Scientific Computing with Maple Programming

Zhonggang Zeng

January 4, 2001

Contents

1 The fundamentals
1.1 Mapleasacalculator. oL,
1.2 Simple programming Lo
1.3 Conditional statements o oL,
1.4 Loops with “do” statements
1.4.1 Structure with for-do
1.4.2 An introduction of simple arrays
143 Tteration.
144 Summation
1.5 Exercises o i i e e
1.6 Further reading material,
1.6.1 Documentation of programs
1.6.2 Formated printing

2 Iterations
2.1 Methods of golden section and bisection
2.1.1 Unimodel functions
2.1.2 Goldensection,
2.1.3 The method of golden section
2.14 The while-doloop
2.1.5 The bisection method
2.2 Newton’s and other iterative method
2.2.1 Newton’siteration
2.3 Exercises e e e e e e e e e e

3 Arrays

31 Arrays
3.1.1 Theuseofarrays
3.1.2 The command “seq”
3.1.3 Initialize an array usingseq
3.14 Entriesofanarray
3.1.5 Example: An array of prime numbers
3.1.6 Example: Identifying the maximum entry of an array

3.2 Some statistical measurements

12
19
25
25
27
27
29
32
38
38
39

43
43
43
44
45
48
49
50
50
54

61
61
61
62
63
63
64
65

CONTENTS

3.21 Examplel.Range 67
3.22 Sorting 68
3.3 Sleving . . . L 70
3.3.1 Sieving 70
3.3.2 Example: prime numbers by sieving 70
3.3.3 Example: Ulam’s lucky numbers 72
3.4 Projectswitharrays, 74
34.1 Pascaltriangle 74
342 Means 75
3.5 Exercises 76
Probability simulations 85
4.1 Declaring data types for program arguments 85
4.2 Probability experimento Lol 87
4.2.1 Introduction, 87
4.2.2 Random number generators 87
4.2.3 Random real number generator 87
4.2.4 Random integer generator 88
4.2.5 Example: Drawing a ball with replacement 88
4.2.6 Example: Drawing, say 3, balls without replacement . . . 89
4.2.7 Example: Approximate a probability 90
4.2.8 Example: Two points in a square having distance less
thanone.o 92
4.3 Cardgames i e 94
4.3.1 Program that draws a random k-card hand 94
4.3.2 Simulation of card games 96

4.3.3 Example: Drawing a k-card hand having at least one ace 97
4.3.4 Example: Drawing a k-card hand having exactly one ace . 100

4.4 More on probability simulations 0. 101
4.4.1 How accurateis HIV test? 101
44.2 Areyoulonesome? 103
4.4.3 The Monty Hall dillema 105

4.5 Exerciseso e 107

Simple Systems of equations 109

5.1 Solving equationso e 109
5.1.1 Maple commandso 109
5.1.2 Example: Percent mixture problem 110
5.1.3 Line fitting 112
5.14 Projecto 114

5.2 Leontief’s model of economy 115
5.2.1 A three sector example 115
5.2.2 The general n-sectorcase 118

5.3 Using linear algebrapackage. 118
5.3.1 Matricesand vectors 118

5.3.2 Linear algebral package 120

CONTENTS 5

5.3.3 The least squares problem. 121
5.4 Exercises 124
6 Ordinary differential equations 129
6.1 The initial value problem of ordinary differential equations 129
6.1.1 Example: Population growth 129
6.1.2 Using Maple ODE solver 130
6.1.3 The general initial value problem of ODE 131
6.1.4 Numerical solution 131
6.1.5 Eulermethod 131
6.1.6 Euler program 132
6.1.7 To graph the exact (theoretical) solution. 133
6.1.8 To graph the numerical solution 134
6.1.9 To graph both exact and numerical solutions 135
6.1.10 To plot the error graph 136
6.1.11 To increase the accuracy of the numerical solution 137
6.1.12 Additional example 138
6.2 The initial value problem of of ODE systems 141
6.2.1 Predator-preymodel oo 141
6.2.2 The Euler method for systems of IVP of ODE 143
6.2.3 Project: implement the Euler method for 2x2 system of
IVPofODE 143
6.2.4 Project 2: An epidemicmodelo 143
6.3 Direction fields 144
6.3.1 Direction field of an ODE 144
6.3.2 Direction field of predator-prey model 146
6.3.3 Direction fields of general 2x2 systems of ODE’s 151
6.3.4 Parametric curves in zy-plane 153
6.3.5 Graphs the solutions of initial value problems of ODE
systems as parametric curves 154
6.3.6 Cardioid 154
6.3.7 Three-leavedrose 154
6.3.8 Folium of Descarts 154
6.4 The initial value problem of second order ODE’s 155
6.4.1 Example: Pendulum 155
6.4.2 Transform a high order ODE to a system of ODE 158
6.4.3 The transformation. 158

6.5

6.4.4 Projects: solve IVP of high order ODE with R-K method 159
Exercises 160

CONTENTS

Chapter 1

The fundamentals

1.1 Maple as a calculator

Maple can perform many of mathematical calculations with one-line commands.
For example:

> 3+5%8;

43
> 375;

243
> sqrt(5);

V5

> sqrt(5.0);
2.236067978

Notice the difference above between sqrt(5) and sqrt(5.0). When input numbers
are integers, Maple performs simbolic computation without rounding numbers.
If a decimal number is involved, Maple carries out the numerical computation
with 10 digits precision unless otherwise specified.

The special function “evalf” forces a floating point evaluation:

> evalf(sqrt(5));
2.236067978

> (1/2)°4; 0.574; evalf((1/2)°4);

7

8 CHAPTER 1. THE FUNDAMENTALS

1
16
0625
106250000000

Readers can see the differences above.

@,

Maple does not execute the command until getting the semicolon “;” or colon
“”_ If a colon is used, the result of the command will not appear in the work-
sheet.

Maple accepts definitions of variables with :=

> x:=2; y:=b;

z:=2
y:=>5
> (x+3xy) / (2%x-T*y) ;
-17
31
> evalf(%);
—.5483870968

The sign % represents the most resent result. In the example above, it represents

’3—117. As mentioned before, the function evalf calculates the decimal number

result.

Maple accepts Greek letters

> alpha, beta, gamma, Alpha, Beta, Gamma;
a? 187 ’77 A7 B7 F

However, the simbol “Pi” carries the value of the special number

m = 3.1415926535897932384626 - - -

while *

‘pi” does not.
> evalf(Pi);
3.141592654
> alpha:=2%Pi/3;
2
a:=_-7

3
> sin(alpha), cos(alpha), tan(alpha), cot(alpha);

1.1. MAPLE AS A CALCULATOR 9

1 -1 1
Y3 g VR Vs

> evalf(%);
.8660254040, —.5000000000, —1.732050808, —.5773502693

> 1n(alpha), exp(alpha);

m(;), e/3m
> evalf(In(alpha)), evalf (exp(alpha));
7392647780, 8.120527402

Functions are defined as “operators”. Once defined, they can be calculated or
manipulated.

> f:=x->sin(x)/x;

fmzo sin(z)
T
> f(alpha), £(1.57);
SIn@) * 6a60494739
> f(atb);
sin(a + b)
a+b

Taking derivative:
> D(£f);

Table 1.1 is a list of frequently used mathematical operations and their corre-
sponding maple symbols and syntax.

If an arithmetic expression consists of several operations and function evalua-
tions, Maple follows common precedence of operations:

1. Exponentiation or function evaluation (highest)
2. Multiplication or division

3. arithemetic negation

4. Addition and/or subtraction (lowest)

For complicated mathematical expressions, we can use parentheses () to override
normal precedences.

10

CHAPTER 1. THE FUNDAMENTALS

Operation symbol Example
syntax result
Addition + 3+5 8
Subtraction - 3-5 -2
Multiplication * 3*5 15
Division / 3/5 g
power . 3°5 35
exponential function exp exp(3.2) e3?
square root Na sqrt(5) V5
sine sin sin(3*Pi/4) sin(%)
cosine cos cos(Pi/6) cos(%)
tangent tan tan(2*Pi/3) tan(%)
cotangent cot cot(x) cot(x)
natural logorithm In In(2.3) .8129091229
factorial ! 5! 120

Table 1.1: Common operations

1.1. MAPLE AS A CALCULATOR 11

Warning: Although brackets [| and braces { } are legitimate substitutes for
parentheses in mathematical writing, they are not allowed in Maple to override
precedences. Brackets are used for data type list and braces are used for data
type set.

Examples:

Notice the difference between a+b/c+d and (a+b)/(c+d):

> a+b/c+d;
a+l—)+d
c
> (atb)/(c+d);

a+b
c+d

Let’s see some complicated expressions. Pay attention to the use of parentheses.

> (a/(b+c) - d°2)/(3xe);

a
>
lote =
3 e
P 6
The expression (1 + 3h—2> [1 - (%)] should be entered as follows

> (1+(3*P)/(h~2))*(1-(a/1)"0.6);

P an -6
(”?’m) (1—(7))
More examples:

> cxal*a2*xsqrt(g*(h1-h2)/s)/(3+sqrt(al”2-a272));

1 —
cal a2 M

S
3++Val? - a2?

> 2*Pixepsilon/arccos(a”2+b~2-d~2/(2*a*b));

e

2
1 &2
arccos (a2 + b2 — = —)

2 ab

12 CHAPTER 1. THE FUNDAMENTALS

1.2 Simple programming

A computational task, in general, involve three components:

1. Data,
2. computational method,
3. results.

As a simple example, we have a formula for the volume of a cylinder:
volume of a cylinder = base area x height.
If the base of the cylinder is a circular disk with radius r, then
base area = 7 r2.
To compute the volume of the cylinder from the radius r and height h, we have

Data: r and h
method: step 1: base area s = 71?2

step 2: volume v = sh

(or combination of step 1 and 2: v =77r>h)
result: volume v

A program is an implementation of the computational method for the task. It
accepts data as input, performs the method, and transmits results out as output,
as shown in the diagram:

input output
Data pT’ Program P results
r, v

A program works as a “black box” for end uses, who enter data as input and
activate the program, then see the results.

Using the example of volumn computation for cylinders,, we can write a simple
program into Maple worksheet as follows. To break a line before the end of

the program, use Shift-Enter instead of Enter key. If no apparent errors, Maple
echoes with the program after hitting the semi-colon.

> cylinder_volume:=proc(radius,height) # program definition
local base_area, volume; # local variables

base_area:=Pi*radius”2; # implement method
volume:=evalf (base_areaxheight);

print (‘The volume‘, volume); # output result

end;

1.2. SIMPLE PROGRAMMING 13

cylinder _volume := proc(radius, height)
local base_area, volume;
base_area := 7 X radius® ;
volume := evalf(base_area X height) ;
print(‘ The volume', volume)
end

The program is named cylinder_volume, which accepts arguments radius and
height as input. Local variables (i.e. variables only used inside the program)
base_area and wvolume are defined. Then the computation is carried out by
computing the values of base_area and volume. Finally, the result will be shown
using the command “print”.

Suppose the radius is 5.5m and the height is 8.2m. We execute the program
under Maple:
> r:=5.5; h:=8.2;
r:=5.5
h:=8.2
> cylinder_volume(r,h);
The volume, 779.2720578
A program is designed to be used again and again. Every time we use it, all we
need is to supply the input data according to the rule of the program. In this

example, the rule is that radius first and height second.

For radius 3 ft and height 2 ft:
> cylinder_volume(3,2);
The volume, 56.54866777

When order is reversed, the answer is different.
> cylinder_volume(2,3);
The volume, 37.69911185

In summary, a maple program generally consists of the following components:

1. Program definition statement in the form of
program_name:=proc(argument_list)

Users will use program_name to activate the program. The list of variables

14

CHAPTER 1. THE FUNDAMENTALS

in argument_list is the entrance for input data. Do not end this line with

“,

semicolon “” if there is local variable declaration line to be described below.

. Local variable declaration in the form of

local variable_list;

This declaration is part of program definition statement.

. Maple statements that carry out the computational method, using the

arguments representing input data.

. Output mechanism. The simplest way is print statement.
. closing statement, i.e. the line “end;”

. Comments. Starting with the character #, the remainder of the line is

considered comments by the programmer with no effect on the program
execution.

Although you can directly type programs into Maple worksheet, It is prefered

to separate the process of programming into 4 steps: (1) editing, (2) loading,

(3) test run and revision, (4) execution.

(1) Editing:

Use your favourate text editor, such as Notepad, to edit your program as a text
file with filename, say “file.txt”. Make sure to save it on the floppy disk (usually
“a:” drive).

Remark: A DOS filename consists of {filename}.{extention}. There must be
no more than 8 characters in the filename part and no more than 3 characters
in the extention part. The extention of the filename is used to indicate the type
of the file. The following are some common extentions:

txt —- text file
.mws — maple worksheet
htm — HTML file (for World Wide Web use)

.exe —- DOS executable file

Although Windows 95/98 accepts longer filenames in more flexible style, it is
recommended that the original DOS restriction be followed.

(2) Loading:

1.2. SIMPLE PROGRAMMING 15

At Maple prompt “>”, type

>read(‘a:file.txt);

Maple then starts reading the text file. If Maple finds a mistake while reading,
it will stop and give you an error message. Otherwise, your program will be
loaded into the Maple worksheet.

Remark: The two single quotes ¢ used in the command above is usually on
the upper-left corner of the keyboard below ESC key. A common mistake is
using the quote ' next to the Enter key.

(3) Test run and revision

If Maple give you an error message, or you suspect a wrong result after a test
run, you should go back to Notepad to revise your program

(4) Ezecution
See example below
Example 1: The future value of an annuity: Suppose you make a periotic

deposit $R to an account that pays interest rate i per period, for n periods, then
the future value $S of the account after that n periods will be

R(1+4)"-1)
—

S =

Write a program to calculate the worth of a retirement plan at the end of the
term if the plan pays an annual rate A, requires monthly deposit $R, for y years.
Then use the program to calculate the future value if the monthly deposit is
$300, the annual interest rate is 12%, for 30 year.

Solution: First, we see that the computational task involve input items:

R — deposit

A — annual rate (instead of 7)

n — the number of years

We type the following program using Notepad and save as a:future.tzt. Figure
1.1 shows the program text file.

Remarks:

16 CHAPTER 1. THE FUNDAMENTALS

Program that compute the future value of an annuity
Input: R: monthly deposit (\$)

A: annual interest rate (0.12 for 12\7%)

y: number of years

#

future:=proc(R,A,y) # defines the program "future"

and arguments R, I, y
define local variables

+H

local i, n, S;

i:=A/12; # monthly interest rate is

1/12 of the annual rate
n:=y*12; # totoal number of months
S:=R*((1+i)\symbol{94}n-1)/i; # calculation of future value

print(‘The future value‘, S); # print the result
end; the last line of the program.

H

Figure 1.1: Future value program

(1) Don’t put the semi-colon at the end of proc(...). it is finished at the end of
local

2) At end of every definition or action inside the program, remember that you
y g y
need “;”.

@
’

(3) Especially, type after end.

(4) You can, and should, put comments in your program using “#”, as above.

Now read into maple.

> read(‘a:future.txt®);

future := proc(R, A, y)

locali, n, S;
i=1/12x A;n:=12xy; S:=Rx (1 +4)" - 1) /i;
print(‘ The future value‘, S)

end

Define the input:
> Deposit:=300; AnnualRate:=0.12; Years:=30;
Deposit := 300
AnnualRate := .12
Years := 30

Now execute the program with the defined input above. Notice that the vari-
ables R, A, y in the program are “dummy” variables. When you execute the
program, you just substitute them with variables carrying the data.

1.2. SIMPLE PROGRAMMING 17

> future(Deposit,AnnualRate,Years) ;

The future value, .1048489240 107

Or, you may directly input numbers
> future(300, .12, 30);

The future value, .1048489240 107

Example 2: A program that compute the two solutions of the general quadratic
equation

ax?+bzx+c=0

with the quadratic formula. Use the program to solve

322 -5z+2=0 and 22-3z+2=0

Solution: Type the following program, shown below, using Notepad and save
as file a:quadsolv.txt

quad:=proc(a,b,c) # define the program "quad"
with arguments a, b, c
local soll, sol2; # define local variables

calculate soll, sol2
soll:=(-b+sqrt(b\symbol{94}2-4*a*c))/(2*a);
s0l12:=(-b-sqrt(b\symbol{94}2-4x*a*c))/(2*a);

print(‘The solutions‘,soll, so0l2); # print results

end; # end of program

Now load program
> read(‘a:quadsolv.txt®);
quad := proc(a, b, c)
local soll, sol2;
soll :=1/2 x (—b+sqrt(b? —4 X a X ¢)) /a;
5012 :=1/2 x (—b —sqrt(b? — 4 X a X ¢)) /a;

print(‘ The solutions‘, soll, sol2)
end

To solve 3z2 — 5z + 2 = 0, notice that a =3, b= —5, and ¢ = 2:
> quad(3,-5,2);

18 CHAPTER 1. THE FUNDAMENTALS

2
The solutions, 1, 3

To solve 22 — 3z +2=0
> a:=1; b:=-3; c:=2;

a:=1
b:=-3
c:=2

> quad(a,b,c);
The solutions, 2, 1

Example 3: The principal stresses (whatever they mean) are given by
Smaz = A +'13; Smin=A—-B

where

K(Q1 + Q3)

A=FE1-
2(1—p)

B— E(1+K)\/(Q1—Q2)2+(Q2—Q3)2
B 2(1+p)

Write a program that will accept input for E, u, K, Q1, Q2, @3 and print the
values of the principal stresses.

Sample Data

E w K Q1 Q Q3
93x10% 032 0.05 138 -56 786

Solution: We write the program
principal_stress:=proc(E, mu, X, Q1, Q2, Q3)
local Smax, Smin, A, B;
A:=Ex(1-K)*(Q1+Q3) /(2% (1-mu)) ;

B:=Ex (1+K)*sqrt ((Q1-Q2) \symbo1{94}2+(Q2-Q3) \symbo1{94}2) /(2% (1-mu)) ;

1.3. CONDITIONAL STATEMENTS 19

print(‘S_max, S_min‘);
print (A+B,A-B);

end;

> read(‘a:prnstres.txt‘);

principal_stress := proc(E, u, K, Q1, Q2, Q3)

local Smaz, Smin, A, B;
A=Ex(1-K)x(Q1+Q3)/(2—2xp);
B:=Ex(1+K)xsqrt((Q1 — Q2)2 + (Q2 — @3)%) /(2 — 2 x) ;
print(‘S_maz, S_-min‘);
print(A + B, A — B)

end

> principal_stress(9.3*x10°6, 0.32, 0.05, 138.0, -56.0, 786.0);
S_maz, S_min
122066821210, —.201476241 10°

1.3 Conditional statements

Example 1. A piecewise function

2z+1 0<z<2

—(z—-12%2+2 <0
f(z) =
5@(7(3772)2) xr > 2

can be calculated with a maple program (edited using Notepad with filename
a:func.txt)

func:=proc(x) # definition
no local variables needed
if x< 0 then

-(x-1)"2+2; # case for x < 0
elif x<2 then
2xx+1; # case for Q0 <= x <= 2
else
5kxexp(-(x-2)"2); # case for x > 2
fi;
end;

> read(‘a:func.txt);

20 CHAPTER 1. THE FUNDAMENTALS

func := proc(z)
ifzr < Othen — (z — 1)2 + 2elifz < 2then2 x z + lelse5 x exp(—(z — 2)%) fi

end

> func(-3); func(1); func(3);
—14

3
5e(—1)

Program note: When executing a Maple program on Maple worksheet, the
result of the very last executed statement is automatically shown without the
need to use “print”. For example, if input x is negative, then —(z — 1)2 + 2 is
the last statement executed and its result is “printed” automatically.

An if-block has the following structures:

1. Statements executed only if the condition is met. Otherwise, the state-
ments will be skipped:

if condition then
statements
fi;

2. There are two cases separated by one condition: the condition is met or
else:

if condition then
statement block 1
else
statement block 2
ﬁ.

Y

Entering this if-block, the computer verifies the condition, if the answer
is “true”, the statement block 1 will be executed and the statement block
2 will be skipped. On the other hand, if the answer to the condition is
“false”, the computer will skip the statement block 1 and execute statement
block 2

3. There are many cases with many conditions:

if condition 1 then
statement block 1

elif condition 2 then
statement block 2

elif condition n then
statement block n

1.3. CONDITIONAL STATEMENTS 21

else
final statement block

fi;
Entering this if-block, the computer verifies the condition 1 first. If the
answer is “false”, the machine verifies the condition 2, and continue until
condition k returns “true”. In that case the statement block k will be
executed and all other statements will be skipped. If the answers to all
the conditions are “false”, the computer execute the final statement block
and skip all others. (“else” and final statement block are optional).

Remarks:
e Do not put semicolon at end of “then” or “else”.

e It is a good practice to align those “if”, “elif”, “else” and “fi” of the same
if block, and have a 3-space indentation for each statement block.

e All the conditions must be verifiable by Maple. For example, Maple cannot
verify if V5 > 1 and will return a “boolean error”, which is common in
Maple programming

Example 2. Suppose in a certain course, after five 100-point exams, the course
grade will be determined by the scale: A for 90% or above, B for 80-89.9%,
C for 70-79.9%, D for 60-69.9% and F for 0-59.9%. Write a program that, for
input of total points, print (1) the course grade, (2) a borderline warning if the
points is within 1% of next higher grade.

Solution: the program (filename: a:grade.txt)

grade:=proc(points)

if points >= 450 then
print(‘ A);
elif points >=400 then
print(‘ B ¢);
if points 445 then
print(‘borderline A€);
fi;
elif points >= 350 then
print(‘ C “);\\
if points > 395 then\\
print(‘borderline B¢);\\
fi;
elif points >= 300 then\\
print(¢ D ¢);\\
if points > 345 then\\
print(‘borderline C‘);\\
fi;
else

22 CHAPTER 1. THE FUNDAMENTALS

print(‘ F);\\
if points > 295 then\\
print(‘borderline D¢);\\
fi;
fi;
end;
> read(‘a:grade.txtf);
grade := proc(points)
if450 < points thenprint(‘ A)
elif400 < points thenprint(‘ B ¢); if445 < points then print(‘borderline A‘) fi
elif 350 < points thenprint(‘ C ©); if395 < points then print(‘borderline B*) fi
elif 300 < points thenprint(‘ D ©); if345 < points then print(‘borderline C*) fi
elseprint(‘ F ¢); if295 < points then print(‘borderline D) fi

fi
end

> grade(367);
c
> grade(397);
c
borderline B
> grade(310);
D

Example 3. (Techniques in this example will be used in probability simula-
tions). Suppose we number a standard deck from 1 to 52, such that

hearts: 1-13; spades: 14-26, diamonds: 27-39, clubs: 40-52
in each suit, cards are numbered in the following order:
ace, 2, 8, 4, 5, 6, 7, 8, 9, 10, jack, queen, king

Write a program that for input of card name (e.g. 3, spade, or jack, diamond),
print the number associated with the card.

Remark on data type: Maple classifies data in many types. (try ?type). We
need to specify types numeric and string in this problem. Card value 2, 3, ..., 10
are numeric type. A sequence of characters within a pair of double quote 7 ” is
called a string. A string carries no value other than itself. For example, “ace”,
“jack”, “queen”, and “king” are string type. In comparison, ace, jack, queen
and king without quotes are variable names. The function type(expression, type
name) will return either “true” or “false” depending on whether the expression
matches the type name. For example:

> type(3.5,string);

1.3. CONDITIONAL STATEMENTS

false
> type(3.5,numeric);
true
> type(queen, string);
false
> type("queen",string);
true
> Value:=6: type(Value,numeric) ;
true
> a:="king": type(a,string);
true
Now the program:
program that numbers a card in a deck from 1-52
input:
value --- one of the following:
ace, 2, 3, ..., 10, jack, queen, king
suit --- one of the following
"heart", "spade", "diamond", "club"
#
output: the number of the card (1-52)
#

cardnum:=proc(value,suit)
local order, number, error;

error:=false;

if type(value,numeric) then
order:=value;

elif type(value,string) then
if value="ace" then

order:=1;

elif value="jack" then
order:=11;

elif value="queen" then
order:=12;

elif value="king" then
order:=13;

else

print (‘Error: wrong value for the first argument);
error:=true
fi
else
print(‘Error: wrong data type for first argument‘);
error:=true;
fi;

if suit="heart" then
number:=order;
elif suit="spade" then

23

CHAPTER 1. THE FUNDAMENTALS

number:=13+order;
elif suit="diamond" then
number:=26+order;
elif suit="club" then
number:=39+order;
else
print(‘Error: wrong value for the second argument‘);
error:=true;
fi;

if error=false then
print(‘The card number®, number);
fi;

end;

> read(‘a:cardnum.txt®);

cardnum := proc(value, suit)

local order, number, error;
error := false;
iftype(value, numeric) then order := value
elif type(value, string) then

if value = “ace” then order :=1
elif value = “jack” then order := 11

elif value = “queen” then order := 12
elif value = “king” then order := 13
else print(‘Error : wrong value for the first argument®); error := true

fi
else print(‘Error : wrong data type for first argument‘); error := true
fi;
if suit = “heart” then number := order
elif suit = “spade” then number := 13 + order

elif suit = “diamond” then number := 26 + order
elif suit = “club” then number := 39 + order
else print(‘Error : wrong value for the second argument‘); error := true
fi;
if error = false then print(‘ The card number‘, number) fi
end
> cardnum(3,"diamond") ;

The card number, 29

> cardnum("king","club");
The card number, 52

> cardnum(queen,club);
Error : wrong data type for first argument
Error : wrong value for the second argument

> cardnum("queen","spade");

The card number, 25

1.4. LOOPS WITH “DO” STATEMENTS 25

1.4 Loops with “do” statements

1.4.1 Structure with for—-do

Repetitive tasks are carried out by loops. For example, if we want to square
integer i, i = 1,2,3,---,10, the following statements, called a loop, does the

job.
> for i from 1 to 10 do

> print(i~2)

> od;

100

The simplest loop structure is

for loop_index from startwvalue to end.value do
block of statements to be repeated
od;

We present, in the list below, the general rules and concepts of for—do loops.

1. The loop_index is a variable name such as i, j.

2. start-value and end_value can be numbers, variable name carrying
numbers, or executable expressions resulting in numbers, such as 1, 10,
k1, k2, 2 x n, etc. The numbers they represent are usually integers, while
decimal numbers or even fractions are allowed.

3. The loop works in the following way:

(a) Assign the start_value to loop_index .

(b) Comparing the loop_index value with end_value , if loop_index
> end_value , jump out of the loop to the line following “od;”.
Otherwise go to the block of statements to be repeated.

26 CHAPTER 1. THE FUNDAMENTALS

(c) After confirming that loop_inder < end_value , execute block of
statements to be repeated .

(d) Add 1to loop_index and go back to (b).
4. Do not alter the value of loop_indexr . Let the loop handle it instead.

5. If the start_value=1, then “from start_value ” part may be omitted.
That is, the loop in the above example can be equivalently written as

for i to 10 do
i~2;
od;

6. Do not put semicolon “;” at the end of “do”. Semicolon or colon should
be at the end of “od”.

7. The loop_indexr increase by the default stepsize 1 Every time the execu-
tion of block of statements to be repeated is finished. Different stepsize
can be used by adding “by stepsize 7 feature. For example,

for i from 20 to 2 by -2 do
i72;
od;

produces 202, 182, 162, - - -, 42, 22,

As an example, the following do loop calculates sine and cosine function from 0
to 7 by Z.
5

> for t from 0 by evalf(Pi/5) to evalf(Pi) do
sl:=evalf(sin(t));
s2:=evalf(cos(t));
od;

s1:=0

s2 :=1.
s1 := .5877852524
s2 = .8090169943
s1 := .9510565165
s2 :=.3090169938
s1 :=.9510565160
s2 := —.3090169952
s1 := .5b877852514
s2 := —.8090169950

1.4. LOOPS WITH “DO” STATEMENTS 27

1.4.2 An introduction of simple arrays

An array is used to store a sequence of data. For example, when we divide an
interval [0,1] into 100 subintervals of equal length 0.01 with points (called nods)

o = 0, r1 = .01, o = .02, e, Tgg = 99, 100 = 1.00

we can use an array to carry these nods.

First, open an (empty) array
> nod:=array(0..100);
nod := array(0..100, [])

Then we generate the nods with a loop.

> for i from 0 to 100 do
nod[i]:=i*0.01
od:

The values of z; for each i is stored in nod[i] for i from 0 to 100. We can show
the values using the sequence command seq:

> seq(nod[i],i=0..100);

0, .01, .02, .03, .04, .05, .06, .07, .08, .09, .10, .11, .12, .13, .14, .15, .16, .17, .18, .19, .20,

21, .22, .23, .24, .25, .26, .27, .28, .29, .30, .31, .32, .33, .34, .35, .36, .37, .38, .39,

40, 41, .42, 43, .44, 45, 46, .47, 48, .49, .50, .51, .52, .53, .54, .55, .56, .57, .58,

.59, .60, .61, .62, .63, .64, .65, .66, .67, .68, .69, .70, .71, .72, .73, .74, .75, .76, .77,

.78, .79, .80, .81, .82, .83, .84, .85, .86, .87, .88, .89, .90, .91, .92, .93, .94, .95, .96,

.97, .98, .99, 1.00

Each member of the array is referenced by array name[index]. In this example,

> nod[19];

.19
> nod[87];

.87

1.4.3 Iteration

Example 1: Write a program to generate the first n terms of the the sequence

_ Tr—1 1
T = D) + Tho1

J m0=17 k:1727"'7n

28 CHAPTER 1. THE FUNDAMENTALS

The sequence approaches v/2.

Solution: The program requires an input item n. We edit the program as file
a:sqrt2.txt

#
Program that generates a sequence
converging to square root of 2
#
input n --- ending index of the sequence
#
sqrt2:=proc(n)
local x, k;

x:=array(0..n); # define the array
x[0]:=1; # initialize the O-th entry of the array

loop genreating the remaining entries
for k from 1 to n do
x[k] :=evalf(x[k-11/2 + 1/x[k-1]);
od;

print(seq(x[k], k=0..n)) # output

end;

> read(‘a:sqrt2.txt‘);

sqrt2 := proc(n)
localz, k;
z := array(0..n);
To :=1;
for ktondoxy := evalf(1/2 X 51 + l/mk_l)od;

print(seq(zx, k = 0..n))
end

> sqrt2(10);

1, 1.500000000, 1.416666667, 1.414215686, 1.414213562, 1.414213562, 1.414213562,
1.414213562, 1.414213562, 1.414213562, 1.414213562

We can see that the sequence converges to v/2 very fast.

Example 3. Write a program that generate first n terms of the Fibonacci
sequence

Fo=0, =1, F,=Fy_1+ Fy_», for k=2,3,---.n
Solution:

program that generate first n terms of the Fibonacci sequence.

1.4. LOOPS WITH “DO” STATEMENTS 29

input: n (n>=2).

#
Fibonacc:=proc(n)
local k, F;
F:=array(0..n); # define the array
F[0]:=0; F[1]:=1; # the first two terms
for k from 2 to n do # iterate
F[k] :=F [k-1]+F [k-2]
od;
seq(F[k], k=0..n) # output
end;

The test run
> read(‘a:fibon.txt‘);

Fibonacc := proc(n)

localk, F;
F := array(0..n);
Fy:=0;
Fy:=1;

for kfrom2tondo Fy, := Fj,_; + Fy_o od;
seq(Fy, k = 0..n)

end

> Fibonacc(30);

0,1,1,2,3,5,8,13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040

1.4.4 Summation

Example 1: Write a program that adds the squares of the first n odd, positive
integers. That is, the sum
12,92 32 ... p?

Solution 1: Analysis: The first odd number is 1. If k is an odd number, &k + 2
is the next one

program that compute the sum of the 1st n
odd positive integers
input: n
output the sum.
#
oddsumi :=proc(n)
local i, oddnum, s;
s:=0; # initialize the sum as zero

30 CHAPTER 1. THE FUNDAMENTALS

oddnum:=1; # initialize the first odd number
for i from 1 to n do
s:=s+oddnum”2; # accumulating the sum by
adding the new term
oddnum:=oddnum+2; # prepare the next odd number
od;
print(‘The sum is®, s);
end;

Solution 2: Analysis: odd numbers are

2k—1, k=1,2,--

program that compute the sum of the first n

odd positive integers
input: n
output the sum.
#
oddsum2:=proc(n)
local k, s;
s:=0; # initialize the sum as zero
for k from 1 to n do
s:=s+(2¥k-1)"2; # accumulate the sum by
adding the new term
od;
print(‘The sum is‘, s);
end;

The programming structure of adding n terms is as follows.

s:=0;

fori from 1 to n do
{prepare the new term}
s:=s+{the new term}

od;

The key is s:=s+{the new term}. The variable s (not necessarily s literally)
here is used to accumulate the sum. Every time the loop come back to this
statement, the value of s adds a new term and the results is assigned to s,
replacing its old value. The loop goes from ¢ = 1 to ¢ = n and s accumulates
terms one by one, eventually accumulates all terms.

Example 2. The sine function can be calculated by

1.4. LOOPS WITH “DO” STATEMENTS

31

Write a program, for input values of z and n, to approximate the sine function
at x by calculating the sum of the first n terms.

Analysis: Every term is in the form of ”;c—),c for odd k , and with alternating

+/- sign.

program to approximate sine function

by adding the first n terms of Taylor expansion

input: x, n,

output: the approximate value of sin(x)

#
sine:=proc(x,n)
local i, s, k, sgn;

s:=0; #
k:=1; #
sgn:=1; #
for i from 1 to n do
s:=s + sgn*x"k/k!; #
sgn:=-sgn; #

k:=k+2; #
od;
print(‘The sine function‘, s); #
end;

Now test run:
> read(‘a:sine.txt®);

sine := proc(z, n)
locals, s, k, sgn;

s:=0;
k:=1;
sgn :=1;

empty accumulator
first odd number
first sign is +

accumulating
alternate sign

next odd number

output

foritondos := s+ sgn sz/lc!; sgn := —sgn; k:=k +2od;

print(‘ The sine function’, s)

end

> x:=evalf(Pi/6);

z 1= .5235987758

> sine(x,3);

The sine function, .5000021328

> sine(x,4);

The sine function, .4999999921

> sine(x,5);

The sine function, .5000000003

We can compare with the maple built-in function

> sin(x);

32 CHAPTER 1. THE FUNDAMENTALS

.5000000002

The program is as accurate as the build in function sin for n = 5.

1.5 Exercises

1. A mortgage problem

Let $ A be the amount of a mortgage, n the total number of payments, 4
the interest rate per period of payment. Then the payment $ R per period
is given by the formula:

Ai

E=1= 1+

e Write a program that, for input: p,r,y,d as price of the purchase,
annual interest rate, number of years, and down payment rate re-
spectively, calculates and prints the monthly payment amount.

e Use your program to calculate the monthly payment of a $180,000
house, 20% down, 7.75% annual interest rate for 30 years.

e Use your program to calculate the monthly payment of a $15,000 car,
10% down, 9.25% annual interest, rate for 5 years.

Sample results:
> read(‘a:mortgage.txt‘):
> price:=180000: down:=20: rate:=7.75: year:=30:
> mortgage(price,rate,year,down);
The monthly payment is
1031.633646

2. Geometry of a circle

Write a program that displays radius, circumference, and area of a circle
with a given diameter
Sample results

> read(‘a:circle.txt‘):

> diameter:=10:

> circle(diameter);

The radius :, 5.0
The circumference :, 31.41592654
The area :, 78.53981635

3. Parallel resistors

1.5. EXERCISES 33

When three electrical resistors with resistance R;, Rs, and R3 respec-
tively are arranged in parallel, their combined resistance R is given by the

formula
1 1 1 1

—_— = — 4+ — 4+ —
R Ry Ry Rj3
Write a program that calculate R
Sample results
> read(‘a:resistor.txt®):
> R1:=20: R2:=50: R3:=100:
> resistor(R1,R2,R3);
The combined resistance is
12.50000000
4. Maximum stress

The maximum stress in an eccentrically loaded column shown below is
given by the formula

ec

Pl|l4+ —=—+
r2 cos (L— “AP;E>

2r

Omazr = A

Write a program that calculates and prints the maximum stress. Use the
following sample data to test your program

Sample Data

P A e c r L E
4000 29.55 16.6 5.56 4.68 120 3.0 x 107

5. Card identification

(See Example 3) Write a program that for input of a number, identify the
corresponding card name.
Sample results
> read(‘a:numcard.txt):
> numcard(l);
ace, heart
> numcard(25);
queen, spade
> numcard(30);
4, diamond
> numcard(0);
Error : the input must be 1 — 52
> numcard(55);
Error : the input must be 1 — 52
> numcard(45);
6, club

34 CHAPTER 1. THE FUNDAMENTALS

6. Cost calculation

A small company offers a car rental plan: $20.00 a day plus $0.10/mile
for up to 200 miles per day. No additional cost per day for more than
200 miles. (e.g., 3 days with 500 miles cost $110.00 while 3 days with 800
miles cost $120.00.) Write a program, for input (1) number of days, and
(2) total mileage, calculates the total rental cost.

7. Cost calculation

A travel agency offers a Las Vegas vacation plan. A single traveler costs
$400. If a traveler brings companions, each companion receives a 10%
discount. A group of 10 or more receives 15% discount per person. Write
a program that, for input number of travelers, print out the total cost.

8. Real solutions to a quadratic equation

For the general quadratic equation
ar’ +bx+c=0, a#0

the discriminant A
A=0b2—4ac

e When A > 0, there are two real solutions;

e when A = (0, there is only one real solution —%;

e there are no real solutions otherwise (i.e. A < 0).

Write a program that for input of a, b, ¢, print out the number of real
solutions and those real solutions themself, if any.
Sample results
> read(‘a:quadreal.txt‘):
a:=1: b:=0: c:=1:

Vv Vv

quadreal(a,b,c);
There are no real solutions
a:=4: b:=4: c:=1:
> quadreal(a,b,c);
There is only one real solution
-5
a:=3: b:=b: c:=2:
quadreal(a,b,c);

There are two real solutions
—.6666666665, —1.000000000

9. More on quadratic equations

The quadratic equation problem can be extended to more general case:
a = 0, the equation is reduced to a linear equation and there is only one
real solution —7 while b is nonzero. If b = 0 too, the equation is not valid.

1.5. EXERCISES 35

Write a program that calculates real solutions of a quadratic equations for
all the possible cases.
Sample results
> read(‘a:quadadv.txt‘):
> a:=0: b:=0: c:=0:
quadadv(a,b,c);
Error : invalid equation
a:=0: b:=b: c:=3:
> quadadv(a,b,c);
This is a linear equation with solution
-3
5
a:=b6: b:=3: c:=4:

> quadadv(a,b,c);
There are no real solutions
a:=1: b:=2: c:=1:
quadadv(a,b,c);
There is only one real solution
-1.0

a:=2: b:=-9: c:=6:

> quadadv(a,b,c);

There are two real solutions
3.686140663, .8138593385

10. Tax schedule

The following is 1996 tax schedule. Write a program to calculate taxes,
for input Status and TaxableIncome

Status 1 (single)

TaxableIncome Tax
0 - 23,350 0.15*TaxableIncome
23,350 - 56,550 3,502.50+ 0.28*(TaxableIncome- 23,350)
56,550 - 117,950 12,798.50+ 0.31*(TaxableIncome- 56,550)
117,950 - 256,500 31,832.50+ 0.36*(TaxableIncome-117,950)
256,500 - up 81,710.50+0.396*(TaxableIncome-256,500)

Status 2 (Married filing jointly or Qualifying Widow(er)

TaxableIncome Tax
0 - 39,000 0.15*TaxableIncome
39,000 - 94,250 5,850.00+ 0.28*(TaxableIncome- 39,000)

94,250 - 143,600 21,320.00+ 0.31*(TaxableIncome- 94,250)
143,600 256,500 36,618.50+ 0.36*(TaxableIncome-143,600)
256,500 - up 77,262.50+0.396*(TaxableIncome-256,500)

Status 3 (Married filing separately)

TaxableIncome Tax

36 CHAPTER 1. THE FUNDAMENTALS

0 19,500 0.15%TaxableIncome
19,500 - 47,125 2,925.00+ 0.28*(TaxableIncome- 19,500)
47,125 - 71,800 10,660.00+ 0.31*(TaxableIncome- 47,125)
71,800 128,250 18,309.25+ 0.36*(TaxableIncome- 71,800)
128,250 up 38,631.25+ 0.396*(TaxableIncome-128,250)

Status 4 (Head of household)

TaxableIncome Tax
0 - 31,250 0.15%TaxableIncome
31,250 - 80,750 4,687.50 + 0.28*(TaxableIncome- 31,250)
80,750 - 130,800 18,547.50+ 0.31*(TaxableIncome- 80,750)
130,800 - 256,500 34,063.00+ 0.36*(TaxableIncome-130,800)
256,500 - up 79,315.00+ 0.396*(TaxableIncome-256,500)

Sample results
> read(‘a:taxschdl.txt®)
> status:=2: TaxableIncome:=56890:
taxschdl(status,TaxableIncome);
10859.20
> status:=4: TaxableIncome:=35280:
taxschdl(status,TaxableIncome) ;
5975.90
status:=1: TaxableIncome:=2590000:

taxschdl(status,TaxableIncome) ;

.1005776500 107

11. Cubic root of 21

The sequence

20xp—1 +21(L)2
Tk = 21 == ’ :L'IZ]-J k:2, 3;

converges to the cubic root of 21 slowly. Write a program to print out the
first n terms of the sequence and observe how many steps does it take to
reach its limit within 5 digits.

12. T

Write a program to calculate

1 1 + 1 1 +
3 5 7
and verify that it equals to 7.

13. Combination of Lucas and Fibonacci sequences

The Lucas sequence is defined by

Lo=2,Li=1,Ly=Ly 1+ Lr2, k=2,3,---,n

1.5. EXERCISES 37

14.

15.

Write a program that print out the first n terms of
Sp=Liy’—5F>2 k=1,2,---,n

where F}, is the k-th term of the Fibonacci sequence. Make a conjecture
about its values. Can you prove your conjecture?

The cosine function
The cosine function can be calculated by

$2 .Z'4 .Z'G $8 xlO .’E12

cos(r)=1——+—— —+— — — + — —

(@) TR A TR T TR T

Write a program to approximate the sine function by calculating the sum

of the first n terms. How many terms is it necessary to be as accurate as
™

the build in function for z = %

The sum of the Fibonacci sequence

Write a program to compute the sum of the first n terms of Fibonacci
sequence.

38 CHAPTER 1. THE FUNDAMENTALS

1.6 Further reading material

1.6.1 Documentation of programs

Programs should be well documented for reading, revision and applications. In a
Maple program, a ” #” sign starts a comment in any line. A programmer should,
at least, include comments in the program to tell users and other programmers
the following information

1. the purpose of the program
2. the required input

3. the output

It is also a good idea to comment all important steps inside the program.

The use of indentation and empty lines can also improve the readability of
programs. Compare the following two programs:

oddsum:=proc(n)

local i, oddnum, s;
s:=0;

oddnum:=1;

for i from 1 to n do
s:=s+oddnum”~2;

oddnum: =oddnum+2;

od;

print (‘The sum is‘, s);
end;

The one below is functionally the same program, but it is much easier to read
with proper indentation and line separation.

#
Program that calculate the squares
of 1st n odd integers
input: n --- integer
#
oddsum:=proc(n)
local i, oddnum, s;

1.6. FURTHER READING MATERIAL 39

s:=0; # prepare initial values
oddnum:=1; # for the summation
for i from 1 to n do # the loop of summation

s:=s+oddnum”~2;
oddnum:=oddnum+2;
od;

rint (‘The sum is‘, s); # output the sum
p p

end;

The blank lines separate programs into three blocks based on their functionali-
ties. By indenting the statements inside the loop, the repeating statements are
obvious.

A programmer, when working alone, can use his/her own programming style. In
reality, programers are most likely working in groups. Therefore it is important
to have a common source code writing style. We suggest the following guidelines
in Maple programming;:

1. A blank line between logical blocks of statements.

2. Align the opening comments, the program definition line with the “end”
statement, and have a three-space indentation for every line between these
two lines.

3. If an if-block is used, align “if”, “elif”, “else”, “fi” statements, and have
an additional three-space indentation for every line between them.

4. If a loop is used, align “for” and “od” statements, and have an additional
three-space indentation for every line between them.

Programming work will be a lot easier if those guidelines are followed. It is
also important that you follow these guidelines WHILE writing your program,
instead of after the program is done.

1.6.2 Formated printing

Maple’s formated printing is quite similar to that in C programming language.
The command syntax is that

40

CHAPTER 1. THE FUNDAMENTALS

printf(format‘, expression_sequence);

where format specifies how Maple is to write the expression_sequence. For ex-
ample ”%d” is to tell Maple to write the expression as a signed decimal integer:

> k:=-23456; j:=65432;

k= —23456
J = 65432

> printf(‘The integer %d is assigned to variable k‘,k);

The integer -23456 is assigned to variable k

> printf(‘The integer %d plus integer %d is %d‘,k,j,k+j);

The integer -23456 plus integer 65432 is 41976

The format part of printf must be inside the quotes ¢ ‘. The ”%” begins the
format specification. The simplist way of specifying the printing format is

% code

where code can be one of the following (copied from Maple help file)

x or X

e or E

gor G

The object is formatted as a signed decimal integer.
The object is formatted as an unsigned octal (base 8)
integer.

The object is formatted as an unsigned hexadecimal (base 16)
integer. The digits corresponding to the decimal numbers 10
through 15 are represented by the letters A through F if X
is used, or a through f if x is used.

The object is formatted as a floating point number in
scientific notation. One digit will appear before the
decimal point, and the number of digits specified by the
precision will appear after the decimal point (6 digits

if no precision is specified). This is followed by the
letter e or E, and a signed integer specifying a power of
10. The power of 10 will have a sign and at least 3 digits,
with leading zeroes added if necessary.

The object is formatted as a fixed point number. The number
of digits specified by the precision will appear after the

decimal point.

The object is formatted using e (or E if G was specified),

1.6. FURTHER READING MATERIAL 41

M or N

\%

or f format, depending on its value. If the formatted value
would contain no decimal point, d format is used. If the
value is less than 107(-4) or greater than 10 precision,

e (or E) format is used. O0therwise, f format is used.

The object, which must be a Maple string containing exactly
one character, is output as a single character.

The object, which must be a Maple string, is output as a
string of at least width characters (if specified) and at
most precision characters (if specified).

The object, which can be any Maple object, is output in
correct Maple syntax. At least width characters are output
(if specified), and at most precision characters are output
(if specified). NOTE: truncating a Maple expression by
specifying a precision can result in an incomplete or
incorrect Maple expression in the output.

The object, which can be any Maple object, is output in
Maple’s ".m" file format. At least width characters are
output (if specified), and at most precision characters are
output (if specified). NOTE: truncating a Maple ".m"
format expression by specifying a precision can result in
an incomplete or incorrect Maple expression in the output.

The object, which can be any Maple object, is output in
OpenMath syntax. At least width characters are output

(if specified), and at most precision characters are output
(if specified). NOTE: truncating an OpenMath expression by
specifying a precision can result in an incomplete or
incorrect Maple expression in the output. ALSO NOTE: The
outut uses OpenMath syntax, but assumes Maple semantics;
only Maple will be able to process the result. To produce
an OpenMath compliant result, additional preprocessing is
required. If the "\/N" format was specified, no
back-references will appear in the output.

---— A percent symbol is output verbatim.

Examples:

>

s:=4.0/3;

s :=1.333333333

> printf(‘Real number %e is printed in scientific notation®,s);

Real number 1.333333e+00 is printed in scientific notation

42 CHAPTER 1. THE FUNDAMENTALS

> printf(‘To be more specific, }15.4e is printed \nusing a total of
> 15 characters (including spaces) \nwith 4 digits after decimal

> point‘,s);

To be more specific, 1.3333e+00 is printed

using a total of 15 characters (including spaces)

with 4 digits after decimal point
> printf(‘%8.3f can be printed as a floating point number too.\nIt

> occupies 8 characters with 3 digits after decimal point.‘,s);
1.333 can be printed as a floating point number too.

It occupies 8 characters with 3 digits after decimal point.

In examples above, ”\n” is the specification for changing line.

Chapter 2

Iterations

2.1 Methods of golden section and bisection

The method of golden section can be applied to solve the optimization problem
of unimodel functions. It is similar to the bisection method for finding zeros of
a function. We’ll use the method of golden section as an example to show the
programming techniques and leave bisection method as a project for students.

2.1.1 TUnimodel functions

A function is called unimodel if it is strictly increasing, reaches its maximum,
and then strictly decreasing. A typical unimodel function, with graph generated
with Maple commands:

> fi=x->-x"2+3%x-2;

f=z— —2°+31—2

> plot(£,0..2);

43

44 CHAPTER 2. ITERATIONS

—0.5 1

—1.5

—2

The maximum value of the above function occurs at z = 1.5.

2.1.2 Golden section

Let [a,b] be an interval with a point ¢ inside. The location of ¢ in [a,)] can be
described as “how much is ¢ to the right of a”. For example, we may say c is
one third to the right of a, meaning the length of [a, c] is § of that of [a,b]. This
“one third” is the section ratio of ¢ in [a, b].

a c b

| 1 | x

— | =1/3
| | | |

In this case, the value of ¢ equals that of a plus the length of [a, ¢], which is %
of the length of [a,b]. That is,

¢c = a+(c—a)
1
= a+§(b—a)
1 1
= (1-)a+-=
(3)(H—Sb

For the same reason, if we know that a point d € [a,b] with a section ratio

2.1. METHODS OF GOLDEN SECTION AND BISECTION 45

equals to t where 0 <t <1, then
d=(1-t)a+tb

and the section ratio
c—a _ length of [a, (]

t= =
b—a length of [a,b]

Let ¢ be a point in the interval [a, b] with section ratio t. I.e. ¢ = (1 — t)a + tb.
If we reverse the role of t and 1 — ¢, we have another point d = ta + (1 — t)b,
which is symmetric to ¢ about the midpoint of [a,b]. These pair of points are
said to be conjuagate to each other in [a, b]

(|1 c=(1-)a+tb d=ta+(1-tb D
| |

midpoint

There is a special section ratio 7, called golden section ratio. It is special because
if ¢ cuts the interval [a, b] with this section ratio 7,

c=1-7)a+71b

then its conjuagate point d cuts the interval [a, ¢] with the same golden section
ratio
d=1a+(1-7)b=(1-7)a+7c

golden section

golden section

It can be verified that the golden section ratio is
_ —1++5
TT T
which is approximately 0.618.

2.1.3 The method of golden section

Let f(z) be a unimodel function on [a,b]. We know there is a maximum point
z, of f(z) inside the interval [a, b]. Our objective is to shrink the interval so that
it still contains x,, thereby we can zeroin on z..

46 CHAPTER 2. ITERATIONS

As shown in Figure 2.1, let m; and m, be a pair of conjuage section point
corresponding to the golden section ratio, we may call them the mid-left and
mid-right golden section points of [a,b]. We shall shrink [a,b] to either left
subinterval [a, m,] or the right subinterval [my, b]. We are looking for the unique
maximum point of the unimodel function f(z). So we compare the values of
f(my) and f(m,). If f(m,) > f(m;) asillustrated in Figure 2.1, then the interval
[my, b] containing m,. is the interval of choice. Similarly, if f(m;) > f(m,), we
would shrink [a, b] to [a,m,].

Jimy)
Ju ml)

: P | X
¢ m b
| |

Figure 2.1: The method of golden section: interval [my, b] is chosen over [a, m,]
because f(m,.) > f(my)

We therefore have a simple rule of choosing subintervals:

o If the “left value” f(my;) is larger, choose the “left subinterval” [a,m,].

o If the “right value” f(m,) is bigger, choose the “right subinterval” [my,b]

The beauty of the method is that each subinterval is cut by either m; or m,
with golden section ratio. Therefore, to shrink the subinterval, we need only
the conjuagate section point and only one additional function evaluation.

So the method of golden section can be described in the following pseudo-code:

Input: a, b, f and error tolerance &

Make sure delta is positive

Start with working interval [a, 8] = [a, b]

Set 7 the golden section ratio

Find the pair of golden section points m; and m,

Calculate v; = f(my;) and v, = f(m,)

2.1. METHODS OF GOLDEN SECTION AND BISECTION 47

While |8 — a| > §, repeat the following as a loop

If v; > v, then
Replace [a, f] with [a, m,]
Replace m, with my
Replace v, with v;
Replace my with (1 —m)a+ 78
Calculate v; = f(my)

else
Replace [a, §] with [mg, []
Replace m; with m,.
Replace v; with v,
Replace m, with ra + (1 — 7)8
Calculate v, = f(m,)

end if

The actual program based on the pseudo-code:

The program that calculate the maximum point of a unimodel function

input: f --- the unimodel function, define in Maple as operator,
e.g. fi=x->-x"2+3%x-2;

a, b --- end points of the interval [a,b]

tol --- the error tolerance

#

goldsec:=proc(f,a,b,delta)
local goldratio, gratio, alpha, beta, ml, mr, fml, fmr, stepcount;

if delta <= 0.0 then # avoid negative delta
print(‘error tolerance must be positive‘);
RETURNQ) ;

fi;

tau := evalf(0.5%(-1.0+sqrt(5.0))); # golden section ratio
alpha:=a; beta:=b; # working interval
mr:=(1-tau)*alpha+tauxbeta; # the mid-left point
ml:=tau*alpha+(1-tau)*beta; # the mid-right point
vl:=f(ml); vr:=f(mr); # function values

while abs(beta-alpha) >= delta do # the main loop

if vl > vr then

beta:=mr; # undate working interval
mr:=ml; vr:=vl; # update mr and vr
ml:=tau*alpha+(1-tau)*beta; # the new mid-left
vl:=f(ml); # the new vl

else
alpha:=ml; # update working interval
ml:=mr; vl:=vr; # update mr and vr

48 CHAPTER 2. ITERATIONS

mr:=(1-tau)*alpha+tauxbeta; # the new mid-right
vr:=f (mr) # the new vr
fi;

od;

print(‘The solution is‘);
print(0.5%(alpha+beta)); # output

end;

In the program, we used command
RETRUN()

which force the machine exit the program.

Set the number of digits to be 20:
> Digits:=20;
Digits := 20
> read(‘a:goldsec.txt‘):
> a:=0; b:=2; to0l:=0.001;

a:=0
b:=2
tol := .001

> goldsec(f,a,b,tol);

The solution is
1.5001934984462164631

If we reduce the tolerance to 0.0002, we have
> goldsec(f,a,b,0.00002);
The solution is
1.4999951775621607752
> goldsec(f,a,b,0.000000001);;

The solution is
1.4999999999534881866

2.1.4 The while—do loop

The implementation of golden section method involve another type of loops:

while condition do
block of statements
od;

2.1. METHODS OF GOLDEN SECTION AND BISECTION 49

In this loop, the block of statements will be repeated as long as the condition
remains “true” Using the method of golden section as an example, we started
with a working interval [a, §] and enter the while-do loop. If the interval is small
enough in the first place (i.e. § — a < §), all the statements inside the loop(i.e.
between “do” and “od”) will be ignored and “print” statements will follow.
Otherwise, the machine will enter the loop and shrink the working interval, reach
“od” and come back to “while” to recheck the condition 8 — a > §. Eventually
the condition will become “false” the machine jumps to the line following “od”.

There is a danger of using while—do loops. It may run forever if the condition
can never be met. For example, the program goldsec, with accidental input of
negative error tolerance, would be a dead loop if there were no statements

if delta <= 0.0 then # avoid negative delta
print(‘error tolerance must be positive‘);
RETURN() ;

fi;

2.1.5 The bisection method

From the Intermediate Value Theorem in Calculus, let f(z) be a continuous
function on the interval [a, b] such that f(a) and £(b) have different signs, then
there exists a number z. € [a,b] such that f(z,) = 0.

To find z,, we can cut the interval with the mid-point mp = “T“’ and calculate
f(mp). According to the sign of f(mp),

[a, mp] f(a)f(mp) <0
the solution z, is in or equal to { mp f(mp) =0
[mp, b] otherwise

We can thereby replace the interval [a, b] with the new subinterval, either [a, mp]
or [mp, b], of half length. This process, which is called the bisection method,
can be repeated until the length of the final interval is of length less than the
error tolerance. The midpoint of the final interval can be then output as the
approximate solution.

The implementation of the bisection method is similar to the method of golden
section, and left to readers.

50 CHAPTER 2. ITERATIONS

2.2 Newton’s and other iterative method

2.2.1 Newton’s iteration

For a given function f(z) which is differentiable, the iteration

f(wk_l)
f! (.Z'kfl) ’

Tp = Tp—1 — :0;1;25"'

is called Newton’s iteration. If the starting point xo is near a zero z, of the
function f, the iteration generates a sequence of points x1, z2, - - - that converges
to the solution z,. Usually Newton’s iteration converges very fast, if it converges
at all.

For example, let f(z) = x — cos(w x), there is a solution 0.3769670099. If we
start at zg = .5

> x:=array(0..10);
x := array(0..10, [])
> f:=x->x-cos(Pi*x);
fi=z—>x—cos(mx)
> g:=D(f); #find the derivative of f

g:=x— 1+sin(rz)7w

\%

x[0]:=0.5;
To = .9
x[1] :=evalf (x[0]-£ (x[0])/g(x[01));
x1 = .3792734965

\%

Two digits are correct after one step.
> x[2]:=evalf(x[1]-£f(x[1])/g(x[11));
x9 = .3769695051

Five digits are correct after two steps.
> x[3]:=evalf (x[2]-f(x[2])/g(x[2]));
x3 :=.3769670094

In only three steps we got the solution up to 9 digits.

The above process can be implemented using a loop.

> f:=x->x-cos(Pi*x);

2.2. NEWTON’S AND OTHER ITERATIVE METHOD 51

g:=D(f);
for k from 1 to 10 do
delta:=evalf (f(x[k-1])/g(x[k-11)):
x[k]:= x[k-1] - delta:
printf(" x[\%2d]= \%15.10f delta=\’%15.10f \\n",
k, x[k], delta):

od:
x[1]= .3792734965 delta= .1207265035
x[2]= .3769695051 delta= .0023039914
x[31= .3769670094 delta= .0000024957
x[4]= .3769670092 delta= .0000000002
x[5]= .3769670093 delta= -.0000000001
x[6]= .3769670094 delta= -.0000000001
x[71= .3769670092 delta= .0000000002
x[8]= .3769670093 delta= -.0000000001
x[9]= .3769670094 delta= -.0000000001
x[10]= .3769670092 delta= .0000000002

There are several important issues about Newton’s iteration:

e Newton’s iteration converges locally. Namely, it could fail, if the starting
iterate zg is not close enough to the solution .

e Even if Newton’s iteration does converge, we generally don’t know in ad-
vance how many steps are needed to reach the desired accuracy.

Therefore, we must set certain stop criteria to terminate Newton’s iteration.

First, there must be a limit to the number of steps for Newton’s iteration.
An input integer n is needed so that Newton’s iteration stops at the step .
Secondly, the iteration should stop when the accuracy is good enough. The
example above shows that the magnitude of

_ f(iL‘k_l)
f! (.Tk,l)

indicates the accuracy of xy. Actually, for a given tolerance tol,

O

|0k| < tol

52

CHAPTER 2. ITERATIONS

a widely used criterion for stoping Newton’s iteration.

From the above discussion, we can set up a loop of iteration that stops either
at step n or when |d;| < tol, which ever achieves first. This is can be done with
the following Maple loop command that combines for-do and while—do:

for loop_indexr from --- to --- while condition do
statements to be repeated

od;

Using the previous example

> delta:=1.0:

for k from 1 to 10 while abs(delta)>10.0"(-8) do
delta:=evalf (f (x[k-1]) /g(x[k-11)):
x[k]:= x[k-1] - delta:
printf(" x[\%2d]= \/15.10f delta=\%15.10f \\n",

k, x[k], delta):

od:
x[1]= .3792734965
x[2]= .3769695051
x[3]= .3769670094
x[4]= .3769670092

delta=

delta=

delta=

delta=

.1207265035

.0023039914

.0000024957

.0000000002

This loop stops at the fourth step because § > 10(-®) is no longer true. In worst
case, the loop will stop at 10-th step.

A Newton’s iteration program can be implemented with the following pseudo-

code:

Input: function f, initial iterate z0, step limit n, tolerance tol

calculate derivative of f and assign it to g

generate an (empty) array z with index from 0 to n

assign the value z0

set an initial value delta larger than tol

use “for...from...to...while...do” loop to carry out the iteration

2.2. NEWTON’S AND OTHER ITERATIVE METHOD 53

check if abs(delta)<tol.
if so, print the last iterate

otherwise, print out a failure message.

The actual implementation will be left as an exercise. Here are some examples
of Newton’s iteration.

> f:=x->x"3-5*x"2+2*%x-10;
f=x—2®—-5224+22-10
> plot(f,-3..7);

100 -
80;
60;
a0

20

The graph of f(x) shows that there is a zero around z = 5. Now lets apply
Newton’s iteration

> x0:=4.0: t0l:=10.0"(-8): n:=10:
> read(‘a:newton.txt):

> newton(f,x0,n,tol);

x[1]= 5.8000000000 delta= -1.8000000000
x[2]= 5.1652715940 delta= .6347284061
x[3]= 5.0092859510 delta= .1559856433

x[41= 5.0000317760 delta= .0092541752

54

x[5]= 5.0000000010

x[6]= 5.0000000010

delta=

delta=

Newton’s iteration successful in

CHAPTER 2. ITERATIONS

.0000317752
0.0000000000

6 steps

The solution is 5.0000000010

Starting from certain points you’ll see that Newton’s iteration fails

> y0:=-3.0:

> newton(f,y0,n,tol);
x[1]= -1.5084745760
x[2]= -.3447138130
x[3]= 1.6065726800
x[4]= -.8521934710
x[5]= .4039993150
x[6]= -6.0088494770
x[71= -3.5470641770
x[8]= -1.8900892540
x[9]= -.6757701190
x[10]= .7009957250

delta=

delta=

delta=

delta=

delta=

delta=

delta=

delta=

delta=

delta=

Newton’s iteration unsuccessful

2.3 Exercises

1. The ratio of golden section

Show that the ratio of golden section is

-1.4915254240
-1.1637607630
-1.9512864930

2.4587661510
-1.2561927860

6.4128487920
-2.4617853000
-1.6569749230
-1.2143191350
-1.3767658440

in 10 steps

S

14
2

2. Programming the bisection method

Using the program for the method of golden section as an example, write
a program for solving the equation

using the bisection method.

flz) =0

Sample results We are interested in the zeros of the function f(z) = z — sin(n z) in

the interval [—1,1].

2.3. EXERCISES 95

> f:=x->x-sin(Pi*x);
fi=xz >z —sin(r)
> plot(f,-1..1);

_o.s

—a

There are three zeros in intervals [—1, —0.5], [-0.5,0.5], and [0.5, 1]. Most importantly,
the function f(x) have opposite signs at the end points of each interval. Therefore we
can apply the bisection method to locate them.

> read(‘a:bisect.txt):
> bisect(f,-1,-0.5,0.00000001);
The approzimate solution is
—.7364844497
> bisect(f,-0.4,0.5,0.00000001);
The approzimate solution is
—.372532403 10~°
> bisect(f,0.5,1,0.00000001);
The approzimate solution is
.7364844497

Another example: suppose we are interested in the equation
z = cos(7)
on the interval [—2,1]. We investigate the function by plotting the graph:
> gi=x->x-cos(Pi*x);
g:=x — x — cos(mx)
> plot(g,-2..1);

M

R

|
R

\
N

\
W

> plot(g,-1.1..-0.7);

56 CHAPTER 2. ITERATIONS

0.05

l1.08_1.04a —o.76_0.72

—0.05 -

—0O.1

—0.15 -

Therefore there are three solutions.
> bisect(g,-1.1,-0.9,0.00000001);

The approzimate solution is

—1.000000003
> bisect(g,-0.9,-0.7,0.00000001) ;
The approzimate solution is

—.7898326312
> bisect(g,0,1,0.000000001);

The approzimate solution is
.3769670099

Try h(z) = sin(z) — e(=®) on the interval [0, 7].

3. Programming Newton’s iteration
Write a Newton’s iteration program, according to the pseudo-code in Sec-
tion 2.2.1 and following the examples there.

4. The Euclidean Algorithm

A common divisor of two integers m and n is an integer d that divides
both m and n. For example, integer 60 and 45 have common divisors 3,
5, and 15. In fact, 60=(2)(2)(3)(5) and 45=(3)(3)(5). The largest number
among the common divisors m and n is called the greatest common divisor
of m

gcd(60,45) = 15

The classical method of finding the greatest common divisor is the Eu-
clidean algorithm:

Suppose n < m.

(1) Let m be divided by n and let r be the remainder.
(2) If r =0, then n is the gcd, exit the process.

(3) Otherwise, replace the pair (m, n) with the pair (n, r), and go back
to (1).

2.3. EXERCISES 57

For example, we want to find ged(13578,9198):
> m:=13578; n:=9198;

m := 13578
n := 9198
> r:=m mod n;
r := 4380
> m:=n; n:=r; r:=m mod n;
m := 9198
n := 4380
r:=438
> m:=n; n:=r; r:=m mod n;
m := 4380
n 1= 438
r:=0

Now the gcd is 438 because the remainder r = 0.

Write a program that, for any positive integer input m and n, prints out
ged(m,n) using the Euclidean algorithm.
Sample results
> read(‘a:gcdiv.txt‘):
> gcdiv(13578,9198);
The greatest common divisor is
438
> gecdiv(9198,13578) ;
The greatest common divisor is
438
> gediv(60,45);
The greatest common divisor is
15

5. Mortgage interest

Let the amount of a mortgage be $ A, with interest rate per payment period
be i, and the total number of payments be n, then the payment amount
$PMT per period can be calculated with the following formula:

i
PMT =4 ——
1— (144

Suppose you want to buy a $120,000 house with 20% down. You can
afford $713/month payment for 30 years. What is the interest rate you
need to shop for?

6. Mortage points

Banks often charges points for lending a mortgage. One point means 1%
of the mortgage amount. Usually you can borrow that additional amount

58

CHAPTER 2. ITERATIONS

into that mortgage. Let p be the number of points the bank charges. Your
actual amount of mortgage increases from $4 to $A(1+0.01p) . Thus the
periodic payments increases to

i

Banks offer different rate and point combinations and make consumers
confused. However, every rate/point combination is equivalent to an ac-
tual interest rate with 0 point. It makes sense (and cents) to compare
different rate/point combination via comparing their actual rates. Find
the actual annual rate for a 30 year mortgage at annual rate of 7.75% with
3 points.

(Hint: 1. You may assume an amount of mortgate, say $100,000. The
final answer should be independent of that amount. 2. The crucial idea:
there is a payment calculated by the formula above for the rate/point
combination. With a monthly interest rate with no point, there is also a
would-be payment. If that x is equivalent to the rate/point combination,
those two payments must be the same.)

. More on mortgage points

Banks often charges points for lending a mortgage. One point means 1%
of the mortgage amount. Usually you can borrow that additional amount
into that mortgage.

Let p be the number of points the bank charges. Your actual amount of
mortgage increases from $A4 to $A4(1+0.01p). Thus the periodic payments
increases to

A1+ .01p)i

Pmt = __Q_t_f_gl_

1—(1+4)=m
Banks offer different rate and point combinations and make consumers
confused. However, every rate/point combination is equivalent to an ac-
tual interest rate with no point. It makes sense (and cents) to compare

different rate/point combination via comparing their actual rates. Write
a program that, for input

Amount ——— amount of mortgage

annual_rate --- the percentage of annual rate
(i.e. annual_rate=7.75 for 7.75%)

points ---— the number of points

years --- the number of years

2.3. EXERCISES 59

print out the actual annual rate with zero point. For $150000 mortgage
of 30 years, use your program to calculate the actual annual rate for (i)
7.75%, 3 points, (ii) 8%, 1 point.

Hint:

(a) Let x be any monthly rate with zero point, the corrsponding payment

is %. To make it equivalent to the payment calculated with
points, you have to solve the equation

Az A(l1+.01p)i

I—(1+2)n 1— 1+

(b) Define a function f(z) such that f(x) = 0 equivalent to the equation
above

(c) Make careful analysis to find the interval [a,b] such that f(a) and
f(b) have different signs. It is good idea to know the meaning of
f(z) > 0and f(z) <0.

(d) Fact 1: Adding points makes payment higher. So monthly rate i with
0 point has lower payment than the rate i with any point.

(e) Fact 2: In practical cases, points don’t double the actual rate. That
is, monthly rate 2i with 0 point has higher monthly payment than
monthly rate i with points.

8. The best rational approximation

Let 7 be a real number, such as v/2, 7, e. one can use a rational number
2 to approximate it. For example v/2 can be approximated by %, %,
g)ne can get better approximation if larger denomenator is allowed. The
objective is: for a given bound N on the denomenator, what is the best

rational approximation to r.
There is a simple method to find the best rational approximation %. Start

P

from p = 0, and ¢ = 1. The initial error is |% — r‘ = |r|. Repeat the

following until either N < q or error = 0:

If % < r, increase p by 1

Otherwise, increase ¢ by 1, to obtain a new set of p, g

With this new set of p and ¢, calculate the current error ‘% — r‘.

If this error is less than the previous error, a better approximation is
obtained. Update the the error and print out this set of p and g¢.

Write a program that carres out the above method for input r and N. For
a given N, the above method output a sequence p — ¢ pairs, with each
pair produces a fraction p/q that is a better approximation to r than the
previous pair, within the denomenator limit N.

Use your program to print out sequences of every better approximation
to v/2, 7, and e, with N to tens of thousands.

60

CHAPTER 2. ITERATIONS

Chapter 3

Arrays

3.1 Arrays

3.1.1 The use of arrays

An array is used to store a sequence of data. For example, if we want to store the
first 11 terms of Fibonacci sequence, Fy, Fi, --- Fig we first open an (empty)
array with index range from 0 to 10.

> fib:=array(0..10); # define an (empty) array
fib := array(0..10, [])

Then assign the values to each entry of the array:

> f£ib[0]:=0; fib[1]:=1; # initialize the Fibonacci sequence
fibg:=0
fib; =1

> for i from 2 to 10 do # generate remaining

> fib[i]:=fib[i-1]+fib[i-2]; # entries

> od;
fiby =1
fibg :=2
fiby :=3
fibs :=5
fibg :=8

61

62 CHAPTER 3. ARRAYS

fiby :=13
fibg :=21
fibg := 34
fibyg := 55

Generally, an array is defined by

>{array name}:=array({leading indez}..{ending indez});

Each entry of the array is referenced as {arrayname}[{indez}]. You may use
?array in Maple to open documentation about arrays.

> fib[6];

> f£ib[10];
55

3.1.2 The command “seq”

The command “seq” is very useful in generating a sequence with a known pat-
tern:

for example, the partial Fibonacci sequence fo, fi1, -+, f20 iS a sequence with
pattern
fi,i=0,1,---,10

In earlier calculation, this sequence was generated and stored as

fib[1], fib[2], ..., fib[10].

Namely, fib[i] for i from 0 to 10:
> seq(fib[il, i=0..10);
0,1,1,2 3, 5,8, 13, 21, 34, 55

In general, seq(f,i=m..n) generate a sequence in ther form of f for i from m to
n. For example, to generate a sequence of odd numbers:

> seq(2xi-1, i=1..20);
1,3,5,7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39

To generate a sequence of perfect squares:

3.1. ARRAYS 63

> seq(i"2, i=1..15);
1,4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225

3.1.3 Initialize an array using seq

An array can be initialize directly
> t:=array(l..5,[2,6,8,10,s]);
t:=1[2, 6,8, 10, s]

We may initialize an array with command seq, if the entries of the array have a
clear pattern. For example: To generate an array of even numbers:

> even_number:=array(1l..20, [seq(2*i, i=1..20)]1);
even_number := [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40]

After the array is so generated, we can conduct computation with the array.
For example, the sum of the 8-th and 12-th even numbers:

> even_number[8]+even_number[12];
40

Example: The array of perfect squares:
> squ:=array(1..50,[seq(j"2, j=1..50)1);
squ = [1, 4,9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361,
400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156,
1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209,
2304, 2401, 2500]

3.1.4 Entries of an array

You can define any entry of an existing array as any type of data allowed in
Maple, even as another array.

> s:=array(1..3);
s :=array(1..3, [])
> s[1]:=5; s[2]:=“John Doe‘; s[3]:=array(1l..3,[Mark,Bob,Jack]);
s1:=5
s := John Doe
s3 := [Mark, Bob, Jack]

Since s[3] is an array, to reference its 2nd entry:
> s[3]1[2];

64 CHAPTER 3. ARRAYS

Bob

More examples:

Define an array of four Names, each name consists of first and last names. At
beginning, open an array of 4 entries, each entry is an (empty) array of 2 entries:

> Name:=array(1l..4,[seq(array(1..2), i=1..4)]1);
Name := [%1, %1, %1, %1]
%1 := [.’1, ?21

Name[1][1] :=Bill: Name[1][2]:=Clinton:

Name[2] [1] :=A1: Name[2][2]:=Gore:
Name[3] [1] :=Bob: Name[3][2]:=Dole:
Name[4] [1] :=Jack: Name[4][2]:=Kemp:
eval (Name) ;
[[Bill, Clinton], [Al, Gore], [Bob, Dole], [Jack, Kemp]|

vV V V V V

The third name is Bob Dole:
> eval(Name[3]);
[Bob, Dole]

The first name of the fourth person is Jack:
> Name[4][1];
Jack

3.1.5 Example: An array of prime numbers

A prime number is a number that can only be divided by 1 and itself. Maple
has a function “isprime” to identify prime numbers. For example, we know that
3 is prime but 4 is not:
> isprime(3);
true
> isprime(4);
false

We can write a simple program to put n prime numbers in an array:

The program of generating an array of prime numbers
Arguments:

Input: n --- the number of primes to be generated
Output: p --- the array that contains the arrays
#

3.1. ARRAYS 65

primearray:=proc(n,p)
local i, k, count;

p:=array(l..n); # open the array to store output data
count:=0; # initialize the count
k:=2; # the first integer to be examined

while count < n do # repeat until n primes are counted
if isprime(k) then # check if k is a prime
count:=count+1; # if so, count it
plcount] :=k # and store it in array p
fi;
k:=k+1; # prepare the next integer
od;
print(‘I got them®) # print out a success message
end;

> read(‘a:priarray.txt‘);

primearray = proc(n, p)
locals, k, count;
p = array(l..n);
count := 0;
k:=2;
while count < ndo
ifisprime(k) then count := count + 1; peount ;== kfi; k:=k+1
od;
print(‘I got them')
end

> primearray(50,p);

I got them
> seq(pl[il,i=1..50);

2,3,5,7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179,
181, 191, 193, 197, 199, 211, 223, 227, 229

> pl25]*p[12];
3589

Remark: In this example, we don’t print out solutions inside the program.
Instead, we use an argument p as output, which is an array of the data we
want. After running the program, the data is on surface of Maple and can be
referenced for other purpose.

3.1.6 Example: Identifying the maximum entry of an ar-
ray

Find the maximum number in an number array: 2, -5, 9, 7

66 CHAPTER 3. ARRAYS

#

program to find the index of the maximum entry of a number array
Input: m --- leading index of the array

n --- (>m) ending index of the array

s -—- the array of numbers

Output: index_max --- the index of the maximum entry

#* value_max --- the value of the maximum entry

#

find_max:=proc(m, n, s)
local i, value_max, index_max;

value_max:=evalf(s[m]); # assume the first one is max
index_max:=m;

for i from m+l to n do # check the remaining entries 1 by 1
if evalf(s[i]) > value_max then # if a bigger value is found ...
value_max:=evalf(s[i]); # update the maximum value
index_max:=i; # update the index of the max
fi;
od;

print(‘The maximum value:‘);

print(value_max);

print(‘The index of the maximum value‘);
print(index_max);

end;
> data:=array(1..7,
> [2, -5, 9, Pi, sqrt(5), -exp(1l), sin(4*Pi/5)]1);

1
data = [2, -5, 9, m, V5, —e, 2 V24/5— \/5]

> read(‘a:findmax.txt‘);

find_maz := proc(m, n, s)
local, value_maz, index_maz;
value_maz = evalf(sm);
inder_maz := m;
for i frommtondo
ifvalue_maz < evalf(s;) then value_maz := evalf(s;) ; indez_maz := i fi
od;
print(‘ The mazimum value : ‘) ;
print(value_maz) ;
print(‘ The indez of the mazimum value‘);
print(index_maz)
end
> find_max(1,7,data);
The mazimum value :
9.
The index of the mazimum value
3

3.2. SOME STATISTICAL MEASUREMENTS 67

3.2 Some statistical measurements

3.2.1 Example 1. Range

Let 1, z, - -, T, be a sequence of data. The range R is defined as max;{z;} —
min;{z;}. Write a program to calculate the range for input n and the data
sequence.

#

program to find the range of a number array, defined as

the maximum minus the minimum

#

Input: m --- leading index of the array

n --- (Om) ending index of the array

x --- the array of numbers

Output: The range

#

Range:=proc(m, n, x)

local i, value_max, value_min;

value_max:=evalf(x[m]);
value_min:=evalf(x[m]);

find the maximum

for i from m to n do
if evalf(x[i]) > value_max then
value_max:=evalf(x[i]);
fi;
od;
find the minimum
for i from m to n do
if evalf(x[i]) < value_min then
value_min:=evalf(x[i]);
fi;
od;

calculate and output the range

value_max - value_min

end;

> read(‘a:range.txt®);

At beginning, assume the first
one is max and min

check the remaining entries
if a bigger value is found ...
update the maximum value

check the remaining entries
if a smaller value is found ...
update the maximum value

output of the range

68 CHAPTER 3. ARRAYS

Range := proc(m, n, x)
localz, value_-maz, value-min;
value_maz := evalf () ;
value_min := evalf(zm) ;
for i fromm ton doifvalue_maz < evalf(z;) then value_maz := evalf(z;) fi
od;
for i fromm ton doifevalf(z;) < value_min then value_min := evalf(z;) fiod
5
value_maz — value_min
end

> a:=array(1..10,[2,45,-23,25,43,-26,89,-19,56,9]);
a:=[2, 45, —23, 25, 43, —26, 89, —19, 56, 9]
> rang:=Range(1,10,a);
rang := 115.

3.2.2 Sorting

Suppose we have a sequence Z,, Tm+1, -- -, Tn, and we want to rearrange the
sequence to ascending order. We use m, instead of number 1, here as the leading
index of the array for flexibility. In earlier examples we have seen that the array
index may start from O rather than 1. The following process rearranges the
array in ascending order..

step m: find the smallest entry among x,,,, Tm+1,- -, Tn and swap it to x,,.

step m+1: find the smallest entry among T41, Tm2,- - ,%n and swap it
to Tm+1-

step m+2: find the smallest entry among 42, Tm+3,- - -, %, and swap it
to Tpyq42.

step n-1: find the smaller entry between z,_; and x, and swap it to x,, 1

(Question: Is there step n?)

Generally, we have a loop for k=m,m+1,m+2,---,n—1,
step k: find the smallest entry among zg, Zgt1,- -, %, and swap it to xg.

Within step k, it is also necessary to have a loop to find the smallest entry in a
subsequence. Therefore, we have a nested loop.

3.2. SOME STATISTICAL MEASUREMENTS

The program:

#

Program that sort a sequence of data

x[m], xMm+1], ... , x[n]

into ascending order

#

input: m --- leading index of the sequence

n --- (On) ending index of the sequence

x --- the data array with index range equal
beyond [m,n]

#

sort_ascend:=proc(m,n,x)
local k, j, tmp, value_min, index_min;

if n < m then
print(‘starting index should not be larger than ending index‘);
RETURNQ)

fi

for k from m to n-1 do
find the value_min and index_min of x[k],x[k+1],...,x[n]

value_min:=evalf(x[k]);
index_min:=k;

for j from k+1 to n do
if value_min > evalf(x[j]) then
value_min:=evalf(x[j]);
index_min:=j;
fi;
od;

swap to k-th entry if necessary

if index_min > k then
tmp:=x[index_min];
x[index_min] :=x[k];
x[k] :=tmp;

fi;

od;
print(‘ascending sorting finished‘);
end;
read(‘a:sortascd.txt‘):
a:=array(2..10,[3,-4,9,8,-Pi,exp(1),sqrt(12),1/3,0]):
sort_ascend(2,10,a);

ascending sorting finished
> seq(alil,i=2..9);

1
—4, —m, 0, 3 & 3,2v3,8

69

70 CHAPTER 3. ARRAYS

3.3 Sieving

3.3.1 Sieving

Sieving is the process of striking out entries in a sequence

Tmy $m+1: ey, Iy
that have (or do not have) a certain property.

One way to sieve is to have a shadow sequence, say

Smy Sm4+1, """ Sn
all initialized with string “alive”. If x;, is to be removed, assign s := “killed”.
At the end of the sieving, check those sp, Sm+1, ***, Sp, if anyone, say s; =

“alive”, then the corresponding x; survives the sieving.

3.3.2 Example: prime numbers by sieving

The problem is to find all prime numbers between 1 and n by striking out
multiples of prime numbers.

The first prime number is 2, so we strike all multiples of 2. i.e. we mark numbers
2*3, 2*4, 2*5, --- (up to n) as killed.

The next survived number is prime number 3, so we strike all multiples of 3.
i.e. we mark 3*3, 3*4, 3*%5, - -- (up to n) as killed. (Note we don’t have to strike
out 3*2, which is already killed)

The next survivor is 5 so we strike all multiples of 5, i.e., we mark 5*5, 5*6,
5%7, --- (up to n) as killed. (Note, we don’t have to kill 5*2, 5*3, 5*4, which
were killed already).

Generally, the current prime number is k, we strike all multiple of kas killled.
(Note, we don’t have to kill k*2, k*3, ..., k*(k-1), which are killed already). Then
we search the next survivor as next k, and strike out its multiples if k k& < n.

#

Program that find all prime numbers within n by sieving
#

input: n --- the upper bound for searching

output: p --- the array that contains all prime

numbers up to n

3.3. SIEVING

#
prime_sieve:=proc(n,p)
local s, i, k, count, flag;

initialize the shadow array
s:=array(l..n,[seq("alive",i=1..n)]);

1 is not prime
s[1]:="killed";

quick exit if n < 2

if n < 2 then
print(‘There is no prime numbers in the given range‘);
RETURN()

fi

sieve until kxk > n
for k from 2 to n while k"2 <= n do

mark every ix*k as killed if k is prime
if s[k]="alive" then
for i from k to n while i*k <= n do
s[i*k]:="killed";
od;
fi;

od;

count the number of primes found
count:=0;
for i from 1 to n do
if s[i]="alive" then
count:=count+1;
fi;
od;

open an array to store prime numbers
p:=array(l..count);

initialize k as counter
k:=0;
for i from 1 to n do
if s[i]="alive" then
when s[i] is ‘alive‘, i is the k-th prime
k:=k+1;
plkl:=i;
fi;
od;

print(‘The number of primes:‘);
count;

end;

Now let’s find out all prime numbers from 1 to 1000.

> read(‘a:prmsieve.txt®):

71

72 CHAPTER 3. ARRAYS

> prime_sieve(1000,p);
The number of primes :
168

> eval(p);

12,3, 5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179,

181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269,

271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367,

373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461,

463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,

577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661,

673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773,

787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883,

887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]

3.3.3 Example: Ulam’s lucky numbers

From the list of positive integers 1, 2, 3, 4, ---, remove every second number,
leaving 1, 3, 5, 7, 9, Since 3 is the first surviving number above 2 that has
not been used as the “killer”, we remove every 3rd number from the remaining
numbers, yielding 1, 3, 7, 9, 13, 15, 19, 21, Now every 7th survivor is
removed, leaving 1, 3, 7, 9, 13, 15, 21, Numbers that are never removed are
considered to be “lucky”. Write a program which prints the lucky numbers up
to n.

Ulam’s lucky numbers: For a sequence

1, 2,3, ..., n
remove every 2nd number, it remains:

1, 3, 5, 7, 9, 11, 13,
then remove every 3rd number. Generally, after
removing every k-th number, let m be the first
surviving number that is larger than k. Update
k to be m and remove every k-th number in the
surviving sequence. This process is continued
until k is larger than the size of the surviving
sequence.

input: n --- the upper bound of searching
output: lucky --- array that contains all lucky numbers up to n

HHH H H HHHHHHHHE R

ulumluck:=proc(n,lucky)

local i,count,u,k,flag,survive;
#

initialize the array u.

ulil=‘alive‘ : i survives

3.3. SIEVING

ulil=‘killed® : i removed.
#
u:=array(l..n);
for i from 1 to n do
ul[i] :="alive"
od;

survive:=n; # there are n survivors at beginning

for k from 2 to n while survive > k do

+

H H H H OH H

initialize count

found a survivor
count the survivor
the k-th one?
remove it

reset count

one less survivor

#
remove every k-th number if k is alive
#
if ulk]="alive" then
count:=0;
for i from 1 to n do
if u[i]="alive" then
count:=count+1;
if count=k then
uli]:="killed";
count:=0;
survive:=survive-1;
fi;
fi;
od;
fi;
od;
#

record survivors in array lucky
#

lucky:=array(l..survive); # open array lucky

count:=0; # set count
for i to n do
if ul[i]="alive" then # found a survivor
count:=count+1; # count it
lucky[count] :=1i; # record in lucky
fi;

od;

print(‘The Ulam’s lucky numbers‘);
seq(lucky[i],i=1..count); # print

end;

> read(‘a:ulam.txt®):

> ulamluck(100,lucky);

The Ulam's lucky numbers

1,3,7,9,13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99

73

74 CHAPTER 3. ARRAYS

3.4 Projects with arrays

3.4.1 Pascal triangle

The coeficients of binomials (a + b)™ can be calculated using the so called the
Pascal triangle:

n (a+0)" coeficients

C0, Cl, """ Cn
0 1 1
1 a+b 11
2 a®>+2ab+b? 1 2 1
3 a®+3a%b+3ab®+ 063 1 3 3 1
4 a*+4a®b+6a°b>+4ab®+ b 1 4 6 4 1
5 | a®+5a*b+10a®b2+10a%b® +5ab?+06° 1 5 10 10 5 1

There are some obvious facts about the coeficients ¢y, ¢1, c2, -+, ¢p

e For each n, there are (n + 1) coeficients ¢g, ¢1, ¢2, ---, Cn
o cog=cn=1.
e Let do, dy, d, -- -, dy_1 be the coeficients of (a + b)*~ 1| then

co=1, co=do+di, co2=di +dz, -+, cp—1 =dp_2+dr_1, ¢t =1

Write a program, for input n output (1) the coeficient array ¢, as an argu-
ment, and (2) print out the Pascal triangle. You program should work like the
following:

> read(‘a:pascal.txt‘):

> Pascal_triangle(10,c);

1
1,1
1,2,1
1,3,3,1
1,4,6,4,1
1, 5,10, 10, 5, 1
1, 6, 15, 20, 15, 6, 1
1, 7,21, 35,35, 21,7, 1
1, 8, 28, 56, 70, 56, 28, 8, 1

3.4. PROJECTS WITH ARRAYS 75

1,9, 36, 84, 126, 126, 84, 36, 9, 1
1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
> seq(c[jl, j=0..10);
1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1

3.4.2 Means

For a sequence of real numbers

Tmy xm—i—l: $m+2, oy T

various means are defined as follows:

(i) Arithmetic mean A:

(ii) Geometric mean G:

(iii) Harmonic mean H:
U Yiem 3

H n-m+1

Write a program that, for input m, n, x; print out all three means. Your pro-
gram should work like

> x:=array(0..10,[2,5,9,12,21,33,18,8,11,15,17]):
> read(‘a:means.txt):
> Mean(0,10,x);
The arithmetic mean :
13.72727273
The geometric mean :

11.05802293
The harmonic mean :
8.033176344
y:=array(1..9,[3,9,12,43,31,18,24,38,5]):
Mean(1,9,y);
The arithmetic mean :
20.33333333

76 CHAPTER 3.

The geometric mean :

14.86548789
The harmonic mean :
9.924686319

We can also calculate the means of the binomial coeficients:
> Pascal_triangle(12,c):
1

1,1

1,2, 1

1,3,3,1
1,4,6,4,1
1,5, 10, 10, 5, 1
1,6, 15, 20, 15, 6, 1
1,7,21,35,35,21,7, 1
1, 8, 28, 56, 70, 56, 28, 8, 1
1,9, 36, 84, 126, 126, 84, 36, 9, 1
1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
> Mean(0,12,c);

7

The arithmetic mean :
315.0769231
The geometric mean :

78.51839612
The harmonic mean :
5.872498536

3.5 Exercises

1. Fibonacci array

ARRAYS

Write a program that, for input n, output an array of Fibonacci sequence

Fy, Fy --- F,

Do not print out the solution inside the program. Instead, use an argument
as output and use seq to show results after running the program.

Sample results
> read(‘a:fibarray.txt‘):
> n:=40:

3.5. EXERCISES 7

> fibarray(40,f);
Fibonacci sequence is generated
> seq(f[k],k=0..n);
0,1,1,2, 3,5, 8,13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040,

1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817,
39088169, 63245986, 102334155

2. Inner product (or dot product)

A n-vector is defined as an array of n numbers

(UI;UQa"';Un)

such as
a= (1735 5; _3:2)5 b= (9; _5; 27 \/’?77")

The inner product (or dot product) of two n-vectors
a=(a1,a2, --,a,), and b= (b1,ba,--,by)
a-b=aiby +asbsy +---+ apb,

Write a program, for input n, a, and b, print out the value of the their
inner product.
Sample results
> read(‘a:dotprod.txt‘):
> n:=b:
> a:=array(l..m, [1,3,5,-3,2]);
a:=1[1, 3,5, =3, 2]
> b:=array(l..n, [9, -5, 2, sqrt(7), Pil);
b:=19, 5,2, V7, 1
> dotprod(a,b,n);
The dot product is
2.345931375

3. Deck list

Write a program that defines an array of 52 entries, each entry contains
the the rank and suit of a card in a standard deck. That is, each entry is
an array of two entries, the first entry is the rank, and the second entry
the suit. The deck must be in the order of Example 3, Lecture Note 02.
Write a program using do loops instead of 52 line program.

(Hint: Define deck as a 52-entry array. deck[1] is defined as a two entry ar-
ray, to be referenced as deck[1][1] and deck[1][2], such that deck[1][1]=ace,
deck[1][2]=heart.)
Sample results

> read(‘a:decklist.txt‘):

78

CHAPTER 3. ARRAYS

> decklist(deck):
> eval(deck);

[[ace, heart], [2, heart], [3, heart], [4, heart], [5, heart], [6, heart], [7, heart], [8, heart],
[9, heart], [10, heart], [jack, heart], [queen, heart], [king, heart], [ace, spade],
[2, spade], [3, spade], [4, spade], [5, spade], [6, spade], [7, spade], [8, spade],
[9, spade], [10, spade], [jack, spade], [queen, spade], [king, spade], [ace, diamond],
[2, diamond], [3, diamond], [4, diamond], [5, diamond], [6, diamond],
[7, diamond)], [8, diamond], [9, diamond], [10, diamond], [jack, diamond],
[queen, diamond], [king, diamond], [ace, club], [2, club], [3, club], [4, club],
[5, club], [6, club], [7, club], [8, club], [9, club], [10, club], [jack, club],
[queen, club], [king, club]]

> eval(deck[18]);

[5, spade]

> eval(deck[37]);

[jack, diamond]

. Minimum

Write a program that identifies the mininum entry of an array by print-
ing out the value of the manimum entry and its index. Use the data in
Example 2 to test your program.

. Standard deviation

Write a program to calcaulate the standard deviation

n
(i —0)?
s = —_—
< n
=1
where ¢ is the average of x1, 2, - -+, Ty, i.€.
n
T
o=
ct 7
=1
. Median and quartiles
Let
xmawm—i-l; R 77)

be a sequence of n — m + 1 real numbers in ascending order. The leading
index m can be 0, 1 or any other integer. The median this sequence is
defined as follows:

case 1. if n—m+1 is odd, then the median is the middle term at index
n+m
e,

case 2. if n —m + 1 is even, then the median is the average of middle-
left term and the middle-right term with indices 2+2=1 and 2+7+l
respectively.

3.5. EXERCISES 79

The median is also called the second quartile.

The first quartile and the third quartile are defined as follows:

case 1: ifn+m—1 is even, then the sequence can be devided into the
first half sub-sequence

Tyt 7mn+72n—1
and the second half sub-sequence
.Z'n+72rL+1 s 3 Iy
The first quartile is the median of the first half sub-sequence and

the third quartile is the median of the second half sub-sequence

case 2: if n-m+1 is odd, then there is a middle term x ngm The first
quartile is defined as the median of the sub-sequence

Ty, Tagm
and the third quartile is defined as the median of the sub-sequence
Tntm g, s Tn.
Write a program, for any given sequence
Ty gl s Ty
print out the three quartiles. Your program should accept input m, n,

and array z, rearrange it into ascending order, and find quartiles.

Hint: You may consider the following steps:

Input: m, n, x
(1) re-arrange the array z in ascending order
(2) according to the odd/even number n —m + 1
— find the median (2nd quartile)
— find the index range m1 and nl of the first sub-sequence
— find the index range m2 and n2 of the second sub-sequence

(3) according to odd/even type of n1 —m1+1 and n2 —m2+1, find
the first quartile and the third quartile respectively.

Sample results
> read(‘c:/zeng/teach/340/quartile.txt‘):
> x:=array(0..10,[23,12,34,87,25,10,5,19,65,29,71]):
> quartile(x,0,10);

The sequence in ascending order

80 CHAPTER 3. ARRAYS

5, 10, 12, 19, 23, 25, 29, 34, 65, 71, 87

The 1st subsequence
5, 10, 12, 19, 23
The 2nd subsequence
29, 34, 65, 71, 87

The 1st, 2nd, and 3rd quartiles :

12
25
65

> y:=array(1..14,[22,11,33,44,51,62,12,81,37,19,9,20,18,5]);
y = [22, 11, 33, 44, 51, 62, 12, 81, 37, 19, 9, 20, 18, 5]
> quartile(y,1,14);
The sequence in ascending order
5,9, 11, 12, 18, 19, 20, 22, 33, 37, 44, 51, 62, 81

The 1st subsequence
5,9, 11, 12, 18, 19, 20

The 2nd subsequence
22, 33, 37, 44, 51, 62, 81

The 1st, 2nd, and 3rd quartiles :

12
21.0
44

7. Partial amnesty

In the central prison of Sikinia there are n cells numbered from 1 to n, each
occupied by a single prisoner. The state of each cell can be changed from
closed to open and vice versa by a half-turn of the key. To celebrate the
Centennial Anniversary of the Republic it was decided to grant a partial
amnesty. The president sent an officer to the prison with the instruction:

for i from 1 to n do
turn the keys of cells i, 2%i, 3*i, ... (up to n)
od;

A prisoner was freed if at the end his/her door was open. Which prisoners
are were set free? Write a program that carry out the amnesty for n=100,
200, 500.

(Hint: The door can be either ‘open‘ or ‘closed‘. Each time the key is
turned, the door becomes ‘closed" if it is open, or becomes ‘open‘ if it is
‘closed‘. A door may be set open or closed many times)

Sample results

3.5. EXERCISES 81

> read(‘a:amnesty.txt‘):
> amnesty(100,free);
The number of prisoners freed
10

The following prisoners were set free:
> eval(free);
[1, 4,9, 16, 25, 36, 49, 64, 81, 100]
> amnesty(200,free);
The number of prisoners freed
14
> eval(free);
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196
> amnesty(500,free);
The number of prisoners freed
22

> eval(free);

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169,
196, 225, 256, 289, 324, 361, 400, 441, 484]

8. The Josephus problem

During the Jewish rebellion against Rome (A.D. 70) 40 Jews were caught
in a cave. In order to avoid slavery they agreed upon a program of mutual
destruction. They would stand in a circle and number themselves from 1
to 40. Then every seventh person was to be killed until only one was left
who would commit suicide. The only survivor, Flavius Josephus, who did
not carry out the last step, became a historian.

Josephus problem: n persons are arranged in a circle and numbered
from 1 to n, Then every k-th person is removed, with the circle closing
up after every removal. Print the list of persons in the order of being
removed. What is the number f(n) of the last survivor?

Write a program to

(1) Print out the sequence of persons in the order of being killed.

(2) Find out where Josephus is.

Sample results
> read(‘a:josephus.txt):
> Josephus(40,7);
People were killed in the following order
7,14, 21, 28, 35, 2, 10, 18, 26, 34, 3, 12, 22, 31, 40, 11, 23, 33, 5, 17, 30,
4,19, 36, 9, 27,6, 25, 8, 32, 16, 1, 38, 37, 39, 15, 29, 13, 20
Josephus is at
24

CHAPTER 3. ARRAYS

Suppose we have 14 students registered for this class, so we have 15 people (including
the instructor) in the classroom, if we play this game:

> Josephus(15,7);
People were killed in the following order
7, 14, 6, 15, 9, 3, 13, 11, 10, 12, 2, 8, 1, 4
Josephus is at

5
The fifth person is the final survivor. Or, if every 5th person is removed,
> Josephus(15,5);
People were killed in the following order
5,10, 15, 6, 12, 3, 11, 4, 14, 9, 8, 13, 2, 7
Josephus is at
1

The first person will survive.

. Weighted means:

Let
A= ()‘ma Am+1s - ";)‘n)

be a vector of positive numbers such that

Ai=1

n
=m
then the weighted arithmetic and geometric means associated with A are
defined as

(i) weighted arithmetic mean:

A/\Z Z)\iwi:)\mmm+)‘m+1$m+1+"'+)\nmn

i=m

(ii)) weighted geometric mean:
6=] o = (o) (omss™) - (2)
i=m

Let the weights
/\ma)‘m—i-la Tty /\n
be defined as follows:
1 Ai—1 An—2

1
)\m:—7)\m :—7---7)\~: 7---7An7 =
9 +1 4 i 2 1

Write a program that, for input m, n, x, calculate both weighted means.
Use your program to calculate the weighted means of the two sequences
in Project 2 above.

3.5. EXERCISES 83

Sample results
> read(‘a:wmeans.txt):
> Weighted_means(0,10,x);
The weighted arithmetic mean
5.521484376
The weighted geometric mean
3.933248559
> Weighted_means(1,9,y);
The weighted arithmetic mean
9.54296875
The weighted geometric mean
6.309771865
> Weighted_means(0,12,c);
The weighted arithmetic mean
64.87329102
The weighted geometric mean
6.551390952

10. The power of binomials

Write a program that, for input a, b, n, calculate (a+ b)™ using the Pascal
triangle and the resulting coeficients of binomials. Your program should
have the structure like:

step 1, calculate
CO, Cl, Tty cn
using Pascal triangle

step 2, calculate and print out

coa™+c1a™ Y btera™ D B4z al™ P P4 41 a bV e, b7

84

CHAPTER 3. ARRAYS

Chapter 4

Probability simulations

4.1 Declaring data types for program arguments

Maple classifies data into the following types (ask Maple: 7type)

! . And NONNEGATIVE Not

Or PLOT PLOT3D Point Range
Root0f TEXT ok ¢ k¢ C+¢

€ne algebraic algext algfun algnum
algnumext anyfunc anything arctrig array
atomic boolean complex complexcons constant
cubic dependent disjcyc equation even
evenfunc expanded exprseq facint float
fraction freeof function hfarray identical
indexed indexedfun infinity integer intersect
laurent linear list listlist literal
logical mathfunc matrix minus monomial
name negative negint nonneg nonnegint
nonposint nothing numeric odd oddfunc
operator point polynom posint positive
prime procedure protected quadratic quartic
radalgfun radalgnum radext radfun radfunext
radical radnum radnumext range rational
ratpoly realcons relation rgf_seq scalar

Among them, the following types are frequently used in this book:

85

86 CHAPTER 4. PROBABILITY SIMULATIONS

array, numeric, integer, odd, even, positive, negative

When writing a program, usually we want each argument to be a certain type
data, and we would like the machine to check if the input item fits the data
type. For example, in the program of finding quartiles in the array members

xmyxm+1;"'7-7:n

we can use three arguments m, n, = as integer, integer, and array respectively.
Then we can start the program definition like

quartiles:=proc(m::integer, n::integer, x::array)

When executing the program, Maple will automatically check each input item
to see if it fits the corresponding type and, if not, output an error message.

Example: The following program calculates the square root of the sum of three
real numbers.

sqrt3:=proc(
a::numeric,
b: :numeric,
Cc::numeric,
ans::evaln

);

input: real number

same as above

same as above

output: must be declared "evaln"

H H H

ans:=sqrt (a+b+c);

end;
> read(‘a:/txt/3sqrt.txt®):

> sqrt3(3,5,8,t);

> sqrt3(s,5,7,ans);

Error, sqrt3 expects its 1st argument, a, to be of type numeric, but
received s

As shown in this example, if an argument is designated as an output item, it
must be declared “evaln”.

4.2. PROBABILITY EXPERIMENT 87

4.2 Probability experiment

4.2.1 Introduction

In probability theory, an experiment is an activity or occurrence with an
observable result, such as drawing a card from a deck. Each repetition of an
experiment is called a trial. For example, there are three white balls and five
red balls in a box. Drawing a ball from the box, one can observe its color. So
drawing a ball from a box is an experiment. If one replace the ball back to
the box after it is drawn, this experiment is called drawing with replacement. If
that’s the case, there can be infinitely many trials for the experiment.

If we ask a question: what is the probability of drawing, with replacement, three
consecutive red balls? We may answer the question theoretically: p = (%)3, or
we may set a program and ask Maple to simulate the experiment and calculate

the probability approximately.

4.2.2 Random number generators

4.2.3 Random real number generator

The function rand() generates a 12 digit random positive integer. The following
program generates a random real number in the interval [a, b]:

#
function that output a random real number in [a,b]
#
real_ran:=proc(
a::numeric,
b::numeric
)
local x;
x:=rand();
evalf(a+ (b-a)*x/999999999999);

end;
> read(‘a:/txt/realran.txt‘):

> s:=real_ran(-3,2);

s :=1.603124737

88 CHAPTER 4. PROBABILITY SIMULATIONS

4.2.4 Random integer generator
The following function generates an integer between m and n, inclusive

#
program generates a random integer between m and n, inclusive

int_ran:=proc(
m: :integer,
n::integer

)
round (evalf (m-0.5+(n-m+1)*rand()/999999999999))

end;
> read(‘a:/txt/intran.txt¢):
> k:=int_ran(1,52);

> m:=int_ran(1,52);

4.2.5 Example: Drawing a ball with replacement

Suppose in a box, there are 3 white balls and 5 red balls. We can consider
balls numbered from 1 to 3 are white and those numbered from 4 to 8 are red.
Randomly drawing a ball, mathematically, is equivalent to drawing a number
from 1 to 8, and we’ll know the color according to the number. Therefore, the
experiment of “drawing a ball” can be simulated by the program

one_ball:=proc()
local k;
k:=int_ran(1,8);
if k<=3 then
"white";
else
"red";
fi;
end;
int_ran:=proc(
m::integer,
n::integer
)
round (evalf (m-0.5+(n-m+1)*rand () /999999999999))

end;

4.2. PROBABILITY EXPERIMENT 89

Program note

e The program one_ball does not require any input.

e The program int_ran is used by one_ball as a “subprogram”. Therefore it
should be included in the same text file. When the file is read into Maple,
both main program and subprogram will be loaded.

Test run:
> read(‘a:oneball.txt‘):
> one_ball();
? white”
> omne_ball();

R T‘ed”

4.2.6 Example: Drawing, say 3, balls without replacement

Suppose there are 8 balls in a box, 3 white and 5 red. Generally, if we draw k
balls from the box without replacement, the experiment can be simulated in the
following way:

(1) number balls from 1 to 8. The first three numbers correponds to while,
remaining for red.

(2) Draw k balls one by one:
— The first draw is from ball 1 to 8. Then swap the drawn ball to
number 8 (=8-1+1)

— The 2nd draw is from ball 1 to 7. Then swap the drawn ball to
number 7 (=8-2+1)

— The 3rd draw is from ball 1 to 6. Then swap the drawn ball to
number 6 (=8-3+1)

— Generally, the j-th drawn is from ball 1 to n = 8 — j + 1, then swap
the drawn ball to number n so it won’t be redrawn.

(4) Translate numbers to colors.

Program simulating drawing k balls in a box
containing 3 white balls and 5 red balls

Q. oH H H W

raw_k_ball:=proc(

90 CHAPTER 4. PROBABILITY SIMULATIONS

k::integer, # number of balls to draw
draw::evaln # output: colors drawn
)

local ball, i, j, n, m, temp;

ball:=array(1..8); # making a box of balls
for i to 3 do
ball[i] :="white";
od;
for i from 4 to 8 do
ball[i] :="red";

od;
draw:=array(1l..k); # open space for balls to be drawn
n:=8; # n is the number of balls remaining

there are 8 balls initially

for j to k do # loop to draw balls one by one
m:=int_ran(1i,n); # draw a number from 1 to n
draw[j] :=ball[m]; # get the color

if m <> n and ball[m]<>ball[n] then
temp:=ball[m]; # move the drawn ball to end of pool
ball[m]:=ball[n]; # so it won’t be redrawn
ball[n] :=temp;

fi;

n:=n-1; # update n
od;

end;
read(‘a:drawball.txt‘):
draw_k_ball(3,ball):
eval(ball);
["red”, ”white”, ”white”]

4.2.7 Example: Approximate a probability

If we want to calculate the probability of drawing 3 balls without replacement
and getting all red, we can simulate the experiment n times, count the successful

drawings and use
number_of _successful _drawings

n

as approximate value of the probability.

#
program that calculate the approximate probability of

4.2. PROBABILITY EXPERIMENT

drawing k balls, without replacement, out a box containing 3 red and 5
white and getting all red

#

input: k --- the number of balls to be drawn
n --- the number of trials to repeat
#

draw_test:=proc(k::integer,
n::integer

)
local i, j, count, ball, flag;
ball:=array(1l..k); # open the space for balls
count:=0; # initialize counting
#
repete the experiment n times
#

for i to n do
draw_k_ball(k,ball); # draw k balls w/o replacement
flag:=0; # initialize flag=0, assuming successful
for j to k while flag=0 do # check balls if they are red
if ball[j]="white" then

flag:=1; # raise the flag: a white ball is found
fi;
od;
#
count a successful drawing if all red (flag=0)
#

if flag=0 then
count:=count+1;
fi;
od;

evalf(count/n); # approximate probability

end;
#
Program simulating drawing k balls in a box
containing 3 white balls and 5 red balls
#
draw_k_ball:=proc(
k::integer, # number of balls to draw
draw::evaln # output: colors drawn
)

local ball, i, j, n, m, temp;

ball:=array(1..8); # making a box of balls
for i to 3 do
ball[i] :="white";
od;
for i from 4 to 8 do
ball[i] :="red";

od;
draw:=array(1l..k); # open space for balls to be drawn
n:=§; # n is the number of balls remaining

there are 8 balls initially

91

92 CHAPTER 4. PROBABILITY SIMULATIONS

for i to k do # loop to draw balls one by one
m:=int_ran(i,n); # draw a number from 1 to n
draw[i] :=ball[m]; # get the color

if m <> n and ball[m]<>ball[n] then
temp:=ball[m]; # move the drawn ball to end of pool
ball[m]:=ball[n]; # so it won’t be redrawn
ball[n] :=temp;

fi;

n:=n-1; # update n
od;

end;
#
function that generates a random integer from m to n, inclusive
#
int_ran:=proc(
m: :integer,
n::integer
)
round (evalf (m-0.5+(n-m+1)*rand()/999999999999))
end;

> read(‘a:drawtest.txt®):
> draw_test(3,300);
.1700000000

The exact probability is
> evalf((5')"2/((2")*(8!)));
1785714286

Now we increase the number of trials to 10000
> draw_test(3,10000);
.1758000000

We got much better approximation. When the number of trials are bigger, it is
more likely, though no guarantee, to get a more accurate approximation of the
probability.

4.2.8 Example: Two points in a square having distance
less than one

Given a square of 1 ft by 1 ft, what is the probability of throwing two stones
in to the box having distance less than one? It is not easy to calculated the
probability exactly. So let’s write a program to approximate it.

4.2. PROBABILITY EXPERIMENT 93

A 1x1 square can be seen as set of points { (z,y) —0<z<1,and0 <y <1}
on the zy-coordinate system. A randomly thrown stone can be represented as
a point (z, y) in that set. The simulation of the experiment is to generate two
sets of random numbers z and y in the interval [0,1].

#
program that approximates the probability of throwing two points
in a 1x1 square having distance less than 1

#

input: num_of_trials --- number of trials
output: +the approximate probability

#

two_pts:=proc(num_of_trials::integer)
local count, i, x1, y1, x2, y2, distance;

if num_of_trials > 0 then
count:=0;
for i to num_of_trials do
#
simulate the experiment
#

x1l:=real_ran(0,1); # generate the first point
yl:=real_ran(0,1);

x2:=real_ran(0,1); # generate the second point
y2:=real_ran(0,1);

#
checking
#
distance:=evalf(sqrt((x2-x1)"2+(y2-y1)°2));
if distance < 1.0 then
count:=count+1;
fi;
od;
evalf (count/num_of_trials);
else
print(‘invalid input‘);
fi;
end;
#
function that output a random real number in [a,b]
#
real_ran:=proc(
a::numeric,
b::numeric
)
local x;
x:=rand();
evalf(a+ (b-a)*x/999999999999);
end;

> read(‘a:twopoint.txt‘):

> two_pts(500);

94 CHAPTER 4. PROBABILITY SIMULATIONS

.9800000000
> two_pts(2000);
.9670000000

Combined estimate:
> (0.98%500+0.967%2000) /2500;
9696000000

We can make an estimate of 0.97. Further testing
> two_pts(10000);
9769000000

To get even better approximation, the number of trials many should be in
millions.

4.3 Card games

4.3.1 Program that draws a random k-card hand

The following is the program that draws a random k-card hand. It actually
consists of three programs. One program is considered the main program that
does the following process:

< 1> Get k distinct random numbers from 1 to 52 by calling “int_ran” as sub-
program

< 2> For each number obtained, translate it into the corresponding card name
by calling “card” as subprogram.

#

main program

#
program that drawing k cards, without replacement
out a standard deck

#

dnput: k --- the number of balls to be drawn

output: hand --- array that contains the names of cards drawn
#

draw_k_card:=proc(
k::integer, # number of cards to draw
hand: :evaln # output: the drawn hand

)

local deck, i, m, n, temp;

4.3. CARD GAMES

if k < 1 or k > 52 then # quick exit if k < 1 or k > 52
print(‘1st argument must be between 1 and 52°¢);

RETURNQ) ;
fi;
hand:=array(l..k); # open the space for output
deck:=array(1..52, # making a pool of numbers to draw
[seq(i,i=1..52)]);
n:=52; # the number of cards remaining
for i from 1 to k do # loop to draw card 1 by 1
m:=int_ran(i,n); # draw a number from 1 to n

hand[i] :=deck[m];

if m<>n then # move the number to the end
temp:=deck[m] ; # of the pool to avoid redrawn
deck[m] :=deck[n];
deck[n] :=temp;

fi;
n:=n-1; # update n
od;
#
get the names of the cards
#
for i from 1 to k do
m:=hand[i]; # get the number
hand[i] :=card(m) ; # call subprogram that identifies the card
od;
end;

FRFRRR R RS ESE end of the main program

subprogram
#
#
function that generates a random integer between m and n, inclusive
#
int_ran:=proc(m::integer,n::integer)

round(evalf (m-0.5+(n-m+1) *rand () /999999999999))

end;

#H#RHR SRS end of subprogram int_ran

subprogram
#
function that identify the card name given its number
input: m --- a number from 1 to 52

output: an array of two entries that identifies the card
#
card:=proc(m::integer)

local rank, suit;

if m>0 and m<= 52 then # quick exit if m is beyond 1-52

96 CHAPTER 4. PROBABILITY SIMULATIONS

rank:= m mod 13; # get numerical rank (1-13)
suit:=ceil(m/13); # get numerical suit (1-4)
#

identifies the actual suit as a string

#

if suit=1 then
suit:="heart";

elif suit=2 then
suit:="spade";

elif suit=3 then
suit:="diamond";

else
suit:="club";
fi;
#
identifies the actual rank
#

if rank=1 then
rank:="ace";
elif rank=11 then
rank:="jack"
elif rank=12 then
rank:="queen"
elif rank=0 then
rank:="king"
fi; # remaining cases are rank=2,3,4,...,10,
already defined
#
output the card name as an array
#
array(1l..2, [rank,suit])
fi;
end;
#H###RFHREHRE end of subprogram card

4.3.2 Simulation of card games

We can use Maple programs to simulate many probability experiment. Those
programs share a similar structure:

count:=0; # initialize the counter
for 4 from 1 to n do

block 1: simulation
simulate the experiment

block 2: checking
count 1 if the experiment was successful

4.3. CARD GAMES

od;
probability:=evalf(count/n); # calculate the probability

We usually need ”int_ran”, ”real_ran” and/or other subprograms.

97

4.3.3 Example: Drawing a k-card hand having at least one

ace

The following is the program

#
program that compute the approximate probability of
drawing a k-card hand having at least one ace

#

input: k --- number of cards in a hand

n --- number of trials for the experiment
#

This program require draw_k_card package as subprogram
#
k_card_get_ace:=proc(k::integer,n::integer)

local count, i, j, hand, flag;

count:=0; # initialize counting
for i from 1 to n do
#
simulate the experiment
#
draw_k_card(k,hand); # draw a k card hand
#
checking
#
flag:=0; # initialize the flag=0, meaning no ace

for j from 1 to k while flag=0 do
if hand[j][1] = "ace" then

flag:=1; # raise the flag, an ace is in the hand
fi;
od;
count :=count+flag; # count
od;
evalf(count/n); # calculate the probability
end;
#
subprogram
#

program that drawing k cards, without replacement
out a standard deck
#

98 CHAPTER 4. PROBABILITY SIMULATIONS

dinput: k --- the number of balls to be drawn
output: hand --- array that contains the names of cards drawn
#

draw_k_card:=proc(
k::integer, # number of cards to draw
hand: :evaln # output: the drawn hand

)

local deck, i, m, n, temp;

if k < 1 or k > 52 then # quick exit if k < 1 or k > 52
print(‘1st argument must be between 1 and 52¢);

RETURNQ) ;
fi;
hand:=array(1..k); # open the space for output
deck:=array(1l..52, # making a pool of numbers to draw
[seq(i,i=1..52)]1);
n:=52; # the number of cards remaining
for i from 1 to k do # loop to draw card 1 by 1
m:=int_ran(1i,n); # draw a number from 1 to n

hand[i] :=deck[m];

if m<>n then # move the number to the end
temp:=deck[m]; # of the pool to avoid redrawn
deck[m] :=deck[n] ;
deck[n] :=temp;

fi;
n:=n-1; # update n
od;
#
get the names of the cards
#
for i from 1 to k do
m:=hand[i]; # get the number
hand[i] :=card(m) ; # call subprogram that identifies the card
od;
end;

#RHHER R H RS #REE end of the main program

subprogram
#
#
function that generates a random integer between m and n, inclusive
#
int_ran:=proc(m::integer,n::integer)
round(evalf (m-0.5+(n-m+1)*rand () /999999999999))
end;
HERHRREREEREE end of subprogram int_ran ###HEEHEHEEEEEEEREEEEREERER SRR EY

subprogram

4.3. CARD GAMES 99

#
function that identify the card name given its number
input: m --- a number from 1 to 52
output: an array of two entries that identifies the card
#
card:=proc(m: :integer)
local rank, suit;
if m>0 and m<= 52 then # quick exit if m is beyond 1-52

rank:= m mod 13; # get numerical rank (1-13)
suit:=ceil(m/13); # get numerical suit (1-4)
#

identifies the actual suit as a string

#

if suit=1 then
suit:="heart";

elif suit=2 then
suit:="spade";

elif suit=3 then
suit:="diamond";

else
suit:="club";
fi;
#
identifies the actual rank
#

if rank=1 then
rank:="ace";
elif rank=11 then
rank:="jack"
elif rank=12 then
rank:="queen"
elif rank=0 then
rank:="king"
fi; # remaining cases are rank=2,3,4,...,10,
already defined

#
output the card name as an array
#
array(1..2, [rank,suit])
fi;
end;

#H#HHRFRARHREE end of subprogram card

> read(‘a:k-ace.txt‘):

Let’s see what’s the probability of drawing a 4-card hand having at least one
ace by repeat the trial 400 times.

> k_card_get_ace(4,400);
.3125000000

The exact probability is égf%g = .2812632745

Find out the probability of drawing a 5-card hand having at least one ace
through 200 trials.

100 CHAPTER 4. PROBABILITY SIMULATIONS

> k_card_get_ace(5,200);

3100000000
The exact probability is 1 — 85— = 3411580017
: t 4Tt
> k_card_get_ace(5,500);
3480000000

A little better approximation. If we combine the 700 trials, the total number of
successful trials is

0.31*200+0.348*500=236, so the probability is % = .3371428572, very good
approximation.
> k_card_get_ace(5,1000);
.3460000000

4.3.4 Example: Drawing a k-card hand having exactly one
ace

The main program is shown below with subprograms omitted. The program file
“kcardlac.txt” should include the package “draw_k_card”

#
program that compute the approximate probability of
drawing a k-card hand having exactly one ace

#

input: k --- number of cards in a hand

n --- number of trials for the experiment

#

This program require draw_k_card package as subprogram
#

k_card_get_1_ace:=proc(k::integer,n::integer)
local count, i, j, hand, num_of_ace;

count:=0; # initialize counting
for i from 1 to n do
#
simulate the experiment
#
draw_k_card(k,hand); # draw a k card hand
#
checking
#
num_of_ace:=0; # initialize the flag=0, meaning no ace

for j from 1 to k do
if hand[j][1] = "ace" then
num_of_ace:=num_of_ace+1; # count an ace
fi;

4.4. MORE ON PROBABILITY SIMULATIONS 101

od;
if num_of_ace=1 then
count:=count+1; # count a successful trial
fi;
od;
evalf(count/n); # calculate the probability
end;

(... draw k_card package omitted in printing)

> read(‘a:kcardlac.txt®):

Let’s investigate 4-card hands, try 300 and 1000 times.
> k_card_get_1_ace(4,300);

2766666667
> k_card_get_1_ace(4,1000);
.2480000000
The exact probability is 25524 = .2555. If we combine the 1300 trials:
> (0.2766666667*300+0.248%1000)/1300;
.2546153846

Much better.

4.4 More on probability simulations

4.4.1 How accurate is HIV test?

Suppose an HIV test is 99% accurate. The meaning of the accuracy is under-
stood as

e if a person carries HIV virus, he/she has a 0.99 probability of being tested
positive and 0.01 probability of being tested negative;

e if a person is does not carry HIV virus he/she has a 0.99 probability of
being tested negative and 0.01 probability of being tested positive.

Tt is estimated that 0.5% of the population carry HIV virus. If there is someone
is tested HIV positive, what is the probability that he/she actually carry HIV
virus?

102 CHAPTER 4. PROBABILITY SIMULATIONS

You can console this person with the fact that he/she has only about § of the
chance to be an actual HIV carrier. And you can use a Maple program to prove
it to him/her.

The program is to simulate the situation that someone in a certain population
is tested positive, and find out if this person is an HIV carrier.

To simulate the situation that someone is tested positive:

1. generate a population that 0.5% of them are HIV carrier and the rest are
healthy

2. pick persons one by one to take the test:

(a) if the person is a carrier, 99% chance positive, 1% chance negative

(b) if the person is not a carrier, 99% chance negative, 1% chance negative
until an HIV positive is found

In a population, 1 out of 200 people carries HIV virus.

Suppose that an HIV test is 99\) accurate, meaning for a HIV carrier,
he has the probability of 0.99 of testing positive, while a healthy
person has 0.99 chance of being tested negative. Estimate the
probability of the person who is tested positive is actually a HIV
carrier.

Input: n --- the number of times to repeat the experiment
Output: --- the approximate probability

HoH H H H H H HHEHH

true_hiv:=proc(n)
local count, i, j, k, u, s, result;

count:=0; # initialize the counting of success
#

construct the population with 1/200 sick

#

u:=array(1..200, ["sick",seq("healthy",i=2..200)]1);
for i to n do # loop for repeating the experiment
result:="negative"; # loop of finding a person tested positive
while result="negative" do
#
pick a person out out the population

:=int_ran(1,200);

perform the test, which is simulated as a lottery

H H H N B H

if ulk]="sick" then
s:=int_ran(1,100); # sick person’s lottery:
if s = 1 then

4.4. MORE ON PROBABILITY SIMULATIONS 103

result:="negative" # 1 out 100 chance of being negative
else
result:="positive"
fi;
else
s:=int_ran(1,100); # healthy person’s lottery:
if s = 1 then
result:="positive" # 1 out 100 chance of being positive
else
result:="negative"
fi;
fi;
od;
#
check if the positive testee is actually sick
#

if ulk]="sick" then
count:=count+1
fi;

od;
evalf (count/n);

end;
#
#
function that generates a random integer between m and n, inclusive
#
int_ran:=proc(m::integer,n::integer)
round(evalf (m-0.5+(n-m+1)*rand() /999999999999))
end;

> read(‘a:true_hiv.txt®):

> true_hiv(500);

When someone is tested positive, the probability that he carries HIV is
.2740000000

The exact probability is Fa = .33221476

4.4.2 Are you lonesome?

In a group of k people, every one is to pick two others as friends. If a person
was not picked by anyone, this person is lonesome. Find the probability that
someone is lonesome.

In a group of k people, every one wants to make friend with two
other people in the group. What is the probability that someone
is lonesome, meaning he/she is not picked by anyone

104

H H O H

input:

CHAPTER 4. PROBABILITY SIMULATIONS

k --- the number of people in the group
n --- the number of trials of the experiment

lonesome:=proc(k::integer,

n::integer

local u, i,)j, r, s, flag, count;

u:=array(l..k); # open the space for status of each person
count:=0; # initialize counting

for i to n do # repeat the socializing experiment n times

for j to k do # at beginning, everyone is lonesome

od;

u[k] :="lonesome"

for j to k do # loop for each one to make friends
#
pick the first friend: the person r
#
r:=j;
while r=j do # no one make friend with himself
r:=int_ran(1,k); # person j pick a friend
od;
ulr] :="happy"; # person r is picked so no longer lonesome
#
pick the second friend: the person s}
#
s:=j;

while s=j or s=r do # keep picking until getting a new person
s:=int_ran(1i,k)

od;

u[s] :="happy"; # now the person s is no longer lonesome

check if anyone is lonesome after

flag:=0;
for j to k while flag=0 do

if u[j]="lonesome" then
flag:=1
fi;

od;

if flag=1 then

count :=count+1

fi;

evalf (count/n);

end;
#

4.4. MORE ON PROBABILITY SIMULATIONS 105

#
function that generates a random integer between m and n, inclusive
#
int_ran:=proc(m::integer,n::integer)
round(evalf (m-0.5+(n-m+1) *rand () /999999999999))
end;

> read(‘a:/txt/lonesome.txt‘):

Let try a 5 person group via 200 trials
> lonesome(5,200);
.06000000000

Quite low probability
> lonesome(30,500);
.1180000000

In a 30-person group, it seems the probability that someone is lonesome is a
little higher.

4.4.3 The Monty Hall dillema

To Switch or Not to Switch
by Donald Granberg, University of Missouri

In the September 9, 1990, issue of Parade, Craig F. Whitaker of Columbia Mary-
land, poses this query to Marilyn vos Savant (in the ” Ask Marilyn” column):

Suppose you are on a game show and you are given the choice of three doors.
Behind one door is a car; behind others, goats. You pick a door, say number
1, and the host, who knows what’s behind the doors, opens another door, say
number 3, which has a goat. He then says to you, Do you want to switch to
door number 227 Is it to your advantage to switch your choice?

Marilyn’s answer was direct and unambiguous,

Yes, you should switch. The first door has a one-third chance of winning, but
the second door has a two-thirds chance. Here is a good way to visualize what
happend. Suppose there are a million doors, and you pick door number 1. The
the host, who knows what’s behind the doors and will always avoid the one with
the prize, opens them all except door number 777,777. You’d switch to that door
pretty fast, wouldn’t you?

Despite her explanation, she received a large volume of mail, much of which was

106 CHAPTER 4. PROBABILITY SIMULATIONS

from irate and incredulous readers who took issue with her answer. ... Letters
came from great variety of people and places, from people with lofty titles and
affiliations and from others of more humble circumstances. For example, Andrew
Bremner of the Department of Pure Mathematics at Cambridge University in
England, wrote with a touch of noblesse oblige.

Dear Marilyn,

. your answer that you should switch to door number 2 ... is incorrect. Each
of doors number 1 and number 2 has 1/2 chance of winning. ... Your corre-
spondents seem rather rude; I wager your womanhood is a factor!

Yours sincerely,

Andrew Bremne

.. no other statistical puzzle comes so close to fooling all all the
people all the time.... The phenomenon is paticularly interesting pre-
cisely because of its specificity, its reproducibility, and its immunity
to higher education.... Think about it. Ask your brightest friends.
Do not tell them though (or at least not yet), that even Nobel physi-
cists systematically give the wrong answer, and that they insist on
it, and are ready to berate in print those who propose the right an-
swer.... By Massimo Piattelli-Palmarini in Bostonia (Jul/Aug, 91)

Project: Write a maple program to simulate the game and to approximate
the probability of winning by switching. Your simulation should include the
following components:

1. randomly assign a car and two goats to door[1], door[2], and door[3].
2. randomly pick a door number k£ among 1, 2, 3.

3. the host reveals a losing door number m from the two doors other than
the door you chose.

4. switch to the remaining door and check if it is the winning door.

Play the game n times and calculate the approximate probability of winning by
switching.

4.5. EXERCISES 107
4.5 Exercises

1. Estimating 7 A circle of radius 1 is drawn inside a 2x2 square. If
one throws an object into the square, the probability of landing inside
the circle is 7. If one repeats this experiment n times, he can estimate
this probability and the estimated probability times 4 should be close to
w. This is an easy (but inefficient) algorithm of estimating 7. Write a
program, using this algorithm, to estimate 7 for input n, which is the

number of trials of the experiment.

2. Quality control When shipping diesel engines abroad, it is common to
pack 12 engines in one container that is then loaded on a rail car and
sent to a port. Suppose that a company has received complaints from
its customers that many of the engines arrive in nonworking condition.
The company thereby makes a spot check of containers after loading. The
company will test three engines from a container randomly. If any of the
three are nonworking, the container will not be shipped. Suppose a given
container has 2 nonworking engines. Use a Maple program to estimate
the probability that the container will not be shipped.

3. A k-card hand flush

Write a program to estimate the probability of drawing a k-card hand

having the same suit (called a flush. The exact probability is 4 %%—TSZL:
The exact probabilities for k = 2 and k£ = 3 are % and % respectively

4. Problem 4: Drawing balls

A box contains 4 white balls and 8 red balls. Write a program that esti-
mates the probability of drawing kballs without replacement and getting
all red.

5. How lucky are you if you are tested HIV negative?
Use the HIV example above, find the probability that, if a person is tested
HIV negative, the person is indeed healthy.

6. Are you lonesome again?

There are a 15 boys and 10 girls. Every boy will date a girl. However, there
might be several boys who want to date a same girl. Find the probability
that at least one girl is lonesome.

7. Friend match

There are k people in a group and you are one of them, say the person #1.
Every one is to make friends with two other people. If you pick a friend,
who also pick you as a friend, then you two matches. Find the probability
that you can find your match.

108

CHAPTER 4. PROBABILITY SIMULATIONS

8. Two boys In an issue of Parade, a question was debated in the column

Ask Marilyn: If a family has exactly two kids and at least one of
them is a boy, what is the probability that both kids are boys?
Marilyn vos Savant, the columnist, gave the answer 1/3 but many readers
didn’t agree. One of the readers thought the answer should have been 1/2
and challenged Marilyn with $§ 1000 bet. Write a program to simulate the
experiment and settle the bet.

The simulation part of the program should consist of the following com-
ponents:

(a) generate two “kids”, in an array with entries either “boy” or “girl”,

each kid has a 50/50 chance of being a boy or a girl.
(b) repeat step (a) until at least one of the two kids is a boy.

To assign a gender to each kid, you can use the random integer generator
from 1 to 2 and designate them as boy and girl respectively.

Chapter 5

Simple Systems of
equations

5.1 Solving equations

5.1.1 Maple commands

The Maple function solve is used for solving equations. Ask Maple by 7solve
for details.

For example, to solve a single equation, the syntax is
> solve(equation,variable);

For example, to solve 5x + 7 = 9:

> solve(5*x+Pi=9,x);

1 9
——T+ 5
Or, preferablly:
> eqn:=5%x+Pi=9: variable:=x:
> solve(eqn,variable);
1 9
3 T+ 5

To solve a system of equations, the syntax is

109

110 CHAPTER 5. SIMPLE SYSTEMS OF EQUATIONS

> solve({equations}, {variables})

For example, to solve
3z +6y =5
dr — 5y =3

> equations:={ 3*x+6%y=5,4%x-5*y=3};
equations := {3z + 6y =5,4x — 5y = 3}

> variables:={x,y};

variables := {z, y}
> solve(equations,variables);

11 43
{y= 39’ T = 39
However, before you can manipulate the solutions, you have to assign it:
> equations:={a*x+bky+ckz=d, e*x+f*y+grz=h, ixx+jxy+k*z=1};
equations := {ax+by+cz=d,ex+ fy+gz=h,iz+jy+kz=1}
> variables:={x,y,z};
variables := {z, y, z}

> solutions:=solve(equations,variables);

—ajh+alf—bel+bih+dej—dif

solutions := {z =

%1 ’
_igd—ihc—ekd+elc—gal+hak
y_ %1 ’
jgd—jhc+kbh—kdf—1lbg+lcf
= -)
%1

%l:=—ajg+akf—bek+big+cej—cif
> assign(solutions);
X; Vs 25

jgd—jhc+kbh—kdf—Ilbg+licf
_—ajg+akf—bek+big+cej—cif

igd—ihc—ekd+elc—gal+hak
—ajg+akf—bek+bigt+cej—cif
—ajh+alf—-bel+bih+dej—dif
—ajg+akf—bek+big+cej—cif

5.1.2 Example: Percent mixture problem

A chemist mixes an 11% acid solution with 4% acid solution. How many
milliliters of each solution should the chemist use to make a 700-milliliter solu-

5.1. SOLVING EQUATIONS 111

tion of 6%7?

Generally, if one wants to mix two solutions with rates of concentration a% and
b% respectively, to make a mixed solution of ¢% and of amound s. Let 2 and y
be the amounts for the two solutions used. The equations to solve is:

rT+y=s
ax + by = cs

We can make a program to find the amount of each solution used

#

program to find the amounts of two chemical solutions, with rates of
concentration aj, and b} respectively, required to make a new solution,
with amount s and rate of concertration c¢

#

input: a, b, ¢, s =--- described above

output: X --- the amount of aj, solution required
y --- the amount of bY solution required
#

::numeric,
::numeric,

mix_2_solutions:=proc(a
b
c::numeric,
s
b4
y

::numeric,

::evaln,

::evaln

)
local equations, variables, solutions;
x:=x’; y:='y’; # clear posible value in x, y
equations:={ x + y = s, a*x+b*y=cxs }; # define equations
variables:={ x, y }; # define variables
solutions:=solve(equations, variables); # solve equations
assign(solutions); # assign solutions to x, y
end;

> read(‘a:/txt/mix2slns.txt‘):
> mix_2_solutions(11,4,6,700,x,y);

> X5 Vs
200
500

That is, 200 milliliters of 11% solution and 500 milliliters of 4% solution are
required to make 700 milliliters of 6% solution.

112 CHAPTER 5. SIMPLE SYSTEMS OF EQUATIONS

5.1.3 Line fitting

For a given set of data, say
> x:=array(1..5,[1,2,3,4,5]);
z:=1[1,2,3,4,5]
> y:=array(1..5,[4.1,4.4,5.1,5.5,5.7]1);
y:=[4.1,4.4,5.1, 5.5, 5.7

The graph shows the data is close to a line:
> points:=[seq([x[i],y[il], i=1..5) 1:
> plot(points,style=point);

The question is, which line fit the data the best?

In other words, the data represent an unknown function y = g(z). Because
there is apparently no way we can get the formula of the function, we set a
linear model

y=ax+b

and try to find a and b.

5.1. SOLVING EQUATIONS 113

A line can be described as an equation y = a z + b, where the number @ is the
slope and the number b is the y-intercept. At every point z;, i = 1,---,5, the
difference between the data and the line is

yi— (az; +b), i=1,2,3,4,5

We may define the ”best fit” as

5

Z ly;i — (az; + b)]?

=1

to be minimal. Generally, for data z;, y;, ¢ = m,---,n, We try to find a and b
such that the function

n
f(a, b) = Z [y; — (az; +b)]?
i=m
is minimized.
Recall that the necessary condition for a function to be minimized (or maxmized)

is that all the first derivatives are zero. The function f(a, b) is a two variable
function. To reach the minimum, both 8% f and % f must be zero.

n

%fzo leads to —2 (Z[yi—(awi+b)]mi> =0

6 n
% =0 leadsto —2 (izzm[yi—(a:vi+b)]> =0

After simplification

(Zx,)a—l—(n—m—}—l)szy, (5.2)

By solving this system of equations for a and b, we can find the line best fit the
data.

> read(‘a:line_fit.txt¢):
> 1line_fit(1,5,x,y,a,b);

114 CHAPTER 5. SIMPLE SYSTEMS OF EQUATIONS

-4300000000
3.670000000

That is, the line best fit the data above is y = .43z + 3.67 . We may observe
it from the graph:

> plotl:=plot(points,style=point):
> plot2:=plot(a*x+b,x=0..5,style=1line):

> plots[display] ({plotl,plot2});

If we want to estimate the value of the unknown function at x = 2.5 the best
we can do is

y=a(2.5) +b=4.745

5.1.4 Project

Write a program, for given input m, n, z, and y, that solves equations (5.1)
and (5.2) above and output a and b as argument of the program. Duplicate
the results and graphs above and use your program to find the line best fit the
following data (show similar graph)

> x:=array(0..10,[-2,-1.5,-1.0,-0.5,0.0,0.5,1.0,1.5,2.0,2.5,3.0]):

5.2. LEONTIEF’S MODEL OF ECONOMY 115

> y:=array(0..10,[5.0,4.4,4.15,3.44,2.97,2.53,2.08,

> 1.42,0.99,0.48,-0.071):

> 1line_fit(0,10,x,y,s,t);

> s; t;
—1.008000000
2.994000000

Your graph should look like the following.

> plots[display]l ({p1,p2});

-3 —2 —1 O] 1 2 3\4
4 x
— 1

5.2 Leontief’s model of economy

5.2.1 A three sector example

Wassily Leontief explained his input-output system of economy in the April 1965
issue of Scientific American, using 1958 American economy as an example. He
divided the economy into 81 sectors. To keep explanation simpler, lets put
1947 American economy into three sectors: agriculture, manufacturing, and
the household (i.e., the sector produces labor). American economy in 1947 are
described in the input-output table

116 CHAPTER 5. SIMPLE SYSTEMS OF EQUATIONS

|Agricu1ture Manufacturing Household

Agriculture .245 .102 .051
Manufacturing .099 291 279
Household 433 372 .011

The first column is the Agriculture’s demand from all sectors. For example, ev-
ery $1,000 agricultural output require $245 from agriculture, $99 from manufac-
turing, $433 from household. Similarly $1,000,000 of household output require
$51,000, $279,000 and $11,000 from Agriculture, Manufacturing, and Household
respectively.

Generally, to produce $ z; of agriculture, $ z2 of manufacturing, and $ z3 of
household output, the required input items are

24521 + .102 25 + .051 23 from agriculture
0992, +.291 25 + .279 23 from manufacturing
433 x1 + 37229 + .011 23 from household

The bill of demand from the society (outside the three sectors) in 1947 was

Agriculture: $ 2.88 hDillion
Manufacturing: $ 31.45 billion
Household: $ 30.91 billion

What was the output from the three sectors are required to meet the demand?

So suppose z1, T2, T3 are the output from those three sectors respectively (in
billions of dollars). The agricultural output z; is the combination of outside
demand 2.88 and internal demand .245 z; + .102 x5 + .051 23. That is,

1 = 2.88 4+ .245 21 + .102 25 + .051 23

similarly, we have equations that determine the required output:

Ty = 2.88+4.24521 +.102z2 4 .051 23
ro = 31.45 + .099 xr1 + 291 To + .279 I3
rz3 = 3091+ 4332y +.372x5+ .011 23

By solving this equation, we can obtain the required output from each sector.

This is a three sector economy model. The input-output table is a 3x3 matrix:
> T:=matrix(3,3,[.245,.102,.051,.099,.291,.279,.433,.372,.011]);

5.2. LEONTIEF’S MODEL OF ECONOMY 117

245 .102 .051
T:=| .099 .291 .279
433 372 011

The entries of T are identified as T[i,j] (the entry at the i-th row and j-th
column). The bill of demand is a vector

> d:=vector([2.88,31.45,30.91]);
d :=[2.88, 31.45, 30.91]

The equations that determine the required output can be written as

3
zr=di+T 121 +T1 222 +T1,323 =di + Z Ty, j z;
=1

3
o=dy+To 121+ T2 222 + T2 323 =do + Z Ty, ; x;
j=1

3
$3:d3+T3’1$1+T3’2$2+T3,3$3:d3+ ZT&J'CEJ
i=1

Or, even simpler:
3

zi=di+ | T x| ,i=1,2,3.
j=1
We thus solve the problem:
> x:=array(1..3);
x := array(1..3, [])
> eqn:={ seq(x[il=d[il+sum(T[i,jl*x[j]1,j=1..3), i=1..3) };

eqn := {x1 = 2.88 + .245 1 + .102 2 + .051 x3,
o =31.45 4+ .099 z1 + .291 2 + .279 x3,
z3 =30.91 + .433 21 + .372 22 + .011 23}
> var:={ seq(x[i]l, i=1..3) };
var := {1, x2, T3}
> solutions:=solve(eqn, var);
solutions := {z1 = 18.20792271, zo = 73.16603495, z3 = 66.74600155}
assign(solutions);
> eval(x);
[18.20792271, 73.16603495, 66.74600155]

That is, in 1947, $18.2 billions of agriculture, $73.17 billions of manufactur-
ing, and $66.75 billions of household outputs were required to meet the bill of
demand.

118

5.2.2 The general n-sector case

CHAPTER 5. SIMPLE SYSTEMS OF EQUATIONS

Suppose the economy is divided into n sectors. The input-output table is a

matrix:
Sector 1 Sector 2 Sector 3 --- Sector n
Sector 1 T, T1,2 Th,3 Ti,n
Sector 2 T4 Ty, o Ts,3 To,n
Sector 3 Ts,1 13,2 Ts,5 Ts,n
Sector n | Ty1 Ty, T3 Thn
Let the bill of demand be
Sector 1 d;
Sector 2 dy
Sector 3 ds
Sector n dj,
Let the required output from sector i be x;, s = 1,2,---,n. Then the required
output z; from Sector i is a combination of external demand and internal de-
mand:
output = external demand + internal demand
z; = d; + Tz +Tioze+--+Tpzn

i=1,2,3,-,n

n
E T,z
j=1

5.3 Using linear algebra package

5.3.1 Matrices and vectors

The system of linear equation

31 +6x2 =5
43)1 —3.(13'2 =2

5.3. USING LINEAR ALGEBRA PACKAGE

can be written in matrix/vector form
3 6 x| _ |5
4 -3 T2 - 2

Az =0b

(2] -2

or

with
3 6
a=[1 3]

Here, A is called a 2x2 (read 2 by 2) matrix, z and b are called 2-vectors.

Maple accepts matrices and vectors, For example,
> B:=matrix(3,2,[1,2,3,4,5,6]);

1 2
B=|3 4
5 6
> d:=vector([4,5,2]);
d:=[4,5, 2]

B is a 3x2 matrix and d a 3-vector. The syntax of entering a matrix is
[> matrix(m,n,[- -]);
where

m — number of rows
n — number of columns
-+:] — entries of the matrix, row by row.

[
A matrix can also be entered entry by entry:
> A:=matrix(2,2);
A:=array(1..2, 1.2, [])
> A[1,1]:=3; A[1,2]:=6; A[2,1]:=4; A[2,2]:=-3;

A11:=3
A, 2:=6
Ap 1 :=14
A 9 :=-3

> b:=vector(2);
b := array(1..2, [])
> bl[1]:=5; b[2]:=2;

119

120 CHAPTER 5. SIMPLE SYSTEMS OF EQUATIONS

b1 =
b2 =2
> evalm(A), evalm(b);
3 6

The command ”evalm” is used to show matrices and vectors.

5.3.2 Linear algebral package

Maple has a collection of commands that perform linear algebra operations.
This collection can be loaded into maple in the following way:

> with(linalg);
Warning, new definition for norm

Warning, new definition for trace

[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol,
addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatriz,
charmat, charpoly, cholesky, col, coldim, colspace, colspan, companion, concat,
cond, copyinto, crossprod, curl, definite, delcols, delrows, det, diag, diverge,
dotprod, eigenvals, eigenvalues, eigenvectors, eigenvects, entermatriz, equal,
exponential, extend, ffgausselim, fibonacci, forwardsub, frobenius, gausselim,
gaussjord, geneqns, genmatriz, grad, hadamard, hermite, hessian, hilbert,
htranspose, ihermite, indexfunc, innerprod, intbasis, inverse, ismith, issimilar,
iszero, jacobian, jordan, kernel, laplacian, leastsqrs, linsolve, matadd, matriz,
minor, minpoly, mulcol, mulrow, multiply, norm, normalize, nullspace, orthog,
permanent, pivot, potential, randmatriz, randvector, rank, ratform, row, rowdim,
rowspace, rowspan, rref , scalarmul, singularvals, smith, stackmatriz, submatriz,
subvector, sumbasis, swapcol, swaprow, sylvester, toeplitz, trace, transpose,
vandermonde, vecpotent, vectdim, vector, wronskian]

The list above shows all the linear algebra commands. As ususal you can use
the question mark “?” to get the explanation of each command. Once the
package is loaded, all the commands above can be accessed as standard Maple
commands.

For example, to solve the linear system

s lln =L

we can use the command ”linsolve”

5.3. USING LINEAR ALGEBRA PACKAGE 121

> A:=matrix(2,2,[3,6,4,-3]); b:=vector([5,2]);

e[t 2]

b:=[5, 2]
|9 1
=11 33

5.3.3 The least squares problem.

> x:=linsolve(A,b);

If a linear system has more equations than variables, it has no conventional
solution except in unusual cases. In terms of matrices/vectors, let A be an
m X n matrix with m > n then the equation

Az =0b

has no (conventional) solution in general. In this case, we are looking for vector
z such that the norm of Az — b to be minimized. This vector z is called a least
squares solution to the equation Az —b =0

For example, the line fitting problem
> x:=vector([1,2,3,4,5]);
z:=[1, 2, 3,4,05]
> y:=vector([4.1,4.4,5.1,5.5,5.7]);
y:=[4.1,44,5.1,5.5, 5.7

we are looking for a and b
ax;+b=y;, for i=1,2,3,4,5

Namely, we have 5 equations and 2 unknows:

a+b=4.1
2a+b=44
3a+b=5.1
4da+b=2>5.5
5a+b=25.7
or
1 1 4.1
2 1 4.4
31 [‘;]z 5.1
4 1 5.5
5 1 5.7

122 CHAPTER 5. SIMPLE SYSTEMS OF EQUATIONS

> A:=matrix(,2,[1,1,2,1,3,1,4,1,5,1]);

b
[l
w
— e e

> d:=vector([4.1,4.4,5.1,5.5,5.7]);
d:=[4.1,4.4,5.1,5.5, 5.7
> u:=leastsqrs(4,d);
u := [.430000002, 3.669999993]

That is, a = .43, b = 3.67, or

y= 43z + 3.67

We can plot the points (z;, y;) and the line y = .43x + 3.67 and visualize the
solution:

> points:=[seq([x[i],y[i]1],i=1..5)];

points == [[1, 4.1, [2, 4.4], [3, 5.1], [4, 5.5], [, 5.7]]
> plotl:=plot(points,style=point):
> plot2:=plot(.43*t+3.67,t=0..6):

> plots[display] ({plotl,plot2});

5.3. USING LINEAR ALGEBRA PACKAGE

Example:

population x; and per capita income y;. The model is

b=ca+cxr+cy

The investigation in 5 towns yields the following data:

According to the data, we have the following linear equations:

162
120
223
131

67

b
162
120
223
131

67

x (1000)
274
180
375
205
86

y (3)
24500
32540
38020
28380
23470

c1 + 274 ¢co + 24500 c3
c1 + 180 ¢y + 32500 c3
c1 + 375 ¢y + 38020 ¢3
c1 + 205 c¢o + 28380 c3
c1 + 86 ¢y + 23470 ¢3

Or, in matrix/vector form Az = b;

We can solve the problem using Maple linear algebra package
> A:=-matrix(5,3,[1,274,24500, 1,180,32540, 1,375,38020,

>

\

e e

274
180
375
205

86

24500
32500
38020
28380
23470

1,205,28380,1,86,23470]) ;

274
180
375
205

86

— e

24500
32540
38020
28380
23470

b:=vector(5,[162.0,120,223,131,67]) ;
b :=[162.0, 120, 223, 131, 67]

v:=leastsqrs(A,b)

v = [7.032503419, .5044475947, .000700130535]

)

cl1]:=v[1]; c[2]:=v[2]; c[3]:=v[3];

162
120
223
131

67

123

Market research: A company want to predict sales b; according to

124 CHAPTER 5. SIMPLE SYSTEMS OF EQUATIONS

c1 = 7.032503419
cp 1= .5044475947
¢z := 000700130535

If a town has a population of 500,000 and per capita income of $20000, then the
expected sale will be
> c[1]+c[2]*500+c[3]*20000;
273.2589115

5.4 Exercises

1. Price and demand An owner of a restauant wants to estimate the
daily demand of her steak at price $9.50/dish. She has a record of price-
demand of the past:

Price: 7.50 7.75 8.00 8.50 9.00
demand (daily) 36 34 31 25 20

Use the line fitting program to answer this question.

2. Population estimate Population growth is usually modelled as an
exponential function:
p="b e(a t)
or
In(p) =Inb+at (5.3)

For the following population statistics of Mexico, find the exponential
function (i.e. find a, and b) that best fit the data

year (after 1980) 0 1 2 3 4 5 6
population (millions) 67.4 69.1 71 728 74.7 76.6 78.6

(a) Plot the population statistics and the exponential function on the
same graph to show that the exponential model fit the data.
(b) Use your exponential function to estimate the population of Mexico

in 1990.

Hint: Don’t write a new program, your existing line fit program works for
this problem because equation (5.3) is a linear equation.

3. Quadratic fitting The following data

x: 20 25 30 35 40 45
y: 48 36 30 34 52 77

5.4.

EXERCISES 125

should be close to a parabola (see the graph)
> x:=array(1..6,[2.0,2.5,3.0,3.5,4.0,4.5]):
> y:=array(1..6,[4.8,3.6,3.0,3.4,5.2,7.7]):
> points:=[seq([x[i]l,y[i]], i=1..6) 1]:
> plot(points,style=point,symbol=box) ;

We can use a quadratic model to fit these data. That is, assuming
y=az’+br+c

and set the total variation
n
gla, b, ¢) = Z [yi — (az® +bx; + c)]2
i=m

to be minimized.

Theoretical question: the coeficients a, b, and ¢ satisfy a system of three
equations similar to the equations (5.1) and (5.2). Find those equations
which determine a, b, and c.

Computational question: Write a program that determines am, n, x,
and y.

4. Programming Leontief’s model of economy

Write a program to calculate the required output from all n sectors for
given number of sectors n, input-output matrix 7', and bill of demand
array d. Your program should work like

126

CHAPTER 5. SIMPLE SYSTEMS OF EQUATIONS

> read(‘a:leontief.txt):

> Leontief(3,T,d,x);

> eval(x)

’

[18.20792271, 73.16603495, 66.74600155]

5. A 6-sector model

6 sectors:

American economy in 1958 can be simplified into

Final nonmetal (FN
Final metal (FM
Basic metal (BM
Basic nonmetal (BN
Energy (E
Services (S

Furniture, processed food, etc
Household appliances, cars, etc
mining, steel, etc

Agriculture, printing, etc

Coal, electricity, etc
Amusements, real estate, etc

The input-output table and the bill of demand for the 6-sector economy

were
FN FM BM BN E S Bill of demand
FN | .170 .004 0 .029 0 .008 99,640
FM | .003 .295 .018 .002 .004 .016 75,548
BM | .025 .173 .460 .007 .011 .007 14,444
BN | .348 .037 .021 .403 .011 .048 33,502
E | .007 .011 .039 .025 .358 .025 23,527
S|.120 .074 .014 .123 173 .234 263,985
$million

Calculate the required output from each sector.

6. Daylight hours

S(t):

Let S(¢t) be the number of daylight hours on the ¢-th
day of the year 1997, in Rome, Italy. We are given the following data for

Day | January 28 March 17 May 3 June 16

t
S(t)

28
10

7
12

124
14

We wish to fit a trigonometri function of the form

. 27wt 27t
f(t) = a + bsin <%> + ccos (%)

to the data.

(a) Find the best approximation to a, b and ¢

(b) Plot both the points and f(¢) in a graph.

168
15

5.4. EXERCISES 127

7. Stretching a metal strip A strip of experimental metallic alloy
is being tested. It is stretched to lengths A\; = 63, 68 and 72 inches by
applied weights of w = 1, 2 and 3 tons. Assuming Hooke’s Law A = h+cw,
find this metal strip’s normal length h and the elasticity constant c¢. Plot
the graph of the function and data points in the same A —w

8. Radioactive materials Two radioactive materials in amounts xp
and x5 are being contained. We know the half-lives \; = 84 years and
A2 = 115 years, respectively for each, but not the actual amounts of each
present. We take radiation readings p and anticipate that these readings
will behave as the sum of two exponantials:

p=m el—mt) + zo el—r2t)

In(2 In(2
where 1 = % and pe = n/\() The actual readings for 7
1 2
time periods, given as (t, p), are as follows: (0,12.2), (1,12.11), (2,12.02),
(3,11.93), (4,11.84), (5,11.75), (6,11.66). Find the amounts z; and z»
by the least squares method. Plot the points and the function p = f(¢)

together.

9. Polynomial fit Find the cubic polynomial
y=az’+bz’+cx+d

that best fits the data points in the form of (z, y): (1,-2.4), (2,-1.2),
(3,0.4), (4,1.7), (5,2.4), (6,2). Plot the points and the polynomial in the
same graph.

128 CHAPTER 5. SIMPLE SYSTEMS OF EQUATIONS

Chapter 6

Ordinary differential
equations

6.1 The initial value problem of ordinary differ-
ential equations

6.1.1 Example: Population growth

Suppose now a city has an population of 25 thousands. It is estimated that for
the next 5 years, every year the birth rate is 1.8% and death rate is 0.6%. Also
there are 500 people moving in and 200 people moving out every year. How to
estimate the future population based on those data, say 3 years and 9 mouths
from now?

Solution: The unknown future population p is a function of time. So we set
the function be p(t), where the time variable ¢ is the number of years from now.
Clearly p(0) = 25 (thousands).

The growth of population is due to (1) natural growth, and (2) imigration.
The natural growth (birth-death) percentage rate is 1.8%-0.6%=1.2%. So every
year, the number of people increased due to natural growth is 1.2% of the

population, i.e. .012p. the net imigration is 500-200=300 = 0.3 thousands.
Thus, the annual growth rate is

012p+ .3 thousand/year

129

130 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

On the other hand, the population growth per year is the derivative of popula-
tion function with respect to time, i.e., %. Thus we have an ordinary differential
equation (ODE).

% =.012p+ .3 (in thousands of people)

Considering p(0) = 25 (initial condition), we have an initial value problem of
ODE:

dp
& 012p+. telo, 5
o = 012p+ 3, € [0, 5]

p(0) =25

6.1.2 TUsing Maple ODE solver

> dsolve(diff(p(t),t) = 0.012%p(t)+0.3, p(t));
p(t) = —25. + (:01200000000¢) (g

Namely, the ODE % = .012p+ .3 has a general solution as above. _C1

represents a constant to be determined. Using the fact p(0) = 25, we have
254 _C1 =25
That is, the constant _C71 = 50. We now have the complete solution

p(t) = —25 + 50 l-0120)

If we want to estimate the population 3 years 9 months from now, we have

> p:=t->-25+50%exp (0.012xt);
pi= t— —254 50 e(IOIZt)

> p(3.75);
27.30139300

That is, the population is expected to be 27,301 after 3 years and 9 months.

Maple command “dsolve” has many more features. Readers may use “?dsolve”
for more information.

6.1. THEINITIAL VALUE PROBLEM OF ORDINARY DIFFERENTIAL EQUATIONS131
6.1.3 The general initial value problem of ODE

Generally for a given function f(¢, z), an interval [a, b], and number zy, the
following is called an initial value problem of ordinary diffential equation:

d
d_‘::f(tam)a tE[a,b]
z(a) = xg

Finding the unknown function x = z(t) is the objective of solving the problem.

6.1.4 Numerical solution

Not every differential equation can be solved theoretically. For example
> dsolve(diff (x(t),t)=cos(t)+exp(sin(x(t))), x(t));

Maple gave no response for that call.

We thereby need to develop numerical methods. That is, instead of searching
for the formula of the function z(t) as the solution, we look for a table of the
value of the function. For example, if we can’t get the population function in
the form of p(t) = —25 + 50e(912%) we may want the values of the function
in a table like:

t |0 025 05 075 100 125 150 175
z(t) | 25 25.15 25.30 2545 2560 25.75 25.91 26.06

This table of values is called a numerical solution to the initial value problem.

6.1.5 Euler method
The simpliest method of obtaining numerical solution is Euler’s method:

(1) Determine n, the number of subintervals we want to divide the interval
[a, b].

(2) By dividing [a, b] into n pieces, we have the points on the t-axis: a =
to <t <ty <---<t, =>, where

b_
ti=a+ih, with h=—2 §i=0,1,2,---n
n

132

(3) Determine z; = z(t;), i = 1,2,---,n using the recursive process (note that

CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

X is given)

Lit1 =.Z'z+hf(tz, :L'i); 1=0,1,2,...,n -1,

6.1.6 FEuler program

Input:

Output:

H OH H O OH H H H OH H HEH H HH R R

Euler:=proc(f:
a:

b:

x0:

n:

t:

x:

local i, delta;

the length of subintervals
delta:=evalf((b-a)/n);

t values

Euler method for solving initial value problem of
ordinary differential equation

x’(t) = £(t,x) for t in [a,b]

x(a) = x0
f --- the right hand side function,
e.g. f:(t,x)->sin(t)+x"2
a -—— the left end of the interval
b --- the right end of the interval
x0 --- the initial value
n -—— the number of subintervals
dividing [a,b]
t --- the array of points on t-axis
x --- the array of points on x-axis
:operator,
:numeric,
:numeric,
:numeric,
:integer,
:evaln,
:evaln)

t:=array(0..n, [seq(ati*delta, i=0..n)]);

opening space for x values

x:=array (0.

.n);

pass the initial value x0 to x[0]

x[0] :=x0;

#

loop of Euler method

#

6.1. THE INITIAL VALUE PROBLEM OF ORDINARY DIFFERENTIAL EQUATIONS133

for i from O to n-1 do
x[i+1] :=evalf(x[i] + delta*f(t[i],x[il))

od;
print (‘End®);

end;
We can use the Euler program to solve the population problem.

> read(‘a:euler.txt):

> f:=(t,p)->0.012%p + 0.3;
f==(@p — .012p+.3

:=0; b:=5; n:=20;

> a
a:=0
b:=5
n:= 20

> Euler(f,a,b,x0,n,t,x);
End
> t[15];
3.750000000
> x[15];
27.29786982

That is, 3.75 years from now, the population is expected to be 27,301

6.1.7 To graph the exact (theoretical) solution

> plot(-25+50*exp(0.012*t), t=0..5);

134
28—:
27.5—:
27—:
26.5—:
26—:

25.5 4

25 1

CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

6.1.8

To graph the numerical solution

a) Define the sequence of points

> P:=[seq([t[i],x[i]], i=0..n) 1]:

b) plot

28
27.5 {
27—:
26.5 {
26
25.5 {

25

> plot(P);

6.1. THE INITIAL VALUE PROBLEM OF ORDINARY DIFFERENTIAL EQUATIONS135

or

> plot(P,style=point, symbol=diamond) ;

28
27.5 {

27{ -
26.5{ ©

26|
25.5{

25 +

6.1.9 To graph both exact and numerical solutions

> plotl:=plot(-25+50*exp(0.012*t), t=0..5):

> plot2:=plot(P):

> plots[display] ({plotl,plot2});

136 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS
20
275]
27
265 1
26]

25.5

25+

Two curves are nearly identical

6.1.10 To plot the error graph

The exact solution and the numerical solution are nearly identical. One may
want to see how good the Euler method and plot the error.

The exact solution as an operator function

> p:=t->-25+50%exp(0.012%t) ;
pi=t— —25+50el0120)

Generate the error points using the exact solution
> Pl:=[seq([t[il], x[il-p(t[il) 1, i=0..n)]:

> plot(P1);

6.1. THE INITIAL VALUE PROBLEM OF ORDINARY DIFFERENTIAL EQUATIONS137

1 2 2 4 i

—0.001
—0.002 -
—0.003 -

—0.004 -

The graph shows that the magnitude of error is increasing, with maximum error
about 0.001

6.1.11 To increase the accuracy of the numerical solution

The accuracy of the Euler method is determined by n, the number of subintervals
dividing [a, b]. If we increase n to 400, we’ll see that the error reducing by a
half.

> n:=40;
n := 40
f:=(t,p)->0.012*%p+.3; a:=0; b:=5; x0:=25;
f==(@p) — .012p+.3

Y

a:=0
b:=5
z0 := 25
> Euler(f,a,b,x0,n,t,x):
End

> pi=t->-25+50%exp(0.012xt);
pi=t— —25+ 50e(012%)
> Pl:=[seq([t[il, x[il-p(t[il) 1, i=0..n) 1:

138 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

> plot(P1);

o 4
—0.0005 {
70.001{
—0.0015 {

—0.002 -

Generally, the errorof Euler method is inversely propotional to n.

6.1.12 Additional example

The initial value problem of the ODE:

dx T
- = t
dt t+1’ €[0.9]
z(0)=1
The theoretical solution:
> x:=’x7;
T:=x
> dsolve(diff(x(t),t)=-x(t)/(t+1),x(t));
_C1
t) = ——
) =173

Since x(0) = 1, we see that _.CI = 1. Thus the solution is x(t) = The
numerical solution:

> n:=50; a:=0; b:=9; x0:=1; g:=(t,x)->-x/(t+1);

1
t+1°

6.1. THE INITIAL VALUE PROBLEM OF ORDINARY DIFFERENTIAL EQUATIONS139

n := 50
a:=0
b:=9
z0 :=1
T
= (t, ¥) & ———
g:=(t z) =
> Euler(g,a,b,x0,n,t,x):
End

> P:=[seq([t[i],x[il], i=0..n) 1:

> plot(P);

1]

Graph both exact and numerical solutions:
> plotl:=plot(P):
> plot2:=plot(1/(t+1), t=0..9):

> plots[display] ({plotl,plot2});

140 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

The error is evident. We can plot the error graph

> s:=t->1/(t+1);
t—>—1
§ 1=
t+1

> Pl:=[seq([t[i],x[i]-s(t[i])],i=0..n)]:
> plot(P1);

o |
70.01{
—0.02 {
—0.03 {

—0.04

—0.05 -

6.2. THE INITIAL VALUE PROBLEM OF OF ODE SYSTEMS 141

The biggest error, about 0.05 occur at around ¢ = 1.5.

To reduce the error:
> n:=200;
n = 200
> Euler(g,a,b,x0,n,t,x);
End
> P2:=[seq([t[i],x[i]-s(t[i]1)],i=0..n) 1:
> plot(P2);

o]
—0.002 {
—0.004 {
—0.006 {
—0.008 {

—0.01+

The error is reduced to about a quarter because we increased n four-fold.

6.2 The initial value problem of of ODE systems

6.2.1 Predator-prey model

There are wolves and sheep in an enviorenment. Sheep give births to sheep and
are food of wolves. If there were no sheep, wolves would die of hunger, while

142 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

the more sheep are present, the more wolves would grow. The interaction of
wolves and sheep is measured by their potential encounters. Every sheep can
potentially meet with every wolf. If there are 20 sheep and 4 wolves the number
of potential encounters is 20x4=80.

Every year, the birth rate of sheep is 100% and the death rate of wolves is
50%. Every year 10% of those potential encounters result in the death of sheep,
while the number births of wolves coincides with 2% of potential encounters.
Currently there are 20 sheep and 4 wolves. Predict their numbers 1, 2, 3.5 years
later.

Solution: Both numbers of sheep and wolves are functions of time ¢. So let z(t)
and y(t) be those functions. We now translate the facts into equations:

increasing rate of sheep is birth rate minus death rate
dz
— = 1.00z — 010z
dt Y
increasing rate of wolves is birth rate minus death rate

dy
—_ = . 2 .

Adding initial conditions z(0) = 20, y(0) = 4, we have a system of inital value
problems of ordinary differential equations:

'd—x—x—lw
ar Ty
t € [0, 10]
{ dy
—= = —0. .02
at 0.5y+.02zy
| 2(0) = 20, y(0) =4

It can also be solved approximately by Euler method, which we’ll discuss below.

Genreally, for positive constants

(dz
E=011‘—02.’L'y
. t € [a,b]
) d—21203y+04xy
\ 513'(0) = Zo, y(O) =Y

6.2. THE INITIAL VALUE PROBLEM OF OF ODE SYSTEMS 143

6.2.2 The Euler method for systems of IVP of ODE

An initial value problem of a 2x2 (i.e. two variables and two equations) system
ODE can be generally written as

(d
ngmaw
t € [a,b]
d:
<;ﬁ—g@mw)
\ z(0) = o, y(0) = yo

In applications, exact solutions are difficult or impossible to obtain. So we divide
the t interval [a, b] into n subintervals with nodes

a=tg<t1 <:---<tp,=b

and use Euler method

b—a

n
ti = a+ih, i=0,1,---,n

Tiy1 =z + h f(ts, zi, ys)

i=0,1,2,. -1,
Yir1 = Yi + hg(ts, i, yi)

6.2.3 Project: implement the Euler method for 2x2 sys-
tem of IVP of ODE

Write a program that, for input f, g, a, b, g, yo, n, output arrays ¢, =, y as
arguments. Use your program to solve the predator-prey problem above and
plot both x and y in the same coordinate system. Make some observations from
the graph.

6.2.4 Project 2: An epidemic model

An epidemic starts in a population of 100 people. At present, 5 people are
sick (called infectives) and 95 people are healthy (called susceptibles). Every
month, 0.5% of potential encounters between susceptibles and infectives results
in susceptibles infected, while 10% of infectives are removed by isolation or
death. To be simple, the birth rate is considered zero. Let z(t) and y(t) be the

144 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

numbers of susceptibles and invectives respectively. Construct a 2x2 system of
IVP of ODE and solve it by your program.

(Hint: translate the following sentences into equations: (i) the inceasing rate of
susceptibles is the birth rate minus the infection rate; (ii) the increasing rate of
infectives is the infection rate minus the removal rate.)

Remark: The resulting model is called Kermack-McKendreck model.

6.3 Direction fields

6.3.1 Direction field of an ODE

Consider the ordinary differential equation

dx T

dat t+1

The left-hand side is the derivative of the function z(t), which is the tangent (or
direction) of the graph of x(t) in tz-plane. The right-hand side is a two variable
function f(t,). Therefore, we can consider the ODE as a family of directions:
for every pair (¢,), there is a direction (or tangent).

For example, for (t,) = (3,5), we have

dz___5 _ 5
dt 3+1 4

That is, if the curve z(t) passes through (3,5), the curve should go along the
direction (tangent) —%. Since every point (¢,) represents a direction, the tx-
plane can be considered a direction field. Actually, this direction field can be
ploted by Maple:

> with(DEtools); x:=’x’: t:=’t’:

6.3. DIRECTION FIELDS 145

[DEnormal, DEplot, DEplot3d, DEplot_polygon, DFactor, Dchangevar, GCRD, LCLM ,
PDEchangecoords, RiemannPsols, abelsol, adjoint, autonomous, bernoullisol,
buildsol, buildsym, canoni, chinisol, clairautsol, constcoeffsols, convertAlg,
convertsys, dalembertsol, de2diffop, dfieldplot, diffop2de, eigenring,
endomorphism_charpoly, equinv, eta_k, eulersols, exactsol, expsols,
exterior_power, formal_sol, gen_exp, generate_ic, genhomosol, hamilton_egs,
indicialeq, infgen, integrate_sols, intfactor, kovacicsols, leftdivision, liesol,
line_int, linearsol, matrixDE, matriz_riccati, moser_reduce, mult,
newton_polygon, odeadvisor, odepde, parametricsol, phaseportrait, poincare,
polysols, ratsols, reduceOrder, reqular_parts, regularsp, riccati_system,
riccatisol, rightdivision, separablesol, super_reduce, symgen, symmetric_power,
symmetric_product, symtest, transinv, translate, untranslate, varparam, zoom)

> dfieldplot(diff (x(t),t)=-x(t)/(t+1), x(t), t=0..8, x=0..1.5);

\

<~
<~
P
-
-
-
-
e
7
e
e
/
/
/
/
/
/

NONONON N

1.4

1.2

S/
[/
YV PV4
Y VY4

/

/

/

/

/

/
/
/
/
/
/
/
/
/
/

x()0-8

[/ /S

/
/
/
/
/
/
/
/
/
/
/

S/

/
/
/
/
/
/
/
/
/
/
/
/

0.6

S e
J S
VP PP PP PP oo

VPP I PP IIOr e

VI P I I PP PO

[/)

//

//

//

//

//
