|
 |
[an error occurred while processing this directive]
Bibliography
- 1 Müller, B., and Reinhardt, J.: Neural Networks: An Introduction (Springer-Verlag, Berlin: 1990).
- 2 Gerstein, G. L., and Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J., 4, 1964, 4168.
- 3 Feinberg, S. E., and Hochman, H. G.: Modal analysis of renewal models for spontaneous single neuron discharges. Biol. Cybern., 11, 1972, 201207.
- 4 Neelakanta, P. S., Mobin, M. S., Pilgreen, K., and Aldes, L.: Markovian dichotomous model of motor unit action potential trains: EMG analysis. Proc. 9th Annual Pittsburgh Conf. (Modelling and Simulation), (May 56, 1988, Pittsburgh, PA), 19, Part 4, 17351739.
- 5 Neelakanta, P. S., Mobin, M. S., Pilgreen, K., and Aldes, L.: Resolution of power spectral analysis of events in the electromyogram: An error estimation model. Proc. 9th Annual Pittsburgh Conf. (Modelling and Simulation), (May 56, 1988, Pittsburgh, PA), 19, Part 5, 24212425.
- 6 Sampath, G., and Srinivasan, S. K.: Stochastical Models for Spike Trains of Single Neurons (Springer-Verlag, Berlin: 1977).
- 7 McCulloch, W. W., and Pitts, W.: A logical calculus of the ideas imminent in nervous activity. Bull. Math. Biophys., 5, 1943, 115133.
- 8 MacGregor, R. J.: Neural and Brain Modeling (Academic Press, San Diego, CA: 1987), 1333, 138139, 140143.
- 9 Wiener, N.: Cybernetics: Control and Communication in the Animal and the Machine (MIT Press, Cambridge, MA: 1948 & 1961).
- 10 Gabor, D.: Theory of communication. J. Inst. Electr. Eng., 93, 1946, 429457.
- 11 Griffith, J. S.: A field theory of neural nets I. Bull. Math. Biophys., 25, 1963, 11120.
- 12 Griffith, J. S.: A field theory of neural nets II. Bull. Math. Biophys., 27, 1965, 187195.
- 13 Griffith, J. S.: Modelling neural networks by aggregates of interacting spins. Proc. R. Soc. London, A295, 1966, 350354.
- 14 Griffith, J. S.: Mathematical Neurobiology (Academic Press, New York: 1971).
- 15 De Groff, D., Neelakanta, P. S., Sudhakar, R., and Medina, F.: Liquid-crystal model of neural networks. Complex Syst., 7, 1993, 4357.
- 16 Neelakanta, P. S., Sudhakar, R., and De Groff, D.: Langevin machine: A neural network based on stochastically justifiable sigmoidal function. Bio. Cybern., 65, 1991, 331338.
- 17 De Groff, D., Neelakanta, P. S., Sudhakar, R., and Medina, F.: Collective properties of neuronal activity: Momentum flow and particle dynamics representation. Cybernetica, XXXVI, 1993, 105119.
- 18 De Groff, D., Neelakanta, P. S., Sudhakar, R., and Aalo, V.: Stochastical aspects of neuronal dynamics: Fokker-Planck approach. Bio. Cybern., 69, 1993, 155164.
- 19 Hebb, D. O.: The Organization of Behavior (Wiley and Sons, New York: 1949).
- 20 Stanley-Jones, D., and Stanley-Jones, K.: Kybernetics of Natural Systems, A Study in Patterns of Control (Pergamon Press, London: 1960).
- 21 Uttley, A. M.: The classification of signals in the nervous system. Electroencephalogr. Clin. Neurophysiol., 6, 1954, 479.
- 22 Shannon, C. E.: Synthesis of two-terminal switching circuits. Bell Syst. Tech. J., 28, 1949, 656715.
- 23 Walter, W. G.: The Living Brain (Duckworth, London: 1953).
- 24 Ashby, W. R.: An Introduction to Cybernetics (Chapman and Hall, London: 1956).
- 25 George, F. H.: Cybernetics and Biology (W. H. Freeman and Co., San Francisco: 1965).
- 26 Arbib, M. A.: Brains, Machines and Mathematics (McGraw-Hill Book Co., New York: 1964).
- 27 Kohonen, T.: Self-organization and Associative Memory (Springer-Verlag, Berlin: 1989).
- 28 Hodgkin, A. L., and Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London), 117, 1952, 500544.
- 29 Agnati, L. F., Bjelke, B., and Fuxe, K.: Volume transmission in the brain. Am. Scientist, 80, 1992, 362373.
- 30 Turing, A. M.: On computable numbers, with an application to the Entscheidungs problem. Proc. London. Math. Soc. Ser. 2, 42, 1937, 230265.
- 31 Hopfield, J. J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A., 79, 1982, 25542558.
- 32 Cragg, B. G., and Temperley, H. N. V.: The organization of neurons: A cooperative analogy. Electroencephalogr. Clin. Neurophysiol., 6, 1954, 8592.
- 33 Little, W. A.: The existence of persistent states in the brain. Math. Biosci., 19, 1974, 101120.
- 34 Hopfield, J.J., and Tank, D.W.: 'Neural' computation of decision in optimization problems. Biol. Cybern., 52, 1985, 112.
- 35 Ising, E.: Ph.D. dissertation, Z. Phys., 31, 1925, 253.
- 36 Hopfield, J. J.: Neurons with graded response have collective properties like those of two-state neurons. Proc. Natl. Acad. Sci. U.S.A., 81, 1984, 30883092.
- 37 Thompson, R. S., and Gibson, W. G.: Neural model with probabilistic firing behavior. I. General considerations. Math. Biosci., 56, 1981a, 239253.
- 38 Peretto, P.Collective properties of neural networks: A statistical physics approach. Biol. Cybern., 50, 1984, 5162.
- 39 Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain, Psychol. Rev., 65, 1958, 42 & 99.
- 40 Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms (Spartan Books, Washington., D. C.: 1961).
- 41 Anderson, J. A.: Cognitive and psychological computation with neural model. IEEE Trans. Syst. Man Cybern., SCM-13, 1983, 799815.
- 42 Beurle, R. L.: Properties of a mass of cells capable of regenerating pulses. Philos. Trans. R. Soc. London Ser. A, 240, 1956, 5594.
- 43 Wilson, H.R., and Cowan, J.D.: A mathematical theory of the functional dynamics of cortical thalmic nervous tissue. Biol. Cybern., 3, 1973, 5580.
- 44 Wilson, H. R., and Cowan, J. D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J., 12, 1972, 124.
- 45 Oguztoreli, M. N.: On the activities in a continuous neural network. Biol. Cybern., 18, 1975, 4148.
- 46 Kawahara, T., Katayama, K., and Nogawa, T.: Nonlinear equations of reaction-diffusion type for neural populations. Biol. Cybern., 48, 1983, 1925.
- 47 Ventriglia, F.: Propagation of excitation in a model of neuronal systems. Biol. Cybern., 1978, 30, 7579.
- 48 Kung, S. Y.: Digital Neural Networks (Prentice Hall, Englewood Cliffs, NJ: 1993).
- 49 Bergstrom, R. M., and Nevalinna, O.: An entropy model of primitive neural systems. Int. J. Neurosci., 4, 1972, 171173.
- 50 Takatsuji, M.: An information-theoretical approach to a system of interacting elements. Biol. Cybern., 17, 1975, 207210.
- 51 Hinton, G. E., Sejnowski, T. J., and Ackley, D. H.: Boltzmann machines: Constraint satisfaction networks that learn. Tech. Rep. SMU-CS-84-119 (Carnegie-Mellon University, Pittsburgh, PA: 1984).
- 52 Aarts, E., and Korst, J.: Simulated Annealing and Boltzmann Machines (John Wiley and Sons, Chichester: 1989).
- 53 Szu, H., and Hardey, R.: Fast simulated annealing. Phys. Lett. A., 122, 1987, 157162.
- 54 Akiyama, Y., Yamashita, A., Kajiura, M., and Aiso, H.: Combinatorial optimization with Gaussian machines. Proc. Int. Joint Conf. Neural Networks (June 1822, 1990, Washington, D. C.), I 15331539.
- 55 Geman, S, and Geman, D.: Stochastic relaxation, Gibbs distributions and Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 6, 1984, 721741.
- 56 Jeong, H., and Park, J. H.: Lower bounds of annealing schedule for Boltzmann and Cauchy machines. Proc. Int. Joint Conf. Neural Networks (June 1822, 1990, Washington, D. C.), I 581-I 586.
- 57 Ackley, D. H., Hinton, G. E., and Sejnowski, T. J.: A learning algorithm for Boltzmann machines. Cognit. Sci., 9, 1985, 147.
- 58 Liou, C. Y., and Lin, S. L.: The other variant Boltzmann machine. Proc. Joint Conf. Neural Networks (June 1822, 1990, Washington, D. C.), 1449454.
- 59 Feldman, J. A., and Ballard, D. H.: Connectionist models and their properties. Cognit. Sci., 6, 1982, 205254.
- 60 Livesey, M.: Clamping in Boltzmann machines. IEEE Trans. Neural Networks, 2, 1991, 143148.
- 61 Györgi, G., and Tishby, N.: Statistical Theory of learning a rule. Proc. Stat. Phys 17 Workshop on Neural Networks and Spin Glasses (August 811, 1989, Porto Alegre, Brazil). (Eds. Theumann, W. K., and R. K”berle) (World Scientific, Singapore: 1990).
- 62 Personnaz, L.,Guyon, I., and Dreyfus, G.: Collective computational properties of neural networks: New learning mechanisms. Phys. Rev. A, 34, 1989, 4303.
- 63 Kanter, I., and Sompolinsky, H: Associative recall of memories without errors. Phys. Rev. A, 35, 1987, 380.
- 64 Caianello, E. R.: Outline of thought processes and thinking machines. J. Theor. Biol., 2, 1961, 204.
- 65 Cowan, J. D.: Statistical mechanics of nervous nets. In Neural Networks (Ed. Caianello, E.R.), (Springer-Verlag, Berlin: 1968).
- 66 Amari, S.: A method of statistical neurodynamics. Biol. Cybern., 14, 1974, 201215.
- 67 Ingber, L.: Statistical mechanics of neocortical interactions. I. Basic formulation. Phys. Rev. D, 5D, 1982, 83107.
- 68 Ingber, L.: Statistical mechanics of neocortical interactions. Dynamics of synaptic modifications. Phys. Rev. A, 8, 1983, 395416.
- 69 Amit, D. J., Gutfreund, H., and Sompolinsky, H: Spin-glass models of neural networks. Phys. Rev., 32, 1985a, 10071018.
- 70 Toulouse, G., Dehaene, S., and Changeux, J. P.: Spin glass model of learning by selection. Proc. Natl. Acad. Sciences U.S.A., 83, 1986, 16951698.
- 71 Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations by back-propagating errors. Nature (London), 323, 1986, 533536.
- 72 Gardner, E.: Maximum storage capacity in neural networks. Europhys. Lett., 4, 1987, 481485.
- 73 Theumann, W. K., and Koberle, R. (Eds.): Neural networks and spin glasses. Proc. Stat. Phys. 17 Workshop on Neural Networks and Spin Glasses (August 811, 1989, Porto Alegre, Brazil), (World Scientific, Singapore: 1990).
- 74 MacGregor, R. J., and Lewis, E. R.: Neural Modeling (Plenum Press, New York: 1977).
- 75 Licklider, J. C. R.: Basic correlates of auditory stimulus. In Stevens Handbook of Experimental Psychology (S. S. Stevens, Ed., John Wiley, New York: 1951), 9851039.
- 76 Shaw, G. L., and Vasudevan, R.: Persistent states of neural networks and the random nature of synaptic transmission. Math. Biosci., 21, 1974, 207218.
- 77 Little, W. A., and Shaw, G. L.: Analytic study of the memory storage capacity of a neural network. Math. Biosci., 39, 1978, 281290.
- 78 Little, W. A., and Shaw, G. L.: A statistical theory of short and long term memory. Behav. Biol., 14, 1975, 115133.
- 79 Thompson, R. S., and Gibson, W. G.: Neural model with probabilistic firing behavior. II. One-and two neuron networks. Math. Biosci., 56, 1981b, 255285.
- 80 Toulouse, G.: Symmetry and topology concepts for spin glasses and other glasses. Phys. Rep., 49, 1979, 267.
- 81 Brown, G. H., and Wolken, J. J.: Liquid Crystals and Biological Structures (Academic Press, New York: 1979).
- 82 Chandrasekhar, S.: Liquid Crystals (University Press, Cambridge: 1977).
- 83 Wannier, G.H.: Statistical Physics (Dover Publications, New York: 1966).
- 84 Stornetta, W. S., and Huberman, B. A.: An improved three-layer back propagation algorithm. Proc. of the IEEE First Int. Conf. Neural Networks (Eds. M. Caudill, and C. Butler, SOS Printing, San Diego, CA: 1987).
- 85 Indira, R., Valsakumar, M. C., Murthy, K. P. N., and Ananthakrishnan, G.: Diffusion in bistable potential: A comparative study of different methods of solution. J. Stat. Phys., 33, 1983, 181194.
- 86 Risken, R.: The Fokker-Planck Equation (Springer, Berlin: 1984).
- 87 Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys., 15, 1943, 189.
- 88 Papoulis, A.: Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York: 1984) 392.
- 89 Valsakumar, M. C.: Unstable state dynamics: Treatment of colored noise. J. Stat. Phys., 39, 1985, 347365.
- 90 Bulsara, A. R., Boss, R. D., and Jacobs, E. W.: Noise effects in an electronic model of a single neuron. Biol. Cybern., 61, 1989, 211222.
- 91 Yang, X., and Shihab, A. S.: Minimum mean square error estimation of connectivity in biological neural networks. Biol. Cybern., 65, 1991, 171179.
- 92 Yuan, J., Bhargava, A. K., and Wang, Q.: An error correcting neural network. Conf. Proc. IEEE Pacific Rim Conf. on Commn., Computers & Signal Processing (June 12, 1989, Victoria, BC, Canada) 530533.
- 93 Okuda, M., Yoshida, A., and Takahashi, K.: A Dynamical behaviour of active regions in randomly connected neural networks. J. Theor. Biol., 48, 1974, 5173.
- 94 Pear, M. R., and Weiner, J. H.: A Generalization of Kramer's rate formula to include some anharmonic effects. J. Chem. Phys., 98, 1978, 785793.
- 95 Marinescu, N., and Nistor, R.: Quantum features of microwave propagation in rectangular waveguide. Z. Naturforsch., 45a, 1990, 953957.
- 96 Dirac, P.: The Principles of Quantum Mechanics (Clarendon Press, Oxford: 1987).
- 97 Amari, S.: On mathematical models in the theory of neural networks. Proc. First Int. Conf. Neural Networks, 3, 1987, 310.
- 98 Abu-Mostafa, Y.S., and St. Jacques, S.: Information capacity of the Hopfield model. IEEE Trans. Inf., Theor., IT-31, 1985, 461464.
- 99 McEliece, R. J., Posner, E. C., Rodemich, E. R., and Venkatesh, S. S.: The capacity of the Hopfield associative memory. IEEE Trans. Inf. Theor., IT-33, 1987, 461482.
- 100 Weisbuch, G.: Scaling laws for the attractors of the Hopfield networks. J. Phys. Lett., 46, 1985, L623L630.
- 101 Lee, K., Kothari, S. C., and Shin, D.: Probabilistic information capacity of Hopfield associative memory. Complex Syst., 6, 1992, 3146.
- 102 Gardner, E., and Derrida, B.: Optimal storage properties of neural network models. J. Phys. A, 21, 1988, 257270.
- 103 Gardner, E., and Derrida, B.: The unfinished works on the optimal storage capacity of networks. J. Phys. A, 22, 1989, 19831981.
- 104 Shannon, C. E., and Weaver, W.: The Mathematical Theory of Communication (University of Illinois Press, Urbana: 1949).
- 105 Bergstrom, R. M.: An entropy model of the developing brain. Dev. Psychobiol., 2, 1969, 139152.
- 106 Uttley, A. M.: Information Transmission in the Nervous System (Academic Press, London: 1979).
- 107 Pfaffelhuber, E.: Learning and information theory. Int. Rev. Neurosci., 3, 1972, 8388.
- 108 Legendy, C. R.: On the scheme by which the human brain stores information. Math. Biosci., 1, 1967, 555597.
- 109 MacGregor, R. J.: Theoretical Mechanics of Biological Neural Networks (Academic Press Inc./Harcourt Brace Jovanovich Publishers, Boston : 1993).
- 110 MacGregor, R. J., and Gerstein, G. L.: Cross-talk theory of memory capacity in neural networks. Bio. Cybern., 65, 1991, 351155.
- 111 Venikov, V. A. (Ed.): Cybernetics in Electric Power Systems (Mir Publishers, Moscow: 1978).
- 112 Aczel, J., and Daroczy, Z.: On Measures of Information and Their Characteristics (Academic Press, New York: 1975).
- 113 Kullback, S.: Information Theory and Statistics (Dover Publications, New York: 1968).
- 114 Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theor., 37, 1991, 145151.
- 115 Pospelov, D. A.: Semiotic models in control systems. In Cybernetics Today (Ed. Makarov, I. M.), (Mir Publishers, Moscow: 1984).
- 116 Chowdhuri, D.: Spin Glasses and Other Frustrated Systems (Princeton University Press, Princeton, (NJ): 1986).
General Reading
- A Eccles, J. C.: The Brain and the Unity of Conscious Experience (Cambridge University Press, London: 1965).
- B Fuchs, W. R.: Cybernetics for the Modern Mind (The Macmillan Co., New York: 1971).
- C George, F. H.: Cybernetics and Biology (W. H. Freeman and Co., San Francisco: 1965).
- D Mammone, R. J., and Zeevi, Y. Y.: Neural Networks : Theory and Applications (Academic Press Inc., San Diego, CA.: 1991).
- E Nicolis, G., and Prigogine, I.: Self-Organization in Nonequilibrium Systems (John Wiley & Sons, New York: 1977).
- F Norwich, K. H.: Infomation, Sensation and Perception (Academic Press Inc., San Diego, CA.: 1993).
- G Pekelis, V.: Cybernetic Medley (Mir Publishers, Moscow: 1986).
- H Rose, J. (Ed.): Progress in Cybernetics (Vol. I&II) (Gordon and Breach Science Publishers, London: 1970).
|