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ABSTRACT

We report on the implementation and performance evaluation of greedy parsing with lookaheads

for dynamic dictionary compression. Speci�cally, we consider the greedy parsing with a single

step lookahead which we call Flexible Parsing (FP) as an alternative to the commonly used

greedy parsing (with no-lookaheads) scheme. Greedy parsing is the basis of most popular com-

pression programs including unix compress and gzip, however it does not necessarily achieve

optimality with regard to the dictionary construction scheme in use. Flexible parsing, however,

is optimal, i.e., partitions any given input to the smallest number of phrases possible, for dictio-

nary construction schemes which satisfy the pre�x property throughout their execution. There

is an on-line linear time and space implementation of the FP scheme via the trie-reverse-trie

pair data structure [MS98]. In this paper, we introduce a more practical, randomized data struc-

ture to implement FP scheme whose expected theoretical performance matches the worst case

performance of the trie-reverse-trie-pair. We then report on the compression ratios achieved by

two FP based compression programs we implemented. We test our programs against compress

and gzip on various types of data on some of which we obtain up to 35% improvement.

1. Introduction

The size of data related to a wide range of applications is growing rapidly. Grand challenges
such as the human genome project involve very-large distributed databases of text documents,
whose e�ective storage and communication requires a major research and development e�ort. From
DNA and protein sequences to medical images (in which any loss of information content can not
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be tolerated) vital data sources that will shape the information infrastructure of the next century
require simple and e�cient tools for lossless data compression.

A (lossless) compression algorithm C reads input string T and computes an output string, T 0,
whose representation is smaller than that of T , such that a corresponding decompression algo-
rithm C can take T 0 as input and reconstruct T . The most common compression algorithms used
in practice are the dictionary schemes (a.k.a. parsing schemes [BCW90], or textual substitution
schemes [Sto88]). Such algorithms are based on maintaining a dictionary of strings that are called
phrases, and replacing substrings of an input text with pointers to identical phrases in the dictionary.
The task of partitioning the text into phrases is called parsing and the pointers replacing the phrases
are called codewords.

A dictionary can be constructed in static or dynamic fashion. In static schemes, the whole
dictionary is constructed before the input is compressed. Most practical compression algorithms,
however, use dynamic schemes, introduced by Ziv and Lempel [ZL77, ZL78], in which the dictionary
is initially empty and is constructed incrementally: as the input is read, some of its substrings
are chosen as dictionary phrases themselves. The dictionary constructed by most dynamic schemes
(e.g., [ZL77, ZL78, Wel84, Yok92]) satisfy the pre�x property for any input string: in any execution
step of the algorithm, for any given phrase in the dictionary, all its pre�xes are also phrases in the
dictionary.

In this paper we focus only on the the two most popular dictionary based compression methods:
LZ78 [ZL78], its LZW variant [Wel84], and LZ77 [ZL77]. A few interesting facts about LZ78 and
LZ77:

� The LZW scheme is the basis for unix compress program, gif image compression format, and
is used in the most popular fax and modem standards (V42bis). LZ77 algorithm is the basis
for all zip variants.
Both algorithms: (1) are asymptotically optimal in the information theoretic sense, (2) are
e�cient, with O(1) processing time per input character, (3) require a single pass over the
input, and (4) can be applied on-line.

� LZ78 (and the LZW) can be implemented by the use of simple trie data structure with space
complexity proportional to the number of codewords in the output. In contrast, a linear time
implementation of the LZ77 builds a more complex su�x tree in an on-line fashion, whose
space complexity is proportional to the size of the input text [RPE81].

� It is recently shown that LZ78 (as well as LZW) approaches the asymptotic optimality faster
than LZ77: the average number of bits output by LZ78 or LZW, for the �rst n characters of an
input string created by an i.i.d. source is only O(1= logn) more than its entropy [JS95, LS95]. A
similar result for more general, uni�lar, sources has been obtained by Savari [Sav97] - for the av-
erage case. For the LZ77 algorithm, this redundancy is as much as O(log logn= logn) [Wyn95].
Also, for low entropy strings, the worst case compression ratio obtained by the LZ78 algorithm
is better (by a factor of 8/3) than that of the LZ77 algorithm [KM97].

� The practical performances of these algorithms vary however depending on the application.
For example the LZ77 algorithm may perform better for English text, and the LZ78 algorithm
may perform better for binary data, or DNA sequences. 4

4A simple counting argument shows that there cannot exist a single dictionary construction scheme that is superior

to other schemes for all inputs. If a compression algorithm performs well for one set of input strings, it is likely that

it will not perform well for others. The advantage of one dictionary construction scheme over another can only

apply with regard to restricted classes of input texts. Indeed, numerous schemes have been proposed in the scienti�c

literature and implemented in software products, and it is expected that many more will be considered in the future.



Flexible Parsing for Dynamic Dictionary Based Data Compression 51

Almost all dynamic dictionary based algorithms in the literature including the Lempel-Ziv meth-
ods ([ZL77, ZL78, Wel84, MW85, Yok92]) use greedy parsing, which takes the uncompressed su�x
of the input and parses its longest pre�x, which is a phrase in the dictionary. The next substring to
be parsed starts where the currently parsed substring ends. Greedy parsing is fast and can usually
be applied on-line, and is hence very suitable for communications applications. However, greedy
parsing can be far from optimal for dynamic dictionary construction schemes [MS98]: for the LZW
dictionary method, there are strings T which can be (optimally) parsed to somem phrases, for which
the greedy parsing obtains 
(m3=2) phrases.

For static dictionaries -as well as for the o�-line version of the dynamic dictionary compression
problem-, there are a number of linear time algorithms that achieve optimal parsing of an input
string, provided that the dictionary satis�es the pre�x property throughout the execution of the
algorithm (see, for example, [FM95]). More recently, in [MS98], it was shown that it is possible to
implement the one-step lookahead greedy parsing (or shortly exible parsing -FP) for the on-line,
dynamic problem, in amortized O(1) per character. This implementation uses space proportional to
the number of output codewords. It is demonstrated that FP is optimal for dictionaries satisfying the
pre�x property in every execution step of the algorithm: it partitions any input string to minimum
number of phrases possible while constructing the same dictionary. (For instance, the algorithm
using the LZW dictionary together with exible parsing inserts to the dictionary the exact same
phrases as would the original LZW algorithm with greedy parsing.) The implementation is based
on a rather simple data structure, the trie-reverse-trie-pair, which has similar properties with the
simple trie data structure used for greedy parsing. It is hence expected that FP would improve over
greedy parsing without being penalized for speed or space.

In this study, we report an experimental evaluation of FP in the context of LZW dictionary
construction scheme. We implement compression programs based on FP (the implementations
are available on the WWW [Sou]), and study to what extent the theoretical expectations hold on
\random" or \real-life" data. In particular, we consider the following questions:

1. Is it possible to obtain a new dictionary construction scheme based on FP? If yes, how would
it perform in comparison to FP with LZW dictionary construction or the LZW algorithm
itself - both asymptotically and in practice? (Note that the general optimality property of FP
does not apply once the dictionary construction is changed.)

2. The trie-reverse-trie-pair is a pointer based data structure whose performance is likely to su�er
from pointer jumps in a multi-layer memory hierarchy. Are there alternative data structures to
obtain more e�cient implementations of FP - in particular can we employ hashing to support
dictionary lookups without all the pointer jumps?

3. What are the sizes of random data on which the better average case asymptotic properties of
the LZ78 over LZ77 start to show up?

4. Does the worst case optimality of FP translate into improvement over greedy parsing on the
average case?

5. Do better asymptotic properties of LZW in comparison to LZ-77 and FP in comparison to
LZW show up in any practical domain of importance? Speci�cally how well does FP perform
on DNA/protein sequences and medical images?

We address each one of these issues as follows:

1. We consider a data compression algorithm based on FP , which constructs the dictionary by
inserting it the concatenation of each of the substrings parsed with the character following them
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- as in the case of LZW algorithm. We will refer this algorithm as the FP-based-alternative-
dictionary-LZW algorithm, or FPA. The dictionary built by FPA on any input still satis�es
the pre�x property in every execution step of the algorithm. In our experiments we consider
the implementation of FPA as well as the implementation of the compression algorithm which
builds the same dictionary as LZW, but uses FP for output generation which we refer as
LZW-FP. We compare the compression ratios obtained by LZW-FP and FPA with that of
unix compress and gzip.

2. We present an on-line data structure based on Karp-Rabin �ngerprints [KR87], which imple-
ments both LZW-FP and FPA in expected O(1) time per character, by using space propor-
tional to the size of the codewords in the output. We are still in the process of improving the
e�ciency of our implementations; we leave to report our timing results to the full version of
this paper. We note, however, that our algorithms run about 3�5 times slower than compress

which is the fastest among all algorithms, both during compression and decompression. We
also note that all the software, documentation, and detailed experimental results available on
the WWW [Sou]. The readers are encouraged to check updates to the web site and try our
software package.

3. We �rst demonstrate our tests on pseudorandom (non-uniform) i.i.d. bit strings with a number
of bit probabilities. We observe that the redundancy in the output of each of the four programs
we consider approach to the expected asymptotic behavior very fast - requiring less than 1KB
for each of the di�erent distributions, and better asymptotic properties of LZW in comparison
to LZ77 can be very visible. For �les of size > 1MB, compress can improve over gzip up
to 20% in compression achieved. A next step in our experiments will involve pseudo-random
sources of limited markovian order.

4. We report on our experimens with several \real-life" data �les as well; those include DNA/protein
sequences, medical images, and �les from the Calgary corpus and Canterbury corpus bench-
mark suites. These results suggest that both LZW-FP and FPA are superior to LZW (unix
compress) in compression attained, up to 20%. We also observe that both LZW-FP and FPA
are superior to gzip for most non-textual data and all types of data of size more than 1MB.
For pseudo-random strings and DNA sequences the improvement is up to 35%. On shorter
text �les, gzip is still the champion, which is followed by FPA and LZW-FP.

2. The Compression Algorithms

In this section we describe how each of the algorithms of our consideration, i.e., (1) the LZ77
algorithm (the basis for gzip), (2) the LZW variant (the basis for UNIX compress) of the LZ78
algorithm, (3) LZW-FP algorithm and (4) FPA algorithm, work. Each of the algorithms �t in a
general framework that we describe below.

We denote a compression algorithm by C, and its corresponding decompression algorithm by
C . The input to C is a string T , of n characters, chosen from a constant size alphabet �; in our
experiments � is either ascii or is f0; 1g. We denote by T [i], the ith character of T (1 � i � n), and
by T [i : j] the substring which begins at T [i] and ends at T [j]; notice that T = T [1 : n].

The compression algorithm C compresses the input by reading the input characters from left
to right (i.e. from T [1] to T [n]) and by partitioning it into substrings which are called blocks.
Each block is replaced by a corresponding label that we call a codeword. We denote the jth block
by T [bj : bj+1 � 1], or shortly Tj , where b1 = 1. The output of C, hence, consists of codewords
C[1]; C[2]; : : : ; C[k] for some k, which are the codewords of blocks T1; T2; : : : ; Tk respectively.
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The algorithm C maintains a dynamic set of substrings called the dictionary, D. Initially, D con-
sists of all one-character substrings possible. The codewords of such substrings are their characters
themselves. As the input T is read, C adds some of its substrings to D and assigns them unique
codewords. We call such substrings of T phrases of D. Each block Tj is identical to a phrase in D:
hence C achieves compression by replacing substrings of T with pointers to their earlier occurrences
in T .

The decompression algorithm C that corresponds to C, takes C[1 : k] as input and computes
T [1 : n] by replacing each C[j] by its corresponding block Tj . Because the codeword C[j] is a
function of T [1 : bj � 1] only, the decompression can be correctly performed in an inductive fashion.

Below, we provide detailed descriptions of each of the compression algorithms.

Description of the LZW Algorithm. The LZW algorithm reads the input characters from left
to right while inserting in D all substrings of the form T [bm : bm+1]. Hence the phrases of LZW are
the substrings obtained by concatenating the blocks of T with the next character following them,
together with all possible substrings of size one. The codeword of the phrase T [bm : bm+1] is the
integer j�j+m, where j�j is the size of the alphabet �. Thus, the codewords of substrings do not
change in LZW algorithm. LZW uses greedy parsing as well: the mth block Tm is recursively de�ned
as the longest substring which is in D just before C reads T [bm+1 � 1]. Hence, no two phrases can
be identical in the LZW algorithm.

Description of the LZW-FP Algorithm. The LZW-FP algorithm reads the input characters
from left to right while inserting in D all substrings of the form T [b0m : b0m+1], where b

0

m denotes the
beginning location of block m if the compression algorithm used were LZW. Hence for dictionary
construction purposes LZW-FP emulates LZW: for any input string LZW and LZW-FP build
identical dictionaries. The output generated by these two algorithms however are quite di�erent.
The codeword of the phrase T [b0m : b0m+1] is the integer j�j+m, where j�j is the size of the alphabet �.
LZW-FP uses exible parsing: intuitively, the mth block Tm is recursively de�ned as the substring
which results in the longest advancement in iteration m + 1. More precisely, let the function f be
de�ned on the characters of T such that f(i) = ` where T [i : `] is the longest substring starting at
T [i], which is in D just before C reads T [`]. Then, given bm, the integer bm+1 is recursively de�ned
as the integer � for which f(�) is the maximum among all � such that T [bm : � � 1] is in D just
before C reads T [�� 1].

We demonstrate how the execution of the LZW and LZW-FP algorithms di�er in the �gure
below.

0354210

baaabaabaabababa

a b a b a b a a b a a b a a a b

0 1 2 4 4

LZWFP parsing

LZWFP Output:

Input:

LZW Output:

Input:

LZW parsing

5 2

Figure 1: Comparsion of FP and greedy parsing when used together with the LZW dictionary construction
method, on the input string T = a; b; a; b; a; b; a; a; b; a; a; b; a; a; a; b.
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Description of the FPA Algorithm. The FPA algorithm reads the input characters from left
to right while inserting in D all substrings of the form T [bm : f(bm) + 1], where the function f is
as described in LZW-FP algorithm. Hence for almost all input strings, FPA constructs an entirely
di�erent dictionary with that of LZW-FP. The codeword of the phrase T [bm : f(bm) + 1] is the
integer j�j+m, where j�j is the size of the alphabet �. FPA again uses exible parsing: given bm,
the integer bm+1 is recursively de�ned as the integer � for which f(�) is the maximum among all �
such that T [bm : �� 1] is in D.

Description of the LZ77 Algorithm. The LZ-77 algorithm reads the input characters from
left to right while inserting all its substrings in D. In other words, at the instance it reads T [i], all
possible substrings of the form T [j : `], j � ` < i are in D, together with all substrings of size one.
The codeword of the substring T [j : `], is the 2-tuple, (i� j; `� j +1), where the �rst entry denotes
the relative location of T [j : `], and the second entry denotes its size. LZ77 uses greedy parsing: the
mth block Tm = T [bm : bm+1 � 1] is recursively de�ned as the longest substring which is in D just
before C reads T [bm+1 � 1].

3. Data Structures and Implementations of Algorithms

In this section we describe both the trie-reverse-trie data structure, and the new �ngerprints
based data structure for e�cient on-line implementations of the LZW-FP, and FPA methods. The
trie-reverse-trie pair guarantees a worst case linear running time for both algorithms as described
in [MS98]). The new data structure based on �ngerprints [KR87], is randomized, and guarantees
expected linear running time for any input.

The two main operations to be supported by these data structures are (1) insert a phrase to D
(2) search for a phrase, i.e., given a substring S, check whether it is in D and return a pointer. The
standard data structure used in many compression algorithms including LZW, the compressed trie
T supports both operations in time proportional to jSj. A compressed trie is a rooted tree with the
following properties: (1) each node with the exception of the root represents a dictionary phrase; (2)
each edge is labeled with a substring of characters; (3) the �rst characters of two sibling edges can
not be identical; (4) the concatenation of the substrings on a path of edges from the root to a given
node is the dictionary phrase represented by that node; (5) each node is labeled by the codeword
corresponding to its phrase. Dictionaries with pre�x properties, such as the ones used in LZW and
LZ78 algorithms, build a regular trie rather than a compressed one. The only di�erence is that in a
regular trie the substrings of all edges are one character long.

In our data structures, inserting a phrase S to D takes O(jSj) time as in the case of a trie.
Similarly, searching S takes O(jSj) time if no information about substring S is provided. However,
once it is known that S is in D, searching strings obtained by concatenating or deleting a character
to/from both ends of S takes only O(1) time. More precisely, our data structures support two
operations extend and contract in O(1) time. Given a phrase S in D, the operation extend(S; a) for
a given character a, �nds out whether the concatenation of S and a is a phrase in D. Similarly, the
operation contract(S), �nds out whether the su�x S[2 : jSj] is in D. Notice that such operations
can be performed in a su�x tree, if the phrases in D are all the su�xes of a given string as in the
case of the LZ77 algorithm [RPE81]. For arbitrary dictionaries (such as the ones built by LZW) our
data structures are unique in supporting contract and extend operations in O(1) time, and insertion
operation in time linear with the size of the phrase, while using O(jDj) space, where jDj is the
number of phrases in D.
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Trie-reverse-trie-pair data structure. Our �rst data structure builds the trie, T , of phrases
as described above. In addition to T , it also constructs T r, the compressed trie of the reverses

of all phrases inserted in the T . Given a string S = s1; s2; : : : ; sn, its reverse Sr is the string
sn; sn�1; : : : ; s2; s1. Therefore for each node v in T , there is a corresponding node vr in T r which
represents the reverse of the phrase represented by v. As in the case of the T alone, the insertion of
a phrase S to this data structure takes O(jSj) time. Given a dictionary phrase S, and the node u
which represents S in T , one can �nd out whether the substring obtained by concatenating S with
any character a in is D, by checking out if there is an edge from u with corresponding character a;
hence extend operation takes O(1) time. Similarly the contract operation takes O(1) time by going
from u to u0, the node representing reverse of S in T r, and checking if the parent of u0 represents
S[2 : jSj]r.

Fingerprints based data structure. Our second data structure is based on building a hash
table H of size p, a suitably large prime number. Given a phrase S = S[1 : jSj], its location in H

is computed by the function h, where h(S) = (s[1]j�jjSj + s[2]j�jjSj�1 + : : :+ s[jSj]) mod p, where
s[i] denotes the lexicographic order of S[i] in � [KR87]. Clearly, once the values of j�jk mod p are
calculated for all k up to the maximum phrase size, computation of h(S), takes O(jSj) time. By
taking p su�ciently large, one can decrease the probability of a collision on a hash value to some
arbitrarily small � value; thus the average running time of an insertion would be O(jSj) as well. Given
the hash value h(S) of a string, the hash value of its extension by any character a can be calculated
by h(Sa) = (h(S)j�j + lex(a)) mod p, where lex(a) is the lexicographic order of a in �. Similarly,
the hash value of its su�x S[2 : jSj] can be calculated by h(S[2 : jSj]) = (h(S) � s[1]j�jjSj) mod p.
Both operations take O(1) time.

In order to verify if the hash table entry h(S) includes S in O(1) time we (1) give unique labels
to each of the phrases in D, and (2) in each phrase S in H , store the label of the su�x S[2 : jSj]
and the label of the pre�x S[1 : jSj � 1]. The label of newly inserted phrase can be jDj, the size of
the dictionary. This enables both extend and contract operations to be performed in O(1) expected
time: suppose the hash value of a given string S is hS , and the label of S is `. To extend S with
character a, we �rst compute from hS, the hash value hSa of the string Sa. Among the phrases
whose hash value is hSa, the one whose pre�x label matches the label of S gives the result of the
extend operation. To contract S, we �rst compute the hash value hS0 of the string S0 = S[2 : jSj].
Among the phrases whose hash value is hS0 , the one whose label matches the su�x label of S gives
the result of the extend operation. Therefore, both extend and contract operations take expected
O(1) time.

Inserting a phrase in this data structure can be performed as follows. An insert operation is done
only after an extend operation on some phrase S (which is in D) with some character a. Hence,
when inserting the phrase Sa in D its pre�x label is already known: the label of S. Once it is
decided that Sa is going to be inserted, we can spend O(jSj+1) time to compute the su�x label of
Sa. In case the su�x S[2 : jSj]a is not a phrase in D, we temporarily insert an entry for S[2 : jSj]a
in the hash table. This entry is then �lled up when S[2 : jSj] is actually inserted in D. Clearly, the
insertion operation for a phrase R and all its pre�xes takes O(jRj) expected time.

A linear time implementation of LZW-FP. For any input T LZW-FP inserts to D the
same phrases with LZW. The running time for insertion in both LZW and LZW-FP (via the data
structures described above) are the same; hence the total time needed to insert all phrases in LZW-
FP should be identical to that of LZW, which is linear with the input size. Parsing with FP consists
of a series of extend and contract operations. We remind that: (1) the function f on characters of
T is described as f(i) = ` where T [i : `] is the longest substring starting at T [i], which is in D. (2)
given bm, the integer bm+1 is inductively de�ned as the integer � for which f(�) is the maximum
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among all � such that T [bm : � � 1] is in D. In order to compute bm+1, we inductively assume
that f(bm) is already computed. Clearly S = T [bm : f(bm)] is in D and S0 = T [bm : f(bm) + 1]
is not in D. We then contract S by i characters, until S0 = T [bm + i : f(bm) + 1] is in D. Then
we proceed with extensions to compute f(bm + i). After subsequent contract and extends we stop
once bm + i > f(bm). The last value of i at which we started our �nal round of contracts is the
value bm+1. Notice that each character in T participates to exactly one extend and one contract
operation, each of which takes O(1) time via the data structures described above. Hence the total
running time for the algorithm is O(n).

A linear time implementation of FPA. Parsing in FPA is done identical to LZW-FP and
hence takes O(n) time in total. The phrases inserted in D are of the form T [bm : f(bm) + 1].
Because in parsing step m, the phrase T [bm : f(bm)] is already searched for, it takes only O(1) time
per phrase to extend it via our data structures. Hence the total running time for insertions is O(n)
as well.

Linear time implementations of decompression algorithms for LZW-FP and FPA. The
decompression algorithms for both methods simply emulate their corresponding compression algo-
rithms hence run in O(n) time.

4. The Experiments

In this section we describe in detail the data sets we used, and discuss our test results testing
how well our theoretical expectations were supported.

4.1. The test programs

We used gzip, compress, LZW-FP and FPA programs for our experiments. The gzip and
compress programs are standard features of unix operating system. In our LZW-FP implemen-
tation we limited the dictionary size to 216 phrases, and reset it when it was full as in the case of
compress. We experimented with two versions of FPA, one whose dictionary was limited to 216

phrases, and the other with 224 phrases.

4.2. The data sets

Our data sets come from three sources: (1) Data obtained via unix drand48() pseudorandom
number generator. (2) DNA and protein sequences provided by Center for BioInformatics, University
of Pennsylvania and CT and MR scans provided by the St. Thomas Hospital, UK [Sou]. (3) Text
�les from two data compression benchmark suites: the new Canterbury corpus and the commonly
used Calgary corpus [Sou].

The �rst data set was designed to test the theoretical convergence properties of the redundancy in
the output of the algorithms and measure the constants involved. The second data set was designed
to measure the performance of our algorithms for emerging bio-medical applications where no loss of
information in data can be tolerated. Finally the third data set was chosen to demonstrate whether
our algorithms are competitive with others in compressing text.

Speci�cally, the �rst data set includes three binary �les generated by the unix drand48() func-
tion. The data distribution is i.i.d. with bit probabilities (1) 0:7 � 0:3, (2) 0:9 � 0:1, and (3)
0:97� 0:03. The second data set includes two sets of human DNA sequences from chromosome 23
(dna1, dna2), one MR (magnetic resonance) image of human (female) breast in uncompressed pgm

format in ASCII (mr.pgm), and one CT (computerized tomography) scan of a fractured human hip
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ct.pgm in uncompressed pgm format in ASCII [Sou]. The third set includes the complete Calgary
corpus, which is the most popular benchmark suite for lossless compression. It includes a bibliog-
raphy �le (bib), two complete books (book1, book2), two binary �les (geo, pic), source codes in c,

lisp, pascal (progc, progl, progp), and the transcript of a login session (trans). The third set also
also includes all �les of size > 1MB from the new Canterbury corpus: a DNA sequence from E-coli
bacteria (E.coli), the complete bible (bib.txt) , and (world192.txt).

4.3. Test results

In summary, we observed that FPA implementation with maximum dictionary size 224 performs
the best on all types of �les with size > 1MB and shorter �les with non-textual content. For shorter
�les consisting text, gzip performs the best. Also the theoretical expectations for the convergence
rate in the redundancy of the output for i.i.d. data were consistent with the test results. We observed
that the constants involved in the convergence rate for FPA and LZW-FP were smaller than that
of LZW, and gzip was worse than all.

Our tests on the human DNA sequences with LZW-FP and FPA show similar improvements
over compress and gzip - with a dictionary of maximum size 216, the improvement is about 1:5% and
5:7% respectively. Some more impressive results were obtained by increasing the dictionary size to
224, which further improved the compression ratio to 9%. The performance of LZW-FP and FPA
on mr and ct scans di�er quite a bit: LZW-FP was about 4%� 6% better than compress and was
comparable to gzip; FPA's improvement was about 15% and 7% respectively. As the image �les
were rather short, we didn't observe any improvement by using a larger dictionary. One interesting
observation is that the percentage improvement achieved by both FPA and LZW-FP increased
consistently with increasing data size. This suggests that we can expect them to perform better in
compressing massive archives as needed in many biomedical applications such as the human genome
project.

Our tests on pseudorandom sequences were consistent our theoretical expectations: the asymp-
totic properties were observed even in strings of a few KB size. In general, all LZW based schemes
performed better than gzip, which is based on LZ77. Our plots show that the redundancy in the
output is indeed proportional to 1= logn with the smallest constant achieved by FPA - in both
cases, the constant is very close to 1:0; the constant for LZW-FP and LZW are about 1:5 and 2:0
respectively. This suggests that for on-line entropy measurement, FPA may provide a more reliable
alternative to LZ78/LZW or LZ77 (see [FNS+95] for applications of LZW and LZ77 for entropy
measurement in the context of DNA sequence analysis).

Our results on text strings varied depending on the type and size of the �le compressed. For
short �les with long repetitions, gzip is still the champion. However, for all text �les of size > 1MB,
the large dictionary implementation of FPA scheme outperforms gzip by 4:7% � 8:5%, similar to
the tests for DNA sequences.
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Figure 2: The compression ratios attained by all �ve programs on random i.i.d. data with bit probabilities
P (0) = P (1) = :5.

6

8

10

12

14

16

18

20

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

; b
its

 p
er

 b
yt

e)

lg(input size in KB)

Random binary file with P(0)=0.9, P(1)=0.1 

gzip
compress

LZW-FP
FPA

FPA-24

Figure 3: The compression ratios attained by all �ve programs on random i.i.d. data with bit probabilities
P (0) = :9 and P (1) = :1.
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Figure 4: The 1=redundancy of all �ve programs on random i.i.d. data where redundancy is described as
(actual compression ratio)-(bit-entropy). The bit probabilities are P (0) = P (1) = :5.

5

10

15

20

0 2 4 6 8 10

1/
(c

om
pr

es
si

on
 r

at
io

 -
 e

nt
ro

py
)

lg(input size in KB)

Random binary file with P(0)=0.9, P(1)=0.1 (H=0.469)

gzip
compress

LZW-FP
FPA

FPA-24
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