
CEditDist Abstract Template Class
for Edit Distance Calculation on Generic Data Types

Zvika Ben-Haim
]YLNDEK#DOXI�WHFKQLRQ�DF�LO

KWWS���ZZZ�WHFKQLRQ�DF�LO�a]YLNDEK�VRIWZDUH

June 1999

Purpose
The &(GLW'LVW class performs edit distance calculations on abstract data types. The edit distance is defined as

the minimum cost required to convert one string into another, where the conversion can include the following three
operations:
 • changing one character to another
 • deleting one character
 • inserting one character
This algorithm is useful for finding the degree of similarily between strings, when character omissions and duplications may
occur. The term ‘character’ is used loosely here, since the template mechanism allows you to implement the class for any
data type, including user-defined types. The cost of each of these operations is an integer defined by the user and can depend
on the characters being changed.

The operation performs in O(nm) space and time, where n and m are the lengths of the two compared strings.
Specifically, an array of n by m integers is dynamically allocated for the operation, and deallocated automatically.

System Requirements
&(GLW'LVW was tested with Visual C++ 5.0, but contains only standard C++ commands, and thus should

functions correctly under other standard C++ compilers as well.
Please note that under Visual C++ 5.0, an apparent bug causes warning messages when explicitly instantiating the

base class. These warning messages can be safely ignored.

Overview
&(GLW'LVW is an abstract template class. To define a working edit-distance calculation class, you will first

instantiate a &(GLW'LVW class with a data type equal to the type of ‘character’ you will be working with. This is the single
unit of the two strings which are to be compared. Thus, if you want to compare two arrays of FKDU, you will instantiate
&(GLW'LVW�FKDU!.

Next, you will define a derivation of this class, e.g.
FODVV &0\(GLW'LVW � SXEOLF &(GLW'LVW�FKDU! ^���`�

This class will contain three virtual member functions: 'HOHWH&RVW, ,QVHUW&RVW and &KDQJH&RVW. These
functions define the costs for single edit operations.

Finally, to use the class, you will define an object of type &0\(GLW'LVW, and call its inherited member function
(GLW'LVWDQFH. The return value is the total cost of the least expensive path.

Instantiating a Class
You must add an explicit instantiaion in the EditDist.cpp file. This ensures that all member functions are

instantiated, even if they are not called from within EditDist.cpp. In the last few lines of the file, add the statement
WHPSODWH FODVV &(GLW'LVW�&0\7\SH!�

This statement may generate warnings 4660 and 4661, which can be safely ignored. &0\7\SH should, of course,
be whatever type you want to instantiate. &0\7\SH can be any internal or user-defined data type which supports the
following:
 • Default constructor available
 • &0\7\SH��RSHUDWRU �FRQVW &0\7\SH	� defined

Deriving from CEditDist<CMyType>
Deriving is straightforward. Just remember to derive from the instantiated class, i.e. use the format

FODVV &0\(GLW'LVW � SXEOLF &(GLW'LVW�&0\7\SH! ^���`�

After deriving, you need to define the following three virtual member functions, which are abstract functions in the
base class.

All of these functions receive the parameters [and \, which specify the position in the source and destination
strings, respectively. These can be used for additional flexibility in determining costs.

The functions can also use the protected data members PB[PD[and PB\PD[. (These variables may not have valid
data when not calling cost functions.) These values specify the maximum index in the source and destination strings,
respectively. In other words, they are equal to one less than the length of the source and destination strings.

These members can be used, for example, to create cost functions in which the insertion cost is 0 if we have already
reached the end of the source string. This is useful when we are searching for the beginning of a string, and do not care if the
destination continues past the end of the source string.
 • LQW 'HOHWH&RVW�FRQVW &0\7\SH	 GHOHWHG� LQW [� LQW \��

 This function returns the cost for deleting the item GHOHWHG.
 • LQW ,QVHUW&RVW�FRQVW &0\7\SH	 LQVHUWHG� LQW [� LQW \��

 This function returns the cost for inserting the item LQVHUWHG.
 • LQW &KDQJH&RVW�FRQVW &0\7\SH	 IURP� FRQVW &0\7\SH	 WR� LQW [� LQW \��

 This function returns the cost for changing the item IURP to the item WR.
Do not override the inherited function (GLW'LVWDQFH.

Using the Class
To use the class, define an object of type CMyEditDist. Then, call the object’s EditDistance function.

LQW (GLW'LVWDQFH�&0\7\SH DU�� LQW OHQ�� &0\7\SH DU�� LQW OHQ���

 • DU�: First array of items
 • OHQ�: Length of ar1
 • DU�: Second array of items
 • OHQ�: Length of ar2
 • Return value: Minimal total cost for converting DU� into DU�

Example: Integer Array Edit Distance
The following example shows a simple imlpementation of the edit distance function in which the cost is 5 for

deletions and insertions, 3 for changes between different integers and 0 for changes of identical integers.
The class &,QW(GLW'LVW is defined as follows:

FODVV &,QW(GLW'LVW � SXEOLF &(GLW'LVW�LQW!
^
SXEOLF�

LQW 'HOHWH&RVW�FRQVW LQW	 GHOHWHG� LQW [� LQW \� ^UHWXUQ ��`�
LQW ,QVHUW&RVW�FRQVW LQW	 LQVHUWHG� LQW [� LQW \� ^UHWXUQ ��`�
LQW &KDQJH&RVW�FRQVW LQW	 IURP� FRQVW LQW	 WR� LQW [� LQW \�

^ UHWXUQ �IURP WR"�����`�
`�

The class is instantiated using the following declaration:

WHPSODWH FODVV &(GLW'LVW�LQW!�

To test the functionality of this class, use the following code:

&,QW(GLW'LVW HG�
LQW D>@ ^�������������`�
LQW E>@ ^�����������`�
LQW F HG�(GLW'LVWDQFH�D���E����
&6WULQJ VWU�
VWU�)RUPDW��'LVWDQFH� �G��F��
$I[0HVVDJH%R[�VWU��

The distance displayed should be 11. The least expensive edit replaces the second character in a from 1 to 2, replaces the
sixth character in a from 2 to 1, and deletes the last character in a, for a total of two changes and one deletion, with a cost of
3+3+5=11.

