
Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Peer Information Protocol

7

THE PEER INFORMATION PROTOCOL (PIP) allows peers to obtain status informa-
tion from previously discovered peers.This status information is currently
limited to include only data on the uptime of the peers and the amount of
traffic processed by the peer. Future work on the PIP will most likely extend
this basic protocol to provide ways for developers to extend the protocol’s
default status-monitoring capabilities.

Introducing the Peer Information Protocol
After a remote peer has been discovered using the Discovery service and the
Peer Discovery Protocol, a peer might want to monitor the remote peer’s
status to make additional decisions about how to use the remote peer most
effectively or to make the use of its services by other peers more efficient.
Monitoring is an essential part of a P2P network, providing information that
peers can use to leverage the resources of the P2P network in the most effi-
cient manner. For example, in a file-sharing P2P application, a peer could use
status information describing the current network traffic on a remote peer to
decide whether to use the remote peer as a source of services. If the remote
peer is under an extreme load, it’s in the interests of both the client peer and
the P2P network in general to shift usage away from that remote peer.

09_2344 Ch 07 5/14/02 11:39 AM Page 177

178 Chapter 7 The Peer Information Protocol

The Peer Information Protocol (PIP) is an optional JXTA protocol that
allows a peer to monitor a remote peer and obtain information on the remote
peer’s current status.As with all the protocols described up to this point in the
book, the PIP requires only two types of messages:

n Peer Info Query Message—A message format for querying a remote
peer’s status

n Peer Info Response Message—A message format for providing a
peer’s status to other peers

These two messages are responsible for providing access to a peer’s status
information using the protocol shown in Figure 7.1.

1. Peer 1 sends a Peer Info
Query Message to a specific
peer, Simple Peer 2.

Peer 1

Simple Peer 1

Simple Peer 2

2. The Peer Info service on a
simple peer receiving the
query searches and checks to
see if the query’s targetPid
matches the local peer ID. If
there is a match, the simple
peer responds to the source
peer with a Peer Info
Response Message.
Otherwise, the Peer Info
service does nothing.

Figure 7.1 Exchange of Peer Info messages.

Although Figure 7.1 shows that a peer that receives a Peer Info Query
Message not addressed to it does nothing with the message, the reference
implementation is slightly different.The reference implementation provides for
the possibility that a query message might be propagated to a peer instead of
sent to a specific peer. If a peer receives a query to which it isn’t the subject
of the query, the peer propagates the query to the peer group.

The Peer Info service implements the PIP by leveraging the Resolver and
Rendezvous services.This implementation follows a similar pattern to the
Discovery service.The Peer Info service uses Resolver Query and Response
Messages and the Resolver service to handle the details of sending a query to

09_2344 Ch 07 5/14/02 11:39 AM Page 178

179Introducing the Peer Information Protocol

a named handler and generating a response.The Resolver service is responsible
for handling the details of propagating messages to other simple peers and
rendezvous peers for the Resolver service.As with all the protocols in JXTA
that you’ve seen so far, a PIP query to a remote peer might not result in a
response.

The Peer Info Query Message
The Peer Info Query Message is very simple, if not a little limited, as shown in
Listing 7.1.

Listing 7.1 The Peer Info Query Message

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:PeerInfoQueryMessage xmlns:jxta=”http://jxta.org”>

<sourcePid> . . . </sourcePid>

<targetPid> . . . </targetPid>

<request> . . . </request>

</jxta:PeerInfoQueryMessage>

The Peer Info Query Message specifies three parameters:
n sourcePid—A required element containing the ID of the peer requesting

status information from a remote peer.This Peer ID is a string encoding
of the JXTA URN for the peer that generated the query.

n targetPid—A required element containing the ID of the remote peer
from which status information is being solicited.This Peer ID is a string
encoding of the JXTA URN for the peer that is the target of the query.

n request—An optional element containing a string specifying the status
information being requested from the remote peer.The format of this
request string is unspecified; it is the responsibility of the recipient to
know how to decode it.

Unfortunately, the current reference implementation provides no mechanism
to allow a developer to handle requests specified by the contents of the request
element in the query. It appears that this is work that will be undertaken in
the future to allow developers to add their own code to unmarshall the con-
tents of the request element and provide response information to the peer
requesting status information.

Unlike other protocols that you’ve seen so far, each rendezvous peer that
propagates this message does not generate a response to the query.When the
Peer Info service receives a Peer Info Query Message, it checks to see if the

09_2344 Ch 07 5/14/02 11:39 AM Page 179

180 Chapter 7 The Peer Information Protocol

local peer’s ID matches the targetPid. If the IDs match, the service generates a
response that is sent by the Resolver service to the source peer. Otherwise, no
response is generated and the message is propagated to other peers that might
be capable of providing the response.Theoretically, it should be possible to
propagate a Peer Info Query Message in the reference implementation, but
functionality to handle this case has been added as a precaution.

The Peer Info Query Message is different from the other protocol imple-
mentations in another significant way:The abstract PeerInfoQueryMessage class in
net.jxta.protocol and the reference implementation PeerInfoQueryMsg in
net.jxta.impl.protocol aren’t used throughout by the reference implementation!
Although some areas of the reference implementation do use these objects,
their use is inconsistent.

This inconsistency suggests that the implementation of the PIP is in a much
earlier stage of development compared to some of the other protocols.The
lack of a mechanism to allow a developer to handle the contents of the request
element of the Peer Info Query Message further underlines the fact that the
PIP is still a work in progress.

The Peer Info Response Message
The counterpart to the Peer Info Query Message, the Peer Info Response
Message, is significantly more detailed, as shown in Listing 7.2.

Listing 7.2 The Peer Info Response Message

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:PeerInfoResponse xmlns:jxta=”http://jxta.org”>

<sourcePid> . . . </sourcePid>

<targetPid> . . . </targetPid>

<uptime> . . . </uptime>

<timestamp> . . . </timestamp>

<response> . . . </response>

<traffic>

. . .

</traffic>

</jxta:PeerInfoResponse>

The Peer Info Response Message provides a variety of status information,
most of which is oriented to providing information on the network traffic
load on the remote peer:

09_2344 Ch 07 5/14/02 11:39 AM Page 180

181Introducing the Peer Information Protocol

n sourcePid—A required element containing the ID of the peer requesting
status information from the peer.This Peer ID is a string encoding of the
JXTA URN for the peer that generated the original Peer Info Query
Message.

n targetPid—A required element containing the ID of the remote peer
from which status information is being solicited.This Peer ID is a string
encoding of the JXTA URN for the peer providing the response to the
Peer Info Query Message.

n uptime—An optional element containing the amount of time, in millisec-
onds, since the peer joined the P2P network. In the reference implemen-
tation, the uptime corresponds to the amount of time that has elapsed
since the Peer Info service started.

n timestamp—An optional element containing a timestamp describing the
time when the peer generated the status information contained in the
response.This timestamp is given in milliseconds since the epoch
(January 1, 1970, 00:00:00 GMT).

n response—An optional element containing a string specifying the status
information being returned in response to the query’s request element’s
content.The format of this response string is unspecified; it is the respon-
sibility of the recipient to know how to decode it.The reference PIP
implementation does not currently provide a mechanism to allow a
developer to populate the response element to provide the requested
information.

n traffic—An optional element that contains details on the network traffic
handled by the peer.The format of the contents of the traffic element is
shown in Listing 7.3.

Listing 7.3 The Format of the traffic Element Contents

<traffic>

<lastIncomingMessageAt> . . . </lastIncomingMessageAt>

<lastOutgoingMessageAt> . . . </lastOutgoingMessageAt>

<in>

<transport endptaddr=” . . . “> . . . </transport>

</in>

<out>

<transport endptaddr=” . . . “> . . . </transport>

</out>

</traffic>

09_2344 Ch 07 5/14/02 11:39 AM Page 181

182 Chapter 7 The Peer Information Protocol

The contents of the traffic element in the Peer Info Response Message
describe in detail the network traffic handled by the peer:

n lastIncomingMessageAt—An optional element containing a timestamp
specifying the last time that the peer’s endpoints handled an incoming
message.The timestamp is given in milliseconds since the epoch.

n lastOutgoingMessageAt—An optional element containing a timestamp
specifying the last time that the peer’s endpoints handled an outgoing
message.The timestamp is given in milliseconds since the epoch.

n in—An optional element containing details on the inbound traffic seen
by the peer’s endpoints.The in element may contain zero or more
transport elements.

n transport—An optional element containing the number of bytes
processed by the endpoint address specified by the endptaddr attribute.
When used inside the in element, this element specifies the number of
bytes received by the endpoint address specified.When used inside the
out element, this element specifies the number of bytes sent by the end-
point address specified.The format of the endpoint address is covered in
Chapter 9,“The Endpoint Routing Protocol.”

n out—A container element to hold details on the outbound traffic seen
by the peer’s endpoints.The out element may contain zero or more
transport elements.

The reference implementation of the PIP has one oversight in its current
form: Peer Info Query Messages are propagated indiscriminately.When a peer
receives a Peer Info Query in which the targetPid matches its local Peer ID, it
generates a Peer Info Response Message that the Resolver service sends to the
peer that generated the query. Unfortunately, the Resolver service still propa-
gates the query, even though the target peer has responded.

Similar to the Peer Info Query Message, the reference implementation pro-
vides the PeerInfoResponseMessage abstract class in net.jxta.protocol and the
PeerInfoResponseMsg implementation class in net.jxta.impl.protocol.These classes
are shown in Figure 7.2.

Unlike the PeerInfoQueryMessage and PeerInfoQueryMessage classes, the
PeerInfoResponseMessage and PeerInfoResponseMsg classes are used throughout
the reference implementation to handle parsing and formatting Peer Info
Response Messages.

09_2344 Ch 07 5/14/02 11:39 AM Page 182

183The Peer Info Service

Figure 7.2 The Peer Info Response Message classes.

The Peer Info Service
As with the other protocols, the PIP is encapsulated as a service, as shown in
Figure 7.3, freeing the developer from dealing with the details of the Peer Info
Query and Response Messages.

PeerInfoResponseMessage
(from net.jxta.protocol)

PeerInfoResponseMessage()

getMessageType() : java.lang.String

getSourcePid() : net.jxta.id.ID

getSourcePid(peerld : net.jxta.id.ID) : void

getTargetPid() : net.jxta.id.ID

setTargetPid(peerld : net.jxta.id.ID) : void

getResponse() : net.jxta.document.Element

getResponse(response : net.jxta.document.Element) : void

getUptime() : long

setUptime(uptime : long) : void

getTimestamp() : long

setTimestamp(timestamp : long) : void

getLastIncomingMessageTime() : long

setLastIncomingMessageTime(time : long) : void

getLastOutgoingMessageTime() : long

setLastOutgoingMessageTime(time : long) : void

getIncomingTrafficChannels() : java.util.Enumeration

getIncomingTrafficOnChannel(channel : java.lang.String) : long

setIncomingTrafficElement(channel L lava.lang.String, bytes : long) : void

getOutgoingTrafficChannels() : java.util.Enumeration

getOutgoingTrafficOnChannel(channel : java.lang.String) : long

setOutgoingTrafficElement(channel : java.lang.String, bytes : long) : void

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

PeerInfoResponseMsg

(from net.jxta.impl.protocol)

PeerInfoResponseMsg(doc : net.jxta.document.Element)

PeerInfoResponseMsg(source : net.jxta.id.ID, target : net.jxta.id.ID, uptime : long, timestamp : long, itime : long, otime : long, itraffic: java.util.Hashtable.otraffic : java.util.Hashtable)

PeerInfoResponseMsg()

initialize(doc : net.jxta.document.Element) : void

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

<<Interface>>

PeerInfoService

(from net.jxta.peer)

addPeerInfoListener(listener : net.jxta.peer.PeerInfoListener) : void

flushAdvertisements(peerld : net.jxta.id.ID) : void

getLocalPeerInfo(peerld : net.jxta.id.ID) : java.util.Enumeration

getPeerInfoService() : net.jxta.protocol.PeerInfoResponseMessage

getRemotePeerInfo(peerld : net.jxta.id.ID) : int

getRemotePeerInfo(peerld : net.jxta.ikd.ID, listener : net.jxta.peer.PeerInfoListener) : void

removePeerInfoListener(listener : net.jxta.peer.PeerInfoListener) : boolean

PeerInfoServiceImpl

(from net.jxta.impl.peer)

Figure 7.3 The Peer Info service interface and implementation.

09_2344 Ch 07 5/14/02 11:39 AM Page 183

184 Chapter 7 The Peer Information Protocol

The definition of the PeerInfoService interface is very similar to the
DiscoveryService interface, providing methods to retrieve remote and local
peer status information. Like the Discovery service, the Peer Info service
provides a mechanism to register a listener that will be notified when the
Peer Info service receives a Peer Info Response Message.

The reference implementation of the Peer Info service is a QueryHandler
implementation, whose processQuery is responsible for generating a response,
if any. Unfortunately, there is no way for the processQuery implementation to
signal to the Resolver service that a response has been generated and that the
original query should not be propagated. If the processQuery implementation
threw a DiscardResponseException, the Resolver service wouldn’t propagate the
query. However, throwing this exception would prevent processQuery from
returning a response to be sent to the source of the original query.This
incapability to prevent propagation is responsible for the current reference
implementation’s undesirable propagation of Peer Info Query Messages.

The PeerInfoListener Interface
As shown in Figure 7.4, to receive notifications of incoming Peer Info
Response Messages, a developer can create and register an implementation
of the PeerInfoListener interface.

<<Interface>>

PeerInfoListener

(from net.jxta.peer)

peerInfoResponse(event : net.jxta.peer.PeerInfoEvent) : void

Figure 7.4 The PeerInfoListener interface.

Like DiscoveryListener, PeerInfoListener provides only one method that gets
invoked when the Peer Info service receives a Peer Info Response Message.
The peerInfoResponse method accepts a PeerInfoEvent object, shown in Figure
7.5, that can be used by a PeerInfoListener implementation to extract the Peer
Info Response Message.

PeerInfoEvent

(from net.jxta.peer)

PeerInfoEvent(source : java.lang.Object, response : net.jxta.protocol.PeerInfoResponseMessage, queryld : int)

getPPeerInfoResponseMessage() : net.jxta.protocol.PeerInfoResponseMessage

getQueryID() : int

Figure 7.5 The PeerInfoEvent class.

09_2344 Ch 07 5/14/02 11:39 AM Page 184

185The Peer Info Service

The PeerInfoEvent’s getPPeerInfoResponseMessage returns a
PeerInfoResponseMessage instance that contains the response received
from a remote peer to a Peer Info Query Message.

Using the Peer Info Service
To demonstrate the use of the Peer Info service, you’ll implement a simple
PeerInfoListener and use the peer group’s PeerInfoService instance to obtain a
remote peer’s status information.

By this point in the book, you’ve probably noticed a number of common
architectural patterns employed by the JXTA reference implementation.These
patterns include the use of listener objects to provide callback functionality, the
division of all implementations into an abstract class defining the Java imple-
mentation’s API, and a concrete class providing the reference implementation.
Because of the similarities between the Peer Info and Discovery services, this
example skims over some of the basic details that were explained in Chapter 4,
“The Peer Discovery Protocol.”

Implementing PeerInfoListener

Implementing the PeerInfoListener interface is very similar to implementing
the DiscoveryListener interface.A developer needs only to create a class that
implements the peerInfoResponse method, as shown in Listing 7.4, and register
an instance of the implementation with the Peer Info service.

Listing 7.4 Source Code for ExampleListener.java

package net.jxta.impl.shell.bin.example7_1;

import java.io.StringWriter;

import java.util.Enumeration;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.MimeMediaType;

import net.jxta.peer.PeerInfoEvent;

import net.jxta.peer.PeerInfoListener;

import net.jxta.protocol.PeerInfoResponseMessage;

/**

continues

09_2344 Ch 07 5/14/02 11:39 AM Page 185

186 Chapter 7 The Peer Information Protocol

* A simple implementation of PeerInfoListener to print out details on

* the received Peer Info Response Messages.

*/

public class ExampleListener implements PeerInfoListener

{

/**

* A simple handler that prints out the details on the received

* peer status information.

*

* @param event the event detailing the received response.

*/

public void peerInfoResponse(PeerInfoEvent event)

{

// Extract the peer info response from the event.

PeerInfoResponseMessage response =

event.getPPeerInfoResponseMessage();

// Print out the peer info.

System.out.println(“Uptime: “ + response.getUptime());

System.out.println(“Timestamp: “ + response.getTimestamp());

System.out.println(“Target: “ + response.getTargetPid());

System.out.println(“Source: “ + response.getSourcePid());

System.out.println(“Last Incoming Message: “

+ response.getLastIncomingMessageTime());

System.out.println(“Last Outcoming Message: “

+ response.getLastOutgoingMessageTime());

// Print out the incoming channel statistics.

Enumeration incoming = response.getIncomingTrafficChannels();

if (incoming != null)

{

while (incoming.hasMoreElements())

{

String incomingchannel = (String) incoming.nextElement();

long incomingbytes =

response.getIncomingTrafficOnChannel(incomingchannel);

System.out.println(

incomingbytes + “ incoming bytes on channel “

+ incomingchannel);

}

Listing 7.4 Continued

09_2344 Ch 07 5/14/02 11:39 AM Page 186

187The Peer Info Service

}

// Print out the outgoing channel statistics.

Enumeration outgoing = response.getOutgoingTrafficChannels();

if (outgoing != null)

{

while (outgoing.hasMoreElements())

{

String outgoingchannel = (String) outgoing.nextElement();

long outgoingbytes =

response.getOutgoingTrafficOnChannel(outgoingchannel);

System.out.println(

outgoingbytes + “ incoming bytes on channel “

+ outgoingchannel);

}

}

System.out.println(“Done with status info...”);

}

}

Extracting the Peer Info Response Message is as simple as a call to
getPPeerInfoResponseMessage:

PeerInfoResponseMessage peerinfo =
event.getPPeerInfoResponseMessage();

The returned PeerInfoResponseMessage can then be used to obtain the timestamp,
uptime, and other Peer Info Response Message elements’ contents.

Registering a PeerInfoListener

Before a PeerInfoListener implementation will begin receiving notification
of incoming Peer Info Response Messages, the implementation must be regis-
tered with the Peer Info service for a specific peer group.A PeerInfoListener is
registered using the PeerInfoService interface addPeerInfoListener method:

public void addPeerInfoListener (PeerInfoListener listener)

Like the Discovery service, the reference implementation of the Peer Info ser-
vice is implemented as a Resolver handler.The PeerInfoServiceImpl implements
the QueryHandler interface and handles invoking the registered listeners’
peerInfoResponse method.

09_2344 Ch 07 5/14/02 11:39 AM Page 187

188 Chapter 7 The Peer Information Protocol

An alternative to registering a handler with the PeerInfoService is to pass a
PeerInfoListener instance when querying remote peers for status information.
The PeerInfoService.getRemotePeerInfo method accepts a PeerInfoListener
instance:

peerinfo.getRemotePeerInfo(peerIdObject, new ExampleListener());

If getRemotePeerInfo is called with a PeerInfoListener implementation, the given
listener object is invoked when replies for the query arrive. In the reference
implementation of PeerInfoService, PeerInfoServiceImpl, the listener is stored to
a Hashtable using a query ID as the key.The query ID is used in the creation
of the Resolver Query Message, and the response sent by a remote peer
should use the same query ID.When a Peer Info Response message arrives,
wrapped in a Resolver Response Message, the PeerInfoServiceImpl extracts the
query ID from the ResolverResponseMsg and uses it to find a listener in the
Hashtable with the matching query ID. If a listener is found, its peerInfoResponse
method is invoked.This is done in addition to invoking the peerInfoResponse
method of all the listeners registered using addPeerInfoListener.

As with the Discovery service, listeners can be removed from the
PeerInfoService instance. Removing a listener stops it from receiving notifica-
tion of new incoming Peer Info Response Messages.To remove a listener, a
reference to the listener object is required:

public boolean removePeerInfoListener (PeerInfoListener listener);

The removePeerInfoListener method returns true if the PeerInfoService has
successfully removed the listener. If the method returns false, it indicates
that the listener object could not be found in the service’s set of registered
listeners. Unfortunately, listeners that are added to the service by invoking
getRemotePeerInfo with a listener object cannot be removed using
removePeerInfoListener.

Finding Remote Peer Information

Using the ExampleListener shown in Listing 7.4, it’s simple to create a Shell
command to send a query to remote peers for peer status information, shown
in Listing 7.5.

Listing 7.5 Source Code for example7_1.java

package net.jxta.impl.shell.bin.example7_1;

import java.net.URL;

import net.jxta.id.IDFactory;

09_2344 Ch 07 5/14/02 11:39 AM Page 188

189The Peer Info Service

import net.jxta.peer.PeerID;

import net.jxta.peer.PeerInfoService;

import net.jxta.peergroup.PeerGroup;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple Shell command to demonstrate the use of the Peer Info

* service and the PeerInfoListener interface to query remote peers for

* status info.

*/

public class example7_1 extends ShellApp

{

/**

* The ID of the peer from whom peer info is being solicited.

*/

private String peerid = null;

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “p:”);

while ((option = parser.getNextOption()) != -1)

{

continues

09_2344 Ch 07 5/14/02 11:39 AM Page 189

190 Chapter 7 The Peer Information Protocol

switch (option)

{

case ‘p’ :

{

// Set the ID of the peer used to retrieve peer info.

peerid = parser.getOptionArg();

break;

}

}

}

}

/**

* Sends a query to a remote peer.

*

* @param aPeerId the ID of the peer from whom to solicit status info.

* @param peerinfo the PeerInfoService to use to perform the query,

*/

private void sendRemoteRequest(String aPeerId, PeerInfoService peerinfo)

{

try

{

// Transform the Peer ID string into a Peer ID object.

PeerID peerIdObject = (PeerID) IDFactory.fromURL(

new URL((aPeerId)));

// Use the Peer Info service to query for the peer info.

peerinfo.getRemotePeerInfo(peerIdObject, new ExampleListener());

}

catch (Exception e)

{

System.out.println(“Error parsing Peer ID string: “ + e);

}

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

Listing 7.5 Continued

09_2344 Ch 07 5/14/02 11:39 AM Page 190

191The Peer Info Service

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

String peerid = null;

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the Peer Info service for the current peer group.

PeerInfoService peerinfo = currentGroup.getPeerInfoService();

// Default to getting the local peer’s status info.

peerid = currentGroup.getPeerID().toString();

try

{

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

// Send a remote peer info request.

System.out.println(“Running example7_1...”);

sendRemoteRequest(peerid, peerinfo);

return result;

}

}

09_2344 Ch 07 5/14/02 11:39 AM Page 191

192 Chapter 7 The Peer Information Protocol

The example7_1 command sends a query to a remote peer using the
PeerInfoService’s getRemotePeerInfo method, passing an instance of the
ExampleListener class to handle the responses.

It’s important to note that getRemotePeerInfo requires a real Peer ID to be
passed to the method.Although the reference implementation allows null to
be passed to getRemotePeer, the targetPid element for the Peer Info Query
Message is empty.The reference implementation of Peer Info service that
receives the query checks the targetPid against the local Peer ID and, because
they don’t match, does nothing.As a result, a response is never generated in
response to the query.

By default, example7_1 uses the local Peer ID as the targetPid, resulting in the
status information for the local peer.To retrieve remote peer information, the
command must be invoked with a Peer ID, such as in this code:

JXTA>example7_1 -purn:jxta:uuid-59616261646162614A787461503250332A2C6697AF84
4127A89E8F30B01CA1C403

To use example7_1 to retrieve the peer information for a specific peer, you first
need the ID of the remote peer. Run the peers command and choose a peer
from which you want to solicit status information.View the peer’s advertise-
ment using cat:

JXTA>cat peer0

Find the PID element in the Peer Advertisement, and use that value to invoke
the example7_1 command with the –p option. Unfortunately, the Shell doesn’t
currently support paste operations on all platforms, so you can’t cut and paste
the PID value.

An easier way to invoke the command is by using a Shell script.A Shell
script is any plain text file that contains Shell commands.To run a Shell script,
do the following:

JXTA>Shell –ftest.txt

This example runs the script test.txt from the Shell’s current directory. In the
Shell, the current directory is the Shell subdirectory of the JXTA Demo install
directory.To run the example7_1 command from a script, follow these steps:

1. Create a text file in the Shell subdirectory of the JXTA Demo installa-
tion directory. For this example, call the file test.txt.

2. Use the right-click pop-up menu in the Shell to copy the PID from the
remote peer that you want to query.

3. Edit test.txt.

09_2344 Ch 07 5/14/02 11:39 AM Page 192

193The Peer Info Service

4. Add the text example7_1 –p to the text file, and then paste the PID
directly after the –p option.

5. Save the test.txt file.

6. From the Shell, run the script using this command:
JXTA>Shell –ftest.txt

This runs the example7_1 command and queries the peer specified by the PID
that you entered in the script.When the ExampleListener receives responses, the
peer information details are printed to the console (not the Shell console) and
resemble Listing 7.6.

Listing 7.6 Example Output from ExampleListener

Uptime: 7330

Timestamp: 1007439754658

Target: urn:jxta:uuid-59616261646162614A787461503250332A2C6697AF84

4127A89E8F30B01CA1C403

Source: urn:jxta:uuid-59616261646162614A78746150325033AEB5D26090CD4EC683

E18ABE877ABE2703

Last Incoming Message: 0

Last Outcoming Message: 0

Done with status info...

Note
As of build 49b of the Java reference implementation of the JXTA platform, the PeerInfoService
implementation is disabled. This is a result of ongoing work to resolve issues within the implemen-
tation. If the examples in this chapter do not produce any output, it is most likely due to this
ongoing development work. Consult the platform.jxta.org web site for more information on
the current status of the PIP implementation.

Finding Cached Peer Information

Just as the Discovery service enables you to query the local cache of advertise-
ments, the Peer Info service provides a mechanism for retrieving cached status
information.The example shown in Listing 7.7 provides a simple command
for retrieving the locally cached peer information using the Peer Info service.

09_2344 Ch 07 5/14/02 11:39 AM Page 193

194 Chapter 7 The Peer Information Protocol

Listing 7.7 Source Code for example7_2.java

package net.jxta.impl.shell.bin.example7_2;

import java.io.IOException;

import java.io.StringWriter;

import java.net.URL;

import java.util.Enumeration;

import net.jxta.document.Advertisement;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.MimeMediaType;

import net.jxta.id.IDFactory;

import net.jxta.peer.PeerID;

import net.jxta.peer.PeerInfoListener;

import net.jxta.peer.PeerInfoService;

import net.jxta.peergroup.PeerGroup;

import net.jxta.protocol.PeerInfoResponseMessage;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

/**

* A simple Shell command to demonstrate the use of the Peer Info

* service and the PeerInfoListener interface to retrieve locally cached

* status info.

*/

public class example7_2 extends ShellApp

{

/**

* The ID of the peer from which peer info is being solicited.

*/

private String peerid = null;

09_2344 Ch 07 5/14/02 11:39 AM Page 194

195The Peer Info Service

/**

* Parses the command-line arguments and initializes the command

*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter

* is passed.

*/

private void parseArguments(String[] args)

throws IllegalArgumentException

{

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args, “p:l”);

while ((option = parser.getNextOption()) != -1)

{

switch (option)

{

case ‘p’ :

{

// Set the ID of the peer used to retrieve peer info.

peerid = parser.getOptionArg();

break;

}

}

}

}

/**

* Retrieves peer information from the local cache.

*

* @param aPeerId the ID of the peer from which to solicit status info.

* @param peerinfo the PeerInfoService to use to perform the query,

*/

private void sendLocalRequest(String aPeerId, PeerInfoService peerinfo)

{

try

{

PeerID peerIdObject = (PeerID) IDFactory.fromURL(

new URL((aPeerId)));

continues

09_2344 Ch 07 5/14/02 11:39 AM Page 195

196 Chapter 7 The Peer Information Protocol

Enumeration enum = peerinfo.getLocalPeerInfo(peerIdObject);

// Iterate through the response messages.

while (enum.hasMoreElements())

{

// Extract the peer info response from the event.

PeerInfoResponseMessage response =

(PeerInfoResponseMessage) enum.nextElement();

// Print out the peer info.

System.out.println(“Uptime: “ + response.getUptime());

System.out.println(“Timestamp: “ + response.getTimestamp());

System.out.println(“Target: “ + response.getTargetPid());

System.out.println(“Source: “ + response.getSourcePid());

System.out.println(“Last Incoming Message: “

+ response.getLastIncomingMessageTime());

System.out.println(“Last Outcoming Message: “

+ response.getLastOutgoingMessageTime());

// Print out the incoming channel statistics.

Enumeration incoming =

response.getIncomingTrafficChannels();

if (incoming != null)

{

while (incoming.hasMoreElements())

{

String incomingchannel =

(String) incoming.nextElement();

long incomingbytes =

response.getIncomingTrafficOnChannel(

incomingchannel);

System.out.println(incomingbytes

+ “ incoming bytes on channel “

+ incomingchannel);

}

}

// Print out the outgoing channel statistics.

Enumeration outgoing =

response.getOutgoingTrafficChannels();

Listing 7.7 Continued

09_2344 Ch 07 5/14/02 11:39 AM Page 196

197The Peer Info Service

if (outgoing != null)

{

while (outgoing.hasMoreElements())

{

String outgoingchannel =

(String) outgoing.nextElement();

long outgoingbytes =

response.getOutgoingTrafficOnChannel(

outgoingchannel);

System.out.println(outgoingbytes

+ “ incoming bytes on channel “

+ outgoingchannel);

}

}

System.out.println(“Done with status info...”);

}

}

catch (IOException e)

{

println(“Error retrieving local peer info responses!” + e);

}

}

/**

* The implementation of the Shell command, invoked when the command

* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/

public int startApp(String[] args)

{

String peerid = null;

int result = appNoError;

// Get the shell’s environment.

ShellEnv theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

continues

09_2344 Ch 07 5/14/02 11:39 AM Page 197

198 Chapter 7 The Peer Information Protocol

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

// Get the PeerInfo service for the current peer group.

PeerInfoService peerinfo = currentGroup.getPeerInfoService();

// Default to getting the local peer’s status info.

peerid = currentGroup.getPeerID().toString();

try

{

// Parse the command-line arguments.

parseArguments(args);

}

catch (IllegalArgumentException e)

{

println(“Incorrect parameters passed to the command.”);

result = ShellApp.appParamError;

}

peerid = null;

// Send a local peer info request.

System.out.println(“Running example7_2...”);

sendLocalRequest(peerid, peerinfo);

return result;

}

}

The getLocalPeerInfo method provided by the PeerInfoService interface allows
a developer to retrieve cached status information. Unlike getRemotePeerInfo, the
method returns an Enumeration of matching PeerInfoResponseMessages retrieved
from the cache. Because this is a local request, registered implementations of
PeerInfoListener are never invoked as a result of calling the getLocalPeerInfo
method.

Listing 7.7 Continued

09_2344 Ch 07 5/14/02 11:39 AM Page 198

199Summary

Unlike getRemotePeerInfo, getLocalPeerInfo can be passed a null Peer ID
String. Passing null to getLocalPeerInfo returns all the peer information in the
local cache.

To run the example, modify the test.txt script to use example7_2 instead of
example7_1.When run, the output produced by example7_2 should be roughly
the same as example7_1, with the distinction that the information is from the
cache.

Summary
In its current state, the PIP isn’t especially useful. However, work is under way
by the Project JXTA team to augment the PIP to provide a more generic
status-monitoring framework. It’s not clear what features will emerge from this
work. Currently, it appears that the PIP implementation will be augmented to
provide a way to handle the content of the request element sent in the Peer
Info Query Message to a remote peer and generate content for the response
element in the Peer Info Response Message returned by the remote peer.This
work will undoubtedly build on the existing classes, so it has been important
in this chapter to understand the current PIP, if only to prepare for the arrival
of these additional features.

Now that you’ve seen how the Peer Information Protocol allows a peer
to monitor a remote peer, the next chapter explores another mechanism used
to transport data between peers: pipes.The Pipe Binding Protocol described
in the next chapter is used to establish pipe connections between peers.After
a connection is established, pipes allow peers to send data across a virtual
connection, abstracting the network transport layer in a generic fashion.

09_2344 Ch 07 5/14/02 11:39 AM Page 199

