Steal This Book!

Yes, you read that right. Stea this book. For free.

Nothing. Zero. Zilch. Nadda. Zip.

Undoubtedly you're aking yourslf, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"

The answer...is yes. Sort of. | know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

1. Send this book to your friends: No, not your manager.
Your "with it" computer friends who are looking for the next
Big Thing. JXTA isit. Trug me. They want to know about it.

2. Send a link to the book's web site: Maybe the book is
too big to ®nd. After al, not everyone can have a fibre optic
Internet connection installed in their bedroom. The site, at
www. brendonwilson.com/projects/jxta, provides chapter-
sized PDFs for easy downloading by the bandwidth-challenged.

3. Visit the book's web site: Being a profesiona developer, you
probably have Carpal Tunnel Syndrome and shudder at the idea
of typing in example source code. Save yourlf the trouble. Go to
www. brendonwilson.com/projects/jxta and download the
source code. And while you're there, why not download some of
the chapters you're mising?

4. Buy the book: You knew there had to be a catch. Sure, the
book's PDFs are free, but I'm hoping that enough of you like the
book so much that you have to buy a copy. Either that, or none
of you can stand to read the book from a screen (or, wors yet,
print it all out <shudder>) and resort to paper to sve what's left
of your eyesight. The book is available a your local bookstore or
from Amazon.com (at a handsome discount, | might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

Introducing JXTA P2P Solutions

NOW THAT YOU'VE GOTTEN A BASIC introduction to the terminology, compo-
nents, and issues of P2P networking, it’s time to begin exploring the JXTA
platform. This chapter introduces the logical structure and building blocks of
JXTA, and demonstrates the capabilities of JXTA using the JXTA Shell appli-
cation to provide interactive experimentation with the JXTA platform.

As outlined in Chapter 2, “P2P Concepts,” a complete P2P solution
provides mechanisms for a peer to do the following:

» Discover other peers and their services

» Publish its available services

» Exchange data with another peer

» Route messages to other peers

» Query peers for status information

= Group peers into peer groups

The JXTA platform defines a set of protocols designed to address the common
functionality required to allow peers on a network to form robust pervasive
networks, independent of the operating system, development language, and
network transport employed by each peer.

40

Chapter 3 Introducing JXTA P2P Solutions

Core JXTA Design Principles

While designing the protocol suite, the Project JXTA team made a conscious
decision to design JXTA in a manner that would address the needs of the
widest possible set of P2P applications. The design team stripped the protocols
of any application-specific assumptions, focusing on the core P2P functionality
that forms the foundation of all types of P2P applications.

One of the most important design choices was not to make assumptions
about the type of operating system or development language employed by a
peer. By making this choice, the Project JXTA team hoped to enable the
largest number of potential participants in any JXTA-enabled P2P networking
application. The JXTA Protocols Specification expressly states that network
peers should be assumed to be any type of device, from the smallest embedded
device to the largest supercomputer cluster.

In addition to eliminating barriers to participation based on operating sys-
tem, computing platform, or programming language, JXTA makes no assump-
tions about the network transport mechanism, except for a requirement that
JXTA must not require broadcast or multicast transport capabilities. JXTA
assumes that peers and their resources might appear and disappear sponta-
neously from the network and that a peer’s network location might change
spontaneously or be masked by Network Address Translation (NAT) or firewall
equipment.

Apart from the requirements specified by the JXTA Protocols Specification,
the specification makes several important recommendations. In particular, the
specification recommends that peers cache information to reduce network
traffic and provide message routing to peers that are not directly connected to
the network.

The JXTA Protocol Suite

Based on these design criteria and others documented in the Protocols
Specification, the Project JXTA team designed a set of six protocols based on
XML messages, shown in Figure 3.1.

Each of the JXTA protocols addresses exactly one fundamental aspect of
P2P networking. Each protocol conversation is divided into a portion con-
ducted by the local peer and another portion conducted by the remote peer.
The local peer’s half of the protocol is responsible for generating messages and
sending them to the remote peer. The remote peer’s half of the protocol is
responsible for handling the incoming message and processing the message to
perform a task.

Local Peer

Core JXTA Design Principles

Remote Peer

Peer Discovery Protocol !

Peer Discovery Protocol

Peer Information Protocol 1

Peer Information Protocol

Pipe Binding Protocol

Pipe Binding Protocol

i 8

Via the Endpoint Routing Protocol

Via Installed Network Transports

Peer Resolver Protocol

Rendezvous Protocol

Via Installed Network Transports
S ettt aiedeed a0

Network Transport

Network Transport

Figure 3.1 The JXTA protocol stack.

Each protocol is semi-independent of the others. A peer can elect to imple-
ment only a subset of the protocols to provide functionality, while relying on
prespecified behavior to eliminate the need for a protocol. For example, a peer
could rely on a preconfigured set of router peers and, therefore, would not
require an implementation of the Endpoint Routing Protocol. However, the
protocols aren’t entirely independent of each other because each layer in the
JXTA protocol stack depends on the layer below to provide connectivity to
other peers. Although it would be possible to build an independent implemen-
tation of the Peer Discovery Protocol, it wouldn’t be useful without an imple-
mentation of the Peer Resolver and Endpoint Routing Protocols to handle

transporting its messages to remote peers.

41

42 Chapter 3 Introducing JXTA P2P Solutions

Peers can even elect to implement only one half of a protocol to provide a
peer optimized for one specific task. However, despite the allowance for partial
implementations, the JXTA specification recommends that peers completely
implement all the protocols.

The Logical Layers of JXTA
The JXTA platform can be broken into three layers, as shown in Figure 3.2.

JXTA Applications

JXTA Community Applications Sun JXTA Applications
JXTA Shell —
JXTA Services JXTA Community Services Sun JXTA Services
Peer Commands|

‘ Peer Groups ‘ ‘ Peer Pipes ‘ ‘ Peer Monitoring ‘

JXTA Core

‘ Security ‘

The P2P Network

Figure 3.2 The JXTA three-layer architecture.

Each layer builds on the capabilities of the layer below, adding functionality
and behavioral complexity.

The Core Layer

The core layer provides the elements that are absolutely essential to every P2P
solution. Ideally, the elements of this layer are shared by all P2P solutions.
These concepts were discussed in Chapter 2. The elements of the core layer
are listed here:

= Peers
= Peer groups
» Network transport (pipes, endpoints, messages)

= Advertisements

Core JXTA Design Principles

= Entity naming (identifiers)
= Protocols (discovery, communication, monitoring)

= Security and authentication primitives

The core layer includes the six main protocols provided by JXTA. Although
these protocols are implemented as services, they are located in the platform
layer and are designated as core services to distinguish them from the service
solutions of the services layer.

The core layer, as its name suggests, is the fundamental core of the JXTA
solution. All other aspects of a JXTA P2P solution in the services or applica-
tions layers build on this layer to provide functionality.

The Services Layer

The services layer provides network services that are desirable but not neces-
sarily a part of every P2P solution. These services implement functionality
that might be incorporated into several different P2P applications, such as the
following:

= Searching for resources on a peer
= Sharing documents from a peer

= Performing peer authentication

The services layer encompasses additional functionality that is being built by
the JXTA community (open-source developers working with Project JXTA)
in addition to services built by the Project JXTA team. Services built on top
of the JXTA platform provide specific capabilities that are required by a
variety of P2P applications and can be combined to form a complete P2P
solution.

The Applications Layer

The applications layer builds on the capabilities of the services layer to provide
the common P2P applications that we know, such as instant messaging.
Because an application might encompass only a single service or aggregate
several services, it’s difficult sometimes to determine what constitutes an
application and what constitutes a service.

Usually, the presence of some form of user interface indicates an application
rather than a service. In the case of the JXTA Shell, most of the functionality
is built on peer commands, simple services that accept command-line argu-
ments from the JXTA Shell. The JXTA Shell itself is a service, providing only
a minimal user interface, so the Shell is spread across the application/service
boundary.

43

44

Chapter 3

Introducing JXTA P2P Solutions

Applications include those P2P applications being built by the JXTA
Community, as well as demonstration applications such as the JXTA Shell
being built by the Project JXTA team.

XML: A Brief Introduction

All aspects of JXTA build on the eXtensible Markup Language (XML) to
structure data as advertisements, messages, and protocols. XML is good choice
for representing data for five reasons:

XML is language-neutral. Any programming language capable of
manipulating text strings is capable of parsing and formatting XML data.

XML is simple. XML uses text markup to structure data in much the
same way that HTML structures text documents for display in web
browsers. The simplicity of XML makes it easier for developers to under-
stand and debug.

XML is self-describing. An XML document consists of data struc-
tured using metadata tags and attributes that describe the format of the
data. Although XML supports the use of Document Type Definitions
(DTDs) to provide a schema definition of a valid document, this is not a
requirement for a well-formed XML document.

XML is extensible. Unlike HTML, XML allows authors to define
their own set of markup tags to structure data.

XML is a standard. The World Wide Web Consortium (www.w3.org) is
responsible for maintaining the XML standard, with industry and com-
munity input, and has been widely adopted in all areas of the computer
industry.

To learn all you’ll need to know about XML to understand JXTA, consider
the simple example given in Listing 3.1.

Listing 3.1 A Simple XML Example

<?xml version="1.0" encoding="UTF-8"?>
<Person>

<Name>Erwin van der Koogh</Name>
<Address>12 Lower Hatch Street</Address>
<City>Dublin</City>
<Country>Ireland</Country>
<Phone>555-5555</Phone>

</Person>

Core JXTA Design Principles

Even if you’ve never seen XML, you probably recognize the example XML
document as the contact information for a person named Erwin van der
Koogh. From the example, you might guess at some of the rules of XML as
follows:

= Each piece of information is encapsulated between a beginning and an
end tag (such as <Name></Name>).

» The name of a tag specifies the type of content contained by the tags.

= Tags can be nested to form hierarchies that further structure the data in a
meaningful way.

The only piece of information that might be puzzling is the first line. The first
line specifies that the document is formatted using the rules set out by the
XML 1.0 standard and that the document is encoded using UTF-8.

This example is straightforward. However, you might ask yourself, “What if
Erwin has more than one phone number?” To further structure the data, an
XML document can contain any number of the same type of element and can
augment the elements with attributes that distinguish the elements, as shown
in Listing 3.2.

Listing 3.2 An Expanded XML Example

<?xml version="1.0" encoding="UTF-8"?>
<Person>
<Name>Erwin van der Koogh</Name>
<Address>12 Lower Hatch Street</Address>
<City>Dublin</City>
<Country>Ireland</Country>
<Phone Type="Home">555-5555</Phone>
<Phone Type="Work">555-1234</Phone>
</Person>F

The addition of the Type attribute to the Phone element tells you that 555-5555
corresponds to Erwin’s home phone number and that 555-1234 corresponds to
his work phone number.

More formal XML documents might use DTDs to define the following:

» Which tags are valid for a document

» How many times a specific tag might occur
» The order of the tags

» Required and optional attributes

» Default attribute values

45

46

Chapter 3 Introducing JXTA P2P Solutions

When an XML document implements the rules specified by a DTD, the XML
document is said to be valid. When an XML document doesn’t use a DTD
but otherwise follows the rules of XML, it is said to be well formed. For sim-
ple applications of XML, it is usually enough that documents are well formed,
eliminating the overhead required to check that a document complies with a
DTD.

That, in a nutshell, is about all the XML you need to know or understand
to comprehend the XML used by JXTA. Although XML supports many other
wonderful capabilities, understanding these capabilities isn’t necessary to under-
stand JXTA’s use of XML. For more information on XML, see Appendix B,
“Online Resources,” for the location of the XML standard and other XML
resources.

JXTA Advantages and Disadvantages

JXTA provides a far more abstract language for peer communication than pre-
vious P2P protocols, enabling a wider variety of services, devices, and network
transports to be used in P2P networks. The employment of XML provides a
standards-based format for structured data that is well understood, well sup-
ported, and easily adapted to a variety of transports. XML also has the advan-
tage that it’s a human-readable format, making it easy for developers to debug
and comprehend. So far, JXTA seems to have done everything right. Well,
maybe not.

One important element that JXTA does not attempt to address is how ser-
vices (other than the core services) are invoked. Several standards exist for
defining service invocation, such as the Web Services Description Language
(WSDL), but none has been specifically chosen by the JXTA Protocols
Specification. JXTA provides a generic framework for exchanging information
between peers, so any mechanism, such as WSDL, could potentially be used
via JXTA to exchange the information required to invoke services.

Several other arguments arise against the flexibility that the designers of
JXTA infused throughout the JXTA Protocols Specification. Although JXTA’s
use of XML specifies all aspects of P2P communication for any generic P2P
application, JXTA might not be suited to a specific standalone P2P applica-
tion. In an individual application, the network overhead of XML messaging
might be more trouble than it’s worth, especially if the application developer
has no intention of taking advantage of JXTA’s capabilities to incorporate
other P2P services into the application.

Core JXTA Design Principles

Critics of JXTA point out that the platform’s abstraction of the network
transport is another potential area of excess. If most P2P applications today
rely on the Transport Control Protocol (TCP) to provide a network transport,
why does JXTA go to such lengths to avoid tying the protocols to a specific
network transport? Why not specify TCP as the assumed network transport
and eliminate the overhead?

All these points highlight the need for developers to balance flexibility with
performance when implementing their P2P applications. JXTA might not be
the best or most efficient solution for implementing a particular P2P applica-
tion. However, JXTA provides the most well-rounded platform for producing
P2P applications that have the flexibility required to grow in the future. The
capability to leverage other P2P services and enable widespread development
of P2P communities is the core value of the JXTA platform.

How Is JXTA Different from Jini or .NET?

The promise of interconnecting any type of device over any type of network
might sound familiar to followers of Sun’s Jini technology. Although there are
some similar goals, Jini relies exclusively on the Java platform for its function-
ality, whereas JXTA has no dependence on a particular programming language.
Unlike JXTA, Jini uses a centralized server to locate services on the network
and relies on Remote Method Invocation (RMI) and object serialization for
communication with remote devices. JXTA relies on XML rather than object
serialization to exchange structured data and discovers services across all peers
on the P2P network.

The Web Services aspects of Microsoft’s .NET platform are heavily infused
with XML, but the use of XML alone doesn’t make them comparable.
Fundamentally, JXTA and .NET have completely different purposes, with
.NET focusing more on the traditional client/server architecture of service
delivery. Although .NET technology could form the foundation of a P2P
application, creating a full P2P solution with .NET would require extra work
on the part of the developer. Developing a P2P solution using .NET would
require a developer to specify all the core P2P interactions, such as peer dis-
covery. This solution would essentially involve recreating all the mechanisms
that are already defined by the JXTA protocols.

47

48

Chapter 3 Introducing JXTA P2P Solutions

Introducing the JXTA Shell

Rather than try to explain JXTA in the abstract, what better way to start to
understand JXTA than seeing the technology in action? To do this, the
remainder of this chapter guides you through using the JXTA Shell.

The JXTA Shell is a demo application built on top of the JXTA platform
that allows users to experiment with the functionality made available through
the Java reference implementation of the JXTA protocols. The JXTA Shell
provides a UNIX-like command-line interface that allows the user to perform
P2P operations by manipulating peers, peer groups, and pipes using simple
commands.

Before You Install the JXTA Shell

To make the installation easier, you should already have a Java Run-Time
Environment (JRE), version 1.3 or later, on your computer. To test whether
you have a JRE already installed, go to the command prompt and type

java -version

If you have an existing JRE, you will see version information from the run-
time of this form:

java version "1.3.1_01"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1_01)
Java HotSpot(TM) Client VM (build 1.3.1_01, mixed mode)

If you don'’t see this type of output, or if your version is lower that 1.3, you
need to install a version 1.3 or higher JRE.

You can download a version of the JXTA Shell installer for most platforms
with a standalone JRE included. However, if you intend to try the example
code in this book’s later chapters, you should install the Java 2 SDK (which
includes a JRE) instead of a standalone JRE.The Java 2 SDK for most
major platforms, including Solaris, Linux, and Windows, is available from
www . javasoft.com/j2se/.

For developers using the Mac platform, the latest Java environment can be
downloaded from www.apple.com/java/ but is available only for the Mac OS X
platform.

Obtaining and Installing the JXTA Shell

The JXTA Shell application can be obtained from either the Project JXTA
web site as a set of prebuilt binaries or from the Project JXTA source control
system as a set of source files.

Introducing the JXTA Shell 49

To avoid the extra work required to build the JXTA Shell from source
code, these experiments use the prebuilt JXTA Shell binaries that come with the
JXTA demo applications. To download the JXTA demo installer that includes
the JXTA Shell binaries, go to download.jxta.org/easyinstall/install.html.

Installing the JXTA demo applications also installs the latest stable build of
the JXTA platform, packaged as a set of Java Archive (JAR) files. Unless you’re
interested in working with the latest experimental (and potentially unstable)
version available from the Project JXTA CVS repository, these archives are all
that’s required to build new JXTA solutions in Java. The latest JXTA build at
the time of writing was build 47b, built on January 25, 2002.

The installation procedure is slightly different for each operating system.
The following sections describe the installation procedure for various operat-
ing systems.

Installing the JXTA Shell for Windows

To install the JXTA demo applications for the Windows platform, follow these
steps:

1. Open download.jxta.org/easyinstall/install.html in a web browser.

2. If you already have a version 1.3 or later JRE installed on your machine,
download the Windows Without Java VM installer; otherwise, download
the Windows Includes Java VM installer.

3. When prompted by your web browser, specity a directory to store the
downloaded installer.

4. After the download is complete, open Windows Explorer and go to the
folder where you stored the downloaded installer.

5. Run the installer. It should be called either JXTAInst.exe or
JXTAInst_VM.exe, depending on whether you chose the installer that
includes the JVM.

6. Click Next to dismiss the Introduction dialog box.

7. The installer displays the License Agreement dialog box. Select the radio
button titled I Accept the Terms of License Agreement, and click Next.

8. The installer prompts you to specify where the JXTA demo applications
should be installed. Unless you have reason to install them elsewhere, use
the default installation directory provided (C:\Program Files\JXTA_Demo).
Click Install.

50

Chapter 3 Introducing JXTA P2P Solutions

9. The installer installs the JXTA demo applications and then displays
instructions on how to run the demo applications. Note these instruc-
tions before clicking Next to dismiss the launch instructions.

10. Click Done to close the installer.

The demo applications are now installed, and you can safely delete the installer
that you downloaded.

Installing the JXTA Shell for Solaris, Linux, and UNIX

To install the JXTA demo applications for the Windows platform, follow these
steps:
1. Open download.jxta.org/easyinstall/install.html in a web browser.

2. It you already have a version 1.3 or later JRE installed on your machine,
download the Without Java VM installer for your platform; otherwise,
download the Includes Java VM installer for your platform. The UNIX
platform install does not have a version that includes a standalone JRE,
so if you don't already have a JRE, you must download and install one
first.

3. When prompted by your web browser, specify a directory to store the
downloaded installer.

4. After the download is complete, open a console and go to the folder
where you stored the downloaded installer.

5. Run the installer using sh ./JXTAInst.bin, replacing JXTAInst.bin with the
name of the file that you downloaded. It should be called JXTAInst.bin,
JXTAInst_Sol_VM.bin, or JXTAInst_LNX_VM.bin, depending on which version
you chose to download.

6. Click Next to dismiss the Introduction dialog box.

7. The installer displays the License Agreement dialog box. Select the radio
button titled I Accept the Terms of License Agreement, and click Next.

8. The installer prompts you to specify where the JXTA demo applications

should be installed. Unless you have reason to install them elsewhere, use
the default installation directory provided (~/JXTA_Demo). Click Install.

9. The installer installs the JXTA demo applications and then displays
instructions on how to run the demo applications. Note these instruc-
tions before clicking Next to dismiss the launch instructions.

10. Click Done to close the installer.

Introducing the JXTA Shell 51

The demo applications are now installed, and you can safely delete the installer
that you downloaded.

Installing the JXTA Shell for Other Java-Supported Platforms

To install the JXTA demo applications for any other platform that supports
Java, you can download a Java-based installer. However, you must already have
a JRE installed on your machine. To install the JXTA demo applications for a
Java-enabled platforms, follow these steps:

1. Open download.jxta.org/easyinstall/install.html in a web browser.

2. Download the Other Java-Enabled Platforms version of the JXTA Shell
installer.

3. When prompted by your web browser, specify a directory to store the
downloaded installer.

4. After the download is complete, open a console and go to the folder
where you stored the downloaded installer.

5. Run the installer using java -classpath JXTA Demo.zip install.
6. Click Next to dismiss the Introduction dialog box.

7. The installer display the License Agreement dialog box. Select the radio
button titled I Accept the Terms of License Agreement, and click Next.
8. The installer prompts you to specify where the JXTA demo applications
should be installed. Unless you have reason to install them elsewhere, use
the default installation directory provided (usually
C:\Program Files\JXTA_Demo or ~/JXTA_Demo). Click Install.

9. The installer installs the JXTA demo applications and then displays
instructions on how to run the demo applications. Note these instruc-
tions before clicking Next to dismiss the launch instructions.

10. Click Done to close the installer.

The demo applications are now installed, and you can safely delete the installer
that you downloaded.

The Installation Directory Structure

When the installation is complete, the directory structure that’s shown in
Figure 3.3 appears.

52

Chapter 3 Introducing JXTA P2P Solutions

(JXTA Install)

Instant P2P

lib

Shell

UninstallerData

Figure 3.3 The installation directory structure.

(UXTA Install) is the installation directory that you specified to the installer. The
1lib subdirectory contains the JARs for the JXTA platform and the demo
applications, and the Shell subdirectory contains the executable to start the
Shell application. After the Shell is executed, the Shell subdirectory also holds
a cache of configuration information and discovered peers and resources.

The InstantP2pP directory contains another demo application that you do
not use here. The UninstallerData directory contains the executable required to
uninstall the JXTA demo applications.

Running the JXTA Shell

To start the JXTA Shell, follow the instructions provided at the end of the
installation process.

On Windows, start the application by clicking Start, Programs, JXTA, JXTA
Shell.

On other platforms, execute the script provided by the installer to start the
application:

1. Open a command shell.

2. Go to the directory location that you specified for the JXTA Shell
during the installation.

3. Go to the shell subdirectory.

4. Execute the shell.exe or the shell.sh script.

Running the JXTA Shell 53

Alternatively, you can invoke the Shell application directly using this command
from the Shell subdirectory of the JXTA installation:

C:\Program Files\JXTA Demo\Shell>java -classpath ..\lib\jxta.jar;
..\lib\jxtashell.jar;..\lib\log4j.jar;..\lib\jxtasecurity.jar;
..\lib\cryptix-asni.jar;..\lib\cryptix32.jar;..\1lib\minimalBC. jar;
..\lib\jxtaptls.jar net.jxta.impl.peergroup.Boot

On non-Windows platforms, you need to change the command given to
match the directory and environment variable separator characters used by
your platform. On Solaris, Linux, and UNIX, use / instead of \, and :
instead of ;.

Configuring the Shell

The first time you execute the application, you are presented with a screen
requesting configuration information, as shown in Figure 3.4.

[25 3xTA Configurator 1 =100 =]
See "http:ishell da. orgindes itml for config help

basicl advanced RendezvousrRelaysl Securilyl

Basic settings

Peer Mame || (Mandatory)

|_ Use a proxy server if behind firewall)

Prowy address ImyProxy.myDomain 2020

Ok | Cancell

Figure 3.4 The basic configuration screen.

54

Chapter 3

The user interface that appears, called the Configurator, is used by the refer-
ence implementation to configure the JXTA platform before starting the
JXTA platform. To configure the JXTA plattorm using the Configurator,

Introducing JXTA P2P Solutions

follow these steps:

1.

2.
3.
4

5.

After you click OK, the JXTA platform starts and connects to the network.
The time that it takes to start the JXTA platform varies with speed of your
network connection, but it should take less than 30 seconds, at the most.
Assuming that you have a simple network configuration, the Shell should

Enter a name for your peer in the Peer Name text field.
Go to the Security tab.

Enter a username in the Secure Username text field.

start up and display the screen that’s shown in Figure 3.5.

Enter a password in the Password text field, and enter the same password
in the Verify Password text field. Be sure to note the username and pass-
word that you enter because they will be required each time you start

the JXTA platform in the future.

Click OK.

=4 JXTA Shell - 1 [

= Welcome to the JXTAShell Version 1.0 ===

The JXTA Shell provides an interactive enviromment to the JETA

platform. The 3hell provides basic commands to discover peers and
peergroups, to join and resign from peergroups, to create pipes

between peers, and to send pipe messages. The Shell provides environment
wariahles that permit binding symbolic names to Jxta platform ohjects.
Environment wvariables allow Shell commands to exchange data between
themselwes. The shell command 'env' displays all defined enwironment
wvariahles in the current 5hell session.

The Shell creates a Jxta InputPipe (stdin) for reading input from
the keyboard, and a Jxta OucputPipe (stdout) to display information
on the Shell console. 411 commands executed by the 5hell hawe their

The Shell also creates the environment wariable 'stdgroup' that
contains the current J{TA PeerGroup in which the Shell and conmands
are executed.

4 new Shell can be forked within a Shell. The 'Shell -2'
comnand starts a new Shell with a new 3hell window. The Shell can
also read a command script £ile wia the 'Shell -f nyfile'.

4 'man' command is available to list the commands available.
Type 'man <command-' to get help about a particular command.
To exit the 5hell, use the 'exit' conmand.

JXTh

initial 'stdin' and 'stdout' set up to the 3hell's stdin and stdout pipes.

Figure 3.5 The JXTA Shell user interface.

Running the JXTA Shell

To confirm that your client is correctly connected to the network, enter the
rdvstatus command at the JXTA prompt:

JXTA>rdvstatus

If the Shell is correctly configured and managed to locate a rendezvous server,
the rdvstatus command returns a similar result to the one given in Listing 3.3.

Listing 3.3 Results of the rdvstatus Command

Rendezvous Connection Status:

Is Rendezvous : [false]

Rendezvous Connections :
Rendezvous name: JXTA.ORG 237
Rendezvous name: JXTA.ORG 235
Rendezvous name: ensd_1

Rendezvous Disconnections :

[None]

This output shows that the Shell has correctly connected to three rendezvous
peers, named JXTA.ORG 237, JXTA.ORG 235, and ensd_1. If you receive this response,
your Shell peer is correctly configured and connected to the network; if you
don’t receive this response, see the next section to troubleshoot your
configuration.

Troubleshooting Your Peer’s Configuration

Listing 3.4 shows the output of the rdvstatus command when the client has
failed to locate any rendezvous peers and cannot locate other peers.

Listing 3.4 No Visible Rendezvous Peers

Rendezvous Connection Status:

Is Rendezvous : [False]

Rendezvous Connections :

continues

55

56

Chapter 3 Introducing JXTA P2P Solutions

Listing 3.4 Continued

[None]

Rendezvous Disconnections :

[None]

In some cases, it might take a few moments to see the rendezvous peers due to
network latency. Wait a few moments before running rdvstatus again to see if
the problem is simply high network latency. If the rdvstatus still shows no ren-
dezvous peers, try using this command:

JXTA>peers -r
Wait a few moments and try the rdvstatus command again. If rdvstatus still
fails to show any rendezvous peers, several possible reasons exist:

» No rendezvous peers are available.

» Your firewall configuration is preventing you from communicating with
a rendezvous peer.

» You’re not connected to a network.
If you aren’t connected to a network, you can still use the Shell to experiment

with the JXTA platform by following the instructions in the later section,
“Using the JXTA Shell Without a Network Connection.”

Finding Available Rendezvous Peers
First, confirm that rendezvous peers are available on the network:

1. Force the Shell to display the configuration screen the next time you
start the Shell by typing the following from within the Shell:

JXTA>peerconfig

If you don't invoke this command before exiting the Shell, the Shell
simply uses cached configuration information the next time it starts,
with the same results. The peerconfig command will return this:

peerconfig: Please exit and restart the jxta shell to

2. Follow the instructions and exit the shell by using the following
command:

JXTA>exit

Running the JXTA Shell 57

3. Restart the Shell application the same way you started it the first time.
This time you are prompted to enter only the username and password
that you entered the first time in the Configurator. Enter the username
and password, and hit Enter.

4. When the configuration screen appears this time, go to the Rendezvous/
Relays tab and click Download Relay and Rendezvous Lists. The Load
list from URL dialog box appears. (See Figure 3.6.)

‘%JXTA Configurator " =181 =l
See "hitp:iishell jxta.orglfindex. html" for config help

basicl advanced Rendezvousrﬂelaysl Becurityl

Experienced Users Only
Fendezimns Sefiings

[Actas a Rendezvous

Available TCP rendez-vous Available HTTP rendez-vous
| | o | | -
:‘%Load list from URL 4 x|

Edit the urls below and click"Load". Blank those you do notwant to [oad. Repeat if needed.

See also: hitpeiplatform. jxta. argfjavalrendezvous himl

Tep rendez-vaus list I

Hittp rendez-vous list Ihtlp:rirdvjxtah0Sts.netfcgi-binIhﬂdevsProd.cgi

HTTF relays list |http:ﬁrdvjxtahosts.netfcgi-binIroutersProd.cgi

Load | Dismiss |
| |

Download relay and rendezvous lists

ok | Cancell

Figure 3.6 The Download Rendezvous/Router List dialog box.

To find rendezvous peers to use for peer discovery, the JXTA Shell attempts to
download a list of available rendezvous peer IP addresses. This is a convenient
mechanism for finding rendezvous peers, although you could just as easily
enter the IP address and port of a rendezvous peer manually in the
Rendezvous Settings section of Rendezvous/Router tab.

Using a web browser, go to the location shown in the Http rendez-vous list
text field—by default, this value is as follows:

http://rdv.jxtahosts.net/cgi-bin/httpRdvsProd.cgi

58

Chapter 3 Introducing JXTA P2P Solutions

This site returns a list of the production rendezvous peers run by Project
JXTA.These peers are running the latest stable release of the JXTA platform,
which should be the same as the platform version provided with the JXTA
demo application installer. If the page returned is empty, no known production
rendezvous peers are available from Project JXTA. Most likely, this 1s only a
temporary situation occurring during an update to the rendezvous peer soft-
ware. Try again later, or see the next section, “Using the JXTA Shell Without a
Network Connection” for further instructions.

If the URL returns a list of rendezvous peers, you should test to make sure
that at least one rendezvous peer in the list is operating at the specified IP
address and port. To do this, you can use a web browser to request an
acknowledgement from the rendezvous peer. For example, if the rendezvous
peer is located at IP address 63.81.220.34 and is listening on port 9700, point-
ing a web browser to http://63.81.220.34:9700/ping/ should return a blank web
page.You can view the source of the web page to confirm that the result is a
web page, not an error page.

If you have found a working rendezvous peer, the problem is mostly likely
due to the configuration of a firewall between your machine and the outside
network. Go to the Basic tab, check the Use a Proxy Server option, and enter
the location of a HTTP proxy on your local network.You can obtain the
location of your network’s HTTP proxy by copying the proxy settings from
your web browser or talking to your network administrator. The Shell should
now show rendezvous peers when you start the application and run the
rdvstatus command.

Using the JXTA Shell Without a Network Connection

If, for some reason, you don’t have network access, you can still explore JXTA
using the Shell and the experiments in the rest of this book. The Shell applica-
tion is a peer like any other on a JXTA P2P network, so all the standard com-
mands to manipulate peers, peer groups, and pipes will work exactly the same,
independent of the location of the peer. However, you will be able to see,
manipulate, and communicate only with your own peer.

If you want to experiment with the JXTA Shell in a more realistic environ-
ment, you can run two instances of the Shell on the same machine, using one
of the Shell instances as a rendezvous peer. Due to the way the Java reference
implementation of the JXTA platform implements its cache of configuration
information, you need to make a copy of the Shell directory to prevent clashes
between the instances of the Shell:

1. Force the Shell to display the configuration dialog box the next time it
starts using the peerconfig command from within the Shell.

2. Exit the Shell using exit.

Running the JXTA Shell

3. Make a copy of the Shell subdirectory (located underneath the JXTA
installation directory) called Shell2 at the same level as the Shell
subdirectory.

Before attempting to configure each Shell, you should know your machine’s
local IP address.
On Windows, follow these steps:

1. Open a command prompt.
2. Invoke the ipconfig command.
3. Note the IP address specified in the output from ipconfig.
You should also ensure that you can ping your own IP address because some

internal networks might not allow you to see your own IP address. To check if
you can see your own IP address, follow these steps:

1. Open a command prompt.
2. Invoke the ping command.
3. Ensure that the response doesn’t indicate that the destination host is

unreachable.

If you cannot ping the IP address returned by ipconfig, you should use the
localhost IP address 127.0.0.1 instead of the IP address returned by ipconfig.
On other operating systems, consult your operating system’s help system to
learn how to determine your machine’s IP address and ping an IP address.

To start one Shell as a rendezvous peer, open a command prompt and
follow these steps:

1. Go to the shell subdirectory.

2. Start the Shell using the executable or script in the directory directly
(shell.exe or shell.sh) or manually using the java command.

3. Enter a name for the peer.
4. Go to the Rendezvous/Relays tab.
Remove each TCP and HTTP rendezvous server and each HTTP relay

SCrver.

ot

Deselect Use a Relay in the HTTP Relay Settings section.
Select Act as a Rendezvous.

Go to the Advanced tab.

Deselect Enabled from the HTTP Settings section.

10. Select Enabled and Manual from the TCP Settings section.

X o N o

59

60

Chapter 3

11.

12.
13.

Introducing JXTA P2P Solutions

Select Always Manual, and note the IP address and port number (default
9701) that has been automatically set. If no IP address has been set, enter
the IP address that you obtained from your operating system.

Click OK.

Enter your username and password when prompted, and hit Enter.

To start a second Shell to act as a simple peer using the rendezvous peer that
you just created, open a second command prompt and do the following:

1.
2.

Go the shell2 subdirectory that you created.

Remove the pse subdirectory. This directory contains the personal secu-
rity settings protected by the password entered in the Configurator.

. Remove the PlatformConfig file. This file contains configuration informa-

tion for your peer, and it must be removed to prevent the second
instance from reusing the peer’s unique ID.

Start the Shell using the executable or script in the directory directly
(shell.exe or shell.sh) or manually using the java command.

. Enter a name for the peer, preferably one that is different from the one

you used for the rendezvous peer.

6. Go to the Rendezvous/Relays tab.
7. Remove each TCP and HTTP rendezvous server and each HTTP relay

SCTVer.

8. Deselect Use a Relay in the HTTP Relay Settings section.

9. Enter the IP address and port that you noted in the first shell as a TCP

10.
11.
12.

13.
14.
15.
16.

Rendezvous, and add it to the list using the + button.
Go to the Advanced tab.
Select Enabled and Manual from the TCP Settings section.

Select Always Manual, and enter your IP address and a different port
number (say, 9702).

Deselect Enabled from the HTTP Settings section.
Go the Security tab.
Enter a username and password.

Click OK.

You now have a simple peer configured to use the first instance of the Shell
as a rendezvous peer, and you can conduct P2P communication between the

two peers as normal.

Navigating the JXTA Shell 61

Navigating the JXTA Shell

The JXTA Shell presents a simple command-line user interface similar to
UNIX’ interface. Simple text commands are entered at the JXTA prompt:

JXTA>

Like most UNIX shells, the Shell is case-sensitive and maintains a history of
previously issued commands. At any time, you can see a complete list of the
previously issued commands by using the history command:

JXTA>history
0 man
1 history

At any time, you can scroll through the commands using the up and down
arrow keys, invoking previous commands without retyping the command.

Learning About Shell Commands

The JXTA Shell resembles a UNIX shell in many ways, and several of the
commands are available within the Shell. To learn what commands are avail-
able from the Shell, you can use the man command by itself to print a list of all
available commands, shown in Table 3.1:

JXTA>man

Table 3.1 Built-In Shell Commands

Command Description

cat Concatenates and displays a Shell object
chpgrp Changes the current peer group

clear Clears the shell’s screen

env Displays environment variable

exit Exits the Shell

exportfile Exports to an external file

get Gets data from a pipe message

grep Searches for matching patterns

groups Discovers peer groups

help Gives instructions on where to find help
history Shows the history of Shell commands executed
importfile Imports an external file

instjar Installs JAR files containing additional Shell commands

continues

62 Chapter 3 Introducing JXTA P2P Solutions

Table 3.1 Continued

Command Description

join Joins a peer group

leave Leaves a peer group

man Online help command that displays information about a
specific Shell command

mkadv Makes an advertisement

mkmsg Makes a pipe message

mkpgrp Creates a new peer group

mkpipe Creates a pipe

more Pages through a Shell object

peerconfig Forces reconfiguration the next time the Shell is started

peerinfo Gets information about peers

peers Discovers peers

put Puts data into a pipe message

rdvserver Runs the peer as a standalone rendezvous server

rdvstatus Displays information about rendezvous

recv Receives a message from a pipe

search Discovers JXTA advertisements

send Sends a message into a pipe

set Sets an environment variable

setenv Sets an environment variable

sftp Sends a file to another peer

share Shares an advertisement

Shell Forks a new JXTA Shell command interpreter

Sql Issues an SQL command (not implemented)

Sqlshell Acts as the JXTA SQL Shell command interpreter

Talk Talks to another peer

Uninstjar Uninstalls JAR files previously installed with instjar

Version Returns the Shell version information

we Counts the number of lines, words, and characters

in an object
who Displays credential information

whoami Displays information about a peer or a peer group

Navigating the JXTA Shell 63

The man command also enables you to learn about the purpose and options for
various commands available within the Shell. For example, to find out more
about the rdvstatus command, use this command:

JXTA>man rdvstatus

This pulls up the usage information for the rdvstatus command, as shown in
Listing 3.5.

Listing 3.5 Usage Information for rdvstatus

NAME
rdvstatus - display information about rendezvous

SYNOPSIS
rdvstatus [-v]
[-v] print verbose information
DESCRIPTION

rdvstatus displays information about the peer
rendezvous. The command shows how many rendezvous peers
the peer is connected to.

OPTIONS
-V print verbose information
EXAMPLE
JXTA>rdvstatus
SEE ALSO

whoami peers

Environment Variables

The Shell provides environment variables to store pieces of information in the
Shell for later use.You can see the defined environment variables using the env
command, as shown in Listing 3.6.

64

Chapter 3 Introducing JXTA P2P Solutions

Listing 3.6 The Shell Environment Variables

JXTA>env

stdin = Default InputPipe (class net.jxta.impl.shell.ShellInputPipe)

SHELL = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)

History = History (class net.jxta.impl.shell.bin.history.HistoryQueue)
parentShell = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)

Shell = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)

stdout = Default OutputPipe (class net.jxta.impl.pipe.NonBlockingOutputPipe)
consout = Default Console OutputPipe (class
net.jxta.impl.shell.ShellOutputPipe)

consin = Default Console InputPipe (class
net.jxta.impl.shell.ShelllInputPipe)

stdgroup = Default Peer Group (class net.jxta.impl.peergroup.StdPeerGroup)

These environment variables are set by default to handle the input, output, and
basic functionality of the Shell. More variables can be defined by the output of
commands, each corresponding to an object, data, or cached advertisement
accessible within the Shell’s environment.

Importing and Exporting Environment Variables

In addition to working with environment variables within the Shell, environ-
ment variables can be imported and exported using the importfile and
exportfile commands. The commands enable you to import XML or plain
text files into Shell environment variables. By default, the working directory
for these commands is set to the directory where you executed the Shell,
usually the Shell subdirectory of the JXTA installation directory.

To demonstrate the importfile and exportfile commands, follow these steps:

1. Create a text file called input.txt containing some text in the Shell sub-
directory under the JXTA installation directory.

2. Import the text of the file into an environment variable called test using
importfile -f input.txt test.

You should see a new environment variable named test in the list of variables
returned by the env command. Rather than trying to find a variable in the
output of env, you can use the cat command to view the contents of the test
variable, as shown in Listing 3.7:

JXTA>cat test

Navigating the JXTA Shell 65

Listing 3.7 The Imported Environment Variable

<?xml version="1.0"?>

<ShellDoc>
<Item>
This is some test text.
</Item>
</ShellDoc>

The cat command knows how to render several types of environment vari-
ables to the standard output of the Shell, including the XML document
produced by importing input.txt with the importfile command. The test
environment variable can now be exported to a file called output.txt using this
command:

JXTA>exportfile -f output.txt test

A file called output.txt containing the contents of the test variable appears in
the Shell subdirectory of the JXTA installation.

Although the usefulness of this functionality might seem trivial now,
remember that all functionality in JXTA is expressed in terms of XML-based
advertisements. As you’ll see, having the capability to manipulate environment
variables is central to the power of the JXTA Shell as a tool for experimenting
with the JXTA platform.

Combining Commands

In a manner similar to UNIX, the JXTA Shell allows users to string together
simple commands to perform complex functionality. The | operator allows the
output of a command on the left of the operator to be used as input into the
command on the right.

Consider a simple example: The output of the man command is a bit too
long to read without scrolling. The more command breaks a piece of input text
into screen-size chunks.You can combine these two commands by typing the
following:

JXTA>man | more

This pipes the output of the man command as input into the more command,
allowing you to view the man output in screen-size chunks that you can move
between by hitting the Enter key. Similarly, you could count the number of
characters in the man output using this command:

JXTA>man | wc -c

66 Chapter 3 Introducing JXTA P2P Solutions

This pipes the output of the man command as input into the we command,
which counts the number of characters in the input when the -¢ option is set.

Manipulating Peers

The JXTA Shell provides basic capabilities to discover peers and obtain peer
information. Working with a peer involves working with a Peer Advertisement
that describes the peer and its services.

Learning About the Local Peer

Before learning about other peers, you need to know a bit about your own
local peer:

JXTA>whoami

The whoami command returns the peer information for the local peer run by
the JXTA Shell given in Listing 3.8.

Listing 3.8 Results of the whoami Shell Command

<Peer>MyPeer</Peer>

<Keywords>NetPeerGroup by default</Keywords>
<PeerId>urn:jxta:uuid-59616261646162614A78746150325033855A703D4E614D
B7B54A9BE583FFCD4C03</PeerId>
<TransportAddress>tcp://asterix:9701/</TransportAddress>
<TransportAddress>http://JxtaHttpClientuuid-59616261646162614A787461
50325033855A703D4E614DB7B54A9BES83FFCD4C03/</TransportAddress>

This short version of the local peer information shows only the basic peer
information. A longer version that displays the whole Peer Advertisement
stored in environment variable peerX can be viewed using this command:

JXTA>cat peerX

You can find the environment variable holding your Peer Advertisement by
looking for your peer’s name in the results of the peers command.

[won’t go into the details of the Peer Advertisement at this point. I will
provide a complete description of the Peer Advertisement when we explore
the Peer Discovery Protocol in the next chapter. For now, it’s enough to
notice some of the information provided by the advertisement:

» A name for the peer

» A unique identifier for the peer

Manipulating Peers

= Services provided by the peer
» Transport endpoint details
The services provided by the peer are called peer services; these are services

offered only by the peer. If the peer disconnects from the network, these ser-
vices are unavailable to other peers.

Finding Peers

Before your peer can request services from a peer, it needs to know the exis-
tence of the peer, what services the peer offers, and how to contact the peer
on the network. To find peers that your local peer is already aware of, execute
the peers command given in Listing 3.9.

Listing 3.9 Results of the peers Shell Command

JXTA>peers

peer®: name = rdv-235
peeri: name = rdv-237
peer2: name = dI_lab1
peer3: name = dI_lab_Tokyo
peer4: name = MyPeer

Each Peer Advertisement is made available in the Shell environment via a vari-
able with a name of the form peerX, where X is an integer. At this point, your
peer is aware of only local or cached Peer Advertisements for peers that have
already been discovered; no discovery of remote peers has yet been performed.
Caching Peer Advertisements reduces the amount of discovery that a peer
might have to perform and can be used by simple peers as well as rendezvous
peers to reduce network traffic.

Each entry returned by the peers command shows the simple peer name for
a peer and the name of an environment variable storing the Peer Advertise-
ment for that peer. In the previous example, the peer4 environment variable
stores the Peer Advertisement for the local peer.You can view the Peer
Advertisement using the cat command:

JXTA>cat peer4

To discover other peers on the network, you need to send a peer discovery
message using the following:

JXTA>peers -r
peer discovery message sent

67

68

Chapter 3 Introducing JXTA P2P Solutions

This sends a discovery message immediately to all the rendezvous peers that
your peer is aware of on the network. The rendezvous peers forward the
request to other rendezvous and simple peers that it is aware of on the net-
work. The rendezvous peers might potentially reply using cached Peer
Advertisements to improve the response time and reduce network traffic across
the P2P network. The peers command returns to the JXTA prompt immedi-
ately, and the discovered peers can be viewed using the peers command, as
shown in Listing 3.10.

Listing 3.10 The Updated List of Discovered Peers

JXTA>peers

peer@: name = cajunboy
peeri: name = fds
peer2: name = Rdv-235
peer3: name = domehuhu
peer4: name = MyPeer
peer5: name = Rdv-236

The results of the peer discovery might not be immediately viewable with the
peers command. JXTA provides no guarantees about the time required to
receive a response to a discovery message; it is possible that responses might
never return. The delay depends on a variety of factors, including the speed of

your connection to other peers and the network configuration (firewall,
NAT).

Flushing Cached Peer Advertisements

At some point, it might be appropriate to remove the Peer Advertisements
from the local cache, eliminating the local peer’s knowledge of other peers
on the network. To flush the local cache of Peer Advertisements, use this
command:

JXTA>peers -f

The only remaining Peer Advertisement will be that of your own local peer:

JXTA>peers
peer@: name = MyPeer

To find peers on the network, you need to send another peer discovery mes-
sage to the network using the peers -r command to populate the local cache
of Peer Advertisements.

Manipulating Peer Groups

Manipulating Peer Groups

In the same manner that you just managed to discover and manipulate peer
information, you can discover and manipulate peer groups. Working with a
peer group involves working with a Peer Group Advertisement that describes
the peer group and its services.

Learning About the Current Peer Group

The whoami command permits you to examine the peer group information for
the local peer’s current peer group. In the Shell, the peer can manipulate only

one peer group at a time. For convenience, this peer group is set as the current
peer group in an environment variable called stdgroup. To retrieve information
about the current peer group, use whoami -g to obtain the peer group informa-
tion in a form similar to this:

<PeerGroup>NetPeerGroup</PeerGroup>
<Description>NetPeerGroup by default</Description>
<PeerGroupId>urn:jxta:jxta-NetGroup</PeerGroupId>

This peer group information shows that the peer is currently a part of the Net
Peer Group. By default, all peers are members of the Net Peer Group, thereby
allowing all peers on the network to see and communicate with each other.
The peer group information returned by whoami -g is a condensed version
of the information provided by the peer group’s advertisement. A Peer Group
Advertisement also contains information on the set of services that the peer
group makes available to its members. These services are called peer group ser-
vices to distinguish them from peer services. Peer group services can be imple-
mented by several members of a peer group, enabling redundancy. Unlike a
peer service, a peer group service remains available as long as one member of
the peer group is connected to the P2P network and is providing the service.

Finding Peer Groups

In a similar manner to viewing the known peers on the network, you can
view the known peer groups using this command:

JXTA>groups

As with the peers command, only those peer groups that have been discovered
in the past and have had their Peer Group Advertisement cached appear in the
list when this command is executed in an instance of the Shell. Although all
peers belong to the Net Peer Group and this group is always present, the Net
Peer Group does not show up in the results from the groups command.

69

70

Chapter 3 Introducing JXTA P2P Solutions

To find peer groups available on the P2P network, a peer group discovery
request must be made to the network:

JXTA>groups -r
group discovery message sent

Using the groups command again returns a list of groups discovered on the
network:

JXTA>groups
group®: name = SomeGroup
groupt: name = AnotherGroup

As with peer discovery, the response to a group discovery message might not
be immediate, if a response is obtained at all. Each of the cached Peer Group
Advertisements is available in the environment as a variable with a name of
the form groupX, where X is an integer. The contents of the environment vari-
able can be viewed using the cat command:

JXTA>cat group@

This command displays the full Peer Group Advertisement instead of the con-
densed version returned by whoami -g.

Creating a Peer Group

A new peer group can be created from within the JXTA Shell in two ways: by
cloning the Net Peer Group Peer Group Advertisement or by creating a new
Peer Group Advertisement from scratch.

Cloning The Net Peer Group
To create a new peer group, use the mkpgrp command and provide a name for
your peer group:

JXTA>mkpgrp MyGroup

Used this way, the mkpgrp command makes a new peer group by cloning the
existing Net Peer Group peer group.

Creating a New Peer Group Advertisement

Instead of cloning the existing Net Peer Group, you can create a new Peer

Group Advertisement with a given name using this command:
JXTA>MyGroupAdvertisement = mkadv -g <name>

This form of the mkadv command creates a new Peer Group Advertisement by

cloning the current peer group. If you haven’t yet joined any groups, the cur-
rent peer group is the Net Peer Group, and the result is identical to using the

Manipulating Peer Groups

mkpgrp command. Alternatively, you can import a saved Peer Group Advertise-
ment from a text file and use it to create the advertisement:

JXTA>importfile -f advertisement.txt MyDocument
JXTA>MyAdvertisement = mkadv -g -d MyDocument
JXTA>mkpgrp -d MyAdvertisement MyGroup

This set of commands imports a file called advertisement.txt, creates a Peer
Group Advertisement out of its contents, and uses them to create a new peer
group called MyGroup.

Note
Currently, the Shell ignores the MyGroup name for the peer group and uses the name from the Peer
Group Advertisement; this is a known bug with the current Shell implementation.

Joining a Peer Group

When your peer is aware of a peer group, either by creating one or by per-
forming peer group discovery, you must join the group before any communi-
cation as a part of that peer group can occur. To join a group whose Peer
Group Advertisement is stored in an environment variable called group1, use
the join -d command:

JXTA>join -d group1

The join command prompts you for an identity that you want to use on this
group:

Enter the identity you want to use when joining this peergroup (nobody)
Identity:

Identities assign credentials to users for accessing peer resources. The peer
group’s Membership service is responsible for defining accepted identities and
authenticating peers that want to join a group.

The join -d command sets the current peer group in the environment to
the most recently joined peer group. Issuing the join command again lists the
current known groups and their status:

JXTA>join
Unjoined Group : AnotherGroup
Joined Group : MyGroup (current)

Unjoined Group : SomeGroup

If you make another group called MyGroup2 and join it, the current peer group
changes to reflect MyGroup2 as the current peer group:
JXTA>join
Unjoined Group : AnotherGroup

71

72

Chapter 3 Introducing JXTA P2P Solutions

Joined Group : MyGroup
Joined Group 1 MyGroup2 (current)
Unjoined Group : SomeGroup

To move between peer groups, change the current shell peer group by issuing
the chpgrp command, as shown in Listing 3.11.

Listing 3.11 Changing the Current Peer Group

JXTA>chpgrp MyGroup

JXTA>join

Unjoined Group : AnotherGroup

Joined Group : MyGroup (current)
Joined Group : MyGroup2

Unjoined Group : SomeGroup

If you decide to leave a peer group, issue the leave command; your peer will
leave the current peer group, as shown in Listing 3.12.

Listing 3.12 Result of Leaving a Group

JXTA>leave

JXTA>join
Unjoined Group : AnotherGroup
Unjoined Group : MyGroup
Joined Group : MyGroup2
Unjoined Group : SomeGroup

After you leave a peer group, the current peer group is set to the Net Peer
Group.You must issue a chpgrp command to set the current peer group again.

Flushing Cached Peer Group Advertisements

Just as it might be appropriate to remove the Peer Group Advertisements
from the local cache, it might also be appropriate to remove peer group
advertisements from the local cache. To flush the local cache of Peer Group
Advertise-ments, thereby eliminating the local peer’s knowledge of peer
groups on the network, use this command:

JXTA>groups -f

To join a peer group on the network, you need to send another peer group
discovery message to the network using the groups -r command to populate
the local cache of Peer Group Advertisements.

Manipulating Pipes

Manipulating Pipes

Pipes provide the basic mechanism for peers to share information with each
other. Pipes and pipe endpoints are abstractions of the underlying network-
transport mechanism responsible for providing network connectivity.
Communicating with other peers involves discovering pipes and endpoints,
binding to a pipe, and sending and receiving messages through the pipe.

Creating Pipes
To create a pipe, you must first create a Pipe Advertisement:
JXTA>MyPipeAdvertisement = mkadv -p

Using the cat command, you can view the newly created Pipe Advertisement,
as shown in Listing 3.13.

Listing 3.13 Viewing the New Pipe Advertisement

JXTA>cat MyPipeAdvertisement
<?xml version="1.0"?>
<!DOCTYPE jxta:PipeAdvertisement>
<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">

<Id>

urn:jxta:uuid-59616261646162614E504720503250339C0C74ADD709

4CEC90EC9D4471DFED5304

</Id>

<Type>JdxtaUnicast</Type>
</jxta:PipeAdvertisement>

When a peer has a Pipe Advertisement, defining a pipe from the Pipe
Advertisement is as simple as using these commands:

JXTA>MyInputPipe = mkpipe -i MyPipeAdvertisement
JXTA>MyOutputPipe = mkpipe -o MyPipeAdvertisement

This defines an input and an output pipe from the advertisement stored in the
MyPipeAdvertisement environment variable.

Creating a Message

Communication between an input and an output pipe relies on the capability
to form a message object to exchange. If you import a text file into the Shell,
you can package it inside a message:

JXTA>importfile -f test.txt SomeData
JXTA>MyMessage = mkmsg
JXTA>put MyMessage MyData SomeData

73

74 Chapter 3 Introducing JXTA P2P Solutions

The last line places the contents of the SomeData variable inside an element
called MmyData, as shown in Listing 3.14.

Listing 3.14 The Newly Created Message

JXTA>cat MyMessage
Tag: MyData

Body:

<?xml version="1.0"?>

<ShellDoc>
<Item>
This is some test text.
</Item>
</ShellDoc>

Sending and Receiving Messages

To demonstrate how simple it is to send a message using a pipe, youre going
to send a message from the peer to itself. To send the message from the peer,
first define the input and output pipes:

JXTA>MyPipeAdvertisement = mkadv -p
JXTA>MyInputPipe = mkpipe -i MyPipeAdvertisement
JXTA>MyOutputPipe = mkpipe -o MyPipeAdvertisement

Next, import a file that will form the body of the message:
JXTA>importfile -f test.txt SomeData
JXTA>MyMessage = mkmsg
JXTA>put MyMessage MyData SomeData

Now send the message:

JXTA>send MyOutputPipe MyMessage

To receive the message from the pipe, use this command:

JXTA>ReceivedMessage = recv -t 5000 MyInputPipe

This command attempts to receive a message from the MyInputPipe input pipe
and store it in the ReceivedMessage variable. The command attempts to receive a
message for only five seconds before timing out.

If the attempt to receive a message is successful, the command returns the
following:

recv has received a message

Talking to Other Peers

The data can be extracted from the received message, as shown in Listing 3.15.

Listing 3.15 Viewing the Received Message Data

JXTA>NewData = get ReceivedMessage MyData
JXTA>cat NewData
<?xml version="1.0"?>

<ShellDoc>
<Item>
This is some test text.
</Item>
</ShellDoc>

If no message is available to be received, the Shell reports the following:

recv has not received any message

The Shell recognizes whether a pipe is not the appropriate type required to
send or receive a message. Attempting to send using an input pipe instead of
an output pipe results in an error:

JXTA>send MyInputPipe MyMessage

send: MyInputPipe is not an OutputPipe

java.lang.ClassCastException: net.jxta.impl.pipe.InputPipeImpl
Similarly, attempting to receive using an output pipe instead of an input pipe
results in an error:

JXTA>inputMessage = recv -t 5000 outputPipe
wait: outputPipe is not an InputPipe
java.lang.ClassCastException: net.jxta.impl.pipe.NonBlockingOutputPipe

Talking to Other Peers

The talk command is a simple application written on top of the JXTA Shell
that allows you to talk to other peers. To do this, first create a talk advertise-
ment for a specific username:

JXTA>talk -register myusername
This has to be done only once as the platform caches the advertisement. Next,
start a talk listener daemon using this command:

JXTA>talk -login myusername

After this, you can talk to another user:

JXTA>talk -u myusername myfriendsusername

75

76 Chapter 3 Introducing JXTA P2P Solutions

This allows you to enter text messages that will be sent to the other talk user
myfriendsusername, as shown in Figure 3.7.You can even send a text message to
yourself using this command:

JXTA>talk -u myusername myusername

[374 Shell - 1 oy] [
JxTh>talk -register Kewin ;I
User : Kewin is now registered

J¥Ta>talk -login Kewvin

I¥Thrtalk: from Toby to Kevin

Message: Hey Kew,

J¥Ta>talk -u Eevin Toby
found user's advertisement attewpting to connect
ralk is connected to user Toby

Type your message. To exit, type "." at begining

of line

-Ioix]
talk: from Toby to Kewin ﬁ
Message: Wanna go for a beerz IXTh>talk -register Toby -~
Sure, I'll meet you at Darby 0'|°°°°°"

User : Toby is now registered

T¥TA>talk -login Toby

J¥Ta>talk -u Toby Kewvin

found user's advertisement attempting to conhect
talk is comnected to user Eevin

Type your message. To exit, type "." at begining
of line

Hey Kew,

talk: from Eewin to Toby

Message: Hey Toby,

Wanna go for a heer?

talk: from Kewin to Toby

Message: Sure, I'll meet you at Darby 0'Gill's in
ten minutes.

ninutes.

=

Figure 3.7 Using talk between two shell instances.

When you’re done talking for the session, use this command to shut down the
talk daemon:

JXTA>talk -logout myusername

Extending the Shell Functionality

The JXTA Shell is designed to be more than just a toy to explore the basic
building blocks of P2P technology. The Shell is designed to allow developers
to extend its functionality easily and incorporate new commands. All the core
commands that you’ve used so far are invoked dynamically, and any new com-
mands that a developer creates will be invoked the same way.

Extending the Shell Functionality 77

A developer needs to follow a few simple rules to create a new command
for the Shell. To work in the Shell properly, a new command must do the
following:

= Extend the net.jxta.impl.shell.ShellApp class

» Implement the startApp and stopApp methods

= Be part of a subpackage of net.jxta.impl.shell.bin

= Exist in a subpackage of the same name as the command

= Be in a class of the same name as the command

A Simple Shell Command

Following these simple rules, you’ll now write a simple command to print the
name of the peer. Listing 3.16 creates a command called helloworld.

Listing 3.16 The helloworld Shell Command (helloworld.java)
package net.jxta.impl.shell.bin.helloworld;

import net.jxta.impl.shell.ShellApp;
import net.jxta.impl.shell.ShellEnv;
import net.jxta.impl.shell.ShellObject;

import net.jxta.peergroup.PeerGroup;

/**

* A simple example command for the JXTA Shell.
*/

public class helloworld extends ShellApp

{

/**

* The shell environment.

*/

private ShellEnv theEnvironment;

/**

* Invoked by the Shell to starts the command.

*

* @param args a set of arguments passed to the command.
* @return a status code indicating the success or failure
* of the command.

*/

continues

78 Chapter 3 Introducing JXTA P2P Solutions

Listing 3.16 Continued

public int startApp(String[] args)

{

/**

println("Starting command...");

// Get the shell's environment.
theEnvironment = getEnv();

// Use the environment to obtain the current peer group.
ShellObject theShellObject = theEnvironment.get("stdgroup");
PeerGroup aPeerGroup = (PeerGroup) theShellObject.getObject();

// Check to see if there were any command arguments.
if ((args == null) | (args.length == 0))

{
// Print the peer name to the console.
println("My peer name is " + aPeerGroup.getPeerName());
}
else
{
println("This command doesn't support arguments.");
// Return the 'parameter error' status code.
return ShellApp.appParamerror;
}

// Return the 'no error' status code.
return ShellApp.appNoError;

* Invoked by the Shell to stop the command.

public void stopApp()

{

// Do nothing.

Extending the Shell Functionality

As demanded by the rules of the Shell, the helloworld class is a part of the
net.jxta.impl.shell.bin.helloworld package and implements the startApp and
stopApp methods. In this simple example, the command retrieves an object rep-
resenting the current peer group using the stdgroup environment variable:

ShellObject theShellObject =
theEnvironment.get("stdgroup");

The shellenv object is the same store of environment objects that you've been
working with from inside the Shell throughout this chapter. The PeerGroup
object is retrieved from the wrapper Shellobject returned by ShellEnv:

PeerGroup aPeerGroup =
(PeerGroup) theShellObject.getObject();

Finally, the name of the peer in the peer group is printed to the console using
the Shell’s standard output:

println("My peer name is " +
aPeerGroup.getPeerName());

To make this command work with the Shell, compile the helloworld.java
source from the command line. To make life easier, place the source code in
the shell subdirectory of the JXTA demo installation and compile it using the
following:

javac -d . -classpath ..\lib\jxta.jar;..\lib\jxtashell.jar helloworld.java

Now execute the Shell, making sure to include the current directory in the
classpath:

java -classpath .;..\lib\jxta.jar;..\lib\jxtashell.jar;..\lib\cms.jar;
..\lib\cmsshell.jar;..\lib\log4j.jar;..\lib\beepcore.jar;
..\lib\cryptix32.jar;..\lib\cryptix-asni.jar;..\1lib\jxtaptls.jar;
..\lib\jxtasecurity.jar;. net.jxta.impl.peergroup.Boot

The Shell starts up as usual, and you can now try your new command:

JXTA>helloworld
Starting command...
My peer name is MyPeer

Congratulations, you just created your first solution using JXTA! Although this
example doesn’t do much, it demonstrates how simple it is to build on the
JXTA platform to incorporate new functionality.

79

80 Chapter 3 Introducing JXTA P2P Solutions

Summary

This chapter provided a crash course on using the JXTA Shell. Most of the
details of JXTA, its protocols, and the Java reference implementation are
revealed in the following chapters. In the next chapter, you start examining the
JXTA platform in detail by looking at the Peer Discovery Protocol and its
components. Your familiarity with the JXTA Shell will come in handy by pro-
viding a framework for the examples, thereby reducing the amount of coding
required and allowing the examples to focus on the particulars of peer
discovery.

