
Parallel Algorithms for the Longest Common Subsequence Problem

K.Nandan Babu Sanjeev Saxena

Computer Science & Engineering Computer Science & Engineering

Indian Institute of Technology, Indian Institute of Technology,

Kanpur, INDIA 208016 Kanpur, INDIA 208016

Abstract

The longest common subsequence problem is to �nd

a substring that is common to two given strings and is

atleast as long as any other such string. If m and n

are the lengths of the two strings (m � n), we obtain

O(logm) time parallel algorithm with mn processors

and an O(log2 n) time optimal parallel algorithm. Se-

rial complexity on decision tree model is �(mn).

1 Introduction

Given a string, S, a subsequence S0 of string S can

be obtained by deleting some or no symbols of S; the

symbols which are deleted need not be consecutive.

If a string S1 is a subsequence of both S2 and S3,

then S1 is said to be a common subsequence of S2 and

S3. If string S1 is at least as long as any other com-

mon subsequence of S2 and S3 then S1 is called longest

common subsequence (LCS) of S2 and S3. The longest

common subsequences for two given strings may not

be unique. Given two strings S1 and S2 of lengths m

and n respectively, m � n, the LCS problem is to �nd

a longest common subsequence of S1 and S2. Longest

common subsequence problem �nds applications in ge-

netic engineering, data compression, editing, error cor-

rection, and syntactic pattern recognition[4, 7].

Aho et.al. [1] have obtained a lower bound of


(mn) on time for the LCS problem on the decision

tree model (i.e, all decisions are of type whether two

positions have the same symbol) if the number of dis-

tinct symbols that can appear in the strings is in�nite.

LCS problem is related to the problem of �nd-

ing the maximum cost path on a directed grid

graph [6, 3]. Apostolico et.al. [3] have ob-

tained an O(logn(log logm)2) time algorithm with

O(mn= log logm) processors on CRCW model. Lu

and Lin [6] obtain two algorithms: �rst is an

O(log2m+ logn) time algorithm with mn=logm pro-

cessors and other is an O(log2m log logm) time op-

timal algorithm with a processor-time product of

O(mn) on CREW model. In this paper we improve

these algorithms on the stronger CRCW model. We

describe an O(logm) time algorithm with mn proces-

sors and an O(log2 n) time optimal parallel algorithm.

2 LCS Problem and Grid Directed

Acyclic Graph

An m � n grid directed acyclic graph (DAG) is a

graph with vertices as points of an m � n grid; the

edges emanating from vertex (i; j) (for i < m; j < n)

are to vertices (i; j + 1); (i + 1; j) and (i + 1; j + 1);

vertices (n; j) will only have edge (n; j + 1) (for j <

m) and vertices (i;m) can only have edge (i + 1;m).

Vertex (1; 1) is the source and vertex (m;n) is the

sink. Costs are assigned to these edges as follows: if

in the given strings A and B ith symbol in A and

jth symbol in B match (are same) then the edge from

(i; j) to (i+1; j +1) is assigned a cost 1 and all other

edges are assigned cost 0.

To solve the LCS problem, we need to �nd the max-

imum cost path beginning at the source and ending at

the sink on the DAG G; we solve a more general prob-

lem of �nding the maximum cost paths from every

vertex on the top row to every vertex on the bottom

row. We divide the (m+1)�(n+1) grid DAG, G into

two (m=2+1)� (n+1) grid DAGs, Gu the upper half

and Gl lower half; and recursively �nd the maximum

cost paths on Gu and Gl and merge the paths.

A vertex v on the bottom row is de�ned as the jth

breakout vertex with respect to vertex (1; i) if there is

a path of cost j from vertex (1; i) to v and v is the

leftmost of such vertices[6].

If a vertex v has jth breakout vertex w, then the

maximum cost path from v on the top row to its jth

breakout vertex w on the bottom row on G, must have

cost j. This is because all unit cost (non-zero) edges

appear on diagonal only. Indeed, if there is a path

between vertex v and w with cost greater than j, then

vertex w can not be a jth breakout vertex of v, because

in that case, we can always �nd a vertex w0 to the left

of w such that there exists a path between v and w0



with a cost of j. We are interested only in the left most

maximum cost path between any pair of vertices.

We store information about breakout vertices in a

matrix called cost matrix . We know that the maximal

possible length of the common subsequence is m, and

hence maximal possible cost of a path of an (m+1)�
(n + 1) grid DAG is m. Therefore any vertex on the

top row can have at most m breakout vertices.

Now a cost matrix DG associated with grid DAG

G, is de�ned as follows [6]: Each row of the matrix

corresponds to a vertex on the top row of the DAG;

and ith row jth column of the matrix stores the index

of the jth breakout from the ith vertex on top row.

De�nition: for 1 � i � n and 1 � j � m, DG(i,j)=k

if vertex (m+1,k) is jth breakout from vertex (1; i).

3 The main structure of Algorithm
High level description of algorithm is [6]:

1. Find a cost matrix for every two consecutive rows

of DG i.e., for a graph Gi where Gi is a 2�(n+1)

grid DAG consisting of the ith and (i+1)th rows

of G

2. Recursively compute DG from DGu
and DGl

.

3. Identify vertices on the maximum cost path be-

tween the source and the sink of G.

4. Identify the Longest Common Subsequence that

corresponds to the maximum cost path found in

Step 3.

We �rst describe implementation of Phase 1 which

takes O(1) time with mn processors in Section 3.1.

Then in Section 3.2, we show that Phase 4 can be im-

plemented in O(logn) time with n=logn processors,

assuming implementation of other two phases. An

O(logm) time implementation with mn processors of

Phase 2 is described in Section 4 and an O(log2 n)

time implementation with mn=log2 n processors is de-

scribed in Section 5. Implementation of Phase 3 is in

Section 3.3.

3.1 Implementation of Phase 1

We use divide-and-conquer strategy for solving the

LCS problem. Given two strings P and Q, to compute

cost matrix DG of G associated with P and Q, as

a basis for merge, we �rst need to compute m cost

matrices, each being associated with a 2� (n+1) grid

DAG.

Any vertex on the top row of Gh can have at most

one breakout vertex. Let us consider computing cost

matrix for two consecutive rows for Gh, the DAG in

this case consists of hth and (h+1)th rows of G. Let qi
denote the ith symbol of Q and Pj the jth symbol of

P . Let us assume that symbols qj1; qj2; : : : ; qjr are all

identical to ph for j1 < j2 < : : : < jr. A cost matrix

PGh
can now be constructed as follows:

1. Initialize DGh
(1; i) = 0, for 1 � i � r; Let

DGh
(1; 1) = j1 + 1 and let DGh

(jk�1 + 1; 1) = jk
for 1 � k � r.

2. Compute pre�x maxima from DGh
(1; 1) to

DGh
(jr + 1; 1).

3. Assign 1 to entries of DGh
from DGh

(jr + 2; 1)

to DGh
(n; 1).

By assigning a processor to each of the vertex on the

top row of Gh, we can identify j1; j2; :::jr in constant

time. For this step we need n processors. Since there

are m such matrices, with mn processors, this step

can be implemented in O(1) time

3.2 Implementation of Phase 4

Let P = v1; v2; :::; vn be the maximum cost path

obtained in Phase 3. The symbol pi in P has to be

marked if edge e = (vk; vk+1) has cost 1 and vertex

vk has column index i. Now getting the marked sym-

bols together gives LCS. So, LCS can be obtained by

ranking the marked symbols. Since the maximum cost

path can have atmost n + m, edges marking can be

done in constant time with m + n processors. The

ranking can be done in O(logn) time with n=logn

processors using a standard technique [5].

3.3 Implementation of Phase 3

We identify vertices on the maximum cost path P
between the source and sink of the (m+ 1)� (n + 1)

grid DAG given DG. In the maximum cost path there

can be more than one vertex in the same row, of G as

m � n. A vertex vi on P is a cross vertex if vi is the

leftmost vertex on that row. Phase 3 is implemented

in two stages (as in [6]). First Identify cross vertices

on P and then identify other vertices on P . Lu and

Lin [6] have shown that Phase 3 can be implemented

in O(logn) time with n processors.

4 Implementation of Phase 2

In this phase we recursively calculateDG fromDGu
,

the matrix corresponding to the upper half DAG and

DGl
the matrix corresponding to lower half DAG.

Consider vertex (1; i) and its jth breakout vertex, say,

(m + 1; iv), and the maximum cost path, say P , be-
tween them. ClearlyDG(i; j) = iv. Now let us assume

that P intersect common boundary ofDGu
andDGl

at

w = (m
2
+1; iq) (say). Thus vertex w divides the maxi-

mum cost path P into two sub-paths P1 and P2, where

sub-path P1 is from vertex (1; i) to w and sub-path P2
is from vertex w to (m+1; iv). Let us assume that w

is the kth breakout vertex of (1; i) on DGu
(for some k

and i). Therefore (m+1; iv) will be (k�j)th breakout

vertex of (1; iq) on DGl
. In other wordsDGu

(i; k) = iq
and DGl

(iq; k � j) = iv when k 6= 0 and k 6= j. As

DG(i; j) = iv, we getDG(i; j) = DGl
(DGu

(i; k); k�j).



As we are interested only in left most paths, when

k = 0, sub-path P1 must go straight down from (1; i)

to w; thus iq = i. Consequently, sub-path P2, hav-

ing cost j, must be the maximum cost path from

(m=2 + 1; i) to (m + 1; iv), or DG(i; j) = iv. Hence

DG(i; j) = DGl
(i; j). Similarly if k = j we get

DG(i; j) = DGu
(i; j).

Theorem 1 [6] For 1 � i � n and 1 � j � m,

DG(i; j) =

min1�k�j (DGu
(i; j); DGl

(i; j); DGl
(DGu

(i; k); j � k))

where both DGu
(i; j) and DGl

(i; j) are 1 for j > m
2

and DGl
(DGu

(i; k); j � k) is also 1 for DGu
(i; k) =

1.

By Theorem 1, for the leftmost path we have to

search for a vertex with minimum value that is at a

distance j from (1; i). For this we de�ne a new matrix,

M [Di
G] (refer [6]) a matrix corresponding to ith row

of DG; we have n such matrices (1 � i � n). The size

of M [Di
G] is l�m, where l is the number of breakout

vertices of vertex (1; i) on Gu. For 1 � j � l the jth

row of M [Di
G] is de�ned as follows:

De�nition: M [Di
G](j; k) = DGl

(DGu
(i; j); k � j),

for j + 1 � k � m
2
+ j + 1 and the remaining m=2

entries of M [Di
G] are 1.

Clearly from de�nition of M [Di
G], Theorem 1 can be

rewritten as follows.

Corollary 1 [6] DG(i; j) =

min1�k�l
�
DGu

(i; j); DGl
(i; j);M [Di

G](k; j)
�
for 1 �

i � n and 1 � j � m. Here l is the number of the

breakout vertices of vertex (1; i) on Gu.

4.1 K-variant property of DG and M [Di

G
]

We next illustrate some properties of DG and

M [Di
G] that are useful in the algorithm.

Given a row vector, R, a subrow vector R0 of R can

be obtained by deleting some or no entries of R; the

entries which are deleted need not be consecutive. If

a row vector is a subrow vector of more than two row

vectors, say, W1;W2; :::Wl then it is a common row

vector of them.

A pair of row vectors of size m is said to be k-

variant either the rows di�er in atmost k elements; in

other words their common row vector is of size atleast

m � k. Two matrices of size m � n are said to be k-

variant if there exists a sub-matrix of size (k�m)�n

which is common to both.

Proposition 1 [6] If value k is found in a row of cost

matrix DG, then it will also be found in next (k � 1)

rows; i.e., if DG(i1; j1) = k and k 6= 1, then there

exists j2 such that DG(i2; j2) = k for any i2 between

i1 and k (i1 � i2 � k)

Theorem 2 [6] If Di1
Gu

and Di2
Gu

are k-variant, then

M [Di1
G ] and M [Di2

G ] are also k-variant.

Proofs of the Proposition 1 and Theorem 2 can be

found in [6]. From the Proposition 1 it is clear that,

any k + 1 rows of DG are k � variant.

Now, let L = (L1; L2; :::; Lr) be a common row-

vector of Di1
Gu

and Di2
Gu

, where Lj is the jth group of

L. Then a common matrix M = (M1;M2; :::;Mr)
T of

M [Di1
G ] and M [Di2

G ] can be constructed from the cor-

responding common row vectors as follows: for every

element of a row of DGu
, there exists a row in the cor-

responding M [Di
G](see de�nition). Since L contains

common elements of the two rows Di1
Gu

and Di2
Gu

, the

matrix M [Di
G] constructed from L has rows common

to both M [Di1
G ] and M [Di2

G ]. Recall Di1
Gu

and Di2
Gu

are i1th and i2th rows of DGu
respectively. Thus

a matrix M = (M1;M2; :::;Mr)
T , constructed from

L = (L1; L2; :::; Lr) using de�nition is a common ma-

trix to both M [Di1
G ] and M [Di2

G ]. Here all Mis have

same number of columns as M [Di
G] and each Mi has

some consecutive rows of M [Di
G].

4.2 Totally monotone property of DG and

M [Di

G
]

If in a matrix Z, minimum value of items stored in

the ith column is in jth row, then we de�ne �Z(i) = j.

The matrix Z is said to be monotone if �Z(i) �
�Z(i + 1). Matrix Z is said to be totally monotone

if every 2 � 2 sub-matrix of Z is also monotone. Lu

and Lin [6] have shown that the matrix M [Di
G] is to-

tally monotone. We can compute the cost matrix DG

by assuming that the matrix DG has been partitioned

into n
k
sub-matrices each having k consecutive subrows

ofDG. We compute these sub-matrices independently.

Let us concentrate on the computation of a submatrix,

which consists of the �rst k rows of DG. Remaining

submatrices can be computed similarly. The entry

DG(i; j) is minimum of a) DGu
(i; j), b) DGl

(i; j) and

c) jth column minima of M [Di
G]. As only the com-

putation of column minima of M [Di
G] is non-trivial,

we concentrate on computing column minima. Recall

that any k consecutive rows of DGu
are k� 1 variant,

and henceM [DG1];M [DG2]; : : : ;M [DGk] are also k�1
variant. Hence each of these can be represented by a

common matrix together with at most k�1 other row

vectors. Let M = (M1;M2; :::;Mr)
T be the common

matrix of M [Di
G].

Let us now consider the problem of �nding column

minima. We are given DGu
and DGl

and we have

to �nd Colmin[M [Di
G]]. We avoid the generation of

the matrix M [Di
G] since it is costly. We proceed in

following steps.

Step 1 Find common row vector L = (L1; :::; Lr) of



Di
Gu

.

Consider any two rows Ri1 and Ri2 , i1 < i2, then all

the rows Ri i1 � i � i2 are i2 � i1 � 1 variant. If we

�nd the common row vector of Ri1 and Ri2, it is also

the common row vector of the rows Ri for i1 � i � i2.

So for �nding the common row vector of the �rst k

rows of DGu
it is enough to �nd the common row of

the �rst and the kth row. The numbers present in

the matrix are less than or equal to n, the size of the

longer string. This follows from the de�nition of the

cost matrix.

Now proceed as follows: Choose m=k rows at in-

tervals of k. Assign n processors to each selected

row. Find the common row vector of (2i+ 1)kth and

(2i+2)kth rows, (for i = 0; :::; (m=2k)�1), in constant
time. This is done using an array of size n. Initial-

ization can be avoided by using the method of back

pointers (see Ex 2.12 of [2]). Since the elements are in

the range 1 to n and we have n processors it is easy to

�nd the common row vector in constant time. Now,

we have a common row vector for each of the k rows.

It remains to �nd the remnants (i.e., the elements of

the row other than those in common row vector) of

each row among the k rows. Assign one processor to

each of the elements of the k rows and obtain the rem-

nants in constant time. Thus we need mn processors

to get m=k common row vectors and m corresponding

remnants in constant time.

Let L = (L1; L2; :::Lr) be a common row vector of

row vectors Di
Gu

for 1 � i � l, where Lj is the j

th group of L. The position of Lj in the row vector

Di
Gu

, denoted by Pos[Di
Gu
; Lj ], is de�ned as the in-

dex of the entry in Di
Gu

, which is identical to Lj(1).

Now a Position function P [Di
Gu
; L] is de�ned such that

P [Di
Gu
; L](j) = Pos[Di

Gu
; Lj ]:

We should also compute po-

sition function P [Di
Gu
; L] i = 1; : : : ; k. This can be

done by identifying the position of Lj(1)s in D
i
Gu. As

a matter of fact, we can do this while computing Lj
itself.

Step 2 Find common matrix M of M [Di
G].

We use the de�nition to calculate Mjs of M ; position

function is used to get positions of Mjs in M [Di
G]s in

O(1) time.

The position of Mjs in the matrix M [Di
G]s, de-

noted by Pos[M [Di
G;M ]], is de�ned as the index

of the entry in M [Di
G], which is the left most el-

ement of the matrix that is similar to Mj . Now

a Position function P [M [Di
G];M ] is de�ned such

that P [M [Di
G];M ](j) = Pos[M [Di

G];Mj ]: We should

calculate a position function P [M [Di
G;M ] for i =

1; : : : ; k. We have P [M [Di
G;M ]] = P [Di

Gu
; L] (for

i6

�
��
��
��
� i2

i3

i4

i5

i1

Figure 1: Monotone Matrix corresponding to the

problem

proof see [6]). The function P [Di
Gu
; L] is calculated

in the previous step.

Step 3 Compute column minima of M [Di
G]

Since Mjs are submatrices of M [Di
G], we �rst �nd

column minima of Mjs. We have seen that Mjs are

monotone arrays. We use the procedure described in

the next subsection to �nd their column minima. Mj

have same number of columns as M [Di
G] but have

fewer rows. Replace the matrix Mj with its col-

umn minima in M [Di
G]s. Observe that the resulting

M [Di
G]s are still monotone and are much smaller than

original M [Di
G]. Finally, we have to �nd the column

minima among them again. The procedure for search-

ing monotone arrays is next described.

4.3 Searching Monotone Arrays for Col-

umn Minima

Consider a monotone matrix of size m � n whose

elements are integers less than or equal to n. We ba-

sically reduce problem space by selecting k columns

at equal intervals in the matrix and �nd minimums

among them using \small universe algorithm". this

step requires mk processors and can be done in con-

stant time.

Let the minimums in the selected columns be in the

rows i1; i2; etc,. Consider the unselected columns be-

tween the �rst two selected columns. The minimums

among them are bound to be found in the rectangle

shown in Figure 1. That is so because as column min-

ima in the �rst selected column is in i1th row, the col-

umn minima of the columns after it should be found

below or to the right of it, and since the column min-

ima of the second selected column is in i2th row, the

column minima of the columns preceding it should

be found to the left of it or above it. Hence it fol-

lows that the search space for column minima of the

columns between the �rst two selected columns is only

the rectangle shown.



It remains to �nd the column minima in the re-

maining columns in the rectangles shown. The rect-

angles can be placed one below the other resulting in

n=k columns and m rows. Applying the \small uni-

verse algorithm" again to �nd the column minima in

constant time we need n=k � m processors. Choose

k =
p
n; Then this step requires

p
nm operations.

Thus this stage takes atmost mn operations and

can be done in constant time. Since there are logm

merge stages in phase 2 this phase can be completed

with O(mn logm) operations with O(logm) time.

4.4 Complexity of algorithm

The algorithm consists of four phases. In Section 3,

we saw that the �rst phase is executable in constant

time with mn operations and the fourth phase can be

implemented in O(log n) time and n operations. Fur-

ther O(logn) time and n processors su�ce for Phase 3.

As, second phase can be implemented in O(logm)

time with O(mn logm) operations, the entire algo-

rithm takes O(logm) time with mn processors.

5 An Optimal Algorithm for LCS

Problem

The main di�erence between the algorithm of pre-

vious sections and this one is the data structure used

for representing the cost matrices. In this algorithm,

Common vectors and Remnants are used to represent

cost matrix DG. For every k + 1 consecutive rows of

the cost matrix a row vector is used to represent the

common row and k + 1 arrays are used to represent

k + 1 remnants one each for every row. Let remnant

for ith row be denoted by R[Di
G]. Further position

functions de�ned in the previous algorithm are used

to facilitate \random access" of any entry of this data

structure. As any k + 1 consecutive rows of DG with

size n�m, can be represented by a common row vec-

tor of size atmost m, and k + 1 remnants, each with

size of atmost k, hence O(mn=k + nk) space su�ces

to store all information of DG[6].

Observation 1 Let Lh be the hth group of L, the

common row-vector of Di
Gs for i1 � i � i1 + k. Then

the position of the �rst element of the Lh in pth row is

less than its position in qth row, if i+ k > p > q > i.

i.e., Pos[Di1+k
G ; Lh] � Pos[Di

G; Lh] � Pos[Di1
G ; Lh].

The above observation follows from the de�nition

of cost matrix. To be precise Pos[Di1+k
G ; Lh] �

Pos[Di
G; Lh] � k because, an element found in a row

can shift to left in the next row by atmost one position

(it cannot shift to right).

Let us now discuss algorithm for computing DG.

Similar to our earlier algorithm, we partition DG in

to n=k submatrices, each having k consecutive rows of

DG. We explain the computation of one such matrix;

other submatrices can be obtained similarly. The com-

putation of the sub-matrices is in three steps as follows

[6]:

Step 1Compute common row vector L.

This is done by �rst Computing D1
G and Dk

G us-

ing our earlier algorithm. The optimal algorithm

of Lu and Lin [6] uses an algorithm which runs in

O(log2m + logn) time, for the above step. We

use our fast algorithm (Section 4.3) which runs in

O(logm + logn) time. Then compute common row-

vector L of D1
G, D

k
G and the corresponding position

functions P [D1
G; L]andP [D

k
G; L] using Step 1 of algo-

rithm of Section 4.2.

Step 2 Compute remnants R[Di
G] (i = 1; : : : ; k).

Step 3 Compute Position functions

P [Di
G; L]; P [D

i
G; R[D

i
G]]; for (i = 1; � � � k).

Let us discuss implementation of Steps 2 and 3 in

detail. In the Step 2 we have to generate the remnants.

Let Ra
b be the bth remnant group of ath row. We shall

discuss how to compute the remnant group Ra
b . Other

remnant groups can be handled similarly.

Observation 2 Any �nite entry in Ra
b is also con-

tained in Rk
b (k > a) and in�nite (1) entries are al-

ways on the right side of �nite entries in Da
G.

Remembering that Ra
b is a subrow of Da

G, the above

observation is straight forward. As we have already

computed D1
G and Dk

G computation of R[D1
G] and

R[Dk
G] is easy, since we have the common row vec-

tor from step 1. Other remnants are computed from

them as will be explained.

Proposition 2 Let R[Di
G] = (Ri

1; : : : ; R
i
r+1) be the

remnant of Di
G, then Ri1

j is a subvector of Ri2
j when

i1 < i2 and 2 � j � r + 1.

From Proposition 2, when b � 2, Ra
b is a subvector

of Rk
b . We also know that Da

G in monotonally increas-

ing (from de�nition of cost matrix). Hence Ra
b is the

largest common subvector of Da
G and Rk

b . Therefore

if Da
G is given Ra

b can be obtained. But as Da
G is not

known, we will �nd a sub-row of Da
G which is su�cient

for our purpose. Let us call this sub-row SD[a; b],

which is de�ned as follows.

De�nition: SD[a; b] contains all elements of Ra
b

The size of SD[a; b] is bounded by O(k).

The basic formula described in Corollary 1 of The-

orem 1 is applied to generate SD[a; b], as SD[a; b] is

a sub-row of Da
G. We next try to identify columns

of M [Di
G] which should be selected to �nd column

minima in order to get entries of SD[a; b]. Let l =

Pos[Dk
G; R

k
b ] be the position of the �rst element of

bth remnant of kth row (in kth row). Then the po-



sition of �rst element of bth remnant of ath row in

Da
G can be atmost l + k, where k is the number of

rows we are considering; this is because if an element

is found in ath row then it can shift to left in the

next row by atmost 1 (it cannot shift to right). Thus,

l � Pos[Da
G; R

a
b ] � l + k.

Now since there are atmost k entries in Ra
b we

choose the subrow of Da
G from DG(a; l) to DG(a; l +

2k � 1) as SD[a,b]. By above inequality, Ra
b is con-

tained in SD[a; b].

Let array Ind store positions in Da
G for entries in

SD[a; b] [6]; Then, Ind[SD[a; b]](i) = Pos[Dk
G; R

k
b ] +

i � 1, for i = 1; : : : ; 2k. i.e., Ind[SD(a; b)]](i) = l if

SD[a; b](i) = Da
G(l).

Therefore we need to identify only

the IND[SD[a; b]](i)th column minima in M [Da
G] for

i = 1; : : : ; 2k. Now let M [SD[a; b]] be a sub-matrix of

M [Da
G] obtained by deleting those columns that are

not in SD[a; b]. Now proceed as follows:

� Identify a common matrix ofM [SD[a; b]], for 1 �
a � k.

� Find the column minima of the common matrix.

� Replace the common matrix in allM [SD[a; b]] by

the column minima and �nd the column minima

of M [SD[a; b]] to get SD[a; b].

We have already seen how to identify Mj , the

common matrix of M [Di
G] in our earlier algorithm.

Here we need not compute the whole matrix Mj ,

which is costly. For obtaining the common matrix of

M [SD[a; b]], it is enough to identify those columns

from Mjs, which are required to get the common

matrix of M [SD[a; b]]. This is because, the com-

mon matrix of M [SD[a; b]] is a submatrix of Mj with

less columns. Let us call this common matrix of

M [SD[a; b]], SMk. We use array IND for �nding

SMk from Mk. Recall that array IND stores posi-

tions in Da
G for entries in SD[a; b]. Correspondingly

we can get the positions of SMk in Mk from it.

Now, since Mks are totally monotone so are SMks.

To �nd the column minima of the common matrix, we

use the procedure described in our previous algorithm

to \search for column minima in monotone arrays".

This step takes mn operations and can be done in

constant time. Alternately we can do in O(logm) time

with mn=logm processors.

For Step 3 of the above algorithm, recall that the

common matrix of SMk contains same number of

columns as M [SD[a; b]]. Replace all the rows of SMk

inM [SD[a; b]] with a single row containing the column

minima of SMk. Then the resulting matrix is smaller

and is still monotone, because M [SD[a; b]] is totally

monotone. Now �nd the column minima in this re-

sulting matrix as explained above with same time and

processor limits.

Once column minima is obtained we get SD[a; b]

and using it Ra
b . (see de�nition). Now it remains to

�nd P [Di
G; R[D

i
G]], to complete the data structure for

DG. We have shown how to identify P [D1
G; L] in ear-

lier sections. We �rst identify P [D1
G; L] and from it

P [Di
G; R[D

i
G]]s can easily be identi�ed as the number

of groups of L and R[Di
G]] are bounded by a polylog-

arithm. (for proof see [6]). Phase 3 in this algorithm

is to identify the maximum cost path. This is done in

O(logm) time using n processors as in [6].

5.1 Analysis of Algorithm

Phase 1 of this algorithm can be done in O(logn)

time with mn= logn processors, as is [6]. Phase 3 and

Phase 4 are also the same Phase 2, the crucial part of

the algorithm takes O(log2m) time with mn= log2m

processors. In fact, the analysis given in [6] works �ne

for us except for the fact that each stage in the Phase 2

of that algorithm takes O(logm log logm), where as

for us it is only O(logm). So Phase 2 of our algorithm

takes O(log2m) as compared to O(log2m log logm)

time in [6].

Acknowledgments

We thank a referee for bringing [3] to our notice.

References
[1] A.Aho, D.Hirschberg, and J. Ullman, \ Bounds on

the complexity of the longest common subsequence

problem." J Assoc. Comput. Mach. vol 23 no. 1,

pp 1-12 Jan 1976.

[2] A.V.Aho, J.E.Hopcroft and J.D.Ullman, The

Design and Analysis of Computer Algorithms,

Addison-Wesley, 1974.

[3] A.Apostolico, M.J.Atallah, L.L.Larmore and

S.McFaddin, E�cient Parallel Algorithms for

String Editing and Related Problems, SIAM J.

Comput, vol 19, no.5, pp 968-988, October 1990

[4] R.Brent, \ The Parallel evaluation of general

arithmatic expressions " J. Assoc Comput. Mach.,

vol 21, pp. 201-206, 1974.

[5] A. Gibbons and W. Rytter, E�cient parallel Al-

gorithms, Cambridge, U.K. Cambridge University

Press, 1988.

[6] Mi Lu and Hua Lin \Parallel Algorithms for the

Longest common Sub sequence problem", IEEE

tran. on Parallel and Distri. Sys. vol 5. No 8. Au-

gust 1994. pp 835-847.

[7] J. Modelevsky, \Computer applications in applied

genetic Engineering", Advances in applied Micro-

biology, vol 30, pp. 169-195, 1984.


