
Fast Key Exchange with Elliptic Curve Systems

Richard Schroeppel Hilarie Orman Sean O’Malley

TR 95 03

Abstract

The Diffie-Hellman key exchange algorithm can be implemented using the group of points on an elliptic
curve over the field F2n . A software version of this using n = 155 can be optimized to achieve computation
rates that are significantly faster than non-elliptic curve versions with a similar level of security. The fast
computation of reciprocals in F2n is the key to the highly efficient implementation described here.

March 31, 1995

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

1 Introduction

The Diffie-Hellman key exchange algorithm [10] is a very useful method for initiating a conversation between two
previously unintroduced parties. It relies on exponentiation in a large group, and the software implementation of the
group operation is usually computationally intensive. The algorithm has been proposed as an Internet standard [13], and
the benefit of an efficient implementation would be that it could be widely deployed across a variety of platforms, greatly
enhancing the security of the Internet by solving the problem of key exchange for millions of host machines.

The Diffie-Hellman algorithm was implemented several years ago as part of the Sun SecureRPC system used by Sun
Microsystems, and the implementation used numbers of a size that was determined in [19] to be attackable using a method
described in [8]. This work indicated that instead of using a 192-bit modulus, which could be “cracked” in only about
3 months of effort (including software development), system designers should use at least a 512-bit modulus. Informal
conversations with people associated with developing the Sun SecureRPC system indicated that they did not wish to
increase the size of the numbers, in part because of the amount of time needed for the computation. The extra time results
because of the number of large-number arithmetic operations that must be carried out.

In our work with implementations of cryptographic protocols, we developed a simple version of the Diffie-Hellman
protocol in what has been termed transient mode, where the two parties each select a random exponent e and exchange
values of ge, where g is a group element. If party A selects e = a and party B selects e = b, then then each party can
compute gab, but no eavesdropper can do so. In our implementation, we used the ringZp, with p a 512-bit prime, a size
that should resist attacks with hardware resources known today. The protocol took from 2 to 10 seconds on a variety of
modern and popular hardware platforms. This speed is unpalatable for machines that need to participate in many keyed
conversations with a large set of peers. We would estimate that no busy machine should devote more than .1% of its
cycles to key exchange, and this limits even a very fast machine (� 200 MHz) to fewer than 20 key exchanges per hour.

This work motivated our research into faster software implementations of the basic operations behind the protocol.
Elliptic curve systems, first suggested by Victor Miller [23] and independently by Neal Koblitz [17], were a natural choice
because they are (insofar as is known today) immune to the index calculus attack. This means that smaller numbers can
be used to achieve the same degree of security for the Diffie-Hellman algorithm as the 512-bit version described above.
It is interesting to note that the numbers in our implementation are even smaller than the Sun RPC version. In addition
to this basic savings in computation cost, there are several software optimization techniques that result in a significantly
faster algorithm.

An additional advantage is that, as computers get faster, the size of the numbers needed to achieve a particular level
of security grows much more slowly for elliptic curve systems when compared to methods that use ordinary integers.

The elliptic curve method uses a different group operation than multiplication of integers mod p. Instead, the operation
is over the group of points on an elliptic curve, and the operation is arithmetically more complicated. The size of the
group used in our implementation is approximately 2155. The group operation is implemented using numbers from the
Galois field F2155 . Our initial implementation of this was more than twice as fast as the implementation using integers
modulo a 512-bit prime, and there was obvious room for improvement. For the DH key exchange algorithm, a properly
chosen elliptic curve over F2155 offers somewhat more security than does working modulo a 512-bit prime.

The improvements described here are how to efficiently compute the field operations in F2155 , especially reciprocals,
and a minor improvement in the formula for doubling an elliptic curve point. We suggest how to select a curve with
constants that are easily manipulated by software. The most important contributor to the success of the algorithm is the
fast reciprocal routine.

2 Overview of the Method

We include here brief descriptions of the field and elliptic curve manipulations; this material is from draft document [22].
See Silverman [29] for a general introduction to elliptic curves; Menezes [21] provides a cookbook approach and an

1

introduction to the cryptographic methods. Other good references are [1, 2, 3, 5].
For our purposes, an elliptic curve E is a set of points (x; y) with coordinates x and y lying in the field F2155and

satisfying the equation y2 + xy = x3 + ax2 + b. a and b are constants, field elements which we will specify later. For a
particular choice of a and b, the points (x; y) form a commutative group under “addition”; the rule for “addition” involves
several field operations, including computing a reciprocal; the formulas are in section 3.1.

The elliptic curve analogue of the Diffie-Hellman key exchange method uses an elliptic curve Ea;b defined over a field
F , and a point P = (x0; y0) which generates the whole addition group of E. E; a; b; F; P; x0; and y0 are all system-wide
public parameters.

When user A wants to start a conversation, he chooses a secret integer multiplierKA in the range [2; order(E)� 2]

and computes KAP by iterating addition of P using a “double and add” scheme. User A sends the x and y coordinates
of the point KAP to user B. User B selects his own secret multiplier KB and computes and sends to user A the point
KBP . Each user can then compute the point (KAKB)P . Some bits are selected from the coordinates to become the
secret session key for their conversation. Insofar as is known, there is no effective method for recovering (KAKB)P

by eavesdropping on this this conversation, other than solving the discrete logarithm problem. The discrete logarithm
problem is hard for elliptic curves, because the index calculus attack that is so effective modulo p does not work.

The elliptic curve operations require addition, multiplication, squaring, and inversion in the underlying field. The
number of applications of each operation depends on the exact details of the implementation; in all implementations the
inversion operation is by far the most expensive (by a factor of 5 to 20 over multiplication).

3 Working with an Elliptic Curve

3.1 Adding and Doubling Points

The two elliptic curve operations that are most relevant to the complexity of of multiplying a group element by a constant
are the Add and Double operations. We also include the Negation operation, since it offers a speed increase. The
operations are presented slightly modified from their presentation in [22]. The elliptic curve Ea;b is the set of all solutions
(x; y) to the equation y2 + xy = x3 + ax2 + b. a and b are constants from the field F2155 ; b must be nonzero. x and y
are also elements of F2155 . A solution (x; y) is called a point of the curve. An extra point O is also needed to represent
the group identity. We use (0,0) to represent O. (Because b 6= 0, (0; 0) is never a solution of our equation.) The Add and
Double routines make a special check to see if an input is O.

The Double routine is not just an optimized special case of the Add routine: The Add formula fails when the two input
points have equal x coordinates; the formula calls for a division by 0. A check is made for this case; if the y coordinates
are also equal, the two input points are equal, and the Double routine is called. If the y coordinates differ, the two points
are inverses in the elliptic curve group, so O is returned.

(i) (Rule for Adding two points)
Let (x1; y1) 2 E(F2m) and (x2; y2) 2 E(F2m) be two points.
If either point is O, return the other point as the sum.
If x1 = x2 and y1 = y2, use the Doubling rule.
If x1 = x2 but y1 6= y2, return O as the sum.
If x1 6= x2, then (x1; y1) + (x2; y2) = (x3; y3), where

x3 = �2 + �+ x1 + x2 + a; y3 = �(x1 + x3) + x3 + y1; and � =
y1 + y2

x1 + x2
:

(ii) (Rule for Doubling a point)
Let (x; y) 2 E(F2m) be a point.

2

If x = 0, then 2(x; y) = O.
If x 6= 0, then 2(x; y) = (x2; y2), where

x2 = �2 + �+ a; y2 = x2 + (�+ 1)x2; and � =

�
x+

y

x

�
:

[22] gives the formula for x2 as x2 = x2 + b=x2. Our formula is equivalent, but saves the multiplication by the
constant b.

(iii) (Rule for Negating a point)
Let (x; y) 2 E(F2m) be a point. Then �1(x; y) = (x; x+ y).

From these formulas, we can determine the number of field operations required for each kind of elliptic curve operation.
We see that an Addition step usually requires eight additions, two multiplications, one squaring, three reductions mod
T (u), and one inversion. A Doubling step usually requires four additions, two multiplications, two squarings, four
reductions mod T (u), and one inversion. A Negation step requires one addition. The important contributors to the run
time are the multiplications and inversions.

3.2 Choosing the Curve

The constant a in the elliptic curve can be chosen to simplify the operations of doubling a point and of adding two points.
We use a = 0, which eliminates one addition from the formula for the x coordinate in both operations.

The size of the group depends on the choice of a and b. There is a complicated algorithm due to Schoof [28], with
improvements by Atkin, Elkies, Morain, and Couveignes [9] for determining the group order. The order is always close
to the number of field elements. For maximum security, the order should have as large a prime factor as possible. In our
equation, with a = 0, the best possible order is 4p (with p a prime near 2153) [18]. (If we select a 6= 0, the order can have
the form 2p with p near 2154, giving a small amount of extra security.) Lay and Zimmer [20] give a method for creating
a curve with a given order, but we are reluctant to use their scheme, since it produces curves closely related to rational
curves with an extra structural property called complex multiplication. We feel this extra structure might be insecure.

We recommend trying small bs, computing the curve order and checking if the order is of the form 4p. For curves
based on F2155 , a few hundred tries may be necessary. One scheme for selecting the bs is to try small values for (x; y) and
to compute b from the equation y2 + xy = x3 + b.

The best known methods for computing elliptic curve discrete logarithms take time proportional to the square-root of
the largest prime factor of the group order [25, 26, 12]. In our case, the largest prime factor will be about 2153, so finding
discrete logarithms will take about 276:5 � 1023 operations.

3.3 Choosing a Multiplier

The number of additions and doublings necessary for computing nP (where P is a point on the curve and n is an integer)
is an important factor in the speed of the DH algorithm. We have implemented the straightforward double-and-add
approach based on the binary expansion of n. For a random 155-bit multipliern, computing nP will require 154 doubling
steps and an average of 77 addition steps. (The number of addition steps depends on the number of 1 bits in the binary
representation of n.) Although the number of doubling steps is roughly fixed, it is possible to reduce considerably the
number of addition steps needed. This problem is studied in a large literature on addition chains [16, 6, 7, 27]. We
mention a few points:

� Menezes [21] discusses the idea of using a low Hamming weight multiplier. If one is content to select from among
2128 multipliers, while allowing multipliers up to about 2155, then one can select a multiplier of Hamming weight
� 43.

3

� The operation to negate a point is cheap, so we can use addition-subtraction chains instead of simply addition
chains. The extra flexibility permits shorter chains.

� If we are using one multiplier for many connections, it pays to invest some effort in finding a good addition-
subtraction chain for it. The speedup available from using a good addition-subtraction chain with a random
multiplier and novel point is 20-30%.

� Since we are free to select a random multiplier, one approach is to select a random addition-subtraction chain
instead. This allows us more selection freedom at each chain step, so we need fewer addition or subtraction steps to
generate roughly2155 possible multipliers. Some care must be taken in the selection algorithm, to avoid having some
multipliers be overly likely. (This can happen because many steps in the addition-subtraction chains commute.)

� When we know the starting point P ahead of time, we can prepare tables which give a considerable speedup [7].
This is the situation for the first two of the four point multiplications in Diffie-Hellman key exchange.

4 Field Operations in F2155

4.1 Representation of the Field Elements

We represent field elements as bitstrings of length 155. For a 64-bit processor, this is only 3 words; the brevity of the
representation means that much of the computation can be done in hardware registers.

Let k[u] be the ring of polynomials over F2. We will work in the extension field of the trinomial T (u) = u155+u62+1.
The extension is a field because the polynomial is irreducible over F2. The field elements are members of k[u] modulo the
field polynomial T (u), with coefficients drawn from the set 0; 1. Each polynomial in k[u] can be reduced to a remainder
of degree at most 154.

The irreducible trinomial T (u) has a structure that makes it a pleasant choice for representing the field. In F2, there
are only two irreducible polynomials of this degree. The fact that the middle term, u62, has an exponent that is roughly
half of the field degree is important to the optimizations for calculating modular reductions (as described in section 4.3)
and to the division by large powers of u, (as explained in section 4.4.1).

4.2 Addition and Multiplication

Field elements (for a prime power field) are added and multiplied as follows:

� Field addition: (an�1 � � �a1a0)+ (bn�1 � � �b1b0) = (cn�1 � � �c1c0), where ci = ai+ bi in the field F2. That is, field
addition is performed componentwise.

� Field multiplication: (an�1 � � �a1a0) � (bn�1 � � �b1b0) = (rn�1 � � �r1r0), where the polynomial (rn�1un�1 + � � �+

r1u + r0) is the remainder when the polynomial (an�1un�1 + � � �+ a1u + a0) � (bn�1u
n�1 + � � �+ b1u + b0) is

divided by T (u) over F2.

The addition algorithm for field elements is trivial: the two blocks of bits are simply combined with the bitwise xor
operation. Because our field has characteristic 2, subtraction is the same as addition, and negation is the identity operation.

Multiplication of field elements uses the same shift-and-add algorithm as is used for multiplication of integers, except
that the “add” is replaced with “xor”. This has the virtue that the operation can no longer generate carries, simplifying
the implementation. We experimented with several different ways of organizing the multiplication routines and found
that different architectures had different optimal routines. (Our timings are done with the optimal routines for each
architecture.)

4

We explored the use of the Karatsuba [15] method (see Knuth [16] p. 259 and 536) for multiplication. It turned out
to be slightly worse for our particular cases.

Some of the programming tricks used to speed up the multiplication are:

� Use a subroutine that multiplies N words by 1 word, keeping the multiplicand, multiplier, and intermediate product
in the registers.

� This subroutine contains a loop that sequences through the bits of the multiplier. Unrolling this loop saves time.

� When the field element size is not an exact multiple of the number of bits in a computer word, there will be a
partially used word representing the high order bits of a field element. Our field elements have a 27-bit fragment
on both 32- and 64-bit machines. On 64-bit machines, a special subroutine for multiplying by the fragment is
worthwhile, because the fragment is much shorter than a word.

4.2.1 The Squaring Operation

Squaring a polynomial in a modulo 2 field is a linear operation. In the formula for squaring a binomial, (a + b)2 =

a2 + 2ab+ b2, the cross-term vanishes modulo 2 and the square reduces to a2 + b2. Consequently, we can square a sum
by squaring the individual terms. For example, (u3 + u+ 1)2 = u6 + u2 + 1.

In terms of bitstrings, to square a polynomial, we spread it out by interleaving a 0 bit between each polynomial bit.
For example, u3 + u+ 1 is represented as 1011, and the square is 1000101. Sadly, computer manufacturers have largely
ignored the need for an instruction to carry out this operation; nonetheless, it can be done quickly using table lookup to
convert each byte to its 15-bit square. The squared polynomial is then reduced modulo T (u). Squaring is so much faster
than regular multiplication that it can be ignored in rough comparisons of the timings.

4.3 Modular Reduction

The field elements are polynomials with coefficients in the ringZ2. After each multiplication or squaring, the result must
be reduced modulo T (u) = u155 + u62 + 1. The product of two polynomials of degree 154 produces a polynomial of
degree 308. The product is represented as 10 words on a 32 bit architecture, or 5 words on a 64 bit architecture.

A hand tailored reduction method, specific for T (u), takes advantage of the degree of the middle term to minimize
the number of operations required. Assume the polynomial to be reduced is

P (u) = a308u
308 + :::+ a2u

2 + a1u+ a0:

The reduction mod u155+u62+1 proceeds by reducing each term modulo the trinomial and subtracting it from the result.
This can be done very efficiently using shifts and xors. First note that

u155 � u62 + 1; and un � un�93 + un�155 mod T (u):

As many as 93 of the leading terms of P (u) can be reduced modulo T (u) by replacing each non-zero term by its
congruent two-term expression, i.e. aun � aun�93 + aun�155 mod T (u). We can think of this as zeroing out the upper
93 bits of the 309 bits of the expression (subtracting each term) and adding in the representation of each original term
right-shifted by 93 (i.e., multiplied by u�93) and also right-shifted by 155 (i.e., multiplied by u�155):

P (u) � P (u)215�0+ P (u)308�216(u
�93 + u�155) mod T (u)

where P (u)j�k =
P

k

i=j
aiu

i is the portion of P (u) from degrees j through k. This yields a length 216 partial result. This
reduction can be repeated to make the degree less than 155.

5

In practice, we work one computer word at a time, lowering the degree by either 32 or 64, proceeding from the high
order terms (bits) to the low. The results are accumulated into the original expression, i.e. the bitstring representingP (u)
is the operand for each shift and xor operation.

The benefit of using a trinomial as the modulus is that each word only needs to be xored into two places for the
accumulation operation. Having the middle term of relatively low degree is beneficial because the accumulation operation
with a high-order word does not affect that word, so that each reduction step reduces the degree by a full word. (If the
middle term were u150 instead of u62, we would only shorten our dividend by 5 bits each time instead of 32, and we would
have to do the reduction operation multiple times.)

It would be even better to use a binomial as the modulus. Unfortunately, in fields of characteristic 2, polynomials
with an even number of terms are always divisible by u+ 1, so they are always reducible (except for u + 1 itself).

Some other recommended trinomials are u127+u63+1, u140+u65+1, u172+u81+1, u191+u71+1, u223+u91+1,
and u255+u82+1. If one needs to work with a field of a specific degree, and the field has no good trinomial, a pentanomial
(at least) is required. 1

4.4 Computing Reciprocals

The rules for doubling an elliptic curve point, and for adding two elliptic curve points, involve computing a reciprocal,
either 1=x or 1=(x1 + x2) (see section 3.1). Multiplicative inversion of elements in a field is usually so slow that people
have gone to great lengths to avoid it. Menezes [21] (p. 90) and Beth and Schaefer [5] discuss projective schemes, which
use about nine multiplications per elliptic curve step, but use very few reciprocals. We report here on a relatively fast
algorithm for field inversion, which allows direct use of the simple formulas for operating on elliptic curve points. Our
field inversion time is about three multiplication times, a substantial improvement over [21]. 2

For the field we are working in, the problem to be solved is

Given a non-zero polynomialA(u) of degree less than or equal to 154, find the (unique) polynomialB(u) of
degree less than or equal to 154 such that

A(u)B(u) � 1 mod u155 + u62 + 1:

The problem has a simple, but relatively slow, recursive solution, exactly analogous to the related algorithm for
integers. We have developed an algorithm that is considerably faster. It borrows ideas from Berlekamp [4] and from
the low-end GCD algorithm of Roland Silver, John Terzian, and J. Stein (described in Knuth [16] p. 297). Our Almost
Inverse algorithm computes B(u) and k such that

AB � uk modM; deg(B) < deg(M); and k < 2deg(M);

where deg(B) denotes the polynomial degree of B. After executing the algorithm, we will need to divide B by uk

(modM) to get the true reciprocal of A.
The pseudo-code for the algorithm is given below. The computer implementation relies on a few representational

items:

� Multiplication of a polynomial by u is a left-shift by 1 bit.

� Division of a polynomial by u is a right-shift by 1 bit.

� A polynomial is even if its least significant bit, the coefficient of u0 (the constant term), is 0. Otherwise it is odd.

1Irreducible trinomials are somewhat sparse: e.g., of the degrees from 100-199, 43 have no irreducible trinomial.
2Menezes’ inversion scheme for a field element A(u), computes 1=A(u) as A(u)2

155
�2 mod T (u). This can be done with 10 multiplications

and 154 squarings [14].

6

The algorithm will work whenever A(u) and M(u) are relatively prime, A(u) 6= 0, M(u) is odd, and deg(M) > 0.

The Almost Inverse Algorithm

Initialize integer k=0, and polynomials B=1,C=0,F=A,G=M.

loop: While F is even, do F=F/u, C=C*u, k=k+1.
If F = 1, then return B,k.
If deg(F) < deg(G), then exchange F,G and exchange B,C.
F=F+G, B=B+C.
Goto loop.

We improved the performance of this raw algorithm considerably with the following programming tricks:

� The operations on the polynomialsB;C; F;G are made into inline, loop-unrolled code within the inversion routine.
This is a crucial optimization, resulting in a factor of 3 reduction in the overall running time.

� Instead of using small arrays forB;C; F;G;use separate named variablesB0; B1; :::; G4etc. to hold the individual
words of the polynomials. Assign as many of these as possible to registers.

� F is even at the bottom of the loop, so the “Goto” can skip over the test for the “While”. This non-structured jump
into the body of a “While” loop saves about 10% of the time.

� Instead of exchanging F;G and B;C; make two copies of the code, one with the names exchanged. Whenever an
exchange would be called for, instead jump to the other copy.

� During the execution of the code, the lengths of the variablesF;G shrink, whileB;C grow. Detect when variables’
lengths cross a word boundary, and switch to a copy of the code which knows the exact number of words required
to hold the variables. This optimization makes the code much larger, because either 25 (for a 32 bit architecture) or
9 (for a 64 bit architecture) copies are required. Fortunately the code still fits within the DEC Alpha on-chip cache.

The following additional optimization is possible:

� Because F;G shrink while B;C expand, some of the variables representing the high-order terms can share a
machine register. This is useful on register-poor machines.

4.4.1 Dividing out uk

To find the true reciprocal of A(u), we need to divide B(u) by uk, working modT (u). The typical value of k is 260,
although k can be as large as 309. The strategy is to divide B successively by uw, where w is the number of bits in the
wordsize of the computer, and finish up with a final division by a smaller power of u.

The operation of dividing by uw is broken into two parts: First, a suitably chosen multiple of T is added to B, so as
to zero out the w low order bits of B. The new B can have degree as large as 154+w. Second, the new B is right-shifted
by w bits, effectively dividing it by uw. Since the low order bits are 0, the division is exact; and the right-shift reduces the
degree to (at most) 154.

The “suitably chosen multiple of T” is just T times the low order 32 (or 64) bits of B. For the 32-bit SPARC, using
the notation of section 4.3,

B(u) � B(u) +B(u)31�0(u
155 + u62 + 1) � B(u)154�32+B(u)31�0(u

155 + u62) mod T (u):

7

Operation SPARC IPC Alpha
155 bit add 3.4 .22
155 x 155 bit multiply 112.0 7.08
32 x 32 7.9
64 x 64 1.64
155 bit square 8.1 .81
Modular reduction, 310 bits to 155 bits 3.8 .20
Reciprocal, including divide by uk (k = 261) 279.0 25.72
Double an elliptic curve point 538.0 43.68
Add two elliptic curve points 541.0 44.18
Multiply Ecurve point, 154 doubles and 77 adds 124 msec 9.9 msec
Elliptic curve DH key exchange time (computed) 372 msec 29.8 msec
Ordinary integer DH key exchange time 2674 msec 182 msec

Figure 1: Except for the last two lines, all times are in microseconds.

The second term is computed by left-shifting the low-order 32 bits of B by 62 bits and 155 bits and is xored directly
into B. The zeroing operation has a complication on the Alpha, where we work with 64 bits at a time: After the
shift-and-two-xors step, there are two possibly unzeroed bits,B63�62. An additional shift-and-two-xors step is performed
with this twenty-five cent field to clear it.

The same logic, modified for the smaller shift size, is used for the final division by a less-than-wordsize power of u.

5 Timings

The timings on two platforms are presented in Figure 1. The Sun SPARC IPC is a 25 MHz RISC architecture, with
a 32-bit word size. The DEC Alpha 3000 is a 175 MHz RISC architecture, with a 64-bit word size. If everything is just
right (all the data in registers, etc.), the SPARC machine can execute 25 million instructions per second, the Alpha 175
million. The Alpha has an 8K byte on-chip instruction cache; assuring that the critical field operations are loaded into the
cache without conflict is crucial to achieving the results reported here.

We made a few measurements on other architectures. The Intel 486 (66MHz) and the DEC MIPS (25MHz) are both
within 10% of the SPARC times. Both machines have a 32-bit word size.

6 Other Applications

The elliptic curve improvements will be helpful in implementing not only DH key exchange, but also make El Gamal style
encryption [11] more attractive. The total effort of signing and checking a signature is less with elliptic curve methods
than with RSA.

The new reciprocal algorithm is useful for doing arithmetic in other finite fields. Because it makes inversion less
costly, it will be worthwhile to reanalyze other formulas for operations with elliptic curves. The reciprocal algorithm can
also be used, with slight modifications, to compute reciprocals in ordinary integer modular arithmetic. (The algorithm is
happiest with moduli of the form 2A � 2B � 1, but will work reasonably with 2A � k2B � 1 for 32-bit k. For generic
odd moduli, Peter Montgomery’s trick [24] is useful for dividing by the required power of 2.) Another benefit may
be in ordinary modular exponentiation, as used in RSA and many other schemes: When a reciprocal costs only a few

8

multiplications, then addition-subtraction chains can be used to compute powers; this will allow shorter chains, more than
recouping the investment in computing the reciprocal.

7 Conclusions

We have shown that the software implementation of the Diffie-Hellman algorithm can be done more efficiently using
elliptic curve systems over F2n than using integers modulo p. Assuming that no equivalent to the discrete logarithm attack
exists for an elliptic curve, smaller number representations of the group elements can be used, and the software becomes
quadratically faster. RISC machines with 64-bit-wide words show excellent performance.

Our implementation’s major speed advantage over previous implementations derives from its use of an efficient
procedure for computing reciprocals in F2n .

If network protocols were to rely on this method for establishing key pairs between hosts, six times as many connections
could be made as compared with the modulo p implementations. This fact simplifies the task of designers who might
otherwise need to develop secondary key distribution methods and, by reducing the computational cost of the method, it
assists in preventing “denial of service” attacks against network hosts which might otherwise become bogged down by
repeated requests for key exchanges. Key exchange nonetheless remains an expensive operation ... over 100 times as
expensive as computing the MD5 one-way hash function, for example.

8 Acknowledgments

We thank R. W. Gosper for using MACSYMA to compute a table of factorizations of trinomials, and Alfred J. Menezes
for providing us with reference [22].

References

[1] G. AGNEW, T. BETH, R. MULLIN AND S. VANSTONE, “Arithmetic Operations in GF (2m)”, Journal of Cryptology, 6 (1993),
3-13.

[2] G. AGNEW, R. MULLIN AND S. VANSTONE, “An Implementation of Elliptic Curve Cryptosystems over F2155”, IEEE Journal on
Selected Areas in Communications, 11 (1993), 804-813.

[3] G. AGNEW, R. MULLIN, I. ONYSZCHUK AND S. VANSTONE, “An Implementation for a Fast Public-Key Cryptosystem”, Journal
of Cryptology, 3 (1991), 63-79.

[4] ELWYN BERLEKAMP, Algebraic Coding Theory, McGraw-Hill, 1968, p.41.

[5] T. BETH AND F. SCHAEFER, “Non Supersingular Elliptic Curves for Public Key Cryptosystems”, Advances in Cryptology –
EUROCRYPT ’91, Lecture Notes in Computer Science, 547 (1991), Springer-Verlag, 316-327.

[6] J. BOS AND M. COSTER, “Addition Chain Heuristics”, Advances in Cryptology – CRYPTO ’89, Lecture Notes in Computer
Science, 435 (1990), Springer-Verlag, 400-407.

[7] E. BRICKELL, D. GORDON, K. MCCURLEY, AND D. WILSON, “Fast Exponentiation with Precomputation (Extended Abstract)”,
Advances in Cryptology – EUROCRYPT ’92, Lecture Notes in Computer Science, 658 (1993), Springer-Verlag, 200-207.

[8] D. COPPERSMITH, A. ODLYZKO, AND R. SCHROEPPEL, “Discrete Logarithms in GF [p]”, Algorithmica, 1 (1986), 1-15.

[9] JEAN-MARC COUVEIGNES AND FRANÇOIS MORAIN Algorithmic Number Theory: First International Symposium, Lecture Notes
in Computer Science, 877 (1994), Springer-Verlag, 43-58.

[10] WHITFIELD DIFFIE AND M. E. HELLMAN “New Directions in Cryptography”, IEEE Transactions on Information Theory, IT-22,
n. 6, Nov. 1976, pp 644-654

9

[11] T. ELGAMAL, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms”, IEEE Transactions on
Information Theory, 31 (1985), 469-472.

[12] GREG HARPER, ALFRED MENEZES, AND SCOTT VANSTONE “Public-Key Cryptosystems with Very Small Key Lengths”,Advances
in Cryptology – EUROCRYPT ’92, Lecture Notes in Computer Science, 658 (1993), Springer-Verlag, 163-173.

[13] The Internet Engineering Task Force Working Group on Security for IPv4; drafts on key management available via FTP from
the archives at ds.internic.net ; internet-drafts/draft-karn-photuris-00.txt

[14] T. ITOH, O. TEECHI, AND S. TSUJII, “A Fast Algorithm for Computing Multiplicative Inverses in GF (2t) Using Normal Bases”
(in Japanese), J. Society for Electronic Communications (Japan), 44 (1986), 31-36.

[15] A. KARATSUBA, Doklady Akademiia Nauk SSSR 145 (1962), 293-294.

[16] DONALD E. KNUTH, Seminumerical Algorithms, The Art of Computer Programming, 2 Addison Wesley 1969

[17] NEAL KOBLITZ, “Elliptic Curve Cryptosystems”, Mathematics of Computation, 48 n. 177 (1987), 203-209.

[18] NEAL KOBLITZ, “Constructing Elliptic Curve Cryptosystems in Characteristic 2”, Advances in Cryptology – CRYPTO ’90
Proceedings, Lecture Notes in Computer Science, 537 (1991), Springer-Verlag, 156-167.

[19] B. LA MACCHIA AND A. ODLYZKO, “Computation of Discrete Logarithms in Prime Fields”, Designs, Codes and Cryptography,
1 (1991), p. 47-62.

[20] G. LAY AND H. ZIMMER, “Constructing Elliptic Curves with Given Group Order over Large Finite Fields”, Algorithmic Number
Theory: First International Symposium, Lecture Notes in Computer Science, 877 (1994), Springer-Verlag, 250-263.

[21] ALFRED J. MENEZES, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 1993.

[22] ALFRED J. MENEZES, MINGHUA QU, AND SCOTT A. VANSTONE, “Standard for RSA, Diffie-Hellman and Related Public Key
Cryptography”, Working Draft of IEEE P1363 Standard, Oct. 30, 1994.

[23] VICTOR S. MILLER, “Use of Elliptic Curves in Cryptography”, Advances in Cryptology – CRYPTO ’85 Proceedings, Lecture
Notes in Computer Science, 218 (1986), Springer-Verlag, 417-426.

[24] PETER L. MONTGOMERY, “Modular Multiplication without Trial Division”, Mathematics of Computation, 44 (1985), 519-521.

[25] P. VAN OORSCHOT AND M. WIENER, “Parallel Collision Search with Application to Hash Functions and Discrete Logarithms”,
presented at the 2nd ACM Conference on Computer and Communications Security, Fairfax, Virginia, November 4, 1994.

[26] J. POLLARD, “Monte Carlo Methods for Index Computation mod p”, Mathematics of Computation, 32 (1978), 918-924.

[27] JÖRG SAUERBREY AND ANDREAS DIETEL “Resource Requirements for the Application of Addition Chains in Modulo Expo-
nentiation”, Advances in Cryptology – EUROCRYPT ’92, Lecture Notes in Computer Science, 658 (1993), Springer-Verlag,
174-182.

[28] R. SCHOOF, “Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p”, Mathematics of Computation,
44 (1985), 483-494.

[29] J. H. SILVERMAN, The Arithmetic of Elliptic Curves, Springer Graduate Texts in Mathematics 106 (1992).

10

