
Sub-linear Decoding of Hu�man Codes Almost In-Place

Andrej Brodnik� Svante Carlssony

May 6, 1998

Abstract

We present a succinct data structure storing the Hu�man encoding that permits sub-

linear decoding in the number of transmitted bits. The size of the extra storage except for

the storage of the symbols in the alphabet for the new data structure is O(l logN) bits, where

l is the longest Hu�man code and N is the number of symbols in the alphabet. We present

a solution that typically decodes texts of sizes ranging from a few hundreds up to 68 000

with only one third to one �fth of the number of memory accesses of that of regular Hu�man

implementations. In our solution, the overhead structure where we do all but one memory

access to, is never more than 342 bytes. This will with a very high probability reside in cache,

which means that the actual decoding time compares even better.

1 Introduction

If you have an alphabet of N symbols that you would like to encode the typical solution would be

to use dlogne bits to encode N di�erent numbers, each number corresponding to a symbol. This

is done, for example, in ASCII-coding. If all symbols in a text that should be coded are equally

frequent this will also give a minimal size encoding in the number of bits used. The encoding of a

symbol is done by a standard dictionary look-up and the decoding is done by a constant-time table

look-up.

If the frequency between the symbols varies one can construct a smaller encoding of a given

text. Let us arrange N symbols with normalized frequencies �i (0 � i < N) at leaves of a binary

tree, where li is the depth of the leaf. The binary tree with the minimal weighted external path

length

l = min
N�1X

i=0

�ili (1)

is called the Hu�man tree (cf. [5, 13]).

A path from the root to the leaf in a binary tree can be encoded as a binary string where

descending to the left (right) is represented with 0 (1) in the string. Using such a technique we can

uniquely encode each symbol in the text. Moreover, these encodings are pre�x-free. The encoding

constructed using a Hu�man tree, is called Hu�man encoding.

�Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia and Department of Computer Science,

Lule�a University, Sweden,
yDepartment of Computer Science, Lule�a University, Sweden

1



It is easy to see that the Hu�man encoding, because of the property from eq. (1), gives the

best possible compression of a �nite text if one has to use one static code for each symbol of the

alphabet. Therefore the encoding is extensively used in various �elds of computer science, such as

picture compression ([1]), HDTV ([4]), data transmission ([4, 5]), etc. We gain this decrease of the

size of the encoded text at the cost of increased decoding time, which is linear in the number of

bits of the text.

In this paper we are considering the size of the data structure to store the Hu�man tree and

the time necessary to decode a given Hu�man code of a symbol. The best solution known so far

requires D+2N�3 space for the data structure (D is the size of dictionary storing the symbols) and

O(l) time to decode the symbol ([1]). Moreover, the data structure, and hence, the accompanying

algorithm, is very involved. In this paper we improve the space bound to D + O(l logN) bits for

the data structure with a hidden constant at most 4 (l is the longest Hu�man code); and the time

bound to �(log l0) worst-case (l0 is the number of di�erent lengths of Hu�man codes). The average

decoding time for any Hu�man tree is bounded by �(log logn). In fact, if the symbols have equal

probabilities we have an in-place, constant time decoding solution.

The paper has a usual structure: �rst we do the homework by browsing through the literature

searching for similar and related solutions; then we present general ideas how to change the Hu�man

tree not changing the cost of encoding described by the optimization function in eq. (1). In the core

of the paper we present the basic structure and the decoding algorithm. This solution is further

improved to the best possible on the average time-wise and almost optimal space-wise. Finally, we

present some practical results of our algorithms as they are used in the Phone Book of Slovenia,

showing a remarkable speed-up and space reduction.

Notation: In this paper we consider symbols with normalized frequencies �i, 0 < i � N andP
N�1

i=0
�i = 1. The length of the Hu�man code of the ith symbol is li bits, the longest code is l bits

long, the number of di�erent code lengths is l0 and the weighted length of all codes is l =
P

N�1

i=0
�ili.

To write down all the symbols we need D space.

2 Homework

Construction of the Hu�man codes minimizes eq. (1) over all possible trees (cf. [5]). There exists

a simple greedy algorithm which, from the list of symbols with frequencies, constructs Hu�man

codes in O(N logN) time (cf. [2, pp. 339{343]). The algorithm �rst sorts symbols in descending

order of frequencies (�(N logN) time), and then constructs the Hu�man tree (�(N) time). The

whole construction takes O(N) registers of space, but can be brought down to N +O(1) registers

([9]).

There are numerous variations to the basic problem. In the basic version we have as an input the

list of symbols with their frequencies. However, we do not always have a possibility to construct

such a list. In this case we use dynamic Hu�man coding (cf. [13, 14]). Even more generalized

version of the problem is when we do not have the list of symbols either (cf. [7]). Yet another

version of the problem is to construct Hu�man codes that must be shorter than some prede�ned

constant (cf. [8]). The solution presented in this paper can be applied to all these di�erent versions

of the problem. However, our solution only substantially speeds up their decoding process, while

(in general) it does not decrease the size of the data structure.

When the Hu�man encoding is constructed appears the problem of its decoding. The decoding

2



algorithm has to be very fast and simple. The main reason is that it usually runs on a cheap

hardware without too much memory (e.g. when used for HDTV etc.). Therefore a number of

di�erent decoding algorithms were constructed which try to minimize the size of the data structure

and simultaneously decrease the decoding time (cf. [11, 4, 1, 6]). All of the mentioned algorithms

try to traverse the Hu�man tree constructed by the common \merging algorithm" (cf. [2, pp. 339{

340]). They apply at least one of the following two techniques: they \wrap" the Hu�man tree in

such way that the leaves are replaced by the root of the tree; and/or they layer the tree (graph)

into a small number of layers (preferably constant number) that are inspected quickly. Technically,

the �rst technique gives a directed graph which needs to be traversed and when the root is reached,

the code is decoded (cf. �nite automaton); while the second technique gives an r-ary trie (graph).

Applying only the �rst technique can give us O(l) time andD+O(N) space solution, while applying

only the second technique can give us O(1) time and O(D + 2l) space solution. Obviously, there

is a wide spectrum of solutions between both techniques which, however, employ involved pointer

passing data structures.

3 Mutation of the Hu�man Tree and the Basic Data Struc-

ture

Vitter ([13]) states the following important so-called characterization of Hu�man trees (cf. Figure 1):

Lemma 1 (Sibling Property) A binary tree with N leaves is a Hu�man tree i�:

1. the N leaves have nonnegative weights �i (0 < i � N) and the weight of each internal node

is the sum of the weights of its children; and

2. the nodes can be numbered by weight, so that nodes 2j + 1 and 2j are siblings (0 < j < N)

and their common parent node is higher in the numbering.

13

1

2 3

4 5 6 7

8 9 10 11

12


