
Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Peer Discovery Protocol

4

AS DESCRIBED IN CHAPTER 2,“P2P CONCEPTS,” advertisements are the basic
unit of data exchanged between peers to provide information on available
services, peers, peer groups, pipes, and endpoints.With advertisements, the
problem of finding peers and all their different types of resources can be
reduced to a problem of finding advertisements describing those resources.

The Peer Discovery Protocol (PDP) defines a protocol for requesting
advertisements from other peers and responding to other peers’ requests for
advertisements.This chapter describes the format of the messages of the PDP
and tells how to discover advertisements using the Java reference implem-
entation of JXTA.

Introducing the Peer Discovery Protocol
In Chapter 2, you saw that peers discover resources by sending a request to
another peer, usually a rendezvous peer, and receiving responses containing
advertisements describing the available resources on the P2P network.

06_2344 Ch 04 5/14/02 11:34 AM Page 83

84 Chapter 4 The Peer Discovery Protocol

The Peer Discovery Protocol consists of only two messages that define the
following:

n A request format to use to discover advertisements
n A response format for responding to a discovery request

These two message formats, the Discovery Query Message and the Discovery
Response Message, define all the elements required to perform a discovery
transaction between two peers, as shown in Figure 4.1.

Peer 1

Simple Peer 1

Simple Peer 2

Rendezvous Peer 1

Simple Peer 3

1. Peer 1 sends a
Discovery Query
Message to all of its
known simple peers and
rendezvous peers.

2. Rendezvous peers that
receive the query process
the discovery query and
may return a Discovery
Response Message
containing advertisements
from its cache. In addition,
the rendezvous peer will
propagate the query to all
of its known peers.

3. A simple peer receiving
the query searches its local
cache for matching
advertisements. If matches
are found, the peer sends a
Discovery Response
Message directly to the peer
responsible for sending the
original query.

Figure 4.1 Exchange of discovery messages.

Although the messages define a request and a response to that request, it is
important to note that a peer might not expect a Discovery Response
Message in response to a given Discovery Query Message.A response to a
request might not be received for a variety of reasons—for example, the
request didn’t generate any results, or the request was ignored by an over-
loaded peer.

The Discovery Query Message
The Discovery Query Message is sent to other peers to find advertisements. It
has a simple format, as shown in Listing 4.1.

06_2344 Ch 04 5/14/02 11:34 AM Page 84

85Introducing the Peer Discovery Protocol

Listing 4.1 The Discovery Query Message XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:DiscoveryQuery>

<Type> . . . </Type>

<Threshold> . . . </Threshold>

<PeerAdv> . . .</PeerAdv>

<Attr> . . . </Attr>

<Value> . . .</Value>

</jxta:DiscoveryQuery>

The root element for the Discovery Query Message is the jxta:DiscoveryQuery
element. Developers familiar with XML might recognize the jxta: prefix in
the root element as an XML namespace specifier and wonder if the jxta
namespace is used or enforced within the Java implementation.Although the
jxta prefix does specify a namespace, the current Java implementation of JXTA
does not understand XML namespaces and treats jxta:DiscoveryQuery as the
element name rather than recognizing DiscoveryQuery as an XML tag from the
jxta namespace.

The elements of the Discovery Query Message describe the discovery para-
meters for the query. Only advertisements that match all the requirements
described by the query’s discovery parameters are returned by a peer.The dis-
covery parameters described by the Discovery Query Message are listed here:

n Type—A required element containing an integer value specifying the type
of advertisement being discovered.A value of 0 represents a query for
Peer Advertisements, 1 represents a query for Peer Group Advertisements,
and 2 represents a query for any other type of advertisement.

n Threshold—An optional element containing a number specifying the
maximum number of advertisements that should be sent by a peer
responding to the query.

n PeerAdv—An optional element containing the Peer Advertisement for the
peer making the discovery query.The Peer Advertisement contains details
that uniquely identify the peer on the network to enable another peers
to respond to the query.

n Attr and Value—An optional pair of elements that together specify the
criteria that an advertisement must fulfill to be returned as a response to
this query. Attr specifies the name of an element, and Value specifies the
value that the element must have to be returned as a response to the
query.

06_2344 Ch 04 5/14/02 11:34 AM Page 85

86 Chapter 4 The Peer Discovery Protocol

A couple special exceptions to these rules apply:
n When the Type is set to 0 (representing a query for Peer Advertisements)

and the threshold is set to 0, the peer sending the Discovery Query
Message is seeking to obtain as many Peer Advertisements as possible.All
peers that receive the query should respond to the query with their Peer
Advertisement.

n When values for the Attr and Value elements are absent, each peer
responds with a random set of advertisements of the requested Type, up
to the maximum specified by the Threshold element.

In the Java reference implementation, the Discovery Query Message’s defini-
tion is split into an abstract class definition and a reference implementation
provided by Project JXTA, as shown in Figure 4.2.The purpose of this divi-
sion is to allow third-party developers to maintain API compatibility with the
Java reference implementation when providing their own implementation for
message parsing and formatting.

getAdvertisementType() : java.lang.String

getAttr() : java.lang.String

getDiscoveryType() : int

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

getPeerAdv() : java.lang.String

getThreshold() : int

getValue() : java.lang.String

setAttr(attr : java.lang.String) : void

setDiscoveryType(type : int) : void

setPeerAdv(peer : java.lang.String) : void

setThreshold(threshold : int) : void

setValue(value : java.lang.String) : void

DiscoveryQuery

(from net.jxta.impl.platform)

DiscoveryQuery(stream : java.io.InputStream)

DiscoveryQuery(type : int, peeradv : java.lang.String, attr : java.lang.String, value : java.lang.String, threshold : int)

DiscoveryQuery(doc : net.jxta.document. TextElement)

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

readlt(doc : net.jxta.document.TextElement) : void�

DiscoveryQueryMsg
(from net.jxta.protocol)

type : int

toString() : java.lang.String

Figure 4.2 The Discovery Query Message classes.

The abstract definition of the Discovery Query Message can be found in the
net.jxta.protocol.DiscoveryQueryMsg class, and the reference implementation of
the abstract class can be found in the net.jxta.impl.protocol.DiscoveryQuery
class.

06_2344 Ch 04 5/14/02 11:34 AM Page 86

87Introducing the Peer Discovery Protocol

Listing 4.2 provides the shell command to create a Discovery Query
Message using the DiscoveryQuery implementation and prints it to the Shell’s
standard output for examination.

Listing 4.2 Source Code for example4_1.java

package net.jxta.impl.shell.bin.example4_1;

import java.io.StringWriter;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.MimeMediaType;

import net.jxta.discovery.DiscoveryService;

import net.jxta.impl.protocol.DiscoveryQuery;

import net.jxta.impl.shell.ShellApp;

/**

* A Shell command to create and output a Discovery Query Message.

*/

public class example4_1 extends ShellApp

{

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

int type = DiscoveryService.PEER;

String attribute = null;

String value = null;

int threshold = 0;

String advertisementString = “This is my Peer Advertisement”;

// Construct a discovery query message.

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 87

88 Chapter 4 The Peer Discovery Protocol

DiscoveryQuery query =

new DiscoveryQuery(type, advertisementString, attribute,

value, threshold);

// Create an XML formatted string version of the discovery query.

StringWriter buffer = new StringWriter();

MimeMediaType mimeType = new MimeMediaType(“text/xml”);

// MimeMediaType mimeType = new MimeMediaType(“text/plain”);

try

{

StructuredTextDocument document =

(StructuredTextDocument) query.getDocument(mimeType);

document.sendToWriter(buffer);

}

catch (Exception e)

{

e.printStackTrace();

}

// Print out the formatted message.

println(buffer.toString());

return result;

}

}

Place the example’s code in a file called example4_1.java in the Shell subdirec-
tory of the JXTA demo installation. Compile the example using this code:

javac –d . –classpath ..\lib\beepcore.jar;..\lib\cms.jar;
..\lib\cryptix-asn1.jar;..\lib\cryptix32.jar;..\lib\instantp2p.jar;
..\lib\jxta.jar;..\lib\jxtaptls.jar;..\lib\jxtasecurity.jar;
..\lib\jxtashell.jar;..\lib\log4j.jar;..\lib\minimalBC.jar example4_1.java

After the example has compiled, run the Shell application using this code:
java –classpath ..\lib\beepcore.jar;..\lib\cms.jar;
..\lib\cryptix-asn1.jar;..\lib\cryptix32.jar;..\lib\instantp2p.jar;
..\lib\jxta.jar;..\lib\jxtaptls.jar;..\lib\jxtasecurity.jar;
..\lib\jxtashell.jar;..\lib\log4j.jar;..\lib\minimalBC.jar;.
net.jxta.impl.peergroup.Boot

When the Shell has loaded, run the example using this command:
JXTA>example4_1

The example4_1 command produces the XML-formatted Discovery Query
Message containing the parameters for the discovery, shown in Listing 4.3.

Listing 4.2 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 88

89Introducing the Peer Discovery Protocol

Listing 4.3 Output of the example4_1 Shell Command

<?xml version=”1.0”?>

<!DOCTYPE jxta:DiscoveryQuery>

<jxta:DiscoveryQuery xmlns:jxta=”http://jxta.org”>

<Type>

0

</Type>

<Threshold>

0

</Threshold>

<PeerAdv>

This is my Peer Advertisement

</PeerAdv>

</jxta:DiscoveryQuery>

The DiscoveryQuery constructor uses a String representation for the Peer
Advertisement instead of an object, and the String passed to the constructor is
used directly in the output.The Discovery Query Message output produced
by the example isn’t valid because the PeerAdv element doesn’t actually contain
a valid Peer Advertisement. Producing a valid Discovery Query Message using
the DiscoveryQuery class requires the developer to create a Peer Advertisement
object and format it as a String in the same manner that the example uses to
create a String from the query object.This String then set as the contents of
PeerAdv element using DiscoveryQuery’s setPeerAdv method. For now, you’ll avoid
creating the Peer Advertisement object; we’ll focus on it later in this chapter
when advertisement instantiation is explored.

The mechanism for formatting the query object as a String is entirely
abstracted through the net.jxta.document.Document interface.The Document inter-
face defines a generic container for MIME media that can be read from an
InputStream or written to an OutputStream.All advertisement and message
objects used by the Java implementation of JXTA use an implementation of
the StructuredTextDocument interface, derived from the Document interface, to
provide a representation of the class as a structured MIME text document.

Using the StructuredTextDocument interface, the query object in the example
is written out to XML by providing a MimeMediaType object for the text/xml
MIME type to the query object’s getDocument method. Because the formatting
framework is so flexible, the output format could be easily changed to print
plain text instead of XML by changing the following line in the example:

MimeMediaType mimeType = new MimeMediaType(“text/xml”);

06_2344 Ch 04 5/14/02 11:34 AM Page 89

90 Chapter 4 The Peer Discovery Protocol

To print plain text, create a MimeMediaType object for the text/plain MIME type
instead of text/xml using the following line:

MimeMediaType mimeType = new MimeMediaType(“text/plain”);

When this change is in place, recompile the example and restart the Shell
application. Running the example4_1 command this time produces the result
shown in Listing 4.4.

Listing 4.4 Output of the Modified example4_1 Shell Command

jxta:DiscoveryQuery :

Type : 0

Threshold : 0

PeerAdv : This is my Peer Advertisement

The format of the output is determined by the MimeMediaType object passed to
getDocument.The query object’s getDocument method uses this MIME type and
the StructuredDocumentFactory to produce an implementation of the
StructuredDocument interface.The available implementations of
StructuredDocument are defined in the StructuredDocumentInstanceTypes property
of the config.properties property file located in the net.jxta.impl package.
Currently, only two implementations, LiteXMLDocument and PlainTextDocument, are
available, corresponding to the text/xml and text/plain MIME types, respec-
tively.The abstraction of message and advertisement formatting means that the
Java reference implementation could switch easily from XML to another, pos-
sibly binary, format without requiring major changes to the implementation
architecture.

The example demonstrates only how to create a Discovery Query Message,
not how to send it to other peers to perform the actual discovery.An applica-
tion developer never actually needs to formulate a Discovery Query Message
and send it to other peers themselves; in fact, there is no abstract way of
instantiating a DiscoveryQueryMsg implementation in the Java reference imple-
mentation.The DiscoveryQueryMsg is an abstract class defining an interface that
DiscoveryQuery implements.Although a developer can use the DiscoveryQuery
implementation directly, this prevents a developer from using another imple-
mentation without changing all the code.As you’ll see, developers discover
advertisements using the Discovery service instead of using the
DiscoveryQueryMsg class or its implementations directly, thereby abstracting
the developer from a particular implementation of DiscoveryQueryMsg.

06_2344 Ch 04 5/14/02 11:34 AM Page 90

91Introducing the Peer Discovery Protocol

The Discovery Response Message
To reply to a Discovery Query Message, a peer creates a Discovery Response
Message that contains advertisements that match the query’s search criteria,
such as the Attr/Value combination or Type of advertisement.The Discovery
Response Message is formatted as shown in Listing 4.5.

Listing 4.5 The Discovery Response Message XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:DiscoveryResponse>

<Type> . . . </Type>

<Count> . . . </Count>

<PeerAdv> . . . </PeerAdv>

<Attr> . . . </Attr>

<Value> . . . </Value>

<Response Expiration=”expiration time”>

. . .

</Response>

</jxta:DiscoveryResponse>

The elements of the Discovery Response Message closely correspond to those
of the Discovery Query Message:

n Type—Similar to the Type element passed in the Discovery Query
Message, the Type element here is a required element containing an
integer value that represents the type of all the advertisements contained
within the Response elements of the message.As before, a value of 0 repre-
sents Peer Advertisements, 1 represents Peer Group Advertisements, and 2
represents all other types of advertisements.

n Count—An optional element containing an integer representing the total
number of Response elements in the message.

n PeerAdv—An optional element containing the Peer Advertisement of the
peer responding to the original Discovery Query Message.

n Attr and Value—An optional pair of elements that together specify the
original search criteria that generated this response.These have the same
value as the Attr and Value in the Discovery Query Message; if these ele-
ments were not present in the original query, they are omitted from the
response.

06_2344 Ch 04 5/14/02 11:34 AM Page 91

92 Chapter 4 The Peer Discovery Protocol

n Response—An optional element containing an advertisement that
matched the search criteria in the Discovery Query Message. Each
Discovery Response Message can contain multiple Response elements,
each containing one advertisement in response to the original query.
The total number of Response elements equals the value held by the Count
element.The Expiration attribute on the Response elements specifies the
length of time that this advertisement should be considered valid. In
the Java reference implementation, this time is implicitly expressed in
milliseconds.

The abstract definition of the Discovery Response Message is defined in the
net.jxta.protocol.DiscoveryResponseMsg class, shown in Figure 4.3, and the refer-
ence implementation is defined in the net.jxta.impl.protocol.DiscoveryResponse
class.

 setExpirations(expirations : java.util.Vector) : void

 setQueryAttr(attr : java.lang.String) : void

 DiscoveryResponse
 (from net.jxta.impl.platform)

 DiscoveryResponse(stream : java.io.InputStream)
 DiscoveryResponse(count : int, type : int, peeradv : java.lang.String,attr : java.lang.String, value : java.lang.String, responses : java.util.Vector,expirations : java.util.Vector)
 DiscoveryResponse(doc : net.jxta.document.TextElement)
 getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

 readlt(doc : net.jxta.document.TextElement) : void

DiscoveryResponseMsg
(from net.jxta.protocol)

type : int

 toString() : java.lang.String

count: int

 getAdvertisementType() : java.lang.String
 getDiscoveryType() : int

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
getExpirations(0 : java.util.Enumeration
getPeerAdv() : java.lang.String

 getQueryAttr() : java.lang.String
 getQueryValue() : java.lang.String

getResponseCount() : int
getResponses() : java.util.Enumeration
setDiscoveryType(type : int) : void

setPeerAdv(peer : java.lang.String) : void

 setQueryValue(value : java.lang.String) : void
setResponseCount(count : int) : void
setResponses(responses : java.util.Vector) : void

Figure 4.3 The Discovery Response Message classes.

Unlike with DiscoveryQueryMsg class, a developer uses the DiscoveryResponseMsg
class in conjunction with the Discovery service to process responses to queries.
The DiscoveryResponseMsg class provides developers with an easy mechanism to
extract response advertisements; this is demonstrated in the example in the
next section.

06_2344 Ch 04 5/14/02 11:34 AM Page 92

93The Discovery Service

The Discovery Service
All the protocols defined by the JXTA Protocols Specification are imple-
mented as services called core services.The core services include the following:

n Discovery
n Pipe
n Endpoint
n Rendezvous
n Peer Info
n Resolver

An instance of a service is associated with a specific peer group. Only peers
that are members of the same peer group are capable of communicating with
each other via their services. By default, all peers belong to a common peer
group, called Net Peer Group, thereby allowing all peers and their advertise-
ments to be discovered.

Services provide developers with a level of abstraction, insulating them
somewhat from the raw message objects used to send information between
peers.The Discovery service provides a mechanism for the following:

n Retrieving remote advertisements
n Retrieving local advertisements
n Publishing advertisements locally
n Publishing advertisements remotely
n Flushing local advertisements

In the Java reference implementation, the Discovery service is defined by the
DiscoveryService interface in net.jxta.discovery and is implemented by the
DiscoveryServiceImpl class in net.jxta.impl.discovery, as shown in Figure 4.4.

 <<Interface>>
 DiscoveryService

 (from net.jxta.discovery)

 PEER : int = 0
 GROUP : int = 1

 ADV : int = 2
 DEFAULT_LIFETIME : long = 1471228928
 DEFAULT_EXPIRATION : long= 7200000

 addDiscoveryListener(listener : net.jxta.discovery.DiscoveryListener) : void
 flushAdvertisements(id : java.lang.String, type : int) : void

 getLocalAdvertisements(type : int, attribute : java.lang.String, value : java.lang.String) : java.util.Enumeration
 getRemoteAdvertisements(peerid : java.lang.String, type : int, attribute : java.lang.String, value : java.lang.String, threshold : int) : int
 getRemoteAdvertisements(peerid : java.lang.String, type : int, attribute : java.lang.String, value : java.lang.String, threshold : int listener : net.jxta.discovery.DiscoveryListener) : void

 publish(advertisement : net.jxta.document.Advertisement, type : int) : void
 publish(advertisement : net.jxta.document.Advertisement, type : int, lifetime : long, lifetimeForOthers : long) : void

 remotePublish(advertisement : net.jxta.document.Advertisement, type : int) : void
 remotePublish(advertisement : net.jxta.document.Advertisement, type : int, lifetime : long) : void
 removeDiscoveryListenere(listener : net.jxta.discovery.DiscoveryListener) : boolean

DiscoveryServiceImpl
(from net.jxta.impl.discovery)

Figure 4.4 The DiscoveryService interface and implementation.

06_2344 Ch 04 5/14/02 11:34 AM Page 93

94 Chapter 4 The Peer Discovery Protocol

The DiscoveryService interface provides a simple mechanism for developers
to send discovery queries and process discovery responses.A small set of con-
venience methods allows developers to send Discovery Query Messages
without requiring the developer to create and populate a DiscoveryQuery
object beforehand.

The DiscoveryListener Interface
An application requires some way of being notified of responses to a discovery
query to allow the application to extract advertisements from the response. In
the Java reference implementation, developers can register a listener object that
will be notified by the DiscoveryService when Discovery Response Messages
are received.

Java developers are probably most familiar with the concept of a listener
from the Java Foundation Classes (JFC). In the JFC, a listener interface is
defined for each type of event that can be generated from a user interface
widget, such as a button.An object that wants to be informed when a button
is clicked implements the appropriate listener interface and registers itself with
the button.When the button is clicked, the button widget calls the appropriate
method of each listener implementation instance that has registered with the
widget.

The Java reference implementation uses a similar mechanism to allow
developers to be informed when a new Discovery Response Message is
received by the DiscoveryService.A developer wanting to be notified of the
arrival of a new Discovery Response Message needs to create an implementa-
tion of the DiscoveryListener interface, as shown in Figure 4.5.

<<Interface>>
DiscoveryListener

(from net.jxta.discovery)

discoveryEvent(event : net.jxta.discovery.DiscoveryEvent) : void

Figure 4.5 The DiscoveryListener interface.

To receive notification, the developer registers the implementation of the
DiscoveryListener interface with an instance of the DiscoveryService using
the addDiscoveryListener method defined in the net.jxta.discovery.Discovery
interface:

public void addDiscoveryListener(
DiscoveryListener listener);

06_2344 Ch 04 5/14/02 11:34 AM Page 94

95The Discovery Service

Each time the DiscoveryService instance receives a Discovery Response
Message, the listener’s discoveryEvent method is called with an event detailing
the response received by the service.

To stop receiving notifications, the listener object must be removed from
the DiscoveryService using the removeDiscoveryListener method defined in the
net.jxta.discovery.Discovery interface:

public boolean removeDiscoveryListener(
DiscoveryListener listener);

A reference to the original listener object is required to be capable of remov-
ing the listener object from the DiscoveryService instance.The call to the
removeDiscoveryListener returns true if the given listener object is removed
from the DiscoveryService instance, or false if the listener object isn’t currently
registered with the DiscoveryService instance.

The DiscoveryEvent Class
As shown in Figure 4.6, the DiscoveryEvent defined in net.jxta.discovery is
provided to the discoveryEvent method of the DiscoveryListener implementa-
tion to provide details on the Discovery Response Message received by a
DiscoveryService instance.

EventObject

(from java.util)

source : Object

EventObject(source : Object)

getSource() : Object

toString() : String

DiscoveryEvent

(from net.jxta.discovery)

DiscoveryEvent(source : java.lang.Object, response : net.jxta.protocol.DiscoveryResponseMsg, queryID : int)

getQueryID() : int

getResponse() : net.jxta.protocol.DiscoveryResponseMsg

Figure 4.6 The DiscoveryEvent class.

The listener can extract the DiscoveryResponseMsg from the event using the
getResponse method of DiscoveryEvent:

public DiscoveryResponseMsg getResponse()

Use the getResponses method of DiscoveryResponseMsg, as shown in Listing 4.6,
to obtain an Enumeration object that can be used to iterate over the advertise-
ments returned in the DiscoveryResponseMsg.

06_2344 Ch 04 5/14/02 11:34 AM Page 95

96 Chapter 4 The Peer Discovery Protocol

Listing 4.6 Extracting Responses from a DiscoveryEvent Object

public void discoveryEvent(DiscoveryEvent event)

{

DiscoveryResponseMsg response = event.getResponse();

Enumeration enum = response.getResponses();

while (enum.hasMoreElements())

{

String advString =

(String) enum.nextElement();

// Extract the advertisement from the string here.

}

}

The DiscoveryResponseMsg interface also provides the getExpirations method,
allowing a developer to obtain an Enumeration of the expiration times for each
of the advertisements returned in the response.

Using DiscoveryListener and DiscoveryEvent
To try out handling discovery responses, you’ll create a shell command to
handle registering and unregistering your own DiscoveryListener implementa-
tion. First, you need an implementation of the DiscoveryListener interface, as
shown in Listing 4.7.

Listing 4.7 Source Code for ExampleListener.java

package net.jxta.impl.shell.bin.example4_2;

import java.util.Enumeration;

import net.jxta.document.Advertisement;

import net.jxta.discovery.DiscoveryEvent;

import net.jxta.discovery.DiscoveryListener;

import net.jxta.protocol.DiscoveryResponseMsg;

/**

* A simple listener to notify the user when a discovery event has

06_2344 Ch 04 5/14/02 11:34 AM Page 96

97The Discovery Service

* been received.

*/

public class ExampleListener implements DiscoveryListener

{

/**

* The DiscoveryListener’s event method, used for handling

* notification of a received Discovery Response Message from

* the Discovery service.

*

* @param event the event containing the received response.

*/

public void discoveryEvent(DiscoveryEvent event)

{

DiscoveryResponseMsg response = event.getResponse();

System.out.println(“Received a response containing “

+ response.getResponseCount() + “ advertisements”);

}

For this simple example, you don’t need anything fancy—just a notification
that a response has been received and details on the number of advertisements
contained in the response. Next, you need to create a Shell command called
example4_2 to handle registering and unregistering your listener object.This is
shown in Listing 4.8.

Listing 4.8 Source Code for example4_2.java

package net.jxta.impl.shell.bin.example4_2;

import net.jxta.discovery.DiscoveryService;

import net.jxta.discovery.DiscoveryListener;

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

package net.jxta.impl.shell.bin.example4_2;

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 97

98 Chapter 4 The Peer Discovery Protocol

import net.jxta.discovery.DiscoveryService;

import net.jxta.discovery.DiscoveryListener;

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple example shell application to register or unregister a

* DiscoveryListener.

*/

public class example4_2 extends ShellApp

{

/**

* The shell environment holding the store of environment variables.

*/

ShellEnv theEnvironment;

/**

* A flag indicating whether to add or remove the listener.

*/

boolean addListener = true;

/**

* The name used to store the listener in the environment.

*/

String name = “Default”;

/**

* Manages adding or removing the listener.

*

* @param discovery the Discovery service to use to manage

* the listener.

*/

private void manageListener(DiscoveryService discovery)

{

Listing 4.8 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 98

99The Discovery Service

if (name != null)

{

// Check if a listener already exists.

ShellObject theShellObject = theEnvironment.get(name);

if (addListener)

{

if (theShellObject == null)

{

// Create a new listener.

DiscoveryListener listener = new ExampleListener();

// Add the listener to the discovery service.

discovery.addDiscoveryListener(listener);

// Add the listener object to the environment.

theEnvironment.add(name,

new ShellObject(name, listener));

}

}

else

{

if (theShellObject != null)

{

DiscoveryListener listener =

(DiscoveryListener) theShellObject.getObject();

// Remove the listener from the discovery service.

discovery.removeDiscoveryListener(listener);

// Remove the listener object from the environment.

theEnvironment.remove(name);

}

}

}

}

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 99

100 Chapter 4 The Peer Discovery Protocol

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “rn:”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘r’ :

{

// Remove the listener.

addListener = false;

break;

}

case ‘n’ :

{

// Get the name used to store the listener object.

String argument= null;

if ((argument = parser.getOptionArg()) != null)

{

name = argument;

}

break;

}

}

}

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

Listing 4.8 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 100

101The Discovery Service

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Discovery service for the current peer group.

DiscoveryService discovery = currentGroup.getDiscoveryService();

try

{

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

// Manage the listener to the Discovery service. This

// adds or removes the listener as specified by the

// command-line parameters.

manageListener(discovery);

return result;

}

}

By default, the example4_2 command creates a listener, adds it to the current
peer group’s DiscoveryService, and stores the listener in a Shell environment
variable named Default. Storing the listener object is essential; otherwise, the
listener can’t be removed from the DiscoveryService at a later time.

06_2344 Ch 04 5/14/02 11:34 AM Page 101

102 Chapter 4 The Peer Discovery Protocol

Note
Even if you already configured the Shell in the past, you will be prompted each time you start the
Shell to provide your username and password. When trying out the examples, this can become
annoying. To avoid having to enter your username and password each time, you can pass in your
username and password as system properties to the Java runtime. Use this command to pass in
your username and password as system properties:

java -Dnet.jxta.tls.password=password
-Dnet.jxta.tls.principal=username . . .

This sets a system property called net.jxta.tls.password to the password value provided after the
equals (=) sign and a system property called net.jxta.tls.principal to the username pro-
vided. When you start the Shell from the command line and include these parameters, the Shell
starts immediately without prompting for your username and password.

Place the source code in the Shell subdirectory of the JXTA installation and
compile it in the same way that you compiled the previous example. Start the
Shell from the command line.After the Shell has loaded, clear the local cache
of Peer Advertisements using this line:

JXTA>peers –f

Register an ExampleListener instance by running the example4_2 command:
JXTA>example4_2

You can check that a Shell variable has been created using the variable name
Default by checking the output of the env command.At this point, a
DiscoveryListener has been registered to be notified when Discovery Response
Messages are received by the current peer group’s DiscoveryService.The code
responsible for retrieving the current peer group and the peer group’s
DiscoveryService is shown in Listing 4.9.

Listing 4.9 Obtaining DiscoveryService

// Get the shell’s environment.

theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Discovery service for the current peer group.

DiscoveryService discovery = currentGroup.getDiscoveryService();

06_2344 Ch 04 5/14/02 11:34 AM Page 102

103The Discovery Service

This code retrieves the current peer group’s PeerGroup object from the Shell’s
environment, where it is always stored using the name stdgroup.This object
obtains a reference to the DiscoveryService object that is used by the
manageListener method to either add or remove the listener.

To see the listener in action, send a discovery query using the peers -r
command:

JXTA>peers -r

Every time your peer receives responses to the query, the ExampleListener
object’s discoveryEvent method prints the number of advertisements in the
response message:

Received a response containing 4 advertisements

This output appears not in the Shell itself, but in the standard output of the
command shell used to start the Shell application.Although you could print
the output to the Shell console, it would require delving into the use of pipes,
which isn’t appropriate at this point.

Instead of sending an active discovery query, try using the peers command
to retrieve local Peer Advertisements, and observe the behavior of the
ExampleListener output.You should observe that the ExampleListener never
receives notification of responses to a local discovery query.The
DiscoveryService uses the local cache to provide immediate responses to a call
to send a local discovery query; therefore, registered listeners never receive a
notification of a response to a local discovery query.

The example4_2 command takes two optional parameters, -r and -n.The -r
option indicates to the command that the listener object should be removed
from the DiscoveryService, and the -n option indicates the name of the variable
storing the listener instance. For example, issuing the following line attempts
to retrieve a DiscoveryListener object from an environment variable named
MyListener and remove the retrieved listener object from the DiscoveryService
instance:

JXTA>example4_2 –r -nMyListener

The arguments to the example4_2 command are parsed easily using the GetOpt
object in the example:

GetOpt parser = new GetOpt(args, “rn:”);

The second argument to the GetOpt constructor, called the format string, speci-
fies the command’s options and whether the option has any arguments. If a
character is followed by the : (colon) character, that option requires an

06_2344 Ch 04 5/14/02 11:34 AM Page 103

104 Chapter 4 The Peer Discovery Protocol

argument; if it is followed by the ; (semicolon), the option has an optional
argument.This functionality will be used again in later examples.

At this point, you know how to receive notification of a response to discov-
ery query but not how to send the actual discovery query itself.The next sec-
tion provides an example of how to send a discovery query to a remote peer
using the DiscoveryService.

Finding Remote Advertisements
Rather than force developers to create a DiscoveryQueryMsg instance themselves,
the DiscoveryService interface provides an easy way for developers to send a
Discovery Query Message to other peers using the getRemoteAdvertisements
method:

public int getRemoteAdvertisements (String peerid,
int type, String attribute, String value,
int threshold, DiscoveryListener listener);

Each parameter passed to getRemoteAdvertisements corresponds to a field in the
Discovery Query Message, with the exception of the peerid and listener para-
meters.The peerid parameter is a parameter that uniquely identifies the peer to
query for advertisements; if this parameter is null, the message is sent to all
peers on the local network and is propagated via available rendezvous peers.
More information on identifiers is provided in the section “Working with
Advertisements” later in this chapter.

The listener parameter provides a DiscoveryListener object that is called
only when responses arrive in response to this particular call to
getRemoteAdvertisements. Providing a listener object provides a way to receive
notification without registering a listener with the DiscoveryService. Registered
listeners are notified of incoming responses regardless of whether a null or
non-null listener is passed to getRemoteAdvertisements.

To try out the getRemoteAdvertisements method, the following example shell
command shown in Listing 4.10 allows a user to send remote queries and
specify the desired advertisement type and maximum responses.

Listing 4.10 Source Code for example4_3.java

package net.jxta.impl.shell.bin.example4_3;

import java.io.IOException;

import net.jxta.discovery.DiscoveryService;

06_2344 Ch 04 5/14/02 11:34 AM Page 104

105The Discovery Service

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple example shell application to enable a user to send remote

* discovery queries using the current peer group’s Discovery service.

*/

public class example4_3 extends ShellApp

{

/**

* The type of advertisement to discover. Defaults to peer

* advertisements.

*/

private int type = DiscoveryService.PEER;

/**

* The maximum number of responses requested.

*/

private int threshold = 10;

/**

* The Discovery service being used to discover advertisements.

*/

private DiscoveryService discovery = null;

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 105

106 Chapter 4 The Peer Discovery Protocol

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “a:t:”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘a’ :

{

// Set the type of advertisement to discover.

type = Integer.parseInt(parser.getOptionArg());

// Validate the type.

if ((type < 0) || (type > 2))

{

// Default to the peer type.

type = DiscoveryService.PEER;

}

break;

}

case ‘t’ :

{

String argument = null;

if ((argument = parser.getOptionArg()) != null)

{

// Set the threshold.

threshold = Integer.parseInt(argument);

}

break;

}

}

}

}

/**

* Send a discovery request to remote peers via the Discovery service.

*

Listing 4.10 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 106

107The Discovery Service

* @param type the type of advertisement to discover.

* @param threshold the maximum number of advertisements to be

* returned by any single peer.

*/

private void sendRemoteDiscovery(int type, int threshold)

{

discovery.getRemoteAdvertisements(null, type, null, null,

threshold, null);

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Discovery service for the current peer group.

discovery = currentGroup.getDiscoveryService();

try

{

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 107

108 Chapter 4 The Peer Discovery Protocol

// Send a remote discovery request.

sendRemoteDiscovery(type, threshold);

return result;

}

}

The example is essentially a replacement for the peers –r command.When run
in conjunction with example4_2, it allows a user to send queries and be notified
when responses arrive.

To see the example4_3 command in action, first register a listener using the
example4_2 command:

JXTA>example4_2

Then send a Discovery Query Message that searches for Peer Advertisements,
with a maximum of 10 responses from any given peer:

JXTA>example4_3

The peer sends a Discovery Query Message to all known peers requesting a
response containing matching advertisements.The ExampleListener registered
using the example4_2 command prints information each time that a response to
this query is received by the DiscoveryService instance.

Finding Cached Advertisements
In the Java reference implementation, advertisements in responses to a
Discovery Query Message are automatically added to a local cache of adver-
tisements. DiscoveryListener implementations don’t have to provide caching
functionality themselves.

To find advertisements using the local cache, a developer can use the
getLocalAdvertisements method of the DiscoveryService interface. Unlike per-
forming an active discovery to find advertisements on remote peers, perform-
ing discovery using the local cache returns results immediately and does not
require an implementation of the DiscoveryListener interface.

To see how local discovery works, Listing 4.11 shows another example Shell
command that replaces some of the functionality of the peers command.

Listing 4.10 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 108

109The Discovery Service

Listing 4.11 Source Code for example4_4.java

package net.jxta.impl.shell.bin.example4_4;

import java.io.IOException;

import java.util.Enumeration;

import net.jxta.discovery.DiscoveryService;

import net.jxta.document.Advertisement;

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple example shell application to enable a user to send local

* discovery queries using the current peer group’s Discovery service.

*/

public class example4_4 extends ShellApp

{

/**

* The type of advertisement to discover. Defaults to

* peer advertisements.

*/

private int type = DiscoveryService.PEER;

/**

* The Discovery service being used to discover advertisements.

*/

private DiscoveryService discovery = null;

/**

* The name of the element to match.

*/

private String attribute = null;

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 109

110 Chapter 4 The Peer Discovery Protocol

/**

* The value to match for the element specified by the attribute

* variable.

*/

private String value = null;

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “a:k:v:”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘a’ :

{

// Set the type of advertisement to discover.

type = Integer.parseInt(parser.getOptionArg());

// Validate the type.

if ((type < 0) || (type > 2))

{

// Default to the peer type.

type = DiscoveryService.PEER;

}

break;

}

Listing 4.11 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 110

111The Discovery Service

case ‘k’ :

{

// Set the attribute to match.

attribute = parser.getOptionArg();

break;

}

case ‘v’ :

{

// Set the value for the attribute being matched.

value = parser.getOptionArg();

break;

}

}

}

// Both attribute and value must be specified.

if (!((null != attribute) && (null != value)))

{

// Set both to null.

attribute = null;

value = null;

}

}

/**

* Sends a local discovery request using the Discovery service.

*/

private void sendLocalDiscovery()

{

try

{

int count = 0;

Enumeration enum =

discovery.getLocalAdvertisements(type, attribute, value);

Advertisement advertisement;

// Iterate through the response advertisements.

while (enum.hasMoreElements())

{

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 111

112 Chapter 4 The Peer Discovery Protocol

// Get the next element from the enumeration.

advertisement = (Advertisement) enum.nextElement();

println(“Found a matching advertisement!”);

// Increment the counter.

count++;

}

println(“Found “ + count + “ advertisements!”);

}

catch (IOException e)

{

println(“Error discovering local advertisements!” + e);

}

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Discovery service for the current peer group.

discovery = currentGroup.getDiscoveryService();

try

{

Listing 4.11 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 112

113The Discovery Service

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

// Send a local discovery request.

sendLocalDiscovery();

return result;

}

Instead of using a DiscoveryListener implementation to handle advertisements
returned in a DiscoveryResponseMsg response, getLocalAdvertisements returns an
Enumeration of advertisements immediately that match the query parameters
provided.

This example allows the user to provide an attribute and value to match,
allowing the user to search for an advertisement that matches specific criteria.
For example, assume that the peers command returns the following:

peer0: name = Cadillac
peer1: name = spec
peer2: name = spiro
peer3: name = zynevich

The example4_4 command could be used to search the local cache for any Peer
Advertisement in which the peer has a given name.The name of a peer is
described by the Name element in its advertisement and is displayed as the name
in the list returned by the peers command.To discover Peer Advertisements in
which the Name is spec using the example4_4 command, do the following:

JXTA>example4_4 –a0 –kName -vspec
Found a matching advertisement!
Found 1 advertisements!

The –a option specifies the advertisement type to discover, and the –k and –v
options together specify a tag and value that an advertisement must contain to
be part of a peer’s response to the query. Discovering an advertisement that
matches a given tag and value combination can even use a wildcard in the

06_2344 Ch 04 5/14/02 11:34 AM Page 113

114 Chapter 4 The Peer Discovery Protocol

value string. Discovering Peer Advertisements with a tag called Name whose
value starts with the letter s could be accomplished as follows:

JXTA>example4_4 –a0 –kName –vs*
Found a matching advertisement!
Found 2 advertisements!

The wildcard symbol, *, can be used anywhere within the value term; how-
ever, the wildcard symbol can’t be used by itself, and the value to be matched
must consist of at least one nonwildcard character.Wildcards can even be used
in multiple places in the search string:

JXTA>example4_4 –a0 –kName –v*ill*
Found a matching advertisement!
Found 1 advertisements!

The Cache Manager

The local cache, implemented by the Cache Manager class Cm in the
net.jxta.impl.cm package, handles storing discovered advertisements in a local
file and directory structure.The Cache Manager is responsible not only for
providing search capabilities for local discovery requests, but also for finding
advertisements that match Discovery Query Messages sent by other peers.The
Cache Manager stores cached advertisements in a directory called cm under the
current directory when the JXTA application is executed.

Flushing Advertisements
At some point, an application might need to clear the entire cache; this might
be required when an application has not been used in a long time and all
advertisements are suspected to be stale.As shown in Listing 4.12, the
DiscoveryService provides a simple mechanism to allow an application to clear
the cache of specific advertisement types that match a given type of advertise-
ment and identifier string.

Listing 4.12 Source Code for example4_5.java

package net.jxta.impl.shell.bin.example4_5;

import java.io.IOException;

import net.jxta.discovery.DiscoveryService;

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

06_2344 Ch 04 5/14/02 11:34 AM Page 114

115The Discovery Service

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple example shell application to enable a user to flush

* discovered advertisements from the local cache using the current peer

* group’s Discovery service.

*/

public class example4_5 extends ShellApp

{

/**

* The type of advertisement to flush. Defaults to peer advertisements.

*/

private int type = DiscoveryService.PEER;

/**

* The ID of the advertisement to flush. Defaults to null.

*/

private String id = null;

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “a:i:”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘a’ :

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 115

116 Chapter 4 The Peer Discovery Protocol

{

// Set the type of advertisement to flush.

type = Integer.parseInt(parser.getOptionArg());

// Validate the type.

if ((type < 0) || (type > 2))

{

// Default to the peer type.

type = DiscoveryService.PEER;

}

break;

}

case ‘i’ :

{

// Set the ID string of the advertisement to flush.

id = parser.getOptionArg();

break;

}

}

}

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

Listing 4.12 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 116

117The Discovery Service

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the DiscoveryService service for the current peer group.

DiscoveryService discovery = currentGroup.getDiscoveryService();

try

{

// Parse the command-line arguments.

parseArguments(args);

// Flush all of the advertisements of the given type and ID.

discovery.flushAdvertisements(id, type);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

catch (IOException e)

{

println(“Error flushing advertisements: “ + e);

result = appMiscError;

}

return result;

}

}

To remove all the Peer Advertisements from the local cache using the
example4_5 command, type the following:

JXTA>example4_5 –a0

Invoking the peers command after this command should return an empty list.
To remove only a specific advertisement, the unique identifier for the

advertisement is required; in the case of a Peer Advertisement, this identifier is
given by the PID element.The PID can be obtained using the cat command to
view a Peer Advertisement stored in the Shell’s environment variables, as
demonstrated in Chapter 3,“Introducing JXTA P2P Solutions.” For example,
imagine that the Peer Advertisement to be flushed from the cache has this ID:

urn:jxta:uuid-59616261646162614A78746150
32503323EC5B06B634476AB7418CB18BA45DCA03

06_2344 Ch 04 5/14/02 11:34 AM Page 117

118 Chapter 4 The Peer Discovery Protocol

It can be removed from the cache using this command:
JXTA> example4_5 -a0 -iurn:jxta:uuid-59616261646162614A7874615032503
323EC5B06B634476AB7418CB18BA45DCA03

Executing this command removes the advertisement from the cache by delet-
ing its corresponding advertisement from within the Cache Manager’s cm
directory.

Working with Advertisements
At this point, this chapter has only really discussed advertisements in generic
terms.You have not delved into the specifics of what information is contained
by a particular advertisement or how advertisements are used within the Java
reference implementation.Although you know how to discover advertise-
ments, how do you use them?

All advertisements in the Java reference implementation extend the
net.jxta.document.Advertisement abstract class.The Advertisement class defines
several methods, the most important being the getDocument method for trans-
forming an Advertisement into a Document instance corresponding to a particular
MIME type.As shown in Figure 4.7, each type of advertisement is split into an
abstract class in the net.jxta.protocol package and an implementation class in
net.jxta.impl.protocol.

Advertisement
(from net.jxta.document)

expiration : long

 Advertisement()
 clone() : java.lang.Object

 getAdvertisementType() ; java.lang.String
 getDocument(asMimeTpe : net.jxta.documentMimeMediaType) : net.jxta.document.Document

 getID() : net.jxta.Id.ID
 getLocalExpirationTime() : long

 setExpiration(timeout : long) : void
 setExpirationTime(timeout : long)void

EndpointAdvertisement
(from net.jxta.protocol)

ModuleClassAdvertisement
(from net.jxta.protocol)

ModuleImplAdvertisement
(from net.jxta.protocol)

ModuleSpecAdvertisement
(from net.jxta.protocol)

PeerAdvertisement
(from net.jxta.protocol)

PeerGroupAdvertisement
(from net.jxta.protocol)

PipeAdvertisement
(from net.jxta.protocol)

RdvAdvertisement
(from net.jxta.protocol)

StdPeerGroupParamAdv
(from net.jxta.impl.peergroup)

 TransportAdvertisement
(from net.jxta.protocol)

Figure 4.7 The Advertisement abstract implementation classes.

The net.jxta.protocol abstract classes augment the Advertisement class with
attributes specific to the type of advertisement and accessor methods to set and
retrieve the value of those fields.The net.jxta.impl.protocol implementation
classes provide the implementation of the getDocument method.

06_2344 Ch 04 5/14/02 11:34 AM Page 118

119Working with Advertisements

Instantiating an Advertisement
To insulate a developer from knowing about a specific advertisement imple-
mentation class, advertisements are instantiated using the AdvertisementFactory
class in the net.jxta.document package.The simplest way to create an advertise-
ment instance is to use the factory’s static newAdvertisement method, providing a
String containing the type of advertisement to create.

An advertisement type in the Java reference implementation is a String
containing the root element of the advertisement that it is associated with.
Although developers could construct the advertisement type String them-
selves, it is easier to use the static getAdvertisementType defined by the
Advertisement class. For example, a PeerAdvertisement could be instantiated using
either

PeerAdvertisement advertisement =
(PeerAdvertisement)

AdvertisementFactory.newAdvertisement(
“jxta:PA”);

or
PeerAdvertisement advertisement =

(PeerAdvertisement)
AdvertisementFactory.newAdvertisement(

PeerAdvertisement.getAdvertisementType());

Each of the net.jxta.protocol subclasses of Advertisement provides an imple-
mentation of getAdvertisementType that allows a developer to get a specific type
of advertisement without knowing which concrete class is providing the
implementation.

Publishing Advertisements
Constructing an advertisement by itself doesn’t make the advertisement known
to either the local peer or any other peer on the network. For an advertise-
ment to be available on the P2P network, it needs to be published locally,
remotely, or both.

Publishing an advertisement locally places the advertisement in the local
peer’s cache of advertisements; other peers can find this advertisement using a
standard Discovery Query Message.The DiscoveryService interface provides a
simple mechanism for publishing the advertisement to the local cache using
either

public void publish(Advertisement advertisement,
int type) throws IOException;

06_2344 Ch 04 5/14/02 11:34 AM Page 119

120 Chapter 4 The Peer Discovery Protocol

or
public void publish (Advertisement adv, int type,

long lifetime, long lifetimeForOthers)
throws IOException;

The second version of the publish method is more explicit, allowing the caller
to specify not only the advertisement and its type, but also the length of time
that the advertisement will remain in the local cache and the length of time
that the advertisement will be available to be discovered by other peers.The
length of time in both cases is expressed in milliseconds, and the type of
advertisement corresponds to the values used by the Discovery Query and
Response Messages (0 = peer, 1 = peer group, 2 = other advertisements).

The first version of the publish method publishes an advertisement to the
local cache using default values for the local and remote lifetimes of the adver-
tisement.The default local lifetime is one year, and the default lifetime for
other peers is two hours.

To help accelerate the process of distributing an advertisement within the
membership of a peer group, an advertisement can be published remotely.
Publishing an advertisement remotely broadcasts the advertisement directly to
other known peers or indirectly via known rendezvous peers to other mem-
bers of the peer group associated with the DiscoveryService service instance.
This broadcast uses a Discovery Response Message to push the advertisement
to peers.

The DiscoveryService interface provides two methods, similar to the publish
methods, to publish an advertisement to a remote peer.An advertisement can
be remotely published using either

public void remotePublish (
Advertisement adv, int type);

or
public void remotePublish (Advertisement adv, int

type, long lifetime);

Although the documentation in the DiscoveryService interface specifies that the
type can be set to indicate a peer, peer group, or other type of advertisement,
the current implementation does not remotely publish Peer Advertisements.
However, the reference implementation of DiscoveryService, DiscoveryServiceImpl,
automatically adds the Peer Advertisement contained in any Discovery Query
Messages that it receives, providing the same functionality.

To demonstrate the use of the publish and remotePublish methods, the shell
command in Listing 4.13 creates a Peer Group Advertisement using the
current peer group as a template, and publishes the advertisement locally
and remotely.

06_2344 Ch 04 5/14/02 11:34 AM Page 120

121Working with Advertisements

Listing 4.13 Source Code for example4_6.java

package net.jxta.impl.shell.bin.example4_6;

import java.io.IOException;

import net.jxta.discovery.DiscoveryService;

import net.jxta.document.AdvertisementFactory;

import net.jxta.id.IDFactory;

import net.jxta.peergroup.PeerGroup;

import net.jxta.protocol.PeerGroupAdvertisement;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple example shell application to publish a peer group

* advertisement based on the Shell’s current peer group.

*/

public class example4_6 extends ShellApp

{

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

continues

06_2344 Ch 04 5/14/02 11:34 AM Page 121

122 Chapter 4 The Peer Discovery Protocol

// Get the Discovery service for the current peer group.

DiscoveryService discovery = currentGroup.getDiscoveryService();

try

{

// Create an advertisement.

PeerGroupAdvertisement advertisement =

(PeerGroupAdvertisement)

AdvertisementFactory.newAdvertisement(

PeerGroupAdvertisement.getAdvertisementType());

// Populate the various fields. For most of this, we’ll create

// our own values, but we’ll need the Module Spec ID of our

// current peer group.

PeerGroupAdvertisement currentAdvertisement =

currentGroup.getPeerGroupAdvertisement();

// Set the values that must be unique for the new advertisement.

advertisement.setName(“NewGroup”);

advertisement.setDescription(“PG for example4_6”);

advertisement.setPeerGroupID(IDFactory.newPeerGroupID());

advertisement.setModuleSpecID(

currentAdvertisement.getModuleSpecID());

// Publish the advertisement locally.

discovery.publish(advertisement, DiscoveryService.GROUP,

10000, 1000);

// Publish the advertisement remotely.

discovery.remotePublish(advertisement,

DiscoveryService.GROUP, 1000);

}

catch (IOException e)

{

println(“Error publishing the advertisement to cache.” + e);

result = ShellApp.appMiscError;

}

return result;

}

}

Listing 4.13 Continued

06_2344 Ch 04 5/14/02 11:34 AM Page 122

123Working with Advertisements

Not all the values for the newly created Peer Group Advertisement are exact
copies; most important, the identifier for the peer group must be a new,
unique ID. Creating a new ID is achieved using the net.jxta.id.IDFactory to
create a new Peer Group ID:

advertisement.setPeerGroupID(IDFactory.newPeerGroupID());

The IDFactory class generates a unique identifier for a variety of advertisements
that require a unique identifier, including peers, peer groups, pipes, and ser-
vices.

One other ID that is added to the new Peer Group Advertisement is a
Module Specification ID:

advertisement.setModuleSpecID(currentAdvertisement.getModuleSpecID());

This ID uniquely identifies a Module Specification Advertisement, which
defines the set of services provided by the peer group. For this example, you
simply copy the value, thereby associating your Peer Group Advertisement
with the same Module Specification Advertisement as the current group.

When you explore services and peer groups in Chapter 10,“Peer Groups
and Services,” you learn how to create a new Module Specification
Advertisement and use it to create a new peer group and start the group’s ser-
vices. It’s important to note that this example only publishes the new peer
group’s advertisement but does not actually start the new peer group’s services.

To try out the example4_6 command, start the Shell and flush the cache of
Peer Group Advertisements:

JXTA>groups –f

After flushing the cached Peer Group Advertisements, executing the groups
command again should result in an empty list. Implicitly, the peer is still aware
of the default NetPeerGroup, and executing the example4_6 command clones that
group’s advertisement and publishes the resulting advertisement both locally
and remotely:

JXTA>example4_6

Another call to groups should display the newly published group:
JXTA>groups
group0: name = NewGroup

The example4_6 command sets the local lifetime to 10 seconds (10,000 millisec-
onds) when it publishes the advertisement locally:

discovery.publish(advertisement, Discovery.GROUP,
10000, 1000);

After 10 seconds, the Cache Manager clears the advertisement from the cache.
Executing the groups command again returns an empty list, as expected.

06_2344 Ch 04 5/14/02 11:34 AM Page 123

124 Chapter 4 The Peer Discovery Protocol

Summary
This chapter demonstrated how the JXTA platform manages peer discovery
and how the Java reference implementation provides a developer with the
capability to send Discovery Query Messages to other peers and process the
Discovery Responses Messages sent in response to queries.

In addition to performing discovery, the DiscoveryService interface and the
implementation provided by the Java reference implementation can be used to
publish advertisements to both the local cache and remote peers.

In the next chapter, you explore the Peer Resolver Protocol and the
Resolver service.The Peer Resolver Protocol allows a peer to process and
respond to generic queries.As you’ll see, the Peer Resolver Protocol and the
Resolver service provide the Discovery service with the capability to send
queries to remote peers, process queries from other peers, and send responses
to queries.

06_2344 Ch 04 5/14/02 11:34 AM Page 124

