
A Bulk Data Encryption Algorithm

David J. Wheeler
Computer Laboratory, Cambridge University, U.K.

Abstract. A fast software encryption algorithm is described. The com-

putation cost is about 20 simple machine code instructions per word,

although a key dependent table has to be constructed for each new key.

Table construction time is some hundreds of word encryption times. It

is a word based algorithm with a running key.

Introduction

The name for the system is Word Auto Key Encryption having the acronym
WAKE.

We attempt to design an encryption system for medium speed encryption of
blocks, and of high security. It is intended to be fast on most modern computers,
and relies on repeated table use and having a large state space. It assumes the
data cache can hold a table of 256 words, so that random access to larger blocks is
avoided. The speed is partly attained by putting requirements on the algorithm
usage. The description assumes words of 32 bits and four bytes to a word.

The nonlinear transforms are done by using a table and alternating addition
and XOR provides a little extra non linearity. It takes the algorithm four stages
for the word data to di�use.

Outline

The full coding is performed by generating a table from a table key. Then the
start key is used to initialise the registers R3-R6, and the program below is used
to code each word, with those registers holding status information and acting
as a running key or autokey. The content of the registers R3-R6 is saved as the
end key, allowing disjoint sequences to be treated as one. A C program for the
algorithm is given in the appendix. Let the vector being transformed be V[n].

For each n do

R1 = V[n]

R2 = R1 XOR R6

V[n] = R2

R3 = M(R3,R2) where M(X,Y)=(X+Y)>>8 XOR t[(X+Y) & 255]

R4 = M(R4,R3) and the table t has random bits apart from

R5 = M(R5,R4) the top byte whose value is different in

R6 = M(R6,R5) each location. The shift is logical.

A cyclic shift needs a different table.



+

+

+

+

x1

y1

x2

y2

x3

y3

x4

y4

-

-

-

-

-

-

-

-

6

6

6

�
�
�
�
�
�
�
�
�
�
�
�
���

@
@
@
@@R

@
@
@
@@R

@
@
@
@@R

TABLE

XOR

XOR

XOR

-

-

-

-

-

-

@
@
@
@R

A
A
A
A
A
A
A
AU

B
B
B
B
B
B
B
B
B
B
B
BBN

-

z1

z2

z3

z4

The MIX function M(x+y). Lines correspond to bytes.

IN - XOR - - - -MIX MIX MIX MIX

?
OUT

R3 R4 R5 R6
6 6 6 6

� � � �

? ? ? ?
-

6
��

?

Diagram of algorithm. Lines give words.

Most modern computers will easily hold the table in their cache, and we
scan and replace the data words sequentially so that only essential non cache
references are made. There are about 12 simple register operations per word
cyphered.

Decoding is done by repeating the process, with R2 in R3=M(R3,R2) re-
placed by R1. The initial values of R3-R6 must be the same. The R variables
should be kept in registers for best performance.

Table Construction

The main problem remaining is how to construct the table, and whether to give
it special properties. The following program constructs the table from a table
key and satis�es the obvious simple tests.



Copy K into first four words of t

Generate the other entries by

for n=4 to 255

x=T[n-1]+T[n-4]

T[n]= x>>3 XOR tt[x&7] where tt is a table of 8 words

having a permutation in the top

3 bits similarly to t.

Now add 23 elements from 89 onwards to element 0 onwards.

This makes even the first few words depend on all the key bits.

Generate a crude permutation in the top byte while further

mixing the lower bits.

Permute the table randomly using some bits of it to

control the permutation.

This needs three sweeps to generate the table. This heuristic table generation
may have to be improved if further work shows more table properties are required
or it is inadequate. A program in C is given in the appendix.

Analysis

The basic operation will permute the bottom byte and place it in the top byte.
The original three top bytes are shifted down one byte and mixed using XOR
with three bytes from the table that generated the permutation.

This is reversible. From the result, we can use the inverse permutation on
the top byte to restore the bottom byte, and XOR to recover the original word.
The argument is the sum of two registers and the result is put in one of these
registers. The addition is also reversible.

The consequence is that if one word is changed, then the di�erences must
propagate, although this will not show if they are con�ned to R3-R6, an un-
likely circumstance. To stop the propagation will usually need changes to four
consecutive words.

If any word is changed systematically and the keys and other data remain
�xed, one expects the cipher could be broken, albeit using a large number of
trials. It is assumed that the keys are changed, su�ciently often to prevent this
attack.

The table could be replaced by random numbers but then, information leaks
about repeated and null entries in the table. This leakage may have a maximum
limit of 1.5 bits per entry, but the permutation reduces this statistical loss to a
very small one indeed. However, using a permutation for each of the four bytes
might reduce this even further.



Usage

There are many ways in which WAKE can be used e�ectively. The preferred way
and the most straight forward is to extend the data by 2 or more words at the
head and tail, and �ll the new head and tail with a nonce or fresh random data,
the same at both ends. The decoder checks that tail words and the head words
are the same. Instead of equality we can use a known keyed relation, but this
is overkill for most simple uses. This protocol prevents most attacks and gives
tamper detection directly rather than as a hoped for side e�ect. This we call
mode one.

A second mode is to change the start key for each data block.

A third mode, where these changes are di�cult, and we need the data to
occupy exactly the same space, is a double scan method. Just encode the block
using a start key. Using another start key encode in the reverse direction. This
ensures that single bit changes are likely to change about one half of all the
generated bits. There is a slight tail weakness, which can be cured by coding the
last four words backwards before doing the above.

The third mode can use a keyed hash fuction of the same general type, having
the same start key and the same table to produce a four word hash. This hash
can be thoroughly mixed with the �rst four words, so that these change for each
message, and we proceed as before. The suggested hash function and protocol
is given in the appendix. The hash is nearly �ve times as fast as the cypher
function.

The table key should be changed for long messages, and may even be derived
from the start key. If it is changed about every ten thousand words, the slowing
is about two or three per cent.

The overhead of generating the table may be too large for short messages.
Mode three can be used for short messages using the same table. However,
unless the start key is changed or the messages known to be unique, for example
numbered, the low entropy attacks are possible.

Error propagation may have to be prevented in some situations, such as video
transmission. This can be done by changing the running key as frequently as
required and generating the running keys using the same algorithm in a suitable
way.

It is trivial to generate a sequence of random numbers for use as a one time
pad or for other purposes. A keyed hash can be made readily. However the end
key allows decryption, so it should be further encoded before using it as an
authenticator.

Weaknesses

If the table t is known, then with �ve consecutive plain cipher text pairs, we
can determine the current values of R3-R6. If the table is not known, a repeated
change at one place may break the table. This is prevented if a fresh start key
is used each time. There are other methods using salt, nonces, or confounders.



If a single scan is used then a change in the last word will not propagate or be
transformed. The usages given above will prevent this happening. Another way is
to use V[n]=R6 and endure the slightly longer decryption. However whether this
is a problem depends on other details of the system, such as tamper detection.
A one time pad using XOR su�ers more severely from this defect.

This is a word based algorithm, so for transmissions between di�erent com-
puters, the big-end, little-end convention has to be settled.

As each single line of the program is reversible, we can make a slightly
stronger version which is slower, by coding with V[n]=R6, and using a more
complicated decoding routine, using a table derived from t.

Performance

The program processes about three bytes per microsecond on a Sparc, ELC @
33MHtz. computer. Table generation of the form described, takes the same time
as coding about 250 words.

How secure is this algorithm? A few tests have been applied. The distribution
seems random. The loop lengths made with a two step version seem of the right
length, and there seems no obvious attack. The large key and state spaces prevent
some forms of attack.

The security can be enhanced by increasing the number of stages in the basic
algorithm from the four given, but at a reduction in speed, however it is hoped
that four stages will su�ce.

Instead of using one table we can use a separate table for each stage, with
no loss in speed. As the tables would now take four times as long to generate
and four times as much space, we note that the tables can be overlapped. In this
case, some of the permutations have to be restricted.

Implementation

Although the algorithm is simple, it does need access to convenient shift orders
for ultimate speed. A logical right shift is perhaps the easiest, and a cyclic
shift made almost as easy. In this case a simply transformed table is needed,
with the left most permutation byte p[n] being replaced by p[n] XOR n. The
two methods are then compatible. If only an arithmetic right shift is available,
then a masking operation is needed to be compatible. We can use the arithmetic
right shift without a masking operation, and obtain an equally good but di�erent
encypherment. In this case, it is more di�cult to reverse some steps, but it makes
no di�erence for the simple case.

One some machines, the shifts which are multiples of 8 may be replaced by
byte operations. In particular, using the leftmost byte for table look up in a byte
operation may eliminate the shift and mask operation.

The cypher routine given in the appendix can be used for all the protocols
suggested.



Conclusion

We have given a simple fast encyphering algorithm, suitable for large bulk data,
and for short messages where one key is changed. It is suitable for keyed hashes,
used for veri�cation.

Its defects remain unknown to us, and so should be pointed out.

Acknowledgements

The author would like to thank his Cambridge colleages for useful interaction
and Eli Biham for his help in improving this paper.

Appendix

In the program below cypher is a function which changes the data V to become
cyphered. V is the �rst or last word depending on the sign of n which gives the
length. k gives the four words of the start key. r is loaded by the routine with
the end key. t gives the 256 word encoding table.

cypher(V,n,k,r,t) long V[],n,k[], r[], t[] ; {

long r1,r2,r3,r4,r5,r6,d,*e,m=0x00ffffff ;

r3=k[0] ; r4=k[1] ; r5=k[2] ; r6=k[3] ;

if (n<0) d= -1 ; else d=1 ;

e=V+n ;

while (V-e) {

r1 = *V ;

r2 = r1^r6 ;

*V = r2 ; // Change into r1 for decoding.

V+ = d ;

r3 = r3+r2 ;

r3 = (r3>>8&m)^t[r3&255] ;

r4 = r4+r3 ;

r4 = (r4>>8&m)^t[r4&255] ;

r5 = r5+r4 ;

r5 = (r5>>8&m)^t[r5&255] ;

r6 = r6+r5 ;

r6 = (r6>>8&m)^t[r6&255] ; }

r[0] =r3 ; r[1]=r4 ; r[2]=r5 ; r[3]=r6 ; }

Mode three cyphering is done by

cypher(V+n-1,-4,k1,r,t) ;

cypher(V,n,k1,r,t) ;



cypher(V+n-1,-n,k2,r,t) ;

The cypher routine can encypher disjoint segments as if they were contiguous,
by using a generated end key as the next start key. Thus for example we can put
the head and tail for mode one wherever we please without moving the entire
data structure.

Table generation

The program below gives in C the routine which generates from the four word
key k, the table t of length 257, although only 256 words are used in coding and
decoding.

genkey(t,k) long t[], k[] ; {

long x, z, p ;

static long tt[10]= {

0x726a8f3b, // table

0xe69a3b5c,

0xd3c71fe5,

0xab3c73d2,

0x4d3a8eb3,

0x0396d6e8,

0x3d4c2f7a,

0x9ee27cf3, } ;

for (p=0 ; p<4 ; p++) t[p]=k[p] ; // copy k

for (p=4 ; p<256 ; p++) {

x=t[p-4]+t[p-1] ; // fill t

t[p]=x>>3 ^ tt[x&7] ; }

for (p=0 ; p<23 ;

p++) t[p]+=t[p+89] ; // mix first entries

x=t[33] ; z=t[59] | 0x01000001 ;

z=z&0xff7fffff ;

for (p=0 ; p<256 ; p++) { //change top byte to

x=(x&0xff7fffff)+z ; // a permutation etc

t[p]=t[p] & 0x00ffffff ^ x ; }

t[256]=t[0] ; x&=255 ;

for (p=0 ; p<256 ; p++) { // further change perm.

t[p]=t[x=(t[p^x]^x)&255] ; // and other digits

t[x]=t[p+1] ; } }



Use of the Keyed Hash

The routine hash4 uses the mix, table and key as for the cypher function. The
end words are mixed at least twice, and there is overlap if the length is not a
multiple of four. This should make the hash nonlinearly dependant on all the
data.

hash4(V,n,k,r,t) long V[],n,k[], r[], t[] ; {

long m, r3,r4,r5,r6,*e, mask=0x00ffffff ;

r3=k[0] ;r4=k[1] ; r5=k[2] ; r6=k[3] ;

e=V+n-3 ;

for (m=0 ; m<4 ; m++) {

while (V<e) {

r3=(r3^r6)+ *V++ ;

r3=(r3>>8 &mask)^t[r3&255] ;

r4=(r4^r3)+ *V++ ;

r4=(r4>>8 &mask)^t[r4&255] ;

r5=(r5^r4)+ *V++ ;

r5=(r5>>8 &mask)^t[r5&255] ;

r6=(r6^r5)+ *V++ ;

r6=(r6>>8 &mask)^t[r6&255] ; }

V =e-1 ; }

r[0]=r3 ; r[1]=r4 ; r[2]=r5 ; r[3]=r6 ; }

An example protocol would be ;

hash4(V+4,n-4,k,r,t) ; // hash in r from n-4 words

cypher(V,4,r,rr,t) ; // rr is a dump of four words

cypher(V+3,-4,r,rr,t) ; // mixes first four words

cypher(V,n,k,r,t) ; // do basic cypher

with decode

decypher(V,n,k,r,t) ;

hash4(V+4,n-4,k,r,t) ;

decypher(V+3,-4,r,rr,t) ;

decypher(V,4,r,rr,t) ;

Note we do not now need to do the end four words backwards, because the
hash has a dependancy on those four words.

This article was processed using the LATEX macro package with LLNCS style


