L = im*tr(F?)

In particular, the real vector model we gave in the previous subsection describes the
coset space SO(n)/SO(n—1), the complex vector describes SU(n)/U(n—1), and the
matrix model describes U(n)®U(n)/U(n).

Excercise IVA3.1
Use the coset-space construction to derive the specific ¢ models explicitly

given in the previous subsection, as just identified.

We have described how nonpolynomial actions quadratic in derivatives can arise
as a low-energy approximation to polynomial theories. Further nonpolynomial terms
quartic in derivatives (but no more than quadratic in time derivatives) can be useful
for certain applications, but these arise from polynomial actions quadratic in deriva-

tives (which are preferred for quantum reasons) only by quantum effects.

4. Chiral symmetry

Later we’ll examine a description of the strongly interacting particles ( “hadrons”)
in which they are all considered as composites (bound states) of fermionic “quarks”.
However, this theory is extremely difficult to solve, so we first consider treating the
hadrons as fundamental instead. Since there are probably an infinite number of kinds
of hadrons (or at least some integer power of 10*°; considering the (Planck mass)?),
this would require a formulation in terms of a “string” that treated all “mesons”
(bosonic hadrons) as a single entity. That possibility also will be considered later;
for now, we look at the simpler possibility of studying just the low-energy physics of

hadrons by using fields for just the lightest particles.

So far, the only observed scalar particles have been strongly interacting ones.

Some of the scalar mesons, especially the “pions”, are not only the lightest hadrons,
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but can be considered close to massless on the hadronic scale. We therefore look for
a description of pions (and some close relatives) in the massless approximation; then

mass-generating corrections can be considered.

Normally, quantum corrections can affect masses. The only way to guarantee
masslessness at the quantum level is through some symmetry; we then can study this
symmetry already at the classical level. We have seen that (unbroken) gauge invari-
ance can require masslessness for all fields except the scalar and spinor. Masslessness
for a spinor can be enforced by “chiral symmetry”: If there is a U(1) symmetry for
all irreducible spinors 1, then no mass terms (bilinears ¥{9,) can be constructed.
(Generally, each spinor can have different U(1) charges, as long as no two charges add
to zero. Of course, this U(1) can be a subgroup of a larger chiral symmetry group.)
The only way a scalar can be guaranteed masslessness is if it is a Goldstone boson. We
therefore look for a description of pions as Goldstone bosons of some spontaneously
broken symmetry. (Supersymmetry is another possibility to enforce massless scalars,

but only if there are also massless fermions, which is not the case for hadrons.)

For simplicity, we consider the coupling of scalar mesons to quarks. We could
instead couple mesons to “baryons” (fermionic hadrons), thus treating only hadrons,
but the principles would be the same, only the indices would be messier. Combining
C invariance with chiral symmetry, and including a meson potential for spontaneous

symmetry breaking, we can write the action for just the quarks and scalar mesons as

S:/dxt?"L

L =[q'5i0° 1q15 + 45"i05" a* ) + [5(00)" - (96) + §A*(0' — §m*1)?]
+A[q2 PRa + TR0, ]
where ¢ is an m®m matrix (m “flavors”), ¢z, and gr are n®m matrices (n “colors”),
and A is the “Yukawa coupling”. Besides color symmetry (local if we had bothered

to write in the Yang-Mills fields for the “gluons”, by 0 — V on the quarks), we have
the (global) U(m),®U(m)g chiral (flavor) symmetry

¢, =qUn, dp=qrU*r, ¢ =Ur'¢Ur
including the (global) U(1) “baryon number” symmetry
Uo=Ur=¢" = qy=¢"q, dp=c"qr, ¢ =29

If we think of baryon number as an SO(2) symmetry, then charge conjugation is

just the reflection that completes this to an O(2) symmetry (see excercise IIA1.2):

C: qr < qr, ¢ — ¢
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From this, and the usual CP
CP: q-—a* - ¢— 9
we find the parity symmetry
P gL < qr*, ¢ — ¢

(where for CP and P we also transform the coordinates as usual).

m

As before, the vacuum (¢) = EI breaks the flavor symmetry to the diagonal
subgroup Uy, = Ug, which commutes with parity (and is therefore no longer “chiral”).
It also gives masses to the quarks (since chiral symmetry is broken); this is a general
feature of spinors coupled to scalars under spontaneous breakdown. In the limit
A — oo (where the mass of all bosons but the Goldstones becomes infinite, but the
quark mass M = Am is fixed), the Goldstone bosons are described by the unitary

matrix U, which transforms as U’ = U; *UUg.

An interesting special case is m=1 (one flavor). The Goldstone boson of axial
U(1) can be identified with the 7°. In the limit A — oo, the Lagrangian becomes

(with a tr no longer needed)
L= (q“ﬁz’@ﬂa-qw + qﬁﬂmﬂaq*%) + im?(0m)® + %(e”qgama + e‘”qT%q*Ra-)

writing 7 for the neutral pion field. A = M/m is still the coupling of the pion to
the quarks, as can be seen by rescaling m — 7/m to give the kinetic term the usual
normalization. (The coupling m is known as the “pion decay constant”, and is usually
denoted f;. If we include leptons with the quarks, then this coupling also describes

the decay of the pion into two leptonic fermions.)

In this case, the (broken) axial U(1) transformations are
0, =", dp=c"qr, T =7—-20
The corresponding axial current (determined, e.g., by coupling a gauge vector) is
T3 = (a"0ag — ar"a*p) — m*0*n

This current is still conserved, since the field equations aren’t changed by the prop-
erties of the vacuum. The linear term is characteristic of expanding the Goldstone
field about the spontaneously broken vacuum; it corresponds to the fact that that

field has an inhomogeneous transformation under the broken symmetry.

However, in reality the pion is not exactly massless, so we should add to the

previous action a mass term for the pion, which explicitly violates the symmetry. (It
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is then a “pseudogoldstone boson”.) In the general chiral symmetry model, where the
Goldstone bosons are described by a unitary matrix, a simple term that gives them
masses while preserving the polar (parity-preserving) diagonal symmetry Uy, = Ug of

the vacuum is, for some constant &,
Ly = =€ tr(¢+ o' —V2mlI)

Since this explicitly breaks the axial U(m) symmetries, the corresponding currents

are no longer conserved. In the U(1) case, we can also add just a mass term

(for some constant (), which is the leading contribution from the general term above.

The change in the field equation for m now violates the conservation law as
8 . J A= —C’/T

This explicitly broken conservation law is known as “Partially Conserved Axial Cur-
rent” (PCAC).

5. Stiickelberg

By definition, only gauge-invariant variables are observable. Although in general
a change of variables to gauge-invariant ones can be complicated and impractical,
there are certain theories where such a procedure can be implemented very simply
as part of the normal gauge-fixing. Not surprisingly, the only nonlinearity in these

redefinitions involves scalars.

The simplest cases of such redefinitions are free theories, and are thus contained
in our earlier discussion of general free, massive gauge theories. The simplest of these
is the massive vector. As described in subsection 1IB4, the Lagrangian and gauge

invariance are

L=1F+1(mA+0¢)

0A = =0\, 0p =mA
where F,; is the Abelian field strength. Note that the scalar is pure gauge: It is
called a “compensator” for this gauge invariance. Since it has a nonderivative gauge
transformation, it can easily be gauged to zero at each point, by just choosing A =

—¢/m. This means that without loss of generality we can consider the theory in

terms of just the gauge-invariant field

A=A+ Log
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This “composite” field can also be considered as a field redefintion or gauge transfor-

mation on A. The lagrangian simplifies to
12 1, 2412
L = gF/ + Zm A/
Later we’ll see that it is often more useful to keep ¢ as an independent field.

Excercise IVA5.1
Choose the gauge A° = ¢. Show that ¢ then can be eliminated by its equa-
tion of motion, leaving only the transverse 3-vector A‘, with Lagrangian
—1AY (0O —m?)A". Show the relation to the lightcone gauge of subsection

ITIC2, using the dimensional reduction langauge of subsection 11B4.

The original Lagrangian can also be considered an unusual coupling of a massless
vector to a massless scalar: Remember that the massless scalar is the simplest example

of a Goldstone boson, with the spontaneously broken global symmetry
0p = €l'o, To=1

where we have defined the symmetry generator 7' to act inhomogeneously on ¢. We

then couple the “photon” to this charge: After a trivial rescaling of the gauge field,
L=g=F+3(Ve)?,  V=0+AT

where m is the “charge” with which A couples to ¢, which in this case happens to
have dimensions of mass. The electromagnetic current in this case is simply J = %VQ

whose conservation is the scalar field equation O¢ = 0 (with gauge-covariantized [J).

Because the spontaneously broken symmetry of the corresponding Goldstone
model is now gauged, expanding about (¢) = 0 is no longer a physical statement
about the vacuum, since ¢ is no longer gauge invariant. (As we saw, we can even
choose ¢ = 0 as a gauge condition.) Therefore, from now on, when we make a
statement such as “(¢) = 0” in such a case, it will be understood to refer to choos-
ing ¢ = 0 as the value about which to perform perturbation expansions (e.g., for

separating actions into kinetic terms and interactions).

Note that the Stiickelberg action can be generated starting from the action with

just A’, and performing a gauge transformation that is not an invariance:
l ! 1
Dropping the prime from A, this transformation is just the inverse of the one we used

to eliminate the scalar. If we start from an action that has also a coupling of A’ to

matter, we see that conserved currents decouple from ¢:

/A’-JH/A-J—%/¢8-J
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More precisely, if the only term in the action for vector + matter that is not gauge
invariant is the vector mass term (1m?A’), then the above gauge transformation

affects only that term.

6. Higgs

We have seen that spontaneous symmetry breakdown can generate masses for
spinors. We also saw how a massless vector could become massive by “eating” a
would-be Goldstone scalar, in the simplest case of a scalar without self-interactions.
We’ll now examine more interesting models: Yang-Mills theories, which describe self-

interacting vectors, must couple to self-interacting scalars to become massive.

We can expect, by considering the linearization of any Yang-Mills theory coupled
to scalars, that we will need more scalars than massive vectors, since each vector needs
to eat a scalar to become massive, and some scalars will become massive and thus
uneaten. (Only would-be Goldstone bosons can be eaten, as seen by linearization to
the Stiickelberg model.) For the simple (and most useful) example of U(n) for the
gauge group, an obvious choice for the scalar “Higgs” field is an n®n matrix. (SU(n)
can be treated as a slight modification.) The simplest such model is the one studied
in subsection IVA2: We now consider one of the SU(n) symmetries (together with
the U(1)) as the local “color” symmetry to which the Yang-Mills fields couple, and
the other SU(n) as the global “flavor” symmetry (where we use the names “color”
and “flavor” to distinguish local and global symmetries, not necessarily related to

chromodynamics).
The Lagrangian for this “Gervais-Neveu model” is then
L=tr[g=F*+ 3(Vo)' - (Vo) + (A% (66 — gm*I)?]
where V = 0+iA, and A, and ¢ are n®n matrices (but A, are hermitian). Now ¢'¢
is gauge invariant (although not invariant under the flavor group), so we still have
(¢1¢) = gm’I
as a gauge-invariant statement (but (¢) = %I , or (¢ppf) = 2m?2I, still makes sense
only for purposes of gauge-dependent perturbation expansions).

Since any complex matrix can be written as ¢ = UH/+/2, where U is unitary and
H is hermitian, we can choose the “unitary gauge” U = I (i.e., ¢ = ¢'). As for the
Stiickelberg case, this is equivalent to working in terms of the gauge-invariant fields

(defined by using this U as a gauge transformation)

_ —1 . _ 1 _ —1
A =U(—i0+ A, ¢ =LH=U"¢
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where U can be defined by

LH=\/¢lp, U=o¢V2H"

This is well-defined as long as H is invertible, which is true for small perturbations

about its vacuum value
(H)y =ml

If the perturbation is so large that H has vanishing eigenvalues, then this is equivalent
to looking at states so far away from the vacuum that some of the broken symmetry

is restored. Expanding about the vacuum (H — m/ + H), the Lagrangian is now
L= tr[éF'Q + im?A% + LOH)? + IN°m*H?

+A Y HIOH) + 5mA”H + I2mH3 4 LAZH? 4 LO2H)

Thus all particles are now massive. As for the Goldstone case, we can take the limit
A — 00 to get rid of all the massive scalars, which in this case leaves just the massive
vectors, adding only the mass term to the original Yang-Mills action. This was clear
from the nonlinear o model that resulted from that limit, by coupling that field (U)
to Yang-Mills directly.

Excercise IVA6.1
Find the chiral action for this model of the type described in subsection I11C4,

where the massive vectors are described by self-dual tensors instead of vectors.

Excercise IVA6.2
Consider again this model, for the case n=2. We modify this example by
dropping the U(1) gauge field, so we have just SU(2). Since SU(2) is pseu-
doreal, we can further restrict the Higgs field to satisfy the reality condition
¢* = C¢C. Thus, both color and flavor groups are SU(2), and ¢ is the usual
matrix representation of the 4-vector of SO(4)=SU(2)®@SU(2) (see subsection
ITA5). Repeat the analysis given above.

Excercise IVA6.3
Consider again the gauge group SU(2), but now take the Higgs field in the
adjoint representation, with no flavor group (i.e., a real 3-vector). Show that
only 2 of the 3 vectors get mass, leaving a residual U(1) gauge invariance.
Explain this in terms of the gauge transformations of the 3-vector. (Hint:
think 3D rotations.)
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................... B. STANDARD MODEL ..................

In this section we discuss the “Standard Model”, the minimal theory that de-
scribes all the observed particles and forces (except gravity). We also consider some
features of “Grand Unified Theories” (GUTSs), an extension of the Standard Model

that uses fewer multiplets.

1. Chromodynamics

One way in which particles naively described by the action can be hidden from
observation is if the force binding them is too strong to allow them to exist freely.
Such a condition is often called “infrared slavery” since this alleged property of the
force is a long-range feature, preventing the constituent particles from escaping to
infinity. This “confinement” is not a classical phenomenon, and its occurence even
at the quantum level has not yet been proven. Therefore, in this section we’ll simply
assume confinement, and describe the resultant symmetry properties, leaving the

dynamical properties for later chapters.

The assumption of “color” confinement is that the color forces are so strong that
they bind any objects of color to other such objects; thus, only “colorless” states, those
that are singlets under the color gauge group, can exist freely. Composite fields that
are invariant under the local group transformations can be obtained by multiplying
matter fields or Yang-Mills field strengths, perhaps using also covariant derivatives,
and contracting all color indices. The color gauge group is generally assumed to be
SU(n): usually SU(3), but sometimes larger n for purposes of perturbation in 1/n.
Larger n is also used for unification, but in that case the Higgs mechanism is used to

reduce the group of the massless vectors to SU(3) (times Abelian factors).

Another feature of these confined states, to be considered later, is their geomet-
rical structure. The observed spectrum and scattering amplitudes of the “hadrons”
(strongly interacting particles) indicates a stringlike identification of at least the ex-
cited states. (The ground states may behave more like “bags”.) This picture also
fits in with confinement, since the spatial separation of the quarks and antiquarks in
excited states would force the gluons that convey their interactions (and self-interact)
to confine themselves as much as possible by collapsing into “strings” connecting the
quarks. Thus, we describe a meson with an “open string”, with a quark at one end
and an antiquark at the other. Similarly, an excited glueball would no longer be a

ball, but rather a “closed string”, forming a closed loop.
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We will need to reconsider also the discrete symmetries, C, P, and T, and their
combinations. First of all, we note the “CPT theorem”: All local, hermitian, Poincaré
invariant actions are CPT invariant. This is easy to see from the fact that CPT only
changes the overall sign of the coordinates, which is effectively the same as changing
the sign of each derivative, as well as giving a —1 for each vector index on a field. Since
CPT also gives signs to dotted spinors and not undotted ones, we also get —1’s for
vector combinations of indices on spinors (wa&&; signs cancel when contracting spinor
indices on pairs of dotted or undotted spinors). Thus, all these signs cancel because
Poincaré invariance requires an even number of vector indices (in even numbers of
dimensions, from contracting with 74, and €4pcq). Alternatively, and even more simply,
in D=4 we can attribute it to having even numbers both of undotted spinor indices
and of dotted spinor indices, since we can define CPT by associating a sign with each
dotted index (including those that appear as part of a vector index). Consequently,

from now on we ignore T and consider only C, P, and CP.

Although we have considered C (and thus CP) in the context of electromagnetism,
nonabelian gauge fields require some (simple) generalization, since they carry charge
themselves. We start with the general coupling of massless fermions to nonabelian

gauge fields:
L=y’ (—i@aﬂ- + Aaf})w
where v is a column vector with respect to the gauge group, and A a hermitian
matrix. The CP transformation of the fermions then determines that of the vectors,
needed for invariance:
CP: o=y, =y, 9. =% A, = ATH
@ apf af

(remember (¢p*)* = &%, but (tha)* = =0 because of the factor of Cyp), where we
have chosen to represent parity on the coordinates as acting on the explicit 0 rather
than on the arguments of the fields. The transformation on the vector is thus parity
on the vector index, combined with charge conjugation A, = —Al' = —A,*: The
minus sign can be associated with change in sign of the coupling (as for the Abelian
case), while the complex conjugation takes into account the charge of the vector
fields themselves. (As discussed in subsection IB2, G — —G™ is an invariance of the
algebra, where g — ¢g* and g = ¢'“.) Although these terms, as well as the F? term
for the vectors, are CP invariant, this invariance can be broken by coupling to scalars:

The Yukawa coupling
Ly = ¢Ta¢¢a + h.c.
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for some matrix ¢ of scalars, would require the CP transformation
¢ = o*

(up to perhaps some unitary transformation), but unlike the vectors there is no guar-
antee that under complex conjugation the matrix ¢ = ¢*M; for real scalars ¢* and

constant matrix (Yukawa couplings) M; will preserve this form, i.e., satisfy
M = M

since the matrices M; can be complex.

The basic assumption of “chromodynamics”, or in the quantized version “quan-
tum chromodynamics (QCD)”, is that we have a nonabelian gauge theory without
fundamental scalars that couple directly (but scalars will show up when we intro-
duce electroweak interactions). Namely, we assume only Yang-Mills for the “color”
gauge group SU(n), specifically n=3, with the usual action, minimally coupled to
spin-1/2 “quarks” in the defining representation of the color group, which may have
masses. (These masses are actually generated by weakly interacting Higgs bosons,
whose coupling we consider in the next subsection; for now we include just the re-
sulting mass terms.) Such an action is automatically invariant under CP and T.
We furthermore assume invariance under charge conjugation: Just as an irreducible
real scalar describes particles that are their own antiparticles, and needs doubling (or
complexification) to define charge, an irreducible (massive) spinor cannot describe
distinguishable particle and antiparticle. Therefore, for every quark field g, (“L”
for “left”) we have an “antiquark” field gr, (“R” for “right”), and they transform
into each other under charge conjugation, just as a scalar transforms into its complex
conjugate. (A spinor can’t transform into its complex conjugate under C, since C
commutes with spacetime symmetries, like Lorentz transformations.) Besides this
doubling, and the n colors of the quarks, we also assume a further multiplicity of m
different “flavors” of quarks. Gauge invariance requires the quark masses be indepen-
dent of color, and C invariance requires the mass terms couple q;, to gg, but these

terms violate an otherwise global U(m)®U(m) flavor symmetry.

The action is then of the form
tr[gF? + (¢'0iVar + ¢'riVar) + (Zagar + h.c.)]

where we have written ¢; and gr as matrices with respect to SU(n) color (U,) and
U(m)®U(m) flavor (Usy, and Uysg) such that they transform as

qr, = UeqrUyr, qr = UXqrUsR*
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and thus the covariant derivatives can be written as
VaqL = (861 + Z.Aa)qL> VaQR = (&z - iAa*)QR

where A, are hermitian, traceless, nxn matrices. (By definition, charge conjuga-
tion takes a representation of an internal symmetry into the complex-conjugate one.)

Charge conjugation is then
C: dLa <~ 4Ra; Aa - _Aa*

while parity is

P . q%’R - qL,Ro.ﬂ Aa - _Aa

While the color symmetry is a local symmetry, the flavor symmetry is broken,

inducing the transformation on the mass matrix
—1
M' =U; MU IR

This transformation allows the mass matrix M to be chosen real and diagonal: Any
matrix can be written as a hermitian one times a unitary one. A Uyp transformation,
as a field redefinition, then can be made to cancel the unitary factor in M; then
a unitary transformation Uy, = Usr can be made to diagonalize M (while keeping
it hermitian). These diagonal elements are then simply the masses of the m dif-
ferent quark flavors. The most symmetric case is M = 0, which leaves the entire
U(m)®U(m) chiral symmetry unbroken. (See subsection IVA4.) The least symmet-
ric case is where all the masses are nonzero and unequal, leaving as unbroken only
the subgroup U(1)™, with U, = Usg. (In general, Uy, = Uyg if all masses are

nonvanishing. )

The minimal form of this action, besides making CP and T automatic, also au-
tomatically extends the discrete symmetry C to an O(2) symmetry, whose “parity”
transformation is C and whose continuous SO(2)=U(1) symmetry is the U(1) part
of the U(m) flavor symmetry, which is not broken by the mass term. It corresponds
to a charge called “baryon number”: Up to an overall normalization factor, it simply
counts the number of quarks gra, G, (which form a Dirac spinor) minus the number
of “antiquarks” qpa, ¢, .. However, such an O(2) symmetry can be defined separately
for each flavor, since (after M has been diagonalized) the action can be written as
a sum of independent terms for each flavor. In particular, each flavor has its own
separately conserved quark number. These flavor conservation laws, at the classical
level, are broken only by the weak interactions, which we have not included in the

above action. (Gravity and electromagnetism do not violate them.)
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Since confinement is a quantum effect, the details of hadronic scattering cannot be
discussed within classical field theory. However, we saw that low-energy properties of
mesons (and similarly for baryons) could be described by effective Lagrangians. The
fact that hadrons are made of quarks can be used to obtain a bit more information
even at the classical level, especially if the relevant quarks are heavy. (Heavy with
respect to what is unfortunately also a question that can be answered only at the
quantum level.) For example, in a nonrelativistic approximation, low-energy proper-
ties of hadrons can be found from just the quantum numbers, spin-spin interactions,
and masses of the quarks, while their velocities are ignored, and the gluons are ne-
glected altogether. In such an approximation, reasonably accurate predictions are

made for the masses and magnetic moments of the ground-state hadrons.

Actually, the claim that color nonsinglet states can never be observed needs a
bit of stipulation: There may be a “quark-gluon plasma” phase of hadronic matter
that can exist only at extremely high temperatures or pressures. Thus, a hypothet-
ical observer during the first moments of the universe might observe “free” quarks
and gluons. Similarly, a small enough observer, living inside an individual hadron,
might see individual quarks and gluons, since the size of his equipment would be
much smaller than what we consider “asymptotic” distances. Conversely, we could
consider the possibility of a new chromodynamic force, other than the one respon-
sible for the hadrons of which we are composed, that has a confinement scale that
is astronomical (extremely low energy), so that earthly laboratories would fit inside
the new “hadrons”. Thus, any statement about the observability of color must be a
dynamical one, and does not follow as an automatic consequence of the appearance of
a nonabelian group: Just as for the Higgs effect, confinement can be repealed under
appropriate circumstances, and the observability of color depends on the details of
the dynamics, and in particular on the values of the various parameters (momenta

and couplings).

2. Electroweak

The weak and electromagnetic interactions are mediated by observed spin-1 par-
ticles, some of which have charge and mass. Specifically (see subsection 1C4), the
massive vectors form a triplet (W™, W, Z), while there is only one massless vector
(the photon). This suggests a gauge group of SU(2)®U(1), with a Higgs effect that
leaves only U(1) unbroken. From the table of known fundamental fermions, we can see
that they fall into doublets and singlets of this SU(2), with the U(1) charge being that
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of electromagnetism. (This SU(2)®U(1) unification of the weak and electromagnetic

interactions is called the “Glashow-Salam-Weinberg” model.)

We saw in subsection IVA4 a very simple model of spontaneously broken chiral
U(m)®U(m) symmetry where masses were generated for quarks. In subsection IVA6
we saw how the same scalars could generate masses for vectors, by coupling to one
of the U(m)’s. We now combine those two models, specializing to the case m=2,
but with two slight modifications: (1) Since the defining representation of SU(2) is
pseudoreal, we can impose a reality condition on the Higgs field, which is in the (%,%)
representation of SU(2)®@SU(2):

o* = CHpC

This makes it a vector of SO(4)=SU(2)®SU(2) (See excercise IVA6.2.) It’s also the
reality condition satisfied by an element of (the defining representation of) SU(2). (See
subsection 1TA2.) This is not surprising, since the group product U’ = U UUy allows
the interpretation of a group element itself as a representation of chiral symmetry.
This is the situation described in subsection IVA2 (¢ — U in the large-mass limit),
but in this case ¢!¢ is automatically proportional to the identity (it gives the square
of the 4-vector), so in general an SO(4) 4-vector can be written as the product of a
scalar with an SU(2) element. This reality condition breaks the chiral U(1)®U(1) to
the diagonal U(1) that leaves the Higgs invariant.

(2) The gauged SU(2) is still one of the two chiral SU(2)’s, but the gauged U(1)
must now be a subgroup of the other SU(2), since the Higgs is now invariant under
the usual U(1)’s. Thus, the ungauged SU(2) is explictly broken, and this accounts
for the mass splittings in the doublets of known fundamental fermions. Remember
that observables are singlets of gauged nonabelian groups (except perhaps for Abelian
subgroups), so any observed internal SU(2) must be a global symmetry, even when
it’s broken. As described in subsection IVAG6, these singlets can be constructed as
composite fields resulting from the gauge transformation obtained from the SU(2)

part of ¢.

Using the electromagnetic charges of the various particles, we thus determine
their SU(2)®U(1) representations: For spin 1, we have W=(1,0) and V=(0,0), where
the first entry is the “isospin” and the second is the U(1) charge. For spin 0, we
have ¢=(3,£3), choosing the U(1) generator as the diagonal one from Ug. Finally,
for spin 1/2, we have for the leptons I;=(1,—1), which combines with ¢ to pro-
duce (0,0)®(0,—1), and [g=(0,1). Similarly, for the quarks we have g,=(1, %), and
qr=(0,— £ 3). The Lagrangian is then

L=1Li+ Lo+ Ly
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Ly = gz FX(V) + gatr F*(W)

8g/2
Lo = tr[3(V9)' (V) + 12 (60 — 3m*)?]

Lyjo = tr(¢livep) + tr KA()+/\O ) qrqrd + ARl (é) + h.c.]

where the fermions ¢ = (qz, qr, (L, [r), and the SU(2)®@U(1) covariant derivative acts
as

Vo =0¢+iWe—isVe(, ")
VL = 0q, — iqtW + itV
Var = qr+isVar [~ + (1 °)]
Vi, =0l —il,W — iV
Vig =0l +iVig

For simplicity we have ignored the indices for color (and its gauge fields, treated in
the previous section), families (treated in the following subsection), and spin. We
have also used matrix notation with respect to the local SU(2) (gauged by W) and
the global SU(2) (explicitly broken in L/, by the gauging of a U(1) subgroup, the
Yukawa couplings, and the chirality of the massless neutrinos): Thus W is a traceless
hermitian 2x2 matrix, ¢ is also 2x2 but satisfying the “reality” condition given above
(traceless antihermitian plus real trace), qr, qr, and [, are complex 2x2 matrices,
and [ is a 2-component column. (By definition, the diagonal parts of W and ¢ are
electromagnetically neutral.) The quark Yukawa coupling is diagonal in the broken
SU(2) to preserve the local U(1) symmetry. (The ¢r here is trivial for the lepton

Yukawa term, but we have left it for generalization to more than one family.)
In the unitary gauge for the local SU(2),
where ¢ is a single real scalar, the simplifications to the Lagrangian are

Lo — 1(09)* + g tr{[W — 5V (i %)} + §X*(9* = m?)?

AL O 1
Ly — tr(szvw) o tr {( O+ A ) qhqr + ALl (0) + h.c.]

We then can expand ¢ about its vacuum value m: The lowest order terms give masses
for most of the vectors and fermions: The massless fermions are the neutrinos, while
the massless vector gauging the unbroken U(1) (a combination of the original U(1)

with a U(1) subgroup of the SU(2)) is the photon (of electromagnetic fame). The
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mass of the remaining vectors accounts for the weakness and short range of the “weak”

interactions.

Excercise IVB2.1
Diagonalize this Lagrangian with respect to the mass eigenstates. For conve-

nience, normalize

g= %go cos by, g = gosin Ow

where Oy is the “weak mixing (Weinberg) angle”.

a Find explicitly the masses for all the particles in the Standard Model (first
family for fermions) in terms of the couplings m, A, go, 0w, A+, A. Show from
the experimental values for the vector masses given in subsection IC4 that
sinQy ~ .223.

b Find all the other couplings of the mass eigenstates. Show that, with the

conventional electric charge assignments,

11 1
(Hint: Rather than rescaling the vectors, note that the generated mass term,

and the given couplings of V' and W, suggest defining
W=w-W(Q° ) = V=v+kz,  V2W'=q+kZ

in the conventions of subsection ITA1, for the new fields Z and photon ~, for

appropriate constants k;.)

Note that, unlike the strong (chromodynamic) or purely electromagnetic (or even
gravitational) interactions, the weak interactions break every discrete spacetime sym-
metry possible. (The others break none. CP violation will be discussed in the
following subsection. Of course, CPT is always preserved.) Sometimes this is at-
tributed to the presence of a chiral symmetry, used to reduce 4-component spinors to
2-component; however, we have already seen that in general chiral and parity symme-
tries are unrelated. (You can have either without the other. This fact will be further
discussed in subsections IVB4 and VIIIB3.) A better explanation is to attribute
P and C to doubling, which converts spinors from 2-component to 4-component:
2-component spinors are the simplest description of helicity/spin %; 4-component
spinors are useful only to manifest a larger symmetry, when it exists. The weak inter-
actions violate parity because the neutrino is not doubled, and because the fermions

that are doubled no longer have a symmetry relating their two halves.
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3. Families

In the Standard Model (and its simpler generalizations) there is no explanation
for the existence of more than one family of fermions. However, the existence of 3
families does have interesting consequences. Most of these follow from the form of the
Yukawa couplings, and thus the fermion masses. In subsection IVB1 we considered
redefinitions of the fermion fields as unitary flavor transformations. These allowed us
to obtain the simplest form of the mass matrices, since they were not flavor singlets,
and thus transformed. We now perform similar transformations, but only on the
family indices, since transformations that don’t commute with the gauge symmetries
would complicate the other terms in the action. Now ignoring spin, color, and local
flavor indices, and using matrix notation for the family indices, the fermions transform
as

4 = Usr,  Qpe = qreUgrs™, 1 =1Uy, Uy = RUR"

where qr, qr+, I, and [g have m components for the m families. ¢rs+ are the 2
components of the (explicitly broken) global flavor doublet gg. We thus have 5 U(m)
symmetries, all broken by the Yukawa couplings: These field redefinitions induce

transformations on them,
Y= UpAiUype, N = U AUy

As in subsection IVB1, Ujg+ and Ujr can be used to make A; and A hermitian.
Then Uy, can be used to make A diagonal, also as in subsection [IVB1, leaving a U(1)™
symmetry U;;, = Uy, corresponding to separate conservation laws for electron number
(including its neutrino), muon number, and tauon number for the 3 known flavors.
However, the quark sector works a bit differently: We can use Uy, to diagonalize A
or A_, but not both. This leaves another U(1)™ symmetry U, = Ujpy = Ugr—. If Ay
has been diagonalized, then 1 of the m U(1)’s, corresponding to total quark number
(baryon number) conservation, leaves A_ invariant, while the remaining m—1 U(1)’s
can be used to eliminate some of the phases of the complex off-diagonal components
of A_.

The remaining global flavor symmetries are thus m lepton U(1)’s and 1 quark
U(1). The remaining Yukawa couplings are the real, diagonal A, describing the m
masses of the massive leptons (the neutrinos remain massless), the real, diagonal
Ay, giving the m masses of half of the quarks, and the hermitian A_, consisting
of m diagonal components, describing the masses of the other quarks, m(m—1)/2
magnitudes of the off-diagonal components, and (m—1)(m—2)/2 phases of the off-

diagonal components. These phases violate CP invariance: CP, besides its affect on
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the coordinates, switches each spinor field with its complex conjugate. Since the
complex conjugate term in the action uses the complex conjugates of the A’s, this
symmetry is violated whenever any of the components have imaginary parts (after
taking into account all possible symmetries that could compensate for this, as we
have just done). Note that CP is violated only for 3 families or more. (C and P
are separately violated for any number of families by the SU(2)®@U(1) coupling: As
discussed in subsection IVB1, C invariance of the strong interactions is the symmetry
qr <> qr.) Since we can choose to transform away the phases in the subsector of the
2 lighter quark families, the large masses of the heavier quarks suppress this effect,

accounting for the smallness of CP violation.

Since observed particles are mass eigenstates, it’s convenient to perform a further
unitary transformation (the “Cabibbo-Kobayashi-Maskawa matrix”) that diagonal-
izes the mass matrix. Although this is clearly possible by the arguments of subsec-
tion IVBI, it is not part of the unitary transformations considered in this subsection
because it does not commute with the SU(2) gauge symmetry: After such a trans-
formation, we find that the components of each SU(2) quark multiplet are linear

superpositions of different families.

Excercise IVB3.1
Perform this diagonalization explicitly for the case m=2 (two families), using
the two lightest families of quarks and leptons as listed in subsection 1CA4.
Which particles mix? Parametrize this mixing by an angle 6. (the “Cabibbo
angle”).

An important experimental result with which the Standard Model is consistent is
the suppression of “flavor-changing neutral currents (FCNC)”. The two electrically
neutral gauge fields in this model, the Z and the photon 7, couple to currents that are
neutral with respect to the U(1) symmetries associated with each of the quark (flavor)
numbers. This is true by construction before the unitary CKM transformation, but
this transformation also leaves these two currents invariant (the “Glashow-Iliopoulos-
Maiani mechanism”). Thus, at the classical level we do not see effects such as the
decay K° — Z — p*p~, which would violate this “conservation law”. Furthermore,
the quantum corrections are suppressed (though nonvanishing) for similar reasons:
For example, the lowest-order nonvanishing quantum correction comes from replacing
the Z with a W+ W~ pair. Without the CKM matrix, this contribution would vanish;
treating CKM, and its resulting contribution to quark masses, as a perturbtation, the
resulting contribution is suppressed by a factor of mg /m?%,. The absence of FCNC is

an important constraint on generalizations of the Standard Model.



B. STANDARD MODEL 195

4. Grand Unified Theories

The Standard Model gives a description of the weak and electromagnetic inter-
actions that describes the spin-1 particles in terms of gauge fields, and accounts for
all masses by the Higgs effect. However, it does not give any unification, in the sense
that we still have 3 groups (SU(3), SU(2), and U(1)) for 3 interactions (strong, weak,
and electromagnetic), and a large variety of spin-1/2 fields that are unrelated ex-
cept by color and broken SU(2) flavor. Grand Unified Theories unify this symmetry
by forcing all 3 gauge groups to be subgroups of a simple group, which is broken to
SU(3)®SU(2)®U(1) by Higgs (and then broken to SU(3)®@U(1) by more Higgs). This
means introducing new spin-1 particles that are unobserved so far because of their
very large masses. On the other hand, the known fermions are then grouped together
in a small number of multiplets without introducing new fermions (except perhaps
partners for the neutrinos to allow them to have small masses). Unfortunately, this
requires a more complicated (and ambiguous) Higgs sector, with separate spin-0 mul-
tiplets and couplings for first breaking to SU(3)®SU(2)®U(1) and then breaking to
SU(3)®U(1); we won't discuss those Higgs fields here.

The simplest such model uses the group SU(5). Recall the SU(3)®@SU(2)@U(1)

representations of each family of fermions:
qr = (37%7%)7 dr+ = (370>%)> qr- = (3707_§)> L= (17%7_%)7 lr = (1707 1)

where the first argument is the dimension of the SU(3) representation (3 being the
complex conjugate of the 3), the second is the SU(2) isospin, and the third is the U(1)
charge. An SU(3)®@SU(2)®@U(1) subgroup of SU(5) can be found easily by taking
the 5-component defining representation and picking 3 components as the defining
representation of SU(3) and the other 2 for that of SU(2): Le., consider a traceless

hermitian 5x5 matrix as an element of the SU(5) Lie algebra, and take

SU3) — +1 x U(1) 0 )

(SU(5)) — ( 0 SU((2) + 31 x U(1)

or in other words
5 — (3707 _%) D (17 %7 %)

From this we recognize the fermions as falling into a 5 @ 10, where the 10 is the
antisymmetric product of two 5’s, which consists of the antisymmetric product of the
two 3’s (a 3), the antisymmetric product of the two SU(2) doublets, and the product
of one of each:

5— (3,0, %) @ (1, %7 _%) =qr+ D11
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10 — (3707_§) 52 (1707 1) b (37%7%) = 4RrR- @ZR@QL

A more unifying model is based on SO(10). A U(5) subgroup can be found from
the spinor representation by dividing up the set of 10 Dirac v matrices into two
halves, and taking complex combinations to get 5 sets of anticommuting creation and

annihilation operators. (See excercise IC1.2.) The Dirac spinor is then

(L-3) @63 @010,-3)&(10,5) @63 e (13)
in terms of the SU(5) representation and the U(1) charge. This Dirac spinor is
reducible into Weyl spinors 16 @ 16; in fact, i7v/27y_ is just (—1)Y+1/2 in terms of the
U(1) charge Y. (The SO(10) generators are even in oscillators, and thus do not mix

even levels with odd.) We then have
16 — (1, -3) & (10,—3) & (5, 5)

Ignoring the U(1) charge, these are the multiplets found for each family in the SU(5)
GUT, plus an extra singlet.

A simple way to understand this extra singlet is to look at a different path of
breaking to SU(3)®@SU(2)®@U(1): Looking at the vector (defining) representation of
SO(10), we can break it up as 6+4 (in the same way we broke up the 5 of SU(5)
as 3+2) to get the subgroup SO(6)®SO(4)=SU(4)®SU(2)®@SU(2). We can also see
that a Dirac spinor of SO(10) (16616) will be a Dirac spinor of SO(6) (44) times
(not plus) a Dirac spinor of SO(4), while the Dirac spinor of SO(4) is a defining
representation of one SU(2) ((3,0)) plus a defining representation of the other SU(2)
((0.3)). Thus,

16 — (4,1,0) & (4,0, 1)

where we have used the fact that y_; (used for projection to Weyl spinors) of SO(10)
is proportional to the product of all the y-matrices, and thus the product of v_;’s for
SO(6) and SO(4).

Looking at this model (“Pati-Salam model”) as an alternative to SU(5) (but with
a semisimple, rather than simple, group, so it unifies only spin 1/2, not spin 1), we
now look at breaking SU(4)—U(3)= SU(3)®@U(1) (using 4=3+1, as we did 5=3+2
for SU(5)), and breaking one SU(2)— U(1). We then find

(47 %70) - (37 _%, %,O) ) (1, 1, %,0) = (L &) lL
(4,0,5) = (3,5,0,3) ® (3,5,0,—3) & (1,-1,0,3) ® (1, 1,0, —3)

=qr+ Dqr- DI D Ir-
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where the arguments are the SU(3) representation, the U(1) charge from SU(4),
the SU(2) isospin, and the U(1) charge from the broken SU(2). If we choose the
U(1) charge of SU(3)®@SU(2)®@U(1) as —1/2 times the former of these two U(1)
charges plus 1 times the latter, this agrees with the result obtained by way of SU(5).
However, we now see that all the left-handed fermions are contained within one
SU(4)®SU(2)®SU(2) multiplet, and the right-handed within another, but with a
partner for the neutrino. Also, one of the SU(2)’s is that of SU(3)®SU(2)®@U(1),
while the other is the other SU(2) of the Standard Model, which was broken explic-
itly there to U(1), whereas here it is broken spontaneously. Thus, there is a local
chiral SU(2)®SU(2) flavor symmetry.

SO(10)
N\
SU(4)®@SU(2),®@SU(2) g
S~ 10 GeV?
SU(3)®@SU(2),@U(1)x
! ~ 100 GeV
SU3)®U(1)

SU

YECIN

Furthermore, the SU(4)®SU(2)®SU(2) model is invariant under C: In general, C
is just a permutation symmetry. In this case, it simply switches the two multiplets
of each family,

C: (47%70) H(ZL>O>%)

Combining with the usual CP, this model is thus also invariant under P:
P (4,3,0) < (4,0, )% e, (4, 5,0) < ¥.(4,0,3)

But both C and P are broken spontaneously on reduction to the Standard Model.
However, SO(10) lacks C and P invariance (contrary to some statements in the liter-
ature), since there is only a single complex representation for each family of fermions
(and thus no nontrivial C; of course, there is still CP, at least for the vector-spinor
coupling, as always). In fact, the C of SU(4)®SU(2)®@SU(2) is just an SO(10) trans-
formation: Although SO(10) is not O(10) (which is why it lacks a C), it still includes
reflections in an even number of “axes”, since reflection in any pair of axes is a 7 rota-
tion (just as for SO(2)). Thus, breaking 10 — 6 + 4 includes not only SO(6)®SO(4),
but also the reflection of an odd number of the “6” axes together with an odd number
of the “4” axes — a combined “parity” of both SO(6) and SO(4). (They are all the
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same up to continuous SO(6)®SO(4) transformations.) This parity of the internal

space is the C given above. (We saw a similar situation for O(2) in subsection IVB1.)

Since GUTs unify quarks and leptons, they allow decay of the proton. However,
since this requires simultaneous decay of all 3 quarks into 3 leptons, it is an extremely
unlikely (i.e, slow) decay, but barely within limits of experiment, depending on the
model. Proton decay is still unobserved: This eliminates the simplest version of the
SU(5) GUT.
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.................... C. SUPERSYMMETRY ...................

In section IIC we studied some general properties of supersymmetry in arbitrary
dimensions, and its representations in D=4. We now consider 4D interactions, by
introducing gauge fields defined on superspace, and their actions. A complete dis-
cussion of supersymmetry would require (at least) a semester; but here we give more
than just an overview, and include the basic tools with examples, which is enough for
many applications. Quantum aspects of supersymmetry will be discussed in chapters
VI and VIII, supergravity in chapter X, and some aspects of superstrings in chapter
XI.

1. Chiral

We first consider some field equations that appear in all free, massless, super-
symmetric theories. Of course, since the theory is massless it satisfies the massless
Klein-Gordon equation by definition: [ = 0. From our earlier discussion of general
properties of supersymmetry, we also know that paﬂqﬂcb paﬂq ® = 0. These don’t
look covariant, but noticing that pq differs from pd only by O terms (because of the
index contraction), which already vanishes, we have the field equations

pw%®:pw%¢20

These equations imply the Klein-Gordon equation, as seen by hitting them with
another d and using the anticommutation relations {da,cfﬂ-} =P They imply

stronger equations: By evaluating at # = 0, we find
P =" =0
the usual for massless spin 1/2.

Another equation that can be imposed is the “chirality” condition

This requires that ¢ be complex, otherwise we would also have d,¢ = 0 and thus p¢ =
0 by the anticommutation relations. The component expansion is given completely
by just the d’s and not the d’s:

¢| = A, (da¢)| = Ya, (d2¢)| =B

where A and B are complex scalars, and we use the normalization

& = Ldvd,
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All other components are z-derivatives of these, since the d’s can be pushed past the
d’s (producing p’s) until they annihilate ¢. Another way to state this is to use the
fact

dy = e U/29,eV/?, d. = eU/25&€—U/2; U — gagﬂ'p ;

to solve the chirality constraint as
6(x,0,0) = ¢"6(x,0)

where é is independent of #: It is defined on “chiral superspace”. (In this equation U
generates a complex coordinate transformation.) Another way to solve the chirality
constraint is to use the covariant derivatives: Since d,dgd, = 0 by anticommutativity

(and similarly for d’s),

d:p=0 = ¢=d%

where 1 is a “general” (unconstrained) complex superfield. It is the “prepotential”
for the field ¢.

From the anticommutation relations we find
[d°, d?) = p**ds
Since this must vanish on ¢, we find
dod’¢ = a?a-d% =0 = paﬂ-d% =0 = d’) = constant

(We can safely ignore this constant, at least when considering the free theory: It
corresponds to a term in the action linear in the fields.) This field equation, together
with the chirality constraint, is sufficient to determine the theory: A is the usual free

(complex) scalar, 1, is the usual free spinor, and B is a constant.

To describe interactions of this (“scalar”) multiplet, we keep the chirality condi-
tion, since that greatly simplifies the field content of the superfield. In fact, this is
clearly the simplest off-shell superfield we can define, since it already has the smallest
number of fermions (as do the coordinates of chiral superspace). (“Off shell” means
all components less gauge degrees of freedom.) This means that the equation d?¢ = 0
will be generalized, since it implies the Klein-Gordon equation. The simplest way to

do this is by constructing an explicit action, our next topic.
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2. Actions

The construction of actions in superspace is different from ordinary theories be-
cause the geometrically simple objects, the potentials, are constrained, while the un-
constrained objects, the prepotentials, can be awkward to work with directly. (This
problem is magnified with extended supersymmetry, whose actions we don’t consider
here.)

We start with the simplest supermultiplet, the chiral superfield. Since chiral
superfields are defined on chiral superspace, a natural generalization of a potential

(nonderivative) term in the action to superspace is

Sy = /dm a0 f(¢) + h.c.

in terms of some function (not functional) f of chiral superfields ¢ (the “superpoten-

tial”). We can ignore any § dependence because it contributes only total derivatives:

¢ =e"2(x,0) = (o) =c"?f(9)

Integration over 6 is defined as in subsection IA2; however, now we can replace partial

derivatives with covariant ones, since the modification is again only by total deriva-

/dxd29:/dxd2

with an appropriate normalization. This turns out to be the most convenient one,

tives:

since it allows covariant manipulations of the action, and the 6 integration can be per-
formed covariantly: Since we know that the result of § integration gives a Lagrangian

that depends only on z, up to total derivative terms, we can evaluate it as

/ dr &0 £(6) = / dz [d2f(9))

_ / dx [f(6)(d6)] + 1" (B) 1D (dad)]

(suppressing indices on multiple ¢’s). This gives the result directly in terms of com-
ponent fields, using the covariant method of defining the component expansion: In

the conventions of the previous subsection, this part of the action becomes
[ e 7B + ke

We now consider integration over the full superspace. As a generalization of the

above, we can write

/ dx d*0 K(¢,¢) = / dr (*d°K)|
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Supersymmetric versions of nonlinear ¢ models can be written in this way; here we
consider just the case where K is quadratic, which is the one interesting for quantum
theory. Since a function of just ¢ (or just ¢) will give zero in the d*d integral, we

choose
K:—éqb = Soz—/dxd40¢¢
Explicitly,

Ly = B (~60) = ~d(d0)6 = ~(300)0 + (100 16)dat) — (P O) ()

— —AIOA+ wma%é — BB
where we have used the commutation relations of the covariant derivatives to push all
d’s past d’s to hit ¢. Clearly, this term by itself reproduces the results derived in the
previous subsection based on kinematics, so it is the desired massless kinetic term.
This could also be seen by deriving the superfield equations of motion by varying

the action. Since ¢ is constrained, it can’t be varied arbitrarily; varying instead the
prepotential 1 (¢ = d?1)), we find d?¢ = 0 (and the complex conjugate).

We can now see the influence of adding the superpotential term to the action:
The result of combining the two terms, and then eliminating the auxiliary field B by

its equation of motion, is
So+ S — L=—-Al0A+ w%@a%é + 1 (A + [f"(A)30*%a + h.c.]

For example, a quadratic f gives mass to the physical scalar and spinor. This action is
invariant under modified supersymmetry transformations, where the auxiliary fields
are replaced by their equations of motion there also; those transformations then
become nonlinear in the presence of interactions. Note that the scalar potential is
positive definite; this is a consequence of supersymmetry, since it implies that the

energy is always positive.

Excercise IVC2.1
Find the explicit form of the component-field action for arbitrary K (¢, ¢;)
and f(¢%) for an arbitrary number of chiral superfields ¢, including all in-
dices. Eliminate the auxiliary fields from the action, and find the modified
supersymmetry transformations. Show by direct evaluation that the action is
still invariant.

Tk

As a notational convenience, we can drop the after expanding a superspace

action in components: For example, we can write simply

Yo =da¢,  B=d
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After performing the f-integration as above by using derivatives d and d, and then
“evaluating” these derivatives on ¢ by writing ¥ and B, the component action is
expressed completely in terms of such superfields and only spacetime derivatives 0 -.
This component action is independent of 6 (the Lagrangian is independent up to to%al
spacetime derivatives): This is the statement of supersymmetry invariance. Thus, we
can choose to evaluate at 8 = 0, or # = €, or whatever; it is irrelevant. It is then
understood that the relation to the usual component actions is simply to treat the
superfield as a component field, since the f-derivatives (in d and [ df) have been

eliminated. From now on we will generally drop the |s.

Since chiral superfields are essentially independent of @, not only integration is
modified, but also (functional) variation. Since a chiral superfield is (up to a trans-

formation) an arbitrary function on chiral superspace, we define

05
0¢

for an arbitrary variation of a chiral superfield ¢, and similarly for varying ¢. In

5S[¢] = / dx d*0 (60)

evaluating such variations, we make use of the identities
/dxd‘l@L:/dde@d?L

id*¢ =106  (PdPd® =104

Thus, to vary a general action, it is convenient to first integrate over 8, and then vary

in the naive way: For example,

S:—/dx 40 ¢¢ + de 420 f(¢) + h.c.

0S -
0= — = —2 !
5 ¢+ f'(9)
Excercise IVC2.2
Check for this action that the component expansion of the superfield equations

of motion agree with the variation of the corresponding component action.

3. Covariant derivatives

The supersymmetric generalization of nonabelian gauge theories can be derived by
similar methods. We first write the supersymmetry covariant derivatives collectively

as

dA = (da,d-,8 ) = EAM8M

[} [e7e%
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Ont = (O, 0, 0) = 002N, M = (0",0%, 2™

Unlike the nonsupersymmetric case, the “vielbein” E4M has 6 dependence even in

“flat” superspace, and thus the “torsion” 7' is nonvanishing:
[da,dp} = Tap®dc
T .7 =T.7 = —i5157, rest =0
af Lo il

We now gauge-covariantize all the supersymmetry-covariant derivatives:
Va=da+1iAx
The covariant field strengths are then defined as
[V, Vp} =TupVe +iFap

From our analysis of general representations of supersymmetry in D=4 in subsection
IIC5, we know that the simplest supersymmetrization of Yang-Mills is to include a
spinor with the vector, in terms of physical degrees of freedom. (The spinor and
vector each have two physical degrees of freedom, one for each sign of the helicity.)
Off shell, Fermi and Bose components must still balance, so there must also be an
auxiliary scalar. From dimensional analysis, the field strengths must therefore satisfy

Fop=F..=F .=0;, F .=—iCogW. F. .=—iC..Ws
B B BB af

Q «a a,B a,
where W, | is the physical spinor.

The constant piece of the torsion implies stronger relations among the field
strengths than in nonsupersymmetric theories. For super Yang-Mills we find from
the Jacobi identity for the covariant derivatives the Bianchi identity for the field
strengths

ViaFpey = Tiap” Fpic

Specifically, the dimension-1 constraints above on the field strengths imply the dimen-

sion-3/2 algebraic constraint that defines W,, as well as

F. .= aﬁ%V(&Wﬂ-)—i—C&ﬂ-%V(an)

aa,[6
They also imply that W, is covariantly chiral and satisfies a “reality” condition,
VWs;=0, VoW, + VW, =0

The most straightforward way to derive these results is to just evaluate the Jacobi

identities directly. We begin with a weaker set of conditions, both of dimension 1, that
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will be found (in the following subsection) to be necessary and sufficient for solving
explicitly. One directly determines the vector derivative in terms of the spinor ones:

Fi=0 = =iV :={VaVy}

Since one could always define the vector covariant derivative this way, imposing this

condition simply eliminates redundant degrees of freedom.

The remaining constraint (including its complex conjugate) allows coupling of
super Yang-Mills to the chiral superfield:
V.p=0 = 0= {@ﬁf}}qﬁ = iF, 0

«

It also implies the maintenance of certain free identities, such as
VaVs = 5[Va, Vi + 3{Va, Vs} = CpaV*

(Such constraints appear also for first quantization, e.g., in superstring theory, when-
ever a supersymmetric system is put in a background of a supersymmetric gauge field
of higher superspin. This should not be confused with background field equations
imposed by any gauge system put in a background of the same type: see subsection
VIBS.)

Thus, our minimal set of constraints can be written directly in terms of the field
strengths as

Fag=F..=F .=0
af af

but for our purposes it will prove more convenient to write them directly as (anti)com-
mutators:

The solution to the dimension-3/2 Jacobis are then
[V {Vs, V'y)}] =0 = trivial

Vi AV V4 VoAV Vol =0 = [Va V] = CoplV s

for some field W, simply applying the constraints to drop {V,,Vg} and replace
{Va, vﬂ} with V 5 Similarly, we find from the dimension-2 Jacobis

(Ve [V Vo + [V, Ve Vel =0 = VoW, =0

[Va&, {Vﬂ,v,y}] + {Vﬂ, [Vv, Va ]} + {VV, [Vﬂ, \Y ]} =0

. .
o [e7e%
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= ViV, ) = iCapf 4 Cosfun). fos=35VWa,  VWat VW, =0
where we separated the last equation into its (Lorentz) irreducible pieces. (The
dimension-5/2 and 3 identities are redundant.)

Excercise IVC3.1
Explicitly evaluate all the remaining Jacobi identities, and show that they

imply no further conditions on W,,.

4. Prepotential

We saw in the previous subsection that coupling super Yang-Mills to matter gave
directly one of the minimal constraints on the super Yang-Mills fields themselves.
Hence, as for ordinary Yang-Mills, the definition of the gauge theory follows from
considering the transformation of matter, and generalizing it to a local symmetry. As
for self-dual Yang-Mills (see subsection IIIC5), the vanishing of some field strengths

implies that part of the covariant derivative is pure gauge:
{(Va, Vs} =0 = V,=e %"

However, since {V,, V .} # 0, this gauge transformation Q (“prepotential”) is com-

plex. We therefore have the covariantly chiral superfield

a
Alternatively, we could combine this exponential with that already contained in the
free spinor derivative:

vV, = e—U/Q—Qﬁan/2+Q7 ¢ = eU/2+Qé7 %é -0

U + 2€) is the analog of the covariant derivative for the Yang-Mills prepotential. This
is a hint at supergravity: U is just the flat piece of the supergravity prepotential.
We thus see that supersymmetry automatically gives gravity the interpretation of the

gauge theory of translations.

Component expansions are now defined with Yang-Mills-covariant derivatives:
Vad = ta, V:¢ =B

VW5 = fap +iCapD,  V?W, = —iVaﬂWﬂ-

where we have used the Bianchi identities for W, and f. (not to be confused with Fi,g)
is the usual Yang-Mills field strength (in spinor notation). The “vector multiplet”
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thus consists of the component fields A, (the gauge field whose strength is f), W,,

and D (auxiliary). (As explained earlier, we drop all |’s.)

Note that the gauge parameter is real, while the matter multiplet is (covariantly)
chiral. The resolution of this apparent inconsistency is that solving the constraints

introduces a new gauge invariance:
- ik B , o -
V=€tV e Vy=ee = ¥ =P dA=0

¢/:€iK'¢7 ¢:€Q¢E = é/zeiAé
This suggests the definition of a new (“chiral”) representation, where we use the

obvious field é and the chiral gauge parameter A replaces the real one K: Making a

nonunitary similarity transformation,

A~

Va=e W4 = V.=d. Vo=e " de", e =ee?

« «
~ —Q (o — Q ~ (o A~ V
o=ec, o=0" = d;0=0, ¢=(9)e
@;1 _ ez‘AﬁAe—iA7 V' = ihgV i

Alternatively, we can also include U in the transformation as above; then U and V'

appear only in the combination U + V.

Excercise IVC4.1
Show that the explicit expression for the field strength W, in terms of the

prepotential V' in the chiral representation is
W, = —id*(e7Vd,e")

Show this expression is chiral.

Excercise IVC4.2
In the Abelian case, give an explicit component expansion of the prepotential
V, such that the vector potential A,, the physical spinor W,, and the auxiliary
field D appear as independent components. Note that the other components
do not appear explicitly in component expansions when gauge-covariant ex-
pansion (V...|) is used. The component (nonsupersymmetric) gauge where
these components are set to vanish is the “Wess-Zumino gauge”, and is the 6

part of the radial gauge of subsection VIB1 below.
Excercise IVC4.3

For some purposes (like quantization) we need the explicit form of an in-

finitesimal gauge transformation of V. Show this can be written as

8V = —iLyal(A+ K) + coth(Ly)(A — R)
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(Hint: Consider e=Vde", and think of § as an operator, as for the expansion
of Vo =eVd,eV. L4 was defined in subsection [A3.)

5. Gauge actions

Generalization of actions to super Yang-Mills theory is straightforward. Matter
coupling is achieved simply by replacing the chiral superfields of the matter multiplets
with Yang-Mills-covariantly chiral superfields. The coupling can be seen explicitly in
the chiral representation: In the kinetic term,

66 =(9)'e"o
while in the [ d? term all V-dependence drops out because of gauge invariance. (The
superpotential is a gauge invariant function of the ¢’s, and the transformation to the
chiral representation is a complex gauge transformation. The fact that the gauge
transformation is complex is irrelevant, since the superpotential depends only on ¢
and not ¢.) Component expansion can be performed covariantly by replacing d’s with
V’s in the definition of ¢ integration: Since the Lagrangian is a gauge singlet, this is
the same acting on it, although individual terms in the expansion differ because the
fields are not singlets. Similarly, d* can be replaced with ¥V’ also when performing 6
integration for purposes of varying an action with respect to a chiral superfield. This
is equivalent to gauge covariantizing the functional derivative (e.g., by transforming

from a chiral representation) as

6¢('T70) _ o2 r—x din _ pl
76¢(3;’,9’)_V6( )6%(0 —6')

Usually we will drop the “~”’s on ¢ and ¢, when the representation is clear from the

context by the use of explicit V’s.

The action for super Yang-Mills itself follows from dimensional analysis: Since
each 6 integral is really a 6 derivative, d?f integration has mass dimension +1, the
same as a spacetime derivative. Since the Lagrangian for a physical spinor, in this

case W, has a single such derivative, dimensional analysis says the action must be
SSYM = —;—Qt?"/d.’f d20 %WaWa

where the (covariant) chirality of W allows integration over chiral superspace. (Sim-
ilar analysis applies to the matter multiplet, where [ d*6 takes the place of a O for

the scalar ¢.) Replacing [ d*¢ — V?, we evaluate the component expansion as

Savm = ;—Qt?” / dx (%fa’gfa,g + W%’VaﬂWﬂ- — DQ)
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Another term we can write, for superelectromagnetism (supersymmetrization of an

Abelian gauge theory) is the “Fayet-Iliopoulos term”

SFI:/dxd40V:/de

which involves only the auxiliary field D. (The analog for the chiral scalar superfield
is [dx d?*6 ¢.)
Excercise IVC5.1
Derive the supersymmetric analog of the Stiickelberg model of subsection
IVA5, by coupling an Abelian vector multiplet to a massless chiral scalar
multiplet using the symmetry generator 7" defined there. (G — —iT in trans-

formation laws, covariant derivatives, etc., on ¢, where T¢p = 1 = T?¢ = 0.)

a To couple the gauge field it is necessary to start, as usual, with a (quadratic)

matter action that is globally invariant under this symmetry:
So = /dm d'0 3(¢ — )

(At this point this is the usual, since only the cross-term survives, but this
will not be the case for the covariantly chiral superfields.) Find the super-

symmetric gauge coupling, and express the resulting action in terms of V' and
¢.
b Use this result to find the mass term for V' in the gauge ¢E = 0.
Another interesting form of the action uses a generalization of the Chern-Simons

form defined in the discussion of instantons in subsection IIIC6. In superspace, the

calculation of the field strength with curved indices is modified to
Vi = EyVa=0y+iAy, —i[Vu,Vn}=Fun=Ey*ENPFup

where we have left sign factors from index reordering in the last equation implicit.
Although the curved-index expressions are not as useful (for example, for seeing which
components vanish by constraints), we can see easily that some arguments used in
nonsupersymmetric theories carry over to superspace. Thus, we can define the super
Chern-Simons form by

%t?” FiunFpg) = %8[MBNPQ)
Byunp = tT(%A[MﬁNAp) -+ Z%A[MANAP))

Converting to flat superspace (again with some implicit sign factors),

Bapc = EAMEgNEc"Bynp = tr(sAudpAcy — iA[ATBC)DAD + Z%A[AABAC))
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In terms of this expression, the super Yang-Mills action can be written simply in

terms of the spinor-spinor-vector part B 5 of Bapc as
apc

Sayan = yistr /dx d'0 B .

Note that the fact that the curl of B is gauge invariant implies that B transforms
under a gauge transformation as the curl of something, and thus the integral of any
part of B is gauge invariant (up to possible torsion terms: see the excercise below).
Furthermore, we can drop the Fa- = 0 constraint on the A in this action; it follows

from variation with respect to A > One simple way to check this action is to use the

chiral representation A. = 0: Then only the A8 A, and (A ﬂ) terms contribute,
and A 5= zdﬂ-Aa, Whlle W = d*Aq, so [ d*0 integration gives — [ dx d*0 W2.

Excercise IVC5.2

Derive the expression for Bspe directly using only flat indices:

a Start with FjupFcop) expressed in terms of 7" and A, and write it as a total

derivative plus torsion terms.

b Do the same for the gauge transformation of B. Show that the torsion terms

do not contribute to 5Baa.’a o

The multiplets and couplings we have considered are sufficient to write a super-
symmetric generalization of the Standard Model. Unfortunately, supersymmetry pro-
vides no unification. To get the right symmetry breaking, it turns out to be necessary
to provide a supersymmetry multiplet for each particle of the Standard Model: The
spin-1 gauge bosons are accompanied by spin-1/2 “gauginos” (“gluinos”, “photino”,
“Wino”, “Zino”), the spin-1/2 leptons by spin-0 “sleptons”, the quarks by “squarks”,
and the spin-0 Higgs’ by spin-1/2 “Higgsinos”. Furthermore, since a reality condition
can’t be imposed on chiral scalar multiplets, the Higgs scalars are themselves doubled.
Ultimately, the success of supersymmetry depends on the experimental detection of

these particles.

6. Breaking

The methods of the section IVA can be generalized straightforwardly to supersym-
metric theories: Goldstone bosons and Higgs fields become supermultiplets, etc. How-
ever, to obtain realistic models supersymmetry itself must be broken, since fermions
and bosons with similar mass and other properties are not observed in nature. More

specifically, since gravity is observed, any supersymmetric theory of the world must
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include supergravity, and thus the breaking must be spontaneous. (Explicit breaking
would violate gauge invariance.) Then the gravitino, which gauges supersymmetry,
will become massive by a superhiggs mechanism, by eating a Goldstone fermion. (See
subsections XB6-7. If the graviton and gravitino are treated as composites, then this

fermion could also be a composite.)

We saw in subsection IIC1 that energy is always nonnegative in supersymmetric
theories. In particular, from the same arguments used there we see that a state can be
invariant under supersymmetry (q|) = ¢f|t)) = 0) if and only if it has zero energy.
Any such state can be identified as the vacuum, since no state has lower energy.
This means that the only way to guarantee spontaneous supersymmetry breaking is
to choose a theory which has no zero-energy state. (Note that energy is uniquely
defined by the supersymmetry algebra; there is no possibility of adding a constant
as in nonsupersymmetric theories.) In theories with extended supersymmetry, the
relation between supersymmetry and energy applies for each supersymmetry; thus
supersymmetry is either completely broken spontaneously or completely unbroken.
(An exception is central charges, which modify the supersymmetry algebra: See the

following subsection. )

Furthermore, physical scalars appear at # = 0 in matter multiplets, while auxiliary
fields appear at higher order. Since supersymmetry breaking requires # dependence
in a vacuum value of a superfield, this means an auxiliary field must get a vacuum

value.

A simple example of spontaneous supersymmetry breaking is the O’Raifeartaigh

model; it has the Lagrangian
3
Lor = —/d40 > 00+ U d?0 NP1 + mBy Dy + D1B2) + h.c.
i=1

To study symmetry breaking we ignore derivative terms, since vacuum values are

constants. Then the scalar field equations are:

5 _ _ _ _
o
0A; - Bjﬁzgjf =0: ZAQBQ = mBg -+ 214231 -+ 214132 = mBg =0

(where 0; = 0/0A; on the superpotential f(A)). Since there is no solution for B; = 0,
supersymmetry breaking is required. In general, for superpotential f(®), the field
equations for B = 0 are f'(A) = 0, so a linear term is always needed for supersym-

metry breaking.
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With Abelian vector multiplets, a Fayet-Iliopoulos term f d* V can also generate

such breaking, since it also is a linear term of an auxiliary field.

Excercise IVC6.1
Evaluate the Lagrangian — f d*0 ¢¢ for covariantly chiral ¢ by using covariant
f-integration, [d'¢ = V2V’. For the case of U(1) gauge theory, add the
action for the gauge superfield with a Fayet-Iliopoulos term, and find the
potential for the physical scalars by eliminating the auxiliary field D by its
field equation.

For simplicity (as in this chapter), we may want to ignore supergravity; however,
we still need to take account of its contribution to breaking global supersymmetry via
the superhiggs effect. The net low-energy contribution from the supergravity fields
(assuming no cosmological constant is generated) is to introduce effective explicit
supersymmetry breaking: Although the original theory is locally supersymmetric, we
neglect the supergravity fields but not their vacuum values (in particular, those of
the auxiliary fields). In particular, if the supergravity fields are bound states, then
this procedure is essentially the classical introduction of nonperturbative quantum

effects.

Thus we consider adding terms to the classical action that break supersymmetry
explicitly. The easiest way to do this is to introduce constant superfields (“spurions”);
this allows us to continue to take advantage of the superspace formalism (at both
the classical and quantum levels). Since we are neglecting (super)gravity, and in
particular its nonrenormalizability (see chapter VII), we consider only terms that will
preserve the quantum properties of the unbroken theories. This will clearly be the
case if we consider only the usual terms, with some fields replaced by spurions: This
is equivalent to using background (fixed) fields, in addition to (but in the same way
as) the usual field variables, performing all (classical/quantum) calculations as usual,
and then setting the background fields (specifically, the auxiliary fields, which are

responsible for breaking supersymmetry) to constants.

Thus, introducing constant (in x) chiral and real spurion fields
© = 0%, V = 6%0*r

in terms of complex and real parameters ¢ and r, in addition to the true fields ¢ and

V', we have terms of the form

/ P9 [0, 067, 06", oW, (Pd"V)GIT), / 20 PG VeV o
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(and complex conjugates). These terms can preserve the usual gauge invariances, and
can be shown to also preserve the desirable quantum properties of supersymmetry:
The condition is that replacing the spurion field by 1 (instead of its above value)
gives either 0 or a conventional term (one with coupling constant of nonnegative
mass dimension). Another way to introduce these spurions (except perhaps for the
¢V crossterm, which is less useful) is as coupling constants, rather than as fields:
Instead of introducing new terms to the action, we generalize the old ones, so the
constant part of each coupling is the usual coupling, while its #-dependent terms

produce the breaking.
Excercise IVC6.2

Find the component expansions of the above explicit breaking terms. What

are the mass dimensions of the constants ¢ and r in the various cases?

Excercise IVC6.3
Expand the Lagrangian

L=—[d%é¢+ || d*0 (:¢° + 0d) + h.c.
6

in components. Find the masses.

7. Extended

The supersymmetry we discussed earlier in this chapter, with a single spinor coor-
dinate, is called “simple (N=1) supersymmetry”; the generalization to many spinors is
called “extended (N>1) supersymmetry” (for N spinor coordinates). N=1 supersym-
metric theories, at least for spins<1, are most conveniently described by superspace
methods. (There are also some definite advantages for N=1 supergravity at the quan-
tum level.) On the other hand, the technical difficulties of extended superspace often
outweigh the advantages. (The main advantage of extended superspace is proving cer-
tain properties of the quantum theories. Of course, extended supersymmetric theories
are complicated in any case.) Alternative formulations of extended supersymmetry
are either (1) on shell, (2) in terms of components (ordinary spacetime, not super-

space), or (3) in simple superspace (manifesting only one of the supersymmetries).

By going half way, using N=1 superfields to describe extended supersymmetry,
some of the advantages of the superspace approach can be retained. In this subsection
we will list some of the extended supersymmetric actions for lower spins in N=1
superspace form. These actions can be obtained by: (1) using extended superspace

to derive the component field equations (usually using dimensional reduction: see
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subsections XC5-6), and combining components into N=1 superfields, or (2) writing
the extra supersymmetries in N=1 superspace form, and using them to determine the

action.

The simplest example is N=2 supersymmetry. As for any extended supersymme-
try, its algebra can be modified by including Abelian generators Z (with dimensions
of mass), called “central charges”:

{qwm CY;} = 55]9&/6'7 {qwm q]ﬂ} = CaﬂCijza {%; CY;} = CaﬂCUZa [27 q] = [Z> Q] =0
(where i = 1,2). In terms of dimensional reduction (for N=2, from D=5 or 6; see
subsections XC5-6), the origin of these generators can be understood as the higher-
dimensional components of the momentum. N=2 supersymmetry is sometimes called

“hypersymmetry”, and N=2 supermultiplets, “hypermultiplets”.

Our first example is the free, massive N=2 scalar multiplet: Since we already

know the field content (see subsection IIC5), it’s easy to write the free Lagrangian

Lsm,N:Q = —/d49 éi/¢i/ + % (/ d29 mi/j/¢i/¢j/ + hc)

where the index “/’” is for an extra SU(2) (not the one acting on the supersymmetry
generators), broken by the mass term, and the mass matrix m¥7" is symmetric while
mi? = Clrim¥7 is hermitian. In other words, it represents a 3-vector of this SU(2),
and thus a generator of the preserved U(1) subgroup, which we have used to define
the central charge:

Zy = ma 65

The other N=2 multiplet of low spin is the vector multiplet. It also has a simple

LSYMJV:Q = —;—Qt?" (/ d20 W2 -+ /d40 ¢¢)

where ¢ is covariantly chiral and in the adjoint representation of the Yang-Mills gauge

Lagrangian,

group. In the Abelian case, we can also add an N=2 Fayet-Iliopoulos term,

Lprn—s = / d*6 ¢,V + ( / d*0 c o+ h.c.)

where (¢, cq,c-) (c— = ¢;*) is a constant 3-vector of the SU(2) of the N=2 super-
symmetry: The 3 scalar auxiliary fields of this N=2 multiplet form a 3-vector of the
SU(2). Unlike the previous example, this multiplet has all the auxiliary fields needed
for an off-shell N=2 superspace formulation: Not only do the physical components
balance between bosons and fermions (4 of each), but also the auxiliary ones (also 4
of each).



216 IV. MIXED

These 2 N=2 multiplets can be coupled: The scalar multiplet action is modified

to

LomN=2 = — / d*0 ¢" g + 3 { / 4?0 77 ¢y (¢ + M) + h.c.

where now ¢, is also a representation of the Yang-Mills group (not necessarily ad-
joint), with respect to which it is covariantly chiral. However, the same SU(2) matrix
7 that appears in the mass matrix my;y = M7y ; now also appears with the N=2

super Yang-Mills fields,
Vady = dady +iALGT" ¢y, ¢ = "Gy

where G,, are the usual Yang-Mills group generators. (Without loss of generality, we
10
0-1
group, while ¢_, is the complex conjugate.) Note that the mass term appears in

can choose 737 = ( ); then ¢,/ is some arbitrary representation of the Yang-Mills
exactly the same way as an Abelian N=2 vector multiplet that has been replaced by
a vacuum value for its physical scalars. This can also be seen from the commutation
relations for the N=2 super Yang-Mills covariant derivatives (see below), since the

scalars appear in exactly the same way as the central charge.

By our earlier helicity arguments, the only N=3 supersymmetric theory with spins
< 1 is N=3 super Yang-Mills. The analogous statement also holds for N=4, while
no such theories exist for N>4. Since theories with N supersymmetries are a subset
of those with only N—1 supersymmetries, N=3 and N=4 super Yang-Mills must be
the same: Counting states of supersymmetry representations, we see that this theory
is the same as N=2 super Yang-Mills coupled to one N=2 scalar multiplet in the
adjoint representation (in direct analogy to N=2 super Yang-Mills in terms of N=1
multiplets). In terms of N=1 multiplets, this is super Yang-Mills plus 3 adjoint scalar
multiplets. The action then follows from the above results (without central charges

and Fayet-Iliopoulos terms):

[——— {— / 70 W2 / 00 3 r + ( / 20 17K (6, b + h.c.)}

where “I” is a U(3) index. (The U(1) part of the U(3) symmetry involves also a phase

transformation of the 6’s.)

As for off-shell N=1 supersymmetry, much information on extended supersym-
metric gauge theories can be gained by examining the properties of the covariant
derivatives and their field strengths. In fact, this is more true in the extended case,
where the “obvious” constraints often imply field equations (which is more than one

would want for an off-shell formulation). The empty-space covariant derivatives are
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the direct generalization of N=1: Introducing N 6’s as 6" (and complex conjugate

0;%), where “i” is an N-valued index with as much as a U(N) symmetry,

dA - (dia> Cjio'ﬁ 0 )a dia = 8ia - Z.%éiozéao'ﬁ dza

[e7e%

J, —i30"0
o 72 aa
Tz‘a,Jﬂ-w = T]ﬂ-,iaw = —2'55535;, rest =0

Excercise IVC7.1
Find the superspace representation of the extended supersymmetry generators
(which anticommute with these covariant derivatives). For N=2, include the

central charge.

By definition, extended super Yang-Mills has only spins 1 and less. Dimensional

analysis then gives the unique result, including physical fields only,
Via, V2 .} = =61iV .
(ViV} =~V

{Via, Vig} = Cpaithy;
[V & —Zvﬂé] = C' .ZW 8

Ba
Vair V50 = Capif 4+ Cifas
(and complex conjugates of some of these equations). This corresponds directly to
our discussion in subsection I1C5, where we saw that a general representation looked
like antisymmetric tensors ¢, ¢*, ¢, ... of U(N), corresponding to helicities h, h—1/2,
h—1,... . In this case, h=1, and these helicities come from the surviving on-shell
components of foz, Wis, ¢Y,... . For N=4 we have self-duality with respect to charge

conjugation (see also subsection IIC5),
¢ = Leiik g,

Excercise IVC7.2
Analyze the Bianchi identities of these covariant derivatives. Show that for
N>2 they imply the field equations. Find a component action that yields
these field equations for N=4.

An interesting simplification of extended superspace occurs for self-duality: Con-
straining
fa,@ — Wia — ¢ij =0
and dropping the self-duality condition for N=4 (so ¢;; # 0), we find all commutators
involving V& are trivial:

J=0

(ViV} = =0V . V¥ 1= [,V
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while all the remaining commutators have a similar form:

The latter result suggests we combine the internal and dotted spinor indices as
A= (a,1)

so that we can combine the nontrivial equations as

[V a0, Vst = iCopfas

The former equations then allow us to interpret the remaining covariant derivatives
v’& as a subset of the SL(2|N) generators that rotate the A index, which form a
subgroup of the superconformal group (S)SL(4|N). We therefore restrict ourselves to

the chiral superspace described by the coordinates
ZAa _ (',L,ozo.z7 eia)

The net result is that we have a superspace with no torsion, with coordinates that

represent half of the supersymmetries as translations and the other half as rotations.

By comparison with our treatment of the self-dual bosonic theory in subsections
ITIC5-7, we see that we can extend trivially all our results for the bosonic case to the
(extended) supersymmetric case by simply extending the range of the indices. In par-

ticular, we also have a chiral twistor superspace: Extending the range on the twistor

A«

coordinates z7** used there so A is now an SL(4|N) index, the superconformal group

is now manifest, and all the methods and results there (e.g., the ADHM construction)

apply automatically to the supersymmetric case.
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PART TWO: QUANTA

Many important new features show up in field theory at the quantum level. Prob-
ably the most important is “renormalizability”, which states that all the parameters
(masses and couplings) that appear as coefficients of terms in the action must have
nonnegative mass dimension (when the massless part of the kinetic term has no di-
mensionful coefficient). Since the action is dimensionless, [ d*z has dimension —4,
and the fields have positive dimension, this allows only a small number of terms for
any given set of fields. This one condition gives relativistic quantum field theory more

predictive power than any known alternative.

There are many perturbation expansions that can be applied to quantum field
theory. One is the mechanical JWKB expansion, which is an expansion in derivatives.
Of the inherently field theoretical expansions, the simplest is to expand directly in
fields, or equivalently, in the coupling constants. This expansion is the basis of per-
turbative quantum field theory. However, this expansion does not preserve gauge
invariance term by term. On the other hand, the terms in this expansion can be
collected into small subsets that do preserve gauge invariance. There are three such
regroupings, discussed in the four following chapters, and they are based on pertur-
bation expansions: (1) the field theoretic JWKB (“loop”) expansion, (2) expansions

in spin or helicity, and (3) expansions in internal symmetry (color or flavor).

V. QUANTIZATION

For the most part, integrals are hard to evaluate, in particular the path integrals of

exponentials that appear in quantum theory. The only exponentials that are generally
easy to integrate are Gaussians, and the products of them times polynomials, which
can in turn be evaluated as derivatives of Gaussians. Such integrals are the basis of
perturbation theory: We keep the quadratic part of the action, but Taylor expand the
exponential of higher-order terms. Effectively, this means that we not only expand
in orders of 4 to perturb about the classical theory, but also expand in orders of
the coupling constants to perturb about the free theory. This makes particularly
useful our analysis of relativistic quantum mechanics (as free field theory). The
JWKB expansion for the wave function (or S-matrix) expands the exponent in powers
of h, dividing it onto three qualitatively different parts: (1) negative powers of h
(generally 1/h only), which describe the classical theory (they dominate the classical

limit 2 — 0), whose physical implications have been considered in previous chapters;
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(2) h-independent, where almost all of the important (perturbative) quantum features
appear (including topological ones, and quantum breaking of classical symmetries);
and (3) positive powers, which give more quantum corrections, but little new physics,
except when summed to all orders. These are generally known as “trees”, “one-loop”,

and “multiloop”, because of their graphical interpretation.

............................ A. GENERAL ...........................

In the Schrédinger approach to quantum mechanics one solves a differential equa-
tion. The Feynman approach is complementary: There one performs an integral.
Integrals are solutions to differential equations (e.g., f' = g = f = [ g), but usually
differential equations are easier to solve than integral equations. However, there is an
important exception: Gaussian integrals are easy, and so are their boundary condi-
tions. In field theory the most important approximation is one where the integrand
is approximated as a Gaussian, and the exact integral is evaluated as a perturbation
about that Gaussian. Of course, solving the corresponding differential equation is
also easy, but in that case the integral is easier because it corresponds to working
with the action, while the differential equation corresponds to working with the field

equations.

A major advantage of Feynman’s approach is that it allows space and time to
be treated on an equal footing. For example, as in classical electrodynamics, we
can solve the wave equation inside a spacetime volume in terms of conditions on the
boundary of that volume: It is not necessary to choose the spatial boundary at infinity
so that it can be ignored, and divide the temporal boundary into its “future” and
“past” halves so that all conditions are “initial” ones imposed at the past boundary.
It is not even necessary to distinguish between preparation (“if”) and measurement
(“then”) when describing probabilities: We can instead ask the probability of a given
wave function describing the whole boundary. This is a particular advantage for
relativistic quantum field theory, where space and time are more closely related than
in nonrelativistic theories. We now “review” Feynman’s approach for general quantum
systems, and quantum mechanics in particular, so that it can be applied without

further explanation when we come to quantum field theory.

1. Path integrals

In Feynman’s path integral approach to quantum mechanics (based on an analogy

of Dirac), the action is the starting point for quantization. The basic idea is to begin
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with the basic quantity in quantum mechanics, the transition amplitude, and write
it as an integral of the action

(fli) = / Dg 1519

where [ D¢ is a “functional integral”: Integrate over ¢(t) for each ¢ (with some
appropriate normalization). The boundary conditions in ¢ are defined by the choice
of initial and final states. In this subsection we will define this integral in a more
explicit way by breaking up the time interval into discrete points and taking the
continuum limit; in the next subsection we will study ways to evaluate it using its

general properties.

The path integral can be derived from the usual Hamiltonian operator formal-
ism. Considering for simplicity a single coordinate ¢, the wave function is given in

coordinate space by

¥(q) = (ql¥), ) (9)|a)

dq
\ 2T
where we use the convenient normalizations

/%m(q' i /%|p>(p| [<q|q/> = V218(q —q'), (pl') = V2rd(p — )

for coordinate and momentum space. To describe time development, we work in
the Heisenberg picture, where time dependence is in the operators (and thus their

eigenstates):
D(a:t) = {a. t[¥)

Time development is then given completely by the “propagator” or “Green function”
dg;
Glqy,triqinti) = qr trla ti) = ¥lag, ty) :/—G(C]ﬁtf;%,tiW(%,ti)
V2T

Excercise VA1.1
Let’s review the relationship between time development in the Heisenberg and

Schrodinger pictures. Using the usual relation

W1QW)Ix) = (W(®IQIx(?))

between the time-independent states |1)) and time-dependent operators Q(t)
of the Heisenberg picture and the time-dependent states |¢(¢)) and time-
independent operators () of the Schrodinger picture, define time-dependent

eigenstates in two ways:

Qlg) =dlg) = {w () = (glv)

¢, 1) = (qlv@)) = (g, t])
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Given the time development of a state

(1)) = U@)|¥)
find the development of O(t), |¢(t)), and |g,t), and show in particular that
lq(t)) # |q,t). Which is the eigenstate of Q(¢)?

In general, even for time-dependent Hamiltonians, we can find the infinitesimal
time development explicitly from the definition of the time derivative and the time-

dependent Schrodinger equation:
[i0y — H(—10y,q,1)](q,t| =0

= (g, t+¢e| = (g, t|]{1 —ieH[P(t),Q(t), 1]} = (g, t|e HIFP®.Q®.1]

and similarly for (p,t + €| (where P and @ are the Hilbert-space operators). To
derive the path-integral formalism, we then iterate this result to obtain finite time
development by inserting unity infinitely many times, alternating between coordinate

and momentum,

dpo dqi dpy

STrlgi, t;) = Aqetel...
<Qf f|q > mmm <qf f|

ce|pry ti 4 3e)(py, ti + 3elqu, ti + 26)(qu, ti + 2€|po, i + €) (po, ti + €], ti)

to obtain successive infinitesimal exponentials,

dpo dCh dpl —je e e e e
/_27T\/%\/%"'<Qf|e H...e H|p1><p1|€ H|C]1><Q1|€ H|p0>(po|e H|qz>

where the time dependence follows from the previous equation. However, note that
all the implicit time dependence of the Heisenberg picture drops out, because we

—iethg  putting all the factors of each matrix element at the same

extracted the e
time: Although each matrix element is evaluated at time e earlier than the one to its

immediate left, each is of the form

(a, t|€—ieH[P(t)1Q(t),t]|b’ t) = <a|€—ieH[P,Q,t] 1b)

(where |b) = |b, t;), etc.), leaving only any explicit time dependence that may appear
in the Hamiltonian, effectively translating the other t’s — ¢;. Then we only need to

know
{alp) = €™, (plg) = e
to evaluate the matrix elements in the path integral as

d d d )
\/];%\/%\/]%---emp{_Z[QipO‘i‘eH(pmQi)_CI1p0+€H(pO>Q1)+Q1p1+€H(p1>CI1)+---]}
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More explicitly, this result is

i dpy, dgy,
telgi, t:) = | Dp Dq e, Dp Dq =
<CIff|CI>/pq pq}_[o%}_[lm
N-1
S = {—(Gni1 = @n)pn + €[H(Dn, @n) + H(pn, gni1)]}
n=0

qo = qi, 4N = qf; ty —t;=2Ne

The classical picture is a segmented path, with the particle traveling along a
straight line segment from point ¢, to point ¢,y; with momentum p,: Each ¢ is
associated with a point, while each p is associated with the line segment connecting

two consecutive points. In the “continuum” limit € — 0, N — oo, t5 — ¢; fixed,

ty
5= / dt|—ip + H(p, 4,)]
t

(We have dropped some terms in (q|H|p) and (p|H|q) from reordering the operators

Q@ and P in H(P,Q) to apply P|p) = p|p) and Q|q) = ¢|q). These commutator terms

2

alternate in sign, combining to give terms of order €, and can be dropped in the

continuum limit.)

More generally, we can evaluate an arbitrary transition amplitude as

d dg; s
A= (fli) = S 2 V¥ (ar)(ar, trla, ti)vi(a) = | Dp Dq ¥s*(qp)e” (@)
2T A 2T

where now
N-1

dp N dq
D D — n n
b 711) V2T e V2T

Note that we can combine the initial and final wave function, as

U(gi,qr) = V¥ (ap)ils) = A= /DP Dq U(g;, qr)e™"

The complex conjugation of 1 vs. 1; is due to the complex conjugation involved in

time reversal (as seen, e.g., when comparing an eigenstate of p at the inital time to
the same eigenstate at the final time). In field theory, where the “p’s and ¢’s” are
functions of space as well as time, if we choose the boundary in space also to be finite,
so that the space and time boundaries form a single connected and closed boundary,

then W is simply a function of the ¢’s over all that boundary.

Finite time development can also be written in operator form: From the above
derivation of the path integral, by integrating back out the insertions of unity im-
mediately after extracting the infinitesimal exponentials and translating the time of

each matrix element to zero, we find

(a,trlg, ti) = (qr|U(ty, )] q:)
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A A A ty
U(tf, ti) _ e—zeH(tf—e) . e_ZEH(ti+E)€—ZEH(ti) =7 {exp |:_2/ dt H(t):| }

2
which defines the “time-ordered product” 7. This is effectively a Schrodinger-picture
expression (all the P’s and @’s are at the initial time), and can also be derived in
that picture by solving for the time dependence of any state |¢(f)). If H is time

independent and we have a (orthonormal) basis of eigenstates of H, we can write

H|I)=E/I) = U(t)= Z 1) (1]t Er
T

2. Semiclassical expansion

The path integral formulation is especially suited for semiclassical approxima-
tions: The Bohr-Sommerfeld quantization rule follows from the fact that the func-
tional integral is invariant under S — S + 27n, since S appears only as e~ in that
sense the action is more like an angle than a single-valued function. The JWKB ex-
pansion follows from S — S/h and expanding in &. This expansion can be interpreted
as an expansion in (space and time) derivatives, since it leads in the usual way to
the identification p = —ihd/dx and E = ihd/0t. One way to apply it is: (1) Find
a classical solution to the equations of motion. This gives the leading contribution
in i. (2) Expand about the classical solution as ¢ = ¢4 + VAA$. Expanding in
Ag, the first term gives the classical contribution, while the linear term vanishes by
the equations of motion. The quadratic term gives an h-independent contribution
to the exponential, which is easy to integrate since it is a Gaussian. The boundary
conditions are A¢ = 0 at ¢; and ¢¢. The normalization of the integral can be deter-
mined by comparing the free case, or considering the limit where the initial and final
times converge. (3) Higher orders in & can be evaluated by perturbation about the

Gaussian integral: Polynomials times Gaussians are also easy to integrate.

As an example, consider the free particle. The separability of the action translates
into factorization of the functional integral, so the result can be found from the one-
dimensional case. As usual,

Ty — T
tr—t;

L=-imi* = z40)=2;+

(t—t)

where we have written the classical solution in terms of the variables appropriate to
the initial and final states, namely x; for an initial state localized there at time ¢;,
and wf,ts for the final state. Since the classical action is itself quadratic, so is its
expansion:

(zy — i)°

S =54+ AS, Sy = —%m
ty —1;

) AS = —/dt %m(Aw)z
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—iAS

Since AS is independent of x ¢, z;, the functional integral of e can be determined

easily by checking the limit ¢y — ¢;. The final one-dimensional result is then

—um eim(fﬁf—ﬂfi)Q/?(tf—ti)

13 i7ti =

where we have used

V271 (z) = lim %6_”2/25

e—0 V€

(one way of defining a Dirac ¢ function) to normalize
(xp, tla,t) = V2md(xy — xy)

Note that we have been sloppy about the definition of the “integration measure”:
In going from the Hamiltonian form of the action to the Lagrangian form, we ignored
some m dependence. Specifically, if we start with the Hamiltonian form, as derived
in the previous subsection, and derive the Lagrangian form by integrating out p, we
find the 1/m in H = p*/2m leads to

N-1 dp N-1 d.’L‘ N-1 d.’L‘
n n N/2 n

— m
}_[0 v 2T }_[1 \ 2T 1_[1 v 2T

The m=1/2 then cancels similar factors from the N — 1 z-integrals, while the re-

maining +/m is that found in the final result above.

If we had considered a more general Hamiltonian, as in subsection I1TA1, where
p? appeared as % g"(x)pip;, then we would have obtained a measure of the form (for

i=1,.. D)
N-1

det g(xo)det g(xy)] "/
[ g( 0) g N H 27‘(‘ D/2 det g(-rn)

(We have averaged g as g(z)p? — \/9(x,)g(xni1)p2, since z,, is associated with the
point n while p,, is associated with the link from n to n 4+ 1.) Such measure factors

are easy to recognize, since they are always local: If we included it in the action, it

would be a term proportional to

In Hdet g(xn) = < Ze In det g(z,) ~ (0 )/dt In det g(z(t))

n

In practice we just drop all such factors throughout the calculation, and fix the
normalization at the end of the calculation. Since the Lagrangian form follows from
the Hamiltonian form, which was properly normalized, we know such factors will

cancel anyway. Auxiliary fields can require similar factors for proper normalization;
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then such factors are simply the Jacobians from the field redefinitions from a form

where they appeared with trivial quadratic terms.

The Gaussian integral for the free particle can also be performed explicitly, by
using the discretized Hamiltonian path integral of the previous subsection. Besides
the Gaussian integrals considered in subsection IB3, we will also need to evaluate
Gaussians with linear terms:

dP —zT Sz /245 x —-1/2 jTS71j/2
(2m)P/2¢ = (det 5)"e

from shifting the integration variables (z — = + S™'j, etc.) to eliminate the linear
terms, then using the previous results. These identities are sufficient for explicit eval-
uation of path integrals for quadratic actions. They are also useful for perturbation
about Gaussians: For functions multiplying the Gaussians, x can be replaced with
0/0j (and similarly for z) and then pulled outside the integral. (If a linear term is

not included, it can be introduced, and the result can be evaluated at j = 0.)

Excercise VA2.1
Generalize the above results for integration of Gaussians with linear terms to

the cases with fermionic and mixed (subsection IIC3) integration variables.

Excercise VA2.2
The path integral for the free, nonrelativstic particle can be evaluated much

more easily using the Hamiltonian form of the action. First consider the

oo
/ dr eipx—emQ/Q
—00

as a special case of the Gaussians already evaluated, and use it to derive the

Gaussian integral

identity -
/ dz e = 275(p)

o0

(The e thus acts as a regulator to make the integral well defined.) Then use
the discretized expression of subsection VA1, and evaluate the x integrals
first. All but one of the p integrals then can be trivially evaluated, the last

giving a Fourier transform.
Excercise VA2.3

Evaluate the path integral for the harmonic oscillator, to find the result

—imw {zmw[%(m? + 2?)cos wt — x5y }
ex

Sttt t) = : .
<xf |3: > sin wt sin wt
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The two lowest orders in A are then given by the above Gaussian integrals, the
classical contribution coming from the classical action S(z) evaluated at the classical
solution S’(zp) = 0, and the first quantum correction coming from the determinant
of §"(xp). (The fact that the “S” in this exponent is imaginary will be treated in
subsection VA5.) Higher orders in i come from expanding the exponential in the

S"(x) and higher-derivative terms.

Excercise VA2.4
Consider the nonrelativistic JWKB expansion for the propagator (for an ar-

bitrary Hamiltonian H) to the first two orders in A, writing it as
G ~ \/ﬁe—iS/h

a Show the corresponding orders in the time-dependent Schrodinger equation
at t > 0 can be written as the classical equation of motion for the action S
and the (probability) current conservation law for the (probability) density p

(“Hamilton-Jacobi equations”),

H=S, 0 OﬁH)+b:0

oq' Opi
when the argument p of H is evaluated at
oS
pi=— o

(Assume a symmetric ordering of p’s and ¢’s in the quantum H.) Compare

the relativistic case examined in excercise [11A4.1.

b The propagator is expressed in terms of ¢ and go, where G(q, qo,t) ~ 0(q—qo)
at t = 0, so the first order in A is found by using the solution to the Hamilton-
Jacobi equations to write the classical action in terms of the “final” position
¢ and initial position ¢o. (In principle; in general even the classical equations
may be too difficult to solve analytically.) However, the Hamiltonian is given
as a function of p and ¢. Show that the change in variables from ¢, p to ¢, qo

gives
- 0%8 028

0OH ,
= —(MY)d ——, M) = ———

Op; B

Show that

p = det (—iz M)
(the “van Vleck determinant”) solves the current conservation law, using the
explicit expression for (det M)M ™! given in subsection IB3. Check the nor-
malization, using the initial condition for propagators (or comparing to the

free case).
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¢ Consider the special case of the harmonic oscillator, and show the result agrees
with that of the previous problem. (Hint: First solve the classical equations
of motion for x(t), then rewrite it in terms of z; = ¢o and xy = ¢; plug into

Sea = S and apply the above.)

3. Propagators

This free amplitude we just evaluated is the free propagator or Green function

for the Schrodinger equation. Explicitly, we define

Glq,t;¢', ) =60(t —t'){q, t|q,t")

where we have included the factor 6(t — t’) (1 for t > t/, 0 otherwise) to enforce that
the final time is later than the initial time (retarded propagator). This satisifies the

free case of the general defining equation of the propagator
[0y + i1H(—i0,,q)|G(q, t; ¢, t') = [—0p + iH (i0y, ¢')|G(q, t; ¢, 1)

= \V210(q— ¢")8(t —t)

where we have used

D0(t —t') = 6(t —t')

and the facts that G without the 6 factor is a homogeneous solution of the Schrodinger
equation (no d’s) and becomes a ¢ in x for small times. The propagator then gives a

general solution of the Schrodinger equation as

q,t|—/rq,t|qt><qt| = W t) /r (@60, ). Y)

In particular, for ¢(q,t') = V2md(q — ¢') at some time ¢’ for some point ¢’, (¢, t) =

G(q,t;¢',t') at all later times. For the example of the free particle in one dimension,

This solution for the propagator is not unique; as usual, a first-order differential
equation needs one boundary condition. Another way to say it is that the inhomoge-
neous differential equation is arbitrary up to a solution of the homogeneous equation.
We have eliminated the ambiguity by requiring that the propagator be retarded, as
incorporated in the factor (¢ — t’); using instead —60(¢' — t) would give the advanced

propagator. This has an interesting translation in terms of the Fourier transform,
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which is another way to solve differential equations, and which replaces the so-called

“time-dependent” Schrodinger equation with the “time-independent” one. Defining

g [ da
WP,E)— mm

and similarly for G, we have, for any H(q, p) without explicit time dependence,

e~y (g, 1)

—i(E — H)G(p, E;p, E") = V2rd(p — p)3(E - E)

G =
= E_H

V2rd(p—p)s(E - E')

Now inverse Fourier transforming, we have an ambiguity in integrating E past
the pole at £ = H. We therefore shift the pole slightly off the real axis, so we can
integrate exactly on the real axis. Closing the contour by adding to the real axis a
semicircle of infinite radius in either the complex upper- or lower-half-plane, wherever

convergent, we find

dE i i —iH
et — 4(£t)e

/ o E—H+ic (+¢)
which gives either the retarded or advanced propagator depending on the choice of
sign for the infintesimal constant e (retarded for £ — H +ie€). To perform the inverse
Fourier transform, we note that the exponent needs an infinitesimal negative part to
make the integral convergent:
1

iEt + + —iHtFet _
/dte (£)0(£t)e I

Excercise VA3.1

Show that , .
L ond(a)
x4+ T — 1€

by three methods:

a Use the above result for the Fourier transform.
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b Show that this is the contour integral definition of the ¢ function, which is
actually a distribution, by integration, multiplying by an arbitrary (nonsin-
gular) function and integrating along the real axis. (Hint: Push the poles
onto the real axis, shifting the contours along with them, to find the integral

of a single function along the difference of two contours.)

¢ Prove the identity (checking the normalization)

) 2e
i e = 2mo(a)
After doing the E integrals, we have the half-transformed propagator for the

particle
Gp,t:p/ 1) = 0(t —t')V2m6(p — p' e t=1IP*/2m

in the retarded case, which we also could have found easily by solving the differential

equation directly. The remaining p integrals are then simple Gaussians.

4. S-matrices

In the interacting case, the amplitude we get from the path integral is the inter-
acting propagator. However, to be able to take the limit describing time development
between infinite initial and final times, we need to choose boundary conditions such
that the initial and final basis states have the time dependence of free particles, de-
scribed by Hp, assuming that the particle behaves freely at such asymptotically large
times. This is called the “interaction picture”, to distinguish from the Heisenberg
picture, where the states have no time dependence, and the Schrodinger picture,
where the states have the complete interacting time dependence. We thus evaluate

the limiting amplitude

. . dqy dg
= 1 t () = 1 — gy, t s Ul Qs t) Vil i,
A= lim (@r(t))i(ts)) = lim g (g7, te)ars trlai, tiybi(ai, ti)

tf—>+oo tf—>+oo

for the interaction-picture states |1 (t)), relating the interaction-picture coordinate

basis ((q,t| to the Heisenberg-picture basis (g,t| (with initial conditions o(gq,0| =
(9,01 = (a]):

A A —i(Yat v\ .,
olg,t] = (gle ™ = (g tsla, ti) = olgy tyle™ T (6 ft ) e o, )0

; —i [ A
(g t) =olg:tl) = A= {(ds|Slgy), S= lim e T (e S, H) o itiHo

tf—>+oo
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The “S(cattering)-matrix” S then describes the time development between infinite
initial and final times, appropriate for describing scattering from a potential of finite

spatial extent.

The fact that time development conserves probability (H = HT) is reflected in

the corresponding unitarity condition for the S-matrix:
SiS=1

A more complicated condition is causality: The basic idea is that interactions take
place in chronological order. (A stronger statement of causality will be found in the
relativistic case: that any interaction should take place at a spacetime point, rather
than just at a single time. It follows from this weaker one in relativistic theories,
since event B is later than event A in every Lorentz frame only when B is in A’s
lightcone.) Causality is the condition that the Hamiltonian at any time involves only
variables evaluated at that time. (H(t) is a function of only ¢(t), all at the same
time ¢, where ¢ = p, ¢ are the quantum variables appearing in the Hamiltonian.) A
nice way to describe the interactions is by introducing a classical background as we
did for the semiclassical expansion of path integrals, such as by ¢(t) — ¢(t) + x(¢),
where y is just some function. The important point is that we have shifted ¢(t) by
X(t) at the same ¢, so as not to disturb causality. We then consider the effect on the
S-matrix of modifying the background x by a function dx localized (nonvanishing) at
some particular time ¢, and a function dy’ localized at ¢/, such that ¢ > ¢’. Picking

out the dy pieces in the time-ordered product, we can therefore write
Sx+ox +ox]=U(f, )Y QUL )WE)U(L', 1)

SIx+ox]=U(f, )V U(t, thU(t',4)
SIx+oxXT=U(f,)U(t, V(U ,14)
S[X] = U(f> t)U(t>t/)U(t/>i)

where U(t', 1) is the time-development operator from time ¢; to time ¢’ (including the
factor with Hy), V(t') is the extra factor in the time development at time ¢’ resulting

from the function dy’ localized there, etc. Then we easily find
S[x +dx +0x'] = S + 0xIS T XIS[x + 0x]

= (ST'x+oSIx+ox+0x]—1)— (ST X|SIx+0x]—1)=0

J Y /
= D (S[X]TWS[X]) =0 fort>t
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using the infinitesimal functions dx and 0y’ to define derivatives.

In general, it is not possible to solve the Schrodinger equation for the propagator
or the S-matrix exactly. One approximation scheme is the perturbation expansion in
orders of the interaction:

A A ty A ,
H — HO 4+ V = T(e—’bfdt H) _ e—’b(tf—ti)HO +/ dt e—’L(tf—t)Ho [_iv(t)]e—z(t—ti)]{o

t;

tf ! 3 ; ’ ")
+/ dt/ dt’ e—z(tf—t)Ho[_ﬂ/(t)]e—z(t—t)Ho[_iv(t/)]e—z(t ~ti)Ho 4
t; ti

= 8= (f1S)) = (f1i) + / dt (f, t| =iV (0)]]i, 1)

00 t / i ot Ho[ i1/ (¢4 ¢
+/_oo‘]l’f/_of"f otV ) [V, E) +

The first term in S is just the identity (i.e., the free piece). All the other terms
consist of a string of interactions (—iV') connected by free propagators (e~  where
t is the time between the interactions), with each interaction integrated over all
time (subject to time-ordering of the interactions), and the initial/final state (wave

function) evaluated at the initial/final interaction time.

Excercise VA4.1
Assume the initial and final states are eigenstates of the free Hamiltonian:

Hyli) = E;li), Holf) = Eylf)

Assuming V' has no explicit time dependence, explicitly evaluate the time
integrals in the S-matrix, effectively Fourier transforming from time to energy,
to find

1
F—-H+ 2'6(
(Hints: Redefine the integration variables to be the times between interac-

Spi = (fli) — 2mid(Ey — E;)(f|(E — Ho) E — Ho)|i)| p=r,

tions. Taylor expand 1/(E — H + i€) in V for comparison.)

In field theory we want to express any state in terms of a basis of products of
1-particle states, so we can calculate the behavior of these specified particles. We
try to do this by using field variables (the “¢’s” of field theory): Each field operator
should produce a single particle. Unfortunately, this is not the case: An asymptotic
state of given 3-momentum created by such a field operator is not necessarily an
eigenstate of the energy, because such a state can be either 1-particle or n-particle,

due to interactions. The propagator for the field is then of the form

Gp.tip/ ) ~5(p— 1) > ™ 1(p)r(p)e¢-1E1®)
1
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nr nr
Ei(p) = ZEI,i(pi)> sz‘ =p
i—1 i—1

where “Ej;(p;)” is the energy of a 1-particle state (the ), will include an integral in
general). However, as long as all particles have masses, such an asymptotic 1-particle
state is distinguishable as that of lowest energy FEj: The higher-energy states are
n-particle states to which this particle can couple. (If some of the n-particle states
were lower energy, the 1-particle state could decay into them, and thus the 1-particle
state would be unstable, and not asymptotic. With massless particles things are more
complicated: Then 1-particle states are more difficult to define and to measure.) In
principle, we could define the 1-particle states by constructing the corresponding
operator, consisting of the field plus terms higher order in the fields; in practice, this

is rather complicated.

A simpler way to make the asymptotic states unambiguous is by modifying the
definition of the S-matrix:

i (Y
S= lim eUtHT (e thi « H) e~ ttitlo

t;——oo(1+ie)
tf —too(141i€)

introducing factors of 1 + ie for some positive €, which may be chosen small for
convenience. (Actually, we can generally replace 1 + ie with just ¢ if it is not too
confusing: The result is the same.) The effect is seen by considering a matrix element
of particular fields that may be a superposition of different energies E, but evaluated
between states of energy Ey. Since E > Ej, the time dependence of any such matrix

element is proportional to

1 for E=E)

Spi~  lim ltrt(E-F)
0 fO?" E > EO

t;——oo(1+ie)
tf —4oo(141ie)

(For simplicity we have assumed energy conservation, so initial and final energies are

the same.) Alternatively, we can simply impose £ = Ej directly in the definition:

t;——o0

tf—>+oo

, i [Yat H ,
S = lim €ztfHO(5H(tf)’HOT (6 j;z ! (t)) (SH(ti)’Hoe_ZtiHO

where the free Schrodinger equation Hy = Ej defines Ej for the initial and final states,
and O g, is evaluated by examining the asymptotic time-dependence of the time-
development operator with respect to t; and ¢;: Normally field theory is calculated in
energy-momentum space, working with the spacetime Fourier transform of the above,

where this amounts to simply comparing energies £y = F; = Ej.
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If we know some details of the interaction, this modification may be irrelevant: In
particular, in local quantum field theory interactions happen at a point in space and
time. For example, consider the inner product between a 1-particle state in its rest
frame and a related n-particle state, which appears in the same propagator. Because
of locality, the wave function for the n-particle state, when evaluated in position space
(which is where the theory is local) is simply the product of n 1-particle wave functions
evaluated at the same point. But we know that for small relative momenta (where a

nonrelativistic approximation holds) that the individual wave functions propagate as
] ~ [t — ¢~ P7D2

from the form of the free 1-particle propagator. (Or, we can use dimensional analysis,
and consider the spread of a particle of restricted range of momenta from a confined
region: Then |¢|> ~ 1/V and the volume V ~ |t — ¢|P~1.) This implies that the
n-particle wave function will fall off as the nth power of that, so in the limit of large
times the 1l-particle state will dominate. In a relativistic theory the length scale
associated with this fall-off will be associated with the masses involved, and thus at

a subatomic scale.

5. Wick rotation

In the previous subsection we ensured convergence in the definition of the S-matrix

by effectively making the “coordinate change”
t— (1 —ie)t =e "t
in the definition of the limit
(1—ide)t 00 = t— (1+ie)oo
This affected the time-development operator as
—iHt —iHt—et

€ — €

for H > 0 to pick out the ground state H = 0. The same effective substitution was

made in subsection VA3 in defining the contour integral for the propagator:

/dE —iE(1—1€) / —zEt i
o o 1+iOkb_H

21 E — 1—zeH E— H +ie H +ie
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which is the same as the substitution
E— (1+ie)E=¢“FE

since essentially F = i0/0t.

In general, having to do contour integrals and keep track of i€’s in propagators is
inconvenient. Fortunately, there is a simple way in practical calculations to get rid
of not only the i€’s but (almost) all the other i’s as well. The method is known as
“Wick rotation”. The basic idea is to extend the above complex rotation from angle
€ to angle m/2:

t——it=e""?, E—iE

pushing the contour even farther away from the singularities. Thus, the Schrodinger

equation is changed to a “diffusion equation” (to describe, e.g., Brownian motion):
(i —H)Yp=0 = (O+H)Y=0

For example, for the free particle the resulting equation has no i’s. The time-

independent Schrodinger equation then becomes
(E—H)Y=0 = ((E—-H)Y=0

The result for the propagator is then

> dE —i Bt 1 _ —Ht
/_ or ¢ g e

o0

Now no 7€ prescription is needed, since the pole was moved away from the real axis.

Similar remarks apply to the inverse Fourier transform

iEt —Ht __
/_ dt e 0(t)e " = 7B

o0

Excercise VA5.1
Find the Wick-rotated retarded propagator G(a',t’;z,t) for the free (1D)
particle, satisfying

(0 + H)G = (=0p + H)G = V215 (x — 2)5(t — 1)

Furthermore, if we define the S-matrix directly in this Wick-rotated space

tf
(Y H
S = lim etfHOT(e ftz )e‘tiHO

t;——o0

tf—>+oo
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then the limiting procedure is unambiguous even in field theory, since

lim e~ (tr—t)(E—Eo) _ 1 for E=E,
0 for E>Ey

Another important effect is on actions. For example, in the mechanics path

integral for a particle with kinetic term 7' = 1ma? in a potential U(x), we integrated
e S:/dt(U—T)

Upon Wick rotation, this becomes
e S= /dt(U+T)

The major change on the exponent —S is that it is now not only real, but negative
definite. (For physical purposes, we assume the potential has a lower bound, which
can be defined to be nonnegative without loss of generality.) Thus, the semiclassical
approximation we made earlier, called the “stationary phase” approximation, has now

—5/h to a Gaussian,

become the “steepest descent” approximation, namely fitting e
which is approximating the integral by the places where the integrand is largest. We

thus write
S(x) = S(x0) + 5(x — 20)25" (o) + ..., S'(x0) =0, S"(x9) >0

for one variable, with the obvious generalization to many variables. Explictly, we
then have
dx  _s@ym ~ 1 o—S(@)/h

Vorh© S (2)

plus higher orders in h, expressed in terms of higher derivatives of S. In the case

S’ (z)=0

of many variables, S” is replaced with a determinant, as for the Gaussian integrals
of subsection IB3, and for functional integrals, with a functional determinant. (But
sometimes the functional determinant can be replaced with an ordinary determinant:
See excercise VA2.4.)

So now we can first calculate everything in Wick-rotated spacetime, where everyt-
ing is real (more precisely, classical reality properties are preserved quantum mechan-
ically), and then Wick rotate back to find the correct result in physical spacetime. In
particular, the appropriate €’s, still needed to correctly position the singularities in

physical spacetime, can be restored by rotating back through an angle %’/T — €

inverse Wick : t—=(i+et=e?9% E o (—ite)E=e "9



238 V. QUANTIZATION

REFERENCES

1 N. Wiener, J. Math. and Phys. Sci. 2 (1923) 132:
Fuclidean path integrals for Brownian motion.
2 P.AM. Dirac, Phys. Z. der Sowj. 3 (1933) 64:
proposed path integrals for quantum mechanics.
3 R.P. Feynman, Rev. Mod. Phys. 20 (1948) 367:
formulated path integral approach to quantum mechanics.
4 R.P. Feynman, Phys. Rev. 84 (1951) 108:
path integrals in phase space.
5 R.P. Feynman and A.R. Hibbs, Quantum mechanics and path integrals (McGraw-Hill,
1965):
review of path integrals; interesting side stuff, like D=2.
6 R. Shankar, Principles of quantum mechanics, 2nd ed. (Plenum, 1994):
good quantum mechanics text that includes path integrals.
7 J.H. van Vleck, Proc. Natl. Acad. Sci. USA 14 (1928) 178.
8 P.A.M. Dirac, Proc. Roy. Soc. A136 (1932) 453, P.A.M. Dirac, V.A. Fock, and B.
Podolosky, Phys. Z. Sowj. 2 (1932) 468:
interaction picture.
9 J.A. Wheeler, Phys. Rev. 52 (1937) 1107;
W. Heisenberg, Z. Phys. 120 (1943) 513, 673:
S-matrix.

10 E.C.G. Stiickelberg, Helv. Phys. Acta 19 (1946) 242;

E.C.G. Stiickelberg and D. Rivier, Helv. Phys. Acta 24 (1949) 215;
E.C.G. Stiickelberg and T. Green, Helv. Phys. Acta 24 (1951) 153:
causality in quantum field theory.

11 N.N. Bogoliubov, Doklady Akad. Nauk USSR 82 (1952) 217, 99 (1954) 225:
explicit condition of causality on S-matrix, using functionals.

12 L.S. Brown, Quantum field theory (Cambridge University, 1992) p. 293:
decoupling of asymptotic multiparticle states in field-theory propagators.

13 M. Kac, On some connections between probability theory and differential and integral
equations, in Proc. 2nd Berkeley Symp. Math. Stat. Probability, ed. J. Neyman, 1950
(University of California, 1951) p. 189;

E. Nelson, J. Math. Phys. 5 (1964) 332:
Wick rotation of path integral in quantum mechanics.

14 G.C. Wick, Phys. Rev. 96 (1954) 1124:

Wick rotation in quantum field theory.



B. PROPAGATORS 239

....................... B. PROPAGATORS ......................

Classically we distinguish between particles and fields (waves). This can be con-
sistent with a classical limit of a quantum theory if there is a conserved charge associ-
ated with the classical particles, with respect to which the classical fields are neutral.
Then we can have continuous worldlines for the particles: The statement that the
worldlines do not end or split is associated with charge conservation. The interaction
between the particles and fields is described by modifying the particle (mechanics)
action (and not the action for the fields). If we look at just the mechanics action,
the modification is the same as considering external fields (like external potentials in
nonrelativistic mechanics), since we are ignoring the field action, which is needed for

the field equations.

The action for the fields then can be added separately. Coupling to such external
fields is a simple way to study properties of particles without applying field theory.
For example, in nonrelativistic mechanics it helps to explain charge and spin, which

don’t appear explicitly in the free Schrodinger equation.

1. Particles

All the information in quantum mechanics is contained in the propagator, which
gives the general solution to the Schrodinger equation, and can be obtained by the
Feynman path integral. Here we discuss the free propagator for the spinless particle
(whose classical description was given in section I1IB), which is the starting point for

relativistic perturbation theory.

We consider quantization first in the Lorentz covariant gauge v = 1. Except for
the T integration, the same methods can be applied as in the nonrelativistic case.
The simplest expression (and ultimately the most useful one) is obtained by Fourier
transforming with respect to x: In comparison to the multidimensional nonrelativistic
result

G t;p" ) = 6(p —p)B(t — t')e " 1P2/2m
(where here §(p — p/) = (27)P=1D/25D=1(pi — p%) for D — 1 spatial dimensions), the
relativistic result is

G(p,p) = / dT §(p — p/)O(T)e~ T +m?)/2

(where now d(p — p') = (27)P/26P(p* — p'*) for D spacetime dimensions).

There are several simple yet important differences from the nonrelativistic case:

(1) The dependence on the mass m is different. In particular, we can set m = 0 only in



240 V. QUANTIZATION

the relativistic case. (2) There is an additional integration [ dT", because the variable
T, which is the remaining part of v, survives the gauge v = 1. This is analogous to
the time integral in the nonrelativistic case for G (p', E;p'', E'), if we set the energy
to zero. This is as expected, since the relativistic classical mechanics differs from the
nonrelativistic one mainly by constraining the “Hamiltonian” % (p® + m?) to vanish.
This interpretation also leads to the “zero-energy” version of the inhomogeneous

(proper-)time-independent Schrédinger equation for this case,
—id(0 - m*)G(z,2") = 6(x — @)

(3) The propagator is automatically “retarded” in the “proper time” 7', as a conse-
quence of the positivity condition v > 0, which was motivated by the geometrical
interpretation of v as the worldline metric. When used in this manner to write the

propagator in terms of a Gaussian, 7" is known as a “Schwinger parameter”.

Generally, it is convenient to remove the momentum J-function (which resulted

from translational invariance) as
Gla,a) = Al —a') = Gp.p)=dp-1)APp)

st = [ uperien

where we have simply written A(p) for the Fourier transform of A(z) (dropping the
tilde). Performing the 7" integral, using the same methods as for the ¢ integral in the
nonrelativistic case, we have the final result

—1

Alp) = (P2 + m2 — ie)

Actually, this result is almost obvious from solving the relativistic wave equation. The
only part that is not obvious is the “ie prescription”: how to perform the contour
integration upon Fourier transformation. In the nonrelativistic case, we saw two
obvious choices, corresponding to retarded or advanced propagators; the classical
action did not distinguish between the two, although the retarded propagator has the
obvious convenience of determining later events from earlier ones. On the other hand,
in the relativistic case the choice of propagator was fixed from classical considerations.

T is restricted to be positive, and the ie is needed to make the 7" integral converge.

Excercise VB1.1
Take the nonrelativistic limit of the relativistic propagator, and compare with
the propagator of nonrelativistic quantum mechanics. Explain the difference

in terms of the nonrelativistic limit of the classical mechanics action.
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Excercise VB1.2
Perform the analysis of excercise VA2.2 for the relativistic particle. First
replace the integration over T' by a sum: Instead of dividing up the time into
2N intervals of length € and taking the limit N — oo, e — 0, with 2Ne fixed,
sum 2€ Y n_,, and then take the limit e — 0. (2Ne is now T instead of t; —t;,
and we integrate over it instead of keeping it fixed.) Perform all x integrals
and then all but the last p integral before summing over N. Again, the entire
calculation is much easier than using the Lagrangian (second-order) form of

the path integral.

To understand this point better, we examine the Fourier transformation with

respect to time. In contrast to the nonrelativistic case, there are now two poles, at

A ' 1 1
O =+w, w= )2 +m?2: A=2L —
P w) w AP — (w—rie) P+ (w—ie)

where now p® = (p°, p*). These are also the two classical values of the canonical energy
(as opposed to the true energy, which is the absolute value), which we saw previously
corresponded to particles and antiparticles. With our prescription for integrating

around the poles, using the same methods as in the nonrelativistic case, we then find

N A : 1 /
G(pz, t;p/z, t/) _ (QW)D/Q(SD_l(pZ . p/z)_e—zw|t—t |
w

— 7 /7 1 N —iw(t—t' / iw(t—t'
= (2m)P26P (- p );[Q(t—t)e = 4ot — t)e 1))

We now see that the particles (p° = w) have a retarded propagator, while the antipar-
ticles (p° = —w) have an advanced propagator. This is the quantum version of the
classical result we saw earlier, that particles travel forward in time, while antiparticles

travel backward.

We next compare quantization in the lightcone gauge. Whereas in the covariant
gauge the analog to the nonrelativistic time ¢ was the “proper time” 7', the analog
is now the lightcone “time” 7. Since 7 = a*/p*, we have E = p~p* (F = i0/01
vs. p~ =10/0z™"), and thus

1 —1
A(p) = : — = :
®) E—1(p2+m?) +ie 3(p*+m?—ie)

as before. Note that this derivation was almost identical to the nonrelativistic one:

Unlike the covariant gauge, we did not have to add in T as a separate variable of
integration (but not path integration). However, this Schwinger parameter is useful
for evaluating momentum integrals and analyzing momentum dependence. This is a
typical characteristic of unitary gauges: They are more useful for keeping track of

degrees of freedom.
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2. Properties

As in electrodynamics, the free scalar satisifes a differential equation second-order
in time, so the propagator is used differently from nonrelativistic quantum mechanics

to give a general solution to the wave equation. We use the identity
de—lam AD,B = /de 9. (ADB) = /de [A(O — m?)B — B(O — m?)A]

where “¢ dP~1o™ is the integral over the closed surface bounding the volume inte-
grated over in [ dPz. In practice we take the volume to encompass all spacetime in
the limit, neglect the part of the boundary at spacelike infinity, and choose the parts
of the boundary at timelike infinity to be surfaces at constant time, so the boundary

integrals are over just space:
de—lam AD,B = /dD_lx AD,B|*_ = /dD_lx AD, Bl — /dD_lx ADB|_

We then have the solution for the wave function inside the volume in terms of that

on the boundary:

O-m?y =0, —ii(0-m?*G(z,2")=—-i3(0 —m*)G(z,2') =6(x — 2')

dD 1 /m L PR
/ -0/ /
= 7{ s Clra)bid,0) = ()
where the wave equation for 1 is the Klein-Gordon equation.

Similarly, this defines a conserved current from any two wave functions

8- (¥r*ba) = r*(0 — m2)y — (0 — m)ihr* = 0

or, evaluating the integral over a volume infinite in space but infinitesimal in time,

the conserved charge y
dt /dD 'z ¢1*8t¢2 =0

This leads to the covariant inner product
dD 1

(12) = e0?) [ Ggmsors i *4idus

where the €(p°) appears because the contour integral gives a + at later times (positive
energy) and a — at earlier times (negative energy). Explicitly, we find for the inner

product of plane waves
Uplw) = (zlp) = ™7
- <p|p/> _ (27T)D/2_1(5D_1(pi o p/i)e(pO)%(pO +p/0)
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We have used p* + m? = p? + m? = 0, which also implies that [p°| = [p"°|: Thus,
the inner product vanishes if the waves have opposite-sign energy, while for the same
sign €(p°)3(p° + p°) = [p°|. The result then can be written manifestly covariantly as

<p|p/> _ 27T6([5%(](3p;f’3n2)] _ Q(poplo)w(Qﬂ)D/Q_l(SD_l(pi _p/i)

Similarly, the solution for the wave function in terms of the Green function gives
only positive-energy contributions from the part of the surface at earlier times, and
only negative-energy contributions from the part of the surface at later times. More
general on-shell wave functions, since they depend on only D — 1 spatial momenta

and the sign of the energy, can be written as a restricted Fourier transform

() = / dp 270[3(p* +m?)|e” “(p)

= 112) = [ dp 200307 + ) D)

Here 1(p)* means to complex conjugate after Fourier transforming to p-space; oth-
g

erwise, we need to change the sign of the argument.) In particular, for a plane wave

Ty 0p—p)
)

we have

It will prove useful later to have a collection of solutions to the homogeneous and
inhomogeneous Klein-Gordon equations, and compare them in 4-momentum space
and time-3-momentum space. Using the previous nonrelativistic and relativistic re-

sults, we find

A: —i/(pPPH+m?—ide) = Ot)e ™ HO(—t)et = e

A*: i /(p* + m? + de) = 0t)e™t +O(—t)e ™t = el

Ap: —i/(p* +m? —iep®) = O(t)e ™ —0(t)e™* = —2i0(t)sin(wt)
Aq: if(pPP+m?+iep?) = O(—t)e™—0(—t)e ™ = 20(—t)sin(wt)
A 0(p°)2m6(p? +m?) = O(t)e W 4O(—t)e Wt = et

A 0(—p")2md(p* +m?) = O(t)e™ +0(—t)et = et

where we have omitted certain common factors (see above). A, satisfy the homo-
geneous equation, while the rest satisfy the inhomogeneous one. (These are easily
checked in the mixed space, where the Klein-Gordon operator is —(9? + w?).) This
table makes explicit which sign of the energy propagates in which time direction, as
well as the linear relations between the momentum-space expressions. In particular,
we see that A, propagates just the positive-energy states, while A_ propagates just

the negative-energy ones.
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Excercise VB2.1
The relativistic propagator uses a particular choice for integrating around the
two poles in the complex energy plane, as encoded in the ze prescription. If
we ignored the classical determination of that prescription, there would be
four simple choices, integrating either above or below the two poles. Show

these four choices can be enforced by replacing ie in p* + m? — ie with
ie, —ie, iep®, —iep’

and derive the results of the table above. Give explicit expressions for the

four propagators in position space in four dimensions for the massless case.

We can check the propagator’s behavior by explicit evaluation, using plane waves:

e(r") 4 A(x—x’)lz'g’w (z') = e(p”) 3 (p" +¢a)le—iwlt—t/leiﬁf—ipot/
P | (an)pr 510, p(') = e(”)3(0" +i01)

= 0[p"(t — )]p(x)

where we have used the previous result for G(p,t;7,t') (and thus A(7,t)). Again
we see that the propagator propagates positive-energy solutions forward in time and

negative-energy backward.

This propagator also applies to relativistic field theory. (See subsection IITA3 for
nonrelativistic field theory.) In comparison to the nonrelativistic case, the propagator
is now —i/3(p*+m?) instead of —i/(5=p? — E), and this determines the kinetic term

in the field theory action:
So = —/dw 1o —m?)¢ = /dm L(09)* + m*¢”]

To make the functional integral of e~*° converge, we replace m? — m? — ie, which
is the same 7¢ prescription found in first-quantization. Note that we have used a real
field * = ¢. (A complex field can be used by doubling 1 = (¢1 + i¢y)/+v/2.) This is
possible only in the relativistic case because we have both positive-energy solutions
e P as well as negative ones ™. (In other words, the relativistic Schrodinger
equation is a second-order differential equation, so we get two i’s to make the kinetic
operator real.) Reality simply means identifying particles with antiparticles. (E.g.,

there is no “antiphoton” distinct from the photon.)
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3. Generalizations

More generally, we will find propagators of the form (in momentum space)
1
A=-—, K=K
K?
corresponding to free actions

Sy = /dm sOK o

where K = —1(0—m?) in the case just considered. Then the inner product is defined

as above in terms of the Green function by using the relation

e(p°) 7( d?to™ ATM,, B =i / dPr [(KA"B — ATK B]

to define
dD—l om ;
R e
and thus i D1 gm
v(o) = <0’) § Gt Glo) M)
where M,, = €(p°)1id,, above. (For the usual equal-time hypersurfaces, we use
My = —M?°. There may be additional implicit matrix factors in the Lorentz-invariant

inner product ATB.) This inner product gives a nonnegative norm on physical bosonic
states, but on physical fermionic states it is negative for negative energy, because
ordering the initial state to the left of the final state (the wrong ordering for quantum
mechanics) produces a minus sign from the anticommutativity of the fermions. (From
the explicit integral, this appears because K is generally second-order in derivatives
for bosons, but first-order for fermions, so M,, has one factor of p° for bosons and

none for fermions.)

For physical fields, the (free) field equation will always imply the Klein-Gordon
equation (after gauge fixing for gauge fields). Thus, the propagator can always be
written as ,

Aot N
K 7(p? +m? — ie)

in terms of some matrix kinematic factor N(p). Using this expression for the propa-

gator in our above position-space inner product, this implies

Up(@) = ()P = N(p)Mu(p)d(p) = —e(0)pmh(p)
If we choose a basis that is orthonormalized with respect to all quantum numbers
other than momenta (spin/helicity and internal symmetry), we then have
- dp—7)
TamO TR+ )

(pilp',j) =0
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If we ignore coordinate/momentum dependence and focus on just the other quantum
numbers, then it is clear that the extra factor of N is just the sum ), |7)(i] (so
Nli) = |i), etc.). The positive-energy propagator is then given by a sum over all

positive-energy states:
Ay = NEOE2rol0% +m*)] = Np) = [@)]* D $hip)i()

where we have included an extra sign factor for negative energy and half-integer spin
from the reordering of states, as explained above. The fact that K is not simply the
Klein-Gordon operator is a consequence of unphysical (gauge/auxiliary) degrees of
freedom appearing in the action: Then N is a projection operator that projects out
the auxiliary degrees of freedom on shell, and the gauge degrees of freedom on and
off (in unitary gauges), as represented above by a sum over physical states. However,
more general N’s are sometimes used that include unphysical degrees of freedom;
these must be canceled by “ghosts”, similar unphysical degrees of freedom of the

opposite statistics.
Excercise VB3.1
1

Demonstrate all these properties for spin (helicity) 5 (see chapter II):

a For the massless case, use twistors for the solution to the field equation to

find ) )
N) . = DaP: = 0 . M . 70— (57(55.
(V) ;(P) =papy=e(@p 5 (M )" =050,

b Do the same for the massive Dirac spinor, to find

N =)+ ). Mu =1

(Hint: Consider the rest frames for p° > 0 and < 0.)

Excercise VB3.2
Use the construction of excercise VB1.2 to define the path integral for the
spinning particle of excercise IIIB1.2. Show that in the covariant gauge v = 1,

A = constant, the propagator can be written as

1

Lo e —iy - p
pr/dngeTeTap TP =
(p) (T) L -

up to some arbitrary normalization factor, where £ = f dr )\ is the only gauge
invariant part of A (as T'= [ dr v is for v).

We will find that quantum corrections modify the form of the propagator. In

particular, it may modify the position m? of the pole in —p? and its residue, as well
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as adding terms that are analytic near that pole. For example, consider a scalar

propagator of the form

N

+R
5(? + m? — ic)

A(p) = —i

where N is a constant and R is analytic in p. By the procedure of “renormalization”,
N can be set to 1, and m? can be set to its original value (see chapter VII). Alter-
natively, we can cancel N in the normalization of external states, and redefine the

masses of these states to coincide with what appears in the propagator.

Excercise VB3.3
Use this propagator to define the inner product between two plane waves,
and evaluate it explicitly. Show that R gives no contribution, and the plane
waves need factors of v/N to maintain their normalization. (Hint: What is
the wave equation corresponding to A, and how is it related to M,,,” You can

also consider the relation of N to A.)

Away from the pole, at higher values of —p? than m?, there will also be cuts cor-
responding to mutiparticle states. Although these higher-energy intermediate states
in the propagator will contribute to the time development even for on-shell states
(those satisfying p* + m? = 0 asymptotically), in S-matrix el