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Abstract

Given a set of objects S and a metric D, we describe how to represent S as a

new data structure, the triangulation trie. This data structure can be used to search

through S quickly to �nd approximate matches to a given object. Using the triangle

inequality, the search tree is repeatedly pruned to reduce the number of object com-

parisons required. Much of the work is done within the tree using integer comparisons.

This method can result in very fast database searches in applications where object

comparisons are traditionally costly. Furthermore, the data structure seems to be ap-

plicable to a very wide variety of object types. The trie is unusual in its construction

in that objects are partitioned according to their respective distances from a common

set of \key" objects.

1 Introduction

When searching through databases, people are often interested in close but not necessarily
exact matches. This problem of �nding an \approximate" match is a common one, oc-
curring in �elds as varied as spell checking, �ngerprint analysis, voice recognition, image

understanding, and DNA sequence matching. In general, the standard problem consists of

a set of objects S drawn from some universal set of objects U with a distance measure D on
U �U ! <. Given integer k and x 2 U , the goal is to �nd all y 2 S such that D(x; y) � k.

It can be expensive to �nd D(x; y) for certain U and D. For example, in the se-

quence alignment problem[NW70], �nding D(x; y) takes time proportional to jxjjyj. Thus,

in database searching, there is a need for sublinear searches, where most of the database is

never directly examined. Some current methods of pruning database searches include using
some subroutine other than the original distance measure D de�ned on U . For example, the

BLAST[AGM+90] algorithm for genetic databases uses comparisons on short subsequences
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of the DNA in question. While BLAST is very fast, this method of using subsequences

cannot be applied to other pattern-matching problems where the term \subsequence" may

have no meaning.

The Triangulation Trie de�ned in this paper can be used to create and search databases

with only the given distance measure as a tool. The only requirement is that the given dis-

tance measure satisfy the triangle inequality. An algorithm described below can be used

on the trie to return a subset of objects in the trie, thus avoiding the cost of comparing a

test object to each object in the database. The �ltering process can result in false positives

which can later be eliminated through direct comparison with the test object. However,

the algorithm will never fail to report a correct match. The data structure and algorithm

have been tested on string sequences using two di�erent distance measures, edit distance and

Hamming distance; and on sets of graphs testing for isomorphism. In tests on these cases,
we were to eliminate many object comparisons, sometimes resulting in a substantial time

savings.
In Sections 2 and 3 we give algorithms for constructing and searching through the

trie. Section 4 analyzes the behavior of the data structure and search on binary strings using
the Hamming distance measure. Section 5 discusses some experiments on searching through
a set of graphs for isomorphic and \close to isomorphic" graphs. In Section 6, we show how

this data structure could be used to organize and search through a database of dresses in a
department store catalog.

We have recently become aware that a paper containing similar results will be pre-
sented at the June Combinatorial Pattern Matching Conference[BYCMWar].

2 Constructing The Triangulation Trie

We make the simplifying assumption that distances are integer-valued. For objects with
real-valued distance measures, some mapping into an integer-valued distance measure must
be made.

The construction of the trie is simple: We �rst choose a set of key objects from our

universal set. Most of our experiments were done using random sets of key objects, but
the key objects can be chosen according to arbitrary convenient criteria. Note that the
performance of searches in the trie depends on the choice of the key objects. We create

a vector for each object in the database consisting of the ordered set of distances to the

key objects. These vectors are then combined into a trie[Fre60]. The trie is a compact
representation of the distances from the objects in our database to this set of \keys". Each

path from the root to a leaf represents the ordered set of distances from the keys to the
objects in that leaf. Note that each object is in precisely one leaf but a leaf may contain

more than one object. The latter occurs when two or more objects are the same distance

from each of the keys.
Formally, let S = (x1; :::xn) be our set of objects in the database. Let key1; :::keyj

be another set of objects, known as \key objects". For each xi in S compute the vector
vi = (D(xi; key1);D(xi; key2); : : : ;D(xi; keyj)). Then combine the vectors v1; : : : ; vn into a
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ROOT

|

3-------4

| |

1----9 8

| | |

(W,X) (Y) (Z)

Figure 1: An Example Trie with Four Objects and Two Keys

trie, with xi being placed on the leaf reached by following the path represented by vi.

2.1 Constructing the Trie: An Example

Let S = (W;X; Y; Z) be our objects and (key1; key2) be our set of keys. Let vW = (3; 1),
vX = (3; 1), vY = (3; 9), and vZ = (4; 8). A depiction of the trie is shown in Figure 1.

3 Searching The Trie For An Approximate Match

The search is based on the following mathematical equivalent of the triangle inequality:

8x; y; z 2 U;D(x; y) � jD(x; z)�D(y; z)j

Suppose we are given object x and integer k and wish to �nd all objects in our
database with a distance from x of not more than k. Now, consider a node p at level l with a
value of d. Every object at leaves descendant from p has a distance of d from the key object

keyl. Thus, if jd�D(x; keyl)j is greater than k, then we know from the triangle inequality

that D(x; s0) is greater than k for all object s0 which are descendants of p. Thus, we can
safely prune the search at node p.

The algorithm for searching the database is straightforward. Compute the distances

from x to each key: D(x; key1); : : : ;D(x; keyj). Perform a depth-�rst search of the trie,

pruning the search at node p at level l with value d if jd�D(x; keyl)j is greater than k.
When a leaf is reached, measure the distance from x to every object in the leaf and

return those objects s for which D(x; s) is less than or equal to k.

3.1 Searching the Trie: An Example

We continue with the example from Section 2.1. Suppose we wish to search our database for
a close match to object V where our maximum allowed distance to V is 1. We compute vV
by calculating D(V; key1) and D(V; key2). We discover that vV = (3; 8). We then perform
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our depth �rst search. At the top level, we only search nodes with a value within 3� 1. At

the second level, we only search children of those nodes with a value within 8 � 1. Figure

2 shows the trie with asterisks placed on those nodes and leaves which were examined. It

shows that Y and Z are returned as potential matches, while X and W are eliminated. The

�nal step is to compute D(V; Y ) and D(V;Z). Note that D(V;X) and D(V;W ) are never

computed.

ROOT

|

*3-------4*

| |

1----9* 8*

| | |

(W,X) (Y)* (Z)*

Figure 2: Searching the Example Trie for Matches

Notice that in this example the nature of the objects is never stated. The 
exibility
of the structure is such that it can handle any type of object as long as there is a distance

measure de�ned on the object space that satis�es the triangle inequality.
Suppose that Y was a close match to V but Z was not. Additional keys would give

additional chances for eliminating Z from the returned set. However, additional keys increase
the depth of the trie, increasing the cost of searching the internal nodes. Thus the optimum
depth of the trie is highly dependent both on the cost of comparing two objects and the

behavior of the distance measure on the objects.

4 Random Binary Strings and Hamming Distance:

An Example

Suppose we wish to �nd approximate matches to a set S of random binary strings of length p.

Assume that our distance measure D simply counts the number of bits which di�er between

two strings. This is known as the Hamming distance. We show that a triangulation trie
with logarithmic depth will enable us to do very fast searches within distance k, where k can

grow with O(
p
p).

To achieve this result we must �rst examine the behavior of the Hamming distance

function on random binary strings. For the remainder of this section we assume all strings
are of length p. Let D(x; y) be the Hamming distance on strings x and y. We need to

understand the behavior of two strings with distance d relative to a third random string.

The following lemma gives us this information:
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Lemma 1: Let x and y be arbitrary strings, and let r be a random string. Let R(d)

be a random variable representing the �nal distance to the origin of a simple random walk

of length d on the line. Then:

P (jD(x; r) �D(y; r)j � kjD(x; y) = d) = P (R(d) � k)

Proof: Let xi, yi, and ri represent the i
th bits of x,y, and r respectively. Let x0

i
, y0

i
,

and r0
i
represent the ith pre�xes of x, y, and r. Consider a point on the line which starts

on the origin at time 0, and at time t moves +1 if xt 6= rt and yt = rt, �1 if xt = rt and

yt 6= rt, and does not move at all if xt = yt. Thus, the position of the point increases by

+1 at time t when D(x0
t
; r0

t
) �D(y0

t
; r0

t
) = D(x0

t�1; r
0
t�1) �D(y0

t�1; r
0
t�1) + 1. It decreases by

�1 at time t when D(x0
t
; r0

t
) �D(y0

t
; r0

t
) = D(x0

t�1; r
0
t�1) �D(y0

t�1; r
0
t�1) � 1. And it doesn't

move when D(x0
t
; r0

t
)�D(y0

t
; r0

t
) = D(x0

t�1; r
0
t�1)�D(y0

t�1; r
0
t�1). This last claim is seen when

one observes that when xt = yt, either D(x0
t
; r0

t
) and D(y0

t
; r0

t
) both increase by one from the

previous time step, or they both remain the same, depending on whether xt = yt = rt.
Thus, the movement of the point represents a walk where steps are taken only when

xi 6= yi. The position of the point after p steps is D(x; r)�D(y; r). To show this movement

is a simple random walk of length d, we now only need to point out that since r is a random
string, on those bits i where xi 6= yi, we have:

P (xi = ri) = P (yi = ri) =
1

2

The above lemma shows that the relative distance of two strings to a random third
string is equivalent to a random walk on the bits that are di�erent between the two strings.
If we are searching for close matches to a string x, and some string s in our database is

\far" from x, we want jD(x; r)�D(s; r)j to be large for some key string r|large enough to
eliminate s from our search. The following lemma describes the probability of eliminating s:

Lemma 2: Let R(d) be a random variable representing the length of a simple

random walk on the line of length d. Then the following approximation holds:

P (R(d) � k)! �(
kp
d
)��(

�kp
d
)

where �(x) is the cumulative distribution function of the standard normal random variable.

Proof: We use the DeMoivre-Laplace Limit Theorem[Fel70]. R(d) is no greater than
k if the di�erence between rightward and leftward moves is no greater than k. This means
that there are between d�k

2
and d+k

2
rightward moves. Thus, if Xd denotes the number of

rightward moves in d independant moves, we have:

P (R(d) � k) = P (
d � k

2
� Xd �

d + k

2
)

= P (
d�k
2
� d

2q
d

4

� Xd � d

2q
d

4

�
d+k

2
� d

2q
d

4

)

5



= P (
�kp
d
� Xd � d

2q
d

4

� kp
d
)! �(

kp
d
)� �(

�kp
d
)

We note that �( kp
d
) � �(�kp

d
) is less than 7=10 when kp

d
is less than or equal to 1.

This fact leads us to the following lemma:

Lemma 3: Let c = 10=7. Let a triangulation trie T be composed of a set S of

random binary strings of length p with dlog
c
jSje keys chosen randomly and uniformly from

all binary strings of length p. Suppose a string x is our test string and we wish to search

through T for all strings s 2 S such the distance from x to s is less than or equal to some

integer k. Then we make the following two claims:

Claim 1: We expect to examine not more than one string in S with a distance from x of
greater than k2.

Claim 2: We expect to examine not more than O(J logc(jSj) + jSj1�1= log(c(2k+1))) internal
nodes of T where J is the total number of strings in S we do examine.

Proof of Claim 1: Consider T from the point of view of a given string s 2 S in
the tree with distance from x of greater than k2. The path to s covers dlog

c
(jSj)e integers,

representing the distance from s to the randomly chosen keys. Let this sequence of integers be

(d1; :::ddlog
c
(jSj)e). Lemma 2 tells us that if D(s; x) > k2 for a string s, then with probability

greater than 1 � 1=cdlogc(jSj)e � 1� 1=jSj, there will be at least one integer i such that
jD(x; ri) � dij > k, which will eliminate s from the search. Since there are fewer than jSj
strings total of distance greater than k2 from x, it is expected that at most one such string
will survive the pruning and be returned.

To give some perspective on this, let us consider a database of 1; 000; 000 strings of
length 60. If we create a triangulation trie with 40 keys, then a search for matches within
a distance of 3 to some string x is expected to yield not more than 1 string whose distance
to x is greater than 9. If the original strings are random, we expect that no strings have
a distance to x of less than 10. Thus, we have eliminated all but one of the strings in our

set, at a cost of a mere 40 key comparisons at the outset! If we search for strings within a
distance of 4 to x, then Lemma 3 says that we can expect to have fewer than 200 strings

returned as potential candidates. If we search through a distance of 5 the lemma only tells
us that we can expect at least 13% of the strings will be eliminated. However, remember

that the lemma places a lower bound on the expected number of strings that are eliminated
from the search. In actual practice, we should get even better results. See section 4.1 for an

example.
Proof of Claim 2: We ignore 
oors and ceilings for the purpose of exposition,

noting that we are after an asymptotic value. The triangle inequality restricts the maximum

number of children searched per node to 2k + 1, giving a potential of (2k + 1)d nodes
searched at level d. However, the number of nodes searched at any level is limited to the

number of still viable strings at that level. From Lemma 2, the number of viable strings

at level d is less than J + jSj=cd. Thus, if Ld is the number of nodes searched at level d,
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Max Distance Number of Nodes Number of Strings Returned

Allowed Searched As Potential Matches

------------------------------------------------------------

3 1572 0

4 5200 0

5 13908 3

6 31839 37

7 64304 247

8 116229 1002

9 188149 2779

10 273937 5794

Table 1: Average Number of internal nodes searched and strings returned in a triangulation
trie with 25,000 random strings of length 60 with a trie depth of 29.

then Ld � min((2k + 1)d; J + jSj=cd). Assuming J is much smaller than jSj, the maximum
value of Ld occurs when (2k + 1)d = jSj=cd, which, after some calculations, yields dmax =
log(jSj)= log(c(2k + 1)), giving approximately jSj1�1= log(c(2k+1)) + J nodes searched at that

level. Ld � J is constrained by reducing factors of 1=(2k + 1) for d < dmax and by reducing
factors of c for d > dmax, giving a limit of O(J log

c
(jSj) + jSj1�1= log(c(2k+1))) on the total

number of nodes searched.

4.1 Test Results:

Testing was done on binary strings of length 60. The set size was 25000, and a tree depth of
29 was used (log(10=7)(25000) � 28:4). As is shown in Table 1, the experimental results are
signi�cantly better than the theoretical prediction. For example, note that even searching

within a distance of 8, an average of 96% of the strings were removed from consideration,
while Lemma 3 doesn't promise any �ltering.

5 Finding \Almost Isomorphic" Graphs

Two graphs G1 = (V1; E1) and G2 = (V2; E2) are isomorphic if there is a permutation

� such that 8i8j(i; j) 2 E1 () (�(i); �(j)) 2 E2:We can further de�ne a distance measure
D over the set of graphs by letting D(G1; G2) be equal to the minimum number of edges

that need to be removed or added to G1 to make G1 isomorphic to G2. It is not known if the

question of whether two graphs are isomorphic is NP-complete[GJ79], but so far, nobody has
come up with a polynomial time solution. Since learning D(G1; G2) answers the question

of whether G1 and G2 are isomorphic, it is safe to say that no polynomial-time method of

computing D is currently known. This makes D an excellent distance measure to test the
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Max Distance Allowed

0 1 2 3 4

+-------------------------------------

Tree Depth 5 | 0.41 43.16 205.33 359.03 463.73

10 | 0.24 21.59 148.34 314.11 443.69

15 | 0.24 12.87 111.73 268.31 421.62

20 | 0.24 12.45 106.57 257.55 409.36

25 | 0.24 11.82 100.19 248.52 405.84

30 | 0.24 11.30 95.59 239.63 402.74

50 | 0.24 11.00 91.84 234.16 399.79

Table 2: Average number of graphs returned as potential close isomorphisms while searching
through a set of 500 random graphs of 6 vertices.

Max Distance Allowed

0 1 2 3 4

+-------------------------------------

Tree Depth 5 | 5 102 393 662 836

10 | 6 216 1102 2093 2826

15 | 7 272 1600 3296 4712

20 | 8 324 2062 4437 6553

25 | 9 374 2497 5530 8352

30 | 10 421 2908 6581 10135

50 | 14 602 4480 10667 17213

Table 3: Average number of nodes searched in trie, rounded to the nearest integer while
searching through a set of 500 random graphs of 6 vertices.
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triangulation trie, since minimizing computations of D would be a very high priority if one

had to �nd close matches within a large set of graphs to another graph. We created a set

of 500 random graphs of 6 vertices, where the probability of an edge between two vertices

was 1=2 and each edge was chosen independently. We then created several triangulation

tries with di�erent depths and looked for approximate matches to another set of 100 graphs,

with maximum distances allowed ranging from 0 to 4. Table 2 shows our results. Even a

modest trie depth of 5 is able to eliminate over 90% of the graphs from consideration when

searching for isomorphisms within a distance of 1. When searching for exact isomorphisms,

a tree depth of 5 could eliminate all but 1 graph from consideration most of the time. A

single comparison is so expensive that larger tree depths seem to be very worthwhile even

if the added depth eliminates just a few nodes from consideration. In our example, when

searching for graphs within a distance of 3, a depth of close to 30 seems to be the optimum
choice.

Table 3 shows the average number of internal nodes examined. When the cost of
measuring the distance between two objects is very high, even moving through hundreds
or thousands of internal nodes may not add much to the total time. In this example, each
computation of D took an average of more than a tenth of a second compared to faster than
thousandths of a second to move through a node in the trie.

6 Finding The Almost Perfect Dress

The purpose of this section is to show the 
exibility of the data structure in its ability to deal
with objects which may otherwise be di�cult to organize. Consider the following problem: A

woman comes into a department store and asks the salesperson to help her �nd a dress. She
describes what she considers to be the \perfect" dress for herself, but will accept something
that is \close to perfect." Dresses vary in many di�erent ways including, but not limited
to, size, fabric type, skirt length, sleeve length, buttons (size, type, number and placement),
and fabric patterns. The question arises| how can the salesperson quickly �nd a set of good

candidate dresses to show the customer?

Standard methods might provide an answer by having the customer provide a \range"
of acceptable variance for each variable. For example, instead of saying she wants to spend
$100, she can say $80 to $120. The problem is that a database search using this method

might return a dress which is just within the range on every variable, and not return a dress

which costs $121 but is perfect in every other way.
The triangulation trie enables a solution to this problem. One can construct a distance

measure over the set of dresses. For example, one simple measure would be to take each
variable such as size or skirt length in turn, and count the number of di�erences between

two dresses. A more complicated measurement might weight the variables according to what

people are usually willing to give up. For example, a customer is probably more willing to be

exible on the button placement than on the skirt size. In any case, once the distance measure

is created, a triangulation trie of dress descriptions can be used to search for approximate
matches to some ideal dress.
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7 Conclusion

In this paper we have introduced a new data structure, the triangulation trie. This data

structure is easy to construct, and our theoretical and experimental data suggests that the

trie can be a powerful tool in organizing and approximate searching over a wide variety of

object types, especially in cases where individual object comparisons are expensive.
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