
A Software-Optimized Encryption Algorithm

Phillip Rogaway1 and Don Coppersmith2

1
Department of Computer Science, Engineering II Building, University of California,

Davis, CA 95616, U.S.A. rogaway@cs.ucdavis.edu

2
IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598,

U.S.A. copper@watson.ibm.com

Abstract. We describe a software-e�cient encryption algorithm named

SEAL 3.0. Computational cost on a 32-bit processor is about 5 elemen-

tary machine instructions per byte of text. The cipher is a pseudorandom

function family: under control of a key (�rst pre-processed into an inter-

nal table) it stretches a 32-bit position index into a long, pseudorandom

string. This string can be used as the keystream of a Vernam cipher.

Key words. Cryptography, Encryption, Fast encryption, Pseudoran-

dom function family, Software encryption, Stream cipher.

Full version of [12]. Last revised September 5, 1997.

1 Introduction

Encrypting Fast In Software. Encryption must often be performed at high

data rates, a requirement sometimes met with the help of supporting crypto-

graphic hardware. Unfortunately, cryptographic hardware is often absent and

data con�dentiality is sacri�ced because the cost of software cryptography is

deemed to be excessive.

The computational cost of software cryptography is a function of the under-

lying algorithm and the quality of its implementation. But regardless of imple-

mentation, a cryptographic algorithm designed to run well in hardware will not

perform in software as well as an algorithm optimized for software execution.

The hardware-oriented Data Encryption Algorithm (DES) is no exception. Of-

ten what is needed is a well-designed, software-optimized encryption method for

today's general purpose computers.

To this end, we have designed SEAL (Software Encryption Algorithm). SEAL

is a pseudorandom function family: under control of a key, �rst preprocessed

into a set of tables, SEAL stretches a 32-bit \position index" into a keystream of

essentially arbitrary length. One then encrypts by XORing this keystream with

the plaintext, in the manner of a Vernam cipher. As with any Vernam cipher it

is imperative that the keystream only be used once.

On a modern 32-bit processor SEAL can encrypt messages at a rate of about 5

instructions per byte. In comparison, the DES algorithm is some 10{30 times as

expensive. Even a Cyclic Redundancy Code (CRC) is more costly.

Related Work. We are not the �rst to realize the value of software-optimized

cryptography. In 1991 Merkle described the utility of software-oriented cryptog-

raphy and he proposed a suite of three software-e�cient algorithms [8]. One of

them, called \Khufu," is a block cipher which is similar in spirit to SEAL.

An earlier software-oriented block cipher than Khufu is FEAL [18]. But this

algorithm and its variants have not proven to be particularly secure (see [2] for

history and attacks). Nor is it all that fast.

RC4 is a popular, software-e�cient stream cipher designed by Rivest [14].

It is fast, though less fast than SEAL. RC5 is a software-e�cient block cipher.

It too was designed by Rivest [15]. Some other software-e�cient ciphers include

Blow�sh[17] and WAKE [19].

History And Naming. The full name of the cipher described in this paper

is SEAL 3.0. An earlier version of this cipher was described in 1993 [12] and

denoted SEAL 1.0. Though SEAL 3.0 is the �rst modi�cation to SEAL 1.0 which

the authors have described, a variant known as SEAL 2.0 had already appeared

in the literature [7]: it was identical to SEAL 1.0 apart from using NIST's revised

Secure Hash Algorithm (SHA-1) instead of the original one (SHA) [10]. While

SEAL 3.0 retains that change, the more signi�cant one is responsive to an attack

by Handschuh and Gilbert [5]. See Section 5 for further information on their

attack and the di�erences between SEAL 3.0 and SEAL 1.0.

In this paper the name SEAL, by itself, always refers to SEAL 3.0.

2 Characteristics of the Cipher

Key characteristics and design choices of SEAL are explained below.

Preprocessing The Key. In typical applications requiring fast software cryp-

tography, data encryption is required over the course of a communication session

to a remote partner, or over the course of a login session to a particular machine.

In either case the key a which protects the session is determined at session setup.

Typically this session setup takes at least a few milliseconds and is not a time-

critical operation. It is therefore acceptable, in most applications, to spend some

number of milliseconds to map the (short) key a to a (less concise) representation

of the cryptographic transformation specialized to this key. Our cipher has this

characteristic. As such, SEAL is an inappropriate choice for applications which

require rapid key-setup.

Length-Increasing Pseudorandom Function { Variable Output And

Key Lengths. The function SEAL is a type of cryptographic object called a

pseudorandom function family (PRF). Such objects were �rst de�ned in [4]. SEAL

is a length-increasing PRF: under control of a 160-bit key a, SEAL maps a 32-bit

string n to an L-bit string SEAL(a; n; L). The number L can be made as large or

as small as is needed for a target application, but output lengths ranging from

a few bytes to a few thousand bytes are anticipated. An arbitrary length key a0

can be used as the key for SEAL simply by selecting a = SHA-1(a0).

2

As a pseudorandom function family, SEAL(a; �; L) should \look like a random

function" if a is random and unknown. The meaning of this is as follows. First a

key a is taken at random from f0; 1g160. Next the adversary is given, at random,

either a black-box for the function SEAL(a; �; L) or else a black-box for a truly

random function R(�). Either maps 32 bits to L bits. The adversary's job is to

guess which type of box she has. Say that the adversary wins if she correctly

guesses \Random" or \Pseudorandom." Our goal is that for any reasonable

adversary, she should not win with probability signi�cantly greater than 1=2.

Though we will not attempt to de�ne \reasonable" or \signi�cant," we aim to

defeat adversaries with substantial computational resources and cleverness.

A PRF can be used to make a good stream cipher. In a stream cipher the

encryption of a message depends not only on the key a and the message x but

also on the message's \position" n in the data stream. This position is often a

counter (sequence number) which indicates which message is being enciphered.

The encryption of string x at position n is given by hn; x�SEAL(a; n; L)i, where

L = jxj. In other applications n might indicate the address of a piece of data on

disk.

Target Platforms. Execution vehicles that should run the algorithm well in-

clude the Intel386
TM
/Intel486

TM
/Pentium

TM
and contemporary 32-bit RISC ar-

chitectures. Because of the particular challenges involved in having a cipher run

well on the 386/486/Pentium, and because of the pervasiveness of this processor

family, we have optimized our cipher with the characteristics of this proces-

sor family particularly in mind. By doing well on these di�cult-to-optimize-for

vehicles we expect to do well on any modern 32-bit processor.

Some of the relevant limitations of the 386/486/Pentium are a small register

set, a two-operand instruction architecture, and a small �rst level cache. Here

is some further detail which was important in design choices. These processors

have eight general purpose registers. Instructions generally work on two operands

(A A op B) instead of three (A B op C). On the 486, the simplest forms of

the instructions add, and, mov and xor take one clock, but ror (rotate right) takes

two. Among other assumptions, these instruction counts assume a cache hit, and

cache misses can be expensive. The 486 has an 8 KByte on-chip cache for data

and instructions, while the Pentium Processor has an 8 KByte data cache and an

8 KByte instruction cache. The processors use a 4-stage instruction pipeline and

if the base register for an address calculation is the destination register of the

preceding instruction, an extra cycle will be consumed. The Pentium processor

has dual instruction pipes, one of which runs a very limited instruction set. It was

not a design goal for the cipher to exhibit an instruction dependency structure

which would allow us to always �ll both pipes.

Table-Driven Cipher. One early decision was whether to make the cipher a

straight-line program of logical operations (like MD5 or SHA-1) or whether to

drive it by the use of a large table (like Khufu or a software DES), instead. The

table-driven approach was selected because we felt that it would lead to a faster

and easier-to-design cipher. With the table-driven algorithm we could get very

3

rapid di�usion and there would be less temptation to produce a cipher whose

most e�cient implementation used self-modifying code.

In view of �rst-level cache interaction issues and the fact that servers may

want to store in second-level cache the representation of the encryption trans-

formation of tens of clients, it was decided that we should not be too generous

with the size of the tables that we used. We would settle on a total size for all

tables of approximately 3 KBytes.

procedure Initialize(n; `; A;B;C;D; n1; n2; n3; n4)

A n� R[4`];

B (n iii 8)�R[4`+ 1];

C (n iii 16)� R[4`+ 2];

D (n iii 24)�R[4`+ 3];

for j 1 to 2 do

P A & 0x7fc; B B + T [P=4]; A A iii 9;
P B & 0x7fc; C C + T [P=4]; B B iii 9;
P C & 0x7fc; D D+ T [P=4]; C C iii 9;
P D & 0x7fc; A A+ T [P=4]; D D iii 9;

(n1; n2; n3; n4) (D; B; A; C);

P A & 0x7fc; B B + T [P=4]; A A iii 9;
P B & 0x7fc; C C + T [P=4]; B B iii 9;
P C & 0x7fc; D D+ T [P=4]; C C iii 9;
P D & 0x7fc; A A+ T [P=4]; D D iii 9;

Fig. 1. Initialization of (A;B;C;D; n1; n2; n3; n4) from (n; `). This initialization de-

pends on a-derived tables T and R.

3 De�nition of the Cipher

Notation. We call a 32-bit string a \word" and an 8-bit string a \byte." The

empty string is denoted �. We write numbers in hexadecimal by preceding them

with \0x" and then using the symbols \a"{\f" to represent decimal numbers 10{

15, respectively. By y iii t we denote a right circular shift of the word y by t bits;

in other words, the i-th bit of y iii t is y(i�t) mod 32. Similarly, y hhh t denotes a

left circular shift of y by t bits. By \ & " _" and \�" we denote bitwise AND,

OR, and XOR; by A we denote the complement of A. By A + B we denote

the sum, ignoring the carry, of the unsigned integers A and B; this is the sum

mod 2
32

of numbers A and B. By \k" we denote the concatenation operator. By

4

function SEAL(a; n;L)

y = �;

for ` 0 to 1 do

Initialize(n;`; A;B;C;D; n1; n2; n3; n4);

for i 1 to 64 do

P A & 0x7fc; B B + T [P=4]; A A iii 9; B B �A;1

Q B & 0x7fc; C C � T [Q=4]; B B iii 9; C C + B;2

P (P +C) & 0x7fc; D D + T [P=4]; C C iii 9; D D� C;3

Q (Q+D) & 0x7fc; A A� T [Q=4]; D D iii 9; A A+D;4

P (P +A) & 0x7fc; B B � T [P=4]; A A iii 9;5

Q (Q+B) & 0x7fc; C C + T [Q=4]; B B iii 9;6

P (P +C) & 0x7fc; D D � T [P=4]; C C iii 9;7

Q (Q+D) & 0x7fc; A A+ T [Q=4]; D D iii 9;8

y y k B+S[4i�4] k C�S[4i�3] k D+S[4i�2] k A�S[4i�1];9

if jyj � L then return (y0y1 : : : yL�1);10

if odd(i) then (A; B; C; D) (A+ n1; B + n2; C � n1; D � n2)11

else (A; B; C; D) (A+ n3; B + n4; C � n3; D� n4);

Fig. 2. Cipher mapping 32-bit position index n to L-bit string SEAL(a; n;L) under the

control of a-derived tables T , R, and S.

odd(�) we mean the predicate which is true if and only if its argument is an odd

number.

Output Length. Recall that we think of SEAL as producing variable-length

output. Let L be the number of output bits desired. We assume a large bound

on L: say L � 64 � 1024 � 8. So at most 64 KBytes may be produced per index.

Mapping The Key To The Tables. Our �rst task is to specify the tables

T , R, and S, all of which depend only on the key a. The key a is used only to

de�ne these three tables.

We specify the tables using a function G. For a a 160-bit string and i an

integer, 0 � i < 2
32
, Ga(i) is a 160-bit value. The function G is just the com-

pression function of the Secure Hash Algorithm SHA-1 [10]. For completeness,

its de�nition is given in Appendix A.

Let us re-index G to construct a function � whose images are 32-bit words

instead of 160-bit ones. The function � is de�ned by �a(i) = Hi
i mod 5

where

H
5j
0
kH

5j+1
1
kH

5j+2
2
kH

5j+3
3
kH

5j+4
4

= Ga(j), for j = bi=5c.

Thus a table of � -values is exactly a table for G-values read left-to-right,

top-to-bottom.

5

Now de�ne

T [i] = �a(i) for all 0 � i < 512;

S[j] = �a(0x1000 + j) for all 0 � j < 256, and

R[k] = �a(0x2000 + k) for all 0 � j < 256:

Four words of the array R are required for each kilobyte (or fraction of a kilobyte)

of SEAL(a; n; L). Thus if one has a bound Lmax on the maximal possible value

of L then it is adequate to compute R[k] for 0 � k < 4dLmax=8192e. For the

maximalpermitted output length of 64 KBytes one needs to calculate the SHA-1

compression function 207 times.

The Pseudorandom Function. Given the number L, the tables T , R, and

S (determined by a), and a 32-bit position index n, the algorithm of Figure 2

stretches n to an L-bit pseudorandom string y.

The algorithm uses a routine Initialize which, using tables T and R, maps n

and ` to the words A;B;C;D; n1; n2; n3; n4. That procedure is given in Figure 1.

The outer loop of Figure 2 is to be broken by line 10 when enough output

bits have been collected.

Terminology. For purposes of subsequent discourse, a round refers to the

execution of any one of lines 1{8 in Figure 2, while an iteration is the execution

of all of the lines (1{11) associated to a given value of i. Thus there are eight

rounds in each iteration.

4 Explanations and Design Heuristics

Some of the structure of SEAL may be made less mysterious by the general

explanations of this section and the speci�c attacks of Section 6. The following

general heuristics were employed:

1 Using a large, secret, key-derived \S-box" (the 2 KByte table T).

2 Alternating arithmetic operations which don't commute (addition mod 2
32

and bitwise XOR).

3 Using internal state maintained by the cipher and not directly manifest in

the output data stream (the registers n1, n2, n3, n4).

4 Using simple, well-known methods where adequate (using SHA-1 to gen-

erate the tables).

Somewhat more speci�c heuristics:

5 Varying the round function according to the round number (e.g., alternat-

ing use of P and Q.)

6 Varying the iteration function according to the iteration number (e.g.,

(n1; n2) or (n3; n4) in line 11; and S[�]-values associated to the iteration).

6

The attention to the parity of the round and iteration number may help against

attacks which play o� successive rounds or successive iterations.

Details of the method used to produce the tables T , R and S (the use of

SHA-1, the indexing method, etc.) are not believed to be particularly impor-

tant; we think of these tables as \random" (no design rules are built into their

construction) and we expect that any good pseudorandom generator applied to

the key should work �ne.

Details of the function Initialize are believed to be of secondary importance.

We want A, B, C, D, n1, n2, n3 and n4 to be unpredictable functions (n; `).

Each of the �nal instruction on lines 1{4 helps to di�use information in A, B,

C and D. An earlier version of the cipher made analogous register modi�cations

in lines 5{8 but the statements would seem to have less value there and so they

were removed to save cost.

Some performance-related explanations are given below:

1 The divisions by 4 are not to be implemented by divisions or shifts; we

are simply indexing into T in units of bytes instead of words. This is more

e�cient on some platforms (which may penalize for \scaling" word o�sets)

and no less e�cient on any platformwe considered. In a high-level language

these divisions might be implemented as a cast.

2 On all processors we know of there is no performance di�erence between

using addition and XOR, and so there is no performance reason to favor

the latter.

3 On our target two-operand machine architectures it is the same cost to

compute P (P+A) & 0x7fc and then fetch T [P=4] as it would be to fetch

T [(A & 0x7fc)=4]. This is because the computation of T [(A & 0x7fc)=4], to

preserve A, must begin by movingA into a temporary register. That move

is the same cost as adding A to register P .

4 The state of P and Q is not maintained across iterations simply because

machines with only 8 registers will need to use the registers holding P

and Q at the end of the iteration. We did not want to spend the extra

cycles to write P and Q to memory and then read them back.

5 Operations are arranged so that in the clock cycle immediately following

a table lookup there is always something worthwhile to do which does not

depend on the value which is retrieved.

5 Design Process

A brief description of the design process which has led to SEALmay be considered

relevant or interesting to some.

SEAL 1.0. The project began in the summer of 1992 in response to the perception

of increasing customer needs for software-e�cient cryptography. Goals of the

design were �rst enumerated in a presentation of October 1992. Goals evolved as

we learned more; there was never any �xed or formal statement of requirements.

7

Merkle's cipher Khufu was identi�ed as the most relevant prior art. We chose

it as our starting point and searched for ways that would lead to something even

faster.

A design \philosophy" emerged. We thought it better to do exceptionally well

in environments having a particular set of minimal environmental characteristics

than to do reasonably well across a wider range of environments. Our chosen

set of operating characteristics became: a 32-bit machine with at least eight

general purpose registers, a cache of at least 8 KBytes, and a usage scenario

which partitions encryption into a performance non-critical key setup followed

by repeated and performance-critical encipherment of a reasonably large number

of bytes.

We didn't care about the syntactic
avor of the cipher we would produce|

even whether it was a block cipher or something else seemed irrelevant, except

insofar as this might in
uence the cipher's speed.

The �rst suggestion (March 1993) was for a block cipher, but soon we devel-

oped a basic \structure" for a pseudorandom function family which was going

to be faster. This structure consisted of having four registers (A, B, C, D), each

of which would modify a \neighboring" register as a result of a single lookup in

a key-derived table. After some number of such register modi�cations we would

\peel o�" the current value of the four registers and append them to the growing

keystream. This process would then be repeated.

A total of nine designs were considered between March 1993 and October

1993. Each revision was aimed to improve speed or perceived strength. Rogaway

would prepare a speci�cation and Coppersmith would attack it. Attacks were

considered far enough to make clear what was their main idea, not to assess

their exact e�cacy. Rogaway would then study the attack, try to identify some

essential weakness it exploited, and then modify the cipher (without decreasing

its speed) to try to foil any similar cleverness.

The inner loop (Figure 2) was the subject of almost all of our e�ort. Very

little attention was paid to Initialize (Figure 1) or to the table generation method.

The design progressed entirely on paper. No statistical tests or other experi-

ments were performed during the design of the cipher. Our proposal, SEAL 1.0,

was �rst described in December 1993 [12].

SEAL 3.0. In 1996 Handschuh and Gilbert [5] described an attack on a simpli�ed

version of SEAL 1.0, and an attack on SEAL 1.0 itself. They require about 2
30

\samples," each 4-words long, to distinguish SEAL 1.0 from a random function.

Their attack is responsible for the main change between SEAL 1.0 and SEAL 3.0.

That change requires the use of two new XORs for each 4 words of output, as

we now explain.

Refer to Line 11 of Figure 2. The corresponding line in SEAL 1.0 had been: if

odd(i) then (A; C) (A+ n1; C + n2) else (A; C) (A+ n3; C + n4). Now

we modify all four registers, A;B;C;D, instead of just the two registers A;C.

This better obscures relationships between the (A;B;C;D) and (A0; B0; C 0; D0

)

values of successive iterations. Without the change there is a useful property

8

on (D;C 0; D0

), say, which does not depend on any of n1; n2; n3; n4; see [5]. Un-

published predecessors of SEAL 1.0 resembled SEAL 3.0 in modifying each of

(A;B;C;D) at the end of an iteration; removing the modi�cations to B and D

was a poorly-chosen optimization.

The other di�erence between SEAL 3.0 and SEAL 1.0 is that in SEAL 3.0 (and

SEAL 2.0) table generation uses SHA-1 in lieu of the older SHA.

Statistical Tests. In response to a referee's request we subjected SEAL to a

battery of statistical tests developed byMarsaglia [6]. We computed the 10 MByte

string y = SEAL(a; 0; L)kSEAL(a; 1; L)k � � �kSEAL(a; 156249; L) for a �xed key a

and L = 64 � 8 (i.e., 64 bytes). None of the 15 tests in [8] revealed statistical

anomalies in y. In a second experiment we computed the 10.03 MByte string

z = SEAL(a; 0; L)kSEAL(a; 1; L)k � � �kSEAL(a; 152; L), where L = 64 � 1024 � 8

(i.e., 64 KBytes). Again, none of the 15 tests revealed statistical anomalies in z.

6 Illustrative Attacks

This section illustrates some attack ideas which were important to SEAL's evo-

lution. We describe three attacks on a simpli�ed version of our cipher. This

simpli�ed cipher, WEAK, is show in Figure 3.

function WEAK(a; n)

y �;

Initializea(n; 0; A;B;C;D; � � �);

for i 1 to 64 do

P A & 0x1ff; B B � T [P]; A A iii 9; B B �A;1

P B & 0x1ff; C C � T [P]; B B iii 9; C C � B;2

P C & 0x1ff; D D� T [P]; C C iii 9; D D� C;3

P D & 0x1ff; A A� T [P]; D D iii 9; A A�D;4

P A & 0x1ff; B B � T [P]; A A iii 9;5

P B & 0x1ff; C C � T [P]; B B iii 9;6

P C & 0x1ff; D D� T [P]; C C iii 9;7

P D & 0x1ff; A A� T [P]; D D iii 9;8

y y k B � S[4i�4] k C � S[4i�3] k D� S[4i�2] k A� S[4i�1];9

return y;

Fig. 3. The cipher WEAK, attacks on which are given in the text. Under the control of

a-derived tables T , R and S (computed exactly as with SEAL) this cipher maps 32-bit
position index n to 256-word string WEAK(a; n).

Assemble a list of T [�] op T [�] values. A simple attack on WEAK is based

9

on the observation that each of A, B, C and D is modi�ed only two times

using T , and the net-change due to this pair of T -dependent modi�cations is

almost directly visible to the adversary.

In this and all subsequent attacks we �x an (unknown) key a and provide

the adversary sample output strings, each of the form y = WEAK(a; n). The

adversary will not need to know the n which produced each string y.

Fix one of the strings y the adversary collects and let us write y = y0y1y2 : : :

for its words. For concreteness, let us now �x our attention on the change that

register B undergoes during the second iteration (i = 2) of the algorithm. This

change in B is manifest (apart from S[0] and S[5]) in y0 and y4. In particular,

it is easy to verify by tracing through the de�nition of WEAK that

��
y0 � S[0] � T [P1] � (y3 � S[3]) iii 9

�
iii 9 � T [P5]

�
iii 9 = y4 � S[4]

for some P1; P5 2 f0; : : : ; 511g. Distribute iii over � and collect up constants

and we get that

y4 � (y0 iii 18) � (y3 iii 27) � c = (T [P1] iii 18) � (T [P5] iii 9)

for some constant c. In other words, up to some constant c the adversary can

directly \see" in the y's the XOR of a shifted version of pairs of words of T .

To distinguish the output ofWEAK from truly random data, simply compute

the value of y4 � (y0 iii 18) � (y3 iii 27) for each output word y which is seen.

If the strings are pseudorandom then this word will take on only 2
18

possible

values, not 2
32
. From the birthday problem we will be able to make a good

prediction of random/pseudorandom using about 2
9
strings y, just by guessing

pseudorandom if we see a collision in the (y4 � (y0 iii 18) � (y3 iii 27))-values

in a sample of this size.

Sorting on bits of yj. Let us go a bit further with the above attack. We

witness

y4 � (y0 iii 18) � (y3 iii 27) � c = (T [P1] iii 18) � (T [P5] iii 9)

where P1 is the o�set into T which is the value of P determined in line 1, and

P5 is the o�set into T which is the value of P determined in line 5. The thing

to notice is that we can tell when two strings y and y0 have corresponding P1
and P 0

1 which agree. Simply sort the y-values into 512 buckets, depending on the

value of the last 9 bits of y3. All the strings in a given bucket receive the same

P1 value. Thus for the strings y of a given bucket

y4 � (y0 iii 18) � (y3 iii 27)

assumes only 512 di�erent values, and these values, apart from a shift, are the

entries of T . This forms the basis of a way to reconstruct T .

Guess and verify a correlation between i and T [i]. This next attack is

based on the fact that because T is small and \randomly-generated" it is not

10

unlikely that there will be substantial correlations between some bit (or small

set of bits) of i and some particular bit of T [i]. For example, although the least

signi�cant bit of i is expected to agree with the 9-th bit of T [i] on 256 out of

512 words, the standard deviation is 11, so it would not be strange if these two

bits agreed 240 times, or 270.

Let us index the bits of a word x by (x)1(x)2 : : : (x)32. Suppose that the least

signi�cant bit (bit 32) of i happens to be correlated to the 9-th (bit 9) of T [i].

Suppose too that the most signi�cant bit of i (bit 1) happens to be correlated to

the 18-th bit of T [i]. As an example, maybe (i)32 = (T [i])9 52% of the time, while

(i)1 6= (T [i])18 53% of the time. The adversary will be able to spot correlations

like this, based on a sample of y-values.

Once again, focus on the net change to a particular register which occurs

during a particular iteration. To be concrete, let us see how D changes during

iteration i = 2. First, in line 3, D is modi�ed by a T -value which depends on

C. While we don't know what this C-value is, after C is shifted 9 places to the

right and XORed with the modi�ed D-value the net change to bit 9 of D is

biased according to the direction of the correlation between the least signi�cant

bit of i and (T [i])9|in our example, line 3 preserves bit 9 52% of the time and

complements bit 9 48% of the time (assuming C is uniformly distributed). Next,

on line 4, D is shifted 9 places to the right. This moves the bit in question into

position (D)18. On line 7 register D is XORed with a table value which depends

on C. But this value of C is manifest in the output stream after it has been

shifted and masked by the constant S[5]. Thus if the 18-th bit of T [i] is correlated

with the most signi�cant bit of i, the change to bit 18 of D which line 7 causes

will be correlated to bit 10 (due to the right shift of C in line 7) of y5. Finally,

in line 8, the bit in question is shifted into position 27. We conclude that if the

initial assumption is correct then there will be a statistical correlation between

(y2)9� (y6)27 and (y5)10. This observation can form the basis of a statistical test

which looks for \oddities" in the table T .

7 Performance

One way to assess performance in a table-based cipher like ours is to simply

count the number of S-box lookups per byte of generated output. SEAL uses 0.5

lookups per byte of output. Merkle's 16-round Khufu uses 2 table lookups per

byte, while the S/P permutations of a software DES require 16 or 32 lookups

per byte (the former if one uses a 64 KByte internal table; see, e.g., [11]). These

comparisons ignore the rest of the work which each cipher does, and this work

is in fact greater in SEAL than in Khufu or a well-coded DES.

Another way to gauge performance is to count instructions relative to some

speci�ed machine model. On an abstract 32-bit, two-operand machine which

provides 8 registers and performs ADD, AND, MOV and XOR in one cycle, ROR

in two, the total clock count comes to about 5 instructions per byte, including

the time to read in the data stream and XOR it with the output of SEAL.

11

An implementation of SEAL in the language \C" ran at 6.9 MBytes/sec

(56 Mbits/sec) on what is now an antiquated PC (50 MHz i486DX2). The same

code ran at 15.5 MBytes/sec (124 Mbits/sec) on a low-end RISC workstation

(an SGI Indy, which has a 100 MHz MIPS 4600 Processor). Both compilations

were under the Gnu compiler gcc, with optimization. These tests computed

�Mi=0SEAL(a; i; L) for a �xed value of a, L = 1024 � 8, and a large value of M .

The cost of doing the key setup was ignored. Note too that the experimental

regime e�ectively ignores the performance hit which will be incurred if either

the plaintext being XORed with SEAL(a; n; L)-values or the internal tables of

SEAL are out of cache.

The experiments above selected L = 1024 bytes, which is an advantageous

value for the cipher. When using a small value for L the cipher spends a dis-

proportionate amount of time on Initialize: compared to 1024 bytes, L = 512

bytes and L = 128 bytes are 3% and 17% slower, respectively. A value of L just

above 1024 bytes, say 1025 bytes, is also a bad case for SEAL performance, since

Initialize is then called twice but little bene�t is made of the second call. Code

unoptimized for such a possibility can su�er a performance penalty of as much

as 7%. As L becomes very large cache interactions begin to become signi�cant

and degrade performance by as much as 21% for the maximal permitted value

of L = 64 KBytes. All of these �gures reported in this paragraph are \C" code

running on the SGI described above.

Key-setup in SEAL has a cost comparable to computing SHA-1 on about

13 KBytes of data; this is estimated to be about 5 msec on a 90 MHz Pentium [3].

In the design of SEAL no attention was paid to minimizing key-setup time. If

this is at issue in a target application for SEAL one should a di�erent method

for generating SEAL's tables (e.g., using RC4 or RC5 [14, 15]), or abandon the

use of SEAL entirely.

Roe [16] has done experiments to compare the performance of several cryp-

tographic primitives, including SEAL 1.0. In Figure 4 we report some of his data.

RC4 is a stream cipher[14]; DES [9] and RC5 [15] are block ciphers; MD5 [13]

is a cryptographic hash functions. Roe did timings on a SUN Sparc and a

DEC Alpha. Tests were done under conditions favorable to the performance

of SEAL 1.0. Although he used SEAL 1.0 and not SEAL 3.0, we have found that

SEAL 3.0 is only 3% slower. We comment that Roe's �gures do not represent

uniformly-optimized versions for all of these ciphers; in particular, the DES �g-

ure may be a factor of �ve times o� of an optimized implementation (at least

for the Alpha), and the MD5 implementation may also be under-optimized com-

pared to what is now known [1, 3].

8 Concluding Remarks

It should be emphasized that using SEAL does not, by itself, do anything to

provide for data authenticity. Many applications which require data privacy also

require data authenticity. Such applications should accompany SEAL-encrypted

data by a message authentication code (MAC). Techniques for fast MAC gener-

12

Primitive Sparc Alpha

SEAL 1.0 16.64 117.0

RC4 3.06 15.4

RC5 1.42 7.68

DES 0.294 1.86

MD5 7.28 60.0

Fig. 4. Timing �gures reported by Roe [16]. All numbers are in Mbits/sec. Refer to [16]

for experimental details and to the text in Section 7 for some signi�cant provisos.

ation are an active area of research. SEAL casts some doubt on the conventional

wisdom about the relative costs of software encryption and message authenti-

cation, since SEAL is not only faster than other encryption schemes, it is also

faster than most MACs and hash functions.

It is easy to modify SEAL to get a cipher optimized for 64-bit architectures.

The tables would be twice as wide and Initialize would be slightly changed.

SEAL has the unusual attribute that doubling the word size, and making natural

changes in the cipher's de�nition, would nearly double the cipher's speed. It is

unclear whether security would be impacted by the longer word length.

For purposes of possible export approval in various countries, an intentionally

weakened version of SEAL can easily be obtained simply by modifying the key

generation process. For example, instead of mapping variable-length key a0 to

underlying 160-bit SEAL key a according to a = SHA-1(a0), one could instead

select a = SHA-1(MASK^ SHA-1(a0)), where MASK is a �xed 160-bit mask whose

Hamming weight can be adjusted to adjust the security of the cipher.

One thing that the present paper has helped to bring out is the usefulness of

designing encryption primitives to be PRFs instead of block ciphers or stream

ciphers. A PRF may be easier to use than a stream cipher (because there are

no synchronization requirements beyond communicating the index) and easier

to make software-e�cient than a block cipher.

Acknowledgments

Special thanks to the two anonymous referees for their comments and sugges-

tions. Thanks also to Uri Blumenthal for comments and timing �gures, and to

Mike Roe for permission to repeat the timing numbers he reported in [16].

References

1. E. Biham, A fast new DES implementation in software, Fast Software Encryption

1997, Haifa, Israel. Lecture Notes in Computer Science, Springer-Verlag. January

1997.

2. E. Biham and A. Shamir, Di�erential Cryptanalysis of the Data Encryption Stan-

dard, Springer-Verlag, 1993.

13

3. A. Bosselaers, R. Govaerts and J. Vandewalle, Fast hashing on the Pentium, Ad-
vances in Cryptology | CRYPTO '96, Lecture Notes in Computer Science,

Vol. 1109, Springer-Verlag, 1996, pp. 298{312.

4. O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions,

Journal of the ACM, Vol. 33, No. 4, 1986, pp. 210{217.

5. H. Handschuh and H. Gilbert, �2 cryptanalysis of the SEAL encryption algorithm.

Fast Software Encryption 1997, Haifa, Israel. Lecture Notes in Computer Science,

Springer-Verlag. January 1997.

6. G. Marsaglia, The Marsaglia random number CDROM with the DIEHARD bat-

tery of tests of randomness. Distributed by the author (geostat.fsu.edu) from

Florida State University, 1996.

7. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptogra-

phy, CRC Press, 1997.

8. R. Merkle, Fast software encryption functions, Advances in Cryptology |

CRYPTO '90, Lecture Notes in Computer Science, Vol. 537, Springer-Verlag,

1990, pp. 476{501.

9. National Bureau of Standards, Federal Information Processing Standards Publi-

cation 46, Data encryption standard. January 1977.

10. National Institute of Standards, U.S. Department of Commerce, FIPS Publication

180-1, Secure hash standard. April 17, 1995 (supersedes FIPS PUB 180).

11. A. P�tzmann and R. A�mann, E�cient software implementation of (generalized)

DES, SECURICOM 90: 8-th Worldwide Conference on Computer and Communi-
cations Security and Protection, March 1990.

12. P. Rogaway and D. Coppersmith, A software-optimized encryption algorithm,

Fast Software Encryption, Lecture Notes in Computer Science, Vol. 809, Springer-

Verlag, 1994, pp. 56{63. (Earlier version of this paper.)

13. R. Rivest, The MD5 message digest algorithm, RFC 1321 (Internet Request for

Comments), April 1992.

14. R. Rivest, unpublished work. (A description of RC4 appears in B. Schneier, Ap-

plied Cryptography, Second Edition: Protocols, Algorithms, and Source Code in

C, John Wiley & Sons, Inc., 1996.)

15. R. Rivest, The RC5 encryption algorithm, Fast Software Encryption, Lecture

Notes in Computer Science, Vol. 1008, Springer-Verlag, 1995, 86{96.

16. M. Roe, Performance of block ciphers and hash functions | one year later, Fast
Software Encryption, Lecture Notes in Computer Science, Vol. 809, Springer-

Verlag, 1994, pp. 359{362.

17. B. Schneier, Description of a new variable-length key, 64-bit block cipher (Blow-

�sh), Fast Software Encryption, Lecture Notes in Computer Science, Vol. 809,

Springer-Verlag, 1994, pp. 191{204.

18. A. Shimizu and S. Miyaguchi, Fast data encryption algorithm FEAL, Advances
in Cryptology | Eurocrypt '87, Lecture Notes in Computer Science, Vol. 304,

Springer-Verlag, 1987.

19. D. Wheeler, A bulk data encryption algorithm, Fast Software Encryption, Lecture

Notes in Computer Science, Vol. 809, Springer-Verlag, 1994, pp. 127{134.

Appendix A. The Table-Generation Function

We specify Ga(i) for 160-bit string a and integer 0 � i < 2
32
. The latter is

treated as a 32-bit string whose value as an unsigned binary number is i. This

14

function is de�ned directly from Sections 5{7 of [10]; the de�nition is repeated

here only for ease of reference.

First we make the following de�nitions. For 0 � t � 19, set Kt = 0x5a827999

and ft(B;C;D) = (B & C) _ (B & D). For 20 � t � 39, set Kt = 0x6ed9eba1

and ft(B;C;D) = B � C � D. For 40 � t � 59, set Kt = 0x8f1bbcdc and

ft(B;C;D) = (B & C) _ (B & D) _ (C & D). For 60 � t � 79, set Kt =

0xca62c1d6 and ft(B;C;D) = B � C �D.

The 160-bit string a is broken up into �ve 32-bit words, a = H0H1H2H3H4,

and the 512-bit M1 is set to i k 0
480

and then processed by:

a. DivideM1 into 16 words W0;W1; : : : ;W15 where W0 is the left-most word,

so that W0 = i, W1 =W2 = : : := W15.

b. For t = 16 to 79 let Wt = (Wt�3 �Wt�8 �Wt�14 �Wt�16) hhh 1.

c. Let A = H0, B = H1, C = H2, D = H3, E = H4.

d. For t = 0 to 79 do

TEMP = A hhh 5 + ft(B;C;D) +E +Wt +Kt

E = D; D = C; C = B hhh 30; B = A; A =TEMP;

e. H0 = H0 +A; H1 = H1 +B; H2 = H2 +C; H3 = H3 +D; H4 = H4 +E;

After processing M1 the value of Ga(i) is the 160-bit string H0H1H2H3H4.

Appendix B. Test Case

This appendix provides adequate data to verify a correct implementation of

SEAL 3.0. Suppose the key is the 160-bit string

a = 67452301 efcdab89 98badcfe 10325476 c3d2e1f0

and assume we want SEAL to produce 4 KByte outputs (i.e., L = 32768 bits).

Then the table R consists of words R[0], R[1]; : : :, R[15]:

5021758d ce577c11 fa5bd5dd 366d1b93 182cff72 ac06d7c6 2683ead8 fabe3573

82a10c96 48c483bd ca92285c 71fe84c0 bd76b700 6fdcc20c 8dada151 4506dd64

The table T consists of words T [0], T [1]; : : :, T [511]:

92b404e5 56588ced 6c1acd4e bf053f68 09f73a93 cd5f176a b863f14e 2b014a2f

4407e646 38665610 222d2f91 4d941a21 aea77ffb 96060a3b 4682af15 13bb3680

........

54e3afcd 301e1c8f 3af3a4bf 021e4080 2a677d95 405c7db0 338e4b1e 19ccf158

The table S consists of words S[0], S[1]; : : :, S[255]:

907c1e3d ce71ef0a 48f559ef 2b7ab8bc 4557f4b8 033e9b05 4fde0efa 1a845f94

38512c3b d4b44591 53765dce 469efa02 61bea00e a45d6b7d c425744e 53f790ee

........

63d47217 741f96cc bd7dea87 fd036d87 53aa3013 ec60e282 1eaef8f9 0b5a0949

Let n = 013577af. Then y = SEAL(a; n; L) consists of y[0] k y[1] k � � � k y[1023]:

15

37a00595 9b84c49c a4be1e05 0673530f 5fb097fd f6a13fbd 6c2cdecd 81fdee7c

2abdc3e7 64209aff 00a12283 ef675085 c1634b53 289059e6 a7ab5ed9 480c01eb

........

585a2905 f0496ba5 8eb3d740 efa54b66 4d1a6134 fed9fede 636504aa 691e08e4

The XOR of the 1024 words of y is 0x3e0fe99f.

16

