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PART 1: INTRODUCTION TO TENSOR CALCULUS

A scalar field describes a one-to-one correspondence between a single scalar number and a point. An n-

dimensional vector field is described by a one-to-one correspondence between n-numbers and a point. Let us

generalize these concepts by assigning n-squared numbers to a single point or n-cubed numbers to a single

point. When these numbers obey certain transformation laws they become examples of tensor fields. In

general, scalar fields are referred to as tensor fields of rank or order zero whereas vector fields are called

tensor fields of rank or order one.

Closely associated with tensor calculus is the indicial or index notation. In section 1 the indicial

notation is defined and illustrated. We also define and investigate scalar, vector and tensor fields when they

are subjected to various coordinate transformations. It turns out that tensors have certain properties which

are independent of the coordinate system used to describe the tensor. Because of these useful properties,

we can use tensors to represent various fundamental laws occurring in physics, engineering, science and

mathematics. These representations are extremely useful as they are independent of the coordinate systems

considered.

§1.1 INDEX NOTATION

Two vectors ~A and ~B can be expressed in the component form

~A = A1 ê1 +A2 ê2 +A3 ê3 and ~B = B1 ê1 +B2 ê2 +B3 ê3,

where ê1, ê2 and ê3 are orthogonal unit basis vectors. Often when no confusion arises, the vectors ~A and
~B are expressed for brevity sake as number triples. For example, we can write

~A = (A1, A2, A3) and ~B = (B1, B2, B3)

where it is understood that only the components of the vectors ~A and ~B are given. The unit vectors would

be represented

ê1 = (1, 0, 0), ê2 = (0, 1, 0), ê3 = (0, 0, 1).

A still shorter notation, depicting the vectors ~A and ~B is the index or indicial notation. In the index notation,

the quantities

Ai, i = 1, 2, 3 and Bp, p = 1, 2, 3

represent the components of the vectors ~A and ~B. This notation focuses attention only on the components of

the vectors and employs a dummy subscript whose range over the integers is specified. The symbol Ai refers

to all of the components of the vector ~A simultaneously. The dummy subscript i can have any of the integer

values 1, 2 or 3. For i = 1 we focus attention on the A1 component of the vector ~A. Setting i = 2 focuses

attention on the second component A2 of the vector ~A and similarly when i = 3 we can focus attention on

the third component of ~A. The subscript i is a dummy subscript and may be replaced by another letter, say

p, so long as one specifies the integer values that this dummy subscript can have.
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It is also convenient at this time to mention that higher dimensional vectors may be defined as ordered

n−tuples. For example, the vector
~X = (X1, X2, . . . , XN )

with components Xi, i = 1, 2, . . . , N is called a N−dimensional vector. Another notation used to represent

this vector is
~X = X1 ê1 +X2 ê2 + · · ·+XN êN

where

ê1, ê2, . . . , êN

are linearly independent unit base vectors. Note that many of the operations that occur in the use of the

index notation apply not only for three dimensional vectors, but also for N−dimensional vectors.

In future sections it is necessary to define quantities which can be represented by a letter with subscripts

or superscripts attached. Such quantities are referred to as systems. When these quantities obey certain

transformation laws they are referred to as tensor systems. For example, quantities like

Ak
ij eijk δij δj

i Ai Bj aij .

The subscripts or superscripts are referred to as indices or suffixes. When such quantities arise, the indices

must conform to the following rules:

1. They are lower case Latin or Greek letters.

2. The letters at the end of the alphabet (u, v, w, x, y, z) are never employed as indices.

The number of subscripts and superscripts determines the order of the system. A system with one index

is a first order system. A system with two indices is called a second order system. In general, a system with

N indices is called a Nth order system. A system with no indices is called a scalar or zeroth order system.

The type of system depends upon the number of subscripts or superscripts occurring in an expression.

For example, Ai
jk and Bm

st , (all indices range 1 to N), are of the same type because they have the same

number of subscripts and superscripts. In contrast, the systems Ai
jk and Cmn

p are not of the same type

because one system has two superscripts and the other system has only one superscript. For certain systems

the number of subscripts and superscripts is important. In other systems it is not of importance. The

meaning and importance attached to sub- and superscripts will be addressed later in this section.

In the use of superscripts one must not confuse “powers ”of a quantity with the superscripts. For

example, if we replace the independent variables (x, y, z) by the symbols (x1, x2, x3), then we are letting

y = x2 where x2 is a variable and not x raised to a power. Similarly, the substitution z = x3 is the

replacement of z by the variable x3 and this should not be confused with x raised to a power. In order to

write a superscript quantity to a power, use parentheses. For example, (x2)3 is the variable x2 cubed. One

of the reasons for introducing the superscript variables is that many equations of mathematics and physics

can be made to take on a concise and compact form.

There is a range convention associated with the indices. This convention states that whenever there

is an expression where the indices occur unrepeated it is to be understood that each of the subscripts or

superscripts can take on any of the integer values 1, 2, . . . , N where N is a specified integer. For example,



3

the Kronecker delta symbol δij , defined by δij = 1 if i = j and δij = 0 for i 6= j, with i, j ranging over the

values 1,2,3, represents the 9 quantities

δ11 = 1

δ21 = 0

δ31 = 0

δ12 = 0

δ22 = 1

δ32 = 0

δ13 = 0

δ23 = 0

δ33 = 1.

The symbol δij refers to all of the components of the system simultaneously. As another example, consider

the equation

êm · ên = δmn m,n = 1, 2, 3 (1.1.1)

the subscripts m, n occur unrepeated on the left side of the equation and hence must also occur on the right

hand side of the equation. These indices are called “free ”indices and can take on any of the values 1, 2 or 3

as specified by the range. Since there are three choices for the value for m and three choices for a value of

n we find that equation (1.1.1) represents nine equations simultaneously. These nine equations are

ê1 · ê1 = 1

ê2 · ê1 = 0

ê3 · ê1 = 0

ê1 · ê2 = 0

ê2 · ê2 = 1

ê3 · ê2 = 0

ê1 · ê3 = 0

ê2 · ê3 = 0

ê3 · ê3 = 1.

Symmetric and Skew-Symmetric Systems

A system defined by subscripts and superscripts ranging over a set of values is said to be symmetric

in two of its indices if the components are unchanged when the indices are interchanged. For example, the

third order system Tijk is symmetric in the indices i and k if

Tijk = Tkji for all values of i, j and k.

A system defined by subscripts and superscripts is said to be skew-symmetric in two of its indices if the

components change sign when the indices are interchanged. For example, the fourth order system Tijkl is

skew-symmetric in the indices i and l if

Tijkl = −Tljki for all values of ijk and l.

As another example, consider the third order system aprs, p, r, s = 1, 2, 3 which is completely skew-

symmetric in all of its indices. We would then have

aprs = −apsr = aspr = −asrp = arsp = −arps.

It is left as an exercise to show this completely skew- symmetric systems has 27 elements, 21 of which are

zero. The 6 nonzero elements are all related to one another thru the above equations when (p, r, s) = (1, 2, 3).

This is expressed as saying that the above system has only one independent component.
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Summation Convention

The summation convention states that whenever there arises an expression where there is an index which

occurs twice on the same side of any equation, or term within an equation, it is understood to represent a

summation on these repeated indices. The summation being over the integer values specified by the range. A

repeated index is called a summation index, while an unrepeated index is called a free index. The summation

convention requires that one must never allow a summation index to appear more than twice in any given

expression. Because of this rule it is sometimes necessary to replace one dummy summation symbol by

some other dummy symbol in order to avoid having three or more indices occurring on the same side of

the equation. The index notation is a very powerful notation and can be used to concisely represent many

complex equations. For the remainder of this section there is presented additional definitions and examples

to illustrated the power of the indicial notation. This notation is then employed to define tensor components

and associated operations with tensors.

EXAMPLE 1. The two equations
y1 = a11x1 + a12x2

y2 = a21x1 + a22x2

can be represented as one equation by introducing a dummy index, say k, and expressing the above equations

as

yk = ak1x1 + ak2x2, k = 1, 2.

The range convention states that k is free to have any one of the values 1 or 2, (k is a free index). This

equation can now be written in the form

yk =
2∑

i=1

akixi = ak1x1 + ak2x2

where i is the dummy summation index. When the summation sign is removed and the summation convention

is adopted we have

yk = akixi i, k = 1, 2.

Since the subscript i repeats itself, the summation convention requires that a summation be performed by

letting the summation subscript take on the values specified by the range and then summing the results.

The index k which appears only once on the left and only once on the right hand side of the equation is

called a free index. It should be noted that both k and i are dummy subscripts and can be replaced by other

letters. For example, we can write

yn = anmxm n,m = 1, 2

where m is the summation index and n is the free index. Summing on m produces

yn = an1x1 + an2x2

and letting the free index n take on the values of 1 and 2 we produce the original two equations.
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EXAMPLE 2. For yi = aijxj , i, j = 1, 2, 3 and xi = bijzj , i, j = 1, 2, 3 solve for the y variables in terms of

the z variables.

Solution: In matrix form the given equations can be expressed:
 y1
y2
y3


 =


 a11 a12 a13

a21 a22 a23

a31 a32 a33





x1

x2

x3


 and


x1

x2

x3


 =


 b11 b12 b13
b21 b22 b23
b31 b32 b33





 z1
z2
z3


 .

Now solve for the y variables in terms of the z variables and obtain
 y1
y2
y3


 =


 a11 a12 a13

a21 a22 a23

a31 a32 a33





 b11 b12 b13
b21 b22 b23
b31 b32 b33





 z1
z2
z3


 .

The index notation employs indices that are dummy indices and so we can write

yn = anmxm, n,m = 1, 2, 3 and xm = bmjzj , m, j = 1, 2, 3.

Here we have purposely changed the indices so that when we substitute for xm, from one equation into the

other, a summation index does not repeat itself more than twice. Substituting we find the indicial form of

the above matrix equation as

yn = anmbmjzj , m, n, j = 1, 2, 3

where n is the free index and m, j are the dummy summation indices. It is left as an exercise to expand

both the matrix equation and the indicial equation and verify that they are different ways of representing

the same thing.

EXAMPLE 3. The dot product of two vectors Aq, q = 1, 2, 3 and Bj , j = 1, 2, 3 can be represented with

the index notation by the product AiBi = AB cos θ i = 1, 2, 3, A = | ~A|, B = | ~B|. Since the subscript i

is repeated it is understood to represent a summation index. Summing on i over the range specified, there

results

A1B1 +A2B2 +A3B3 = AB cos θ.

Observe that the index notation employs dummy indices. At times these indices are altered in order to

conform to the above summation rules, without attention being brought to the change. As in this example,

the indices q and j are dummy indices and can be changed to other letters if one desires. Also, in the future,

if the range of the indices is not stated it is assumed that the range is over the integer values 1, 2 and 3.

To systems containing subscripts and superscripts one can apply certain algebraic operations. We

present in an informal way the operations of addition, multiplication and contraction.
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Addition, Multiplication and Contraction

The algebraic operation of addition or subtraction applies to systems of the same type and order. That

is we can add or subtract like components in systems. For example, the sum of Ai
jk and Bi

jk is again a

system of the same type and is denoted by Ci
jk = Ai

jk +Bi
jk, where like components are added.

The product of two systems is obtained by multiplying each component of the first system with each

component of the second system. Such a product is called an outer product. The order of the resulting

product system is the sum of the orders of the two systems involved in forming the product. For example,

if Ai
j is a second order system and Bmnl is a third order system, with all indices having the range 1 to N,

then the product system is fifth order and is denoted Cimnl
j = Ai

jB
mnl. The product system represents N5

terms constructed from all possible products of the components from Ai
j with the components from Bmnl.

The operation of contraction occurs when a lower index is set equal to an upper index and the summation

convention is invoked. For example, if we have a fifth order system Cimnl
j and we set i = j and sum, then

we form the system

Cmnl = Cjmnl
j = C1mnl

1 + C2mnl
2 + · · ·+ CNmnl

N .

Here the symbol Cmnl is used to represent the third order system that results when the contraction is

performed. Whenever a contraction is performed, the resulting system is always of order 2 less than the

original system. Under certain special conditions it is permissible to perform a contraction on two lower case

indices. These special conditions will be considered later in the section.

The above operations will be more formally defined after we have explained what tensors are.

The e-permutation symbol and Kronecker delta

Two symbols that are used quite frequently with the indicial notation are the e-permutation symbol

and the Kronecker delta. The e-permutation symbol is sometimes referred to as the alternating tensor. The

e-permutation symbol, as the name suggests, deals with permutations. A permutation is an arrangement of

things. When the order of the arrangement is changed, a new permutation results. A transposition is an

interchange of two consecutive terms in an arrangement. As an example, let us change the digits 1 2 3 to

3 2 1 by making a sequence of transpositions. Starting with the digits in the order 1 2 3 we interchange 2 and

3 (first transposition) to obtain 1 3 2. Next, interchange the digits 1 and 3 ( second transposition) to obtain

3 1 2. Finally, interchange the digits 1 and 2 (third transposition) to achieve 3 2 1. Here the total number

of transpositions of 1 2 3 to 3 2 1 is three, an odd number. Other transpositions of 1 2 3 to 3 2 1 can also be

written. However, these are also an odd number of transpositions.
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EXAMPLE 4. The total number of possible ways of arranging the digits 1 2 3 is six. We have three

choices for the first digit. Having chosen the first digit, there are only two choices left for the second

digit. Hence the remaining number is for the last digit. The product (3)(2)(1) = 3! = 6 is the number of

permutations of the digits 1, 2 and 3. These six permutations are

1 2 3 even permutation

1 3 2 odd permutation

3 1 2 even permutation

3 2 1 odd permutation

2 3 1 even permutation

2 1 3 odd permutation.

Here a permutation of 1 2 3 is called even or odd depending upon whether there is an even or odd number

of transpositions of the digits. A mnemonic device to remember the even and odd permutations of 123

is illustrated in the figure 1. Note that even permutations of 123 are obtained by selecting any three

consecutive numbers from the sequence 123123 and the odd permutations result by selecting any three

consecutive numbers from the sequence 321321.

Figure 1. Permutations of 123.

In general, the number of permutations of n things taken m at a time is given by the relation

P (n,m) = n(n− 1)(n− 2) · · · (n−m+ 1).

By selecting a subset of m objects from a collection of n objects, m ≤ n, without regard to the ordering is

called a combination of n objects taken m at a time. For example, combinations of 3 numbers taken from

the set {1, 2, 3, 4} are (123), (124), (134), (234). Note that ordering of a combination is not considered. That

is, the permutations (123), (132), (231), (213), (312), (321) are considered equal. In general, the number of

combinations of n objects taken m at a time is given by C(n,m) =
( n
m

)
=

n!
m!(n−m)!

where
(

n
m

)
are the

binomial coefficients which occur in the expansion

(a+ b)n =
n∑

m=0

( n
m

)
an−mbm.
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The definition of permutations can be used to define the e-permutation symbol.

Definition: (e-Permutation symbol or alternating tensor)

The e-permutation symbol is defined

eijk...l = eijk...l =




1 if ijk . . . l is an even permutation of the integers 123 . . . n
−1 if ijk . . . l is an odd permutation of the integers 123 . . . n
0 in all other cases

EXAMPLE 5. Find e612453.

Solution: To determine whether 612453 is an even or odd permutation of 123456 we write down the given

numbers and below them we write the integers 1 through 6. Like numbers are then connected by a line and

we obtain figure 2.

Figure 2. Permutations of 123456.

In figure 2, there are seven intersections of the lines connecting like numbers. The number of intersections

is an odd number and shows that an odd number of transpositions must be performed. These results imply

e612453 = −1.

Another definition used quite frequently in the representation of mathematical and engineering quantities

is the Kronecker delta which we now define in terms of both subscripts and superscripts.

Definition: (Kronecker delta) The Kronecker delta is defined:

δij = δj
i =

{
1 if i equals j
0 if i is different from j
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EXAMPLE 6. Some examples of the e−permutation symbol and Kronecker delta are:

e123 = e123 = +1

e213 = e213 = −1

e112 = e112 = 0

δ11 = 1

δ12 = 0

δ13 = 0

δ12 = 0

δ22 = 1

δ32 = 0.

EXAMPLE 7. When an index of the Kronecker delta δij is involved in the summation convention, the

effect is that of replacing one index with a different index. For example, let aij denote the elements of an

N ×N matrix. Here i and j are allowed to range over the integer values 1, 2, . . . , N. Consider the product

aijδik

where the range of i, j, k is 1, 2, . . . , N. The index i is repeated and therefore it is understood to represent

a summation over the range. The index i is called a summation index. The other indices j and k are free

indices. They are free to be assigned any values from the range of the indices. They are not involved in any

summations and their values, whatever you choose to assign them, are fixed. Let us assign a value of j and

k to the values of j and k. The underscore is to remind you that these values for j and k are fixed and not

to be summed. When we perform the summation over the summation index i we assign values to i from the

range and then sum over these values. Performing the indicated summation we obtain

aijδik = a1jδ1k + a2jδ2k + · · ·+ akjδkk + · · ·+ aNjδNk.

In this summation the Kronecker delta is zero everywhere the subscripts are different and equals one where

the subscripts are the same. There is only one term in this summation which is nonzero. It is that term

where the summation index i was equal to the fixed value k This gives the result

akjδkk = akj

where the underscore is to remind you that the quantities have fixed values and are not to be summed.

Dropping the underscores we write

aijδik = akj

Here we have substituted the index i by k and so when the Kronecker delta is used in a summation process

it is known as a substitution operator. This substitution property of the Kronecker delta can be used to

simplify a variety of expressions involving the index notation. Some examples are:

Bijδjs = Bis

δjkδkm = δjm

eijkδimδjnδkp = emnp.

Some texts adopt the notation that if indices are capital letters, then no summation is to be performed.

For example,

aKJδKK = aKJ
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as δKK represents a single term because of the capital letters. Another notation which is used to denote no

summation of the indices is to put parenthesis about the indices which are not to be summed. For example,

a(k)jδ(k)(k) = akj ,

since δ(k)(k) represents a single term and the parentheses indicate that no summation is to be performed.

At any time we may employ either the underscore notation, the capital letter notation or the parenthesis

notation to denote that no summation of the indices is to be performed. To avoid confusion altogether, one

can write out parenthetical expressions such as “(no summation on k)”.

EXAMPLE 8. In the Kronecker delta symbol δi
j we set j equal to i and perform a summation. This

operation is called a contraction. There results δi
i , which is to be summed over the range of the index i.

Utilizing the range 1, 2, . . . , N we have

δi
i = δ11 + δ22 + · · ·+ δN

N

δi
i = 1 + 1 + · · ·+ 1

δi
i = N.

In three dimension we have δi
j , i, j = 1, 2, 3 and

δk
k = δ11 + δ22 + δ33 = 3.

In certain circumstances the Kronecker delta can be written with only subscripts. For example,

δij , i, j = 1, 2, 3. We shall find that these circumstances allow us to perform a contraction on the lower

indices so that δii = 3.

EXAMPLE 9. The determinant of a matrix A = (aij) can be represented in the indicial notation.

Employing the e-permutation symbol the determinant of an N ×N matrix is expressed

|A| = eij...ka1ia2j · · · aNk

where eij...k is an Nth order system. In the special case of a 2× 2 matrix we write

|A| = eija1ia2j

where the summation is over the range 1,2 and the e-permutation symbol is of order 2. In the special case

of a 3× 3 matrix we have

|A| =
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = eijkai1aj2ak3 = eijka1ia2ja3k

where i, j, k are the summation indices and the summation is over the range 1,2,3. Here eijk denotes the

e-permutation symbol of order 3. Note that by interchanging the rows of the 3 × 3 matrix we can obtain
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more general results. Consider (p, q, r) as some permutation of the integers (1, 2, 3), and observe that the

determinant can be expressed

∆ =

∣∣∣∣∣∣
ap1 ap2 ap3

aq1 aq2 aq3

ar1 ar2 ar3

∣∣∣∣∣∣ = eijkapiaqjark.

If (p, q, r) is an even permutation of (1, 2, 3) then ∆ = |A|
If (p, q, r) is an odd permutation of (1, 2, 3) then ∆ = −|A|
If (p, q, r) is not a permutation of (1, 2, 3) then ∆ = 0.

We can then write

eijkapiaqjark = epqr|A|.

Each of the above results can be verified by performing the indicated summations. A more formal proof of

the above result is given in EXAMPLE 25, later in this section.

EXAMPLE 10. The expression eijkBijCi is meaningless since the index i repeats itself more than twice

and the summation convention does not allow this.

EXAMPLE 11.

The cross product of the unit vectors ê1, ê2, ê3 can be represented in the index notation by

êi × êj =




êk if (i, j, k) is an even permutation of (1, 2, 3)
− êk if (i, j, k) is an odd permutation of (1, 2, 3)
0 in all other cases

This result can be written in the form êi× êj = ekij êk. This later result can be verified by summing on the

index k and writing out all 9 possible combinations for i and j.

EXAMPLE 12. Given the vectors Ap, p = 1, 2, 3 and Bp, p = 1, 2, 3 the cross product of these two

vectors is a vector Cp, p = 1, 2, 3 with components

Ci = eijkAjBk, i, j, k = 1, 2, 3. (1.1.2)

The quantities Ci represent the components of the cross product vector

~C = ~A× ~B = C1 ê1 + C2 ê2 + C3 ê3.

The equation (1.1.2), which defines the components of ~C, is to be summed over each of the indices which

repeats itself. We have summing on the index k

Ci = eij1AjB1 + eij2AjB2 + eij3AjB3. (1.1.3)
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We next sum on the index j which repeats itself in each term of equation (1.1.3). This gives

Ci = ei11A1B1 + ei21A2B1 + ei31A3B1

+ ei12A1B2 + ei22A2B2 + ei32A3B2

+ ei13A1B3 + ei23A2B3 + ei33A3B3.

(1.1.4)

Now we are left with i being a free index which can have any of the values of 1, 2 or 3. Letting i = 1, then

letting i = 2, and finally letting i = 3 produces the cross product components

C1 = A2B3 −A3B2

C2 = A3B1 −A1B3

C3 = A1B2 −A2B1.

The cross product can also be expressed in the form ~A × ~B = eijkAjBk êi. This result can be verified by

summing over the indices i,j and k.

EXAMPLE 13. Show

eijk = −eikj = ejki for i, j, k = 1, 2, 3

Solution: The array i k j represents an odd number of transpositions of the indices i j k and to each

transposition there is a sign change of the e-permutation symbol. Similarly, j k i is an even transposition

of i j k and so there is no sign change of the e-permutation symbol. The above holds regardless of the

numerical values assigned to the indices i, j, k.

The e-δ Identity

An identity relating the e-permutation symbol and the Kronecker delta, which is useful in the simpli-

fication of tensor expressions, is the e-δ identity. This identity can be expressed in different forms. The

subscript form for this identity is

eijkeimn = δjmδkn − δjnδkm, i, j, k,m, n = 1, 2, 3

where i is the summation index and j, k,m, n are free indices. A device used to remember the positions of

the subscripts is given in the figure 3.

The subscripts on the four Kronecker delta’s on the right-hand side of the e-δ identity then are read

(first)(second)-(outer)(inner).

This refers to the positions following the summation index. Thus, j,m are the first indices after the sum-

mation index and k, n are the second indices after the summation index. The indices j, n are outer indices

when compared to the inner indices k,m as the indices are viewed as written on the left-hand side of the

identity.
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Figure 3. Mnemonic device for position of subscripts.

Another form of this identity employs both subscripts and superscripts and has the form

eijkeimn = δj
mδ

k
n − δj

nδ
k
m. (1.1.5)

One way of proving this identity is to observe the equation (1.1.5) has the free indices j, k,m, n. Each

of these indices can have any of the values of 1, 2 or 3. There are 3 choices we can assign to each of j, k,m

or n and this gives a total of 34 = 81 possible equations represented by the identity from equation (1.1.5).

By writing out all 81 of these equations we can verify that the identity is true for all possible combinations

that can be assigned to the free indices.

An alternate proof of the e− δ identity is to consider the determinant∣∣∣∣∣∣
δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1.

By performing a permutation of the rows of this matrix we can use the permutation symbol and write∣∣∣∣∣∣
δi
1 δi

2 δi
3

δj
1 δj

2 δj
3

δk
1 δk

2 δk
3

∣∣∣∣∣∣ = eijk.

By performing a permutation of the columns, we can write∣∣∣∣∣∣
δi
r δi

s δi
t

δj
r δj

s δj
t

δk
r δk

s δk
t

∣∣∣∣∣∣ = eijkerst.

Now perform a contraction on the indices i and r to obtain∣∣∣∣∣∣
δi
i δi

s δi
t

δj
i δj

s δj
t

δk
i δk

s δk
t

∣∣∣∣∣∣ = eijkeist.

Summing on i we have δi
i = δ11 + δ22 + δ33 = 3 and expand the determinant to obtain the desired result

δj
sδ

k
t − δj

t δ
k
s = eijkeist.
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Generalized Kronecker delta

The generalized Kronecker delta is defined by the (n× n) determinant

δij...k
mn...p =

∣∣∣∣∣∣∣∣∣

δi
m δi

n · · · δi
p

δj
m δj

n · · · δj
p

...
...

. . .
...

δk
m δk

n · · · δk
p

∣∣∣∣∣∣∣∣∣
.

For example, in three dimensions we can write

δijk
mnp =

∣∣∣∣∣∣
δi
m δi

n δi
p

δj
m δj

n δj
p

δk
m δk

n δk
p

∣∣∣∣∣∣ = eijkemnp.

Performing a contraction on the indices k and p we obtain the fourth order system

δrs
mn = δrsp

mnp = erspemnp = eprsepmn = δr
mδ

s
n − δr

nδ
s
m.

As an exercise one can verify that the definition of the e-permutation symbol can also be defined in terms

of the generalized Kronecker delta as

ej1j2j3···jN = δ1 2 3 ···N
j1j2j3···jN

.

Additional definitions and results employing the generalized Kronecker delta are found in the exercises.

In section 1.3 we shall show that the Kronecker delta and epsilon permutation symbol are numerical tensors

which have fixed components in every coordinate system.

Additional Applications of the Indicial Notation

The indicial notation, together with the e− δ identity, can be used to prove various vector identities.

EXAMPLE 14. Show, using the index notation, that ~A× ~B = − ~B × ~A

Solution: Let
~C = ~A× ~B = C1 ê1 + C2 ê2 + C3 ê3 = Ci êi and let

~D = ~B × ~A = D1 ê1 +D2 ê2 +D3 ê3 = Di êi.

We have shown that the components of the cross products can be represented in the index notation by

Ci = eijkAjBk and Di = eijkBjAk.

We desire to show that Di = −Ci for all values of i. Consider the following manipulations: Let Bj = Bsδsj

and Ak = Amδmk and write

Di = eijkBjAk = eijkBsδsjAmδmk (1.1.6)

where all indices have the range 1, 2, 3. In the expression (1.1.6) note that no summation index appears

more than twice because if an index appeared more than twice the summation convention would become

meaningless. By rearranging terms in equation (1.1.6) we have

Di = eijkδsjδmkBsAm = eismBsAm.
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In this expression the indices s and m are dummy summation indices and can be replaced by any other

letters. We replace s by k and m by j to obtain

Di = eikjAjBk = −eijkAjBk = −Ci.

Consequently, we find that ~D = −~C or ~B × ~A = − ~A× ~B. That is, ~D = Di êi = −Ci êi = −~C.
Note 1. The expressions

Ci = eijkAjBk and Cm = emnpAnBp

with all indices having the range 1, 2, 3, appear to be different because different letters are used as sub-

scripts. It must be remembered that certain indices are summed according to the summation convention

and the other indices are free indices and can take on any values from the assigned range. Thus, after

summation, when numerical values are substituted for the indices involved, none of the dummy letters

used to represent the components appear in the answer.

Note 2. A second important point is that when one is working with expressions involving the index notation,

the indices can be changed directly. For example, in the above expression for Di we could have replaced

j by k and k by j simultaneously (so that no index repeats itself more than twice) to obtain

Di = eijkBjAk = eikjBkAj = −eijkAjBk = −Ci.

Note 3. Be careful in switching back and forth between the vector notation and index notation. Observe that a

vector ~A can be represented
~A = Ai êi

or its components can be represented

~A · êi = Ai, i = 1, 2, 3.

Do not set a vector equal to a scalar. That is, do not make the mistake of writing ~A = Ai as this is a

misuse of the equal sign. It is not possible for a vector to equal a scalar because they are two entirely

different quantities. A vector has both magnitude and direction while a scalar has only magnitude.

EXAMPLE 15. Verify the vector identity

~A · ( ~B × ~C) = ~B · (~C × ~A)

Solution: Let
~B × ~C = ~D = Di êi where Di = eijkBjCk and let

~C × ~A = ~F = Fi êi where Fi = eijkCjAk

where all indices have the range 1, 2, 3. To prove the above identity, we have

~A · ( ~B × ~C) = ~A · ~D = AiDi = AieijkBjCk

= Bj(eijkAiCk)

= Bj(ejkiCkAi)
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since eijk = ejki. We also observe from the expression

Fi = eijkCjAk

that we may obtain, by permuting the symbols, the equivalent expression

Fj = ejkiCkAi.

This allows us to write
~A · ( ~B × ~C) = BjFj = ~B · ~F = ~B · (~C × ~A)

which was to be shown.

The quantity ~A · ( ~B × ~C) is called a triple scalar product. The above index representation of the triple

scalar product implies that it can be represented as a determinant (See EXAMPLE 9). We can write

~A · ( ~B × ~C) =

∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣ = eijkAiBjCk

A physical interpretation that can be assigned to this triple scalar product is that its absolute value represents

the volume of the parallelepiped formed by the three noncoplaner vectors ~A, ~B, ~C. The absolute value is

needed because sometimes the triple scalar product is negative. This physical interpretation can be obtained

from an analysis of the figure 4.

Figure 4. Triple scalar product and volume
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In figure 4 observe that: (i) | ~B × ~C| is the area of the parallelogram PQRS. (ii) the unit vector

ên =
~B × ~C

| ~B × ~C|

is normal to the plane containing the vectors ~B and ~C. (iii) The dot product

∣∣ ~A · ên

∣∣ =
∣∣∣∣ ~A ·

~B × ~C

| ~B × ~C|

∣∣∣∣ = h

equals the projection of ~A on ên which represents the height of the parallelepiped. These results demonstrate

that ∣∣∣ ~A · ( ~B × ~C)
∣∣∣ = | ~B × ~C|h = (area of base)(height) = volume.

EXAMPLE 16. Verify the vector identity

( ~A× ~B)× (~C × ~D) = ~C( ~D · ~A× ~B)− ~D(~C · ~A× ~B)

Solution: Let ~F = ~A× ~B = Fi êi and ~E = ~C × ~D = Ei êi. These vectors have the components

Fi = eijkAjBk and Em = emnpCnDp

where all indices have the range 1, 2, 3. The vector ~G = ~F × ~E = Gi êi has the components

Gq = eqimFiEm = eqimeijkemnpAjBkCnDp.

From the identity eqim = emqi this can be expressed

Gq = (emqiemnp)eijkAjBkCnDp

which is now in a form where we can use the e− δ identity applied to the term in parentheses to produce

Gq = (δqnδip − δqpδin)eijkAjBkCnDp.

Simplifying this expression we have:

Gq = eijk [(Dpδip)(Cnδqn)AjBk − (Dpδqp)(Cnδin)AjBk]

= eijk [DiCqAjBk −DqCiAjBk]

= Cq [DieijkAjBk]−Dq [CieijkAjBk]

which are the vector components of the vector

~C( ~D · ~A× ~B)− ~D(~C · ~A× ~B).
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Transformation Equations

Consider two sets of N independent variables which are denoted by the barred and unbarred symbols

xi and xi with i = 1, . . . , N. The independent variables xi, i = 1, . . . , N can be thought of as defining

the coordinates of a point in a N−dimensional space. Similarly, the independent barred variables define a

point in some other N−dimensional space. These coordinates are assumed to be real quantities and are not

complex quantities. Further, we assume that these variables are related by a set of transformation equations.

xi = xi(x1, x2, . . . , xN ) i = 1, . . . , N. (1.1.7)

It is assumed that these transformation equations are independent. A necessary and sufficient condition that

these transformation equations be independent is that the Jacobian determinant be different from zero, that

is

J(
x

x
) =

∣∣∣∣ ∂xi

∂x̄j

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

∂x1

∂x1
∂x1

∂x2 · · · ∂x1

∂xN

∂x2

∂x1
∂x2

∂x2 · · · ∂x2

∂xN

...
...

. . .
...

∂xN

∂x1
∂xN

∂x2 · · · ∂xN

∂xN

∣∣∣∣∣∣∣∣∣∣
6= 0.

This assumption allows us to obtain a set of inverse relations

xi = xi(x1, x2, . . . , xN ) i = 1, . . . , N, (1.1.8)

where the x′s are determined in terms of the x′s. Throughout our discussions it is to be understood that the

given transformation equations are real and continuous. Further all derivatives that appear in our discussions

are assumed to exist and be continuous in the domain of the variables considered.

EXAMPLE 17. The following is an example of a set of transformation equations of the form defined by

equations (1.1.7) and (1.1.8) in the case N = 3. Consider the transformation from cylindrical coordinates

(r, α, z) to spherical coordinates (ρ, β, α). From the geometry of the figure 5 we can find the transformation

equations
r = ρ sinβ

α = α 0 < α < 2π

z = ρ cosβ 0 < β < π

with inverse transformation
ρ =

√
r2 + z2

α = α

β = arctan(
r

z
)

Now make the substitutions

(x1, x2, x3) = (r, α, z) and (x1, x2, x3) = (ρ, β, α).
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Figure 5. Cylindrical and Spherical Coordinates

The resulting transformations then have the forms of the equations (1.1.7) and (1.1.8).

Calculation of Derivatives

We now consider the chain rule applied to the differentiation of a function of the bar variables. We

represent this differentiation in the indicial notation. Let Φ = Φ(x1, x2, . . . , xn) be a scalar function of the

variables xi, i = 1, . . . , N and let these variables be related to the set of variables xi, with i = 1, . . . , N by

the transformation equations (1.1.7) and (1.1.8). The partial derivatives of Φ with respect to the variables

xi can be expressed in the indicial notation as

∂Φ
∂xi

=
∂Φ
∂xj

∂xj

∂xi
=

∂Φ
∂x1

∂x1

∂xi
+
∂Φ
∂x2

∂x2

∂xi
+ · · ·+ ∂Φ

∂xN

∂xN

∂xi
(1.1.9)

for any fixed value of i satisfying 1 ≤ i ≤ N.

The second partial derivatives of Φ can also be expressed in the index notation. Differentiation of

equation (1.1.9) partially with respect to xm produces

∂2Φ
∂xi∂xm

=
∂Φ
∂xj

∂2xj

∂xi∂xm
+

∂

∂xm

[
∂Φ
∂xj

]
∂xj

∂xi
. (1.1.10)

This result is nothing more than an application of the general rule for differentiating a product of two

quantities. To evaluate the derivative of the bracketed term in equation (1.1.10) it must be remembered that

the quantity inside the brackets is a function of the bar variables. Let

G =
∂Φ
∂xj = G(x1, x2, . . . , xN )

to emphasize this dependence upon the bar variables, then the derivative of G is

∂G

∂xm
=

∂G

∂xk

∂xk

∂xm
=

∂2Φ
∂xj∂xk

∂xk

∂xm
. (1.1.11)

This is just an application of the basic rule from equation (1.1.9) with Φ replaced by G. Hence the derivative

from equation (1.1.10) can be expressed

∂2Φ
∂xi∂xm

=
∂Φ
∂xj

∂2xj

∂xi∂xm
+

∂2Φ
∂xj∂xk

∂xj

∂xi

∂xk

∂xm
(1.1.12)

where i,m are free indices and j, k are dummy summation indices.
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EXAMPLE 18. Let Φ = Φ(r, θ) where r, θ are polar coordinates related to the Cartesian coordinates

(x, y) by the transformation equations x = r cos θ y = r sin θ. Find the partial derivatives
∂Φ
∂x

and
∂2Φ
∂x2

Solution: The partial derivative of Φ with respect to x is found from the relation (1.1.9) and can be written

∂Φ
∂x

=
∂Φ
∂r

∂r

∂x
+
∂Φ
∂θ

∂θ

∂x
. (1.1.13)

The second partial derivative is obtained by differentiating the first partial derivative. From the product

rule for differentiation we can write

∂2Φ
∂x2

=
∂Φ
∂r

∂2r

∂x2
+
∂r

∂x

∂

∂x

[
∂Φ
∂r

]
+
∂Φ
∂θ

∂2θ

∂x2
+
∂θ

∂x

∂

∂x

[
∂Φ
∂θ

]
. (1.1.14)

To further simplify (1.1.14) it must be remembered that the terms inside the brackets are to be treated as

functions of the variables r and θ and that the derivative of these terms can be evaluated by reapplying the

basic rule from equation (1.1.13) with Φ replaced by ∂Φ
∂r and then Φ replaced by ∂Φ

∂θ . This gives

∂2Φ
∂x2

=
∂Φ
∂r

∂2r

∂x2
+
∂r

∂x

[
∂2Φ
∂r2

∂r

∂x
+

∂2Φ
∂r∂θ

∂θ

∂x

]

+
∂Φ
∂θ

∂2θ

∂x2
+
∂θ

∂x

[
∂2Φ
∂θ∂r

∂r

∂x
+
∂2Φ
∂θ2

∂θ

∂x

]
.

(1.1.15)

From the transformation equations we obtain the relations r2 = x2 +y2 and tan θ =
y

x
and from

these relations we can calculate all the necessary derivatives needed for the simplification of the equations

(1.1.13) and (1.1.15). These derivatives are:

2r
∂r

∂x
= 2x or

∂r

∂x
=
x

r
= cos θ

sec2 θ
∂θ

∂x
= − y

x2
or

∂θ

∂x
= − y

r2
= − sin θ

r

∂2r

∂x2
= − sin θ

∂θ

∂x
=

sin2 θ

r

∂2θ

∂x2
=
−r cos θ ∂θ

∂x + sin θ ∂r
∂x

r2
=

2 sin θ cos θ
r

.

Therefore, the derivatives from equations (1.1.13) and (1.1.15) can be expressed in the form

∂Φ
∂x

=
∂Φ
∂r

cos θ − ∂Φ
∂θ

sin θ
r

∂2Φ
∂x2

=
∂Φ
∂r

sin2 θ

r
+ 2

∂Φ
∂θ

sin θ cos θ
r2

+
∂2Φ
∂r2

cos2 θ − 2
∂2Φ
∂r∂θ

cos θ sin θ
r

+
∂2Φ
∂θ2

sin2 θ

r2
.

By letting x1 = r, x2 = θ, x1 = x, x2 = y and performing the indicated summations in the equations (1.1.9)

and (1.1.12) there is produced the same results as above.

Vector Identities in Cartesian Coordinates

Employing the substitutions x1 = x, x2 = y, x3 = z, where superscript variables are employed and

denoting the unit vectors in Cartesian coordinates by ê1, ê2, ê3, we illustrated how various vector operations

are written by using the index notation.
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Gradient. In Cartesian coordinates the gradient of a scalar field is

gradφ =
∂φ

∂x
ê1 +

∂φ

∂y
ê2 +

∂φ

∂z
ê3.

The index notation focuses attention only on the components of the gradient. In Cartesian coordinates these

components are represented using a comma subscript to denote the derivative

êj · gradφ = φ,j =
∂φ

∂xj
, j = 1, 2, 3.

The comma notation will be discussed in section 4. For now we use it to denote derivatives. For example

φ ,j =
∂φ

∂xj
, φ ,jk =

∂2φ

∂xj∂xk
, etc.

Divergence. In Cartesian coordinates the divergence of a vector field ~A is a scalar field and can be

represented

∇ · ~A = div ~A =
∂A1

∂x
+
∂A2

∂y
+
∂A3

∂z
.

Employing the summation convention and index notation, the divergence in Cartesian coordinates can be

represented

∇ · ~A = div ~A = Ai,i =
∂Ai

∂xi
=
∂A1

∂x1
+
∂A2

∂x2
+
∂A3

∂x3

where i is the dummy summation index.

Curl. To represent the vector ~B = curl ~A = ∇ × ~A in Cartesian coordinates, we note that the index

notation focuses attention only on the components of this vector. The components Bi, i = 1, 2, 3 of ~B can

be represented

Bi = êi · curl ~A = eijkAk,j , for i, j, k = 1, 2, 3

where eijk is the permutation symbol introduced earlier and Ak,j = ∂Ak

∂xj . To verify this representation of the

curl ~A we need only perform the summations indicated by the repeated indices. We have summing on j that

Bi = ei1kAk,1 + ei2kAk,2 + ei3kAk,3.

Now summing each term on the repeated index k gives us

Bi = ei12A2,1 + ei13A3,1 + ei21A1,2 + ei23A3,2 + ei31A1,3 + ei32A2,3

Here i is a free index which can take on any of the values 1, 2 or 3. Consequently, we have

For i = 1, B1 = A3,2 −A2,3 =
∂A3

∂x2
− ∂A2

∂x3

For i = 2, B2 = A1,3 −A3,1 =
∂A1

∂x3
− ∂A3

∂x1

For i = 3, B3 = A2,1 −A1,2 =
∂A2

∂x1
− ∂A1

∂x2

which verifies the index notation representation of curl ~A in Cartesian coordinates.
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Other Operations. The following examples illustrate how the index notation can be used to represent

additional vector operators in Cartesian coordinates.

1. In index notation the components of the vector ( ~B · ∇) ~A are

{( ~B · ∇) ~A} · êp = Ap,qBq p, q = 1, 2, 3

This can be verified by performing the indicated summations. We have by summing on the repeated

index q

Ap,qBq = Ap,1B1 +Ap,2B2 +Ap,3B3.

The index p is now a free index which can have any of the values 1, 2 or 3. We have:

for p = 1, A1,qBq = A1,1B1 +A1,2B2 +A1,3B3

=
∂A1

∂x1
B1 +

∂A1

∂x2
B2 +

∂A1

∂x3
B3

for p = 2, A2,qBq = A2,1B1 +A2,2B2 +A2,3B3

=
∂A2

∂x1
B1 +

∂A2

∂x2
B2 +

∂A2

∂x3
B3

for p = 3, A3,qBq = A3,1B1 +A3,2B2 +A3,3B3

=
∂A3

∂x1
B1 +

∂A3

∂x2
B2 +

∂A3

∂x3
B3

2. The scalar ( ~B · ∇)φ has the following form when expressed in the index notation:

( ~B · ∇)φ = Biφ,i = B1φ,1 +B2φ,2 +B3φ,3

= B1
∂φ

∂x1
+B2

∂φ

∂x2
+B3

∂φ

∂x3
.

3. The components of the vector ( ~B ×∇)φ is expressed in the index notation by

êi ·
[
( ~B ×∇)φ

]
= eijkBjφ,k.

This can be verified by performing the indicated summations and is left as an exercise.

4. The scalar ( ~B ×∇) · ~A may be expressed in the index notation. It has the form

( ~B ×∇) · ~A = eijkBjAi,k.

This can also be verified by performing the indicated summations and is left as an exercise.

5. The vector components of ∇2 ~A in the index notation are represented

êp · ∇2 ~A = Ap,qq .

The proof of this is left as an exercise.
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EXAMPLE 19. In Cartesian coordinates prove the vector identity

curl (f ~A) = ∇× (f ~A) = (∇f)× ~A+ f(∇× ~A).

Solution: Let ~B = curl (f ~A) and write the components as

Bi = eijk(fAk),j

= eijk [fAk,j + f,jAk]

= feijkAk,j + eijkf,jAk.

This index form can now be expressed in the vector form

~B = curl (f ~A) = f(∇× ~A) + (∇f)× ~A

EXAMPLE 20. Prove the vector identity ∇ · ( ~A+ ~B) = ∇ · ~A+∇ · ~B
Solution: Let ~A+ ~B = ~C and write this vector equation in the index notation as Ai + Bi = Ci. We then

have

∇ · ~C = Ci,i = (Ai +Bi),i = Ai,i +Bi,i = ∇ · ~A+∇ · ~B.

EXAMPLE 21. In Cartesian coordinates prove the vector identity ( ~A · ∇)f = ~A · ∇f
Solution: In the index notation we write

( ~A · ∇)f = Aif,i = A1f,1 +A2f,2 +A3f,3

= A1
∂f

∂x1
+A2

∂f

∂x2
+A3

∂f

∂x3
= ~A · ∇f.

EXAMPLE 22. In Cartesian coordinates prove the vector identity

∇× ( ~A× ~B) = ~A(∇ · ~B)− ~B(∇ · ~A) + ( ~B · ∇) ~A− ( ~A · ∇) ~B

Solution: The pth component of the vector ∇× ( ~A× ~B) is

êp · [∇× ( ~A× ~B)] = epqk[ekjiAjBi],q

= epqkekjiAjBi,q + epqkekjiAj,qBi

By applying the e− δ identity, the above expression simplifies to the desired result. That is,

êp · [∇× ( ~A× ~B)] = (δpjδqi − δpiδqj)AjBi,q + (δpjδqi − δpiδqj)Aj,qBi

= ApBi,i −AqBp,q +Ap,qBq −Aq,qBp

In vector form this is expressed

∇× ( ~A× ~B) = ~A(∇ · ~B)− ( ~A · ∇) ~B + ( ~B · ∇) ~A− ~B(∇ · ~A)
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EXAMPLE 23. In Cartesian coordinates prove the vector identity ∇× (∇× ~A) = ∇(∇ · ~A)−∇2 ~A

Solution: We have for the ith component of ∇× ~A is given by êi · [∇× ~A] = eijkAk,j and consequently the

pth component of ∇× (∇× ~A) is

êp · [∇× (∇× ~A)] = epqr[erjkAk,j ],q

= epqrerjkAk,jq .

The e− δ identity produces

êp · [∇× (∇× ~A)] = (δpjδqk − δpkδqj)Ak,jq

= Ak,pk −Ap,qq .

Expressing this result in vector form we have ∇× (∇× ~A) = ∇(∇ · ~A)−∇2 ~A.

Indicial Form of Integral Theorems

The divergence theorem, in both vector and indicial notation, can be written∫∫∫
V

div · ~F dτ =
∫∫

S

~F · n̂ dσ
∫

V

Fi,i dτ =
∫

S

Fini dσ i = 1, 2, 3 (1.1.16)

where ni are the direction cosines of the unit exterior normal to the surface, dτ is a volume element and dσ

is an element of surface area. Note that in using the indicial notation the volume and surface integrals are

to be extended over the range specified by the indices. This suggests that the divergence theorem can be

applied to vectors in n−dimensional spaces.

The vector form and indicial notation for the Stokes theorem are∫∫
S

(∇× ~F ) · n̂ dσ =
∫

C

~F · d~r
∫

S

eijkFk,jni dσ =
∫

C

Fi dx
i i, j, k = 1, 2, 3 (1.1.17)

and the Green’s theorem in the plane, which is a special case of the Stoke’s theorem, can be expressed

∫∫ (
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∫
C

F1 dx+ F2 dy

∫
S

e3jkFk,j dS =
∫

C

Fi dx
i i, j, k = 1, 2 (1.1.18)

Other forms of the above integral theorems are∫∫∫
V

∇φdτ =
∫∫

S

φ n̂ dσ

obtained from the divergence theorem by letting ~F = φ~C where ~C is a constant vector. By replacing ~F by
~F × ~C in the divergence theorem one can derive∫∫∫

V

(
∇× ~F

)
dτ = −

∫∫
S

~F × ~n dσ.

In the divergence theorem make the substitution ~F = φ∇ψ to obtain∫∫∫
V

[
(φ∇2ψ + (∇φ) · (∇ψ)

]
dτ =

∫∫
S

(φ∇ψ) · n̂ dσ.
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The Green’s identity ∫∫∫
V

(
φ∇2ψ − ψ∇2φ

)
dτ =

∫∫
S

(φ∇ψ − ψ∇φ) · n̂ dσ

is obtained by first letting ~F = φ∇ψ in the divergence theorem and then letting ~F = ψ∇φ in the divergence

theorem and then subtracting the results.

Determinants, Cofactors

For A = (aij), i, j = 1, . . . , n an n× n matrix, the determinant of A can be written as

detA = |A| = ei1i2i3...ina1i1a2i2a3i3 . . . anin .

This gives a summation of the n! permutations of products formed from the elements of the matrix A. The

result is a single number called the determinant of A.

EXAMPLE 24. In the case n = 2 we have

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = enma1na2m

= e1ma11a2m + e2ma12a2m

= e12a11a22 + e21a12a21

= a11a22 − a12a21

EXAMPLE 25. In the case n = 3 we can use either of the notations

A =


 a11 a12 a13

a21 a22 a23

a31 a32 a33


 or A =


 a1

1 a1
2 a1

3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3




and represent the determinant of A in any of the forms

detA = eijka1ia2ja3k

detA = eijkai1aj2ak3

detA = eijka
i
1a

j
2a

k
3

detA = eijka
1
i a

2
ja

3
k.

These represent row and column expansions of the determinant.

An important identity results if we examine the quantity Brst = eijka
i
ra

j
sa

k
t . It is an easy exercise to

change the dummy summation indices and rearrange terms in this expression. For example,

Brst = eijka
i
ra

j
sa

k
t = ekjia

k
ra

j
sa

i
t = ekjia

i
ta

j
sa

k
r = −eijka

i
ta

j
sa

k
r = −Btsr,

and by considering other permutations of the indices, one can establish that Brst is completely skew-

symmetric. In the exercises it is shown that any third order completely skew-symmetric system satisfies

Brst = B123erst. But B123 = detA and so we arrive at the identity

Brst = eijka
i
ra

j
sa

k
t = |A|erst.
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Other forms of this identity are

eijkar
i a

s
ja

t
k = |A|erst and eijkairajsakt = |A|erst. (1.1.19)

Consider the representation of the determinant

|A| =
∣∣∣∣∣∣
a1
1 a1

2 a1
3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

∣∣∣∣∣∣
by use of the indicial notation. By column expansions, this determinant can be represented

|A| = ersta
r
1a

s
2a

t
3 (1.1.20)

and if one uses row expansions the determinant can be expressed as

|A| = eijka1
i a

2
ja

3
k. (1.1.21)

Define Ai
m as the cofactor of the element am

i in the determinant |A|. From the equation (1.1.20) the cofactor

of ar
1 is obtained by deleting this element and we find

A1
r = ersta

s
2a

t
3. (1.1.22)

The result (1.1.20) can then be expressed in the form

|A| = ar
1A

1
r = a1

1A
1
1 + a2

1A
1
2 + a3

1A
1
3. (1.1.23)

That is, the determinant |A| is obtained by multiplying each element in the first column by its corresponding

cofactor and summing the result. Observe also that from the equation (1.1.20) we find the additional

cofactors

A2
s = ersta

r
1a

t
3 and A3

t = ersta
r
1a

s
2. (1.1.24)

Hence, the equation (1.1.20) can also be expressed in one of the forms

|A| = as
2A

2
s = a1

2A
2
1 + a2

2A
2
2 + a3

2A
2
3

|A| = at
3A

3
t = a1

3A
3
1 + a2

3A
3
2 + a3

3A
3
3

The results from equations (1.1.22) and (1.1.24) can be written in a slightly different form with the indicial

notation. From the notation for a generalized Kronecker delta defined by

eijkelmn = δijk
lmn,

the above cofactors can be written in the form

A1
r = e123ersta

s
2a

t
3 =

1
2!
e1jkersta

s
ja

t
k =

1
2!
δ1jk
rst a

s
ja

t
k

A2
r = e123esrta

s
1a

t
3 =

1
2!
e2jkersta

s
ja

t
k =

1
2!
δ2jk
rst a

s
ja

t
k

A3
r = e123etsra

t
1a

s
2 =

1
2!
e3jkersta

s
ja

t
k =

1
2!
δ3jk
rst a

s
ja

t
k.
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These cofactors are then combined into the single equation

Ai
r =

1
2!
δijk
rsta

s
ja

t
k (1.1.25)

which represents the cofactor of ar
i . When the elements from any row (or column) are multiplied by their

corresponding cofactors, and the results summed, we obtain the value of the determinant. Whenever the

elements from any row (or column) are multiplied by the cofactor elements from a different row (or column),

and the results summed, we get zero. This can be illustrated by considering the summation

am
r A

i
m =

1
2!
δijk
msta

s
ja

t
ka

m
r =

1
2!
eijkemsta

m
r a

s
ja

t
k

=
1
2!
eijkerjk|A| = 1

2!
δijk
rjk|A| = δi

r|A|

Here we have used the e− δ identity to obtain

δijk
rjk = eijkerjk = ejikejrk = δi

rδ
k
k − δi

kδ
k
r = 3δi

r − δi
r = 2δi

r

which was used to simplify the above result.

As an exercise one can show that an alternate form of the above summation of elements by its cofactors

is

ar
mA

m
i = |A|δr

i .
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EXERCISE 1.1

I 1. Simplify each of the following by employing the summation property of the Kronecker delta. Perform

sums on the summation indices only if your are unsure of the result.

(a) eijkδkn

(b) eijkδisδjm

(c) eijkδisδjmδkn

(d) aijδin

(e) δijδjn

(f) δijδjnδni

I 2. Simplify and perform the indicated summations over the range 1, 2, 3

(a) δii

(b) δijδij

(c) eijkAiAjAk

(d) eijkeijk

(e) eijkδjk

(f) AiBjδji −BmAnδmn

I 3. Express each of the following in index notation. Be careful of the notation you use. Note that ~A = Ai

is an incorrect notation because a vector can not equal a scalar. The notation ~A · êi = Ai should be used to

express the ith component of a vector.

(a) ~A · ( ~B × ~C)

(b) ~A× ( ~B × ~C)

(c) ~B( ~A · ~C)

(d) ~B( ~A · ~C)− ~C( ~A · ~B)

I 4. Show the e permutation symbol satisfies: (a) eijk = ejki = ekij (b) eijk = −ejik = −eikj = −ekji

I 5. Use index notation to verify the vector identity ~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B)

I 6. Let yi = aijxj and xm = aimzi where the range of the indices is 1, 2

(a) Solve for yi in terms of zi using the indicial notation and check your result

to be sure that no index repeats itself more than twice.

(b) Perform the indicated summations and write out expressions

for y1, y2 in terms of z1, z2

(c) Express the above equations in matrix form. Expand the matrix

equations and check the solution obtained in part (b).

I 7. Use the e− δ identity to simplify (a) eijkejik (b) eijkejki

I 8. Prove the following vector identities:

(a) ~A · ( ~B × ~C) = ~B · (~C × ~A) = ~C · ( ~A× ~B) triple scalar product

(b) ( ~A× ~B)× ~C = ~B( ~A · ~C)− ~A( ~B · ~C)

I 9. Prove the following vector identities:

(a) ( ~A× ~B) · (~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C)

(b) ~A× ( ~B × ~C) + ~B × (~C × ~A) + ~C × ( ~A× ~B) = ~0

(c) ( ~A× ~B)× (~C × ~D) = ~B( ~A · ~C × ~D)− ~A( ~B · ~C × ~D)
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I 10. For ~A = (1,−1, 0) and ~B = (4,−3, 2) find using the index notation,

(a) Ci = eijkAjBk, i = 1, 2, 3

(b) AiBi

(c) What do the results in (a) and (b) represent?

I 11. Represent the differential equations
dy1
dt

= a11y1 + a12y2 and
dy2
dt

= a21y1 + a22y2

using the index notation.

I 12.

Let Φ = Φ(r, θ) where r, θ are polar coordinates related to Cartesian coordinates (x, y) by the transfor-

mation equations x = r cos θ and y = r sin θ.

(a) Find the partial derivatives
∂Φ
∂y

, and
∂2Φ
∂y2

(b) Combine the result in part (a) with the result from EXAMPLE 18 to calculate the Laplacian

∇2Φ =
∂2Φ
∂x2

+
∂2Φ
∂y2

in polar coordinates.

I 13. (Index notation) Let a11 = 3, a12 = 4, a21 = 5, a22 = 6.

Calculate the quantity C = aijaij , i, j = 1, 2.

I 14. Show the moments of inertia Iij defined by

I11 =
∫∫∫

R

(y2 + z2)ρ(x, y, z) dτ

I22 =
∫∫∫

R

(x2 + z2)ρ(x, y, z) dτ

I33 =
∫∫∫

R

(x2 + y2)ρ(x, y, z) dτ

I23 = I32 = −
∫∫∫

R

yzρ(x, y, z) dτ

I12 = I21 = −
∫∫∫

R

xyρ(x, y, z) dτ

I13 = I31 = −
∫∫∫

R

xzρ(x, y, z) dτ,

can be represented in the index notation as Iij =
∫∫∫

R

(
xmxmδij − xixj

)
ρ dτ, where ρ is the density,

x1 = x, x2 = y, x3 = z and dτ = dxdydz is an element of volume.

I 15. Determine if the following relation is true or false. Justify your answer.

êi · ( êj × êk) = ( êi × êj) · êk = eijk, i, j, k = 1, 2, 3.

Hint: Let êm = (δ1m, δ2m, δ3m).

I 16. Without substituting values for i, l = 1, 2, 3 calculate all nine terms of the given quantities

(a) Bil = (δi
jAk + δi

kAj)ejkl (b) Ail = (δm
i B

k + δk
i B

m)emlk

I 17. Let Amnx
myn = 0 for arbitrary xi and yi, i = 1, 2, 3, and show that Aij = 0 for all values of i, j.
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I 18.

(a) For amn,m, n = 1, 2, 3 skew-symmetric, show that amnx
mxn = 0.

(b) Let amnx
mxn = 0, m, n = 1, 2, 3 for all values of xi, i = 1, 2, 3 and show that amn must be skew-

symmetric.

I 19. Let A and B denote 3× 3 matrices with elements aij and bij respectively. Show that if C = AB is a

matrix product, then det(C) = det(A) · det(B).

Hint: Use the result from EXAMPLE 9.

I 20.

(a) Let u1, u2, u3 be functions of the variables s1, s2, s3. Further, assume that s1, s2, s3 are in turn each

functions of the variables x1, x2, x3. Let
∣∣∣∣∂um

∂xn

∣∣∣∣ =
∂(u1, u2, u3)
∂(x1, x2, x3)

denote the Jacobian of the u′s with

respect to the x′s. Show that ∣∣∣∣ ∂ui

∂xm

∣∣∣∣ =
∣∣∣∣∂ui

∂sj

∂sj

∂xm

∣∣∣∣ =
∣∣∣∣∂ui

∂sj

∣∣∣∣ ·
∣∣∣∣ ∂sj

∂xm

∣∣∣∣ .
(b) Note that

∂xi

∂x̄j

∂x̄j

∂xm
=

∂xi

∂xm
= δi

m and show that J(x
x̄)·J( x̄

x ) = 1, where J(x
x̄ ) is the Jacobian determinant

of the transformation (1.1.7).

I 21. A third order system a`mn with `,m, n = 1, 2, 3 is said to be symmetric in two of its subscripts if the

components are unaltered when these subscripts are interchanged. When a`mn is completely symmetric then

a`mn = am`n = a`nm = amn` = anm` = an`m. Whenever this third order system is completely symmetric,

then: (i) How many components are there? (ii) How many of these components are distinct?

Hint: Consider the three cases (i) ` = m = n (ii) ` = m 6= n (iii) ` 6= m 6= n.

I 22. A third order system b`mn with `,m, n = 1, 2, 3 is said to be skew-symmetric in two of its subscripts

if the components change sign when the subscripts are interchanged. A completely skew-symmetric third

order system satisfies b`mn = −bm`n = bmn` = −bnm` = bn`m = −b`nm. (i) How many components does

a completely skew-symmetric system have? (ii) How many of these components are zero? (iii) How many

components can be different from zero? (iv) Show that there is one distinct component b123 and that

b`mn = e`mnb123.

Hint: Consider the three cases (i) ` = m = n (ii) ` = m 6= n (iii) ` 6= m 6= n.

I 23. Let i, j, k = 1, 2, 3 and assume that eijkσjk = 0 for all values of i. What does this equation tell you

about the values σij , i, j = 1, 2, 3?

I 24. Assume that Amn and Bmn are symmetric for m,n = 1, 2, 3. Let Amnx
mxn = Bmnx

mxn for arbitrary

values of xi, i = 1, 2, 3, and show that Aij = Bij for all values of i and j.

I 25. Assume Bmn is symmetric and Bmnx
mxn = 0 for arbitrary values of xi, i = 1, 2, 3, show that Bij = 0.
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I 26. (Generalized Kronecker delta) Define the generalized Kronecker delta as the n×n determinant

δij...k
mn...p =

∣∣∣∣∣∣∣∣∣

δi
m δi

n · · · δi
p

δj
m δj

n · · · δj
p

...
...

. . .
...

δk
m δk

n · · · δk
p

∣∣∣∣∣∣∣∣∣
where δr

s is the Kronecker delta.

(a) Show eijk = δ123ijk

(b) Show eijk = δijk
123

(c) Show δij
mn = eijemn

(d) Define δrs
mn = δrsp

mnp (summation on p)

and show δrs
mn = δr

mδ
s
n − δr

nδ
s
m

Note that by combining the above result with the result from part (c)

we obtain the two dimensional form of the e− δ identity ersemn = δr
mδ

s
n − δr

nδ
s
m.

(e) Define δr
m = 1

2δ
rn
mn (summation on n) and show δrst

pst = 2δr
p

(f) Show δrst
rst = 3!

I 27. Let Ai
r denote the cofactor of ar

i in the determinant

∣∣∣∣∣∣
a1
1 a1

2 a1
3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

∣∣∣∣∣∣ as given by equation (1.1.25).

(a) Show erstAi
r = eijkas

ja
t
k (b) Show erstA

r
i = eijka

j
sa

k
t

I 28. (a) Show that if Aijk = Ajik , i, j, k = 1, 2, 3 there is a total of 27 elements, but only 18 are distinct.

(b) Show that for i, j, k = 1, 2, . . . , N there are N3 elements, but only N2(N + 1)/2 are distinct.

I 29. Let aij = BiBj for i, j = 1, 2, 3 where B1, B2, B3 are arbitrary constants. Calculate det(aij) = |A|.

I 30.
(a) For A = (aij), i, j = 1, 2, 3, show |A| = eijkai1aj2ak3.

(b) For A = (ai
j), i, j = 1, 2, 3, show |A| = eijka

i
1a

j
2a

k
3 .

(c) For A = (ai
j), i, j = 1, 2, 3, show |A| = eijka1

i a
2
ja

3
k.

(d) For I = (δi
j), i, j = 1, 2, 3, show |I| = 1.

I 31. Let |A| = eijkai1aj2ak3 and define Aim as the cofactor of aim. Show the determinant can be

expressed in any of the forms:

(a) |A| = Ai1ai1 where Ai1 = eijkaj2ak3

(b) |A| = Aj2aj2 where Ai2 = ejikaj1ak3

(c) |A| = Ak3ak3 where Ai3 = ejkiaj1ak2
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I 32. Show the results in problem 31 can be written in the forms:

Ai1 =
1
2!
e1steijkajsakt, Ai2 =

1
2!
e2steijkajsakt, Ai3 =

1
2!
e3steijkajsakt, or Aim =

1
2!
emsteijkajsakt

I 33. Use the results in problems 31 and 32 to prove that apmAim = |A|δip.

I 34. Let (aij) =


 1 2 1

1 0 3
2 3 2


 and calculate C = aijaij , i, j = 1, 2, 3.

I 35. Let
a111 = −1, a112 = 3, a121 = 4, a122 = 2

a211 = 1, a212 = 5, a221 = 2, a222 = −2

and calculate the quantity C = aijkaijk , i, j, k = 1, 2.

I 36. Let
a1111 = 2, a1112 = 1, a1121 = 3, a1122 = 1

a1211 = 5, a1212 = −2, a1221 = 4, a1222 = −2

a2111 = 1, a2112 = 0, a2121 = −2, a2122 = −1

a2211 = −2, a2212 = 1, a2221 = 2, a2222 = 2

and calculate the quantity C = aijklaijkl, i, j, k, l = 1, 2.

I 37. Simplify the expressions:

(a) (Aijkl +Ajkli +Aklij +Alijk)xixjxkxl

(b) (Pijk + Pjki + Pkij)xixjxk

(c)
∂xi

∂xj

(d) aij
∂2xi

∂xt∂xs

∂xj

∂xr − ami
∂2xm

∂xs∂xt

∂xi

∂xr

I 38. Let g denote the determinant of the matrix having the components gij , i, j = 1, 2, 3. Show that

(a) g erst =

∣∣∣∣∣∣
g1r g1s g1t

g2r g2s g2t

g3r g3s g3t

∣∣∣∣∣∣ (b) g ersteijk =

∣∣∣∣∣∣
gir gis git

gjr gjs gjt

gkr gks gkt

∣∣∣∣∣∣

I 39. Show that eijkemnp = δijk
mnp =

∣∣∣∣∣∣
δi
m δi

n δi
p

δj
m δj

n δj
p

δk
m δk

n δk
p

∣∣∣∣∣∣
I 40. Show that eijkemnpA

mnp = Aijk −Aikj +Akij −Ajik +Ajki −Akji

Hint: Use the results from problem 39.

I 41. Show that

(a) eijeij = 2!

(b) eijkeijk = 3!

(c) eijkleijkl = 4!

(d) Guess at the result ei1i2...in ei1i2...in
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I 42. Determine if the following statement is true or false. Justify your answer. eijkAiBjCk = eijkAjBkCi.

I 43. Let aij , i, j = 1, 2 denote the components of a 2× 2 matrix A, which are functions of time t.

(a) Expand both |A| = eijai1aj2 and |A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ to verify that these representations are the same.

(b) Verify the equivalence of the derivative relations

d|A|
dt

= eij
dai1

dt
aj2 + eijai1

daj2

dt
and

d|A|
dt

=
∣∣∣∣ da11

dt
da12
dt

a21 a22

∣∣∣∣ +
∣∣∣∣ a11 a12

da21
dt

da22
dt

∣∣∣∣
(c) Let aij , i, j = 1, 2, 3 denote the components of a 3× 3 matrix A, which are functions of time t. Develop

appropriate relations, expand them and verify, similar to parts (a) and (b) above, the representation of

a determinant and its derivative.

I 44. For f = f(x1, x2, x3) and φ = φ(f) differentiable scalar functions, use the indicial notation to find a

formula to calculate gradφ .

I 45. Use the indicial notation to prove (a) ∇×∇φ = ~0 (b) ∇ · ∇ × ~A = 0

I 46. If Aij is symmetric and Bij is skew-symmetric, i, j = 1, 2, 3, then calculate C = AijBij .

I 47. Assume Aij = Aij(x1, x2, x3) and Aij = Aij(x1, x2, x3) for i, j = 1, 2, 3 are related by the expression

Amn = Aij
∂xi

∂xm

∂xj

∂xn . Calculate the derivative
∂Amn

∂xk
.

I 48. Prove that if any two rows (or two columns) of a matrix are interchanged, then the value of the

determinant of the matrix is multiplied by minus one. Construct your proof using 3× 3 matrices.

I 49. Prove that if two rows (or columns) of a matrix are proportional, then the value of the determinant

of the matrix is zero. Construct your proof using 3× 3 matrices.

I 50. Prove that if a row (or column) of a matrix is altered by adding some constant multiple of some other

row (or column), then the value of the determinant of the matrix remains unchanged. Construct your proof

using 3× 3 matrices.

I 51. Simplify the expression φ = eijke`mnAi`AjmAkn.

I 52. Let Aijk denote a third order system where i, j, k = 1, 2. (a) How many components does this system

have? (b) Let Aijk be skew-symmetric in the last pair of indices, how many independent components does

the system have?

I 53. Let Aijk denote a third order system where i, j, k = 1, 2, 3. (a) How many components does this

system have? (b) In addition let Aijk = Ajik and Aikj = −Aijk and determine the number of distinct

nonzero components for Aijk .
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I 54. Show that every second order system Tij can be expressed as the sum of a symmetric system Aij and

skew-symmetric system Bij . Find Aij and Bij in terms of the components of Tij .

I 55. Consider the system Aijk , i, j, k = 1, 2, 3, 4.

(a) How many components does this system have?

(b) Assume Aijk is skew-symmetric in the last pair of indices, how many independent components does this

system have?

(c) Assume that in addition to being skew-symmetric in the last pair of indices, Aijk + Ajki + Akij = 0 is

satisfied for all values of i, j, and k, then how many independent components does the system have?

I 56. (a) Write the equation of a line ~r = ~r0 + t ~A in indicial form. (b) Write the equation of the plane

~n · (~r − ~r0) = 0 in indicial form. (c) Write the equation of a general line in scalar form. (d) Write the

equation of a plane in scalar form. (e) Find the equation of the line defined by the intersection of the

planes 2x + 3y + 6z = 12 and 6x + 3y + z = 6. (f) Find the equation of the plane through the points

(5, 3, 2), (3, 1, 5), (1, 3, 3). Find also the normal to this plane.

I 57. The angle 0 ≤ θ ≤ π between two skew lines in space is defined as the angle between their direction

vectors when these vectors are placed at the origin. Show that for two lines with direction numbers ai and

bi i = 1, 2, 3, the cosine of the angle between these lines satisfies

cos θ =
aibi√

aiai

√
bibi

I 58. Let aij = −aji for i, j = 1, 2, . . . , N and prove that for N odd det(aij) = 0.

I 59. Let λ = Aijxixj where Aij = Aji and calculate (a)
∂λ

∂xm
(b)

∂2λ

∂xm∂xk

I 60. Given an arbitrary nonzero vector Uk, k = 1, 2, 3, define the matrix elements aij = eijkUk, where eijk

is the e-permutation symbol. Determine if aij is symmetric or skew-symmetric. Suppose Uk is defined by

the above equation for arbitrary nonzero aij , then solve for Uk in terms of the aij .

I 61. If Aij = AiBj 6= 0 for all i, j values and Aij = Aji for i, j = 1, 2, . . . , N , show that Aij = λBiBj

where λ is a constant. State what λ is.

I 62. Assume that Aijkm, with i, j, k,m = 1, 2, 3, is completely skew-symmetric. How many independent

components does this quantity have?

I 63. Consider Rijkm, i, j, k,m = 1, 2, 3, 4. (a) How many components does this quantity have? (b) If

Rijkm = −Rijmk = −Rjikm then how many independent components does Rijkm have? (c) If in addition

Rijkm = Rkmij determine the number of independent components.

I 64. Let xi = aij x̄j , i, j = 1, 2, 3 denote a change of variables from a barred system of coordinates to an

unbarred system of coordinates and assume that Āi = aijAj where aij are constants, Āi is a function of the

x̄j variables and Aj is a function of the xj variables. Calculate
∂Āi

∂x̄m
.


