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1 Introduction

The best algorithms for lossless compression of text are those which adapt to the text

being compressed [1]. Two classes of such adaptive techniques are commonly used. One

class matches the text against a dictionary of strings seen and transforms the text into a

list of indices into the dictionary. These techniques are usually formulated as a variant

on Ziv-Lempel (LZ) compression. While LZ compressors do not give the best compression

they are widely used because of their simplicity and low execution overhead.

The best compression is obtained by another class of compressors which use adaptive

statistical modelling. These split compression into two steps. The �rst step accumulates

a statistical model of the characters seen so far in the input text. As each character is

encoded this model is used to generate a probability distribution over those characters

which can occur next. Arithmetic coding is then used to optimally encode the character

which actually does occur with respect to this distribution.

The best compression has been obtained from a series of variants of PPM modelling [1].

PPM models are built up by counting the characters that have occurred following contexts

of prior characters. For example, all the characters following `a' are recorded. The next time

`a' occurs the counts associated with it are used to generate the probability distribution for

the following character. The PPM techniques blend together the predictions from contexts

of varying lengths to arrive at an overall probability distribution. For practical reasons of

memory usage and execution time most PPM variants �x an upper bound to the lengths of

the contexts, although recently a variant which uses unbounded length contexts has been

very successful [2].

The focus of this paper is the problem of transforming the set of counts accumulated

for a particular context into a probability distribution. To simplify our discussion and later

experiments we will focus on the case when the alphabet of characters is binary with just

two symbols: 0 and 1. Now in a statistical model each context will deliver two counts: C0,

the number of times a 0 has occurred, and C1, the number of times a 1 has occurred. A

naive estimate of the probability of character i could be obtained by the ratio

pi =
Ci

C0+C1
:

A fundamental problem with this is that it will generate a zero probability if C0 or C1 is

zero. Unfortunately, a zero probability prevents arithmetic coding from working correctly

as the \optimum" code length in this case is in�nite. Consequently any estimate of the

probabilities must be non-zero even in the presence of zero counts. This problem is called

the zero frequency problem [7] and was discussed at least as early as Kant.

A well known solution to the problem was formulated by Laplace and is known as

Laplace's Law of Succession. It states that for the binary case the estimate for the proba-

bility of the next character being an i is given by
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Method Escape probability

A 1

n+1

B u�t1
n

C u
n+u

D u=2

n

P t1
n
� t2

n2
� t3

n3
� : : :

X t1
n

XC t1
n

when 0 < t1 < n,
u

n+u
otherwise

n is the number of tokens seen so far

u is the number of unique tokens seen so far

ti is the number of unique tokens that have

been seen exactly i times so far

Table 1: Di�erent models for the escape probability.

pi =
Ci+1

n+2
(i = 0; 1)

where n = C0 + C1 is the total count of characters seen so far in the current context.

Laplace's Law of Succession can be generalized both to non-binary alphabets and to

allow the added constant to be varied. The Generalized Law of Succession states that

pi =
Ci+r
n+r

(i = 0; 1)

where r is a �xed parameter. The probabilities generated by this law are always non-zero

provided r is greater than 0. The original version with r = 1 is known to be optimal if the

prior distribution for the pi is uniform. However, without making some prior assumption

like this there is no way to choose an optimal value for r.

For the PPM data compression scheme [1, 2] the prediction of the next character is

based upon the last few characters of the context. However a problem occurs if the next

character has never been seen in the current context. In this case, an escape probability

is computed to escape down to shorter contexts, the escaping continuing until a context is

found which predicts the next character, or until the context is of zero length, in which case

a default model is used which predicts all characters in the alphabet with equal probability.

Estimating the escape probabilities is just the zero-frequency problem in another guise.

A similar method of escaping is used for the WORD data compression scheme [5]. The

model is based upon predicting words rather than single characters. If the word is novel

(has not occurred before), then the model escapes down to a character based model similar

to PPM.

Methods proposed for estimating the escape probability are shown in Table 1. Methods

A and B are described in [3, 8]. Method A is based upon Laplace's Law whereas method

B still classi�es a character as being novel even if it has occurred once before. Method C

proposed in [6] uses the number of times a novel character has occurred before as the basis

of its probability. Method D [4] is a minor modi�cation to method C. Experiments with

compressing �les show that method D is slightly better than method C, but both methods

perform better than methods A and B. Methods P, X and XC described in [8] are based

upon a Poisson process model and perform better than the other methods in most cases.
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Figure 1: Histograms of context probabilities

Clearly there are many ways that the probability estimation problem can be dealt with.

In this paper we report on experimental a posteriorimeasurements of character frequencies

as they depend on the prior counts. The next section describes how the measurements

were done. Section 3 describes the results of these measurements. Section 4 describes some

results on larger alphabets. Section 5 concludes with a summary and discussion of the

implications of the results for data compression.

2 Experiments with bitstrings

The context trie data structure described in [2] was used to collect statistics for contexts

of unbounded length over a binary alphabet. These contexts were used for collecting

statistics on the actual frequencies with which novel events occur. It is these which can

be compared experimentally with the probabilities estimated by theories such as Laplace's

Law of Succession.

As a �rst experiment, we determined the probability of a particular bit occurring based

upon the C counts in all the current active contexts as the context trie data structures were

being updated. The histogram of the frequencies of these observed probabilities may be

used to gain insight into the nature of the zero frequency problem for bitstrings. Two such

histograms for two �les in the Calgary corpus [1], book1 and obj2, are shown in Figure 1.

In the graphs, the frequency of the probabilities of a 0 bit using Laplace's Law is plotted.

The histogram for book1 is typical of many of the graphs for other �les in the corpus.

Large peaks occur for pairs of small counts. Such peaks can be seen at probabilities

0:25; 0:33; 0:66 and 0:75 in the graph. Another discernible pattern is that probabilities near

0:5 occur relatively infrequently, most estimates are near the extreme probabilities of 0

and 1. Although not shown by the histograms, these higher frequencies are predominantly

explained by the frequent occurrences of contexts where one of the counts is zero.

The histogram for obj1 is noticeably di�erent from book1. Although the same pattern

of low frequencies for the mid-range probabilities can be discerned, there is no peak near

a probability of zero and a very high peak close to a probability of 1 (this peak is actually

ten times higher than it appears as it has been truncated to �t it into the diagram). This

peak can be explained by the long runs of 0 bits which occur in the �le.

Laplace's Law (with r = 1) is optimal if the prior distribution of probabilities is uniform,

clearly from Figure 1 the probabilities are very far from this. Although such histograms

are useful for demonstrating that the assumption of a uniform prior distribution is invalid,

3



0

50

100

150

200

250

300

350

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

Cy=0

r=1
Experimental (C0 count)
Experimental (C1 count)

0

5

10

15

20

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

Cy=1

r=0
r=1

Experimental (C0 count)
Experimental (C1 count)

0

2

4

6

8

10

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

Cy=2

r=0
r=1

Experimental (C0 count)
Experimental (C1 count)

0

1

2

3

4

5

6

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

Cy=3

r=0
r=1

Experimental (C0 count)
Experimental (C1 count)

Figure 2: Ratio of T counts for the �le book1

it doesn't give a real insight into what is going on or what other probability estimators

should be used. Another problem is that in deciding which probability to plot, we have to

choose some method to overcome the zero frequency problem (Laplace's Law was chosen

in this case) even though the whole point of the experiment was to investigate this in the

�rst place.

As another experiment we can tabulate the actual occurrences of bits that follow a

particular context. To accumulate the actual observed counts we used two arrays, T0
and T1. Whenever a context occurred with associated counts C0 and C1, then if a 0 bit

actually followed we incremented the count in T0[C0; C1], otherwise we incremented the

count in T1[C0; C1]. After the fact these counts re
ect the actual frequency with which

the predicted characters appeared in this context, which can then be compared with the

probability estimated using the counts C0 and C1.

Figure 2 displays the results for the �le book1. In each of the diagrams (which we call

T plots), the ratio of the T counts (T0[C0; C1]=T1[C0; C1]) is plotted against each of the

C counts, with one of them (C0 or C1) varying along the horizontal axis while the other

is constant. These have been labelled \Experimental (C0 count)" and \Experimental (C1

count)" in the diagrams. These plots are a convenient way of displaying the results as

estimators using the generalized Laplace's Law form straight lines. For comparison, two

line plots for ratios predicted by Laplace's Law with r = 1; (Cx + 1)=(Cx + Cy + 2) and

r = 0; Cx=(Cx + Cy + 2) are included for comparison where Cx is the count plotted on the

horizontal axis, and Cy is the other count which is constant. (r = 0 is not plotted when

Cy = 0 as it then gives invalid zero probabilities).
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Figure 3: Ratio of T counts for a random �le

The four graphs shown in Figure 2 are for the four cases when one of the C counts

is either 0; 1; 2 or 3. Cx on the horizontal axis (C1 or C0) varies from 0 to 20. The

maximum C counts which actually occurred will quite likely be greater then 20, however,

their frequency is low and they do not materially a�ect the results. There are of course

two plots of observed values in each graph, corresponding to predictions when Cx = C0

and Cy = C1 and the other case when Cx = C1 and Cy = C0.

3 Results

The graphs demonstrate a striking dichotomy in the results. For the three graphs where

Cy equals 1, 2 and 3 the plotted values lie between the lines for r = 0 and r = 1. At least

for this �le Laplace's Law, perhaps with a generalized coe�cient of r = 0:5 or so, seems to

provide an excellent estimator for the true probabilities.

For the deterministic case where Cy = 0 the results are strikingly di�erent. The experi-

mental values lie between the lines for r of roughly 0:01 to 0:05. There is also an asymmetry

between the results for the two di�erent curves (although they are both within the same

order of magnitude). This pattern has been observed for all �les in the Calgary corpus.

To gain some insight into the meaning of these results we constructed the T plots for

a random bitstring in Figure 3. As expected, since both a 0 or 1 is equally likely in all

contexts in a random bitstring, the resulting T plots for all counts approximate a horizontal

line at a ratio of the T counts equal to 1:0. Clearly such T plots sharply distinguish the

actual �les in the corpus from random data. One feature that is common to all these plots

is that as the count increases, the amount of noise in the data also increases. This is a

simple consequence of the lower number of occurrences of high counts.

The T plots for deterministic cases for the other �les in the Calgary corpus are shown

in Figure 4. The plots for the �les book2, paper2, and progc show a similar pattern to that

observed for book1. The graphs are linear for low counts, and all �t between the lines for

r = 0:1 and r = 0:05. In all cases the data at higher counts is very noisy. This tendency is

more marked for smaller �les such as paper2 and progc.

The T plots for the other �les shown in the diagram are more exotic. The plots for

the �les news, obj2, both show large 
uctuations. news contains peaks which occur at

the same point for both of the C counts (at Cx = 9). It is hard to know what to make of

these large abrupt changes as Cx increases. One possibility in news is that there is some

pattern which repeats 9 times through the �le leading to many contexts repeating 9 times.

5



0

100

200

300

400

500

600

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

"book2" (Cy=0)

r=0.05
r=0.1

Experimental (C0 count)
Experimental (C1 count)

0

100

200

300

400

500

600

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

"geo" (Cy=0)

r=0.05
r=0.1

Experimental (C0 count)
Experimental (C1 count)

0

100

200

300

400

500

600

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

"news" (Cy=0)

r=0.05
r=0.1

Experimental (C0 count)
Experimental (C1 count)

0

100

200

300

400

500

600

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

"obj2" (Cy=0)

r=0.05
r=0.1

Experimental (C0 count)
Experimental (C1 count)

0

100

200

300

400

500

600

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

"paper2" (Cy=0)

r=0.05
r=0.1

Experimental (C0 count)
Experimental (C1 count)

0

100

200

300

400

500

600

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

"progc" (Cy=0)

r=0.05
r=0.1

Experimental (C0 count)
Experimental (C1 count)

0

100

200

300

400

500

600

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

"progp" (Cy=0)

r=0.05
r=0.1

Experimental (C0 count)
Experimental (C1 count)

0

100

200

300

400

500

600

0 5 10 15 20

R
at

io
 o

f T
 c

ou
nt

s

Cx

"trans" (Cy=0)

r=0.05
r=0.1

Experimental (C0 count)
Experimental (C1 count)

Figure 4: Ratio of T counts for deterministic contexts
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Figure 5: Ratio of T counts for non-deterministic contexts
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Examining news by eye shows no such obvious 9 fold repetition. The �le does have a clear

repetitive structure consisting of a number of articles from a news group with stereotyped

headers at the beginning of each, however, there are not 9 articles! The largest deviation

from Laplace's Law is seen for trans where the ratio of the T counts is over 200 for all of

the counts and nearly reaches 900 for Cx = 20.

The plot for the �le geo is also interesting. Although the later part of this plot is similar

to book1, there is a noticeable drop in the curve for lower counts. This is an indication

that the geo is relatively random, with the �le becoming increasingly more deterministic

as the counts increase. It is noteworthy that geo is one of the harder �les in the corpus to

compress and that techniques that compress the other �les in the corpus poorly sometimes

do very well on this �le [1]. It's anomalous behavior may be because it is more random

and has less structure than the other �les.

Figure 5 shows T plots for the other �les in the Calgary corpus with Cy = 2. In all

cases except geo these verify our earlier observation that Laplace's Law provides a good

approximation to the observed ratios. Emphasizing its anomalous behavior the plots for

non-zero counts for geo noticeably deviate from Laplace's Law, with high counts (6 and

above) having plots similar to those observed for the random �le.

4 Experiments with character strings

Another possibility for investigating the zero frequency problem is to examine 8-bit char-

acter string contexts as opposed to bitstring contexts. A similar approach to that taken

for bitstrings can be taken here. We can count the number of times novel characters occur.

However, the increased size of the alphabet complicates the collection of the data, and

at the same time the frequency counts are much lower, hence there is more noise. We

can, however, examine the distribution of novel events that occur in deterministic contexts

where only a single character has been seen before. In these contexts, we can count both

the number of novel characters and the number of times the deterministic character (the

one that has been seen before) follow. These counts can be collected for all determinis-

tic contexts that have the same prior count for each character, regardless of the length

of the context. The results we obtain can be compared with the algorithms proposed for

computing the escape probability shown in Table 1.

Taking the various estimators from Table 1 and applying them to this case, we have

u = 1 and tn = 1 with all other ti = 0. So for methods A and C the estimator for the

escape probability is 1

n+1
which is just Laplace's Law with r = 1. The estimator for B is 1

n

and for D 1

2n
. P, X and XC break down in this case (because most of the ti are zero) and

default to the estimator 1

n+1
.

Figure 6 shows the results for the �le book1. Four plots are shown for the letters `a',

`b' and `e' and for the space character. The count plotted on the horizontal axis is the

number of times the character had been observed in the context before. (Remember that

the contexts for which data is being collected are deterministic, so only the character that

is plotted has been observed before). The \escape ratio" shown on the vertical axis is the

ratio of the deterministic character count divided by the novel character count. (These

plots are identical to our earlier T plots in the binary case).

Also shown on the graph is the estimator 1

n+1
for the escape probability. The results

here are somewhat more mixed and inconsistent than in the earlier binary T plots. The

plots for `a', `b' and `e' lie well above the r = 1 line and are roughly in the range r = 0:5 to

0:25. The plot for space is completely di�erent as it lies well below the r = 1 line, perhaps
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Figure 6: Escape ratio for the �le book1

more closely approximating random input. Why this is so is not clear.

5 Conclusions

For a binary alphabet we have found experimentally that probability estimates using

Laplace's Law are accurate only if both the characters have occurred at least once before.

If one of the counts is zero then the estimates diverge widely from Laplace's predictions.

The implications for compression are even stronger than this data indicate as the expected

entropy is insensitive to the estimator used when both counts are non-zero, however, the

dependence is very sharp in the deterministic case. For example, the results indicate that

the parameter r in the generalized Laplace's Law should be in the region of 0.05 for the

deterministic case. If instead an r of 1 were used the expected compression is reduced by

a factor of 3. In contrast for non-deterministic contexts the expected compression never

varies by more than 5% over the same range for r.

So, even if deterministic contexts are used only relatively infrequently during compres-

sion, they could still have a very large e�ect on the overall compression. While more

di�cult to observe and interpret, a few results for a non-binary alphabet indicate that it is

still true that in deterministic contexts there can be large deviations from commonly used

estimators.

These results indicate that in constructing a statistical text compression system de-

terministic contexts should be treated as special cases. Also given the wide variations

between the measurements for the deterministic case on di�erent �les it is probably worth-

while adapting the estimator to the actual data.
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