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Abstract

An information-theoretic model for steganography with passive adversaries is proposed. The

adversary's task of distinguishing between an innocent cover message C and a modi�ed message

S containing a secret part is interpreted as a hypothesis testing problem. The security of a

steganographic system is quanti�ed in terms of the relative entropy (or discrimination) between

PC and PS . Several secure steganographic schemes are presented in this model; one of them

is a universal information hiding scheme based on universal data compression techniques that

requires no knowledge of the covertext statistics.

1 Introduction

Steganography is the art and science of hiding information such that its presence cannot be detected.

Motivated by growing concern about the protection of intellectual property on the Internet and by

the threat of a ban for encryption technology, the interest in techniques for information hiding has

been increasing over the recent years [And96]. Two general directions can be distinguished within

information hiding scenarios: protection only against the detection of a message by a passive

adversary and hiding a message such that not even an active adversary can remove it. A survey of

current steganography can be found in [AP98].

Steganography with a passive adversary is perhaps best illustrated by Simmons' \Prisoners'

Problem" [Sim84]. Alice and Bob are in jail and wish to devise an escape plan. All their com-

munication is observed by the adversary (the warden), who will thwart their plan by transferring

them to a high-security prison as soon as he detects any sign of a hidden message. Alice and Bob

succeed if Alice can send information to Bob such that Eve does not become suspicious.

Hiding information from active adversaries is a di�erent problem since the existence of a hidden

message is publicly known, such as in copyright protection schemes. Steganography with active

adversaries can be divided into watermarking and �ngerprinting. Watermarking supplies digital

objects with an identi�cation of origin; all objects are marked in the same way. Fingerprinting,

conversely, attempts to identify individual copies of an object by means of embedding a unique

marker in every copy that is distributed. If later an illegal copy is found, the copyright owner can

identify the buyer by decoding the hidden information (\traitor tracing") [NFC94, PS96, PW97].
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Since most objects to be protected by watermarking or �ngerprinting consist of audio or image

data, these data types have received most attention so far. A number of generic hiding techniques

have been developed whose e�ects are barely perceptible for humans but can withstand tampering

by data transformations that essentially conserve its contents [CKLS96, BGML96].

A common model and terminology for information hiding has been established at the 1996

Information Hiding Workshop [P�96]. An original, unaltered message is called covertext; the sender

Alice tries to hide an embedded message by transforming the covertext using a secret key. The

resulting message is called the stegotext and is sent to the receiver Bob. Similar to cryptography, it

is assumed that the adversary Eve has complete information about the system except for a secret

key shared by Alice and Bob that guarantees the security. However, the model does not include a

formal notion of security.

In this paper, we introduce an information-theoretic model for steganography with a passive

adversary. We propose a security notion that is based on hypothesis testing : Upon observing a

message sent by Alice, the adversary has to decide whether it is an original covertext C or contains

an embedded message and is a stegotext S. This is the problem of distinguishing two di�erent

explanations for the observed data that is investigated in statistics and in information theory as

\hypothesis testing." We follow the information-theoretic (non-Bayesian) approach as presented by

Blahut [Bla87] using the relative entropy function as the basic measure of the information contained

in an observation. Thus, we use the relative entropy D(PCkPS) between PC and PS to quantify

the security of a steganographic system (or stegosystem for short) against passive attacks. If the

covertext and stegotext distributions are equal and D(PCkPS) = 0, the stegosystem is perfectly

secure and the adversary can have no advantage over merely guessing without even observing a

message.

However, some caution has to be exerted using this model: On the one hand, information-

theoretic methods have been applied with great success to the problems of information encoding

and transmission, starting with Shannon's pioneering work [Sha48]. Messages to be transmitted

are modeled as random processes and the systems developed in this model perform well in prac-

tice. For information hiding on the other hand, the relation between the model and its validity is

more involved. A message encrypted under a one-time pad, for example, is indistinguishable from

uniformly random bits and this method is perfectly secure according to our notion of security. But

no warden would allow the prisoners to exchange random-looking messages! Thus, the crucial issue

for the validity of a formal treatment of steganography is the accuracy of the model for real data.

Nevertheless, we believe that our model provides insight in steganography. We hope that it

can serve also as a starting point for further work to formalize active adversaries or computational

security. (A game-theoretic approach to information hiding with active adversaries is presented by

Ettinger [Ett98].) A �rst extension would be to model the covertext source as a stochastic process

and consider statistical estimation and decision techniques. Another idea would be to value the

possible decisions and use the methods of statistical decision theory [Ber85].

Related to this work is a paper by Maurer [Mau96] on unconditionally secure authentica-

tion [Mas91, Sim91]. It shows how Simmons' bound [Sim85] and many other lower bounds in

authentication theory can be derived and generalized using the hypothesis testing approach. An-

other information-theoretic approach to steganography is [ZFK+98].

The paper is organized as follows. Hypothesis testing is presented in Section 2 from an

information-theoretic viewpoint. Section 3 contains the formal description of the model and the

security de�nition. In Section 4, we provide some examples of unconditionally secure stegosystems

and discuss the e�ects of data compression. A universal information hiding scheme that requires

no knowledge of the covertext statistics is presented in Section 5. It is based on a universal data
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compression algorithm, which is similar to the well-known Lempel-Ziv algorithms [ZL77, BCW90].

Some extensions and conclusions are given in Section 6.

2 Review of Hypothesis Testing

We give a brief introduction to hypothesis testing and to information-theoretic notions (see [Bla87,

CT91]). Logarithms are to the base 2. The cardinality of a set S is denoted by jSj. The entropy

of a random variable X with probability distribution PX and alphabet X is de�ned as

H(X) = �

X
x2X

PX(x) logPX(x):

The conditional entropy of X conditioned on a random variable Y is

H(XjY ) =
X
y2Y

PY (y)H(XjY = y)

where H(XjY = y) denotes the entropy of the conditional probability distribution PXjY=y.

Hypothesis testing is the task of deciding which one of two hypotheses H0 or H1 is the true

explanation for an observed measurement Q [Bla87]. In other words, there are two possible prob-

ability distributions, denoted by PQ0
and PQ1

, over the space Q of possible measurements. If H0

is true, then Q was generated according to PQ0
, and if H1 is true, then Q was generated according

to PQ1
. A decision rule is a binary partition of Q that assigns one of the two hypotheses to each

possible measurement q 2 Q. The two possible errors that can be made in a decision are called a

type I error for accepting hypothesis H1 when H0 is actually true and a type II error for accepting

H0 when H1 is true. The probability of a type I error is denoted by �, the probability of a type II

error by �.

A method for �nding the optimum decision rule is given by the Neyman-Pearson theorem. The

decision rule is speci�ed in terms of a threshold parameter T ; � and � are then functions of T . The

theorem states that for any given threshold T 2 R and a given maximal tolerable probability � of

type II error, � can be minimized by assuming hypothesis H0 for an observation q 2 Q if and only

if

log
PQ0

(q)

PQ1
(q)

� T: (1)

In general, many values of T must be examined to �nd the optimal decision rule. The term on the

left hand side in (1) is called the log-likelihood ratio.

The basic information measure of hypothesis testing is the relative entropy or discrimination

between two probability distributions PQ0
and PQ1

, de�ned as

D(PQ0
kPQ1

) =
X
q2Q

PQ0
(q) log

PQ0
(q)

PQ1
(q)

: (2)

The relative entropy between two distributions is always nonnegative and is 0 if and only if the dis-

tributions are equal. Although relative entropy is not a true distance measure in the mathematical

sense because it is not symmetric and does not satisfy the triangle inequality, it can be useful to

think of it as a distance. The binary relative entropy d(�; �) is de�ned as

d(�; �) = � log
�

1� �
+ (1� �) log

1� �

�
:
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The following relation connects entropy, relative entropy, and the size of the alphabet for any

random variable X 2 X : If PU is the uniform distribution over X , then

H(X) +D(PXkPU ) = log jX j: (3)

Relative entropy and hypothesis testing are linked through the Neyman-Pearson theorem above:

The expected value of the log-likelihood ratio in (1) with respect to PQ0
is equal to the relative

entropy D(PQ0
kPQ1

) between PQ0
and PQ1

. The following standard result shows that deterministic

processing cannot increase the relative entropy between two distributions.

Lemma 1. Let PQ0
and PQ1

be probability distributions over Q. For any function f : Q ! T , let

T0 = f(Q0) and T1 = f(Q1). Then

D(PT0kPT1) � D(PQ0
kPQ1

):

Because deciding between H0 and H1 is a special form of processing, the type I and type II

error probabilities � and � satisfy

d(�; �) � D(PQ0
kPQ1

): (4)

This bound is typically used as follows: Suppose that � is an upper bound on D(PQ0
kPQ1

) and

that there is a given upper bound on the type I error probability �. Then (4) yields a lower bound

on the type II error probability �. For example, � = 0 implies that � � 2��.

A similar result holds for a generalized hypothesis testing scenario where the distributions PQ0

and PQ1
depend on knowledge of an additional random variable V . The probability distributions,

the decision rule, and the error probabilities are now parameterized by V . In other words, the

probability distributions are PQ0jV=v and PQ1jV=v for all v 2 V, the decision rule may depend on

the value v of V , and the error probabilities are �(v) and �(v) for each v 2 V. Let the average

type I and type II errors be � =
P

v2V PV (v)�(v) and � =
P

v2V PV (v)�(v).

The conditional relative entropy between PX and PY (over the same alphabet X ) conditioned

on a random variable Z is de�ned as

D(PXjZkPY jZ) =
X
z2Z

PZ(z)
X
x2X

PXjZ=z(x) log
PXjZ=z(x)

PY jZ=z(x)
: (5)

It follows from the Jensen inequality and from (4) that

d(�; �) � D(PQ0jZkPQ1jZ): (6)

3 Model and De�nition of Security

Figure 1 shows our model of a stegosystem. Eve observes a message that is sent from Alice to Bob.

She does not know whether Alice sends legitimate covertext C or stegotext S containing hidden

information for Bob. We model this by letting Alice operate strictly in one of two modes: either

she is active (and her output is S) or inactive (sending covertext C).

If Alice is active, she transforms C to contain an embedded message E using a secret key K.

(Alternatively, Alice could also generate C herself.) Alice may use a private random source R for

embedding. The output of the hiding process is the stegotext S. Bob must be able to recover E

from his knowledge of the stegotext S and from the key K. Expressed in terms of entropy, the

system satis�es:
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Figure 1: The model of a secret-key stegosystem with passive adversary. It shows the embedded

text E, the covertext C, the stegotext S, Alice's private random source R, and the secret key K

shared by Alice and Bob. Alice is either sending covertext C or stegotext S.

1. H(SjCEKR) = 0. The stegotext is determined uniquely by Alice's inputs.

2. H(E) > 0. There is uncertainty about the embedded message.

3. H(EjSK) = 0. Bob must be able to decode the embedded message uniquely.

If Alice is inactive, she sends covertext C and no embedding takes place. The embedding

mechanism, E, K, and R can be thought of as absent.

Repetition is not considered in this model; it encompasses everything sent from Alice to Bob.

For example, if Alice sends multiple messages to Bob and at least one of them contains hidden

information, she is considered active and S consists of the concatenation of all her messages.

The probability distributions are assumed to be known to all parties if not stated otherwise. In

addition, Bob knows whether Alice is active or not.

Eve, upon observing the message sent by Alice, has to decide whether it was generated according

to the distribution of the innocent covertext C or according to the modi�ed distribution of the

stegotext S, i.e., whether Alice is active. Since this task is a hypothesis testing problem, we

quantify the security of a stegosystem in terms of the relative entropy distance between PC and

PS .

De�nition 1. A stegosystem as de�ned above with covertext C and stegotext S is called �-secure

against passive adversaries if

D(PCkPS) � �:

If � = 0, the stegosystem is called perfectly secure.

Consider Eve's decision process for a particular decision rule, given by a binary partition (C0; C1)

of the set C of possible covertexts. She decides that Alice is active if and only if the observed message

c is contained in C1. Ideally, she would always detect a hidden message. (But this occurs only if
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Alice chooses an encoding such that valid covertexts and stegotexts are disjoint.) If Eve fails to

detect that she observed stegotext S, she makes a type II error. Its probability is denoted by �.

The opposite error, which usually receives less attention, is the type I error: Eve decides that

Alice sent stegotext although it was a legitimate cover message C; this probability is denoted by �.

As a special case, one can assume that Eve never makes a type I error and accuses Alice of sending

hidden information when she is inactive (� = 0). Such a restriction could be imposed on Eve by

external mechanisms.

Lemma 1 imposes a bound on the achievable error probabilities by Eve. From (4) we obtain

the following theorem.

Theorem 2. In a stegosystem that is �-secure against passive adversaries, the probability � that

the adversary does not detect a hidden message and the probability � that the adversary falsely

detects a hidden message satisfy

d(�; �) � �:

In particular, if � = 0, then

� � 2��:

In a perfectly secure system we have D(PCkPS) = 0 and therefore PC = PS ; thus, Eve can

obtain no information about whether Alice is active by observing the message.

As an example, suppose Alice is given a digital image m that she is permitted to send to Bob.

Using a perceptional model, she has determined a set M of equivalent images that are visually

indistinguishable from m. Regardless of whether Alice is active or not, she will send a randomly

chosen element of M and this de�nes the probability space underlying C. Note that in our model,

the adversary knows at least M and possibly also m. Alice can use the techniques described below

for embedding information; however, to achieve robustness against active adversaries who modify

the image, more sophisticated coding methods are necessary (see e.g. [CKLS96]).

It may be the case that external events inuence the covertext distribution; for example, news

reports or the local weather if we think of the prisoners' problem. This external information

is denoted by Y and known all participants. Our model and the security de�nition above can

be modi�ed accordingly. The quantities involved will be conditioned on knowledge of Y and

we consider the average error probabilities � =
P

y2Y PY (y)�(y) for the type I error and � =P
y2Y PY (y)�(y) for the type II error, where �(y) and �(y) denote the type I and type II error

probabilities for Y = y, respectively.

The modi�ed stegosystem with external information Y , covertext C, and stegotext S is called

�-secure against passive adversaries if

D(PCjY kPSjY ) � �:

It follows from (6) that the average error probabilities satisfy d(�; �) � �, similar to Theorem 2.

In the next section, we show that perfectly secure stegosystems exist for particular sources

of covertext. We start with especially simple (or unrealistic) covertext distributions and then

consider arbitrary covertext statistics and the e�ects of data compression. A universal stegosystem

that includes data compression and does not rely on knowledge of the covertext distribution is

presented in Section 5.

6



4 Unconditionally Secure Stegosystems

The above model tells us that we obtain a secure stegosystem whenever the stegotext distribution is

close to the covertext distribution without knowledge of the key. The embedding function depends

crucially on knowledge about the covertext source. We assume �rst that the covertext distribution

is known and design corresponding embedding functions.

If the covertext consists of independent and uniformly random bits, then the one-time pad

provides a perfectly secure stegosystem. For completeness, we briey describe this system formally.

Assume the covertext C is a uniformly distributed n-bit string for some positive n. The key

generator chooses the n-bit key K with uniform distribution and sends it to Alice and Bob. The

embedding function (if Alice is active) consists of the bitwise XOR of the particular n-bit message

e and K, thus S = e�K, and Bob can decode by computing e = S�K. The resulting stegotext S

is uniformly distributed in the set of n-bit strings and therefore D(PCkPS) = 0. Thus, the one-time

pad provides perfect steganographic security if the covertext is uniformly random.

As a side remark, we note that this one-time pad system is equivalent to the basic scheme of

visual cryptography [NS95]. This technique hides a monochrome picture by splitting it into two

random layers of dots. When these are superimposed, the picture appears. It is also possible

to produce two innocent looking pictures such that both of them together reveal an embedded

message.

For general covertext distributions, we now describe a system that embeds a one-bit message

in the stegotext. The extension to larger message spaces is straightforward. Let the covertext C

with alphabet C have an arbitrary distribution PC . Alice constructs the embedding function from a

partition of C into two parts such that both parts are assigned approximately the same probability

mass under C. In other words, let

C0 = min
C0�C

����X
c2C0

PC(c)�
X
c62C0

PC(c)

���� and C1 = C n C0:

Alice and Bob share a one-bit key K 2 f0; 1g. De�ne C0 to be the random variable with alphabet

C0 and distribution PC0
equal to the conditional distribution PCjC2C0 and de�ne C1 similarly over

C1. Then Alice computes the stegotext to embed a message e 2 f0; 1g as

S = Ce�K :

Bob can decode the message because he knows that e = 0 if and only if S 2 CK .

Theorem 3. The one-bit message stegosystem described above is

1

ln 2

�
P[C 2 C0]� P[C 2 C1]

�2
secure against passive adversaries.

Proof. Let � = P[C 2 C0]�P[C 2 C1]. We show only the case � > 0. It is straightforward to verify

that

PS(c) =

(
PC(c)=(1 + �) if c 2 C0,

PC(c)=(1� �) if c 2 C1.
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It follows that

D(PCkPS) =
X
c2C

PC(c) log
PC(c)

PS(c)

=
X
c2C0

PC(c) log(1 + �) +
X
c2C1

PC(c) log(1� �)

=
1 + �

2
� log(1 + �) +

1� �

2
� log(1� �)

�
1 + �

2
�
�

ln 2
+

1� �

2
�
��

ln 2

= �2= ln 2

using the fact that log(1 + x) � x= ln 2.

A word on data compression techniques. Suppose the embedding as described above takes place

before compression is applied to S (or C). Data compression is a deterministic process. Therefore,

Lemma 1 applies and shows that if we start with an �-secure stegosystem, the security of the

compressed system is also at most �. To put it another way, data compression can never hurt the

security of a stegosystem and make detection easier for the adversary.

5 Steganography with Universal Data Compression

The stegosystems described in Section 4 assume that the covertext distribution is known to all

parties. This seems not realistic for many applications. However, if we extend the model of a

stegosystem to stochastic processes and consider the covertext as an ergodic source, its distribution

can be estimated by observing the source output. This is precisely what universal data compression

algorithms do for the purpose of source coding. We now show how they can be modi�ed for

information hiding.

Traditional data compression techniques, such as Hu�man coding, require a priori knowledge

about the distribution of the data to be compressed. Universal data compression algorithms treat

the problem of source coding for applications where the source statistics are unknown a priori or

vary with time. A universal data compression universal algorithm achieves asymptotically optimal

performance on every source in some large class of possible sources. Essentially, this is accomplished

by learning the statistics of the data during operation as more and more data is observed. The

best known examples of universal data compression are the algorithms by Lempel and Ziv [ZL77,

BCW90].

We describe a universal data compression algorithm based on the concept of repetition times

due to Willems [Wil89], which is related to Elias' interval length coding [Eli87]. Then we modify the

algorithm to illustrate that a stegosystem can be constructed without knowledge of the covertext

distribution. The performance of Willems' algorithm is inferior to the Lempel-Ziv algorithms for

most practical data but it is simpler to describe and to analyze. We assume that covertext and

stegotext in the model according to Section 3 are stationary stochastic processes. This corresponds

to the ergodicity assumptions that are made for many data compression algorithms.

The Repetition Times Compression Algorithm: The algorithm is described for binary

sources but can easily be generalized to arbitrary alphabets. The parameters of the algorithm

are the blocklength L and the delay D. Consider a stationary binary source X producing fXtg =
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X1;X2; : : : with values in f0; 1g. The source output is divided into blocks Y1; Y2; : : : of length L

bits each. Encoding of a block Yt operates by considering its repetition time, the length of the

interval since its last occurrence. Formally, the repetition time �ty of the block Yt = y satis�es

Yj 6= Yt for 1 � j < �ty and Yt��ty = Yt. If �ty < 2D, the encoder outputs C(�ty), using a

particular variable-length encoding C of �ty described below. If �ty � 2D, however, the block y is

retransmitted literally. The distinction between repetition time encoding and literal data is marked

by a single bit in the output stream.

Repetition time is encoded using the following code for integers between 1 and 2D � 1. Let

Bl(k) denote binary representation of the integer k using l digits and let d = dlogDe. The encoding

C is

C(t) = Bd(blog tc) k Bblog tc(t� 2blog tc);

where k denotes the concatenation of the bit strings. Thus, C(t) contains �rst the binary length

of t encoded using �xed length d and then the remaining bits of t except for the most signi�cant

bit. For initialization, a block y that occurs for the �rst time is encoded as if it had occurred at

time t = �y.

The encoder and decoder maintain a bu�er of the last 2D blocks of the source. In addition,

the encoder maintains an array indexed by L-bit blocks y that contains the position ty (modulo

2D) where y last occurred (the time bu�er). Encoding and decoding therefore take only a constant

number of operations per block. The formal analysis of the scheme [Wil89] using D = L shows

that for L!1, the encoding rate (the average number of code bits per source word) converges to

the entropy rate of the source X.

The Modi�cation for Information Hiding: The stegosystem based on Willems' algorithm

exploits the fact that the average repetition time of a block Yt = y yields an estimate of its

probability since it will converge to PY (y)
�1. If the block y is replaced with another block y0 close

to y in average repetition time (and therefore in probability), the source statistics are only slightly

altered. Information is only hidden in blocks with low probability, as determined by a stego rate

parameter � > 2�D. Alice and Bob share an m-bit secret key K and Alice wants to hide an m-bit

message E.

Here, both the encoder and decoder maintain a time bu�er indexed by blocks. In addition to

the index t of the last occurrence of block y, each entry contains also its average repetition time

�ty and the number of its occurrences so far, ny. For each encoded block y with repetition time

�ty, the average repetition time �ty is replaced by (ny�ty + �ty)=(ny + 1). In addition, ny is

increased, but never beyond 2D. Let r(y) denote the rank function of blocks that associates with

a block y the rank of �ty, considering the current values of the average repetition times.

Information hiding takes place if the encoder or the decoder encounters a block y such that

�ty �
1
�
(before updating bu�ers). If this is the case, bit j of the message m is embedded in y0

according to

y0 = r�1
�
r(y) + (mj �Kj)

�
and encoding proceeds as before with y0 replacing y. In other words, y0 is either equal to y or to the

block immediately following y in the average repetition time ranking, depending on the embedded

bit. The decoder computes the average repetition times in the same way and can thus detect the

symbols containing hidden information and decode E similarly.
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Compared to data compression, the storage complexity of the encoding and decoding algorithms

is increased by a constant factor, but their computational complexity grows by a factor of about L

due to the maintenance of the ranking.

The resulting stegosystem achieves asymptotically perfect security since the distance between

the probabilities of the exchanged blocks vanishes. The formal statement of this will be given in

the full version of the paper.

6 Extensions

The presented information-theoretic model for steganography can be considered as one particular

example of a statistical model. We propose to consider also other approaches from statistical

decision theory. As noted before, an immediate extension would be to model the covertext source

as a stochastic process.

Simmons' original scenario of the prisoners' problem includes authentication, that is, the secret

key K shared by Alice and Bob can partially be used for authenticating Alice's messages. The

reason for this is that Alice and Bob want to protect themselves (and are allowed to do so) from

a malicious warden that tries to fool Bob into accepting fraudulent messages as originating from

Alice. This implies some changes to the model. Denote the part of the key used for authentication

by Z. Then, for every value z of Z, there is a di�erent covertext distribution PCjZ=z induced by the

authentication scheme in use. However, since the adversary Eve does not know Z, the covertext

distribution to consider for detection is PC , the marginal distribution of PCZ . We note that this

model di�ers from the general scenario with an active adversary; there, the adversary succeeds if she

can destroy the embedded hidden information (as is the case in copyright protection applications,

for example). Here, the prisoners are only concerned about hiding information in messages that

may be authenticated to detect tampering.

As already mentioned in the Introduction, the assumption of a �xed covertext distribution

seems to render our model somewhat unrealistic for the practical purposes of steganography. But

what are the alternatives? Should we rather study the perception and detection capabilities of

human cognition since most cover data (text, sound, images) is ultimately intended for human

receivers? Viewed this way, steganography could fall entirely into the realms of image, audio, and

speech processing or arti�cial intelligence. However, it seems that the information-theoretic model

and other statistical approaches will ultimately be more useful for deriving statements about the

security of information hiding schemes|and a formal security notion is one of the main reasons for

introducing a mathematical model of steganography.
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