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Abstract

We examine the central issues of invertibility, sta-

bility, artifacts, and frequency-domain characteristics

in the construction of non-linear analogs of the wavelet

transform. The lifting framework for wavelet construc-

tion motivates our analysis and provides new insight

into the problem. We describe a new type of non-

linearity for use in constructing non-linear transforms:

a set of linear predictors that are chosen adaptively us-

ing a non-linear selection function. We also describe

how earlier families of non-linear �lter banks can be ex-

tended through the use of prediction functions operating

on a causal neighborhood. We present preliminary re-

sults for a synthetic test image.

1 Introduction

In his classic treatise on the workings of the hu-
man visual system, Marr focuses on the importance of
the representation of information for various cognitive
tasks [9]. The way in which information is represented
brings out certain types of features while hiding oth-
ers. Image compresion applications also rely heavily on
having an e�cient representation of image data. Ide-
ally we would like a representation in which the content
of an image can be approximated using a small number
of parameters. The wavelet transform provides such an
e�cient representation. For typical images, most of the
coe�cients of the discrete wavelet transform are nearly
zero, and the image is well-approximated with a small
number of coarse-scale wavelet coe�cients.

The reason for the e�ciency of the wavelet trans-
form representation is that images of interest are well
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modeled as a set of locally smooth regions separated by
edges. Within these smooth regions, �ne-scale wavelet
coe�cients are small, and coe�cients decay rapidly
from coarse to �ne scales. In the neighborhood of
edges, however, wavelet coe�cients decay much more
slowly. The large coe�cients near edges are expen-
sive to code. Much current research focuses on en-
abling wavelet coders to exploit the structure present
in wavelet coe�cients along edges. Successful coders
perform some form of conditioning [11] or variance pre-
diction [8].

In this paper we focus on improving the properties
of the wavelet transform rather than the encoder. More
precisely, we try to build adaptive wavelet transforms
that result in fewer large wavelet coe�cients. Such
non-linear wavelet transforms allow for more 
exibility
in image representations. Construction of non-linear
�lter banks is a straightforward process and has been
discussed in [7] and [6]. Experiments with a nonlinear
�lter bank for image coding presented in [4] show re-
sults that are quite promising. The key open question
in the use of these non-linear constructions is one of
design: what is the most e�ective way to utilize the
additional degrees of freedom obtained from relaxing
the constraint of linearity?

We examine the central issues of invertibility, stabil-
ity, artifacts, and frequency-domain characteristics (to
the extent to which these are well-de�ned) in the con-
struction of non-linear analogues of the wavelet trans-
form. Our analysis is motivated by the new perspective
provided by the lifting framework for the wavelet trans-
form. We describe a useful new type of non-linearity
for use in constructing our non-linear transforms: a set
of linear predictors that are chosen adaptively using a
non-linear selection function. We also describe how the
family of non-linear �lter banks of [7] and [6] can be
extended through the use of prediction functions oper-
ating on a causal neighborhood.

2 The Lifting Scheme

Our non-linear transform is most easily described
in terms of the lifting framework [13, 12]. The main
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feature of lifting is that it provides an entirely spatial
interpretation of the wavelet transform, as opposed to
the more traditional Fourier based constructions. This
spatial interpretation will enable us to construct spa-
tially varying and adaptive or non-linear wavelet trans-
forms.

Let X [n] be a signal. Our goal is to obtain a more
e�cient representation of X [n], i.e., a representation
in which most of the coe�cients are near zero. We
�rst partition X [n] into its even and odd polyphase
components Xe[n] and Xo[n], where Xe[n] = X [2n]
and Xo[n] = X [2n+ 1].

If the X [n] correspond to the samples of an underly-
ing smooth function, then the even and odd polyphase
components are highly correlated. This correlation
structure is typically local and thus we should be
able to accurately predict a coe�cient from the odd
polyphase component based on nearby coe�cients from
the even polyphase component.

Prediction: In the interpolating formulation of
lifting, we �rst predict the odd polyphase coe�cients
Xo[n] from the neighboring even coe�cients Xe[n].
The predictor for each Xo[n] is a linear combination of
neighboring even coe�cients: P (Xe)[n] =

P
l
plXe[n+

l]. We obtain a new representation of the X [n] by re-
placing Xo[n] with the prediction residual. This leads
to the �rst lifting step:

H [n] = Xo[n]� P (Xe)[n]: (1)

If the underlying signal is locally smooth, the predic-
tion residuals H [n] will be small. Furthermore, the
new representation contains the same information as
the original signal X [n]: given the even polyphase
Xe[n] and the prediction residuals H [n], we can re-
cover the odd polyphase coe�cients Xo[n] by noting
that Xo[n] = H [n] + P (Xe)[n].

This prediction procedure is equivalent to applying
a high-pass �lter to X [n] (hence the notation H [n]).
The prediction �lter is typically designed so that it
is perfect for polynomials up to and including degree
N � 1. In wavelet terminology, the synthesis scaling
function to which the prediction �lter gives rise can
reproduce polynomials of degree up to N � 1 and the
dual wavelet has N zero moments.

Update: The second lifting step transforms the
even polyphase coe�cients Xe[n] into a low-passed and
subsampled version of X [n]. We obtain this low-pass
�ltering version by updating Xe[n] with a linear com-
bination of the prediction residuals H [n]. We replace
Xe[n] with

L[n] = Xe[n] + U(H)[n]; (2)

where U(H) is a linear combination of neighboring H

values: U(H)[n] =
P

l
ulH [n+ l]. Because each lifting

step is always invertible, again no information is lost.
Given L[n] and P [n], we have Xe[n] = L[n]�U(H)[n]
and Xo[n] = H [n] + P (Xe)[n]. Note that H and L are
at half rate, and thus this transform corresponds to
a critically sampled perfect reconstruction �lter bank.
One can show that the update function determines the
properties of the primal wavelet and dual scaling func-
tion. In particular, if the update �lter is one half the
adjoint of the predict �lter then the primal wavelet has
N zero moments as well [13].

A simple example of lifting is the construction of
the Deslauriers-Dubuc family of wavelets from a single
prediction step followed by a single update step. The
following prediction and update steps are equivalent
to performing a single stage of the (4,4) Deslauriers-
Dubuc wavelet transform:

H [n] = Xo[n]� (Xe[n� 1] + 9Xe[n] +

9Xe[n+ 1] +Xe[n+ 2])=16 (3)

L[n] = Xe[n] + (H [n� 2] + 9H [n� 1] +

9H [n] +H [n+ 1])=32 (4)

The predict step cancels cubic polynomials and
leaves the residual in the high pass signalH [n]. The up-
date step results in a low-passed and subsampled ver-
sion of X being placed in L. It should be emphasized
that lifting is a general construction that is not limited
to the Deslauriers-Dubuc family. Using the Euclidean
algorithm, one can decompose any FIR wavelet trans-
form into a sequence of prediction and update steps
[3].

3 Nonlinear Lifting

The analysis �lters used for wavelet compression ap-
plications typically correspond to fourth order poly-
nomial predictors like the one described above. Such
predictions work well if the underlying signal is locally
smooth. However, these predictions break down when
the signal is not locally well-modeled as a low-order
polynomial. In particular, the predictions work poorly
near edges and other singularities.

Our goal is to switch between di�erent predictors
based on the local properties of the image. This
makes the P operator data dependent and thus non-
linear; lifting guarantees that the transform remains
reversible. Where the image is locally smooth we use
higher order predictors. Near edges we reduce the pre-
dictor order so that we do not attempt to predict coe�-
cients across edges. Ideally we would like to use predic-
tors that take into account the fact that discontinuities
in images tend to occur along continuous curves. Such



an adaptation will allow us to exploit the additional
spatial structure that we know exists in edges.

3.1 Problems

Adapting the predictor makes the transform non-
linear; thus the transform of the sum of two images
is no longer the sum of each of the transforms. Con-
sequently, it no longer makes sense to talk about the
concept of basis functions, which rely fundamentally on
linear superposition. We thus focus on the properties
of the transform.

There are two problems with making the above
predict-update lifting non-linear.

1. We need a coherent interpretation of the updated
coe�cients. After the �rst iteration of our trans-
form, we are basing all of our predictions on up-
dated coe�cients. If we are to make e�ective pre-
dictions beyond the �rst iteration of the transform,
we need some kind of structure in the update.

Furthermore, the reason why wavelets provide ef-
�cient representations lies in their space-frequency
localization properties. The spatial localization
comes from the fact that the �lter operations are
local; this immediately carries over to the non-
linear case. The frequency localization comes from
the interpretation of the H as a band-pass-�ltered
and downsampled version of the signal and L as a
low-pass-�ltered and downsampled version of the
signal. Maintaining this in the non-linear case is
highly non-trivial.

Consider again the example (4). While it is easy to
see that the prediction �lter P leads to a high pass
�lter, it is not immediately clear that the update
U leads to a low pass �lter. The reason is that
the lifting structure mandates that the high pass
coe�cients H must be reused in the computation
of L, and thus L depends both on P and on U . By
carefully adjusting the update U to the prediction
P , one can ensure that L is a low-pass-�ltered and
subsampled version of the original signal. In the
example U(H) had to be chosen as (H [n � 2] +
9H [n � 1] + 9H [n] + H [n + 1])=32. While it is
known how to adjust U for a spatially varying,
but linear P [12], it is not immediately clear how
to build a non-linear U adjusted to a non-linear
P .

2. We need to ensure that the transform is stable.
Lossy coding schemes introduce errors into the
transform coe�cients, so it is crucial that the non-
linearities do not unduly amplify these errors. Our

goal is to use a high order predictor in smooth re-
gions and a lower order prediction near edges. In
order to avoid sending side information on which
predictor was chosen we need to base the choice
only on the Xe[n]. However in lossy compression
the decoder only has quantized even coe�cients
bXe[n] rather than the original coe�cients Xe[n].
If we use locally adapted �lters, quantization er-
rors in coarse scales could cascade across scales
and cause a series of incorrect �lter choices lead-
ing to serious reconstruction errors. The problem
cannot be solved by synchronization, i.e., having
the encoder make its choice of predictor based on
quantized even values. The reason is that the re-
constructed values bXe[n] are obtained from quan-

tized low-pass values bL[n]. The low pass signal
L[n] is a function of the prediction residual signal
H [n], which in turn depends on what �lters are
chosen for prediction. Hence the encoder cannot
obtain the quantized values bXe[n] until it selects a
predictor, and it cannot select a predictor without
obtaining bXe[n]. If we are to employ a non-linear
lifting procedure for lossy coding, it is essential
that we avoid this stability problem.

3.2 Solution

We propose a simple modi�cation which solves both
problems: we perform the wavelet transform by �rst
updating and then predicting. We �rst update the even
samples based on the odd samples yielding the low pass
coe�cients. We then reuse these low pass coe�cients
to predict the odd samples, which gives the high pass
coe�cients. We use a linear update �lter and let only
the choice of predictor depend on the data. Because
we update �rst and the transform is only iterated on
the low pass, all low pass coe�cients throughout the
entire pyramid linearly depend on the data and are not
a�ected by the non-linear predictor. Thus the predic-
tion is only based on low pass coe�cients which are
computed as in the classical wavelet transform. Fur-
thermore, if we perform the transform backwards, i.e.,
starting the prediction process at the lowest frequency
(coarsest) subband and working from coarse to �ne
scales, we can keep the encoder and decoder perfectly
synchronized.

The question remains on how to �nd the linear P
and U . One idea is to simply reverse the role of
the P and U in the Deslauriers-Dubuc family which
results in switching the analysis and synthesis func-
tions. This, however, is problematic for coding applica-
tions, because the analysis wavelets in the Deslauriers-
Dubuc family are much less smooth than the syn-



thesis wavelets. Since reconstructed images are built
up from synthesis wavelets, these non-smooth building
blocks would lead to highly visible artifacts in the re-
constructed image. Furthermore, trying to boost the
smoothness of the new building blocks leads to need-
lessly long �lters which cause ringing.

Instead we propose a solution based on Donoho's
average-interpolationwhich �ts into the update-predict
form of lifting [5, 14]. It leads to the (1; N) branch
of the Cohen-Daubechies-Feauveau family which is
biorthogonal to the box function [2]. Let us consider
a simple example. The low pass coe�cients are com-
puted using a Haar �lter:

L[n] = (x[2n] + x[2n+ 1])=2:

The high pass coe�cients are the residuals of a pre-
diction of the odd samples based on the L[n]. A �rst
order Haar prediction is

H [n] = x[2n+ 1]� L[n];

while a third order predictor, i.e., one that is exact for
quadratics, is given by

H [n] = x[2n+ 1]� (�L[n� 1]=8 +L[n] + L[n+ 1]=8):

Higher order predictors can be build in a straightfor-
ward way. The smoothness of the resulting scaling
functions increases with the order. A lower bound
for the H�older regularity R(N) as a function of N is
given by R(3) = :678, R(5) = 1:272, R(7) = 1:826,
R(9) = 2:354, and asymptotically R(k) � :2075N [5].
In numerical experiments the order (1; 7) �lter set has
been found to yield performance approaching that of
the 7-9 �lter set that is more commonly used in coding
applications.

Our goal is to use non-linear predictor operators
P (L) so that

H [n] = x[2n+ 1]� P (L)[n];

obtained by switching between di�erent linear predic-
tors. We classify coe�cients at a given scale into
\edge" coe�cients and \non-edge" coe�cients based
on the gradient at the next coarser scale. For a region
containing non-edge coe�cients, we use the 7th order
predictor. Near edges we reduce the order of the pre-
dictor so that the neighborhood we use for prediction
never overlaps the edge. This way we maintain high
accuracy away from edges, and avoid large errors in
the presence of edges. Figure 2 illustrates the process
of selecting these predictors near an ideal step edge.

As we stressed in the previous section, maintain-
ing synchronization between the adaptations of the en-
coder and the decoder is essential for a stable inversion.

Figure 1. Top row: Analysis (left) and synthe-

sis (right) scaling functions for the order (1,7)

Cohen-Daubechies-Feauveau �lter used in our ex-

periments. Bottom row: analysis and synthesis

wavelets. These basis functions correspond to the

update-then-predict form of lifting.
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Figure 2. Predictor selection at an ideal step

edge. Numbers indicate the order of the predic-

tors used. The closer to the edge, the lower order

predictor is used.



Encoding of a p-level transform proceeds as follows: we
�rst compute the coarsest scale coe�cients of the trans-
form Lp[n] by iterating the linear update procedure p

times. We then quantize Lp[n] to bLp[n] and send them.
Then we compute the high pass coe�cients H [n] as

Lp�1[2n + 1] � P (L̂p)[n], quantize them to bH [n] and
send them. Both encoder and decoder now need the
quantized values of the next �ner scale bLp�1; the even
and odd components are respectively computed by un-
doing the prediction and updating step, but now based
on the quantized values bLp[n]:

bLp�1

o
[n] = bLp�1[2n+ 1] = bHp[n] + P (bLp)[n] (5)

bLp�1

e
[n] = bLp�1[2n] = 2bLp[n]� bLp�1[2n+ 1]

We now can compute the high pass coe�cients on the
next �ner level. By basing our choice of predictor at
each stage on the quantized values bL, we maintain syn-
chronization between encoder and decoder.

3.3 Further Adaptivity

Non-linear lifting also allows us to use not only
the low-passed coe�cients for prediction of Xo[n], but
also other odd coe�cients in a causal neighborhood of
Xo[n]. Suppose our signal X [n] is a row in an image.
We would predict Xo[n] from low pass coe�cients on
its left and right. Suppose there is a vertical step edge
near Xo[n]. The precise location of the edge cannot be
determined from the low pass coe�cients Xo[n]. How-
ever, if we know the value of the coe�cients from the
row immediately above Xo[n], we can determine the
orientation and strength of the edge, and we can use
this information in the prediction of Xo[n].

The use of coe�cients from a causal neighborhood
o�ers signi�cant potential reductions in prediction er-
rors. This increased 
exibility comes at the price of de-
creased stability. Consider the example above in which
we resolve di�culties in predicting the location of a
vertical edge in a row of coe�cients by using already
inverted coe�cients in the row above. Such a scheme
permits a quantization error in one row to propagate
along a vertical edge to all other rows. We can prevent
such propagation by again using a DPCM-like strategy
of using quantized data from the causal neighborhood
for making predictions in the encoder as well as in the
decoder.

3.4 Related Work

The update-then-predict lifting scheme we describe
is related to the Laplacian pyramid of Burt and
Adelson[1] in which images are represented as a series

of prediction residuals, and the predictors are not con-
strained to being linear. The Laplacian pyramid has
the disadvantage that it expands the number of coef-
�cients in the image being transformed by a factor of
4=3. Lifting, on the other hand, guarantees a critically
sampled decomposition.

Our non-linear lifting framework generalizes the
ideas of de Quieroz et al. [4], and makes clear the rela-
tionship between the non-linear �lter banks described
by these authors and the wavelet transform. The �lter
bank described in [4] uses the update function U � 0
and a non separable prediction function P that re-
turns the median of its arguments. This �lter bank
performs particularly well for test images containing
sharp edges, such as the cameraman image and images
of text. Perceptually this non-linear transform has sig-
ni�cant advantages near edges, and it minimizes prob-
lems with ringing around edges. However, the trans-
form su�ers from speckling artifacts due to aliasing of
high frequency noise into the low pass subbands. The
use of a better update function has the potential to
eliminate this speckling while maintaining high quality
reconstruction around edges.

4 Preliminary Results

Figure 3 shows the result of a simple feasibility
test of an edge-avoiding adaptive transform. We
demonstrate the adaptive transform's ability to reduce
the number of non-zero coe�cients by computing the
transform, thresholding the transform coe�cients with
a large threshold, and inverting the result. We use a
black disk on a white background as our test image,
as this image contains edges in all orientations. The
�gure on the left is obtained by performing the wavelet
transform using the (1,7) Cohen-Daubechies-Feauveau
functions shown in Figure 1. The �gure on the right
was obtained using an adaptive transform.

For our adaptive transform we choose a �lter from
the (1; N) branch of the CDF family, where N 2

f1; 3; 5; 7g. The choice of predictor is based on an edge
analysis of each 7-point prediction window. We locate
edges in the data by �nding local maxima in the gradi-
ent of the coe�cients. We estimate the size of an edge
by comparing an average of coe�cients on either side
of the edge, and we only adapt if the step size is large
compared to the local variance on either side of the
edge. The prediction �lter is chosen as illustrated in
Figure 2: we choose the width of our prediction window
to be the largest window (up to width 7) not containing
an edge.

We see that in the adaptive transform we have sig-
ni�cantly reduced ringing around the edges of the disk



and we have preserved edge sharpness. The reason
is that edges in our new transform are represented
in a more compact fashion, and as a result there is
less degradation of the image when we zero out small,
non-zero coe�cients. Note that while ringing has been
greatly reduced in the horizontal and vertical edges,
there are still some ringing artifacts in the diagonal
direction. The reason for these remaining artifacts is
that we are using a separable transform in which we
seek to avoid horizontal and vertical edges.

One future research avenue that will allow us to
avoid priveleged edge directions in the transform is to
make use of a non-separable prediction function. We
can further improve things by predicting values along
edges rather than across edges by using data in a causal
neighborhood.

Figure 3. Reconstructed unit disks with thresh-

old T = 1. The left image was transformed with

the (1; 7) update-predict linear lifting. The right
was transformed with an edge-avoiding non-linear

lifting procedure. We assume that the forward

and inverse transforms make the same edge deci-

sions.
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