Fast Key Exchange with Elliptic Curve Systems

Richard Schroeppel Hilarie Orman Sean O’ Malley

TR 9503

Abstract

The Diffie-Hellman key exchange algorithm can be implemented using the group of points on an dliptic
curve over thefidd IF,.. A software version of thisusing n = 155 can be optimized to achieve computation
rates that are significantly faster than non-elliptic curve versions with a similar level of security. The fast
computation of reciprocalsin IF,. isthe key to the highly efficient implementation described here.

March 31, 1995

Department of Computer Science
The University of Arizona
Tucson, AZ 85721

1 Introduction

The Diffie-Hellman key exchange agorithm [10] is a very useful method for initiating a conversation between two
previously unintroduced parties. It relies on exponentiation in a large group, and the software implementation of the
group operation is usualy computationally intensive. The agorithm has been proposed as an Internet standard [13], and
the benefit of an efficient implementation would be that it could be widely deployed across a variety of platforms, greatly
enhancing the security of the Internet by solving the problem of key exchange for millions of host machines.

The Diffie-Hellman algorithm was implemented several years ago as part of the Sun SecureRPC system used by Sun
Microsystems, and theimplementation used numbers of a size that was determinedin [19] to be attackabl e using amethod
described in [8]. Thiswork indicated that instead of using a 192-bit modulus, which could be “cracked” in only about
3 months of effort (including software devel opment), system designers should use at least a 512-bit modulus. Informal
conversations with people associated with developing the Sun SecureRPC system indicated that they did not wish to
increase the size of the numbers, in part because of the amount of time needed for the computation. The extratime results
because of the number of large-number arithmetic operations that must be carried out.

In our work with implementations of cryptographic protocols, we developed a simple version of the Diffie-Hellman
protocol in what has been termed transient mode, where the two parties each select a random exponent e and exchange
values of ¢¢, where g isagroup element. If party A selectse = ¢ and party B selects e = b, then then each party can
compute ¢“°, but no eavesdropper can do so. In our implementation, we used the ring 7, with p a 512-bit prime, asize
that should resist attacks with hardware resources known today. The protocol took from 2 to 10 seconds on a variety of
modern and popular hardware platforms. This speed is unpalatable for machines that need to participate in many keyed
conversations with a large set of peers. We would estimate that no busy machine should devote more than .1% of its
cyclesto key exchange, and thislimits even avery fast machine (< 200 MHz) to fewer than 20 key exchanges per hour.

This work motivated our research into faster software implementations of the basic operations behind the protocol.
Elliptic curve systems, first suggested by Victor Miller [23] and independently by Neal Koblitz[17], were anatural choice
because they are (insofar as is known today) immune to the index calculus attack. This means that smaller numbers can
be used to achieve the same degree of security for the Diffie-Hellman agorithm as the 512-bit version described above.
It isinteresting to note that the numbersin our implementation are even smaller than the Sun RPC version. In addition
to this basic savings in computation cost, there are several software optimization techniques that result in a significantly
faster algorithm.

An additional advantage is that, as computers get faster, the size of the numbers needed to achieve a particular level
of security grows much more slowly for eliptic curve systems when compared to methods that use ordinary integers.

Theéliptic curve method usesadifferent group operation than multiplication of integersmod p. Instead, the operation
is over the group of points on an dliptic curve, and the operation is arithmetically more complicated. The size of the
group used in our implementation is approximately 2'°5. The group operation is implemented using numbers from the
Galoisfield IF5:5. Our initial implementation of this was more than twice as fast as the implementation using integers
modulo a 512-bit prime, and there was obvious room for improvement. For the DH key exchange agorithm, a properly
chosen dliptic curve over [F,1ss offers somewhat more security than does working modul o a 512-bit prime.

The improvements described here are how to efficiently compute the field operationsin [F51ss, especialy reciprocals,
and a minor improvement in the formula for doubling an elliptic curve point. We suggest how to select a curve with
constants that are easily manipulated by software. The most important contributor to the success of the algorithm isthe
fast reciprocal routine.

2 Overview of theMethod

We include here brief descriptionsof the field and elliptic curve manipulations; this material isfrom draft document [22].
See Silverman [29] for a general introduction to liptic curves; Menezes [21] provides a cookbook approach and an

1

introduction to the cryptographic methods. Other good references are[1, 2, 3, 5].

For our purposes, an dliptic curve £ is a set of points (z,y) with coordinates = and y lying in the field [F5:ssand
satisfying the equation y? + xy = 2 + az? + b. a and b are constants, field elements which we will specify later. For a
particular choice of « and b, the points (z, y) form acommutative group under “addition”; therule for “addition” involves
severd field operations, including computing a reciprocal; the formulas arein section 3.1.

Theélliptic curve analogue of the Diffie-Hellman key exchange method uses an €lliptic curve £, ,, defined over afield
F,andapoint P = (xg, yo) which generatesthewhole additiongroup of F. E, a, b, I, P, z,, and y, areall system-wide
public parameters.

When user A wantsto start a conversation, he chooses a secret integer multiplier K4 intherange [2, order(E) — 2]
and computes K 4 P by iterating addition of P using a“double and add” scheme. User A sends the » and y coordinates
of the point K 4 P to user B. User B selects his own secret multiplier Kz and computes and sends to user A the point
KpgP. Each user can then compute the point (K 4K 5)P. Some bits are selected from the coordinates to become the
secret session key for their conversation. Insofar as is known, there is no effective method for recovering (K, Kpg) P
by eavesdropping on this this conversation, other than solving the discrete logarithm problem. The discrete logarithm
problem is hard for elliptic curves, because the index calculus attack that is so effective modulo p does not work.

The éliptic curve operations reguire addition, multiplication, squaring, and inversion in the underlying field. The
number of applications of each operation depends on the exact details of the implementation; in all implementations the
inversion operation is by far the most expensive (by afactor of 5 to 20 over multiplication).

3 Workingwith an Elliptic Curve

3.1 Addingand Doubling Points

Thetwo dliptic curve operationsthat are most rel evant to the complexity of of multiplying a group element by a constant
are the Add and Double operations. We aso include the Negation operation, since it offers a speed increase. The
operations are presented slightly modified from their presentationin [22]. Theéllipticcurve E, , isthe set of all solutions
(z,y) totheequation y* + zy = 2° + az? + b. a and b are constants from the field [F';155; b must be nonzero. z and y
are aso elements of [F155. A solution (z, y) is called a point of the curve. An extra point O is also needed to represent
the group identity. We use (0,0) to represent O. (Because b # 0, (0, 0) isnever asolution of our equation.) The Add and
Double routines make a specia check to seeif aninputisO.

The Doubleroutineisnot just an optimized specia case of the Add routine: The Add formulafails when the two input
points have equal x coordinates; the formula calls for adivision by 0. A check is made for this case; if the iy coordinates
are aso equal, the two input points are equal, and the Double routineis caled. If the y coordinates differ, the two points
areinversesin the eliptic curve group, so O isreturned.

(i) (Rulefor Adding two points)
Let (z1,y1) € E(Fam) and (22, y2) € E(Fyn) betwo points.
If either point is O, return the other point as the sum.
If x; = 25 and y; = y-, usethe Doubling rule.
If 2, = a5 but y; # ys, return O as the sum.
If 21 # o, then (21, y1) + (z2,y2) = (23, ys), Where
e =N+ Atz +a4+a, ys=Aai+as)+as+y, and A= y1-|-yz‘

1+ 2

(ii) (Rulefor Doubling a point)
Let (z,y) € I)(Fyn) beapoint.

If 2 =0, then2(z,y) = O.
If z # 0, then2(2, y) = (21, y2), Where

o =N+A+a, yp=2"+(A+1)a, and A= (x—l—%)

[22] givesthe formulafor z, as z, = 2 + b/2*. Our formulais equivaent, but saves the multiplication by the
constant b.

(iii) (Rulefor Negating a point)
Let (z,y) € I)(Fy») beapoint. Then —1(z,y) = (2,2 + y).

From these formulas, we can determine the number of field operations required for each kind of elliptic curve operation.
We see that an Addition step usualy requires eight additions, two multiplications, one squaring, three reductions mod
T(u), and one inversion. A Doubling step usually requires four additions, two multiplications, two sguarings, four
reductions mod 7' (=), and one inversion. A Negation step requires one addition. The important contributors to the run
time are the multiplicationsand inversions.

3.2 ChoosingtheCurve

The constant « in the elliptic curve can be chosen to simplify the operations of doubling a point and of adding two points.
We use ¢ = 0, which eliminates one addition from the formulafor the = coordinate in both operations.

The size of the group depends on the choice of « and &. There is a complicated algorithm due to Schoof [28], with
improvements by Atkin, Elkies, Morain, and Couveignes [9] for determining the group order. The order isaways close
to the number of field elements. For maximum security, the order should have as large a prime factor as possible. In our
equation, witha = 0, the best possibleorder is 4p (with p a prime near 2!53) [18]. (If we select « # 0, the order can have
the form 2p with p near 2%, giving a small amount of extra security.) Lay and Zimmer [20] give a method for creating
acurve with a given order, but we are reluctant to use their scheme, since it produces curves closely related to rational
curves with an extra structural property called complex multiplication. We feel this extra structure might be insecure.

We recommend trying small bs, computing the curve order and checking if the order is of the form 4p. For curves
based on [F5:5s, afew hundred triesmay be necessary. One scheme for selecting the bsisto try small valuesfor (z, y) and
to compute b from the equation y* + zy = 2° + b.

The best known methods for computing elliptic curve discrete logarithms take time proportional to the square-root of
the largest prime factor of the group order [25, 26, 12]. In our case, thelargest prime factor will be about 2'°?, so finding
discrete logarithmswill take about 27* =~ 10%® operations.

3.3 Choosing a Multiplier

The number of additionsand doublingsnecessary for computing n P (where P isapoint on the curve and » isan integer)
is an important factor in the speed of the DH algorithm. We have implemented the straightforward double-and-add
approach based on the binary expansion of ». For arandom 155-bit multiplier », computing » P will require 154 doubling
steps and an average of 77 addition steps. (The number of addition steps depends on the number of 1 bitsin the binary
representation of ».) Although the number of doubling steps is roughly fixed, it is possible to reduce considerably the
number of addition steps needed. This problem is studied in a large literature on addition chains [16, 6, 7, 27]. We
mention afew points:

o Menezes[21] discussestheideaof using alow Hamming weight multiplier. If oneis content to select from among
2128 multipliers, while allowing multipliers up to about 2'°°, then one can select a multiplier of Hamming weight
< 43.
3

e The operation to negate a point is cheap, so we can use addition-subtraction chains instead of simply addition
chains. The extraflexibility permits shorter chains.

e If we are using one multiplier for many connections, it pays to invest some effort in finding a good addition-
subtraction chain for it. The speedup available from using a good addition-subtraction chain with a random
multiplier and novel point is 20-30%.

e Since we are free to select a random multiplier, one approach is to select a random addition-subtraction chain
instead. Thisallowsusmore selection freedom at each chain step, so we need fewer addition or subtraction stepsto
generateroughly 2'5° possiblemultipliers. Some care must be taken in the sel ection algorithm, to avoid having some
multipliers be overly likely. (This can happen because many stepsin the addition-subtraction chains commute.)

e When we know the starting point P ahead of time, we can prepare tables which give a considerable speedup [7].
Thisisthesituation for the first two of the four point multiplicationsin Diffie-Hellman key exchange.

4 Field Operationsin [Fyss

4.1 Representation of the Field Elements

We represent field elements as bitstrings of length 155. For a 64-bit processor, thisis only 3 words; the brevity of the
representation means that much of the computation can be donein hardware registers.

Let k[u] bethering of polynomialsover IF,. Wewill work inthe extensionfield of thetrinomial 7'(u) = u'*%+u"?41.
Theextensionisafield because the polynomial isirreducible over IF,. Thefield elements are members of £[«] modulothe
field polynomial 7'(u), with coefficients drawn from the set 0, 1. Each polynomial in &[] can be reduced to a remainder
of degree at most 154.

Theirreducible trinomia 7'(u) has a structure that makes it a pleasant choice for representing the field. In IF,, there
are only two irreducible polynomials of this degree. The fact that the middle term, «°?, has an exponent that is roughly
half of the field degree is important to the optimizations for calculating modular reductions (as described in section 4.3)
and to the division by large powers of «, (as explained in section 4.4.1).

4.2 Addition and Multiplication
Field elements (for a prime power field) are added and multiplied as follows:

° F|dd addltlon (an_l i -alao) + (bn—l i 'blbO) = (Cn—l i ‘C1C0),Whereci = a; —I_bz |nthef|ddF2 That |S, f|dd
addition is performed componentwise.

e Fieldmultiplication: (a,_1---ajag) - (by_1---bibg) = (rn_yi---riry), wherethe polynomid (r,_ju"~* 4 --- +
riu + rg) isthe remainder when the polynomia (a,,_ u™~* + -+ -+ aju + ag) - (bp_u™ ™t 4 -+« + byu + by) is
divided by 7'(u) over [Fs.

The addition algorithm for field elementsis trivia: the two blocks of bits are simply combined with the bitwise xor
operation. Because our field has characteristic 2, subtractionisthe same asaddition, and negationistheidentity operation.

Multiplication of field elements uses the same shift-and-add algorithm as isused for multiplication of integers, except
that the “add” is replaced with “xor”. This has the virtue that the operation can no longer generate carries, simplifying
the implementation. We experimented with severa different ways of organizing the multiplication routines and found
that different architectures had different optimal routines. (Our timings are done with the optimal routines for each
architecture.)

We explored the use of the Karatsuba[15] method (see Knuth [16] p. 259 and 536) for multiplication. It turned out
to be slightly worse for our particular cases.
Some of the programming tricks used to speed up the multiplication are:

e Useasubroutinethat multipliesN words by 1 word, keeping the multiplicand, multiplier, and intermediate product
intheregisters.

e Thissubroutine contains aloop that sequences through the bits of the multiplier. Unrolling thisloop saves time.

e When the field element size is not an exact multiple of the number of bitsin a computer word, there will be a
partialy used word representing the high order bits of afield element. Our field elements have a 27-bit fragment
on both 32- and 64-bit machines. On 64-bit machines, a specia subroutine for multiplying by the fragment is
worthwhile, because the fragment is much shorter than aword.

4.2.1 The Squaring Operation

Squaring a polynomial in a modulo 2 field is a linear operation. In the formula for squaring a binomial, (¢ + b)* =
a® + 2ab + b*, the cross-term vanishes modulo 2 and the square reducesto «* + . Consequently, we can square a sum
by squaring theindividual terms. For example, (v® + u + 1)? = u® + u? + 1.

In terms of bitstrings, to square a polynomial, we spread it out by interleaving a O bit between each polynomial bit.
For example, v® + u + 1 isrepresented as 1011, and the square is 1000101. Sadly, computer manufacturers have largely
ignored the need for an instruction to carry out this operation; nonetheless, it can be done quickly using table lookup to
convert each byteto its 15-bit square. The squared polynomial isthen reduced modulo 7'(u). Squaring is so much faster
than regular multiplication that it can beignored in rough comparisons of the timings.

4.3 Modular Reduction

Thefield elements are polynomia swith coefficientsin thering ZZ,. After each multiplication or squaring, the result must
be reduced modulo 7'(u) = u'*® + u®* + 1. The product of two polynomials of degree 154 produces a polynomial of
degree 308. The product is represented as 10 words on a 32 bit architecture, or 5 words on a 64 bit architecture.

A hand tailored reduction method, specific for 7'(«), takes advantage of the degree of the middle term to minimize
the number of operations required. Assume the polynomia to bereduced is

P(u) = azosu®® + ... + asu® + ayu + aq.

Thereduction mod «'%5 + 5% + 1 proceeds by reducing each term modul o the trinomial and subtractingit from the result.
This can be done very efficiently using shiftsand xors. First note that

W =u? 41, and v" = v 4+ u" " mod T(u).

As many as 93 of the leading terms of P(u) can be reduced modulo 7'(u) by replacing each non-zero term by its
congruent two-term expression, i.e. au” = au”~?* + au™~'*°* mod T'(u). We can think of this as zeroing out the upper
93 hits of the 309 bits of the expression (subtracting each term) and adding in the representation of each original term
right-shifted by 93 (i.e., multiplied by »~"?) and a so right-shifted by 155 (i.e., multiplied by «~°°):

P(u) = P(u)a15-0 + P(U)308—216(U_93 + u_155) mod T'(u)

where P(u);_j = Zf:j a;u' istheportion of P(u) from degrees j through k. Thisyieldsalength 216 partial result. This
reduction can be repeated to make the degree less than 155.
5

In practice, we work one computer word at atime, lowering the degree by either 32 or 64, proceeding from the high
order terms (bits) to thelow. The results are accumulated into the original expression, i.e. the bitstring representing P (u)
isthe operand for each shift and xor operation.

The benefit of using a trinomia as the modulus is that each word only needs to be xored into two places for the
accumulation operation. Having the middleterm of relatively low degreeisbeneficia because the accumul ation operation
with a high-order word does not affect that word, so that each reduction step reduces the degree by a full word. (If the
middleterm were u'*° instead of «°?, wewould only shorten our dividend by 5 bits each timeinstead of 32, and we would
have to do the reduction operation multiple times.)

It would be even better to use a binomial as the modulus. Unfortunately, in fields of characteristic 2, polynomials
with an even number of terms are dwaysdivisibleby « + 1, so they are always reducible (except for « + 1 itself).

Some other recommended trinomialsare u™" + v + 1, u™° + 4% + 1, w4+ o3 + 1, ™ +u™ + 1, u* + 0T + 1,
and «?%° +u®?+ 1. If oneneedstowork with afield of aspecific degree, and thefield has no good trinomial, a pentanomial
(at least) isrequired. !

4.4 Computing Reciprocals

The rules for doubling an éliptic curve point, and for adding two elliptic curve points, involve computing a reciprocal,
either 1/ or 1/(x; + z) (see section 3.1). Multiplicativeinversion of elementsin afield is usually so slow that people
have goneto great lengthsto avoidit. Menezes[21] (p. 90) and Beth and Schaefer [5] discuss projective schemes, which
use about nine multiplications per eliptic curve step, but use very few reciprocals. We report here on a relatively fast
algorithm for field inversion, which allows direct use of the simple formulas for operating on elliptic curve points. Our
field inversion time is about three multiplication times, a substantial improvement over [21]. *

For the field we are working in, the problem to be solved is

Given anon-zero polynomia A(u) of degree lessthan or equal to 154, find the (unique) polynomial B(u) of
degree less than or equal to 154 such that

A(u)B(u) = 1 mod u' 4+« 4+ 1.

The problem has a simple, but relatively slow, recursive solution, exactly analogous to the related agorithm for
integers. We have developed an algorithm that is considerably faster. It borrows ideas from Berlekamp [4] and from
the low-end GCD algorithm of Roland Silver, John Terzian, and J. Stein (described in Knuth [16] p. 297). Our Almost
Inverse algorithm computes B(w) and k such that

AB = u" mod M, deg(B) < deg(M), and k < 2deg(M),

where deg(B) denotes the polynomial degree of B. After executing the algorithm, we will need to divide B by «*
(mod M) to get the true reciprocal of A.

The pseudo-code for the algorithm is given below. The computer implementation relies on a few representational
items:

e Multiplication of a polynomial by « isaleft-shift by 1 bit.
¢ Divisionof apolynomial by « isaright-shift by 1 bit.

e A polynomia iseven if itsleast significant bit, the coefficient of «° (the constant term), is0. Otherwiseit isodd.

!rreducible trinomials are somewhat sparse: e.g., of the degreesfrom 100-199, 43 have no irreducible trinomial.
>Menezes' inversion scheme for afield element A(u), computes1/A(u) as A(u)? ~2 mod T'(u). This can be donewith 10 multiplications
and 154 sguarings[14].
6

The agorithm will work whenever A(u) and M (u) arerelatively prime, A(u) # 0, M (u) isodd, and deg (M) > 0.

The

Al nost I nverse Al gorithm

Initialize integer k=0, and polynom als B=1, C=0, F=A, G=M

loop: Wile Fis even, do F=F/u, C=C‘u, k=k+1.

If F=1, then return B,Kk.

If deg(F) < deg(@, then exchange F, G and exchange B, C
F=F+G B=B+C.

Got o | oop.

We improved the performance of thisraw agorithm considerably with the following programming tricks:

The operationson the polynomiads B, C, F, G aremadeintoinline, loop-unrolled code withintheinversion routine.
Thisisacrucial optimization, resulting in afactor of 3 reduction in the overall running time.

Instead of using small arraysfor B, C, F', G, use separate named variables B0, B1, ..., G4 etc. to holdtheindividual
words of the polynomials. Assign as many of these as possibleto registers.

Fiseven at the bottom of the loop, so the “Goto” can skip over thetest for the“While”. Thisnon-structured jump
into the body of a*“While” loop saves about 10% of thetime.

Instead of exchanging F', G and B, C', make two copies of the code, one with the names exchanged. Whenever an
exchange would be called for, instead jump to the other copy.

During the execution of the code, the lengths of thevariables F, G shrink, while B, C' grow. Detect when variables
lengths cross a word boundary, and switch to a copy of the code which knows the exact number of words required
to hold the variables. This optimization makes the code much larger, because either 25 (for a 32 bit architecture) or
9 (for a64 bit architecture) copies are required. Fortunately the code still fits within the DEC Alpha on-chip cache.

The following additional optimizationis possible:

441

Because F, G shrink while B, (" expand, some of the variables representing the high-order terms can share a
machine register. Thisisuseful on register-poor machines.

Dividing out u*

To find the true reciprocal of A(u), we need to divide B(u) by «*, working modT'(u). The typical value of % is 260,
although % can be as large as 309. The strategy isto divide B successively by u*, where w is the number of bitsin the
wordsize of the computer, and finish up with afinal division by a smaller power of «.

The operation of dividing by «" is broken into two parts: First, a suitably chosen multiple of 7" is added to B, so as
to zero out the w low order bitsof B. Thenew B can have degree aslarge as 154 + w. Second, the new B isright-shifted
by w bits, effectively dividing it by «*. Since the low order bitsare O, the divisionisexact; and the right-shift reduces the
degree to (at most) 154.

The " suitably chosen multipleof 7" isjust T' times the low order 32 (or 64) bitsof B. For the 32-bit SPARC, using
the notation of section 4.3,

B(u) = B(u) + B(u)s1_0(¢'®® + 6 + 1) = B(u)154-32 + B(u)z1_o(u"*® + «**) mod T(u).
7

Operation SPARC IPC Alpha
155 bit add 34 22
155 x 155 bit multiply 112.0 7.08
32x32 79

64 x 64 164
155 bit square 8.1 81
Modular reduction, 310 bitsto 155 bits 38 .20
Reciprocal, including divide by v* (k = 261) 279.0 25.72
Double an dliptic curve point 538.0 43.68
Add two dliptic curve points 541.0 44.18
Multiply Ecurve point, 154 doublesand 77 adds 124 msec | 9.9 msec
Elliptic curve DH key exchange time (computed) 372 msec | 29.8 msec
Ordinary integer DH key exchange time 2674 msec | 182 msec

Figure 1. Except for thelast two lines, al times are in microseconds.

The second term is computed by left-shifting the low-order 32 bits of B by 62 bits and 155 bits and is xored directly
into B. The zeroing operation has a complication on the Alpha, where we work with 64 bits at a time: After the
shift-and-two-xorsstep, there are two possibly unzeroed bits, Bss_s-. Anadditiona shift-and-two-xorsstep is performed
with thistwenty-five cent field to clear it.

The same logic, modified for the smaller shift size, is used for the final division by a less-than-wordsize power of «.

5 Timings

The timings on two platforms are presented in Figure 1. The Sun SPARC IPC isa 25 MHz RISC architecture, with
a 32-bit word size. The DEC Alpha3000isa 175 MHz RISC architecture, with a 64-bit word size. If everything isjust
right (all the data in registers, etc.), the SPARC machine can execute 25 million instructions per second, the Alpha 175
million. The Alphahasan 8K byte on-chip instruction cache; assuring that the critical field operations are loaded into the
cache without conflict is crucial to achieving the results reported here.

We made a few measurements on other architectures. The Intel 486 (66MHz) and the DEC MIPS (25MHZz) are both
within 10% of the SPARC times. Both machines have a 32-bit word size.

6 Other Applications

Thedllipticcurve improvementswill be helpful in implementing not only DH key exchange, but al so make El Gamal style
encryption [11] more attractive. The total effort of signing and checking a signature is less with elliptic curve methods
than with RSA.

The new reciprocal algorithm is useful for doing arithmetic in other finite fields. Because it makes inversion less
costly, it will be worthwhileto reanalyze other formulas for operationswith dliptic curves. Thereciprocal agorithm can
also be used, with slight modifications, to compute reciprocals in ordinary integer modular arithmetic. (The agorithmis
happiest with moduli of the form 24 — 28 — 1, but will work reasonably with 24 — k28 — 1 for 32-bit k. For generic
odd moduli, Peter Montgomery’s trick [24] is useful for dividing by the required power of 2.) Another benefit may
be in ordinary modular exponentiation, as used in RSA and many other schemes: When areciproca costs only a few

multiplications, then addition-subtraction chains can be used to compute powers; thiswill alow shorter chains, more than
recouping the investment in computing the reciprocal.

7 Conclusions

We have shown that the software implementation of the Diffie-Hellman algorithm can be done more efficiently using
eliptic curve systemsover ¥, than using integersmodulo p. Assuming that no equivalent to the discretelogarithm attack
existsfor an eliptic curve, smaler number representations of the group elements can be used, and the software becomes
guadratically faster. RISC machines with 64-bit-wide words show excellent performance.

Our implementation’s major speed advantage over previous implementations derives from its use of an efficient
procedure for computing reciprocalsin [Fs..

If network protocol swereto rely onthismethod for establishing key pairsbetween hosts, six timesas many connections
could be made as compared with the modulo p implementations. This fact simplifies the task of designers who might
otherwise need to develop secondary key distribution methods and, by reducing the computational cost of the method, it
assistsin preventing “denial of service” attacks against network hosts which might otherwise become bogged down by
repeated requests for key exchanges. Key exchange nonethel ess remains an expensive operation ... over 100 times as
expensive as computing the MD5 one-way hash function, for example.

8 Acknowledgments

We thank R. W. Gosper for using MACSY MA to compute atable of factorizations of trinomials, and Alfred J. Menezes
for providing us with reference [22].

References

[1] G. AGNEW, T. BETH, R. MULLIN AND S. VANSTONE, “Arithmetic Operationsin G F'(2™)", Journd of Cryptology, 6 (1993),
3-13.

[2] G. AGNEW, R. MULLIN AND S. VANSTONE, “An Implementation of Elliptic Curve Cryptosystemsover Fyiss”, |EEE Journa on
Selected Areas in Communications, 11 (1993), 804-813.

[3] G. AGNEW, R. MULLIN, I. ONYSZCHUK AND S. VANSTONE, “An Implementation for a Fast Public-Key Cryptosystem”, Journal
of Cryptology, 3 (1991), 63-79.

[4] ELwyN BERLEKAMP, Algebraic Coding Theory, McGraw-Hill, 1968, p.41.

[5] T. BETH AND F. SCHAEFER, “Non Supersingular Elliptic Curves for Public Key Cryptosystems’, Advances in Cryptology —
EUROCRYPT ’91, Lecture Notesin Computer Science, 547 (1991), Springer-Verlag, 316-327.

[6] J. Bos AND M. COSTER, “Addition Chain Heuristics’, Advances in Cryptology — CRYPTO ’89, Lecture Notes in Computer
Science, 435 (1990), Springer-Verlag, 400-407.

[7] E.BRICKELL, D. GORDON, K. MCCURLEY, AND D. WILSON, “Fast Exponentiation with Precomputation (Extended Abstract)”,
Advances in Cryptology — EUROCRY PT ' 92, Lecture Notes in Computer Science, 658 (1993), Springer-Verlag, 200-207.

[8] D. CoPPERSMITH, A. ODLYZKO, AND R. SCHROEPPEL, “Discrete Logarithmsin G F'[p]”, Algorithmica, 1 (1986), 1-15.

[9] JEAN-MARC COUVEIGNES AND FRANCOIS MORAIN Algorithmic Number Theory: First International Symposium, Lecture Notes
in Computer Science, 877 (1994), Springer-Verlag, 43-58.

[10] WHITHELD DIFFIE AND M. E. HELLMAN “New Directionsin Cryptography”, | EEE Transactions on Information Theory, 1 T-22,
n. 6, Nov. 1976, pp 644-654

[11]

[12]

[13]

[14]

[19]
[16]
[17]
[18]

[19]

[20]

[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

T. ELGAMAL, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms’, |EEE Transactions on
Information Theory, 31 (1985), 469-472.

GREG HARPER, ALFRED MENEZES, AND SCOTT VANSTONE “ Public-Key Cryptosystemswith Very Small Key Lengths’, Advances
in Cryptology — EUROCRY PT ' 92, Lecture Notes in Computer Science, 658 (1993), Springer-Verlag, 163-173.

The Internet Engineering Task Force Working Group on Security for |Pv4; drafts on key management available via FTP from
thearchivesat ds. i nt er ni c. net ;internet-drafts/draft-karn-photuris-00.txt

T. ITOH, O. TEECHI, AND S. TsuJil, “A Fast Algorithm for Computing Multiplicative Inversesin G F'(2%) Using Normal Bases
(in Japanese), J. Society for Electronic Communications (Japan), 44 (1986), 31-36.

A. KARATSUBA, Doklady Akademiia Nauk SSSR 145 (1962), 293-294.
DONALD E. KNUTH, Seminumerical Algorithms, The Art of Computer Programming, 2 Addison Wesley 1969
NEAL KoBLITz, “Elliptic Curve Cryptosystems’, Mathematics of Computation, 48 n. 177 (1987), 203-209.

NEAL KoBLITz, “Constructing Elliptic Curve Cryptosystems in Characteristic 2", Advances in Cryptology — CRYPTO '90
Proceedings, Lecture Notesin Computer Science, 537 (1991), Springer-Verlag, 156-167.

B. LA MACCHIA AND A. ODLYZKO, “Computation of Discrete Logarithmsin Prime Fields’, Designs, Codes and Cryptography,
1(1991), p. 47-62.

G. LAY AND H. ZIMMER, “ Constructing Elliptic Curves with Given Group Order over Large FiniteFields’, Algorithmic Number
Theory: First International Symposium, Lecture Notes in Computer Science, 877 (1994), Springer-Verlag, 250-263.

ALFRED J. MENEZES, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 1993.

ALFRED J. MENEZES, MINGHUA QU, AND ScOTT A. VANSTONE, “Standard for RSA, Diffie-Hellman and Related Public Key
Cryptography”, Working Draft of IEEE P1363 Standard, Oct. 30, 1994.

VICTOR S. MILLER, “Use of Elliptic Curvesin Cryptography”, Advances in Cryptology — CRYPTO '85 Proceedings, Lecture
Notesin Computer Science, 218 (1986), Springer-Verlag, 417-426.

PETER L. MONTGOMERY, “Modular Multiplicationwithout Tria Division”, Mathematics of Computation, 44 (1985), 519-521.

P. VAN OORSCHOT AND M. WIENER, “Parallel Collision Search with Application to Hash Functions and Discrete Logarithms’,
presented at the 2nd ACM Conference on Computer and Communi cations Security, Fairfax, Virginia, November 4, 1994.

J. POLLARD, “Monte Carlo Methods for Index Computation mod p”, Mathematics of Computation, 32 (1978), 918-924.

JORG SAUERBREY AND ANDREAS DIETEL “Resource Requirements for the Application of Addition Chainsin Modulo Expo-
nentiation”, Advances in Cryptology — EUROCRY PT ’92, Lecture Notes in Computer Science, 658 (1993), Springer-Verlag,
174-182.

R. ScHOOF, “Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p”, Mathematics of Computation,
44 (1985), 483-494.

J. H. SILVERMAN, The Arithmetic of Elliptic Curves, Springer Graduate Texts in Mathematics 106 (1992).

10

