Steal This Book!

Yes, you read that right. Stea this book. For free.

Nothing. Zero. Zilch. Nadda. Zip.

Undoubtedly you're aking yourslf, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"

The answer...is yes. Sort of. | know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

1. Send this book to your friends: No, not your manager.
Your "with it" computer friends who are looking for the next
Big Thing. JXTA isit. Trug me. They want to know about it.

2. Send a link to the book's web site: Maybe the book is
too big to ®nd. After al, not everyone can have a fibre optic
Internet connection installed in their bedroom. The site, at
www. brendonwilson.com/projects/jxta, provides chapter-
sized PDFs for easy downloading by the bandwidth-challenged.

3. Visit the book's web site: Being a profesiona developer, you
probably have Carpal Tunnel Syndrome and shudder at the idea
of typing in example source code. Save yourlf the trouble. Go to
www. brendonwilson.com/projects/jxta and download the
source code. And while you're there, why not download some of
the chapters you're mising?

4. Buy the book: You knew there had to be a catch. Sure, the
book's PDFs are free, but I'm hoping that enough of you like the
book so much that you have to buy a copy. Either that, or none
of you can stand to read the book from a screen (or, wors yet,
print it all out <shudder>) and resort to paper to sve what's left
of your eyesight. The book is available a your local bookstore or
from Amazon.com (at a handsome discount, | might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Pipe Binding Protocol

E’ES ARE CONSTRUCTS WITHIN JXTA THAT send data to or receive data from a
remote peer. Services typically use either a Resolver handler (refer to Chapter
5,“The Peer Resolver Protocol”) or a pipe to communicate with another
peer. Before a pipe can actually be used, it must be bound to a peer endpoint.
Binding a pipe to an endpoint allows the peers to create either an input pipe
for receiving data or an output pipe for sending data. The process of binding a
pipe to an endpoint is defined by the Pipe Binding Protocol (PBP).

This chapter explains the Pipe Binding Protocol that JXTA peers use to
bind a pipe to an endpoint. The PBP defines a set of messages that a peer can
use to query remote peers to find an appropriate endpoint for a given Pipe
Advertisement and respond to binding queries from other peers. After a pipe
has been bound to an endpoint, a peer can use it to send or receive messages.
Several examples in the section “The Pipe Service” demonstrate the use of
both input and output pipes to send and receive data, respectively.

202 Chapter 8 The Pipe Binding Protocol

Introducing the Pipe Binding Protocol

The endpoint is the bottom-most element in the network transport abstraction
defined by JXTA. Endpoints are encapsulations of the native network inter-
faces provided by a peer. These network interfaces typically provide access to
low-level transport protocols such as TCP or UDP, although some can provide
access to higher-level transport protocols such as HTTP. Endpoints are respon-
sible for producing, sending, receiving, and consuming messages sent across the
network. Other services in JXTA build on endpoints either directly or indi-
rectly to provide network connectivity. The Resolver service, for example,
builds directly on endpoints, whereas the Discovery service builds on end-
points indirectly via the Resolver service.

In addition to the Resolver service, JXTA offers another mechanism by
which services can access a network transport without interacting directly
with the endpoint abstraction: pipes. Pipes are an abstraction in JXTA that
describe a connection between a sending endpoint and one or more receiving
endpoints. A pipe is a convenience method layered on top of the endpoint
abstraction. Although pipes might appear to provide access to a network trans-
port, implementations of the endpoint abstraction are responsible for the actual
task of sending and receiving data over the network.

To provide an abstraction that can encompass the simplest networking tech-
nology, JXTA specifies pipes as unidirectional, meaning that data travels in only
one direction. Pipes are also asynchronous, meaning that data can be sent or
received at any time, a feature that allows peers to act independently of other
peers without any sort of state synchronization. The JXTA Protocols
Specification does specity that other types of pipes (bidirectional, synchronous,
or streaming) might exist in JXTA. However, only the unidirectional asynchro-
nous variety of pipe is required by the specification.

Pipes are described by a Pipe Advertisement using the XML shown in
Listing 8.1.

Listing 8.1 The Pipe Advertisement XML

<?xml version="1.0" encoding="UTF-8"?>
<jxta:PipeAdvertisement>

<Id> . . . </Id>
<Type> . . . </Type>
<Name> . . . </Name>

</jxta:PipeAdvertisement>

Introducing the Pipe Binding Protocol 203

The elements of the Pipe Advertisement provide required information that a
peer can use to find and connect to a remote peer:

= Id—A required element containing an ID that uniquely identifies the
pipe. This Pipe ID uses the standard JXTA URN format, as described in
JXTA Protocols Specification.

= Type—A required element containing a description of the type of con-
nection possible using the pipe. Currently, the reference implementation
supports JxtaUnicast, JxtaUnicastSecure, and JxtaPropagate. The JxtaUnicast
type of pipe provides a basic connection between one sending endpoint
and one receiving endpoint. The JxtaUnicastSecure type of pipe provides
the same functionality as the JxtaUnicast type of pipe, except that the
connection is secured using the Transport Layer Security (TLS) protocol.
The JxtaPropagate type of pipe provides a broadcast connection between
many sending endpoints and multiple receiving endpoints.

= Name—An optional element containing a symbolic name for the pipe
that can be used to discover the Pipe Advertisement using the Discovery
service.

Notice that the Pipe Advertisement seems to be missing one important piece
of information: a Peer ID. Pipe Advertisements are defined without specifying
a specific peer to allow several peers to provide access to a service using the
same Pipe Advertisement. The omission of a Peer ID is the reason that pipes
must be resolved using the Pipe Binding Protocol.

When a peer wants to send data using a pipe, it needs to find a peer that
has already bound a pipe with the same Pipe ID to an endpoint and that is
listening for data. The PBP defines two messages to enable a peer to resolve
a pipe:

= The Pipe Binding Query Message—A message format for querying
a remote peer if it has bound a pipe with a matching Pipe ID.

= The Pipe Binding Answer Message—A message format for sending
responses to the query.

The message formats are all that a peer needs to resolve the ID of a peer that
has a bound pipe with a given Pipe ID. As shown in Figure 8.1, when a peer

wants to bind to a specific pipe, it sends a Pipe Binding Query Message to all
of its known peers and rendezvous peers. Peers respond with a Pipe Binding

Answer Message that details whether they have a matching bound pipe.

204 Chapter 8 The Pipe Binding Protocol

2. Peer 2, wanting to send a
message to Peer 1 using the
same Pipe Advertisement,
needs to create an output pipe
for a Pipe Advertisement. To
do this, it sends a Pipe Binding
Query Message to all of its
known peers and rendezvous
peers.

1. Peer 1 creates an input pipe E]
from a Pipe Advertisement and JXTA P2P Network

waits for messages to arrive.

Peer 2
4. Peer 2 receives the
Pipe Binding Answer

Peer 1
3. Peer 1, receiving the

Pipe Binding Query

Message, checks its Message and extracts the
cache of pipes to see if it endpoint information from
has a match. It does, so it the Peer Adevertisement.
responds with a Pipe The endpoint information
Binding Answer Message is used to create an
containing its Peer output pipe. When this is
Advertisement. done, Peer 2 can send

mesages to Peer 1.

Figure 8.1 Exchange of Pipe Binding Messages.

Two important things should be noted from Figure 8.1. First, when Peer 1
creates an input pipe, nothing is sent to the network. Peer 1 simply begins lis-
tening on its local endpoints for incoming messages tagged with the Pipe ID
specified in the Pipe Advertisement. Second, the Pipe Advertisement doesn’t
necessarily need to be communicated over the network. Although a Pipe
Advertisement usually is discovered using the Discovery service, a Pipe
Advertisement could also be hard-coded into an application or exchanged
using the Resolver service.

After the receiving end of the pipe has been resolved to a particular end-
point on a remote peer, the peer can bind the other end of the pipe to its
local endpoint. This pipe on the local peer is called an output pipe because the
pipe has been bound to an endpoint for the purpose of sending output to the
remote peer. The bound pipe on the remote peer is called an input pipe
because the pipe has been bound to an endpoint for the purpose of accepting
input. After the sending peer binds an output pipe, it can send messages to the
remote peer.

Only the endpoint location of the pipe on a remote peer must be deter-
mined in the binding process to create an output pipe. When creating an input
pipe, no binding process is necessary because the local peer already knows that
it will be binding the Pipe Advertisement to its local endpoint for the purpose
of accepting data.

[t is important to reiterate that neither the input pipes nor the output pipes
are actually responsible for sending or receiving data. The endpoints specified
by the bound pipe are the elements responsible for handling the actual
exchange of messages over the network.

Introducing the Pipe Binding Protocol 205

In the case of propagation pipes (when the Pipe Advertisement’s Type is set
to JxtaPropagate), the implementation relies on the multicast or broadcast capa-
bilities of the local endpoint. In this case, the PBP is not required because the
sending endpoint doesn’t need to find a listening endpoint before it can send
data to the network.

The Pipe Binding Query Message
The Pipe Binding Query Message is sent by a peer to resolve the ID of a peer

that has bound an input pipe with a specific Pipe ID. Listing 8.2 shows the
format of the Pipe Binding Query Message.

Listing 8.2 The Pipe Binding Query Message XML
<?xml version="1.0" encoding="UTF-8"?>
<jxta:PipeResolver>

<MsgType>Query</MsgType>

<Pipeld> . . . </Pipeld>
<Type> . . . </Type>
<Cached> . . . </Cached>
<Peer> . . . </Peer>

</jxta:PipeResolver>

The information sent in the Pipe Binding Query Message describes the pipe
that the peer is seeking to resolve and tells whether to use cached information.

= NMsgType—A required element containing a string that indicates the type
of Pipe Binding Message. For the Pipe Binding Query Message, this ele-
ment is hard-coded to Query.

» PipeId—A required element containing the ID of the pipe for which the
requesting peer is attempting to resolve a Peer ID.

» Type—A required element containing the type of pipe being resolved.
This corresponds to the Type field of the Pipe Advertisement, and it can
have a value of JxtaUnicast, JxtaUnicastSecure, or JxtaPropagate.

» Cached—An optional element that specifies whether the remote peer
being queried can use its local cache of resolved pipes to respond to the
query. If this parameter is missing, the peer receiving the query assumes
that it is allowed to use cached information.

» Peer—According to the specification, this optional element specifies the
Peer ID of the only peer that should respond to the query. However, the
current reference implementation does not send this parameter yet;
which peers receive the query is specified by the service interface rather
than the protocol.

206 Chapter 8 The Pipe Binding Protocol

The reference implementation doesn’t define any classes to encapsulate the
Pipe Binding Query Message.

The Pipe Binding Answer Message

A peer responds to a Pipe Binding Query Message using a Pipe Binding
Answer Message. Note that response might or might not be sent to a given
query. Responses received are useful only to update the local peer’s cached set
of resolved pipes. The Pipe Binding Answer Message comes in two forms: one
to indicate that a matching pipe was not found and another to indicate a
matching pipe was found. Listing 8.3 shows the format of the Pipe Binding
Answer Message.

Listing 8.3 The Pipe Binding Answer Message XML

<?xml version="1.0" encoding="UTF-8"?>
<jxta:PipeResolver>
<MsgType>Answer</MsgType>

<Pipeld> . . . </Pipeld>
<Type> . . . </Type>
<Peer> . . . </Peer>
<Found>false</Found>
<PeerAdv> . . . </PeerAdv>

</jxta:PipeResolver>

The elements of the Pipe Binding Answer Message are nearly identical to
those of the Pipe Binding Query Message, with the following exceptions:

» MsgType—A required element containing a string that indicates the type
of Pipe Binding Message. For the Pipe Binding Response Message, this
element is hard-coded to Answer.

» Found—An optional element that indicates whether a matching Pipe ID
was found. If this element is missing, the reference implementation
assumes that a peer with a matching Pipe ID was found.

= PeerAdv—An optional element containing the Peer Advertisement of the
peer that has the matching Pipe ID. If no match was found, this element
does not appear in the Pipe Binding Answer Message. The endpoint
information required to contact a remote peer using a specific pipe is
included as part of the Peer Advertisement.

As with the Pipe Binding Query Message, the reference implementation
provides no classes to abstract the Pipe Binding Answer Message.

The Pipe Service

The Pipe Service

As with every other protocol in JXTA, the Pipe Binding Protocol is provided
as a service. In the case of the PBP, the Pipe service is responsible for handling
the details of creating input or output pipe objects and binding those pipe
objects to endpoints. The Pipe service, as shown in Figure 8.2, is defined by
the PipeService interface in the net.jxta.pipe package, with a reference imple-
mentation defined by the PipeServiceImpl class in the net.jxta.impl.pipe

package.

<<Interface>>
PipeService
(from net.jxta.pipe)

« UnicastType : java.lang.String
« PropagateType : java.lang.String
. UnicastSecureType : java.lang.String

« createlnputPipe(adv : net.jxta.protocol.PipeAdvertisement) : net.jxta.pipe.InputPipe

« createlnputPipe(adv : net.jxta.protocol.PipeAdvertisement, listener : net.jxta.pipe.PipeMsgListener) : net.jxta.pipe.InputPipe

- createOutputPipe(adv : net.jxta.protocolPipeAdvertisement, timeout : long) : net.jxta.pipe.OutputPipe

« createOutputPipe(adv : net.jxta.protocolPipeAdvertisement, listener : net.jxta.pipe.OutputPipeListener) : void

- createOutputPipe(adv : net.jxta.protocol.PipeAdvertisement, peers : java.util.Enumeration, timeout : long) : net.jxta.pipe.OutputPipe
. createMessage() : net.jxta.endpoint.Message

- removeOutputPipeListener(pipelD : java.lang.String, listener : net.jxta.pipe.OutputPipeListener) : net.jxta.pipe.OutputPipeListener

PipeServicelmpl
(from net.jxta.impl.pipe)

Figure 8.2 The Pipe Service interface and implementation.

One thing that should be noted about the reference implementation of the
PipeService interface is its reliance on another service to implement the Pipe
Binding Protocol. The pipeResolver service is a Resolver service handler that
provides a convenience mechanism for PipeServiceImpl, freeing it to focus on
matching resolved endpoints to pipe-implementation objects.

Pipe objects implement either the InputPipe or the OutputPipe interfaces
defined in the net.jxta.pipe package. The reference implementation provides
an implementation of these interfaces for each of the three types of pipe
(unicast, secure unicast, and propagate), as shown in Figure 8.3.

A developer never creates these InputPipe or OutputPipe implementations
directly. Instead, a developer obtains an InputPipe or OutputPipe instance using
PipeService’s createOutputPipe or createInputPipe methods, respectively.

207

208 Chapter 8 The Pipe Binding Protocol

<<Interface>>
InputPipe
(from net.jxta.pipe)

- waitForMessage() : net.jxta.endpoint.Message
« poll(timeout : int) : net.jxta.endpoint.Message
« close() : void

A
__________________ L -
] I]
1 I 1
InputPipelmpl SecurelnputPipelmpl WirelnputPipe
(from net.jxta.impl.pipe) (from net.jxta.impl.pipe) (from net.jxta.impl.pipe)

Figure 8.3 The pipe interfaces and classes.

Using the Pipe Service to Send and Receive Messages

The examples in the following sections demonstrate how to use the Pipe ser-
vice and pipes to send and receive data. The example consists of three parts: an
advertisement generator, a client, and a server.

Starting and Stopping the JXTA Platform

Unlike previous examples in this book, the examples in this chapter do not
rely on the Shell to start the JXTA platform or provide the user interface.
These applications start and stop the JXTA platform themselves by creating a
Net Peer Group instance using this call:

PeerGroup peerGroup = PeerGroupFactory.newNetPeerGroup();

As you've seen in all the examples so far, all operations within JXTA are asso-
ciated with a peer group. In the examples in all the previous chapters, a
PeerGroup object obtained from the Shell environment was used to obtain an
instance of a core service, such as the Discovery service, for a peer group.

The Net Peer Group is a special peer group, one that is described in greater
detail in Chapter 10, “Peer Groups and Services.” For the moment, just think
of the Net Peer Group as a common peer group that peers belong to when
the platform is started.

Unfortunately, after the platform starts, there currently isn’t any nice way to
shut down the JXTA platform in a controlled way. The only way, as unpleasant
as it is, is to use this code:

System.exit(0);
The exit call takes an integer parameter, where 0 indicates no error occurred.

To stop the JXTA platform after an error has occurred, the exit method
should be called with a nonzero value, usually 1.

The Pipe Service 209

Creating a Pipe Advertisement

Creating an input pipe or output pipe using the Pipe service requires a Pipe
Advertisement. So, as shown in Listing 8.4, the first step in creating any solu-
tion that involves pipes is to create a Pipe Advertisement that describes the
type of pipe, the Pipe ID, and an optional name for the pipe.

Listing 8.4 Source Code for PipeAdvPopulator.java

package com.newriders.jxta.chapters;

import java.io.FileWriter;
import java.io.IOException;

import net.jxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;
import net.jxta.document.StructuredTextDocument;

import net.jxta.exception.PeerGroupException;

import net.jxta.id.ID;
import net.jxta.id.IDFactory;

import net.jxta.impl.peergroup.StdPeerGroup;

import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.pipe.PipeService;

import net.jxta.protocol.PipeAdvertisement;

/**
* An example to create a set of common Pipe Advertisement to be used
* by the PipeServer example application.
*/

public class PipeAdvPopulator

{

/**
* The peerGroup for the application.
*/

private PeerGroup peerGroup = null;

continues

210 Chapter 8 The Pipe Binding Protocol

Listing 8.4 Continued

/**
* Generates a Pipe Advertisement for the PipeClient/Server example.
*/
public void generatePipeAdv()
{
/| Create a new Pipe Advertisement object instance.
PipeAdvertisement pipeAdv =
(PipeAdvertisement) AdvertisementFactory.newAdvertisement(
PipeAdvertisement.getAdvertisementType());

// Create a unicast Pipe Advertisement.

pipeAdv.setName("Chapter 8 Example Unicast Pipe Advertisement");

pipeAdv.setPipeID((ID) IDFactory.newPipelD(
peerGroup.getPeerGroupID()));

pipeAdv.setType(PipeService.UnicastType);

writePipeAdv(pipeAdv, "UnicastPipeAdv.xml");

/| Create a secure unicast Pipe Advertisement.
pipeAdv.setName (
"Chapter 8 Example Secure Unicast Pipe Advertisement");
pipeAdv.setPipeID((ID) IDFactory.newPipelID(
peerGroup.getPeerGroupID()));
pipeAdv.setType(PipeService.UnicastSecureType);
writePipeAdv(pipeAdv, "SecureUnicastPipeAdv.xml");

/| Create a propagate Pipe Advertisement.

pipeAdv.setName("Chapter 8 Example Propagate Pipe Advertisement");

pipeAdv.setPipeID((ID) IDFactory.newPipelID(
peerGroup.getPeerGroupID()));

pipeAdv.setType(PipeService.PropagateType);

writePipeAdv(pipeAdv, "PropagatePipeAdv.xml");

/**
* Starts the JXTA platform.
*
* @exception PeerGroupException thrown if the platform can't
* be started.
*/
public void initializeJXTA() throws PeerGroupException

{

The Pipe Service 211

peerGroup = PeerGroupFactory.newNetPeerGroup();

/**
* Runs the application: starts the JXTA platform, generates the Pipe
* Advertisements, and stops the JXTA platform.

*
* @param args the command-line arguments passed to the application.
*/

public static void main(String[] args)

{
PipeAdvPopulator p = new PipeAdvPopulator();
try
{
// Initialize the JXTA platform.
p.initializeJdXTA();
/| Generate the Pipe Advertisements to be used by the examples.
p.generatePipeAdv();
/] Stop the JXTA platform.
p.uninitializedXTA();
}
catch (PeerGroupException e)
{
System.out.println("Error starting JXTA platform: " + e);
System.exit(1);
}
}
/**
* Stops the JXTA platform.
*/
public void uninitializeJXTA()
{
/] Currently, there isn't any nice way to do this.
System.exit(0);
}
/**

continues

212 Chapter 8 The Pipe Binding Protocol

Listing 8.4

Continued

* Writes the given Pipe Advertisement to a file
* with the specified name.

*

* @param pipeAdv the Pipe Advertisement to be written to file.
* @param fileName the name of the file to write.

*/
private void writePipeAdv(PipeAdvertisement pipeAdv, String fileName)
{
/] Create an XML formatted version of the Pipe Advertisement.
try
{
FileWriter file = new FileWriter(fileName);
MimeMediaType mimeType = new MimeMediaType("text/xml");
StructuredTextDocument document =
(StructuredTextDocument) pipeAdv.getDocument(mimeType);
/] Output the XML for the advertisement to the file.
document.sendToWriter(file);
file.close();
}
catch (Exception e)
{
e.printStackTrace();
}
}

The PipeAdvPopulator example creates a Pipe Advertisement for each possible
pipe type, to allow you to experiment with all the pipe types in the following
pipe examples. PipeAdvPopulator creates three files: UnicastPipeAdv.xml,
SecureUnicastPipeAdv.xml, and PropagatePipeAdv.xml.

To compile and run PipeAdvPopulator, create a new directory and copy into
it all the JAR files from the 1ib directory under the JXTA Demo install direc-
tory. Place PipeAdvPopulator.java in the same directory and compile it from the
command line using this code:

javac -d .

-classpath .;beepcore.jar;cms.jar;cryptix32.jar;

cryptix-asni.jar;instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;
jxtashell.jar;log4j.jar;minimalBC.jar PipeAdvPopulator.java

The Pipe Service 213

Run the example using this code:
java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;
cryptix-asni.jar;instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;
jxtashell.jar;log4j.jar;minimalBC.jar
com.newriders.jxta.chapter8.PipeAdvPopulator
Configure your peer as you did for the earlier Shell examples when prompted
by the configuration screens. When you finish the configuration, the JXTA
platform starts and PipeAdvPopulator creates the Pipe Advertisement files.

Creating an Input Pipe

An input pipe listens for messages being sent by other peers. The example in
Listing 8.5 creates an InputPipe instance using the Pipe service.

Listing 8.5 Source Code for PipeServer.java

package com.newriders.jxta.chapters;
import java.io.FileInputStream;
import java.io.FileNotFoundException;

import java.io.IOException;

import java.awt.FlowLayout;
import java.awt.Container;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;

import net.jxta.discovery.DiscoveryService;

import net.jxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;

import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;

continues

214 Chapter 8 The Pipe Binding Protocol

Listing 8.5 Continued

import net.jxta.pipe.InputPipe;
import net.jxta.pipe.PipeMsgEvent;
import net.jxta.pipe.PipeMsgListener;
import net.jxta.pipe.PipeService;

import net.jxta.protocol.PipeAdvertisement;

/**
* A server application to accept incoming messages on a pipe and display
* them to the user.
*/

public class PipeServer implements PipeMsgListener

{

/**
* The frame for the user interface.
*/
private JFrame serverFrame = new JFrame("PipeServer");

/**
* A label used to display the received message in the GUI.
*/
private JLabel messageText =
new JLabel("Waiting to receive a message...");

/**
* The peerGroup for the application.
*/

private PeerGroup peerGroup = null;

/**

* Indicates whether the GUI has been initialized already.
*/

private boolean initialized = false;

/**
* The input pipe used to receive messages.
*/

private InputPipe inputPipe = null;

The Pipe Service 215

/**
* Starts the JXTA platform.
*
* @exception PeerGroupException thrown if the platform can't
* be started.

*/
public void initializeJXTA() throws PeerGroupException
{
peerGroup = PeerGroupFactory.newNetPeerGroup();
}
/**

* Load the Pipe Advertisement generated by PipeAdvPopulator.
* This method tries to create an output pipe that can be used
* to send messages.

* @param fileName the name of the file from which to load
* the Pipe Advertisement.

* @exception FileNoteFoundException if the Pipe Advertisement
* file can't be found.

* @exception IOException if there is an error binding the pipe.
*/
public void loadPipeAdv(String fileName)
throws FileNotFoundException, IOException

FileInputStream file = new FileInputStream(fileName);
MimeMediaType asMimeType = new MimeMediaType("text/xml");

/| Load the advertisement.
PipeAdvertisement pipeAdv =
(PipeAdvertisement) AdvertisementFactory.newAdvertisement(
asMimeType, file);

/] Publish the discovery to allow peers to find and bind the pipe.
DiscoveryService discovery = peerGroup.getDiscoveryService();
discovery.publish(pipeAdv, DiscoveryService.ADV);
discovery.remotePublish(pipeAdv, DiscoveryService.ADV);

/] Create an input pipe using the advertisement.

PipeService pipeService = peerGroup.getPipeService();
inputPipe = pipeService.createInputPipe(pipeAdv, this);

continues

216 Chapter 8 The Pipe Binding Protocol

Listing 8.5 Continued

/**

* Runs the application: starts the JXTA platform, loads the
* Pipe Advertisement from file, and creates an input pipe to
* use to receive messages.

*

* @param args the command-line arguments passed to the application.

*/
public static void main(String[] args)
{
PipeServer server = new PipeServer();
if (args.length == 1)
{
try
{

// Initialize the JXTA platform.
server.initializeJdXTA();

// Load the Pipe Advertisement.
server.loadPipeAdv(args[0]);

// Show the user interface.
server.showGUI();

}
catch (PeerGroupException e)
{
System.out.println("Error starting JXTA platform: " + e);
System.exit(1);
}
catch (FileNotFoundException e2)
{
System.out.println("Unable to load Pipe Advertisement: "
+ e2);
System.exit(1);
}
catch (IOException e3)
{

System.out.println("Error loading Pipe Advertisement:
+ e3);
System.exit(1);

else

}
{
}
}
/**

System.out.println(

The Pipe Service 217

"Specify the name of the input Pipe Advertisement file.");

* Handles an incoming message.

*

* @param event the incoming event containing the arriving message.
*/
public void pipeMsgEvent(PipeMsgEvent event)
{
/| Extract the message.
Message message = event.getMessage();
/] Set the user interface to display the message text.
messageText.setText(message.getString("MessageText"));
}
/**

* Configures and displays a simple user interface to display messages
* received by the pipe. The GUI also allows the user to stop the
* server application.

*/

public void showGUI()

{

if (!linitialized)

{

initialized = true;

JButton quitButton = new JButton("Quit");

/] Populate the GUI frame.

Container pane = serverFrame.getContentPane();
pane.setLayout (new FlowLayout());
pane.add(messageText);

pane.add(quitButton);

quitButton.addActionListener(

continues

218 Chapter 8 The Pipe Binding Protocol

Listing 8.5 Continued

new ActionListener()

{
public void actionPerformed(ActionEvent e)
{
serverFrame.hide();
/] Stop the JXTA platform. Currently, there isn't
// any nice way to do this.
System.exit(0);
}
}

)3

/| Pack and display the user interface.
serverFrame.pack();
serverFrame.show();

The pipeServer starts the JXTA platform, loads a Pipe Advertisement specified
at the command line, creates an input pipe from the advertisement, and waits
for messages to arrive that it can display in its user interface.

The PipeServer example creates an input pipe using this code:

inputPipe = pipeService.createInputPipe(pipeAdv, this);

As shown in Figure 8.4, this version of createInputPipe takes PipeMsgListener as
its second parameter. The PipeServer class itself implements the PipeMsgListener
interface to receive notification when new messages arrive through the newly
created InputPipe.

This is the only mechanism for an application to register a listener because
the InputPipe interface doesn’t define any methods to register or unregister a
listener object. The PipeServer example implements the PipeMsgListener’s
pipeMsgEvent method to extract the received Message and update the PipeServer
user interface.

The Pipe Service

<<Interface>>
PipeMsgListener
(from net.jxta.pipe)

« pipeMsgEvent(event : net.jxta.pipe.PipeMsgEvent) : void

< — — —

PipeMsgEvent
(from net.jxta.pipe)

* PipeMsgEvent(source : java.lang.Object, message : net.jxta.endpoint.Message)
« getMessage() : net.jxta. endpoint.Message

Figure 8.4 The PipeMsgListener interface and PipeMsgEvent class.

An application that doesn’t use a PipeMsgListener can still retrieve messages
received by InputPipe by using either the poll or waitForMessage methods
defined by Inputpipe:

public Message poll(int timeout) throws InterruptedException;

public Message waitForMessage() throws InterruptedException;

The waitForMessage method blocks indefinitely until a message arrives, at
which point, it returns a Message object. Usually an application that wants to
use this method spawns its own subclass of Thread to handle calling
waitForMessage repeatedly and processing the Message objects as they arrive.

The poll method is similar to waitForMessage, except that a call to the poll
method blocks only for the length of time specified. The timeout argument
specifies the amount of time (in milliseconds) to wait for a Message to arrive
before returning. If no message is received, the poll method returns null.

By itself, the PipeServer example isn’t very useful. There’s no point waiting
for messages to arrive if no one’s sending messages! Before you can use
PipeServer, you need to create a client application that sends messages using
the same Pipe Advertisement.

Creating an Output Pipe

An output pipe sends messages to a remote peer. The example in Listing 8.6
creates an output pipe to send simple text messages to a peer running the
PipeServer example created in the previous section.

219

220 Chapter 8 The Pipe Binding Protocol

Listing 8.6 Source Code for PipeClient.java

package com.

import
import

import
import

import
import
import
import
import
import
import

import

import
import

import

import

import

import

import
import

import
import
import
import

import

java.
java.

java.
java.

java.
java.
java.

awt
awt

awt
awt

newriders.jxta.chapters;

.FlowLayout;
.Container;

.event.ActionEvent;
.event.ActionListener;

io.FileInputStream;
io.FileNotFoundException;
io0.IO0Exception;

java.net.URL;

javax.swing.JButton;
javax.swing.JFrame;
javax.swing.JOptionPane;
javax.swing.JTextField;

net.
net.

net.

net.

net.

net.

net.
net.

net.
net.
net.
net.

net.

jxta
jxta

jxta.

jxta.

jxta.

jxta.

jxta.
jxta.

jxta.
jxta.
jxta.
jxta.

jxta.

.document.AdvertisementFactory;
.document.MimeMediaType;

endpoint.Message;

exception.PeerGroupException;

id.IDFactory;

peer.PeerID;

peergroup.PeerGroup;
peergroup.PeerGroupFactory;

pipe.OutputPipe;
pipe.OutputPipeEvent;
pipe.OutputPipeListener;
pipe.PipeService;

protocol.PipeAdvertisement;

The Pipe Service

/**
* A client application, which sends messages over a pipe to a remote peer.
*/

public class PipeClient implements OutputPipelListener

{

/**
* The peerGroup for the application.
*/

private PeerGroup peerGroup = null;

/**
* The pipe to use to send the message to the remote peer.
*/

private OutputPipe outputPipe = null;

/**
* The frame for the user interface.
*/
private JFrame clientFrame = new JFrame("PipeClient");

/**
* The text field in the user interface to accept the message
* text to be sent over the pipe.
*/

private JTextField messageText = new JTextField(20);

/**
* Indicates whether the pipe has been bound already.
*/

private boolean initialized = false;

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform can't

* be started.

*/
public void initializeJXTA() throws PeerGroupException
{

peerGroup = PeerGroupFactory.newNetPeerGroup();

continues

221

222 Chapter 8 The Pipe Binding Protocol

Listing 8.6 Continued

/**
* Load the Pipe Advertisement generated by PipeAdvPopulator. This method

* tries to create an output pipe that can be used to send messages.
*

* @param fileName the name of the file from which to load

* the Pipe Advertisement.

* @exception FileNoteFoundException if the Pipe Advertisement file
* can't be found.

* @exception IOException if there is an error binding the pipe.

*/

public void loadPipeAdv(String fileName)
throws FileNotFoundException, IOException

FileInputStream file = new FileInputStream(fileName);
MimeMediaType asMimeType = new MimeMediaType("text/xml");

// Load the advertisement.
PipeAdvertisement pipeAdv =
(PipeAdvertisement) AdvertisementFactory.newAdvertisement(
asMimeType, file);

// Create an output pipe using the advertisement. This version of
/] createOutputPipe uses the PipeClient class as an

// OutputPipeListener object.

PipeService pipeService = peerGroup.getPipeService();
pipeService.createQutputPipe (pipeAdv, this);

/**
* Runs the application: starts the JXTA platform, loads the Pipe

* Advertisement from file, and attempts to resolve the pipe.
*

* @param args the command-line arguments passed to the application.
*/
public static void main(String[] args)

{
PipeClient client = new PipeClient();

if (args.length == 1)
{

The Pipe Service 223

try

// Initialize the JXTA platform.
client.initializeJXTA();

/] Load the Pipe Advertisement.
client.loadPipeAdv(args[0]);

}
catch (PeerGroupException e)
{
System.out.println("Error starting JXTA platform: " + e);
System.exit(1);
}
catch (FileNotFoundException e2)
{
System.out.println("Unable to load Pipe Advertisement: "
+ e2);
System.exit(1);
}
catch (IOException e3)
{
System.out.println("Error loading or binding Pipe"
+ " Advertisement: " + e3);
System.exit(1);
}
}
else
{
System.out.println("You must specify the name of the input"
+ " Pipe Advertisement file.");
}
}
/**

* The OutputPipeListener event that is triggered when an OQutputPipe is
* resolved by the call to PipeService.createOutputPipe.

*
* @param event the event to use to extract the resolved output pipe.
*/

public void outputPipeEvent(OutputPipeEvent event)

{

/] We care about only the first pipe we manage to resolve.

continues

224 Chapter 8 The Pipe Binding Protocol

Listing 8.6 Continued

/

if (linitialized)

{
initialized = true;
/| Get the bound pipe.
outputPipe = event.getOutputPipe();
// Show a small GUI to allow the user to send a message.
showGUI () ;
}

* %

* Sends a message string to the remote peer using the output pipe.
*

* @param messageString the message text to send to the remote peer.
*/

private void sendMessage(String messageString)

{

PipeService pipeService = peerGroup.getPipeService();
Message message = pipeService.createMessage();

// Configure the message object.
message.setString("MessageText", messageString);

if (null != outputPipe)

{
try
{
// Send the message.
outputPipe.send(message);
}
catch (IOException e)
{
// Show some warning dialog.
JOptionPane.showMessageDialog(null, e.toString(), "Error"
JOptionPane.WARNING_MESSAGE) ;
}
}
else

/**

The Pipe Service

// Show some warning dialog.
JOptionPane.showMessageDialog(null, "Output pipe is null!",
"Error", JOptionPane.WARNING_MESSAGE) ;

* Configures and displays a simple user interface to allow the user to
* send text messages. The GUI also allows the user to stop the client
* application.

private void showGUI()

{

JButton sendButton = new JButton("Send Message");
JButton quitButton = new JButton("Quit");

/| Populate the GUI frame.

Container pane = clientFrame.getContentPane();
pane.setlLayout(new FlowLayout());
pane.add(messageText);

pane.add(sendButton);

pane.add(quitButton);

/] Set up listeners for the buttons.
sendButton.addActionListener(
new ActionListener() ({
public void actionPerformed(ActionEvent e)

{
/| Send the message.
sendMessage (messageText.getText());
/| Clear the text.
messageText.setText("");

}

)3
quitButton.addActionListener(
new ActionListener()

{
public void actionPerformed(ActionEvent e)

{

clientFrame.hide();

continues

225

226 Chapter 8 The Pipe Binding Protocol

Listing 8.6 Continued

// Stop the JXTA platform. Currently, there isn't any
// nice way to do this.
System.exit(0);

)3

// Pack and display the user interface.
clientFrame.pack();
clientFrame.show();

The pipeClient example mirrors the PipeServer example. The PipeClient exam-

ple starts the JXTA platform, loads a Pipe Advertisement specified at the com-

mand line, and creates an output pipe from the advertisement. After an output

pipe is successfully created, the example displays a user interface that the user

can use to input messages to be sent via the output pipe to a remote peer.
The PipeClient example creates an output pipe using this code:

pipeService.createOutputPipe (pipeAdv, this);

This version of createOutputPipe takes OutputPipeListener, shown in Figure 8.5,
as its second parameter. The PipeClient itself implements the OutputPipeListener
interface to receive notification when an output pipe has been successfully
created.

<<Interface>>
OutputPipeListener
(from net.jxta.pipe)

« outputPipeEvent(event : net.jxta.pipe.OutputPipeEvent) : void

- — — — —|

OutputPipeEvent
(from net.jxta.pipe)

- OutputPipeEvent(source : java.lang.Object, pipe : net.jxta.pipe.OutputPipe, pipelD : java.lang.String, queryID : int)
« getOutputPipe() : net.jxta.pipe.OutputPipe

. getPipelD() : java.lang.String

« getQuerylD() : int

Figure 8.5 The OutputPipeListener interface and OutputPipeEvent class.

The Pipe Service

Unlike the PipeServer example, the PipeClient example doesn’t display its user
interface immediately. Instead, PipeClient’s implementation of OutputPipeListener’s
outputPipeEvent method displays the user interface when a pipe has been bound
to an endpoint successfully. Because an output pipe may be bound successfully
to several endpoints, outputPipeEvent does this only the first time it is called. Text
entered into the user interface is wrapped as a Message and sent over the resolved
OutputPipe using OutputPipe’s send method.

Using PipeServer and PipeClient

PipeServer and PipeClient each form one end of a complete communication
connection. The PipeServer class listens for data on an input pipe, and the
PipeClient class allows a user to send data using an output pipe. To prepare to
run these examples, follow these steps:

1. Place the source code in the same directory that you created for the
PipeAdvPopulator example.

2. Compile the source code by using the same command as before (replac-
ing PipeAdvPopulator.java with the appropriate source filename, of
course).

3. Create a copy of the entire directory. This is required so that you can run
two independent instances of the PipeServer and PipeClient applications.

Next, start the PipeServer example in the original directory using this code:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asni.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar com.newriders.jxta.chapter8.PipeServer
UnicastPipeAdv.xml

Here, the UnicastPipeAdv.xml parameter specifies that PipeServer should use the
UnicastPipeAdv.xml Pipe Advertisement file to create the input pipe. After the
input pipe is created, the PipeServer example displays the user interface in
Figure 8.6.

E%'PipeServer i [m] |

Waiting to receive a message... @

Figure 8.6 The PipeServer user interface.

227

228 Chapter 8 The Pipe Binding Protocol

Finally, start PipeClient in the copy of the original directory. For this to work,
you need to force the JXTA platform to show the configuration interface by
deleting the PlattormConfig file. Start PipeClient using this code:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asni.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar com.newriders.jxta.chapter8.PipeClient
UnicastPipeAdv.xml

When the configuration screen appears, choose a difterent TCP and HTTP
port in the TCP and HTTP Settings sections of the Advanced tab. After you
enter the configuration and started the platform, PipeClient attempts to bind
an output pipe. When the output pipe has been successfully bound, PipeClient
displays the user interface in Figure 8.7.

s PipeClient - [O]x
2

“ || Send Message || Quit |

Figure 8.7 The PipeClient user interface.

You should now be able to enter message in PipeClient’s user interface and
send it by clicking Send Message. The message is sent using the output pipe,
and the PipeServer user interface displays the message.

Note that although this demonstration might make it appear as though the
communication between the client and the server is reliable, JXTA does not
guarantee message delivery. Even if the pipe is using an endpoint protocol
built on top of a reliable network transport, such as TCP, a message is not
guaranteed to be delivered. A message might be dropped en route by an over-
loaded intermediary peer or even by the destination peer itself. That said, reli-
able message delivery could be built on top of pipes fairly easily and will most
likely be included in JXTA in the future.

Using Secure Pipes

A JXTA application can easily switch to using secure pipes just by changing
the Pipe Advertisement used when creating the input and output pipes. To try
using PipeServer and PipeClient with secure pipes, start the application the
same way as in the previous section, but replace UnicastPipeAdv.xml in each
command with SecureUnicastPipeAdv.xml.

The Pipe Service

Secure pipes use the Transport Security Layer protocol, a variant of SSL 3.0,
to secure the communication channel. When you configure the platform for
the first time, the platform generates a root certificate and private key that are
used to secure communications. The root certificate is saved in the Personal
Security Environment directory (pse) under the current directory when the
platform executes, and the private key is protected using the password entered
in the Security tab of the Configurator. The root certificate is also published
within the Peer Advertisement.

Using secure pipes with PipeServer and PipeClient should not seem any
different than using the nonsecure unicast pipes in the previous example.

Using Propagation Pipes

Propagation pipes are different than the other two types of pipes examined so
far in this chapter. Propagation pipes provide a peer with a convenient mecha-
nism to broadcast data to multiple peer endpoints. This might be useful in
some applications, such as a chat application, in which one peer produces data
for consumption by multiple remote peers.

In theory, you can use a propagation pipe by invoking PipeClient and
PipeServer using the PropagatePipeAdv.xml Pipe Advertisement instead of the
UnicastPipeAdv.xml. However, the current reference implementation of
PipeService does not allow you to call createOutputPipe and provide an
outputPipeListener. This should be fixed shortly, but in case it isn’t, Listing 8.7
shows a modified version of PipeClient that fixes the problem.

Listing 8.7 Source Code for PropagatePipeClient.java

package com.newriders.jxta.chapters8;

import java.awt.FlowLayout;
import java.awt.Container;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

import java.net.URL;

import javax.swing.JButton;

continues

229

230 Chapter 8 The Pipe Binding Protocol

Listing 8.7 Continued

import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.JTextField;

import net.jxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;

import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.id.IDFactory;

import net.jxta.peer.PeerlID;

import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.pipe.OutputPipe;
import net.jxta.pipe.PipeService;

import net.jxta.protocol.PipeAdvertisement;

/**

* A client application, which sends messages over a pipe to

a remote peer.

* This version is slightly different, to allow for use of a propagation

* pipe.

*/
public class PropagatePipeClient
{

/**
* The peerGroup for the application.
*/

private PeerGroup peerGroup = null;

/**

* The pipe to use to send the message to the remote peer.

*/
private OutputPipe outputPipe = null;

The Pipe Service

/**
* The frame for the user interface.
*/
private JFrame clientFrame = new JFrame("PropagatePipeClient");

/**
* The text field in the user interface to accept the message
* text to be sent over the pipe.
*/

private JTextField messageText = new JTextField(20);

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform can't
* be started.

*/
public void initializeJXTA() throws PeerGroupException
{
peerGroup = PeerGroupFactory.newNetPeerGroup();
}
/**

* Load the Pipe Advertisement generated by PipeAdvPopulator. This
* method tries to create an output pipe that can be used to send messages.

*

* @param fileName the name of the file from which to load the
* Pipe Advertisement.

* @exception FileNoteFoundException if the Pipe Advertisement

* file can't be found.

* @exception IOException if there is an error binding the pipe.
*/
public void loadPipeAdv(String fileName)
throws FileNotFoundException, IOException

FileInputStream file = new FileInputStream(fileName);
MimeMediaType asMimeType = new MimeMediaType("text/xml");

/] Load the advertisement.
PipeAdvertisement pipeAdv =

continues

231

232 Chapter 8 The Pipe Binding Protocol

Listing 8.7 Continued

(PipeAdvertisement) AdvertisementFactory.newAdvertisement(
asMimeType, file);

// Create an output pipe using the advertisement. This version of
/] createOutputPipe uses the PipeClient class as an

// OutputPipeListener object.

PipeService pipeService = peerGroup.getPipeService();

outputPipe = pipeService.createOutputPipe(pipeAdv, 10000);

// Because we can't use an OutputPipeListener when attempting to
// create an output propagation pipe, the GUI must be displayed
// immediately.
showGUI();
}

/**
* Runs the application: starts the JXTA platform, loads the Pipe
* Advertisement from file, and attempts to resolve the pipe.
*
* @param args the command-line arguments passed to the application.
*/
public static void main(String[] args)

{
PropagatePipeClient client = new PropagatePipeClient();

if (args.length == 1)
{
try
{
/] Initialize the JXTA platform.
client.initializeJXTA();

// Load the Pipe Advertisement.
client.loadPipeAdv(args[0]);

}

catch (PeerGroupException e)

{
System.out.println("Error starting JXTA platform: " + e);
System.exit(1);

}

catch (FileNotFoundException e2)

The Pipe Service 233

{
System.out.println("Unable to load Pipe Advertisement: "
+ e2);
System.exit(1);
}
catch (IOException e3)
{
System.out.println("Error loading or binding Pipe"
+ " Advertisement: " + e3);
System.exit(1);
}
}
else
{
System.out.println("You must specify the name of the input"
+ " Pipe Advertisement file.");
}
}
/**

* Sends a message string to the remote peer using the output pipe.
*
* @param messageString the message text to send to the remote peer.
*/
private void sendMessage(String messageString)
{
PipeService pipeService = peerGroup.getPipeService();
Message message = pipeService.createMessage();

/] Configure the message object.
message.setString("MessageText", messageString);

if (null != outputPipe)
{
try
{
// Send the message.
outputPipe.send(message);

}
catch (IOException e)

{

// Show some warning dialog.

continues

234 Chapter 8 The Pipe Binding Protocol

Listing 8.7 Continued

JOptionPane.showMessageDialog(null, e.toString(), "Error"
JOptionPane.WARNING_MESSAGE) ;

}
}
else
{
/] Show some warning dialog.
JOptionPane.showMessageDialog(null, "Output pipe is null!",
"Error", JOptionPane.WARNING_MESSAGE) ;
}
}
/**

* Configures and displays a simple user interface to allow the user to
* send text messages. The GUI also allows the user to stop the client
* application.
*/
private void showGUI()
{
JButton sendButton = new JButton("Send Message");
JButton quitButton new JButton("Quit");

// Populate the GUI frame.

Container pane = clientFrame.getContentPane();
pane.setLayout(new FlowLayout());
pane.add(messageText);

pane.add(sendButton);

pane.add(quitButton);

// Set up listeners for the buttons.
sendButton.addActionListener(
new ActionListener() {
public void actionPerformed(ActionEvent e)

{
// Send the message.
sendMessage (messageText.getText());
/| Clear the text.
messageText.setText("");

}

The Pipe Service 235

);
quitButton.addActionListener(
new ActionListener()

{
public void actionPerformed(ActionEvent e)
{
clientFrame.hide();
/| Stop the JXTA platform. Currently, there isn't any
/] nice way to do this.
System.exit(0);
}
}

);

/] Pack and display the user interface.
clientFrame.pack();
clientFrame.show();

Instead of calling createOutputPipe in loadPipeAdv with an OutputPipelListener
object, this version calls createOutputPipe with a timeout value. The user inter-
face is shown in loadPipeAdv after the output pipe is bound rather than being
shown by the outputPipeEvent method.

To see the propagate pipe in action, create another copy of the directory
holding your source code and the JXTA JARs, and delete the PlatformConfig
file. This time, run two PipeServer instances from different directories, and run
a PropagatePipeClient instance from third directory. Remember to configure
the platform running in the newest directory (the one that you copied at the
beginning of this paragraph) to use another TCP and HTTP port as before.
When running these applications, also be sure to use the PropagatePipeAdv.xml
file as the source of the Pipe Advertisement.

When the PipeServer and PropagatePipeClient instances are running, you
should be able to send a message using PropagatePipeClient. When the message
is sent, it should be displayed by both PipeServer instances. By comparison, per-
forming the same exercise using the UnicastPipeAdv.xml Pipe Advertisement
would result in only one of the PipeServer instances receiving the message. In
this case, only the first pipe instance resolved by the Pipe service would receive
the message.

236 Chapter 8 The Pipe Binding Protocol

Bidirectional Pipes

The examples given so far in this chapter have demonstrated only unidirec-
tional communication. To achieve bidirectional communication, you need two
pipes: one to send data and one to receive data.
You can easily implement a bidirectional solution, but doing so requires you
to write the code to bind both the input and output pipes. Instead of writing
the code, you can use the BidirectionalPipeService class, shown in Figure 8.8,
from the net.jxta.impl.util package to handle the common tasks of initializing
pipes for two-way communications.

BidirectionalPipeService
(from net.jxta.impl.util)

: netjxta

(P
blnd(plpeName java.lang.String) : net.jxta.impl.util Bidi

ipe!
« connect(adv : net.jxta.protocol.PipeAdvertisement, timeout : int) : net.jxta.impl.util. Bldlrectlon

ice.

AcceptPipe

(from net.jxta.impl.util. Bidi

ipeService)

Pi
(from net.jxta.impl.util.Bidi

P)

. AcceptPlpe(adv net.jxta.protocol. PlpeAdverllsement aweptPlpe net.jxta.pipe.InputPipe)

int) : net.jxta.impl.util ip Pipe

. accept(tlmeout int, listener : net.jxta.impl.util.Bidirecti ipeServit
« close() : void
« getAdvertisement() : net.jxta.protocol.PipeAdvertisement

istener) : net.jxta.impl.util.Bidi

ip ice.Pipe

« Pipe(inputPipe : net.jxta.pipe.InputPipe, outputPipe :net.jxta.pipe.OutputPipe)
« getinputPipe() : net.jxta.pipe.InputPipe
« getOutputPipe() : net.jxta.pipe.OutputPipe

(from net.jxta.im|

<<Interface>>
MessageLlstener

pl.util.Bidi ipe:

vice)

+ messageReceived(msg : net.jxta.endpoint.Message, outputPipe : net.jxta.pipe.OutputPipe)

Figure 8.8 The BidirectionalPipeService class and supporting classes.

The BidirectionalPipeService class provided by the reference implementation

isn’t a real service. Unlike PipeService or any of the other core services,
BidirectionalPipeService is not constantly running on a peer waiting to handle
incoming messages. Instead, BidirectionalPipeService is simply a wrapper built

on top of the Pipe and Discovery services. BidirectionalPipeService’s construc-

tor takes a PeerGroup object as its sole argument, which it uses to extract the
peer group’s Discovery and Pipe service objects:

public BidirectionalPipeService (PeerGroup peerGroup);

As shown in Figure 8.9, BidirectionalPipeService provides only two other
methods: bind and connect. The bind method is used to create an instance of
AcceptPipe, an inner class defined by BidirectionalPipeService, which uses an
input pipe to listen for connections from other peers. The connect method is
used to connect to a remote peer that is already listening for connections.

BidirectionalPipeService and its support classes use a clever trick to require
you to work directly with only one Pipe Advertisement.

The Pipe Service

2. Peer 2, wanting to establish two-way
communication with Peer 1, binds an output
pipe using the discovered Pipe Advertisement.
After the pipe has been bound, Peer 2 creates
a new Pipe Advertisement and creates an input
pipe using the new advertisement. It now sends
the new Pipe Advertisement to Peer 1 using

1. Peer 1 creates and
publishes a new Pipe
Advertisement. It then starts
listening for a message by
creating an input pipe using
the new advertisement.

JXTA P2P Network

Peer 1

3. Peer 1 receives a message
from Peer 2 containing a Pipe
Advertisement. Peer 1 binds
an output pipe using the new
advertisement. Peer 1 then
creates a new Pipe Advertisement,
binds an input pipe using the
advertisement, and sends the
advertisement as an
acknowledgment to Peer 2.

the output pipe.

Peer 2

4. Peer 2 receives the
acknowledgment from
Peer 1 and extracts the
acknowledgment Pipe
Advertisement. Peer 2
binds an output pipe using
the new advertisement.
Both parties can now
begin exchanging
messages.

The original pipe used to listen
for connections is closed. Peer 1
will listen for incoming messages
on the new pipe it created in this
step.

Figure 8.9 Flow of BidirectionalPipeService messages.

When the connect method is called, the Pipe Advertisement passed to the
method binds an output pipe. If that output pipe is bound successfully, the con-
nect method creates and binds a new input pipe. The connect method sends
this new pipe’s advertisement to the remote peer using the newly bound out-
put pipe. On the remote peer, the AcceptPipe object listening for new connec-
tions receives the Pipe Advertisement and uses it to bind an output pipe. The
remote peer can now use this output pipe to send messages back to the origi-
nating peer. The remote peer creates one more Pipe Advertisement and binds
an input pipe using this advertisement. This advertisement is sent as an
acknowledgement, which means that the original pipe used to negotiate the
two-way communications channel is no longer used. The peer receiving the
acknowledgement advertisement uses it rather than the original pipe to send
messages to the remote peer. Voili—two-way communication. Using
BidirectionalPipeService, you can combine the earlier examples in this chapter
to create the simple chat client in Listing 8.8.

Listing 8.8 Source Code for PipeClientServer.java

package com.newriders.jxta.chapters8;

import java.awt.BorderLayout;
import java.awt.FlowLayout;
import java.awt.Container;

continues

237

238 Chapter 8 The Pipe Binding Protocol

Listing 8.8 Continued

import
import

import
import
import
import

import
import
import
import
import
import
import
import
import
import
import
import

import

import
import

import
import

import

import

/**

java.
java.

java.
java.
java.
java.

awt.
awt.

event.ActionEvent;
event.ActionListener;

io.FileWriter;
io.FileInputStream;
io.FileNotFoundException;
io.IOException;

java.net.URL;

javax.
javax.

javax.
javax.
javax.
javax.

net.
net.
net.
net.
net.

net.

net.
net.

net.
net.

net.

net.

jxta.
jxta.
jxta.
jxta.
jxta.

jxta.

jxta.
jxta.

jxta.
jxta.

jxta.

jxta.

swing.JButton;
swing.JFrame;
swing.dJlLabel;
swing.JOptionPane;
swing.JPanel;
swing.JTextField;

document.AdvertisementFactory;
document.MimeMediaType;
document.StructuredTextDocument;
endpoint.Message;
exception.PeerGroupException;

impl.util.BidirectionalPipeService;

peergroup.PeerGroup;
peergroup.PeerGroupFactory;

pipe.InputPipe;
pipe.OutputPipe;

pipe.PipeService;

protocol.PipeAdvertisement;

* A simple text messaging application, which uses
* pipe to send and receive messages.

*/

a bidirectional

The Pipe Service

public class PipeClientServer
implements BidirectionalPipeService.MessageListener

/**
* The peerGroup for the application.
*/

private PeerGroup peerGroup = null;

/**
* The frame for the user interface.
*/
private JFrame clientFrame = new JFrame("PipeClientServer");

/**
* The text field in the user interface to accept the message
* text to be sent over the pipe.
*/

private JTextField messageText = new JTextField(20);

/**
* A label used to display the received message in the GUI.
*/
private JLabel receivedText = new JLabel(
"Waiting to receive a message...");

/**
* Indicates whether the pipe has been bound already.
*/

private boolean initialized = false;

/**
* The bidirectional pipe object to use to send and receive messages.
*/

private BidirectionalPipeService.Pipe pipe = null;

* Creates an input pipe and its advertisement using the

* BidirectionalPipeService. This is used when starting this class up

* in "server" mode. The advertisement is saved to file so that another
* instance of this class can use the advertisement to start up in

* "client" mode.

continues

239

240 Chapter 8 The Pipe Binding Protocol

Listing 8.8 Continued

*/

public void createPipeAdv() throws IOException

{

BidirectionalPipeService pipeService = new

/1
/1
/1
/1

BidirectionalPipeService (peerGroup);

Create an accept pipe to use to create an input pipe and
listen for connections. "PipeClientServer" is simply the
symbolic name that will appear in the Pipe Advertisement
created by the BidirectionalPipeService.

BidirectionalPipeService.AcceptPipe acceptPipe =

/1

pipeService.bind("PipeClientServer");

Extract the Pipe Advertisement and write it to file.

PipeAdvertisement pipeAdv = acceptPipe.getAdvertisement();

try

{

}

FileWriter file = new FileWriter("PipeClientServer.xml");
MimeMediaType mimeType = new MimeMediaType("text/xml");
StructuredTextDocument document =

(StructuredTextDocument) pipeAdv.getDocument(mimeType);

/] Output the XML for the advertisement to the file.
document.sendToWriter(file);
file.close();

catch (Exception e)

{

/1
/1
/1
/1

e.printStackTrace();

"Accept" a connection, meaning set up the input pipe and listen
for messages. Set this object as the MessageListener so that

we can handle incoming messages without having to spawn a
thread to call waitForMessage on the input pipe.

while (null == pipe)

{

try

{
pipe = acceptPipe.accept (30000, this);

The Pipe Service 241

catch (InterruptedException e)

{
System.out.println("Error trying to accept(): " + e);
}
}
/] Show the user interface.
showGUI () ;
}
/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform can't
* be started.

*/
public void initializeJXTA() throws PeerGroupException
{
peerGroup = PeerGroupFactory.newNetPeerGroup();
}
/**

* Starts the class in "client" mode, loading a Pipe Advertisement from
* the given file. This advertisement is used to create an output pipe
* to talk to the remote peer and set up the bidirectional

* communications channel.

* @param fileName the name of the file from which to load the
* Pipe Advertisement.

* @exception FileNoteFoundException if the Pipe Advertisement

* file can't be found.

* @exception IOException if there is an error binding the pipe.
*/
public void loadPipeAdv(String fileName)
throws FileNotFoundException, IOException

FileInputStream file = new FileInputStream(fileName);
MimeMediaType asMimeType = new MimeMediaType("text/xml");

/] Load the advertisement.
PipeAdvertisement pipeAdv =

(PipeAdvertisement) AdvertisementFactory.newAdvertisement(

continues

242 Chapter 8 The Pipe Binding Protocol

Listing 8.8 Continued

asMimeType, file);

// Connect using the Pipe Advertisement and the
// BidirectionalPipeService.
BidirectionalPipeService pipeService =

new BidirectionalPipeService(peerGroup);

while (null == pipe)

{
try
{
System.out.println("Trying...");
pipe = pipeService.connect(pipeAdv, 30000);
System.out.println("Done Trying...");
}
catch (IOException e)
{
// Do nothing.
}
}

// Show the user interface.
showGUI();

// There is no way to register a listener with the input pipe used
/] by the Pipe object to receive message. So, use the

// waitForMessage method instead. Not the nicest way to do this,
// but it gives you the idea.

InputPipe input = pipe.getInputPipe();

while (true)

{
try
{
Message message = input.waitForMessage();
// Set the user interface to display the message text.
receivedText.setText(message.getString("MessageText"));
}

catch (InterruptedException e)

The Pipe Service 243

// Do nothing, ignore the interruption.

* Runs the application. The application can run in either "server" or
* "client" mode. In "server" mode, the application creates a new Pipe
* Advertisement, writes it to a file, and binds an input pipe to start
* listening for incoming messages. In "client" mode, a Pipe
* Advertisement is read from a file and used to bind an output pipe to
* a remote peer.
*
* @param args the command-line arguments passed to the application.
*/

public static void main(String[] args)

{

PipeClientServer client = new PipeClientServer();

if (args.length == 0)

{
// No arguments, therefore we must be trying to
/| set up a new server. Create a input pipe and
// write its advertisement to a file.

try

{
// Initialize the JXTA platform.
client.initializeJXTA();
/| Create the input connection and save the
/] Pipe Advertisement.
client.createPipeAdv();

}

catch (PeerGroupException e)

{
System.out.println("Error starting JXTA platform: " + e);
System.exit(1);

}

catch (FileNotFoundException e2)
{

continues

244 Chapter 8 The Pipe Binding Protocol

Listing 8.8 Continued

}

System.out.println("Unable to load Pipe Advertisement:
+ e2);
System.exit(1);

}
catch (IOException e3)
{
System.out.println("Error loading or binding Pipe"
+ " Advertisement: " + e3);
System.exit(1);
}

else if (args.length == 1)

{

/] If there's one argument, then we need to try to
// connect to an existing server using the Pipe Advertisement
// in the file specified by the argument.

try

{
/] Initialize the JXTA platform.
client.initializeJXTA();
// Load the Pipe Advertisement.
client.loadPipeAdv(args[0]);

}

catch (PeerGroupException e)

{
System.out.println("Error starting JXTA platform: " + e);
System.exit(1);

}

catch (FileNotFoundException e2)

{
System.out.println("Unable to load Pipe Advertisement: "

+ e2);

System.exit(1);

}

catch (IOException e3)

{

System.out.println("Error loading or binding Pipe"
+ " Advertisement: " + e3);
System.exit(1);

The Pipe Service 245

}
else
{
System.out.println("Usage:");
System.out.println("'server' mode: PipeClientServer");
System.out.println("'client' mode: PipeClientServer "
+ "<filename>");
}
}
/**

* Handles displaying an incoming message to the user interface.
*
* @param message the message received by the input pipe.
* @param pipe an OutputPipe to use to send a response.
*/
public void messageReceived(Message message, OutputPipe pipe)
{
/] Set the user interface to display the message text.
receivedText.setText(message.getString("MessageText"));

/**
* Sends a message string to the remote peer using the output pipe.
*
* @param messageString the message text to send to the remote peer.
*/
private void sendMessage(String messageString)
{
PipeService pipeService = peerGroup.getPipeService();
OutputPipe outputPipe = null;

/] Create and configure a message object.
Message message = pipeService.createMessage();

message.setString("MessageText", messageString);

/] Get the output pipe from the pipe.
outputPipe = pipe.getOutputPipe();

if (null != outputPipe)
{

continues

246 Chapter 8 The Pipe Binding Protocol

Listing 8.8 Continued

try
{
// Send the message.
outputPipe.send(message);
}
catch (IOException e)
{
/| Show some warning dialog.
JOptionPane.showMessageDialog(null, e.toString(), "Error"
JOptionPane.WARNING_MESSAGE) ;

}
}
else
{
/] Show some warning dialog.
JOptionPane.showMessageDialog(null, "Output pipe is null!",
"Error", JOptionPane.WARNING_MESSAGE) ;
}
}
/**

* Configures and displays a simple user interface to allow the user to
* send text messages. The GUI also allows the user to stop the client
* application.
*/
private void showGUI()
{
JButton sendButton = new JButton("Send Message");
JButton quitButton = new JButton("Quit");

JPanel receivePane = new JPanel();
receivePane.setlLayout(new FlowLayout());
receivePane.add(receivedText);

JPanel sendPane = new JPanel();
sendPane.setLayout (new FlowLayout());
sendPane.add (messageText);
sendPane.add(sendButton);
sendPane.add(quitButton);

The Pipe Service 247

/| Populate the GUI frame.

Container pane = clientFrame.getContentPane();
pane.setlLayout(new BorderLayout());
pane.add(receivePane, BorderLayout.NORTH);
pane.add(sendPane, BorderLayout.SOUTH);

/] Set up listeners for the buttons.
sendButton.addActionListener(
new ActionListener() {
public void actionPerformed(ActionEvent e)

{
/| Send the message.
sendMessage (messageText.getText());
/| Clear the text.
messageText.setText("");

}

)3
quitButton.addActionListener(
new ActionListener()

{
public void actionPerformed(ActionEvent e)
{
clientFrame.hide();
/| Stop the JXTA platform. Currently, there isn't any
/] nice way to do this.
System.exit(0);
}
}

)5

/] Pack and display the user interface.
clientFrame.pack();
clientFrame.show();

248 Chapter 8 The Pipe Binding Protocol

The PipeclientServer example has two modes of operation:

= Server mode—This mode is used when you want to start a new
bidirectional pipe. It causes a new Pipe Advertisement to be written to
the file PipeClientServer.xml. This advertisement is used by any peer
that wants to send messages to the peer and initiate a bidirectional
connection.

» Client mode—This mode is used when you want to connect to an
existing bidirectional pipe.To connect, you need to provide a Pipe
Advertisement as part of the command-line arguments. In this example,
the advertisement that must be provided is the PipeClientServer.xml file
written by another instance of PipeClientServer, running in server mode.

To see this example in operation, you need to use two separate instances of
pipeClientServer. This requires two separate directories containing the com-
piled source code and JXTA JARs. As in previous examples, you need to con-
figure the JXTA platform for each directory to use ditterent TCP and HTTP
ports.

After you create and configure the two directories, run one instance of
PipeClientServer in server mode from one directory using this code:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asni.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar com.newriders.jxta.chapter8.PipeClientServer

After the bidirectional pipe has successfully created and published a Pipe

Advertisement, you should see a message on the console similar to this:

Published bidir pipe urn:jxta:uuid-59616261646162614E50472050325033D7F4C6E7
B2BD4572B6628F 1DFEE6B34404

This indicates that the bidirectional pipe has created an input pipe and pub-
lished the pipe’s advertisement. The PipeClientServer extracts this advertisement
and writes it to the file PipeClientServer.xml.

Now that an input pipe has been started, you need to start a second
instance of PipeClientServer, this time in client mode. To do this, you need to
provide a Pipe Advertisement. Copy the PipeClientServer.xml file from the first
PipeClientServer instance’s directory to the directory where the second
instance of PipeClientServer will be started. Start the second instance of
PipeClientServer from this directory using this code:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asni.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar com.newriders.jxta.chapter8.PipeClientServer
PipeClientServer.xml

Summary 249

The second instance loads the Pipe Advertisement from PipeClientServer.xml
and attempts to bind an output pipe. After this has been done, both instances
of PipeClientServer should display their user interfaces, as shown in

Figure 8.10.

/]

WWaiting to receive a message...

|| |‘ Send Message || Quit ‘

Figure 8.10 The PipeClientServer user interface.

You should now be able to send messages between the two PipeClientServer
instances. Note that if you stop both instances and start them again, you need
to recopy the PipeClientServer.xml file created by the server mode instance.
The bidirectional pipe creates a new Pipe Advertisement each time.

Summary

In this chapter, you learned how a pipe can be bound to an endpoint to send
data to or receive data from a remote peer. To demonstrate the use of the Pipe
service, this chapter used a set of Pipe Advertisement files generated by the
PipeAdvPopulator class. Although these files simplified the examples, it should be
realized that in real applications, Pipe Advertisements usually are obtained
using the Discovery service.

This chapter also examined the BidirectionalPipeService, a pseudo-service
built on top of the Pipe service. The BidirectionalPipeService provides a simple
mechanism for peers to establish two-way communications using two pipes.
The advantage of this mechanism is that only one Pipe Advertisement must be
published or discovered because the BidirectionalPipeService handles negotia-
tion of a second Pipe Advertisement. This mechanism also has the advantage
that it eliminates some of the code required to manage two pipes.

Pipe Advertisements aren’t usually published by themselves, but they are
usually contained within another advertisement. As you’ll see in Chapter 10,
“Peer Groups and Services,” a Pipe Advertisement is usually associated with a
service, allowing a remote peer to interact with a service through the pipe.

