EarthWeb   
HomeAccount InfoLoginSearchMy ITKnowledgeFAQSitemapContact Us
     

   
  All ITKnowledge
  Source Code

  Search Tips
  Advanced Search
   
  

  

[an error occurred while processing this directive]
Previous Table of Contents Next


The random search-related self-organization in a neural complex follows therefore the method of cybernetics. Its self-control activity is perceived through the entity of information. Further, as well known, the notion of information is based on the concepts of randomness and probability; or the self-control process of cybernetics in the neural system is dialectically united with the stochastical aspects of the associated activities.

The cybernetic basis of the neural system stems from a structured logic of details as portrayed in Figure 1.1 pertinent to the central theme of cybernetics as applied to a neural assembly. It refers to a process of control and self-control primarily from the viewpoint of neuronal information — its collection, transmission, storage, and retrieval.


Figure 1.1  Cybernetics of neural complex

In the design of information processing systems, abstract simulation of a real (biological) neural system should comply with or mimic the cybernetic aspects depicted in Figure 1.1. Structurally, a neural complex could be modeled by a set of units communicating with each other via axonal links resembling the axons and dendrites of a biological neural assembly. Further, the information processing in the neural network should correspond to the self-organizing and self-adaptive (or self-behavioral monitoring) capabilities of the cybernetics associated with the biological neural complex and it activities.

The organized search process pertinent to interconnected biological neurons which enables a dichotomous potential state to a cellular unit corresponds to a binary threshold logic in an information processing artificial (neural) network. Classically, McCulloch and Pitts in 1943 [7] presented a computational model of nervous activity in terms of a dichotomous (binary) threshold logic. Subsequently, the process of random search in pursuit of an information selection while seeking a normal state (as governed by the self-organizing cybernetic principles) was incorporated implicitly in the artificial networks by Hebb [19]. He postulated the principle of connectivity (of interconnections between the cells). He surmised that the connectivity depicts a self-organizing protocol “strengthening” the pathway of connections between the neurons adaptively, confirming thereby a cybernetic mode of search procedure.

The state-transitional representation of neurons, together with the connectivity concept inculcate a computational power in the artificial neural network constituting an information processing unit. Such computational power stems from a one-to-one correspondence of the associated cybernetics in the real and artificial neurons.

In the construction of artificial neural networks two strategies are pursued. The first one refers to a biomime, strictly imitating the biological neural assembly. The second type is application-based with an architecture dictated by ad hoc requirements of specific applications. In many situations, such ad hoc versions may not replicate faithfully the neuromimetic considerations.

In essence however, both the real neural complex as well as the artificial neural network can be regarded as “machines that learn”. Fortifying this dogma, Wiener observed that the concept of learning machines is applicable not only to those machines which we have made ourselves, but also is relevant to those living machines which we call animals, so that we have the possibility of throwing a new light on biological cybernetics. Further, devoting attention to those feedbacks which maintain the working level of the nervous system, Stanley-Jones [20] also considered the prospects of kybernetic principles as applied to the neural complex; and as rightly forecast by Wiener neurocybernetics has become a field of activity which is expected “to become much more alive in the (near) future”.

The basis of cybernetics vis-a-vis neural complex has the following major underlain considerations:

  Neural activity stems from intracellular interactive processes.
  Stochastical aspects of a noise-infested neural complex set the associated problem “nonlinear in random theory”.
  The nervous system is a memory machine with a self-organizing architecture.
  Inherent feedbacks maintain the working level of the neural complex. Essentially cybernetics includes the concept of negative feedback as a central feature from which the notion of adaptive systems and selectively reinforced systems are derived.
  The nervous system is a homeostat — it wakes up “to carry out a random search for new values for its parameters; and when it finds them, it goes to sleep again”. Simply neurocybernetics depicts a search for physiological precision.
  Neural functions refer to process automation of self-control in a complex system.
  Inherent to the neural complex automata, any symmetry constraints on the configuration variability are unstable due to external actions triggering the (self) organization processes.
  The neural complex is a domain of information-conservation wherein the protocol of activities refers to the collection, conversion, transmission, storage, and retrieval of information.


Previous Table of Contents Next

Copyright © CRC Press LLC

HomeAccount InfoSubscribeLoginSearchMy ITKnowledgeFAQSitemapContact Us
Products |  Contact Us |  About Us |  Privacy  |  Ad Info  |  Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights reserved. Reproduction in whole or in part in any form or medium without express written permission of EarthWeb is prohibited. Read EarthWeb's privacy statement.