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Abstract

The relation between Fourier spectra and spectra obtained from wavelet analy-

sis is established. Small scale asymptotic analysis shows that the wavelet spectrum

is meaningful only when the analysing wavelet has enough vanishing moments.

We relate these results to regularity theorems in Besov spaces. For the analysis

of in�nitly regular signals, a new wavelet, with in�nit number of cancellations is

proposed.

1 Introduction

Since its �rst de�nition by Grossmann and Morlet [1] the wavelet transform has been

extensively studied mathematically (for reviews see [2] or [3]), and has been applied

successfully to several topics in signal analysis and image processing. Its ability to

decompose a signal into contributions localized both in space and scale, was found

specially attractive to analyse inhomogeneous �elds in 
uid mechanics and turbulence

([4], [5], [6], [7] and [8]). However although the relationship between the decay of

wavelet coe�cients with scale and regularity properties of the signal has been clearly

stated ([10], [11], [12], [2]), the relationship between spectral slopes obtained from

wavelet spectra and spectral slopes obtained from classical Fourier spectra were still

unclear. In fact the wavelet analysis depends both on the signal and on the analysing

wavelet. Are the spectral slopes computed from a wavelet analysis strongly biaised by

the wavelet? This is an important question for quantitative studies.

Indeed, wavelet analysis allows to de�ne, locally in space, a power spectrum. When,

this could not be achieved properly by Fourier techniques. With this local spectrum one

is able to compare the spectral properties of the signal at di�erent locations in physical

space. As a Plancherel identity exists for the wavelet transform, this comparison is

justi�ed, wavelet spectral densities being additive contributions to the total energy of

0
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the signal. If we want to go further and compare the slopes of local spectra to the ones

given by any analytical theory or to the slopes of global Fourier spectra, we need to

check �rst if these slopes are consistent. This goes through the comparison of the mean

spectrum obtained with wavelet analysis to the classical Fourier spectrum.

In section 2 we recall brie
y de�nitions and properties of local and mean wavelet

spectra and establish their connections with the Fourier spectrum.

In section 3 we demonstrate that wavelet spectra recover algebraically decreasing

Fourier spectra only if the analysing wavelet has enough vanishing moments.

In section 4 we establish the fact that wavelets of �nite order are not able to detect

exponentially decreasing spectra.

Section 5 is devoted to the small scale behaviour of the local wavelet spectrum and

its connection with regularity theorems.

Section 6 considers wavelets with in�nite number of cancellations which overcome

the problems shown in the preceeding sections.

For sake of simplicity all the derivations are done in the one dimensional case;

however most of the results generalize easily in dimension 2 and more. Results for

dimension larger than one are summarized in the appendix.

2 Wavelet and Fourier spectra, de�nitions and properties

Consider s a real signal of a real variable x. With suitable regularity properties, one

may de�ne its Fourier transform ŝ(k) and its power spectrum E(k):

ŝ(k) =

Z +1

�1

s(x) e�ikxdx (1)

E(k) =
1

2�
jŝ(k)j2 for k � 0 : (2)

The total energy E of the signal is such that:

E =
1

2

Z +1

�1

js(x)j2 dx = 1

4�

Z +1

�1

jŝ(k)j2dk =
Z +1

0

E(k)dk: (3)

Now consider  a function of L1(IR) \ L2(IR):  is called an analysing wavelet, if

it veri�es, at least, the admissibility condition:

Z +1

0

j ̂(!)j2
!

d! < +1 : (4)
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This imposes  ̂(0) = 0; the wavelet has a zero mean. A stronger condition is to impose

cancellations up to some order p:

Z +1

�1

xn (x) dx = 0 for n = 0; 1 ::: p� 1; and

Z +1

�1

xp (x) dx 6= 0 : (5)

Note that if  is integrable and square integrable, then the admissibility condition (4) is

equivalent to a cancellation condition of order at least 0, and condition (5) is equivalent

(up to a multiplicative constant) to the existence of a bounded, continuous function ',

with '(0) = 1 and '(1) = 0 such that:

 ̂(!) = !p '(!) : (6)

Within suitable hypotheses, one may de�ne the wavelet transform ~s of the signal s:

~s(a; b) =
1p
a

Z +1

�1

s(x) (
x� b
a

) dx; (7)

where b is the position variable and a > 0 the scale. Alternatively, the wavelet transform

can be computed from the Fourier transform of the signal:

~s(a; b) =

p
a

2�

Z +1

�1

ŝ(!) ̂(a!) ei!b d!: (8)

We will suppose in the following that the wavelet  is real; however our results

and formulas are still valid, up to a multiplicative constant, for complex progressive

wavelets (see [1] for more details on progessive wavelets).

From the energy conservation property of the wavelet transform:

E =
1

2c 

Z +1

0

Z +1

�1

j~s(a; b)j2 da
a2

db; (9)

where: c =
R +1

0

j ̂(!)j2

!
d! ; we may de�ne a local wavelet spectrum:

~E(k; x) =
1

2c k0
j~s(k0

k
; x)j2 for k � 0 and x 2 IR ; (10)

where k0 is the peak wavenumber of the analysing wavelet  .

The local spectrum measures the contribution to the total energy coming from the

vicinity of point x and wavenumber k, this "vicinity" depending on the proper shape

in physical and spectral space of the analysing wavelet  .

3



From this local spectrum one may in turn de�ne a mean wavelet spectrum ~E(k):

~E(k) =

Z +1

�1

~E(k; x) dx; (11)

which is linked to the total energy by:

E =

Z +1

0

~E(k) dk: (12)

From formulas (2, 8, 10, 11) one may derive easily the relationship between the Fourier

spectrum E(k) and the mean wavelet spectrum ~E(k), namely:

~E(k) =
1

c k

Z +1

0

E(!) j ̂(k0!
k

)j2 d! : (13)

The wavelet spectrum appears then as an average of the Fourier spectrum wheighted

by the square of the Fourier transform of the analysing wavelet shifted at wavenumber

k. Note that the larger k is, the wider the averaging interval.

From this formula we may infer the results which are stated in the following sections:

the behaviour of the wavelet spectrum at large wavenumbers depends strongly on the

behaviour of the analysing wavelet at small wavenumbers.

In the following sections we will inspect whether wavelet spectra are able to detect

algrebraically or exponentially decreasing power spectra.

3 Algebraically decreasing spectra

Consider a signal which Fourier spectrum behaves at small scales as k�� (� > 1):

E(k) = k�� for k > ka > 0 : (14)

From formula (13) its wavelet spectrum is given by:

~E(k) =
1

c k

Z ka

0

E(!)

���� ̂(k0!k )

����
2

d! +
1

c k

Z +1

ka

!��
���� ̂(k0!k )

����
2

d! (15)

Let us write  ̂(!) = !p'(!) with ' continuous and '(0) = 1, p > 0 as explained in

(6). The wavelet spectrum then writes:

~E(k) = k�(2p+1)k
2p
0

c 

Z ka

0

!2pE(!)

����'(k0!k )

����
2

d!

+k�(2p+1)k
2p
0

c 

Z +1

ka

!2p��

����'(k0!k )

����
2

d! (16)
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As '(k0!
k
) ! 1 when k ! +1, the �rst term behaves as k�(2p+1) when k goes to

in�nity (the total energy is supposed to be �nite). The behaviour of the second term

depends on the value of 2p� �. In consequence:

� If � < 2p+ 1 the second term of equation (16) rewrites:

k��
k��1
0

c 

Z +1

k0ka
k

!2p�� j'(!)j2 d!

The integral has a �nite non zero limit when k goes to in�nity; this term behaves

as k��, dominating the �rst one. Thus the wavelet spectrum

~E(k) � k�� for k ! +1

will exhibit at small scales the same slope 1 as the Fourier spectrum.

� If � > 2p+ 1, using Lebesgue theorem, the second integral in (16) has a �nite

non zero limit when k goes to in�nity, and then the wavelet spectrum saturates

at small scales to:

~E(k) � k�(2p+1) for k ! +1

and is independent of the signal.

� If � = 2p+ 1, similar analysis leads to a k�� ln k behaviour for the second term

in (16), it dominates at small scales and

~E(k) � k�� ln k for k! +1 :

The ability of the wavelet transform to detect algebraically decreasing spectrum

at small scales depends on the behaviour of the analysing wavelet at large scales.

Considering the inverse Fourier transform of the derivatives of  ̂, the behaviour of  ̂

in the vicinity of the origin is linked to the cancellation properties of the analysing

wavelet in physical space.

A su�cient condition for the wavelet mean spectrum to exhibit the same behaviour as

the k�� Fourier spectrum is then:

Z +1

�1

xn  (x) dx = 0 for 0 � n � �� 1

2
(17)

These results are illustrated on �gure 1. Given a Fourier sprectrum E(k) = k�6, for

k > 1, we computed, using (13) and a wavelet from the family of Gaussian derivatives

1As usual in turbulence studies when E(k) � k� , � is called the slope of the spectrum, by reference

to this spectrum drawn in log-log scale.
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 ̂(k) = kpexp(�k2=2), the mean wavelet spectrum ~E(k). Spectra are displayed for

various values of the cancellation order p. With � = 6, the critical cancellation order is

2:5 . We �nd, as predicted above, that for p = 2 the mean wavelet spectrum saturates

at k�5, when for p = 4 and p = 8 the k�6 spectrum is recovered.

Spectra displayed on �gure 2 come from the analysis of a vorticity �eld in a two-

dimensional bi-periodic incompressible turbulent 
ow. The Fourier spectrum is steep at

small scales, the mean wavelet spectrum, computed using isotropic Gaussian derivatives

wavelets with p=2, 4, 8 and 16, is then far from it when the order of cancellation of

the analysing wavelet is too low.

4 Exponentially decreasing spectra

Now consider a signal which Fourier spectrum decays at large wavenumber faster than

any power of k. For example suppose:

E(k) = e�k
2

(18)

(This particular case is an important example in 2D turbulence, the Gaussian vortex

being a simple but powerfull model for coherent structures).

From (13) the mean wavelet spectrum writes:

~E(k) =
1

c k

Z +1

0

e�!
2

���� ̂(k0!k )

����
2

d! (19)

As in the preceeding sections, writting  ̂(!) = !p'(!) with ' continuous, '(0) = 1,

'(1) = 0 and ' 2 L1(IR), we obtain:

~E(k) = k�(2p+1)k
2p
0

c 

Z +1

0

e�!
2

!2p

����'(k0!k )

����
2

d! (20)

Using Lebesgue theorem the integral converges to a �nite, non zero limit for large

wavenumbers k, so that:

~E(k) � k�(2p+1) for k! +1

This result is clearly independent of the proper shape of the signal spectrum provided

it decreases su�ciently rapidly at in�nity. For Fourier spectra decreasing faster than

algebraically, the wavelet spectrum at large wavenumbers is linked to the behaviour of

the analysing wavelet at small wavenumbers, and not to the signal when the analysing

wavelet has only a �nite number of vanishing moments.

Numerical illustration is given on �gure 3. The wavelet spectrum associated to

E(k) = e�k
2

was computed using Gaussian derivatives wavelets of order p=2, 8 and

6



16, in the wavenumber range k > 1. The discrepancy at small scales with the Fourier

spectrum is clearly seen.

5 Connection with regularity theorems

In this section we recall some regularity theorems.

Let introduce the Besov spaces B�;1
p with 1 � p � 1:

� For 0 < � < 1,

B�;1
p (IR) = ff 2 Lp(IR) ; !p(f; h) = O(h�) ; for h ! 0g ;

where !p(f; h) = jjf(x+ h)� f(x)jjLp ;

� for � > 1, � not an integer,

� = [�] + s; 0 < s < 1, ([�] is the integral part of �),

B�;1
p (IR) =

n
f 2 Lp(IR) \ C [�](IR) ; f ([�]) 2 Bs;1

p

o
;

where Cm(IR) is the space of m-times continuously di�erentiable functions.

Note that for p =1, B�;1
1

is the classical H�older space of order �.

Theorem 1: Consider f belonging to B�;1
1 (IR), then ([14]) the following estimation

holds for its Fourier transform:

jf̂(k)j = O (k��) for k ! +1:

In terms of Fourier spectrum this writes : E(k) = O(k�2�)

Theorem 2: Consider f belonging to B�;1
p (IR), and an analysing wavelet  such that

 2 L1(IR), xp� 2 L1(IR) (x� 2 L1(IR) if p = 1) and  has [�] + 1 cancellations;

then the wavelets coe�cients of f verify:

jj ~f(a; :) jjLp = O (a�+1=2) for a! 0:

Speci�cally one obtains,

� for p =1, then j ~f(a; b)j = O (a�+1=2);

� for p = 1, then
R+1
�1

j ~f(a; x)j dx = O (a�+1=2);
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� for p = 2, then ~E(k) = O(k�(2�+1)):

A statement similar to theorem 2 is valid for wavelet orthonormal basis ([2]); for the

continuous transform, the case p = 1 is well known and can be found for example in

[10], for a direct demonstration of the general case see [15].

A main di�erence between Fourier analysis and wavelet analysis is that, when the

reciprocal of theorem 1 is not true, the reciprocal of theorem 2 is true. That is the

behaviour at small scales of the wavelet coe�cients characterizes Besov spacesB�;1
p (IR)

([2], [15]):

Theorem 3: Let � > 0, and  an analysing wavelet such that  and all its derivatives

up to order [�]+1 are in L1(IR), if jj ~f(a; :) jjLp = O(a�+1=2) for a! 0, then f belongs

to B�;1
p (IR).

Several comments can be done comparing these three theorems. First, L1 spectral

estimations are not valid in the same functional spaces; Fourier transform works on

L1 functions, as wavelet transform works with Lp functions, and particularly with the

L1 functions. However for regularities of identical orders the wavelet estimation is

steeper than the Fourier one. The number of cancellations required in theorem 2 for

the analysing wavelet is consistent with the results in section 3. Wavelet coe�cients

give a necessary and su�cient characterization of Besov spaces, when Fourier transform

is only a necessary condition in the restricted case p = 1; the di�erence comes from the

fact that the Fourier coe�cients are a mean over the whole space, when the wavelet

coe�cients, which are local in space and highly redundant, ensure a uniform bound in

space.

These results clearly show the usefulness of the local wavelet spectrum from which

one can deduce the local and global regularity properties of the signal, when the Fourier

spectrum gives only necessary conditions. From this point of view let us recall a result

on local wavelet behaviours ([10] and [11], [12] for more general results):

Theorem 4: Consider a bounded function f , locally integrable, H�older continuous of

order � > 0 at point x0 (i.e. f 2 C [�](x0) and f ([�])(x0 + h) � f ([�])(x0) = O(hs)

with � = [�] + s, 0 < s < 1). Let  an analysing wavelet, such that  2 L1(IR),

x� 2 L1(IR) and  has [�] + 1 cancellations, then:

j ~f(a; b)j = a�+1=2 O(1 +
jb� x0j�

a�
) when a! 0; (21)
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Conversely, if (21) holds and if f 2 C�(IR) for an � > 0, then f ([�])(x0+h)�f ([�])(x0) =

O(h� ln(1=h)).

6 Wavelets with in�nite numbers of cancellations

From results exposed in the preceeding section, we need a wavelet with an in�nite

number of cancellations to be able to separate in�nitly regular behaviours from �nitly

regular points. One way is to construct a wavelet with compact support in Fourier

space: the Meyer's wavelet [2] for example. Indeed wavelets with compact support

in Fourier space recover exactly algebraic spectral behaviours (see formula (13)). Un-

fortunately such a wavelet will have a bad -numerical- localization in physical space.

Another wavelet with in�nit vanishing moments was given by T. Paul in [16]; it ex-

presses in Fourier space by the formula:

 ̂(k) = exp(��
2
ln2(jkj)) :

Figure 4 shows Paul's wavelet in spatial and Fourier spaces for � = 2; 4 and 16.

Recently V. Perrier proposed the following family of wavelets, de�ned by their

Fourier transforms:

�̂n(k) = �n exp

�
�1

2
(k2 +

1

k2n
)

�
n � 1 : (22)

where �n is chosen for normalisation.

�n is a real function (�̂n is even), with an in�nit number of cancellations (�̂n(k) de-

creases exponentially at the origin) and belongs to the Schwartz class S(IR) (trivially

�̂n belongs to the Schwartz class at it is C1 and decreases faster than any power of k

at in�nity; then �n is also in the Schwartz class, as the Fourier transform is an isometry

on S(IR)). Figure 5 displays functions �n and their Fourier transforms �̂n for n = 2; 4

and 16. Note that the peak wavenumber of �n is kn0 = n
1

2(n+1) and 1 � kn0 � 1:15 .

Now from results of Section 2, for algebraically decreasing Fourier spectra (E(k) �
k��) , the mean wavelet spectrum will, when using wavelet �n, exhibit the same slope

at small scales (see �gure 6).

Further, the wavelet analysis of a signal which spectrum decays exponentially at

small scales leads also to an exponentially decreasing mean wavelet spectrum. This is

9



illustrated by the following calculation applied to a Gaussian spectrum E(k) = e�k
2

.

From formula (13) its mean wavelet spectrum writes:

~E(k) =
�n

2

c�n kn0

Z +1

0

exp�(�n(k) !2 +
1

!2n
) d! ; (23)

where:

�n(k) = 1 +

�
k

kn0

�2

:

Taking

! = [�n(k)]
�1

2(n+1) � ;

we obtain:

~E(k) =
�n

2 [�n(k)]
�1

2(n+1)

c�n kn0

Z +1

0

exp
�
� [�n(k)]

n
n+1 (�2 + ��2n)

�
d� : (24)

Using Laplace's method2 [17], the wavelet spectrum behaves at small scales as:

~E(k) � �2
n

c�n

s
�

2(n+ 1)
k�1 exp

 
�c(n)

�
k

kn0

�2� 2
n+1

!
; (25)

with: c(n) = n
1

n+1 (1 + 1

n
).

This behaviour is not the same as the one of the Fourier spectrum, however it is

worth to note that it is an exponentially decreasing behaviour when, with wavelets with

�nite number of cancellations, it was an algebraic behaviour. Further more for large n

the wavelet spectrum at small scales is quite close to the Gaussian Fourier spectrum

as:

~E(k) � k�1e�k
2

k ! +1 and large n : (26)

Thus, though unable to restore the correct exponential behaviour at small scales,

�n separates �nitly regular functions from in�nitly regular functions.

This property is illustrated on �gure 7. The wavelet spectrum associated to E(k) =

e�k
2

was computed using �n wavelets of order n=2, 4 and 8, in the wavenumber range

k > 1. The small scales behaviour is to be compared to the one obtained with �nite

cancellation order wavelets (see �gure 3).

7 Conclusion

We derived the analytical relation linking the mean wavelet spectrum to the classical

Fourier spectrum. From this relation it turns out that, at small scales, if the Fourier

2Remember that Laplace's method gives:
R +1
0

ex�(t)dt �
p
2� ex�(t0)p

�x�00 (t0)
when x ! +1, �

reaching its maximum at t0.
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spectrum is too steep, the wavelet spectrum is strongly biaised by the speci�c wavelet

used in the analysis. We gave the inequality to be ful�lled between the spectrum

slope and the cancellation order of the wavelet for the mean wavelet spectrum to be

meaningfull. These derivations were made for asymptotically small scales, however we

want to emphasis that relation (13) may be used on a practical basis to test, for a

given wavelet and a given range of wavenumbers, what is the response of the wavelet

spectrum to a given Fourier spectrum and whether its slope saturates or not. Further

we presented and illustrated the properties of Perrier's wavelets which, built with an

in�nite number of cancellations, are able to detect any algebraical spectral decrease.

These wavelets are not able to detect correctly exponential behaviours at small scales.

However similar ideas can be applied to construct wavelets (with non compact support

in Fourier space) able to recover exponential behaviour at small scales : the rate of

decrease of the wavelet at the origin has to be increase.

Appendix : dimensions larger than one

Formulas established in section 2 generalize easily to dimension n > 1. Let us

consider a real signal s(~x) of the n-dimensional variable ~x; its power spectrum is given

for a wavenumber k by:

E(k) =
1

2(2�)n
kn�1

Z
Sn�1

jŝ(k�)j2 d� (27)

where the integration is done on Sn�1, the unit sphere of IRn.

From the wavelet coe�cients ~s of s, de�ned for each scale a > 0, position ~b 2 IRn,
and rotation R in Sn�1 by:

~s(a;~b; R) = a�n=2
Z
IRn

s(~x)  

 
R�1(

~x�~b
a

)

!
d~x (28)

we may de�ne the local wavelet spectrum:

~E(k; ~x) =
1

2 c 

kn�1

kn0

Z
Sn�1

����~s(k0k ; ~x; �)
����
2

d� (29)

with c =
R
IRn

j ̂(~!)j2

j~!jn
d~! .

Due to the properties of the wavelet transform, the mean wavelet spectrum, de�ned

from the local wavelet spectrum by:

~E(k) =

Z
IRn

~E(k; ~x) d~x

is linked to the Fourier spectrum through the relation:
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~E(k) =
1

kc 

Z +1

0

E(!)

 Z
Sn�1

���� ̂(k0k ��1!)

����
2

d�

!
d! : (30)

Formula (30) is exactly the same as formula (13) derived in the one dimensional case,

provided the wavelet has been isotropized (in Fourier space). Consequently, the results

obtained in sections 3 and followings are still valid in dimension n > 1: the small

scale behaviour of the mean wavelet spectrum depends on the rate of decrease of the

wavelet at the origin in Fourier space. For isotropic (radial) wavelets this resumes to

the number of cancellations of the one-dimensional generating function.
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Figure 1: Fourier spectrum E(k) = k�6 and associated wavelet spectra ~E(k) for

analysing wavelets with p cancellations,  ̂(k) = kpexp(�k2=2), p = 2; 4 and 8 (log-

log scale).
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Figure 2: Fourier spectrum and wavelet spectra from the analysis of a vorticity �eld

in a two-dimensional bi-periodic incompressible turbulent 
ow (enstrophy spectrum).

Wavelets were isotropic Gaussian derivatives  ̂(~k) = j~kjpexp(�j~kj2=2) for p = 2; 4; 8,

and 16 (log-log scale).
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Figure 3: Fourier spectrum E(k) = e�k
2

and associated wavelet spectra ~E(k) for

analysing wavelets with p cancellations,  ̂(k) = kpexp(�k2=2), p = 2 8 and 16 (log-log

scale).
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Figure 4: Paul's wavelet in physical and spectral space, for � = 2 (continuous line),

� = 4 (dashed line) and � = 16 (doted and dashed line).
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Figure 5: Perrier's wavelet in physical and spectral space,for n = 2 (continuous line),

n = 4 (dashed line) and n = 16 (doted and dashed line).
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Figure 6: Fourier spectrum E(k) = k�6 and associated wavelet spectra ~E(k) computed

with Perrier's wavelet �n for n = 2; 4 and 8 (log-log scale).
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Figure 7: Fourier spectrum E(k) = e�k
2

and associated wavelet spectra ~E(k)computed

with Perrier's wavelet �n with n = 2; 4 and 8 (log-log scale).
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