
StoreFront Third Party Payment Processor Integration Guide

Purpose
This guide is intended to give third party payment processor integrators a basic understanding of
how to integrate payment processing services into StoreFront 5.0. This guide is a general
overview of the process and is not intended to be specific to any particular payment processor or
method of integration.

General Overview
StoreFront can use integrated third-party payment processing services to handle credit card
transactions. A merchant would typically acquire an account with the payment processor and
then configure their StoreFront web store to be able to process transactions using that service.

In a StoreFront web store, credit card processing begins in the verify.asp page. If a customer
chooses to pay for their order using a credit card, this page will load and display input fields to
collect the necessary credit card information: name, expiration date, card type, and card number.
After this information has been collected, it will be sent to the appropriate payment processing
service through a routine stored in the processor.asp page. The payment processing service
then returns a result – either success or a failure with an error message– which is parsed and
interpreted by processor.asp. The confirm.asp page then displays the result of the transaction to
the customer. If the transaction failed, the customer will be allowed to resubmit their payment
information.

Technical Overview
This section is intended to give an overview of the underlying technology used in StoreFront.
This should help developers determine the feasibility of integration and what the integration
process will require. Note that knowledge of ASP and VBScript will be prerequisite to performing
many of the tasks described in this guide.

The StoreFront web application files are written in the Active Server Pages scripting language,
and we recommend that any integration be performed using ASP with VBScript and a COM
server component. Using other technologies such as Java, Perl, Shell Scripting, etc. is possible,
but may require more work and will increase the likelihood that your custom integration will
become incompatible with future releases of StoreFront. Most payment processors will provide a
COM server to handle the communication between your web store and their gateway, or they will
provide VBScript routines that perform request/response operations between two secure servers
running SSL (HTTPS). StoreFront is best suited for these types of approaches to integration.
Note: A COM server could be written in C++, Java or Visual Basic. This does not affect
StoreFront as long as the component is COM compliant and can be instantiated in ASP.

Step 1: Adding the Payment Processing Service to your Database
Before you begin modifying your web store’s application files to incorporate new code, you should
add the name of the new payment processing service to the list that is stored in your web store’s
database. This will make the payment processing service selectable from the StoreFront
development tools.

Open your database using Access or, for SQL Server, Enterprise Manager or an Access Data
Link. Locate and open the sfTransactionMethods table. Create a new record in this table by
entering the name of the new payment processing service in the trnsmthdName field. The
trnsmthdID field will autopopulate. For the rest of the fields in the table, enter a single space in
each. This will eliminate the risk of introducing null values into the database, which could
potentially cause problems. Note the value you entered in the trnsmthdName field and the
corresponding number in the trnsmthdID field; you will need these for the next step.

Step 2: Modify Confirm.asp
Confirm.asp detects which payment processing servi ce has been selected and then executes the
appropriate routines for each. You must add a case to confirm.asp to detect the new payment
processing service and perform the appropriate tasks.

 1. Open confirm.asp using Notepad or another file editor.

 2. Locate the following line:

 ' Process Order

Immediately following it will be a large block of conditionals:

 If sTransMethod = "15" OR sPaymentMethod = "PayPal" Then
 sProcErrMsg = PayPal()
 ElseIf sTransMethod = "1" Then
 sProcErrMsg = CyberCash(proc_live)
 ElseIf sTransMethod = "16" Then
 'sProcErrMsg = CyberCash(proc_live,"1")
 sProcErrMsg = CyberCash(proc_live)
 ElseIf sTransMethod = "2" or sTransMethod = "11" or sTransMethod = "13" or sTransMethod = "19" Then
 sProcErrMsg = AuthNet(proc_live,"1")
 ElseIf sTransMethod = "3" or sTransMethod = "17" Then
 sProcErrMsg = SignioPayProFlow(proc_live)
 ElseIf sTransMethod = "4" Then
 sProcErrMsg = SurePay(proc_live)
 ElseIf sTransMethod = "7" Then
 sProcErrMsg = LinkPoint(proc_live)
 ElseIf sTransMethod = "8" Then
 sProcErrMsg = PSIGate(proc_live)
 ElseIf sTransMethod = "10" Then
 sProcErrMsg = SecurePay(proc_live)
 ElseIf sTransMethod = "18" OR sPaymentMethod = "WorldPay" Then
 sProcErrMsg = WorldPay(proc_live)
 End If

This is where StoreFront detects which payment processing service is in use and executes the
appropriate routine. Add a new case by inserting the following code after sProcErrMsg =
WorldPay(proc_live), where [**] is the value from the trnsmthdID field of the record you added to
sfTransactionMethods in Step 1:

 ElseIf sTransMethod = “[**]” Then
 sProcErrMsg = NewPayProc(proc_live)

For example:

 ElseIf sTransMethod = “20” Then
 sProcErrMsg = NewPayProc(proc_live)

Save the changes to the file and proceed to the next step.

Step 3: Add a New Payment Processing Routine to Processor.asp
Processor.asp is the page that contains the routines for all integrated payment processing
services. The next step in the integration process is to add a routine to this page for your new
payment processing service. Open processor.asp using Notepad or another file editor. Locate
the following lines:

 '---
 ' CyberCash subroutine
 ' Requirement: CYCHMCK.DLL 2.0 or higher
 ' Last edited : October 3, 2000
 '---

Begin building your payment processor’s routine by entering the following lines of code
immediately before these:

 Function NewPayProc(proc_live)

 End Function

These lines are the delimiters that will contain the code for your function. Any code that will be
executed for your payment processing service must be contained between these lines. At this
point, you should consult the integration documentation for your chosen service to determine
exactly what this code should be and how information should be passed to the service’s gateway.
The following table lists all pertinent variables that are available at this point:

Credit Card Information

The following variables store the information entered on verify.asp.

sCustCardNumber

customer’s credit card number

sCustCardExpiry

customer’s credit card expiration date

sCustCardName

name on the credit card

sCustCardType

customer’s credit card type

Customer and Order Information

With the exception of iOrderID and sGrandTotal, the following variables store the information
entered under the Billing Information section of process_order.asp.

iOrderID the customer’s Order ID, a unique identifying number
assigned to each order.

sCustAddress1 the value entered by the customer in the Street Address 1
field.

sCustAddress2

 the value entered by the customer in the Street Address 2
field.

sCustCity

the value entered by the customer in the City field.

sCustState

the value selected by the customer as their State.

sCustZip the value entered by the customer in the Zip Code field.

sCustCountry the value selected by the customer as their Country.

sGrandTotal the grand total of the order. This variable is not formatted
as currency.

sCustName

a combination of sCustFirstName and sCustLastName (see
below)

sCustFirstName the value entered by the customer in the First Name field.

sCustMiddleInitial

the value entered by the customer in the Middle Initial field.

sCustLastName

the value entered by the customer in the Last Name field

sCustEmail

the value entered by the customer in the Email field.

sCustCompany

the value entered by the customer in the Company field.

sCustPhone

the value entered by the customer in the Phone field.

sCustFax

the value entered by the customer in the Fax field.

The following variables store the information entered in the fields under the Shipping
Information section of process_order.asp

sShipCustFirstName the value entered by the customer in the First Name field.

sShipCustMiddleInitial the value entered by the customer in the Middle Initial field.

sShipCustLastName the value entered by the customer in the Last Name field.

sShipCustCompany the value entered by the customer in the Company field.

sShipCustAddress1 the value entered by the customer in the Street Address 1
field

sShipCustAddress2 the value entered by the customer in the Street Address 2
field.

sShipCustCity the value entered by the customer in the City field.

sShipCustState the value selected by the customer as their State.

sShipCustZip the value entered by the customer in the Zip code field.

sShipCustCountry the value selected by the customer as their Country.

sShipCustPhone the value entered by the customer in the Phone field.

sShipCustFax the value entered by the customer in the Fax field.

sShipCustEmail the value entered by the customer in the Email field.

sShipCustName a combination of sShipCustFirstName and
sShipCustLastName.

Payment Processor Information

The following variables store login and general configuration information for the payment
processing service that is in use. This information is stored in the web store’s database, and is
input and manipulated through the StoreFront Web Manager. See Step 4 for more information.

sLogin the value recorded in the trnsmthdLogin field of the
sfTransactionMethods table; usually the username used to
access a payment processing service.

sPassword the value recorded in the trnsmthdPassword field of the
sfTransactionMethods table; usually the password used to
access a payment processing service.

sPaymentServer. the value recorded in the trnsmthdServerPath field of the
sfTransactionMethods table; usually the URL to a payment
processing service’s gateway.

sMercType the value recorded in the adminMerchantType field of the
sfAdmin table. This value tells the payment processing
service how to process transactions: normal_auth
(authorization only) or authcapture (authorize transaction
and capture funds).

Use the variables listed above to pass your payment processing service the information it
requires to process a transaction. Any additional variables and values you need for your
integration can be created within the function as well (be sure to declare any variables using the
Dim statement first). To see different ways in which these variables are used for other payment
processing services, examine the rest of the code in processor.asp.

Step 3: Handling the Results of a Transaction
Most payment processing services will return a uniform set of name-value pairs listing the results
of each transaction. The manner in which these values are parsed and handled is immaterial so
long as the data they contain is preserved in usable variables. The following variables must be
created at the end of your function and assigned the appropriate values. If your payment
processing service does not return any values that can be assigned to a specific variable (for
example, not all services will return a value suitable for the iMercTransNo variable) then set that
variable equal to nothing (“”). The exceptions to this rule are iProcResponse and ProcResponse,
as explained below:

iTransactionID most payment processing services will return a unique
transaction ID for each transaction. This value should be
assigned to the iTransactionID variable

iMercTransNo some payment processing services return a unique identifying
code to identify the merchant that submitted each transaction.
This value should be assigned to the iMercTransNo variable.

iAVSCode most payment processing services support Address
Verification, a system that checks a customer’s card number
against the billing address registered to that card. AVS
messages are returned in standardized one-character codes.
iAVSCode should be assigned this value.

sAUXMsg if your payment processing service supports AVS, they will
return a single-character AVS Code (see iAVSCode above).
The processor.asp file contains a AVSMsg function that you
can use to interpret these codes to derive a meaningful error
message. If your payment processing service supports AVS
and returns an AVS code, set the sAUXMsg variable equal to
AVSMsg(YourAVSResponse), where YourAVSResponse is the
AVS Code returned by the processing service.

sActionCode banks and payment processing services generally assign an
action code to each transaction to describe the results. This
value should be assigned to sActionCode.

iAuthNo some payment processing services return an authorization
code for each transaction, in addition to the transaction ID.
This value should be assigned to the iAuthNo variable.

sErrorMessage when a transaction fails for some reason, most payment
processing services return an error messaging describing the
reason for the failure. This value should be assigned to the
sErrorMessage variable. Note: in order for a failed transaction
to be recognized by StoreFront, sErrorMessage must have a
value. Similarly, for a successful transaction to be recognized
by StoreFront, sErrorMessage must be set to nothing, or
contain no value. This is the variable that is evaluated to
determine the result of a transaction.

iProcResponse : this variable must be set to a value of 1 or 0 to indicate the

overall success (1) or failure (0) of a transaction. Many
payment processing services return a similar binary success
code which can be assigned to this variable. If no such value
is present, you must manually set the value of iProcResponse
based on other information returned by your service.

sProcType the name of the payment processing service you are using
(keep this brief and abbreviate if necessary).

ProcResponse this variable is evaluated in some situations to determine the
result of a transaction. When a transaction fails,
ProcResponse should be set to “fail.”

iRetrievalCode if your payment processing service returns a retrieval code of
some sort for each transaction, assign that value to this
variable.

After creating the variables shown above, place the following code below them. Although the
code is wrapped here, it should be entered all on one line in processor.asp:

 Call
 setResponse(sProcType,iOrderID,iTransactionID,iMercTransNo,iAVSCode,sAUXMsg,sActionCode,iAuthNo,iRe
 trievalCode,sErrorMessage,iProcResponse)

Following this, enter:

 NewPayProc = sErrorMessage

This will complete the new processing routine.

Step 4: Configuring your Web Store to use the New Payment Processor
Prior to testing, the last step in integrating a new payment processing service into your web store
is to select and configure it using the StoreFront Web Manager. Follow the instructions below:

 1. Connect to the web store’s database using the Web Manager.

 2. Click on the Order Processing tab. Select your payment processing service from the
 Payment Processing Method drop-down. Click Configure.

 3. The values you enter into the input fields in the Configure Payment Method dialog box
 will be written to the sfTransactionMethods table. In the User Name field, enter the value
 that should be assigned to the sLogin variable in your function.

 4. In the Password field, enter the value that should be assigned to the sPassword
 variable.

 5. In the Payment Server Path field, enter the value that should be assigned to the
 sPaymentServer variable.

 6. Choose the Processing Type to set the sMercType variable to the desired value.
 “Authorization only” will set sMercType to “normal_auth”, while “Authorize and Capture”
 will set it to “authcapture.”

 7. Save the settings and test the site.

