
Even if you're on the right track, you'll get run over if you just sit there.

Will Rogers

Pegasus Imaging Corporation (PIC) is proud to present ImpacStar TM (IM�), our trade
name for a wonderful new image format incorporating the patent-pending ELS (Entropy
Logarithmic-Scale) coding algorithm developed by one of our research team. I think you
will agree with me that this is a stunning, eloquent algorithm which has applications in
lossless compression of low-color (2{256) images or as a replacement for Hu�man coding
with JPEG or other compression schemes. The ImpacStar TM name is in itself a play on
the DOS wildcard � to denote the broad applicability of this image format.

Pegasus is best known for its licensing of advanced JPEG compression algorithms to
software developers. However, as I hope the ELS-coder paper points out, we have dedicated
much of our resources to developing technology which better answers the problems of
image or data compression. Our own plans for IM� include providing developer toolkits
along with our own suite of end-user products which will take advantage of ImpacStar TM

coding. For one- to eight-bit image types the savings over G4 (fax) or LZW (GIF) should
be valuable, especially in low-bandwidth environments, such as the Internet. For this very
reason, our �rst release of a commercial ImpacStar TM decoder will be progressive in nature
(comparable to interlaced GIF or progressive JPEG) and allow for embedded comments,
such as text overlays and alpha channels for transparencies. Our release of a DCT (JPEG)
compressor using the ELS-coder algorithm will o�er an additional lossless improvement to
any compression ratio. Further, even though the resultant compressed �le will no longer
be JFIF compliant, converting to/from is a lossless translation.

We often describe Pegasus as a \company with great technology in brown paper bags,"
referring to our lack of \packaged" applications utilizing our own research. Hopefully, this
will become an untruth over the coming months. Please enjoy this peek into our new
brown-wrapped package. None of us that have been involved with the microcomputer
revolution should be heard to say: \this is the way we do things, because this is the way
we have always done things!" This goes for GIF, JPEG or whatever. We invite your
comments, ideas and inquiries because we can and will do more.
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Abstract. We present a new algorithm for entropy coding, competitive in both speed and

compression e�ciency with the Q-coder and QM-coder.

1. Entropy Coding

Truth is the most valuable thing we have. Let us economize it.

Mark Twain

The problem of compressing digital data of a certain type (text, images, audio data,
whatever) can be decoupled into two subproblems: modeling and entropy coding. Whatever
the given data may represent in the real world, in digital form it exists as a sequence of
symbols, such as bits. The modeling problem is to choose a suitable symbolic representation
for the data and to predict for each symbol of the representation the probability that it
takes each of the allowable values for that symbol. The entropy-coding problem is to code
each symbol as compactly as possible, given this knowledge of probabilities. (In the realm
of lossy compression, there is a third subproblem: evaluating the relative importance of
various kinds of errors.)

For example, suppose we want to transmit messages composed of the four letters a, b, c,
and d. A straightforward scheme for coding these messages in bits would be to represent a
by \00", b by \01", c by \10" and d by \11". However, suppose we know that for any letter
of the message (independent of all other letters), a occurs with probability .5, b occurs
with probability .25, and c or d occur with probability .125 each. Then we might choose
a shorter representation for a, at the necessary cost of accepting longer representations
for the other letters. We could represent a by \0", b by \10", c by \110", and d by
\111". This representation is more compact on average than the �rst one; indeed, it is the
most compact representation possible (though not uniquely so). In this simple example,
the modeling part of the problem is determining the probabilities for each symbol; the
entropy-coding part of the problem is determining the representations in bits from those
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probabilities; let us emphasize that the probabilities associated with the symbols play a

fundamental role in entropy coding.
In general, entropy coding is an abstract problem weakly related to the type of data

being compressed, while the modeling aspect of data compression depends intimately on
the type of data being compressed. Entropy coding is well understood theoretically|
known algorithms provide the greatest compression possible for a given modeling method|
while for many real-world types of data, the modeling issue is as yet mysterious and only
somewhat tractable. This article treats only entropy coding and the most rudimentary
aspect of modeling; thus it provides a partial solution to almost all data compression
problems but a complete solution to none.

One well-known method of entropy coding is Hu�man coding, which yields an optimal
coding provided all symbol probabilities are integer powers of .5. Another method, yielding
optimal compression performance for any set of probabilities, is arithmetic coding. In spite
of the superior compression given by arithmetic coding, so far it has not been a dominant
presence in real data-compression applications. This is most likely due to concerns over
speed and complexity, as well as patent issues; a rapid, simple algorithm for arithmetic
coding is therefore potentially very useful.

An algorithm is known which allows rapid encoding and decoding in a fashion akin to
arithmetic coding. Developed by G. G. Langdon, J. L. Mitchell, W. B. Pennebaker, and J.
J. Rissanen [4], [6], [7], it is known as the Q-coder. The QM-coder is a subsequent variant.
However, these algorithms being protected by patents, new algorithms with competitive
performance continue to be of interest. The algorithm described here is one such; we
call it the ELS-coder (for Entropy Logarithmic-Scale). Though the ELS-coder is likewise
protected by a pending patent, Pegasus Imaging Corporation intends to license it on a
royalty-free basis.

Due to space limitations, we do not provide a general introduction to data compression
theory, nor a description of other algorithms for entropy coding. Witten and Cleary [5]
provides an introduction to the \standard" arithmetic compression algorithm. Pennebaker
and Mitchell [3] provides a good introduction to the operation of the QM-coder. Nelson
[1] and Cover and Thomas [2] are general practical and theoretical introductions to data
compression.

2. The Decoding Algorithm

I were better to be eaten to death with rust than to be scoured to nothing with

perpetual motion.

Shakespeare

The ELS-coder works only with an alphabet of two symbols (which we call 0 and 1).
One can certainly encode symbols from larger alphabets; but they must be converted to
a two-symbol format �rst; the example programs compress and decompress illustrate
how this is done. The necessity for this conversion is a disadvantage, but the restriction
to a two-symbol alphabet facilitates rapid coding and rapid probability estimation.

Our algorithm was developed with an eye toward a particular application which would
generally involve compressing a dataset once and subsequently decompressing it many
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times. Thus decoding speed was of somewhat greater concern to us than encoding speed.
We therefore designed the decoder �rst, and then designed the encoder to �t. We likewise
describe the decoder �rst.

int bitCount;

int threshold[10] = f0,1,2,4,8,16,32,64,128,256g;

int allowable[] = threshold+1; /* For expository purposes only */

FILE *externalIn;

unsigned char internalBuffer;

int decodeBit()f

if (internalBuffer>=threshold[bitCount])f

internalBuffer -= threshold[bitCount];

if ((--bitCount)<=0)

decodeImport();

return 1;

gelsef

if ((--bitCount)<=0)

decodeImport();

return 0;

g

g

void decodeImport()f

internalBuffer = fgetc(externalIn);

bitCount += 8;

g

Example 1. A pair of procedures which extract bits from a �le with
no compression involved.

Let us consider �rst the procedures given in Example 1. This decoder does not as yet
provide any compression; it simply extracts bits from a �le (and not in the most e�cient
manner, either). The most-signi�cant bits of each byte in the �le are extracted �rst. We
give it here purely as an illustration of our paradigm for the operation of a decoder. (Note:
throughout this article, we assume that a char has eight bits of precision, a short has
sixteen bits of precision, and a long has thirty-two bits of precision.)

In order for the decoder to hold data, it must be furnished with several states. It is conve-
nient to represent the state of the decoder by two components: one indicating the quantity
of data held by the decoder (bitCount) and another indicating the content of that data
(internalBuffer). When called upon to decode a symbol (the procedure decodeBit()),
the decoder is in one of several possible states. One subset of these states represents the
symbol 0, and another represents the symbol 1. The decoder must determine to which sub-
set its state belongs (by comparing internalBuffer to threshold[bitCount]). It then
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transits to a new state to re
ect the depletion of its store of data (by decrementing bit-

Count and, if necessary, decreasing internalBuffer). At times (when bitCount reaches
the value 0) the decoder must replenish its store of data by reading from an external �le
(the procedure decodeImport()). This import operation modi�es both internalBuffer

and bitCount.
A few enhancements to this simple example will produce the ELS decoding algorithm.

We �rst call attention to the table allowable[], not directly used by the decoder but a
convenient reference for discussion. It is the counterpart of a mathematical function we
call S, relating the quantity of data in the encoder to the number of allowable states. A
number with B bits of precision can take 2B distinct values; thus

S(B) = 2B:

In Example 1, allowable[bitCount] takes the value S(B) when bitCount takes the
value B. Thus there are allowable[bitCount] allowable values for internalBuffer at
any time. The insight underpinning arithmetic coding is that this relationship between
the number of bits in the decoder and the number of allowable states remains valid even
when B is not an integer and S(B) is not a power of two.

Note also: we apportioned the allowable values corresponding to 0 and 1, respectively,
so that all of the former values were less than all of the latter. Thus we can deter-
mine to which subset of values the value of internalBuffer belongs by comparing it to
threshold[bitCount], which is the minimum value of internalBuffer corresponding to
1. When the symbol 0 is decoded, the number of allowable values for internalBuffer

necessarily becomes the value of threshold[bitCount] before decoding the symbol.
Example 2 describes a full-
edged ELS-decoder, although at a crude level of accu-

racy. (The procedures for initializing and terminating the decoding process are not shown;
straightforward, they can be found in the accompanying sample listings.) Let us note the
changes from Example 1 to Example 2:

First: to compress symbols from a binary alphabet, we must work with quantities of
data smaller than a bit. We therefore de�ne a jot to be a unit of data equal to 1=F of
a byte, F being an integer larger than 8. In Example 2, F is given the value 15, and is
represented by the macro JOTS PER BYTE. In practice F normally takes much larger values.
The decoder in Example 2 measures data in jots rather than bits.

For example, allowable[jotCount] now gives the number of allowable values for in-
ternalBuffer for a given number of jots. This is determined by the same relation as previ-
ously: when jotCount takes the value J , allowable[jotCount] takes the value S(8J=F )
with appropriate rounding (\appropriate" to be discussed fully later), S still measuring
data in bits. For example, 23 jots is equal to 23/15 bytes or 8 � 23=15 bits. The number
of corresponding allowable values is S(8 � 23=15) � 4927:59. We round this value to give a
value of 4928 for allowable[23].

Second: we must now consider the probability associated with the given symbol. Thus
decodeBit() now has a parameter rung (whose relation to the probability will later be
made explicit). This is used as an index into a table ladder[] of structures with three
elements: codeLength0 and codeLength1, indicating the number of jots required to code
0 and 1, respectively; and threshold, which (as before) is the lower bound for allowable
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#define JOTS PER BYTE 15

unsigned short allowable[2*JOTS PER BYTE] = f1,2,3,4,5,7,

10,14,20,28,41,59,85,123,177,256,371,536,776,1123,1625,

2353,3405,4928,7132,10321,14938,21619,31288,45283g;

structf

unsigned short *threshold;

short codeLength0;

short codeLength1;

g ladder[3] = ffallowable+14,1,4g,

fallowable+13,2,2g,fallowable+11,4,1gg;

unsigned short internalBuffer;

int jotCount;

FILE *externalIn;

int decodeBit(unsigned char rung)f

if (internalBuffer >= ladder[rung].threshold[jotCount])f

internalBuffer -= ladder[rung].threshold[jotCount];

if ((jotCount -= ladder[rung].codeLength1) <= 0)

decodeImport();

return 1;

gelsef

if ((jotCount -= ladder[rung].codeLength0) <= 0)

decodeImport();

return 0;

g

g

void decodeImport()f

jotCount += JOTS PER BYTE;

internalBuffer <<= 8;

internalBuffer |= fgetc(externalIn);

g

Example 2. The ELS-decoder.

values of internalBuffer corresponding to the symbol 1. (The aptness of our termi-
nology ladder and rung will become apparent in Section 4, when we discuss probability
estimation.)

Third: unlike bitCount in Example 1, jotCount is not decremented by a single pre-
dictable amount for each symbol decoded. Thus we can not depend on jotCount hitting
the value 0 exactly as it is decremented. Therefore we have expanded internalBuffer
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from one byte to two; we call the higher-order byte the working byte and the lower-order
byte the reserve byte. We try to keep the reserve byte completely �lled with data and
the working byte at least partially �lled with data|this is equivalent to saying that we
maintain at least 256 allowable values for internalBuffer. We let jotCount indicate
the amount of data in the working byte of internalBuffer, negative values of jotCount
indicating that the reserve byte is at least partially depleted. Meaningful values for jot-
Count range from -JOTS PER BYTE when the decode is completely empty of data (though
in actual operation the minimum value attained by jotCount is 1-JOTS PER BYTE), to
JOTS PER BYTE when the decoder is completely full. The decoder calls decodeImport()
when the value of jotCount dips to zero or lower. Moreover, jotCount is never decre-
mented by more than JOTS PER BYTE in a single call to decodeBit(), lest we exhaust the
reserve byte.

Fourth: the operation of importing a byte is complicated somewhat by the expansion of
internalBuffer to two bytes. It involves a shift and OR rather than a simple assignment
as in Example 1.

Consider as an example a call to decodeBit() with a value of 1 for rung, the value of
jotCount being 3. This indicates that internalBuffer contains F + 3 = 18 meaningful
jots. Note that the value of allowable[18] is 776; thus the value of internalBuffer must
be one of 0; 1; : : : ; 775. If the decoded symbol is 0, then jotCount will be decreased to 2 by
subtracting ladder[1].codeLength0, and internalBuffer will then contain F + 2 = 17
meaningful jots. If the decoded symbol is 1, then jotCount will be decreased to -1 by
subtracting ladder[1].codeLength1, and internalBuffer will then contain F � 1 = 14
meaningful jots. Note allowable[17] is 536 and allowable[14] is 177; therefore, out
of the 776 allowable values for internalBuffer, the 536 values 0; 1; : : : ; 535 represent 0
and the 177 values 536; 537; : : : ; 712 represent 1. Suppose the value of internalBuffer
is 600. The �rst step in decoding the symbol is to compare 600 to 536 (the value of
ladder[1].threshold[3]) and see that the symbol is 1. We then add �4 to jotCount,
giving it the value �1. The allowable values for internalBuffer are now 0; 1; : : : 177; we
subtract 536 from internalBuffer (making it 64) to bring it within this range.

Since �1 � 0, we have exhausted the data in the working byte of internalBuffer; we
call decodeImport() to import a byte from the external �le. Suppose the next byte in the
external �le has the value 137. We update the value of internalBuffer to (64�256)+137 =
16521 (actually accomplished by shifting and ORing) and update the value of jotCount
to �1 + 15 = 14. Note that the number of allowable values for internalBuffer is now
allowable[14+15], or 45283.

This is an opportune moment to remark on some fundamental principles for the design
of a decoder according to our paradigm. For example, note that of the 776 allowable values
for internalBuffer, 536 represent 0 and 177 represent 1. The other 776�536�177 = 63
values are wasted. This is a defect of the decoder; ideally every allowable value should
represent either 0 or 1, but the restriction of jotCount and allowable to integer values
makes such waste unavoidable at least some of the time.

Our de�nition of \allowable" states does not consider the future development of a state.
Thus some allowable states may not lead to allowable states in the future; such states are
unusable in practice. We call the situation where such states exist a data leak. In the
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presence of a data leak, there are possible states for the decoder which are not allowable.
Another characteristic of a data leak is that some possible coded data streams are illegal
or redundant.

Data leaks form one of two main sources of coding ine�cency in the ELS-coder, the
other being inaccuracy in the proportion of values corresponding to 0 and 1, which will
be discussed in Section 4. However, for larger values of JOTS PER BYTE, the ine�ciency is
quite modest. As discussed in Section 5, a good working value for JOTS PER BYTE is 754;
in this case the data leak described causes a coding ine�ciency of less than :008 bits per
symbol.

A data leak exists when some allowable states of the decoder do not lead to allowable
states of the decoder at a later time. Since these allowable states embody the data present
in the decoder, a data leak implies that data is somehow dissipating into nothing. The sit-
uation is analogous to an engine failing to convert all the energy input (as fuel) into usable
output energy. In designing an engine, we of course strive to maximize the proportion of
input energy converted to output energy. On the other hand, if we designed an engine and
found that the output energy was expected to exceed the input energy, we would know that
we had made some sort of fundamental error. The analogous principle for the ELS-coder
(or for any decoder viewed in the light of our paradigm) is that all allowable states of the
decoder must be derivable from allowable states of the decoder at any earlier time. Our
name for a violation of this principle is perpetual motion. Perpetual motion implies the
existence of allowable states which are not possible. Data leaks and perpetual motion are
dual evils; while the former is regrettable, the latter must be avoided at all costs.

For example, the components codeLength0 and codeLength1 for each entry of the array
ladder[] in Example 2 must satisfy the constraint that

allowable[jotCount-codeLength0] + allowable[jotCount-codeLength1] <=

allowable[jotCount]

for all values of jotCount between 1 and F , inclusive; i.e., of A allowable values for
internalBuffer at any time, those representing 0 and those representing 1 can total to
no more than A.

Our example decoding process illustrates a second data leak in the decoder, which
may be less immediately apparent. This occurs while importing a byte from the external
�le. Immediately before importing the byte, internalBuffer has 177 allowable values.
Importing a byte makes the number of values available 256 � 177 = 45312. However,
the number of allowable values after importing is speci�ed as 45283; thus 29 allowable
values have been lost. In constructing the table allowable[], we must take care to
avoid perpetual motion while importing a byte. Recall that when jotCount takes the
value J , allowable[jotCount] takes the value S(8J=F ) with \appropriate" rounding:
\appropriate" means that allowable[jotCount] takes the value S(8J=F ) rounded to
the nearest integer when F � J < 2F , but for 0 � J < F , to avoid perpetual motion,
we calculate allowable[jotCount] as (allowable[jotCount+JOTS PER BYTE]+255)/256

(i.e. rounded up).
The choice of the value of rung to be used in a call to decodeBit() is dictated by the

probabilities that the symbol to be decoded will be 0 or 1. Suppose that ladder[rung]
has values L0 and L1 for codeLength0 and codeLength1, respectively. Let p denote the
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probability that the symbol is 1. Then the expected number of jots used to code the
symbol is L0(1� p) +L1p. For example, with a value of 0 for rung, the expected number
of jots is (1� p) + 4p = 1 + 3p; with a value of 1 for rung, the expected number of jots is
2(1� p) + 2p = 2. For purposes of data compression we would of course prefer the smaller
of these two values; we can solve the inequality 1 + 3p � 2 for p to �nd that the value 0
is to be preferred to 1 for rung if p � 1=3. With similar calculations we �nd that 1 is the
preferred value if 1=3 � p � 2=3 and 2 is the preferred value if 2=3 � p. (At the boundary
points between these intervals we may equally well choose the preferred rung value for
either side.)

Incidentally, the theoretical optimum compression can be calculated by setting

(2.1) L0 = F log256(1 � p); L1 = F log256 p;

the corresponding expected number of jots �F ((1� p) log256(1� p) + p log256 p) is known
in data compression theory as the entropy of the symbol (usually measured in bits rather
than jots).

All entries of the table ladder[] are calculated so that the values of codeLength0 and
codeLength1 satisfy the following constraints, termed the ladder constraints::

(1) allowable[J-codeLength0] + allowable[J-codeLength1] <=

allowable[J] for any value of J between 0 and F � 1, inclusive (to avoid per-
petual motion);

(2) the values of codeLength0 and codeLength1 must be positive (so that each symbol
0 or 1 corresponds to at least some allowable values);

(3) the values of codeLength0 and codeLength1 must be no greater than
JOTS PER BYTE (to avoid running beyond the end of the reserve byte while de-
coding a symbol);

(4) subject to the above criteria, allowable[J] - (allowable[J-

codeLength0] + allowable[J-codeLength1]) should be made as small as possi-
ble (to minimize data leaks).

Then ladder[i].threshold takes the value allowable - ladder[i]

.codeLength0 + JOTS PER BYTE. With F = 15 there are but three combinations of code-
Length0 and codeLength1 satisfying all the above criteria; these yield the three entries of
the table ladder in Example 2.



A RAPID ENTROPY-CODING ALGORITHM 9

3. The Encoding Algorithm

Now for an instant their eyes met in the mirror; and the woman's face he saw

there, or seemed to see there, yearned toward him, and was unutterably loving,

and compassionate, and yet was resolute in its denial. For it denied him, no

matter with what wistful tenderness, or with what wonder at his folly. Just

for a moment he seemed to see that; and then he doubted, for Kathleen's lips

lifted complaisantly to his, and Kathleen's matter-of-fact face was just as he

was used to seeing it.

And thus, with no word uttered, Felix Kennaston understood that his wife

must disclaim any knowledge of the sigil of Scoteia, should he be bold enough

to speak of it.

James Branch Cabell, The Cream of the Jest

Such a moment must be considered a formidable accomplishment from the standpoint
of data compression. The reader can most likely cite other occasions when a glance or a
handful of words su�ced to carry volumes of meaning. A prerequisite for communication of
such high e�ciency is a prior high level of empathy between sender and receiver. This is no
less true for machines than people; indeed, for machines such a high level of understanding
is far more easily attained. One computer program can contain a complete copy of another,
if necessary.

The ELS-coder decoding algorithm has already been described. The encoder must use
its knowledge of the decoder's inner workings to create a data stream which will manipulate
the decoder into producing the desired sequence of decoded symbols; the encoder plays
Rasputin to the decoder's Alexandra.

unsigned long min;

int jotCount;

int backlog;

FILE *externalOut;

void encodeBit(unsigned char rung, int bit)f

if (bit)f

/* Encode a 1 */

min += ladder[rung].threshold[jotCount];

jotCount -= ladder[rung].codeLength1;

gelsef

/* Encode a 0. */

jotCount -= ladder[rung].codeLength0;

g

if (jotCount<=0)

encodeExport();

g

Example 3. ELS-encoder: basic procedure.
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Examples 3 and 4 show procedures for encoding compatible with the decoding proce-
dures of Example 2. The tables allowable and ladder and the macro JOTS PER BYTE are
identical to those used by the decoder.

In rough terms, the ELS-encoder operates by considering all possible coded data streams
and gradually eliminating those inconsistent with the current state of the decoder (\cur-
rent" and other adverbs of time used similarly in this discussion should be understood to
refer to position in the data stream rather than actual physical time). For the decoder the
\allowable" values of the internal bu�er form a convenient reference point for discussion;
for the encoder we are concerned with the set of values for the coded data stream consistent

with the current set of allowable values in the decoder.

As a practical matter, the encoder need not actually consider the entire coded data
stream at one time. We can partition the coded data stream at any time into three
portions; from end to beginning of the data stream they are: preactive bytes, which as
yet exert no in
uence over the current state of the decoder; active bytes, which a�ect the
current state of the decoder and have more than one consistent value; and postactive bytes,
which a�ect the current state of the decoder and have converged to a single consistent value.
Each byte of the coded data stream goes from preactive to active to postactive; the earlier
a byte's position in the stream, the earlier these transitions occur. A byte is not actually
moved to the external �le until it becomes postactive. Only the active portion of the data
stream need be considered at any time.

Since the internal bu�er of the decoder contains two bytes, there are always at least two
active bytes. The variable backlog counts the number of active bytes in excess of two. In
theory backlog can take arbitrarily high values, but higher values become exponentially
less likely. When backlog takes the value N , there are N + 2 active bytes; we number
them 0; 1; : : : ;N+1 from latest to earliest. The encoder has a variable jotCount matching
in value the decoder's variable jotCount at the same point in the data stream.

Regarding the arithmetic operations used for encoding we can think of the N +2 active
bytes as forming a single unsigned number with N + 2 bytes of precision, byte 0 being
least signi�cant and byte N + 1 being most signi�cant. The set of allowable values in the
decoder at any time form a continuous range; it can be shown that the consistent values
of the active bytes in the encoder at any time likewise form a continuous range. Thus we
can describe this range simply by its minimum and maximum values, which we denote
mathematically by m and M , respectively. Each of these is a nonnegative integer with N
bytes of precision; when we wish to refer speci�cally to byte k of m or M , we will write
m[k] or M [k], respectively. Moreover, since the number of elements of the set is given by
allowable[JOTS PER BYTE+jotCount] only the minimum value need be speci�ed.

Suppose the value N of backlog is positive. Consider the most-signi�cant active byte,
byte (N + 1). The minimum consistent value for this byte is m[N + 1] and the maximum
consistent value is M [N + 1]. Since this byte is active and not yet postactive, it has more
than one consistent value; thus m[N + 1] < M [N + 1]. Let A be the current number of
allowable values for the decoder's internal bu�er; then A � 216 and M = m + (A � 1).
Note A can be represented as a two-byte value. If we consider the operation of adding
(A � 1) to m byte-by-byte to obtain M , we see that a carry must occur from byte 1 to
byte 2 and on upward to byte (N +1) in order for byte (N +1) to take di�ering values for
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m and M . We see also that we must have m[N + 1]+ 1 =M [N + 1]. And furthermore, if
N > 1, then m[2];m[3]; : : : ;m[N ] must all take the maximum possible value 255 in order
for the carry to propagate from byte 1 to byte (N +1). (And henceM [2];M [3]; : : : ;M [N ]
all take the minimum possible value 0.)

This is convenient; for we need not separately store all N +1 bytes of m, but can make
the four-byte variable min serve. Bytes 0, 1, and 2 of min represent m[0], m[1], and (when
backlog is positive) m[2], respectively. When backlog takes a value N > 1, then byte 3
of min represents m[N + 1]. Moreover, most of the arithmetic operations to be performed
on m can be performed on min in a completely ordinary way. The exceptions can be
recognized because they require the manipulation of backlog.

Having concluded these rather lengthy preliminaries, let us now consider the arith-
metic operations entailed in encoding a symbol. Recall the sequence of events in the
decoder attending the decoding of the symbol 0. Initially, internalBuffer has one of
allowable[JOTS PER BYTE+jotCount] values. The decoder compares internalBuffer

to ladder[rung].threshold[jotCount]; a 0 is decoded if internalBuffer holds the
lesser value. Then ladder[rung].codeLength0 is subtracted from jotCount, re
ecting
the newly decreased number of allowable values for internalBuffer. Note that the al-
lowable values eliminated are all taken from the top of the range (those greater than
ladder[rung].threshold[jotCount]). Thus m does not change; and the encoder need
not modify min or backlog but only jotCount.

To encode the symbol 1: The chief di�erence in the sequence of events in the de-
coder as compared to the case for 0 is that those values representing 0, numbering lad-

der[rung].threshold[jotCount], are eliminated from the bottom of the range of con-
sistent values for the coded data stream. Some additional values may be eliminated
from the top of the range as well, if there is a data leak. Thus the encoder, as well
as changing the value of jotCount to track its value in the decoder, must add lad-

der[rung].threshold[jotCount] to min to raise m. The encoder not representing M
directly, the operation of eliminating consistent values from the top of the range takes
care of itself. The unusual format by which min represents m never becomes an issue in
encodeBit().

When the value of jotCount dips to zero or lower, the encoder calls the procedure
encodeExport(). In contrast to decodeImport(), which invariably reads a single byte
from the external �le, encodeExport() writes from zero to several bytes in a single call.
One of its functions is to determine whether the most-signi�cant active bytes have yet
converged to a unique consistent value, thus becoming postactive and hence ready to be
exported to the encoder's external �le. These most-signi�cant bytes may actually converge
to a unique consistent value well before encodeExport() is called, but there is no harm
in waiting until then to check. On each call, encodeExport() moves a single byte from
the preactive to the active portion of the coded data stream. The format by which min

representsm does become an issue in encodeExport(); we must manipulate backlog and
min together.
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void encodeExport()f

unsigned long diffBits;

/* First check for bytes becoming postactive;

diffBits marks differences between max and min consistent values */

jotCount += JOTS PER BYTE;

diffBits = (min + allowable[jotCount] - 1) ^ min;

switch(backlog)f

default: /* 2 or greater */

if (diffBits & 0xFF000000)

break;

fputc(min>>24,externalOut);

while(--backlog > 1)

fputc((min>>16) & 0xFF,externalOut);

case 1:

if (diffBits & 0x00FF0000)

break;

fputc((min>>16) & 0xFF,externalOut);

backlog--;

case 0:

if (diffBits & 0x0000FF00)

break;

fputc((min>>8) & 0xFF,externalOut);

backlog--;

g

g

/* Move a byte from preactive to active. */

if (++backlog>2)

min = (min&0xFF000000)|((min&0x0000FFFF)<< 8);

else

min <<= 8;

g

Example 4. Encoding procedure to export data.

4. Probability Estimation

As for a future life, every man must judge for himself between con
icting vague

probabilities.

Charles Darwin

The foregoing sections describe an encoder and decoder for entropy coding; however,
powerful operations of data modeling can be incorporated in a natural way into the encoder
and decoder using the developer's own sophisticated model for the particular type of data
involved.
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Earlier we commented that the two main sources of compression ine�ciency in the
ELS-coder are data leaks and misestimates of probabilities. We now provide some rules of
thumb for estimating the compression ine�ciency due to the latter in any entropy coder.

Data compression theory teaches that the shortest possible expected code length for
a binary symbol taking the value 1 or 0 with probability p or (1 � p), respectively is
achieved by using a code of length log:5 p bits for 1 and a code of length log:5(1 � p)
bits for 0. The resulting optimum expected code length (the entropy of the symbol) is
[(1� p) log:5(1� p)+ p log:5 p] bits. Suppose we estimate p by p0 = p+ � with an error of �;
then we would use code lengths for 0 and 1 of log:5(1�p��) and log:5(p+�); the resulting
expected code length is [(1 � p) log:5(1 � p � �) + p log:5(p + �)]. Using a power series
representation for the logarithm, it can be shown that for small values of � the expected
code length is approximately

(4.1)
�2

p(1� p) log 2

bits per symbol greater than optimum.
This depends on p; at times it is more convenient to work with the probability angle �

such that p = sin2 � and 1 � p = cos2 �. Then an error of � radians in the probability
angle entails a compression ine�ciency of approximately

(4.2)
2�2

log 2

bits per symbol|independent of �.
In a real-world application, it can be quite di�cult to estimate the probabilities for a

particular symbol. One approach is to examine the history of symbols which appeared in
similar contexts. (This determination of \context" is part of the modeling problem; the
example programs COMPRESS and EXPAND provide an illustration.) On the (t + 1)st
occurrence of a particular context, we create an estimate pt+1 for the probability p that
the symbol takes the value 1 by averaging its values over previous occurrences:

(4.3) pt+1 =
1

t
(�1 + �2 + � � � + �t);

where �u represents the value of the symbol on the uth occurrence of this context.
Such an approach may be improved upon if the value of p shifts over time. For example,

in compressing the Bible, one would �nd that \Moses" occurs more frequently than \Peter"
in the Old Testament, while the opposite is true in the New Testament. Therefore we might
choose to weight recent occurrences of a given context more heavily. For example, we could
use geometrically decreasing weights to create an estimate Pt for p:

(4.4) Pt+1 = s(�t + (1 � s)�t�1 + (1� s)2�t�2 + � � � );

s being a parameter between 0 and 1. We have simpli�ed matters by assuming in (4:4) that
the context has occurred in�nitely many times already; the weights given to occurrences
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in the distant past are very small anyway. The greater the value of s, the more heavily
more recent occurrences of a context are weighted, and thus the more rapidly Pt re
ects
changes in p. We therefore call s the speed of adaption.

Higher speeds of adaptation better recognize shifting probabilities, but there is an at-
tendant disadvantage. Small speeds of adaptation are akin to calculating an average over
a large sample, while large values of speed calculate an average over a small sample. Aside
from shifts in the value of p, we would expect our estimate to be more accurate as the
sample is larger. Indeed, assuming the symbols �u are independent (a reasonable assump-
tion, since dependence indicates an unexploited opportunity for the modeling scheme), and
ignoring shifts in the value of p, statistics theory indicates that the mean-squared error in
our estimate Pt+1 for p is given by

�2 =
s

2� s
p(1� p);

increasing as s increases. In light of formula (4:1), the corresponding coding ine�ciency is

(4.5)
s

(2 � s) log 2

bits per symbol (conveniently independent of p).
This dichotomy is of fundamental importance in real-world data compression problems.

In estimating probabilities associated with a particular type of data, often one's only
recourse is to judge empirically based on the data previously seen. One must decide how
much additional importance should be accorded to more recent data. If recent data is
weighted heavily, then the accuracy of the estimate su�ers because one is estimating from
a small sample. If recent data is not weighted heavily, then the accuracy of the estimate
may su�er because one's estimate will be slow to re
ect shifts in the true probability. The
state of the art in modeling many real-world classes of data is such that the probability
estimate presented to the entropy coder should often be regarded as rather haphazard.

This gloomy state of a�airs is not completely without its consolations. Suppose the
probability estimate presented to an entropy coder (of whatever variety) has some signi�-
cant error. If, due to its own limitations, the entropy coder cannot reproduce the requested
probability value exactly, this is as likely to improve compression as to worsen it. Other
types of coding inaccuracies may also pale in severity in the face of this fundamental di�-
culty of probability estimation. Thus the real world can be surprisingly forgiving of minor
ine�ciencies in an entropy coder, particularly of those related to probability values.

Though more sophisticated than (4:3), formula (4:4) can be more rapidly computed in
practice. Note that from (4:4) we can derive:

Pt+1 = s�t + (1� s)Pt;

i.e.,

(4.6) Pt+1 =

(
(1 � s)Pt if �t = 0;

(1� s)Pt + s if �t = 1:
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In software, this can be implemented by a pair of lookup tables giving Pt+1 as a function of
Pt, depending on whether the last symbol for the given context was 0 or 1. We cannot treat
Pt as a 
oating-point value but must restrict it to a discrete set. However, a relatively
modest collection of values for Pt can provide excellent coding e�ciency. For example,
consider 90 values, distributed between 0 and 1 so that the corresponding probability
angles are evenly spaced between 0 and 90�. Then the error in probability angle need never
exceed :5�. From (4:2), we �nd the corresponding coding ine�ciency to be 0.0002197 bits
per symbol. This is the error due to the discretization of p; as noted above, this is likely
to be insigni�cant compared to coding ine�ciencies from other e�ects.

Example 5 illustrates the incorporation of these lookup tables into the ELS-coder. We
have added two elements next0 and next1 to the structures making up the table lad-

der[], indicating the next value of the �rst argument to the procedures decodeBit() and
encodeBit(). if the current symbol is 0 or 1, respectively. Here can be seen the origin of
our nomenclature ladder[]; we think of the elements of this table as rungs of a ladder,
which we ascend and descend as the probability associated with the context rises and falls.
The procedures decodeBit() and encodeBit() now must modify the value of their �rst
argument, so it is no longer appropriate to pass it by value. The procedures decodeBit()
and encodeBit() now modify the value of the index into ladder[]; thus the parameter
rung is now of type unsigned char* rather than unsigned char and is a pointer to this
index rather than representing the index directly.

The foregoing assumes that probabilities are updated once for every symbol coded. A
slight modi�cation of the described technique is to update the probabilities only when the
decoder imports data or the encoder exports data (i.e., in the procedures decodeImport()
and encodeExport() of our examples). This should provide faster coding, since the update
operation is performed less often, but could decrease coding e�ciency, since the probabil-
ities are estimated from a more restricted sample. This approach is appealing from the
standpoint that probabilities are modi�ed more often when compression is poor, since in
that case bytes are imported more frequently. Our name for this variant is inalacritous

updating, the other method being of course alacritous. The sample listing accompanying
this article embodies both approaches, distinguished by compile switches.

Inalacritous updating requires a di�erent set of look-up tables for the probability ladder,
since bytes are more likely to be imported during the coding of certain symbols than
others. The updating formula (4:6) indicates that the probability estimate increases by
�p1 = s(1�Pt) when the coded symbol is 1 and decreases by �p0 = �sPt when the coded
symbol is 0|note �p1 ��p0 = s. Thus the ratio of these two step sizes is �p1=�p0 =
�(1�Pt)=Pt. If a given element of the table ladder[] has values L0 for codeLength0 and
L1 for codeLength1, then the probability of importing a byte when 0 is coded is L0=F
and the probability of importing a byte when 1 is coded is L1=F . To compensate, we
therefore adjust the ratio of the two step sizes to

�p0
1

�p0
0

=

�
�p1
�p0

��
L0=F

L1=F

�
= �

(1� Pt)L0
PtL1

:

If we de�ne the speed s to be �p0
1
��p0

0
as previously, then we obtain

�p0
0
=

�sPtL1

(1� Pt)L0 + PtL1
;
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structf

unsigned short *threshold;

short codeLength0;

short codeLength1;

unsigned char next0;

unsigned char next1;

g ladder[: : : ] = f: : : g;

� � �

int decodeBit(unsigned char *rung)f

if (internalBuffer >= ladder[*rung].threshold[jotCount])f

internalBuffer -= ladder[*rung].threshold[jotCount];

if ((jotCount -= ladder[*rung].codeLength1) <= 0)

decodeImport();

*rung = ladder[*rung].next1;

return 1;

gelsef

if ((jotCount -= ladder[*rung].codeLength0) <= 0)

decodeImport();

*rung = ladder[*rung].next0;

return 0;

g

g

void encodeBit(unsigned char *rung, int bit)f

if (bit)f

min += ladder[*rung].threshold[jotCount];

jotCount -= ladder[*rung].codeLength1;

*rung = ladder[*rung].next1;

gelsef

jotCount -= ladder[*rung].codeLength0;

*rung = ladder[*rung].next0;

g

if (jotCount<=0)

encodeExport();

g

Example 5. Entropy decoding and encoding procedures incorporating
probability estimation.

�p0
1
=

s(1 � Pt)L0
(1� Pt)L0 + PtL1

:

For Pt near 0 or 1, we may need to restrict s to small values lest Pt + �p0
0
< 0 or

Pt+�p0
1
> 1. The accompanying sample listings include complete examples of both types



A RAPID ENTROPY-CODING ALGORITHM 17

of probability ladder.

5. The Code Samples

Listings for four �les elscoder.h, elscoder.c, compress.c and expand.c accompany
this article. The �les elscoder.h and elscoder.c contain declarations and de�nitions for
an implementation of the ELS-coder, respectively. The �les compress.c and expand.c
are sample programs which use the ELS-coder to compress and expand a �le using a
one-byte model.

The code fragments given as examples in the previous sections were designed more
for pedagogical value than utility. The sample programs represent a compromise between
these two goals with more emphasis on utility. The reader will note the following changes:

(1) The variables describing the states of the decoder and encoder have been collected
into structures named d and e, respectively.

(2) Globally visible names in the coder have been pre�xed by els, Els, or ELS, to help
prevent namespace collisions.

(3) The procedures decodeImport() and encodeExport() have been eliminated and
the corresponding operations incorporated directly into elsDecodeBit() and
elsEncodeBit().

(4) The value of JOTS PER BYTE has been increased from 15 to 754. The value 754
represents a sort of local optimum. Although higher values for JOTS PER BYTE

generally yield better coding e�ciency, the vagaries of the ladder constraints listed
in Section 2 dictate that higher compression ratios are attainable for the value 754
than for 755 and subsequent higher values up to around 1508.

The �le elscoder.c includes straightforward procedures elsDecodeStart() and elsEn-
codeStart() for initializing and elsDecodeEnd() and elsEncodeEnd() for terminating
encoding and decoding.

One can choose alacritous or inalacritous probability updating in the coder by de�ning
or not de�ning ALACRITOUS in compiling elscoder.c

The sample �les also incorporate some enhancements to the basic ELS-coder described
in the previous sections:

First: Although the entropy-coding algorithm works with units of data smaller than a
bit, most likely the source and destination �les must have lengths that are multiples of a
byte. Thus a �le coded with the ELS-coder is likely to end with a fraction of a byte not
containing meaningful data. The sample ELS-coder attempts to make a virtue of necessity
by using this empty portion to encode something akin to a checksum. When encoding is
concluded, a certain number of consistent values remain in the encoder; these are used to
store the value of jotCount to whatever precision is possible. This is done automatically in
the procedure elsEncodeEnd(). If desired, the user can call the function elsDecodeOk()

when �nished decoding but before calling elsDecodeEnd(); this will verify that the value
of jotCount matches that sent by the encoder. The ELS-coder is such that any corruption
of the compressed data will most likely profoundly alter the course of execution of the
decoder; the probability of ending with the same value of jotCount is quite small. Of
course, this value is only encoded to the precision possible with the fraction of a byte
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remaining at the end of coding; thus the probability of hitting the correct value by chance
ranges from 1 in 255 to 1, depending on what that fraction is.

Second: Recall that our design of the probability state ladder (in both the alacritous and
non-alacritous cases) assumes that any given context has already occurred in�nitely many
times. This assumption is least tenable near the beginning of the coding process. It seems
appropriate to use smaller samples to estimate probabilities (i.e., to use greater speeds of
adaptation) early in the coding process and larger samples (lesser speeds of adaptation)
later in the process. This has been achieved by incorporating transient states into the
probability ladder; these are states which can be visited at most once early in the coding
process and never again thereafter.

Consider for example the alacritous probability ladder. The initial rung is at index 0
and has probability .5 (for convenience, the index and probability value corresponding to
each rung of the probability ladder are listed in a comment preceding the initializer for that
rung). State 0 is followed by rung 1 or 2, with probabilities of :33333 or :66667, respectively.
The speed of rung 0 is equal to the di�erence between these values, or :33333. Rungs 1 and
2 are followed by rungs 3,4,5,6; the speed for rungs 1 and 2 is given by, for example, the
di�erence between the probability values for rungs 3 and 4, or :29. Similarly, rungs 3,4,5,6,
are followed by rungs 7; : : : ; 14, which are in turn followed by rungs 15; : : : ; 30, which are
in turn followed by rungs 31; : : : ; 62, which are in turn followed by rungs 63; : : : ; 126. The
speed decreases at each step, from .33333 to .29 to .24667 to .20333 to .16 to .11667 to
.07333. From one of rungs 63; : : : ; 126 the coder transits to one of rungs 127; : : : ; 254;
these form the permanent part of the ladder; these rungs can be visited repeatedly. The
speed for the permanent rungs is :03.

The inalacritous probability ladder likewise consists of 127 transient rungs and 128
permanent rungs.

The values of speed used here are by no means sacred (although some theoretical argu-
ment can be made for an initial value of 1=3); the best value of speed for the permanent
rungs depends on the nature of the data being compressed. Nor is it required to have 127
transient rungs and 128 permanent rungs; we simply chose values totaling to almost 256
in order to get the most mileage out of the unsigned char serving as an index into the
ladder.

Third: Rung 255 (of either ladder) does not represent a probability state, but is available
for use as an \inactive" state. The only really important components of this rung are
codeLength0 and codeLength1, both set to 2*JOTS PER BYTE+1. This value is guaranteed
to trigger an import operation; moreover the value of jotCount remains negative even
after the addition of JOTS PER BYTE. Both encoder and decoder are equipped to recognize
this as an error condition.

The example shell programs compress.c and expand.c illustrate the use of various
contexts for modeling. In this case the model is a one-byte model. For example, if com-
pressing English text, the model exploits the fact that `e' occurs more frequently than
`u', but not the fact that `u' occurs more frequently than `e' following `q'; it represents
frequencies for each byte but not relationships between di�erent bytes. This model is
described by a state machine, each state holding a probability rung. Each state of the
machine corresponds to a particular context. For example, the �rst bit of a byte is one
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of these contexts. The last bit of a byte corresponds to 128 di�erent contexts, depending
on the values of the preceding seven bits. Any model to be used with the ELS-coder or
similar coders handling only binary symbols must be expressed as such a state machine.

This one-byte model requires 255 states (stored in the table context[]), organized in
a tree fashion similar to the transient rungs of the probability ladder|we number these
from 1 to 255. State 1 is used for the �rst bit of any byte. State 2 is used for the second bit
of a byte if the �rst bit was 0; state 3 is used for the second bit of a byte if the �rst bit was
1. In general, state 2n is used for the next bit of a byte if the preceding bit corresponding
to state n was 0, while state 2n+ 1 is used for the next bit of a byte if the preceding bit
corresponding to state n was 1. This arrangement of states also makes for straightforward
calculation of state transitions, so storing the values of successor states in unnecessary.
Such a tree of probabilities is equivalent to storing the probabilities for all 256 byte values.

The entry context[0] has not been used in any of the above; we use it to identify a 257th
symbol serving as an end-of-�le marker. We represent the byte value 255 by the sequence
of nine bits 111111110; the end-of-�le marker is the nine-bit sequence 111111111. The
state context[0] is used for the �nal bit of this sequence. Both compress.c and expand.c
must take special action in the case of a byte with value 255.

One can compress a �le raw to one compressed by the command

compress raw compressed.

Subsequently one can expand the �le compressed to one expanded by the command

expand compressed expanded.

The �les raw and expanded should then be identical.

6. Comparison with the Q-coder

We now point out similarities and di�erences between the ELS-coder and the Q-coder.
These may prove useful for those wishing to make a later study of the Q-coder.

The Q-coder is easily interpreted in terms of our paradigm for a decoder as given in
Section 2. (Actually we would claim that any decoder can be described by this paradigm,
but the description is more transparent for some than for others.) Like the ELS-coder,
the Q-coder uses two components to describe the state of the decoder at any time: one,
the \augend", denoted A, describes the amount of data at any time (as does jotCount);
the other, denoted X, gives the content of that data (as does internalBuffer). While
jotCount in the ELS-coder directly measures the quantity of data|the corresponding
number of allowable states being given by an exponential relation as embodied in the table
allowable[]|, the augend A in the Q-coder directly measures the number of allowable
states in the decoder|the corresponding quantity of data being proportional to the log-
arithm of A. Most points of di�erence between the two coders are consequences of this
fundamental di�erence.

Ideally, while decoding a symbol, the proportion of allowable states corresponding to the
symbol 0 should match the probability p0 that the symbol is 0. Determining the number



20 WM. DOUGLAS WITHERS

of allowable states corresponding to each symbol therefore requires a multiplication or
division to be accomplished in some way. In the ELS-coder, the number of allowable
states allocated to the symbol 0 is given by an entry of a lookup table threshold[]

depending on p0. Since the ELS-coder represents the number of states indirectly, via an
exponential table, a simple addition performed on the index into the table is equivalent
to a multiplication performed on the number of allowable states. It is interesting to note
that in spite of the fundamental role played by probabilities in entropy coding, the ELS-
coder operates without representing any probabilities directly. By contrast the Q-coder
represents each probability state by a single number (called a Qe-value) proportional to
the probability. The Q-coder approximates the desired multiplication operation either by
subtracting the Qe-value directly from the augend A or by assigning the Qe-value to A.

This approximation provides (perhaps surprising) coding e�ciency, but it does impose
some constraints on the design of the Q-coder:

(1) Maintaining su�cient accuracy of approximation requires that the number of al-
lowable states in the decoder be restricted to a much smaller range than that used
in the ELS-coder; in general the number of allowable states is not permitted to
vary by more than a factor of two (whereas in the ELS-coder as described here,
this number varies by a factor of 256). As a consequence, data must be imported
much more frequently in the Q-coder than in the ELS-coder. Moreover, this data
import operation is also more complex in the Q-coder: one or several bits may
be import at one time, whereas in the ELS-coder, the quantity of data import is
always exactly one byte.

(2) The approximation is most accurate for small values of the probability, and is
acceptable only for values less than one-half. Thus the Q-coder does not work
with symbols 0 and 1 but with the so-called \MPS" (more probable symbol) and
\LPS" (less probable symbol). In encoding or decoding a symbol, the Q-coder must
determine which of 0 or 1 is the MPS. Such an extra level of indirection might be
useful in an implementation of the ELS-coder, but can be left to the discretion of
the implementer.

Unlike the ELS-coder, the Q-coder has no data leaks. On the other hand, under the
best of conditions, the approximation used in the Q-coder is less accurate than that used
in the ELS-coder even with data leaks taken into consideration. However, in the light of
our remarks in Section 4 on the practical di�culties of accurate probability estimation and
the e�ect of such on coding e�ciency, not too much should be made of this distinction.

The Q-coder uses a probability ladder as does the ELS-coder, but derived on di�erent
principles. This ladder relies strictly on inalacritous probability updating; an alacritous
version would certainly be possible but does not seem to have been the subject of much
study.

The question of which of the Q-coder and ELS-coder codes more e�ciently and which
operates more rapidly depends on many issues of architecture and nature of the data.

The Q-coder performs best in the realm of profound compression: that is, when the
probability of the LPS is very close to 0 and each symbol can be coded very compactly.
The approximation used in the Q-coder provides its best coding e�ciency in such a case,
and a high compression ratio entails less frequent importing of data, so that operation is
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faster. Indeed the highest compression level attainable by the Q-coder (215 : 1) exceeds
that of the ELS-coder (754 : 1 if JOTS PER BYTE takes the value 754). In relative terms the
di�erence is large (a ratio of 43.5) but in absolute terms it is small (a di�erence of 0.00130
bits per symbol). Our design philosophy is that the absolute measure of coding e�ciency is
more important. A version of the ELS-coder using sixteen-bit words rather than eight-bit
bytes as its basic unit of data would provide profound compression comparable to that of
the Q-coder with about twice the memory usage of the version given here.

In the realm of mild compression, the superior accuracy and less frequent data import
of the ELS-coder probably give it an edge. It is worth noting that data compression
applications can often be designed so that profound compression is unnecessary; such a
design is likely to improve both speed and compression e�ciency. For example, in a simple
binary model, if 0 is overwhelmingly more probable than 1, one is likely to �nd long
runs of the symbol 0 in the data. Run-length-encoding the symbols 0 would reduce the
number of calls to the entropy coder while reducing the dependence of compression ratio
on achievability of profound compression.

Another example of such a design decision is given in the sample programs compress.c
and expand.c with respect to the coding of the end-of-�le marker. The bit indicating
end-of-�le could have been inserted at the base of the state tree. However, this would
require every byte of the compressed �le to carry an extra 0 bit indicating that it was not
end-of-�le; profound compression would be needed to compress these bits collectively to a
tiny portion of the �le. By attaching this bit rather to a node of the tree, we insured that
such bits would usually appear much less often; thus these bits usually represent a small
portion of the compressed �le even without profound compression.

We have compared the QM-coder and the ELS-coder empirically in the context of an
image-compression application. True to expectations, the alacritous version of the ELS-
coder performed better than the QM-coder on not-easily-compressible images, while the
QM-coder performed better on easily-compressible images. The non-alacritous version of
the ELS-coder entailed an overall loss in compression e�ciency of about 15% (though the
relative performance could be manipulated by choosing the images to be compressed);
however the the non-alacritous ELS-coder might be the method of choice where speed is
an overriding concern.
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LISTING ONE: elscoder.h

/* "elscoder.h": include file for ELS-coder. */

#ifndef ELSCODER H

#define ELSCODER H

#include <stdio.h>

typedef unsigned char ElsRung;

/* Initialize decoding. */

void elsDecodeStart(FILE *file);

/* Decode a single bit. */

int elsDecodeBit(ElsRung *rung);

/* Perform consistency check prior to ending decoding. */

int elsDecodeOk(void);

/* Conclude decoding. */

void elsDecodeEnd(void);

/* Initialize encoding. */

void elsEncodeStart(FILE *file);

/* Encode a single bit. */

void elsEncodeBit(ElsRung *rung, int bit);

/* Conclude encoding. */

void elsEncodeEnd(void);

#endif /* ndef ELSCODER H */
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LISTING TWO: elscoder.c

/* "elscoder.c": data and procedures for ELS-coder. */

#define ALACRITOUS

#include "elscoder.h"

#include <stdio.h>

#include <stdlib.h>

typedef unsigned char uchar;

typedef unsigned short ushort;

typedef unsigned long ulong;

#define JOTS PER BYTE 754

static ushort allowable[2*JOTS PER BYTE] = f

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6,

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,

6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,

8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9,

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,

11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12,
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12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,

13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15,

15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16,

16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17,

17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19,

19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20,

21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22,

22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24,

24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26,

27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 29, 29,

29, 29, 30, 30, 30, 30, 30, 31, 31, 31, 31, 32,

32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34,

35, 35, 35, 35, 36, 36, 36, 36, 37, 37, 37, 38,

38, 38, 38, 39, 39, 39, 39, 40, 40, 40, 41, 41,

41, 42, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45,

45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49,

49, 49, 50, 50, 51, 51, 51, 52, 52, 52, 53, 53,

54, 54, 54, 55, 55, 56, 56, 56, 57, 57, 58, 58,

58, 59, 59, 60, 60, 61, 61, 62, 62, 62, 63, 63,

64, 64, 65, 65, 66, 66, 67, 67, 68, 68, 69, 69,

70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 75, 75,

76, 77, 77, 78, 78, 79, 79, 80, 81, 81, 82, 82,

83, 84, 84, 85, 85, 86, 87, 87, 88, 89, 89, 90,

91, 91, 92, 93, 93, 94, 95, 95, 96, 97, 97, 98,

99, 100, 100, 101, 102, 103, 103, 104, 105, 106, 106, 107,

108, 109, 110, 110, 111, 112, 113, 114, 114, 115, 116, 117,

118, 119, 120, 121, 121, 122, 123, 124, 125, 126, 127, 128,

129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140,

141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,

153, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166,

168, 169, 170, 171, 173, 174, 175, 176, 178, 179, 180, 182,

183, 184, 186, 187, 188, 190, 191, 193, 194, 196, 197, 198,

200, 201, 203, 204, 206, 207, 209, 210, 212, 214, 215, 217,

218, 220, 221, 223, 225, 226, 228, 230, 231, 233, 235, 237,

238, 240, 242, 244, 245, 247, 249, 251, 253, 255, 256, 258,

260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282,

284, 286, 288, 290, 292, 294, 297, 299, 301, 303, 305, 308,

310, 312, 315, 317, 319, 322, 324, 326, 329, 331, 334, 336,

339, 341, 344, 346, 349, 351, 354, 356, 359, 362, 364, 367,

370, 373, 375, 378, 381, 384, 386, 389, 392, 395, 398, 401,

404, 407, 410, 413, 416, 419, 422, 425, 428, 432, 435, 438,

441, 444, 448, 451, 454, 458, 461, 464, 468, 471, 475, 478,

482, 485, 489, 493, 496, 500, 504, 507, 511, 515, 519, 522,

526, 530, 534, 538, 542, 546, 550, 554, 558, 562, 566, 571,



26 WM. DOUGLAS WITHERS

575, 579, 583, 588, 592, 596, 601, 605, 610, 614, 619, 623,

628, 633, 637, 642, 647, 651, 656, 661, 666, 671, 676, 681,

686, 691, 696, 701, 706, 712, 717, 722, 727, 733, 738, 744,

749, 755, 760, 766, 771, 777, 783, 789, 795, 800, 806, 812,

818, 824, 830, 837, 843, 849, 855, 861, 868, 874, 881, 887,

894, 900, 907, 914, 920, 927, 934, 941, 948, 955, 962, 969,

976, 983, 991, 998, 1005, 1013, 1020, 1028, 1035, 1043, 1051, 1058,

1066, 1074, 1082, 1090, 1098, 1106, 1114, 1123, 1131, 1139, 1148, 1156,

1165, 1173, 1182, 1191, 1199, 1208, 1217, 1226, 1235, 1244, 1254, 1263,

1272, 1281, 1291, 1300, 1310, 1320, 1329, 1339, 1349, 1359, 1369, 1379,

1389, 1400, 1410, 1420, 1431, 1442, 1452, 1463, 1474, 1485, 1496, 1507,

1518, 1529, 1540, 1552, 1563, 1575, 1586, 1598, 1610, 1622, 1633, 1646,

1658, 1670, 1682, 1695, 1707, 1720, 1732, 1745, 1758, 1771, 1784, 1797,

1811, 1824, 1837, 1851, 1865, 1878, 1892, 1906, 1920, 1935, 1949, 1963,

1978, 1992, 2007, 2022, 2037, 2052, 2067, 2082, 2098, 2113, 2129, 2144,

2160, 2176, 2192, 2208, 2225, 2241, 2258, 2274, 2291, 2308, 2325, 2342,

2359, 2377, 2394, 2412, 2430, 2448, 2466, 2484, 2502, 2521, 2540, 2558,

2577, 2596, 2615, 2635, 2654, 2674, 2693, 2713, 2733, 2754, 2774, 2794,

2815, 2836, 2857, 2878, 2899, 2920, 2942, 2964, 2986, 3008, 3030, 3052,

3075, 3097, 3120, 3143, 3166, 3190, 3213, 3237, 3261, 3285, 3309, 3334,

3358, 3383, 3408, 3433, 3459, 3484, 3510, 3536, 3562, 3588, 3615, 3641,

3668, 3695, 3723, 3750, 3778, 3806, 3834, 3862, 3890, 3919, 3948, 3977,

4007, 4036, 4066, 4096, 4126, 4157, 4187, 4218, 4249, 4281, 4312, 4344,

4376, 4409, 4441, 4474, 4507, 4540, 4574, 4607, 4641, 4676, 4710, 4745,

4780, 4815, 4851, 4887, 4923, 4959, 4996, 5033, 5070, 5107, 5145, 5183,

5221, 5260, 5298, 5338, 5377, 5417, 5457, 5497, 5537, 5578, 5620, 5661,

5703, 5745, 5787, 5830, 5873, 5916, 5960, 6004, 6048, 6093, 6138, 6183,

6229, 6275, 6321, 6368, 6415, 6462, 6510, 6558, 6606, 6655, 6704, 6754,

6804, 6854, 6904, 6955, 7007, 7058, 7111, 7163, 7216, 7269, 7323, 7377,

7431, 7486, 7542, 7597, 7653, 7710, 7767, 7824, 7882, 7940, 7999, 8058,

8117, 8177, 8237, 8298, 8359, 8421, 8483, 8546, 8609, 8672, 8736, 8801,

8866, 8931, 8997, 9064, 9131, 9198, 9266, 9334, 9403, 9473, 9543, 9613,

9684, 9755, 9827, 9900, 9973,10047,10121,10196,10271,10347,10423,10500,

10577,10655,10734,10813,10893,10974,11055,11136,11218,11301,11385,11469,

11553,11639,11725,11811,11898,11986,12075,12164,12253,12344,12435,12527,

12619,12712,12806,12901,12996,13092,13189,13286,13384,13483,13582,13683,

13784,13885,13988,14091,14195,14300,14405,14512,14619,14727,14835,14945,

15055,15166,15278,15391,15505,15619,15735,15851,15968,16086,16204,16324,

16444,16566,16688,16811,16935,17060,17186,17313,17441,17570,17699,17830,

17962,18094,18228,18362,18498,18634,18772,18910,19050,19191,19332,19475,

19619,19764,19909,20056,20204,20354,20504,20655,20808,20961,21116,21272,

21429,21587,21746,21907,22069,22232,22396,22561,22727,22895,23064,23234,

23406,23579,23753,23928,24105,24283,24462,24642,24824,25008,25192,25378,

25565,25754,25944,26136,26329,26523,26719,26916,27115,27315,27517,27720,
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27924,28130,28338,28547,28758,28970,29184,29399,29616,29835,30055,30277,

30501,30726,30953,31181,31411,31643,31877,32112,32349,32588,32828,33071,

33315,33561,33808,34058,34309,34563,34818,35075,35334,35594,35857,36122,

36388,36657,36928,37200,37475,37751,38030,38311,38594,38878,39165,39455,

39746,40039,40335,40632,40932,41235,41539,41846,42154,42466,42779,43095,

43413,43733,44056,44381,44709,45039,45371,45706,46044,46384,46726,47071,

47418,47768,48121,48476,48834,49194,49558,49923,50292,50663,51037,51414,

51793,52176,52561,52949,53340,53733,54130,54529,54932,55337,55746,56157,

56572,56989,57410,57834,58261,58691,59124,59561,60000,60443,60889,61339,

61791,62248,62707,63170,63636,64106,64579,65056 g;

static struct

f

ushort *threshold;

short codeLength0;

short codeLength1;

uchar next0;

uchar next1;

g ladder[256] = f

#ifdef ALACRITOUS

/* 0:0.50000 */ fallowable+ 665, 89, 101, 1, 2g,

/* 1:0.33333 */ fallowable+ 692, 62, 138, 3, 4g,

/* 2:0.66667 */ fallowable+ 616, 138, 62, 5, 6g,

/* 3:0.23667 */ fallowable+ 716, 38, 194, 7, 8g,

/* 4:0.52667 */ fallowable+ 653, 101, 89, 9, 10g,

/* 5:0.47333 */ fallowable+ 665, 89, 101, 11, 12g,

/* 6:0.76333 */ fallowable+ 560, 194, 38, 13, 14g,

/* 7:0.17829 */ fallowable+ 727, 27, 236, 15, 16g,

/* 8:0.42496 */ fallowable+ 679, 75, 118, 17, 18g,

/* 9:0.39676 */ fallowable+ 689, 65, 133, 19, 20g,

/* 10:0.64342 */ fallowable+ 616, 138, 62, 21, 22g,

/* 11:0.35658 */ fallowable+ 692, 62, 138, 23, 24g,

/* 12:0.60324 */ fallowable+ 621, 133, 65, 25, 26g,

/* 13:0.57504 */ fallowable+ 636, 118, 75, 27, 28g,

/* 14:0.82171 */ fallowable+ 518, 236, 27, 29, 30g,

/* 15:0.14204 */ fallowable+ 732, 22, 262, 31, 32g,

/* 16:0.34537 */ fallowable+ 692, 62, 138, 33, 34g,

/* 17:0.33855 */ fallowable+ 692, 62, 138, 35, 36g,

/* 18:0.54188 */ fallowable+ 646, 108, 83, 37, 38g,

/* 19:0.31608 */ fallowable+ 704, 50, 162, 39, 40g,

/* 20:0.51942 */ fallowable+ 653, 101, 89, 41, 42g,

/* 21:0.51259 */ fallowable+ 653, 101, 89, 43, 44g,

/* 22:0.71593 */ fallowable+ 580, 174, 45, 45, 46g,

/* 23:0.28407 */ fallowable+ 709, 45, 174, 47, 48g,
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/* 24:0.48741 */ fallowable+ 665, 89, 101, 49, 50g,

/* 25:0.48058 */ fallowable+ 665, 89, 101, 51, 52g,

/* 26:0.68392 */ fallowable+ 592, 162, 50, 53, 54g,

/* 27:0.45812 */ fallowable+ 671, 83, 108, 55, 56g,

/* 28:0.66145 */ fallowable+ 616, 138, 62, 57, 58g,

/* 29:0.65463 */ fallowable+ 616, 138, 62, 59, 60g,

/* 30:0.85796 */ fallowable+ 492, 262, 22, 61, 62g,

/* 31:0.11931 */ fallowable+ 737, 17, 295, 63, 64g,

/* 32:0.27931 */ fallowable+ 709, 45, 174, 65, 66g,

/* 33:0.29011 */ fallowable+ 709, 45, 174, 67, 68g,

/* 34:0.45011 */ fallowable+ 671, 83, 108, 69, 70g,

/* 35:0.28438 */ fallowable+ 709, 45, 174, 71, 72g,

/* 36:0.44438 */ fallowable+ 679, 75, 118, 73, 74g,

/* 37:0.45518 */ fallowable+ 671, 83, 108, 75, 76g,

/* 38:0.61518 */ fallowable+ 621, 133, 65, 77, 78g,

/* 39:0.26551 */ fallowable+ 713, 41, 185, 79, 80g,

/* 40:0.42551 */ fallowable+ 679, 75, 118, 81, 82g,

/* 41:0.43631 */ fallowable+ 679, 75, 118, 83, 84g,

/* 42:0.59631 */ fallowable+ 636, 118, 75, 85, 86g,

/* 43:0.43058 */ fallowable+ 679, 75, 118, 87, 88g,

/* 44:0.59058 */ fallowable+ 636, 118, 75, 89, 90g,

/* 45:0.60138 */ fallowable+ 621, 133, 65, 91, 92g,

/* 46:0.76138 */ fallowable+ 560, 194, 38, 93, 94g,

/* 47:0.23862 */ fallowable+ 716, 38, 194, 95, 96g,

/* 48:0.39862 */ fallowable+ 689, 65, 133, 97, 98g,

/* 49:0.40942 */ fallowable+ 679, 75, 118, 99, 100g,

/* 50:0.56942 */ fallowable+ 636, 118, 75, 101, 102g,

/* 51:0.40369 */ fallowable+ 679, 75, 118, 103, 104g,

/* 52:0.56369 */ fallowable+ 636, 118, 75, 105, 106g,

/* 53:0.57449 */ fallowable+ 636, 118, 75, 107, 108g,

/* 54:0.73449 */ fallowable+ 569, 185, 41, 109, 110g,

/* 55:0.38482 */ fallowable+ 689, 65, 133, 111, 112g,

/* 56:0.54482 */ fallowable+ 646, 108, 83, 113, 114g,

/* 57:0.55562 */ fallowable+ 636, 118, 75, 115, 116g,

/* 58:0.71562 */ fallowable+ 580, 174, 45, 117, 118g,

/* 59:0.54989 */ fallowable+ 646, 108, 83, 119, 120g,

/* 60:0.70989 */ fallowable+ 580, 174, 45, 121, 122g,

/* 61:0.72069 */ fallowable+ 580, 174, 45, 123, 124g,

/* 62:0.88069 */ fallowable+ 459, 295, 17, 125, 126g,

/* 63:0.10539 */ fallowable+ 738, 16, 303, 152, 161g,

/* 64:0.22206 */ fallowable+ 721, 33, 211, 165, 172g,

/* 65:0.24672 */ fallowable+ 716, 38, 194, 167, 174g,

/* 66:0.36339 */ fallowable+ 692, 62, 138, 177, 183g,

/* 67:0.25626 */ fallowable+ 713, 41, 185, 168, 175g,
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/* 68:0.37293 */ fallowable+ 692, 62, 138, 178, 184g,

/* 69:0.39760 */ fallowable+ 689, 65, 133, 180, 186g,

/* 70:0.51426 */ fallowable+ 653, 101, 89, 189, 195g,

/* 71:0.25120 */ fallowable+ 713, 41, 185, 168, 174g,

/* 72:0.36787 */ fallowable+ 692, 62, 138, 177, 183g,

/* 73:0.39254 */ fallowable+ 689, 65, 133, 179, 185g,

/* 74:0.50920 */ fallowable+ 653, 101, 89, 188, 194g,

/* 75:0.40208 */ fallowable+ 679, 75, 118, 180, 186g,

/* 76:0.51874 */ fallowable+ 653, 101, 89, 189, 195g,

/* 77:0.54341 */ fallowable+ 646, 108, 83, 191, 197g,

/* 78:0.66008 */ fallowable+ 616, 138, 62, 200, 206g,

/* 79:0.23453 */ fallowable+ 716, 38, 194, 166, 173g,

/* 80:0.35120 */ fallowable+ 692, 62, 138, 176, 182g,

/* 81:0.37587 */ fallowable+ 689, 65, 133, 178, 184g,

/* 82:0.49253 */ fallowable+ 665, 89, 101, 187, 193g,

/* 83:0.38541 */ fallowable+ 689, 65, 133, 179, 185g,

/* 84:0.50207 */ fallowable+ 653, 101, 89, 188, 194g,

/* 85:0.52674 */ fallowable+ 653, 101, 89, 190, 196g,

/* 86:0.64341 */ fallowable+ 616, 138, 62, 198, 205g,

/* 87:0.38034 */ fallowable+ 689, 65, 133, 178, 184g,

/* 88:0.49701 */ fallowable+ 665, 89, 101, 187, 193g,

/* 89:0.52168 */ fallowable+ 653, 101, 89, 189, 195g,

/* 90:0.63834 */ fallowable+ 616, 138, 62, 198, 204g,

/* 91:0.53122 */ fallowable+ 653, 101, 89, 190, 196g,

/* 92:0.64788 */ fallowable+ 616, 138, 62, 199, 205g,

/* 93:0.67255 */ fallowable+ 592, 162, 50, 201, 207g,

/* 94:0.78922 */ fallowable+ 543, 211, 33, 210, 217g,

/* 95:0.21078 */ fallowable+ 721, 33, 211, 164, 171g,

/* 96:0.32745 */ fallowable+ 704, 50, 162, 174, 180g,

/* 97:0.35212 */ fallowable+ 692, 62, 138, 176, 182g,

/* 98:0.46878 */ fallowable+ 665, 89, 101, 185, 191g,

/* 99:0.36166 */ fallowable+ 692, 62, 138, 177, 183g,

/* 100:0.47832 */ fallowable+ 665, 89, 101, 186, 192g,

/* 101:0.50299 */ fallowable+ 653, 101, 89, 188, 194g,

/* 102:0.61966 */ fallowable+ 621, 133, 65, 197, 203g,

/* 103:0.35659 */ fallowable+ 692, 62, 138, 176, 183g,

/* 104:0.47326 */ fallowable+ 665, 89, 101, 185, 191g,

/* 105:0.49793 */ fallowable+ 665, 89, 101, 187, 193g,

/* 106:0.61459 */ fallowable+ 621, 133, 65, 196, 202g,

/* 107:0.50747 */ fallowable+ 653, 101, 89, 188, 194g,

/* 108:0.62413 */ fallowable+ 621, 133, 65, 197, 203g,

/* 109:0.64880 */ fallowable+ 616, 138, 62, 199, 205g,

/* 110:0.76547 */ fallowable+ 560, 194, 38, 208, 215g,

/* 111:0.33992 */ fallowable+ 692, 62, 138, 175, 181g,
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/* 112:0.45659 */ fallowable+ 671, 83, 108, 184, 190g,

/* 113:0.48126 */ fallowable+ 665, 89, 101, 186, 192g,

/* 114:0.59792 */ fallowable+ 636, 118, 75, 195, 201g,

/* 115:0.49080 */ fallowable+ 665, 89, 101, 187, 193g,

/* 116:0.60746 */ fallowable+ 621, 133, 65, 196, 202g,

/* 117:0.63213 */ fallowable+ 616, 138, 62, 198, 204g,

/* 118:0.74880 */ fallowable+ 569, 185, 41, 207, 213g,

/* 119:0.48574 */ fallowable+ 665, 89, 101, 186, 192g,

/* 120:0.60240 */ fallowable+ 621, 133, 65, 195, 201g,

/* 121:0.62707 */ fallowable+ 616, 138, 62, 197, 203g,

/* 122:0.74374 */ fallowable+ 569, 185, 41, 206, 213g,

/* 123:0.63661 */ fallowable+ 616, 138, 62, 198, 204g,

/* 124:0.75328 */ fallowable+ 560, 194, 38, 207, 214g,

/* 125:0.77794 */ fallowable+ 543, 211, 33, 209, 216g,

/* 126:0.89461 */ fallowable+ 451, 303, 16, 220, 229g,

/* 127:0.00004 */ fallowable+ 753, 1, 716, 127, 141g,

/* 128:0.00034 */ fallowable+ 753, 1, 716, 127, 141g,

/* 129:0.00094 */ fallowable+ 753, 1, 716, 128, 141g,

/* 130:0.00184 */ fallowable+ 753, 1, 716, 129, 141g,

/* 131:0.00305 */ fallowable+ 753, 1, 716, 130, 141g,

/* 132:0.00455 */ fallowable+ 753, 1, 716, 131, 142g,

/* 133:0.00635 */ fallowable+ 753, 1, 716, 132, 142g,

/* 134:0.00845 */ fallowable+ 753, 1, 716, 133, 143g,

/* 135:0.01084 */ fallowable+ 752, 2, 606, 134, 143g,

/* 136:0.01353 */ fallowable+ 752, 2, 606, 135, 144g,

/* 137:0.01651 */ fallowable+ 751, 3, 538, 136, 144g,

/* 138:0.01978 */ fallowable+ 751, 3, 538, 137, 145g,

/* 139:0.02335 */ fallowable+ 750, 4, 496, 138, 145g,

/* 140:0.02720 */ fallowable+ 750, 4, 496, 139, 146g,

/* 141:0.03133 */ fallowable+ 749, 5, 462, 140, 147g,

/* 142:0.03575 */ fallowable+ 749, 5, 462, 141, 147g,

/* 143:0.04044 */ fallowable+ 748, 6, 436, 142, 148g,

/* 144:0.04542 */ fallowable+ 748, 6, 436, 143, 149g,

/* 145:0.05066 */ fallowable+ 747, 7, 415, 144, 150g,

/* 146:0.05618 */ fallowable+ 745, 9, 380, 145, 151g,

/* 147:0.06196 */ fallowable+ 745, 9, 380, 146, 151g,

/* 148:0.06801 */ fallowable+ 744, 10, 366, 147, 152g,

/* 149:0.07432 */ fallowable+ 743, 11, 353, 148, 153g,

/* 150:0.08089 */ fallowable+ 741, 13, 330, 149, 154g,

/* 151:0.08771 */ fallowable+ 741, 13, 330, 150, 155g,

/* 152:0.09477 */ fallowable+ 741, 13, 330, 151, 156g,

/* 153:0.10208 */ fallowable+ 738, 16, 303, 152, 156g,

/* 154:0.10963 */ fallowable+ 738, 16, 303, 153, 157g,

/* 155:0.11742 */ fallowable+ 737, 17, 295, 154, 158g,
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/* 156:0.12543 */ fallowable+ 736, 18, 288, 155, 159g,

/* 157:0.13367 */ fallowable+ 732, 22, 262, 156, 160g,

/* 158:0.14213 */ fallowable+ 732, 22, 262, 157, 161g,

/* 159:0.15081 */ fallowable+ 731, 23, 256, 158, 162g,

/* 160:0.15970 */ fallowable+ 731, 23, 256, 159, 163g,

/* 161:0.16879 */ fallowable+ 727, 27, 236, 160, 164g,

/* 162:0.17808 */ fallowable+ 727, 27, 236, 161, 165g,

/* 163:0.18757 */ fallowable+ 727, 27, 236, 162, 165g,

/* 164:0.19724 */ fallowable+ 722, 32, 215, 163, 166g,

/* 165:0.20710 */ fallowable+ 721, 33, 211, 164, 167g,

/* 166:0.21713 */ fallowable+ 721, 33, 211, 165, 168g,

/* 167:0.22734 */ fallowable+ 716, 38, 194, 166, 169g,

/* 168:0.23771 */ fallowable+ 716, 38, 194, 167, 170g,

/* 169:0.24823 */ fallowable+ 716, 38, 194, 168, 171g,

/* 170:0.25891 */ fallowable+ 713, 41, 185, 169, 172g,

/* 171:0.26973 */ fallowable+ 709, 45, 174, 170, 173g,

/* 172:0.28069 */ fallowable+ 709, 45, 174, 171, 174g,

/* 173:0.29179 */ fallowable+ 709, 45, 174, 172, 175g,

/* 174:0.30300 */ fallowable+ 704, 50, 162, 173, 176g,

/* 175:0.31434 */ fallowable+ 704, 50, 162, 174, 177g,

/* 176:0.32579 */ fallowable+ 704, 50, 162, 175, 178g,

/* 177:0.33734 */ fallowable+ 692, 62, 138, 176, 179g,

/* 178:0.34900 */ fallowable+ 692, 62, 138, 177, 180g,

/* 179:0.36074 */ fallowable+ 692, 62, 138, 178, 181g,

/* 180:0.37257 */ fallowable+ 692, 62, 138, 179, 182g,

/* 181:0.38447 */ fallowable+ 689, 65, 133, 180, 183g,

/* 182:0.39644 */ fallowable+ 689, 65, 133, 181, 184g,

/* 183:0.40848 */ fallowable+ 679, 75, 118, 182, 184g,

/* 184:0.42057 */ fallowable+ 679, 75, 118, 183, 185g,

/* 185:0.43271 */ fallowable+ 679, 75, 118, 184, 186g,

/* 186:0.44489 */ fallowable+ 671, 83, 108, 185, 187g,

/* 187:0.45710 */ fallowable+ 671, 83, 108, 186, 188g,

/* 188:0.46934 */ fallowable+ 665, 89, 101, 187, 189g,

/* 189:0.48160 */ fallowable+ 665, 89, 101, 188, 190g,

/* 190:0.49386 */ fallowable+ 665, 89, 101, 189, 191g,

/* 191:0.50614 */ fallowable+ 653, 101, 89, 190, 192g,

/* 192:0.51840 */ fallowable+ 653, 101, 89, 191, 193g,

/* 193:0.53066 */ fallowable+ 653, 101, 89, 192, 194g,

/* 194:0.54290 */ fallowable+ 646, 108, 83, 193, 195g,

/* 195:0.55511 */ fallowable+ 646, 108, 83, 194, 196g,

/* 196:0.56729 */ fallowable+ 636, 118, 75, 195, 197g,

/* 197:0.57943 */ fallowable+ 636, 118, 75, 196, 198g,

/* 198:0.59152 */ fallowable+ 636, 118, 75, 197, 199g,

/* 199:0.60356 */ fallowable+ 621, 133, 65, 197, 200g,



32 WM. DOUGLAS WITHERS

/* 200:0.61553 */ fallowable+ 621, 133, 65, 198, 201g,

/* 201:0.62743 */ fallowable+ 616, 138, 62, 199, 202g,

/* 202:0.63926 */ fallowable+ 616, 138, 62, 200, 203g,

/* 203:0.65100 */ fallowable+ 616, 138, 62, 201, 204g,

/* 204:0.66266 */ fallowable+ 616, 138, 62, 202, 205g,

/* 205:0.67421 */ fallowable+ 592, 162, 50, 203, 206g,

/* 206:0.68566 */ fallowable+ 592, 162, 50, 204, 207g,

/* 207:0.69700 */ fallowable+ 592, 162, 50, 205, 208g,

/* 208:0.70821 */ fallowable+ 580, 174, 45, 206, 209g,

/* 209:0.71931 */ fallowable+ 580, 174, 45, 207, 210g,

/* 210:0.73027 */ fallowable+ 580, 174, 45, 208, 211g,

/* 211:0.74109 */ fallowable+ 569, 185, 41, 209, 212g,

/* 212:0.75177 */ fallowable+ 560, 194, 38, 210, 213g,

/* 213:0.76229 */ fallowable+ 560, 194, 38, 211, 214g,

/* 214:0.77266 */ fallowable+ 560, 194, 38, 212, 215g,

/* 215:0.78287 */ fallowable+ 543, 211, 33, 213, 216g,

/* 216:0.79290 */ fallowable+ 543, 211, 33, 214, 217g,

/* 217:0.80276 */ fallowable+ 539, 215, 32, 215, 218g,

/* 218:0.81243 */ fallowable+ 518, 236, 27, 216, 219g,

/* 219:0.82192 */ fallowable+ 518, 236, 27, 216, 220g,

/* 220:0.83121 */ fallowable+ 518, 236, 27, 217, 221g,

/* 221:0.84030 */ fallowable+ 498, 256, 23, 218, 222g,

/* 222:0.84919 */ fallowable+ 498, 256, 23, 219, 223g,

/* 223:0.85787 */ fallowable+ 492, 262, 22, 220, 224g,

/* 224:0.86633 */ fallowable+ 492, 262, 22, 221, 225g,

/* 225:0.87457 */ fallowable+ 466, 288, 18, 222, 226g,

/* 226:0.88258 */ fallowable+ 459, 295, 17, 223, 227g,

/* 227:0.89037 */ fallowable+ 451, 303, 16, 224, 228g,

/* 228:0.89792 */ fallowable+ 451, 303, 16, 225, 229g,

/* 229:0.90523 */ fallowable+ 424, 330, 13, 225, 230g,

/* 230:0.91229 */ fallowable+ 424, 330, 13, 226, 231g,

/* 231:0.91911 */ fallowable+ 424, 330, 13, 227, 232g,

/* 232:0.92568 */ fallowable+ 401, 353, 11, 228, 233g,

/* 233:0.93199 */ fallowable+ 388, 366, 10, 229, 234g,

/* 234:0.93804 */ fallowable+ 374, 380, 9, 230, 235g,

/* 235:0.94382 */ fallowable+ 374, 380, 9, 230, 236g,

/* 236:0.94934 */ fallowable+ 339, 415, 7, 231, 237g,

/* 237:0.95458 */ fallowable+ 318, 436, 6, 232, 238g,

/* 238:0.95956 */ fallowable+ 318, 436, 6, 233, 239g,

/* 239:0.96425 */ fallowable+ 292, 462, 5, 234, 240g,

/* 240:0.96867 */ fallowable+ 292, 462, 5, 234, 241g,

/* 241:0.97280 */ fallowable+ 258, 496, 4, 235, 242g,

/* 242:0.97665 */ fallowable+ 258, 496, 4, 236, 243g,

/* 243:0.98022 */ fallowable+ 216, 538, 3, 236, 244g,
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/* 244:0.98349 */ fallowable+ 216, 538, 3, 237, 245g,

/* 245:0.98647 */ fallowable+ 148, 606, 2, 237, 246g,

/* 246:0.98916 */ fallowable+ 148, 606, 2, 238, 247g,

/* 247:0.99155 */ fallowable+ 38, 716, 1, 238, 248g,

/* 248:0.99365 */ fallowable+ 38, 716, 1, 239, 249g,

/* 249:0.99545 */ fallowable+ 38, 716, 1, 239, 250g,

/* 250:0.99695 */ fallowable+ 38, 716, 1, 240, 251g,

/* 251:0.99816 */ fallowable+ 38, 716, 1, 240, 252g,

/* 252:0.99906 */ fallowable+ 38, 716, 1, 240, 253g,

/* 253:0.99966 */ fallowable+ 38, 716, 1, 240, 254g,

/* 254:0.99996 */ fallowable+ 38, 716, 1, 240, 254g,

#else

/* 0:0.50000 */ fallowable+ 665, 89, 101, 1, 2g,

/* 1:0.32281 */ fallowable+ 704, 50, 162, 3, 4g,

/* 2:0.65614 */ fallowable+ 616, 138, 62, 5, 6g,

/* 3:0.14678 */ fallowable+ 731, 23, 256, 7, 8g,

/* 4:0.43678 */ fallowable+ 679, 75, 118, 9, 10g,

/* 5:0.52228 */ fallowable+ 653, 101, 89, 11, 12g,

/* 6:0.81228 */ fallowable+ 518, 236, 27, 13, 14g,

/* 7:0.03670 */ fallowable+ 749, 5, 462, 15, 16g,

/* 8:0.20427 */ fallowable+ 721, 33, 211, 17, 18g,

/* 9:0.30122 */ fallowable+ 704, 50, 162, 19, 20g,

/* 10:0.54788 */ fallowable+ 646, 108, 83, 21, 22g,

/* 11:0.40125 */ fallowable+ 679, 75, 118, 23, 24g,

/* 12:0.64791 */ fallowable+ 616, 138, 62, 25, 26g,

/* 13:0.73060 */ fallowable+ 580, 174, 45, 27, 28g,

/* 14:0.97727 */ fallowable+ 216, 538, 3, 29, 30g,

/* 15:0.00917 */ fallowable+ 752, 2, 606, 31, 32g,

/* 16:0.04451 */ fallowable+ 748, 6, 436, 33, 34g,

/* 17:0.07792 */ fallowable+ 743, 11, 353, 35, 36g,

/* 18:0.28125 */ fallowable+ 709, 45, 174, 37, 38g,

/* 19:0.18273 */ fallowable+ 727, 27, 236, 39, 40g,

/* 20:0.38606 */ fallowable+ 689, 65, 133, 41, 42g,

/* 21:0.44983 */ fallowable+ 671, 83, 108, 43, 44g,

/* 22:0.65317 */ fallowable+ 616, 138, 62, 45, 46g,

/* 23:0.29689 */ fallowable+ 704, 50, 162, 47, 48g,

/* 24:0.50022 */ fallowable+ 653, 101, 89, 49, 50g,

/* 25:0.55589 */ fallowable+ 636, 118, 75, 51, 52g,

/* 26:0.75922 */ fallowable+ 560, 194, 38, 53, 54g,

/* 27:0.64678 */ fallowable+ 616, 138, 62, 55, 56g,

/* 28:0.85011 */ fallowable+ 498, 256, 23, 57, 58g,

/* 29:0.97318 */ fallowable+ 258, 496, 4, 59, 60g,

/* 30:0.99432 */ fallowable+ 38, 716, 1, 61, 62g,

/* 31:0.00229 */ fallowable+ 753, 1, 716, 63, 64g,
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/* 32:0.01163 */ fallowable+ 752, 2, 606, 65, 66g,

/* 33:0.01113 */ fallowable+ 752, 2, 606, 67, 68g,

/* 34:0.05438 */ fallowable+ 746, 8, 397, 69, 70g,

/* 35:0.01948 */ fallowable+ 751, 3, 538, 71, 72g,

/* 36:0.09947 */ fallowable+ 741, 13, 330, 73, 74g,

/* 37:0.18492 */ fallowable+ 727, 27, 236, 75, 76g,

/* 38:0.34492 */ fallowable+ 692, 62, 138, 77, 78g,

/* 39:0.07689 */ fallowable+ 743, 11, 353, 79, 80g,

/* 40:0.23689 */ fallowable+ 716, 38, 194, 81, 82g,

/* 41:0.29603 */ fallowable+ 704, 50, 162, 83, 84g,

/* 42:0.45603 */ fallowable+ 671, 83, 108, 85, 86g,

/* 43:0.36736 */ fallowable+ 692, 62, 138, 87, 88g,

/* 44:0.52736 */ fallowable+ 653, 101, 89, 89, 90g,

/* 45:0.57984 */ fallowable+ 636, 118, 75, 91, 92g,

/* 46:0.73984 */ fallowable+ 569, 185, 41, 93, 94g,

/* 47:0.20446 */ fallowable+ 721, 33, 211, 95, 96g,

/* 48:0.36446 */ fallowable+ 692, 62, 138, 97, 98g,

/* 49:0.42524 */ fallowable+ 679, 75, 118, 99, 100g,

/* 50:0.58524 */ fallowable+ 636, 118, 75, 101, 102g,

/* 51:0.48500 */ fallowable+ 665, 89, 101, 103, 104g,

/* 52:0.64500 */ fallowable+ 616, 138, 62, 105, 106g,

/* 53:0.69813 */ fallowable+ 592, 162, 50, 107, 108g,

/* 54:0.85813 */ fallowable+ 492, 262, 22, 109, 110g,

/* 55:0.57456 */ fallowable+ 636, 118, 75, 111, 112g,

/* 56:0.73456 */ fallowable+ 569, 185, 41, 113, 114g,

/* 57:0.79610 */ fallowable+ 543, 211, 33, 115, 116g,

/* 58:0.95610 */ fallowable+ 318, 436, 6, 117, 118g,

/* 59:0.96730 */ fallowable+ 292, 462, 5, 119, 120g,

/* 60:0.99330 */ fallowable+ 38, 716, 1, 121, 122g,

/* 61:0.99328 */ fallowable+ 38, 716, 1, 123, 124g,

/* 62:0.99858 */ fallowable+ 38, 716, 1, 125, 126g,

/* 63:0.00057 */ fallowable+ 753, 1, 716, 127, 130g,

/* 64:0.00334 */ fallowable+ 753, 1, 716, 129, 132g,

/* 65:0.00291 */ fallowable+ 753, 1, 716, 129, 132g,

/* 66:0.01407 */ fallowable+ 752, 2, 606, 131, 137g,

/* 67:0.00278 */ fallowable+ 753, 1, 716, 129, 132g,

/* 68:0.01358 */ fallowable+ 752, 2, 606, 131, 137g,

/* 69:0.01359 */ fallowable+ 752, 2, 606, 131, 137g,

/* 70:0.06867 */ fallowable+ 744, 10, 366, 137, 151g,

/* 71:0.00487 */ fallowable+ 753, 1, 716, 129, 133g,

/* 72:0.02358 */ fallowable+ 750, 4, 496, 133, 141g,

/* 73:0.01347 */ fallowable+ 752, 2, 606, 131, 137g,

/* 74:0.13014 */ fallowable+ 736, 18, 288, 150, 159g,

/* 75:0.10736 */ fallowable+ 738, 16, 303, 146, 157g,
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/* 76:0.22403 */ fallowable+ 721, 33, 211, 162, 169g,

/* 77:0.28197 */ fallowable+ 709, 45, 174, 168, 175g,

/* 78:0.39863 */ fallowable+ 689, 65, 133, 179, 185g,

/* 79:0.01922 */ fallowable+ 751, 3, 538, 132, 139g,

/* 80:0.09846 */ fallowable+ 741, 13, 330, 144, 155g,

/* 81:0.16535 */ fallowable+ 731, 23, 256, 155, 163g,

/* 82:0.28202 */ fallowable+ 709, 45, 174, 168, 175g,

/* 83:0.22875 */ fallowable+ 716, 38, 194, 163, 170g,

/* 84:0.34541 */ fallowable+ 692, 62, 138, 174, 181g,

/* 85:0.39516 */ fallowable+ 689, 65, 133, 178, 184g,

/* 86:0.51183 */ fallowable+ 653, 101, 89, 189, 195g,

/* 87:0.30158 */ fallowable+ 704, 50, 162, 170, 177g,

/* 88:0.41825 */ fallowable+ 679, 75, 118, 181, 187g,

/* 89:0.46952 */ fallowable+ 665, 89, 101, 185, 191g,

/* 90:0.58618 */ fallowable+ 636, 118, 75, 195, 201g,

/* 91:0.52532 */ fallowable+ 653, 101, 89, 190, 196g,

/* 92:0.64199 */ fallowable+ 616, 138, 62, 199, 206g,

/* 93:0.69473 */ fallowable+ 592, 162, 50, 204, 211g,

/* 94:0.81140 */ fallowable+ 518, 236, 27, 215, 223g,

/* 95:0.13193 */ fallowable+ 736, 18, 288, 150, 159g,

/* 96:0.24859 */ fallowable+ 716, 38, 194, 165, 172g,

/* 97:0.29904 */ fallowable+ 704, 50, 162, 170, 176g,

/* 98:0.41571 */ fallowable+ 679, 75, 118, 180, 186g,

/* 99:0.36249 */ fallowable+ 692, 62, 138, 176, 182g,

/* 100:0.47915 */ fallowable+ 665, 89, 101, 186, 192g,

/* 101:0.53008 */ fallowable+ 653, 101, 89, 190, 196g,

/* 102:0.64675 */ fallowable+ 616, 138, 62, 200, 206g,

/* 103:0.42473 */ fallowable+ 679, 75, 118, 181, 187g,

/* 104:0.54139 */ fallowable+ 646, 108, 83, 191, 197g,

/* 105:0.59256 */ fallowable+ 636, 118, 75, 195, 201g,

/* 106:0.70923 */ fallowable+ 580, 174, 45, 206, 212g,

/* 107:0.64954 */ fallowable+ 616, 138, 62, 200, 206g,

/* 108:0.76621 */ fallowable+ 560, 194, 38, 211, 218g,

/* 109:0.81883 */ fallowable+ 518, 236, 27, 216, 224g,

/* 110:0.93550 */ fallowable+ 374, 380, 9, 231, 246g,

/* 111:0.52068 */ fallowable+ 653, 101, 89, 189, 195g,

/* 112:0.63734 */ fallowable+ 616, 138, 62, 199, 205g,

/* 113:0.69021 */ fallowable+ 592, 162, 50, 204, 210g,

/* 114:0.80688 */ fallowable+ 539, 215, 32, 215, 222g,

/* 115:0.75187 */ fallowable+ 560, 194, 38, 209, 217g,

/* 116:0.86854 */ fallowable+ 466, 288, 18, 222, 231g,

/* 117:0.94624 */ fallowable+ 357, 397, 8, 233, 245g,

/* 118:0.98903 */ fallowable+ 148, 606, 2, 245, 250g,

/* 119:0.95945 */ fallowable+ 318, 436, 6, 236, 246g,
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/* 120:0.99182 */ fallowable+ 38, 716, 1, 247, 251g,

/* 121:0.99226 */ fallowable+ 38, 716, 1, 247, 251g,

/* 122:0.99832 */ fallowable+ 38, 716, 1, 250, 253g,

/* 123:0.99224 */ fallowable+ 38, 716, 1, 247, 251g,

/* 124:0.99832 */ fallowable+ 38, 716, 1, 250, 253g,

/* 125:0.99753 */ fallowable+ 38, 716, 1, 250, 252g,

/* 126:0.99964 */ fallowable+ 38, 716, 1, 251, 254g,

/* 127:0.00004 */ fallowable+ 753, 1, 716, 127, 129g,

/* 128:0.00034 */ fallowable+ 753, 1, 716, 127, 130g,

/* 129:0.00094 */ fallowable+ 753, 1, 716, 128, 130g,

/* 130:0.00184 */ fallowable+ 753, 1, 716, 128, 131g,

/* 131:0.00305 */ fallowable+ 753, 1, 716, 129, 132g,

/* 132:0.00455 */ fallowable+ 753, 1, 716, 129, 133g,

/* 133:0.00635 */ fallowable+ 753, 1, 716, 130, 134g,

/* 134:0.00845 */ fallowable+ 753, 1, 716, 130, 135g,

/* 135:0.01084 */ fallowable+ 752, 2, 606, 131, 136g,

/* 136:0.01353 */ fallowable+ 752, 2, 606, 131, 137g,

/* 137:0.01651 */ fallowable+ 751, 3, 538, 132, 138g,

/* 138:0.01978 */ fallowable+ 751, 3, 538, 132, 139g,

/* 139:0.02335 */ fallowable+ 750, 4, 496, 129, 141g,

/* 140:0.02720 */ fallowable+ 750, 4, 496, 132, 142g,

/* 141:0.03133 */ fallowable+ 749, 5, 462, 134, 143g,

/* 142:0.03575 */ fallowable+ 749, 5, 462, 136, 143g,

/* 143:0.04044 */ fallowable+ 748, 6, 436, 137, 144g,

/* 144:0.04542 */ fallowable+ 748, 6, 436, 139, 145g,

/* 145:0.05066 */ fallowable+ 747, 7, 415, 140, 146g,

/* 146:0.05618 */ fallowable+ 745, 9, 380, 142, 147g,

/* 147:0.06196 */ fallowable+ 745, 9, 380, 143, 148g,

/* 148:0.06801 */ fallowable+ 744, 10, 366, 144, 149g,

/* 149:0.07432 */ fallowable+ 743, 11, 353, 145, 150g,

/* 150:0.08089 */ fallowable+ 741, 13, 330, 147, 151g,

/* 151:0.08771 */ fallowable+ 741, 13, 330, 148, 152g,

/* 152:0.09477 */ fallowable+ 741, 13, 330, 149, 153g,

/* 153:0.10208 */ fallowable+ 738, 16, 303, 150, 154g,

/* 154:0.10963 */ fallowable+ 738, 16, 303, 151, 155g,

/* 155:0.11742 */ fallowable+ 737, 17, 295, 152, 156g,

/* 156:0.12543 */ fallowable+ 736, 18, 288, 153, 157g,

/* 157:0.13367 */ fallowable+ 732, 22, 262, 155, 158g,

/* 158:0.14213 */ fallowable+ 732, 22, 262, 156, 159g,

/* 159:0.15081 */ fallowable+ 731, 23, 256, 157, 160g,

/* 160:0.15970 */ fallowable+ 731, 23, 256, 158, 161g,

/* 161:0.16879 */ fallowable+ 727, 27, 236, 159, 162g,

/* 162:0.17808 */ fallowable+ 727, 27, 236, 160, 163g,

/* 163:0.18757 */ fallowable+ 727, 27, 236, 161, 164g,
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/* 164:0.19724 */ fallowable+ 722, 32, 215, 162, 165g,

/* 165:0.20710 */ fallowable+ 721, 33, 211, 163, 166g,

/* 166:0.21713 */ fallowable+ 721, 33, 211, 164, 167g,

/* 167:0.22734 */ fallowable+ 716, 38, 194, 165, 168g,

/* 168:0.23771 */ fallowable+ 716, 38, 194, 166, 169g,

/* 169:0.24823 */ fallowable+ 716, 38, 194, 167, 170g,

/* 170:0.25891 */ fallowable+ 713, 41, 185, 168, 171g,

/* 171:0.26973 */ fallowable+ 709, 45, 174, 169, 172g,

/* 172:0.28069 */ fallowable+ 709, 45, 174, 170, 173g,

/* 173:0.29179 */ fallowable+ 709, 45, 174, 171, 174g,

/* 174:0.30300 */ fallowable+ 704, 50, 162, 172, 175g,

/* 175:0.31434 */ fallowable+ 704, 50, 162, 173, 176g,

/* 176:0.32579 */ fallowable+ 704, 50, 162, 174, 177g,

/* 177:0.33734 */ fallowable+ 692, 62, 138, 176, 178g,

/* 178:0.34900 */ fallowable+ 692, 62, 138, 177, 179g,

/* 179:0.36074 */ fallowable+ 692, 62, 138, 178, 180g,

/* 180:0.37257 */ fallowable+ 692, 62, 138, 179, 181g,

/* 181:0.38447 */ fallowable+ 689, 65, 133, 180, 182g,

/* 182:0.39644 */ fallowable+ 689, 65, 133, 181, 183g,

/* 183:0.40848 */ fallowable+ 679, 75, 118, 182, 184g,

/* 184:0.42057 */ fallowable+ 679, 75, 118, 183, 185g,

/* 185:0.43271 */ fallowable+ 679, 75, 118, 184, 186g,

/* 186:0.44489 */ fallowable+ 671, 83, 108, 185, 187g,

/* 187:0.45710 */ fallowable+ 671, 83, 108, 186, 188g,

/* 188:0.46934 */ fallowable+ 665, 89, 101, 187, 189g,

/* 189:0.48160 */ fallowable+ 665, 89, 101, 188, 190g,

/* 190:0.49386 */ fallowable+ 665, 89, 101, 189, 191g,

/* 191:0.50614 */ fallowable+ 653, 101, 89, 190, 192g,

/* 192:0.51840 */ fallowable+ 653, 101, 89, 191, 193g,

/* 193:0.53066 */ fallowable+ 653, 101, 89, 192, 194g,

/* 194:0.54290 */ fallowable+ 646, 108, 83, 193, 195g,

/* 195:0.55511 */ fallowable+ 646, 108, 83, 194, 196g,

/* 196:0.56729 */ fallowable+ 636, 118, 75, 195, 197g,

/* 197:0.57943 */ fallowable+ 636, 118, 75, 196, 198g,

/* 198:0.59152 */ fallowable+ 636, 118, 75, 197, 199g,

/* 199:0.60356 */ fallowable+ 621, 133, 65, 198, 200g,

/* 200:0.61553 */ fallowable+ 621, 133, 65, 199, 201g,

/* 201:0.62743 */ fallowable+ 616, 138, 62, 200, 202g,

/* 202:0.63926 */ fallowable+ 616, 138, 62, 201, 203g,

/* 203:0.65100 */ fallowable+ 616, 138, 62, 202, 204g,

/* 204:0.66266 */ fallowable+ 616, 138, 62, 203, 205g,

/* 205:0.67421 */ fallowable+ 592, 162, 50, 204, 207g,

/* 206:0.68566 */ fallowable+ 592, 162, 50, 205, 208g,

/* 207:0.69700 */ fallowable+ 592, 162, 50, 206, 209g,
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/* 208:0.70821 */ fallowable+ 580, 174, 45, 207, 210g,

/* 209:0.71931 */ fallowable+ 580, 174, 45, 208, 211g,

/* 210:0.73027 */ fallowable+ 580, 174, 45, 209, 212g,

/* 211:0.74109 */ fallowable+ 569, 185, 41, 210, 213g,

/* 212:0.75177 */ fallowable+ 560, 194, 38, 211, 214g,

/* 213:0.76229 */ fallowable+ 560, 194, 38, 212, 215g,

/* 214:0.77266 */ fallowable+ 560, 194, 38, 213, 216g,

/* 215:0.78287 */ fallowable+ 543, 211, 33, 214, 217g,

/* 216:0.79290 */ fallowable+ 543, 211, 33, 215, 218g,

/* 217:0.80276 */ fallowable+ 539, 215, 32, 216, 219g,

/* 218:0.81243 */ fallowable+ 518, 236, 27, 217, 220g,

/* 219:0.82192 */ fallowable+ 518, 236, 27, 218, 221g,

/* 220:0.83121 */ fallowable+ 518, 236, 27, 219, 222g,

/* 221:0.84030 */ fallowable+ 498, 256, 23, 220, 223g,

/* 222:0.84919 */ fallowable+ 498, 256, 23, 221, 224g,

/* 223:0.85787 */ fallowable+ 492, 262, 22, 222, 225g,

/* 224:0.86633 */ fallowable+ 492, 262, 22, 223, 226g,

/* 225:0.87457 */ fallowable+ 466, 288, 18, 224, 228g,

/* 226:0.88258 */ fallowable+ 459, 295, 17, 225, 229g,

/* 227:0.89037 */ fallowable+ 451, 303, 16, 226, 230g,

/* 228:0.89792 */ fallowable+ 451, 303, 16, 227, 231g,

/* 229:0.90523 */ fallowable+ 424, 330, 13, 228, 232g,

/* 230:0.91229 */ fallowable+ 424, 330, 13, 229, 233g,

/* 231:0.91911 */ fallowable+ 424, 330, 13, 230, 234g,

/* 232:0.92568 */ fallowable+ 401, 353, 11, 231, 236g,

/* 233:0.93199 */ fallowable+ 388, 366, 10, 232, 237g,

/* 234:0.93804 */ fallowable+ 374, 380, 9, 233, 238g,

/* 235:0.94382 */ fallowable+ 374, 380, 9, 234, 239g,

/* 236:0.94934 */ fallowable+ 339, 415, 7, 235, 241g,

/* 237:0.95458 */ fallowable+ 318, 436, 6, 236, 242g,

/* 238:0.95956 */ fallowable+ 318, 436, 6, 237, 244g,

/* 239:0.96425 */ fallowable+ 292, 462, 5, 238, 245g,

/* 240:0.96867 */ fallowable+ 292, 462, 5, 238, 247g,

/* 241:0.97280 */ fallowable+ 258, 496, 4, 239, 249g,

/* 242:0.97665 */ fallowable+ 258, 496, 4, 240, 252g,

/* 243:0.98022 */ fallowable+ 216, 538, 3, 242, 249g,

/* 244:0.98349 */ fallowable+ 216, 538, 3, 243, 249g,

/* 245:0.98647 */ fallowable+ 148, 606, 2, 244, 250g,

/* 246:0.98916 */ fallowable+ 148, 606, 2, 245, 250g,

/* 247:0.99155 */ fallowable+ 38, 716, 1, 246, 251g,

/* 248:0.99365 */ fallowable+ 38, 716, 1, 247, 251g,

/* 249:0.99545 */ fallowable+ 38, 716, 1, 248, 252g,

/* 250:0.99695 */ fallowable+ 38, 716, 1, 249, 252g,

/* 251:0.99816 */ fallowable+ 38, 716, 1, 250, 253g,
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/* 252:0.99906 */ fallowable+ 38, 716, 1, 251, 253g,

/* 253:0.99966 */ fallowable+ 38, 716, 1, 251, 254g,

/* 254:0.99996 */ fallowable+ 38, 716, 1, 252, 254g,

#endif

/* 255:inactive*/ fallowable+ 38,1509,1509, 255, 255g g;

static struct

f

ushort internalBuffer;

int jotCount;

FILE *externalIn;

g d;

/* Initialize decoding. */

void elsDecodeStart(FILE *file)

f

d.externalIn = file;

d.jotCount = JOTS PER BYTE;

/* Import first two bytes from external file. */

d.internalBuffer = fgetc(file);

d.internalBuffer = (d.internalBuffer<<8) | fgetc(file);

g

/* Decode a single bit. */

int elsDecodeBit(ElsRung *rung)

f

/* Determine whether 0 or 1. */

if (d.internalBuffer >= ladder[*rung].threshold[d.jotCount])

f

/* 1: */

d.internalBuffer -= ladder[*rung].threshold[d.jotCount];

d.jotCount -= ladder[*rung].codeLength1;

#ifdef ALACRITOUS

/* Update probability. */

*rung = ladder[*rung].next1;

#endif

if (d.jotCount <= 0)

f

/* Import a byte. */

if ((d.jotCount += JOTS PER BYTE)<=0)

f

fprintf(stderr,"elsDecodeBit: called with inactive rung.nn");

exit(1);

g
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d.internalBuffer <<= 8;

d.internalBuffer |= fgetc(d.externalIn);

#ifndef ALACRITOUS

/* Update probability. */

*rung = ladder[*rung].next1;

#endif

g

return 1;

g

else

f

/* 0: Buffer value need not change. */

d.jotCount -= ladder[*rung].codeLength0;

#ifdef ALACRITOUS

/* Update probability */

*rung = ladder[*rung].next0;

#endif

if (d.jotCount<=0)

f

/* Import a byte. */

if ((d.jotCount += JOTS PER BYTE)<=0)

f

fprintf(stderr,"elsDecodeBit: called with inactive rung.nn");

exit(1);

g

d.internalBuffer <<= 8;

d.internalBuffer |= fgetc(d.externalIn);

#ifndef ALACRITOUS

/* Update probability */

*rung = ladder[*rung].next0;

#endif

g

return 0;

g

g

/* Perform consistency check prior to ending decoding. */

int elsDecodeOk()

f

long x;

if (d.jotCount==JOTS PER BYTE)

x = 65536l;

else
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x = allowable[d.jotCount+JOTS PER BYTE];

x = (x*(d.jotCount-1))/JOTS PER BYTE;

return d.internalBuffer == x;

g

/* Conclude decoding. */

void elsDecodeEnd()

f

/* No action necessary. */

g

static struct

f

ulong min;

int jotCount;

int backlog;

FILE *externalOut;

g e;

/* Initialize encoding. */

void elsEncodeStart(FILE *file)

f

e.backlog = 0;

e.min = 0;

e.jotCount = JOTS PER BYTE;

e.externalOut = file;

g

/* Encode a single bit. */

void elsEncodeBit(ElsRung *rung, int bit)

f

if (bit)

f

/* Encode a 1 */

e.min += ladder[*rung].threshold[e.jotCount];

e.jotCount -= ladder[*rung].codeLength1;

#ifdef ALACRITOUS

*rung = ladder[*rung].next1;

#endif

g

else

f

/* Encode a 0. */

e.jotCount -= ladder[*rung].codeLength0;
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#ifdef ALACRITOUS

*rung = ladder[*rung].next0;

#endif

g

if (e.jotCount<=0) /* Will the decoder import a byte? */

f

ulong diffBits;

/* First check for bytes ready to export. */

if ((e.jotCount += JOTS PER BYTE)<=0)

f

fprintf(stderr,"elsEncodeBit: called with inactive rung.nn");

exit(1);

g

diffBits = (e.min + allowable[e.jotCount] - 1) ^ e.min;

switch(e.backlog)

f

default: /* 2 or greater */

if (diffBits&0xFF000000)

break;

fputc(e.min>>24,e.externalOut);

while(--e.backlog > 1)

fputc((e.min>>16)&0xFF,e.externalOut);

case 1:

if (diffBits&0x00FF0000)

break;

fputc((e.min>>16)&0xFF,e.externalOut);

e.backlog--;

case 0:

if (diffBits&0x0000FF00)

break;

fputc((e.min>>8)&0xFF,e.externalOut);

e.backlog--;

g

e.backlog++;

/* Now move one byte from preactive to active. */

if (e.backlog>2)

e.min = (e.min&0xFF000000)|((e.min&0x0000FFFF)<< 8);

else

e.min <<= 8;

#ifndef ALACRITOUS

if (bit)

*rung = ladder[*rung].next1;

else
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*rung = ladder[*rung].next0;

#endif

g

g

/* Conclude encoding. */

void elsEncodeEnd()

f

long x;

/*

@ Consistency check.

*/

if (e.jotCount==JOTS PER BYTE)

x = 65536l;

else

x = allowable[e.jotCount+JOTS PER BYTE];

x = (x*(e.jotCount-1))/JOTS PER BYTE;

e.min += x;

switch(e.backlog)

f

default:

fputc((e.min>>24)&0xFF,e.externalOut);

while(--e.backlog > 1)

fputc((e.min>>16)&0xFF,e.externalOut);

case 1:

fputc((e.min>>16)&0xFF,e.externalOut);

case 0:

fputc((e.min>>8)&0xFF,e.externalOut);

g

fputc((e.min)&0xFF,e.externalOut);

g
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LISTING THREE: compress.c

/*

@ "compress.c": Test program for entropy coding: compresses a file

@ using a one-byte data model.

*/

#include <stdio.h>

#include "elscoder.h"

ElsRung context[256];

int main(int argc,char *argv[])

f

FILE *inFile,*outFile;

int buffer,cIndex;

if (argc!=3)

f

fprintf(stderr,"Usage:nnnn compress <inFile> <outFile>nnnn"

"Tests entropy coder with 1-byte-context file encoding.nn");

return 1;

g

if (!(inFile = fopen(argv[1],"rb")))

f

printf("Unable to open input file.nn");

return 1;

g

if (!(outFile = fopen(argv[2],"wb")))

f

printf("Unable to open output file.nn");

return 1;

g

/*

@ Initialize probabilities of state machine.

*/

for (cIndex=0; cIndex<256; cIndex++)

context[cIndex] = 0;

elsEncodeStart(outFile);

while((buffer = fgetc(inFile)) != EOF)

f

cIndex = 1;
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elsEncodeBit(context+cIndex,buffer&0x80);

cIndex = (cIndex<<1) | !!(buffer&0x80);

elsEncodeBit(context+cIndex,buffer&0x40);

cIndex = (cIndex<<1) | !!(buffer&0x40);

elsEncodeBit(context+cIndex,buffer&0x20);

cIndex = (cIndex<<1) | !!(buffer&0x20);

elsEncodeBit(context+cIndex,buffer&0x10);

cIndex = (cIndex<<1) | !!(buffer&0x10);

elsEncodeBit(context+cIndex,buffer&0x08);

cIndex = (cIndex<<1) | !!(buffer&0x08);

elsEncodeBit(context+cIndex,buffer&0x04);

cIndex = (cIndex<<1) | !!(buffer&0x04);

elsEncodeBit(context+cIndex,buffer&0x02);

cIndex = (cIndex<<1) | !!(buffer&0x02);

elsEncodeBit(context+cIndex,buffer&0x01);

cIndex = (cIndex<<1) | !!(buffer&0x01);

if (buffer==255)

f

/* Send 0 to distinguish from EOF marker. */

elsEncodeBit(context,0);

g

g

/* Send 255 followed by 1 for EOF marker. */

elsEncodeBit(context+1,1);

elsEncodeBit(context+3,1);

elsEncodeBit(context+7,1);

elsEncodeBit(context+15,1);

elsEncodeBit(context+31,1);

elsEncodeBit(context+63,1);

elsEncodeBit(context+127,1);

elsEncodeBit(context+255,1);

elsEncodeBit(context,1);

elsEncodeEnd();

fclose(outFile);

fclose(inFile);

return 0;

g
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LISTING FOUR: expand.c

/*

@ "expand.c": Test program for entropy coding: decodes a file

@ using a one-byte model.

*/

#include <stdio.h>

#include "elscoder.h"

ElsRung context[256];

int main(int argc,char *argv[])

f

FILE *inFile,*outFile;

int buffer;

if (argc!=3)

f

fprintf(stderr,"Usage:nnnnexpand <inFile> <outFile>nnnn"

"Tests entropy encoder with 1-byte-context file decoding.nn");

return 1;

g

if (!(inFile = fopen(argv[1],"rb")))

f

fprintf(stderr,"Unable to open input file.nn");

return 1;

g

if (!(outFile = fopen(argv[2],"wb")))

f

fprintf(stderr,"Unable to open output file.nn");

return 1;

g

/*

@ Initialize probabilities of state machine.

*/

for (buffer=0; buffer<256; buffer++)

context[buffer] = 0;

elsDecodeStart(inFile);

while(1)
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f

buffer=1;

buffer = (buffer<<1) | elsDecodeBit(context+buffer);

buffer = (buffer<<1) | elsDecodeBit(context+buffer);

buffer = (buffer<<1) | elsDecodeBit(context+buffer);

buffer = (buffer<<1) | elsDecodeBit(context+buffer);

buffer = (buffer<<1) | elsDecodeBit(context+buffer);

buffer = (buffer<<1) | elsDecodeBit(context+buffer);

buffer = (buffer<<1) | elsDecodeBit(context+buffer);

buffer = (buffer<<1) | elsDecodeBit(context+buffer);

buffer &= 0xFF;

if ((buffer==255)&& elsDecodeBit(context))

f

if (elsDecodeOk())

printf("ELS Decoder consistency check succeeded.nn");

else

f

fprintf(stderr,"ELS Decoder consistency check failed.nn");

return 1;

g

elsDecodeEnd();

fclose(outFile);

fclose(inFile);

return 0;

g

fputc(buffer,outFile);

g

g
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