
Using Neural Networks for Nonlinear Predictive Coding

Kristopher D. Giesing

March 18, 1999

Abstract

Neural networks o�er expressive power that is not present in linear systems. However, the relationship

between the nonlinear systems of neural networks and their linear cousins is often poorly understood. In

this experiment, neural networks were used to implement a nonlinear version of a well understood linear

system: linear predictive coding. A neural network was trained to emulate �rst an FIR �lter, then an IIR

�lter, and �nally (in direct correlation with the LPC model) a short segment of a musical sample. In all

cases the neural network's performance was a reasonable analogue of the performance of linear systems.

1 Introduction

Since the resurgence in popularity of neural networks and parallel distributed systems in the mid-1980s, neural
networks and related systems have been applied to a variety of musical tasks. Many of these have involved
learning by example musical rules which, if encoded explicitly, would be cumbersome and in some cases incon-
sistent with each other. Neural networks have been an attractive solution because of their �black-box� nature;
one must simply choose an appropriate sample set to teach the network, and the network itself is expected to
derive any features and/or similarities in and among those samples relevant to the tasks

However, by the same token, it is sometimes di�cult to ascertain the nature of the calculations that the
network is performing to arrive at its conclusions. In some cases one may begin to suspect that the network is
performing a simple statistical average over its inputs, providing a merely linear interpolation among its training
stimuli as a response to novel input.

The computational power of distributed processing lies in its nonlinear nature. A distributed system with
linear transfer functions can be reduced to a simple matrix operation on its input; only systems with nonlinear
transfer functions can hope to solve more complex tasks, such as categorizationand general rule coding. However,
it not always clear when a task provided to a network will exploit the nonlinear nature of the system.

The goal of this experiment was then twofold. First, by applying neural networks to a signal processing task
whose linear domain is well understood, we may shed some light on the relationships between nonlinear systems
and their linear analogues. Second, it is hoped that the application of such a nonlinear system will provide novel
and interesting results for those composers interested in the transformation of sound.

2 Theoretical Background

2.1 Linear Predictive Coding

Linear predictive coding assumes that a signal may be approximated by a linear combination of its previous N
samples:

x(n) �
NX
k=1

akx(n� k) (1)

or

x(n) =
NX
k=1

akx(n� k) +Gu(n) (2)

1



where u(n) is assumed to be a random (stochastic, white-noise) signal. Note that

X(z) =
NX
k=1

akz
�kX(z) +GU(z) (3)

If we introduce the notion of a transfer function H(z)which relates U(z) to X(z); then we have:

H(z) �
X(z)

U(z)
=

G

1�
P

N

k=1
akz�k

(4)

Note that H(z) is the representation of an in�nite impulse response (IIR) �lter. Thus the signal is modeled
as noise �ltered by an IIR �lter with poles at the peaks of the signal's spectrum.

2.2 A Neural Network implementation

Neural networks o�er a straightforward extension of the LPC model. Here a neural network is tasked with
predicting the next sample of a sound based, as above, on its previous N samples. In this case, however, the
solution may be a nonlinear combination of those samples.

We shall consider the network to be a feedforward network. Other representations are possible; for example,
a recurrent network may be used to give the network a sense of �memory� in addition to the current inputs.
However, the feedforward network is arguably the most direct extension of LPC , and o�ers a simple model for
analysis.

Thus we have N inputs (representing the N delayed sample values), feeding into a hidden layer with M units,
feeding �nally into a single output whose value represents the network's prediction. The equation for such a
system is as follows:

x(n) � F

 
NX
i=1

aiF (
MX
k=1

bkx(n� k)))

!
(5)

where F (x) is the nonlinear transfer function of the network (assumed, for simplicity, to be the same function
for both hidden and output layers). Since we are here concerned with a continuous rather than discrete output,
we use a smooth hyperbolic tangent sigmoid (tansig) transfer function for both hidden and output layers:

F (x) �
2

1� e�2x
� 1 (6)

This function has a slope of 1 near the origin, and curves to approach �1 as x ! �1. Thus, the network
has near-linear response with small coe�cients ai and bk. We would then expect the network to be able to �nd
solutions at least as good as their linear relatives.

Once an approximation is found, the network can then be fed a scaled stochastic signal u(n) and will produce
its prediction. It is important to note that the network must take into account its own previous predictions,
that is, it must operate on the past samples as �ltered through the network's nonlinear system. How, then,
should the stochastic signal and the prediction be combined? The answer is surprisingly simple; the network's
own training error, a sum-squared error over the training set, provides the scale-factor G for the residual u(n):

G =
p
SSE=length(set) (7)

where SSE is the sum-squared error produced during training. Thus, G is simply the average error per
prediction. Looking at eq. (2) above, we can see that this makes perfect sense in our model.

3 Experimental Setup

The network architecture was chosen to be a three-layer feedforward network with N inputs (representing the N
previous sample values) and one output. The number of hidden units was, for simplicity, kept consistent with
the number of inputs; that is, for this experiment, M = N . The network was constructed and trained using
MATLAB's Neural Network Toolbox. The training algorithm used was the Levenberg-Marquardt optimization

2



technique, which trades memory and longer per-epoch training time to achieve better error minimization. The
transfer function for both hidden and output layers was the tansig function, as indicated above.

The experiment was divided into three parts based on the content of the training set (corpus) and the
generalization technique. These three parts progressed in the complexity of the learning task required of the
network, leading up to the full LPC task. In all cases the training set consisted of 1000 samples of a signal,
windowed to provide N samples at a time, with the goal of predicting the N + 1st sample.

In the �rst experiment, the network was asked to predict the upcoming sample of noise �ltered with a �nite
impulse response (FIR) �lter. The training set was the un�ltered noise values, while the desired response was
the actual �ltered value. Thus, the network was asked to emulate an FIR �lter. Because the signal was actually
�ltered with an FIR �lter whose coe�cients were known quantities, bounds on the sum-squared error of the
linear �t could be calculated directly from the original FIR coe�cients, and the network's performance relative
to the FIR implementation could be evaluated. The network was asked to generalize by being presented with a
new signal; the spectrum of its predictions was then evaluated.

In the second experiment, the FIR task of the �rst part was generalized to the more germaine in�nite impulse
response (IIR) task. Here the network was trained to predict the upcoming sample of noise �ltered with an IIR
�lter; the training set in this case was the previous �ltered noise values, with the target value being again the
actual �ltered value. Again, the error bound could be calculated directly from the IIR �lter parameters, and
the network's performance relative to the generating linear system evaluated.

It will be useful in the upcoming discussion to remember the de�nition of a general in�nite impulse response:

y(n) = a0x(n) +a1x(n� 1) + a2x(n� 2) + ::: + aNx(n�N)

+b1y(n� 1) + b2y(n� 2) + ::: + bNy(n�N)

Thus, the training set for part 1 consists of the delayed x(n � k) as inputs and y(n) as the target, while the
training set for part 2 consists of the delayed y(n� k) as inputs and y(n) as the target.

The third experiment represented the full LPC coding task. Here the network was trained on an actual
signal, in this case a fragment of the chorus to Handel's Messiah. The error goal in this case could not be
calculated directly from the signal, as its characteristics were not analyzed a priori. However, a bound was
chosen which seemed to represent the limits of the network's learning. The results were evaluated by simulating
the neural network with a random signal and evaluating the spectrum of the result.

4 Results

4.1 FIR Learning Task

In the �rst part of the experiment, the network was trained to predict 1000 samples of noise �ltered with an
order 11 FIR �lter. The network was presented with the previous 10 samples of the (un�ltered) signal, x(n�k).
The other coe�cient, a0, of the FIR �lter was the coe�cient for the current sample; in terms of eq. (1), this
corresponds to the k = 0 case (which does not appear in the summation); in terms of eq. (2), this corresponds
to the scale-factor G. The error bound for the network was then calculated to be

E =
1000X
n=11

(Gx(n))2 (8)

where x(n) is the input noise signal. Training results are presented in Figure 1. Note that the network learns
to within a reasonable approximation of the theoretical bound given by eq. (8). Once the network achieved the
desired error goal, it was simulated with two sets of data. In the �rst set, the network was presented with white
noise; its predictions then formed the �ltered signal. The fast Fourier transform (FFT) is plotted in Fig. 2,
beneath the FFT of the original target sequence (the FIR-�ltered signal).As you can see, the network produces
a close approximation of the frequency response of our �lter. In the second set, the network was asked to �lter
a completely unrelated signal; this shows that the network is in fact performing a generalized �lter task. The
peaks of the vocal signal are preserved but scaled in magnitude according to the frequency response of the
network. These results are again plotted in Fig. 2in the rightmost quadrants.

3



0 5 10 15 20
10

0

10
1

10
2

10
3

Neural network error learning FIR filter coefficients, N=10

Epoch

S
um

sq
ua

re
d 

er
ro

r

Network error
Linear prediction error

Figure 1: Typical error curve for FIR learning task

4



4 2 0 2 4
0

10

20

30

40

50
FIR filtering test: Original linear FIR filter response

Frequency (π)

F
F

T
 M

ag
ni

tu
de

4 2 0 2 4
0

200

400

600

800
FFT of unfiltered vocal signal

Frequency (π)

F
F

T
 M

ag
ni

tu
de

4 2 0 2 4
0

10

20

30

40

50
Frequency response of trained neural network

Frequency (π)

F
F

T
 M

ag
ni

tu
de

4 2 0 2 4
0

200

400

600

800
FFT of NNet filtered vocal signal

Frequency (π)

F
F

T
 M

ag
ni

tu
de

Figure 2: Comparison of various spectra for FIR learning task

5



0 2 4 6 8 10 12 14 16 18
10

1

10
0

10
1

10
2

10
3

Neural network error learning IIR filter coefficients, N=11

Epoch

S
um

sq
ua

re
d 

er
ro

r

Network error
Linear prediction error

Figure 3: Typical error curve for IIR learning task

4.2 IIR Learning Task

In the second part of the experiment, the network was trained again with 1000 samples. In this case, the
network's inputs were the previous �ltered noise values y(n � k), while the target was again the �ltered value
y(n). The IIR �lter used was order N = 22; the �rst 11 coe�cients were the FIR components (that is, they
operated on x(n� k)), while the latter 11 coe�cients operated on the y(n� k) and represented the coe�cients
the network was trying to emulate. The error bound was calculated somewhat di�erently from that in Section
4.1, above; it was the sum of errors calculated for all FIR coe�cients:

E =
1000X
n=11

 
10X
k=0

akx(n))

!2
(9)

Because the FIR coe�cients for the chosen �lter were small, this still provided a reasonably tight error
bound. The training error is plotted in Fig. 3.

Again we see that the neural network successfully reached the error goal. The network was then evaluated
by simulating its response to the �ltered noise signal used in training; the FFT of this response is shown in Fig.
4. However, in presenting the network with a new signal, that is, to generalize to the case where we do not

6



4 2 0 2 4
0

5

10

15

20

25

30

35
IIR filtering test: Original linear IIR filter response

Frequency (π)

F
F

T
 M

ag
ni

tu
de

4 2 0 2 4
0

10

20

30

40

50

60
FFT of White Noise

Frequency (π)

F
F

T
 M

ag
ni

tu
de

4 2 0 2 4
0

5

10

15

20

25

30

35
FFT of Neural Network Prediction (Filtered Noise)

Frequency (π)

F
F

T
 M

ag
ni

tu
de

4 2 0 2 4
0

20

40

60

80

100

120
FFT of Neural Network Prediction (White Noise)

Figure 4: Comparison of various spectra. Note that the network does not perform correctly with white noise
input.

have an IIR handy, we are faced with a di�culty. We cannot simply feed the network �ltered noise values as
we did in part 1 of the experiment; doing so re-interprets the network as an FIR �lter, and we will get results
entirely inconsistent with the task we wish the network to perform. The results of doing so are plotted in the
rightmost quadrants of Fig. 4, in congruence with Fig. 2. Note that the frequency response of the network (as
an FIR �lter!) is not at all what we desire.Instead we must use the network as an IIR �lter, that is, feed it its
past predictions, as indicated in section 2.2.

In previous simulations, the network was presented its inputs in batch mode, which is the most e�cient
method in MATLAB for simulating such networks. However, in this case we do not know the inputs until we
know the network's prediction for the previous sample. Writing the code to simulate the network in MATLAB
proved too time-consuming; MATLAB is simply not constructed to perform iterative loops quickly.

However, there is an alternative method. MATLAB has a companion simulation engine, SIMULINK, which is
designed to run iterative processes such as this quickly and accurately. The Neural Network Toolbox also has
a generator gensim which will produce a SIMULINK block representing a network to be simulated.

The block diagram resulting is depicted in Fig. 5. Note that we can adjust the gain on the scale-factor G as
a function of time, allowing for the creative use of the transformation represented by the network.

The scale-factor was set according to eq. (7), and the network simulated with a white-noise signal. The

7



Delay 1

y{1}

z

1

Sum

Signal
Contribution

Prediction
Contribution

p{1} y{1}

Neural Network

Mux

Mux

[T,Y]

From 
Workspace

z

1

Delay9

z

1

Delay8

z

1

Delay7

z

1

Delay6

z

1

Delay5

z

1

Delay4

z

1

Delay3

z

1

Delay11

z

1

Delay10

z

1

Delay 2

 

 

Figure 5: SIMULINK block diagram for the network trained for the IIR task

8



4 3 2 1 0 1 2 3 4
0

50

100

150

200

250

Frequency (π)

F
F

T
 M

ag
ni

tu
de

FFT of Neural Network Prediction (Previous Predictions)

Figure 6: Spectrum of neural network using its own predictions as the generating data

results are plotted in Fig. 6. Note that the frequency response is now much closer to the original IIR �lter
response.

Note also the strong peaks in the middle of the bandpass region. This appears to be the result of the network
over�tting the data (compare with its simulation on the original training set in Fig. 4). These strong peaks
seem to be a feature of all networks studied; they tend not to generate �at responses.

4.3 LPC Learning Task

Finally, the neural network was trained with a �real� signal: a section of the chorus to Handel's Messiah. The
song fragment, sampled at 8192 Hz, comes with the standard MATLAB distribution and can be loaded with the
command load handel. Again the training set consisted of 1000 samples, here windowed to provide the 20
previous samples.

The error bound was somewhat arbitrarily chosen, as we do not have the luxury of an analytical model
for the signal. The bound was a fraction of the total energy of the 1000-length sample, chosen to converge
a reasonable number of epochs after the training algorithm's error minimization seemed to have reached its
plateau. The training error is plotted in Fig. 7.

In this case it is di�cult to ascertain simply from the error curve whether the network's learning was

9



0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

Neural network error learning choral sample, N=20

Epoch

S
um

sq
ua

re
d 

er
ro

r

Network error
Desired error goal

Figure 7: Error curve for vocal sample learning task

10



4 3 2 1 0 1 2 3 4
0

20

40

60

80
FFT of Training Sample

Frequency (π)

F
F

T
 M

ag
ni

tu
de

4 3 2 1 0 1 2 3 4
0

10

20

30

40

50

60

70

Frequency (π)

F
F

T
 M

ag
ni

tu
de

FFT of Neural Network Response

Figure 8: Comparison of spectrum for training data and neural network feedback response

�successful�. The network was therefore plugged into a SIMULINK block diagram analogous to that shown
in Fig. 5 (though in this case with more delay lines; N=20 to be precise). The scale factor G was again set
according to eq. (7). The FFT of the original training sample is compared with that of the network prediction
signal in Fig. 8.

Note that the frequency response of the network is a simpli�ed version of that in the original signal. Note
again the strong peaks, and the valleys where un�tted peaks were cut o�. The trained network can be simulated
for much longer than 1000 samples; the resulting sound does in fact have quite a strong vocal quality to it, and
maintains the subjective pitch of the original.

5 Conclusions

A feedforward network was successfully trained to emulate three linear signal processing operators: a �nite
impulse response �lter, an in�nite impulse response �lter, and �nally a linear predictive coder. At each stage
the network performed satisfactorily in relation to its linear predecessor.

The results of this simulation are promising. The trained network retains many of the favorable qualities of
the equivalent LPCmodel. So far the network has not been tasked with anything not possible in the linear model;

11



it might be argued that nothing has been gained. However, the resulting representation o�ers opportunities for
modi�cation not possible in the linear domain. For example, the network parameters can be altered in realtime
to change its response in a nonlinear fashion. The parameters could be swept between values appropriate for
two separate training tasks, providing for a nonlinear interpolation between timbre. Other possibilities exist
which will need to be left for future work.

12


