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Abstract

Colour image quantization is the process of repre-
senting an image with a small number of well se-
lected colours. Most previous colour quantization
techniques use a recursive pre-clustering approach.
These algorithms subdivide the colour space into a
set of simple geometric regions. Thus, the colour
map is chosen on the basis of this approximation.

We propose a new quantization method called
local K-means (LKM). It is an iterative post-cluster-
ing technique that approximates an optimal palette
using multiple subsets of image points. The paper
also presents ways to speedup the search of the clos-
est colour for a dynamically changing palette. The
local K-means procedure is compared with popu-
lar pre-clustering algorithms. The LKM method is
able to generate a high quality palette signi�cantly
faster than other quantization techniques.

Keywords: Colour quantization, image compres-
sion, colour reduction, palette, colour map.

1 Introduction.

Colour quantization is one of the most frequently
used operations in computer graphics and image
processing. Traditionally, quantization is used to
reproduce 24 bit images on graphics hardware with
a limited number of simultaneous colours (i.e. frame
bu�er displays with 4 or 8 bit colourmaps). Even
though 24 bit graphics hardware is becoming more
common, colour quantization maintains its practi-
cal value. It lessens space requirements for storage
of image data and reduces transmission bandwidth
requirements in multimedia applications.

Colour quantization is usually de�ned as a lossy
image compression operation that maps a full colour
image to an image with a smaller palette. The
mapping substitutes each original image colour by
the closest colour from the reduced palette. The
objective of the research in quantization is to min-
imize the perceived distortion in the resulting im-
age. Mathematically this process can be formu-
lated as an optimization problem (see [Wu92]).

Usually quantization algorithms take one of the
two possible approaches: pre- or post-clustering
[Dek94].

Previous colour quantization algorithms use a
pre-clustering scheme. A colour space is partitioned
into a set of clusters. The centroids of these clus-
ters de�ne the resulting colour map.

The median-cut algorithm [Hec82] takes a pre-
clustering approach. The colour space is recur-
sively subdivided into a set of rectangular boxes
by planes parallel to the space axis. The objective
of the split is to place an equal number of colours
into every rectangular cluster.

The variance based method [WPW90] follows a
similar scheme. At each step a box with the largest
variance is selected. The partition plane is chosen
to be perpendicular to the axis with the smallest
sum of projected variances. The goal of such a
subdivision is to minimize variance of colour within
each rectangular cluster.

The octree algorithm [GP88], [CFM93], [Cri92]
relies on a tree structured partitioning of the colour
space. The root of the tree represents the entire
space. Colours of the original image are placed
into the leaves of the octree. Neighboring leaves
are recursively merged together.



The algorithms described above have a com-
mon aw. The intermediate clusters are bipar-
titioned one at a time independently from each
other. As a result the quantization process is not
able to take into account interrelationships between
neighbouring colour clusters. Wu [Wu92] recently
proposed the principal multilevel quantization al-
gorithm. The performance of the pre-clustering
scheme is improved by simultaneous optimization
of multiple cuts.

Minimization in the pre-clustering techniques is
tied to approximation of Voronoi clusters. These
clusters are usually presented by simple geometric
objects. Post-clustering algorithms try to �nd rep-
resentative colours �rst. Voronoi tessellation of the
colour space is computed using these representative
colours. Post-clustering techniques have been ac-
tively studied in statistical analysis, data coding,
signal processing and pattern recognition [LBG80],
[Gra84], [Fri93], [MG93], [KKL90]. Until now these
schemes were considered to be computationally ex-
pensive for colour quantization.

The objective of our research is to make a post-
clustering technique feasible for colour image quan-
tization. We explored the local K-means scheme
[MG93]. This approach is a combination of a K-
means quantization [LBG80] and a self-organizing
map (or Kohonen neural network) [KKL90]. The
scheme presented in this paper is signi�cantly faster
and at least as accurate as previous pre-clustering
methods: median cut, variance and octree based
algorithms.

2 Formulation of the Colour Quantization Prob-

lem.

Let ci be a 3-dimensional vector in one of the colour
spaces (Lu�v�, HSV, RGB, etc. ). The set C =
fci; i = 1; 2 : : :Ng is the set of all colours in the full
colour image I. A quantized image I is represented
by a set of K colours C = fcj; j = 1; 2 : : :Kg;K �
N . The quantization process is therefore a map-
ping:

q : C ! C: (1)

The closest neighbour principle states that each
colour c of the original image I is going to be mapped
into the closest colour c from the colour palette C:

c = q(c) : kc� ck = min
j=1;2:::K

kc� cjk: (2)

The quantization mapping de�nes a set of clus-
ters Sk; k = 1; 2 : : :K in the image colour space
C:

Sk = fc 2 C : q(c) = ckg: (3)

The goal of quantization is to make the per-
ceived di�erence between the original image and
its quantized representation as small as possible.
Human vision is an extremely complicated and not
yet fully understood process. It is very di�cult to
formulate a de�nite solution to the image quantiza-
tion problem in terms of perceived image quality. In
fact, there is no good objective criterion available
for measuring the perceived image similarity.

In the colour quantization literature it is com-
mon to use image dependent distortion measures
(see [Hec82], [WPW90], [Wu92] and others). Let
an image I be an array of M pixels (x; y), then
c(x;y) is the colour of each image pixel. The aver-
age quantization distortion per pixel can be de�ned
as follows:

�q(C;I) =
1

M

X
(x;y)2I

kc(x;y) � q(c(x;y))k; (4)

where k�k is the Euclidean L2-norm. Wu in [Wu92]
recommends to use CIE Lu�v� space where the Eu-
clidean norm can approximate a perceived colour
di�erence.

Even though the average distortion measure
�q(C;I) can give a reasonable estimate of a perceived
image di�erence, it can also be very misleading (see
[WPW90]). Colours of the original image are of-
ten nonuniformly distributed in the colour space.
Thus, signi�cant image information is carried by
some distinct but \rare" colours (e.g. specular
highlights). If a quantization algorithm approxi-
mates the more popular colours, the average dis-
tortion might be small, but the \rare" colours of
the original will be lost.

Rather than using a single measure of quantiza-
tion errors we propose to evaluate approximation
accuracy by a combination of the average colour
distortion:

�q(C) =
1

N

NX
i=1

kci � q(ci)k; (5)



and the standard deviation of distortion per pixel:

� =

sP
(x;y)2I(kc(x;y) � q(c(x;y))k � �q(C;I))2

M
:

(6)

The objective of our research is to �nd an al-
gorithm that minimizes both approximation mea-
sures simultaneously. Small values of �q(C) guar-
antee that a quantization process accurately repre-
sents colours of the original image. Unfortunately
the human visual system is not able to determine
the absolute value of a colour. It is more sensi-
tive to colour variations. A quantization algorithm
that produces small values of � introduces almost
equal colour distortion to every pixel. Therefore,
the minimization of the standard deviation of dis-
tortion � helps us to preserve variations of colours
in the quantized image.

It should be noted that these error measures
have a signi�cant limitation. Even though �q(C;I)
and � are image dependent measures they treat
each pixel independently. The spatial correlation
among colours is not taken into account. Recent
work [BA91] attempts to account for the colour
context by a pre-quantization step. Unfortunately,
the technique does not provide a mathematical tool
that is useful in the quantization process.

3 K-means algorithm and its variants.

K-means algorithm [LBG80] is a post-clustering
technique that is widely used in image coding and
pattern recognition. A sequence of iterations starts

with some initial set C
(0)
. At each iteration t all

data points c 2 C are assigned to one of the clus-

ters Sk
(t)

as de�ned in (3). A new center ck
(t) for

a cluster is computed as follows:

cj
(t+1) =

1

l

lX
i=1

(cijci 2 S
(t)

j
): (7)

The algorithm is known to converge to a local min-
imum.

The K-means algorithm was used to quantize
images in [WPW90]. For the test images it pro-
duced smaller average errors �q(C;I) than the median-
cut and variance-based pre-clustering algorithms.
Unfortunately, high cost of computation makes K-
means impractical for image quantization.

3.1 Kohonen self-organizing maps.

A self-organizing map (SOM) is a post-clustering
scheme. It was introduced by Kohonen [KKL90] as
a solution to a general vector quantization problem.
The SOM is a neural network that imposes a one or
two-dimensional topological structure over a set of
clusters in a higher dimensional space. The adap-
tation process attempts to approximate the density
function of the input.

Dekker in [Dek94] studied the use of a one-dimen-
sional self-organizing map for image quantization.
The initial palette is set to equally spaced gray val-
ues. The input values are obtained by multiple
sampling of the image with large step sizes. The
closest colour ck

(t) of the palette is adjusted to bet-
ter comply with the input c(t).

The network is considered to be elastic. Thus,
when ck

(t) is updated the other ck
(t) : jk � jj �

r are also moved. The parameter r is the radius
of elasticity that decreases with time. The SOM
adaptation process is de�ned as follows:

cj
(t+1) = cj

(t) + �t�(t;j)kc
(t) � cj

(t)k; (8)

where the adaptation parameter 0 < �t < 1 is
exponentially decreasing. The elasticity coe�cient
�(t;j) ensures that only entries in the r-neighbour-
hood are updated.

Since the update neighborhoods often overlap
the values of ck tend to be smoothed. In order to
ensure a fair representation of colour regions by the
palette C Desieno (see [HN90] p. 69) proposed the

use of a special bias value b
(t)

j
. The input colour

c(t) updates the palette entry ck
(t) found by the

following rule:

kc(t)�ck
(t)k�b

(t)

k
= min

j=1;2:::K
kc(t)�cj

(t)k�b
(t)

j
(9)

The bias factor increases for less frequently cho-
sen vectors. Thus a colour that was chosen many
times before will not to be chosen later.

In the experiments in [Dek94] the self-organizing
mapmethod produced quantized images of a better
quality than octree and median-cut pre-clustering
schemes. Unfortunately the SOM quantization is
signi�cantly slower than other techniques. Dekker
proposed to use only a part of the image as an input
data to generate the palette. This approach speeds
up the palette selection but reduces quantization
accuracy.



3.2 Local K-means algorithm.

In this paper we argue that a Local K-Means algo-
rithm (LKM) is a suitable approach to the colour
quantization problem. The method can be consid-
ered a special case of a self-organizing map. Unlike
the Kohonen network, the adaptation step of the
LKM process updates only the closest colour:

cj
(t) =

�
cj
(t�1) + �tkc(t) � cj

(t)k j = k;

cj
(t�1) otherwise

(10)

The LKM is similar to gradient quantization
techniques used in gray scale image coding [Mat92],
[MC92]. These works prove convergence of the pro-
cess to a local minima. Moreover, the gradient
method converges faster than the K-means algo-
rithm.

In the case of the Kohonen network the bias
factor ensures that a distinct small colour cluster
is represented by a separate palette entry [Dek94].
We found that the same result can be obtained by
an improved selection of the initial palette. We
have chosen to construct the initial palette by in-
cremental insertion of a colour from the original
image. A new colour is added into the palette if its
distance from the already inserted entries exceeds
a speci�ed threshold.

The input data sets are constructed by sampling
the image in decreasing step sizes: 1009, 757, 499,
421, 307, 239, 197,... We have chosen these step
sizes to be prime numbers, thus the input sets do
not intersect too much. The iteration process stops

when changes to the palette C
(t)

in a complete im-
age scan become small. In our experience the union
of input sets does not include more than 10% of all
image points.

Even though the proposed algorithm examines
only a portion of the input image, it is able to
generate good approximating palettes. This re-
sult may be explained by the fact that colours of
a typical image are clustered in the colour space.
Therefore, it is enough to use a few colours from
the cluster to approximate all its members. Since
similar colours are often close to each other on the
image surface, we hope that our input sets contain
representatives for most clusters.

4 Fast nearest neighbour search.

Performance of a quantization method greatly re-
lies on the speed of the nearest neighbour search.
This search is the basis of the colour mapping op-
eration. Moreover, the described post-clustering
techniques use the nearest neighbour to determine
the optimal palette.

In order to speed up the search Freidman et. al.
proposed the use of k-d trees [FBF77]. In his soft-
ware Poskanzer implements the search using var-
ious hash functions (see [Pos91]). Unfortunately
these techniques cannot be used in the framework
of iterative procedures such as local K-means. Po-
sitions of representative colours cj are constantly
changing, therefore a k-d tree or a hash table must
be recomputed after every iteration.

Another approach is to use less expensive dis-
tance metric. For example, the Euclidean L2 norm
can be substituted by the less expensive L1 norm.
Unfortunately, the nearest neighbour determined
by L1 norm is not necessarily the nearest neigh-
bour in L2 norm.

Chaudhuri et. al. [CCW92] proposed the L�

norm as an approximation of the Euclidean metric.
For a vector x 2 Rn the L� norm it is de�ned as
follows:

kxk� = (1� �)kxk1 + �kxk1

= (1� �)
nX
i=1

jxij+ �max
i

jxij: (11)

To reduce the computation cost we have chosen
to use � = 1=2. We found that the application of
the L�=1=2 norm signi�cantly speeds up the search
(Table 1). Moreover, the introduced misclassi�ca-
tions do not noticeably inuence the quality of the
output image.

Table 1:
Inuence of di�erent norms on a quantization
error for image \Lenna'

Norm Time �q(C;I) Wrong neighbour

L1 11.9 sec. 5.56 11%
L2 59.9 sec. 5.46
L�=1=2 14.7 sec. 5.47 4%

The search cost can be further reduced using
the following considerations [Hod88]:



Table 2:
Inuence of di�erent stopping rules in the nearest
neighbour search on the speed of the quantization

Algorithm Execution time
16 colours 256 colors

Direct search 1.74 25.51P
p

1.45 19.44P
p
and sorting 0.89 2.93P

p
, sorting and NND 0.76 2.76

k-d trees 1.41 2.65

� Calculation of the partial sum.
Before each addition in the norm calculation
(11) a partial sum �p is compared with the
current minimum distance �min. The norm
calculation terminates if �p > �min

� Sorting on one coordinate.
The palette colours are sorted using one of the
coordinates. Suppose that the �rst coordinate
is chosen. The search selects palette entries in
the increasing �rst-coordinate distance order
starting with the closest colour. This process
terminates when the �rst coordinate distance
between the next palette entry and the input
is larger than the current minimum�min.

� Nearest neighbour distance (NND).
The search for the nearest colour should ter-
minate when �min is less than one half of the
distance from the current palette colour to its
closest palette neighbour.

These speed optimizations were tested using the
image \Lenna". We mapped the 512x400 image
into 16 and 256 colour palettes. Computation time
can be found in Table 2. The k-d tree colour map-
ping is given as a reference.

According to the experiments the performance
of our colour mapping algorithm is close to that of
k-d trees.

We also studied the application of the described
optimization techniques to the palette selection phase
of the LKM algorithm. We believe that NND rule
is rather hard to use in this case as positions of
centers change in each iteration step. Fortunately,
the adaptation phase does not greatly rearrange a
sorted order of centers. We found that it is su�-
cient to sort centers only at the beginning of a new
sampling set without any noticeable loss of quanti-
zation accuracy.

Overall the local K-means algorithm is able to
select a colour map signi�cantly faster than the
other methods (Table 3).

5 Experiments.

For our experiments we have chosen a set of 24-
bit images that represent various image sources:
scanned photographs, computer rendered scenes,
and digitized works of art.

The local K-means procedure (LKM) was com-
pared to implementations of the popular quanti-
zation algorithms found in public domain image
processing software: median-cut [Pos91], variance-
based [Tho90], octree [Cri92], SOM [Dek94]. These
implementations worked in RGB colour space. For
a fair comparison we also used the RGB space.
Note, that even though quantization in perception-
based spaces can give a better visual result, it does
not change the relative correspondence of numeri-
cal values of quantization accuracy. Therefore, al-
gorithms that produce small distortions in RGB
space are expected to perform as well in Lu�v� or
HSV spaces.

Figures 1-6 are chosen to represent two typical
quantization artifacts: the loss of colour informa-
tion and arti�cial banding.

A digitized painting by Gustav Klimt \Kiss"
(Figure 1) was quantized to 16 colours. The quan-
tized image produced by the median-cut method
looks signi�cantly distorted (Figure 2). Some �ne
details of the image have disappeared: blue ow-
ers on the woman's head, yellow spots on her dress,
etc. The variance-based (Figure 3) and octree (Fig-
ure 4) algorithms were able to preserve most of
these details, though the original colour contrast
was greatly reduced. The local K-means quanti-
zation seemed to reproduce a full chromatic range
of the original image (Figure 5). In fact, the nu-
merical values of the average distortion per colour

Table 3:
Execution time in seconds for colour map selection

Algorithm \Kiss" \Pool Balls"
612,096 pixels 195,330 pixels

No. of colours: 16 256 16 256

Median-cut 4.64 4.93 1.2 1.57
Octree 2.04 3.67 0.65 0.90
Kohonen SOM 101.81 32.27
Local K-means 0.65 1.74 0.20 0.38



Table 4:
Quantization errors for image \Kiss"

Method Max �q(C) �q(C;I) �

Median cut 161 29.8 20.77 14.71
Variance based 146 25.4 17.63 11.57
Octree 133 26.4 19.41 13.65
Local K-means 102 20.4 26.65 9.30

Table 5:
Quantization errors for image \Pool Balls"

Method Max �q(C) �q(C;I) �

Median cut 107 8.1 4.39 2.49
Variance based 45 6.6 4.27 1.72
Octree 61 6.4 2.07 2.16
Kohonen SOM 95 7.9 1.74 2.87
Local K-means 105 7.42 2.01 2.59

�q(C) and deviation of distortion per pixel � are the
smallest for the LKM method (Table 4).

A computer rendered image \Pool balls" was
quantized to 256 colours. All the tested algorithms
were able to preserve the original colour contrast.
Unfortunately, pre-clustering techniques introduced
signi�cant arti�cial banding (Figure 6, right col-
umn). Both LKM and Kohonen mapmethods were
able to avoid this artifact (Figure 6, left column).
It is important to notice that in the case of the
SOM the palette was chosen using the entire im-
age. The input data of the LKM algorithm covered
only 8% of the original image. We found that in
the case of images with large areas of close colours
the average distortion per pixel �q(C;I) carries the
most information about the quantization accuracy.
The values of �q(C;I) are the smallest for LKM and
SOM algorithm (Table 5).

6 Conclusion

The objective of our research was to develop a tech-
nique which is able to produce colour maps for
quantization with minimum distortion of the orig-
inal image. We presented the local K-means algo-
rithm. This technique follows the post-clustering
approach. The advantage of the LKM algorithm
is the ability to select a palette without making
any simplifying assumptions about the boundaries
of colour clusters.

The performance of the local K-means scheme
was compared to the quantization results of median-
cut, octree, variance-based and SOM algorithms.
The resulting images were evaluated using statisti-
cal distortion parameters as well as the perceived
di�erence with the original. We found that the
LKM technique is able to produce high quality
colour maps signi�cantly faster than other tested
methods.

7 Future work

The adaptive nature of the LKM algorithm can be
further explored in the future. Verevka in [Ver95]
shows how the LKM method can be used to im-
prove quantization in the windowing systems. A
similar approach may be applied to quantize ani-
mation sequences.

We found that quantization may lead to reduc-
tion of the perceived colour contrast and arti�cial
banding. Unfortunately none of the proposed sta-
tistical parameters of image distortion were able to
capture these artifacts. Better numerical measures
still have to be de�ned.
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