
Modi�cations of the Burrows and Wheeler

Data Compression Algorithm�

Bernhard Balkenhol y Stefan Kurtz z Yuri M. Shtarkov x

Fakult�at f�ur Mathematik Technische Fakult�at Institute for Problems on

Universit�at Bielefeld Universit�at Bielefeld Information Transmission

Postfach 100 131 Postfach 100 131 100 447, Moscow, GSP-4

33501 Bielefeld 33501 Bielefeld B. Karetnyi per. 19

Germany Germany Russia

1 Introduction

In 1994 Burrows and Wheeler [3] described a universal data compression algorithm

(BW-algorithm, for short) which achieved compression rates that were close to the

best known compression rates. Due to it's simplicity, the algorithm can be imple-

mented with relatively low complexity. Fenwick [5] described ideas to improve the

e�ciency (i.e. the compression rate) and complexity of the BW-algorithm. He also dis-

cusses relationships of the algorithm with other compression methods. Schindler [12]

proposed a Burrows and Wheeler Transformation (BWT, for short) that is based on a

limited ordering. This speeds up the algorithm for compression, but slows it down for

decompression and slightly decreases the e�ciency. Larsson [8] describes relationship

of the BWT with su�x trees and with context trees. Sadakane [11] suggests a method

to compute the BWT faster, and compares it to other methods. Recently Balkenhol

and Kurtz [1] gave a thorough analysis of the BWT from an information theoretic

point of view. They described implementation techniques for data compression al-

gorithms based on the BWT, and developed a program with a better compression

rate.

In this paper we improve upon these previous results on the BW-algorithm. Based

on the context tree model, we consider the speci�c statistical properties of the data

at the output of the BWT. We describe six important properties, three of which

have not been described elsewhere. These considerations lead to modi�cations of the

coding method, which in turn improve the coding e�ciency. We shortly describe

how to compute the BWT with low complexity in time and space, using su�x trees

in two di�erent representations. Finally, we present experimental results about the

compression rate and running time of our method, and compare these results to

previous achievements. More references on the methods described in this paper can

be found in [1, 5].

�To appear in Proceedings of the IEEE Data Compression Conference 1999
yEmail: bernhard@mathematik.uni-bielefeld.de
zEmail: kurtz@techfak.uni-bielefeld.de, work partially supported by DFG-grant Ku 1257/1-1
xEmail: shtarkov@iitp.ru, Work done while visiting the Fakult�at f�ur Mathematik, Universit�at

Bielefeld, partially supported by DFG-Sonderforschungsbereich 343: Diskrete Strukturen in der
Mathematik

1



2 Context Tree Models of Sources

Let A be the discrete alphabet of � symbols, � � 2; xk, xi 2 A, be the �rst k symbols

of the message xn; p(xkj!) be the probability of the occurrence of xk at the output of

the source ! and ' = f'(xn), xn 2 Ang be a uniquely decodable (arithmetic) code for

sequences of arbitrary (in particular, unknown beforehand) length n. The codeword

lengths satisfy the inequality j'(xn)j = � log q(xnj') � �
P

n

k=1 log#(xkjx
k�1; !) + 1,

where jzj is the length of the sequence z or the cardinality of the set z, log(:) =

log2(:), fq(x
n)g is a coding probability distribution, which is described by conditional

probabilities f#(xkjx
k�1; !), xk 2 Ak; k = 1; 2; : : :g. The choice q(xn) = p(xnj!) is

the optimal one. But if the statistics of the source is unknown, then the universal

coding approach for a given source model or for some set of source models can be

used. Below we shall refer to the important set of Context Tree (CT) models.

A �nite memory CT-source ! is de�ned by a proper and complete set S of contexts

(sequences over the alphabet A) of length d = jsj � D, by the set of conditional prob-

ability distributions f�s; s 2 Sg = ff�(ajs); a 2 Ag; s 2 Sg, and by the probability

distribution for the �rst D symbols of the message. Completeness and properness

of a set S mean that exactly one context exists for any xk 2 Ak; k � D, i.e. the

equality xk : : : xk�d+1 = sk 2 S holds for exactly one d � D. Then the probability

p(xnj!), divided by the probability of the �rst D symbols, is equal to the product of

the conditional probabilities �(xk+1jsk), k � D, or (in other words) to the product

of the probabilities p(xk(s)j�s) over all s 2 S, where xk(s) is the subsequence of

independent symbols from xk occurring after context s. Thus S is a model of the

CT-source which can be represented as a set of leaves (contexts) of a complete and

proper �-ary tree TS (and vice versa).

Any CT-source can be described by a Markov chain of order D0 � D with a larger

number K of \free" parameters (values of conditional probabilities). Since the cumu-

lative (per message) redundancy of universal (relative to the values of free parameters)

coding is proportional to K logn, the decreasing of K is important for decreasing the

coding redundancy under the condition that it does not decrease the accuracy of the

source description. CT-models satisfy the last condition: their structure allows to

exploit the fact that the \actual" lengths of the contexts are di�erent.

Usually the number of di�erent symbols that occur after a context, decreases with

the length of the context. Consider for example english text: if xk is a blank and

xk�1 is a period, then with high probability the next symbol will be any capital letter

independent of xk�2, xk�3, etc. (the actual length of the context is two). Of course,

exceptions exist: for example, if xk = q, then almost surely xk+1 = u (although the

actual length of the context q is one).

Thus some paradoxical situations occur: the shorter the contexts, the smaller the

number K of free parameters and the coding redundancy (see above), and the larger

the uncertainty relative to the next symbol and the coding rate. In fact, only rather

short contexts inuence the coding rate, and increasing D above some threshold

does not improve the coding rate. Therefore we shall use conventional terms \bad"

and \good" for short and long contexts, respectively, although contexts of almost all

lengths exist, as well as exceptions of the kind mentioned above.

2



3 The BW-algorithm and CT-Models

The BW-algorithm [3] consists of three phases:

1. The Burrows and Wheeler transformation (BWT) xn ! yn is the reordering

(permutation) of the symbols of xn according to the following rule. All n cyclic

shifts of xn (including xn) are lexicographically ordered, and the sequence of

the last symbols of the ordered shifts is yn. It is easy to show that this is a

one-to-one mapping if the position of xn in the sequence of shifts is described.

For more details on the transformation, we refer the reader to [1, 3].

2. Move-to-Front transformation (MTF) yn ! zn of the sequence yn into the

sequence of numbers zn = z1 : : : zn, 0 � zi < � in the following way: If yk+1 =

a 2 A and zk(a) is the number for a after k steps, then zk+1(a) = 0 and zk+1(b) =

zk(b) + 1 for all symbols b with zk(b) < zk(a). For any given initial numbering

of symbols (known to coder and decoder) MTF is a one-to-one mapping.

3. Noiseless coding of zn (including run length coding of runs of zeroes).

If we apply the BWT to the reverse xn : : : x1 of x
n, then the �rst k symbols of it's

periodical shift xk : : : x1xn : : : xk+1 form the context of maximal length for xk+1, i.e. for

the last element of this shift (ignoring symbols xn : : : xk+2). Therefore the BWT of any

message corresponds to the lexicographically ordered (not necessarily complete) �-ary

tree T �, describing the ordered set of contexts, and yi is the only symbol generated in

the ith leaf of T �. Then the connection of the BW-algorithm and PPM�, as mentioned

in [5], is clear. And the limited ordering, proposed in [12], corresponds to the context

tree T (D) for a Markov chain of order D, yn = xn(s1); x
n(s2); : : : (see Section 2) and

such a modi�ed BW-algorithm corresponds to PPM [4] (see also [5]).

As any one-to-one mapping, the BWT does not change the entropy of the source

or the probability of the message, but the (relatively) low complexity of the BWT

makes it very attractive for data compression programs. Therefore it is important to

look for an e�cient coding of yn, taking into account the di�erence of the probability

distributions for xn and yn over An. But for studying the properties of yn, we have

to know at least some properties of xn. The following properties of yn correspond to

the CT-model of xn which is consistent with real input sequences (see Section 2).

Property 1: yn is the sequence of independent symbols over A with variable prob-

abilities of occurrence. It corresponds to an in�nite memory of the source generating

yn, although the original CT-source has a restricted depth of memory.

Property 2: yn consists of \good" and \bad" fragments corresponding to good and

bad contexts, respectively. The probabilities of occurrence of symbols do almost not

change inside the same fragment (in fact, it can be an undetectable concatenation of

\close" fragments), but it can change essentially between two fragments.

Property 3: The statistics of the fragments (i.e. the sets of di�erent symbols in the

fragments) are di�erent.

3



Property 4: The number of di�erent symbols in a fragment usually decreases

with the actual length of the corresponding context (in particular, most of the good

fragments consist of repetitions of one symbol and this is one of the reasons for

using MTF and run length coding as it was originally proposed in [3]). Therefore

the method of multialphabet coding, which allows to adapt to an unknown subset of

symbols in the fragments, should be used; MTF and grouping of numbers, as e.g.

proposed in [5], de�ne such a coding method.

Property 5: The longer the common pre�x of two contexts (the \closer" they are),

the smaller the di�erence of the sets of symbols generated at any of these contexts.

This is one more reason for applying MTF (and, in fact, this is the basis of PPM).

Property 6: With an increasing message length at the output of any given CT-

source, the number of fragments slightly increases (because for a short message length

some subsequences xn(s) (see Section 2) are empty). Thus the (average) length of

the fragments grows almost linearly with the growing message length.

Note that properties 1, 3, and 5 were already discussed in [1]. The formulation of

Properties 2, 4, and 6 is an important contribution of this section.

Usually during sequential universal coding, the statistics of only the previous part

of the message is used (it is known that the pre-coding description of the statistics

of the message does not give us an advantage). Therefore the continuous jumping

from one fragment to another one (typical for context-based coding) does not de-

crease the e�ciency of coding. And knowledge of the \current" context can be used

very e�ciently (see, for example, PPM). Thus the BWT does not give us some ad-

ditional advantages (for increasing e�ciency) but results in the loss of knowledge

about the context of the coded symbol. So we may suppose that the e�ciency of the

BW-algorithm can not reach the e�ciency of the best context-based algorithms (such

supposition was formulated in [5] as well). Nevertheless because the best context

based algorithms require considerably more space and time than the BW-algorithm,

it is desirable to increase the e�ciency of the latter as much as possible.

4 Increasing the E�ciency of the BW-algorithm

In this section we show how to exploit the properties from Section 3 to increase the

e�ciency of the BW-algorithm. The general scheme is related to the approaches

described in [1, 3, 5], but there are some important di�erences, mentioned below.

Alphabet Encoding: In contrast to [3, 5], we encode the set A0 � A of symbols

that really occur in the input sequence. This is done very e�ciently, by the method

described in [1]. In the sequel, let M , M � �, be the size of A0. Note that encoding

A0 reduces the number of free parameters.

Modi�cation of MTF: MTF is de�ned by the following modi�ed rules: if the next

symbol has the current number z, then after its coding we change the number as

follows: if z > 1 then shift z to position 1 else shift z to position 0. In [5,12] di�erent

modi�cations of MTF are discussed.

4



Grouping of Symbols: The grouping of \close" numbers z (after MTF) improves

the multialphabet properties of the BW-algorithm. This is important for coding of

di�erent fragments: it improves the properties of the universal coding algorithms

in practice. Grouping was originally proposed (with uniform coding of all elements

inside the group) for picture compression [6]. See also the theoretical study of [15].

In [5] and [1] grouping was also used, but in a di�erent way.

The grouping is done as follows: we transform the sequence zn of numbers at

the output of MTF into a ternary sequence zn1 over the alphabet f0; 1; 2g and into a

sequence zn
0

2 over the alphabet f2; : : : ;M � 1g. zn1 is obtained from z by substituting

all zk � 2 by 2, i.e. we group all the numbers � 2. zn
0

2 is the subsequence of all zk � 2

in zn. Two di�erent methods were used for coding zn1 and zn
0

2 :

Coding of z
n

1
: We use the ternary sequence as a Markov chain of order 3 as a

well-known universal coding scheme. This means that we implement the arithmetic

coding with conditional probabilities #(zjs(zk1 )) = (�(zjs(zk1 )) +
1
2
)=(k + 3

2
) where

z 2 f0; 1; 2g, s(zk1 ) = z
(1)
k
z
(1)
k�1z

(1)
k�2 are the last three numbers of z

k

1 , and �(zjs) is the

number of occurrences of z after the state s in zk1 . We use this Markov chain approach

to obtain information about where we are in the fragments, i.e. whether we are inside

a good fragment, on the boundary of two fragments, or inside a bad fragment. The

higher the order d of the Markov chain, the more information we have about the

situation. But simultaneously, the statistics �(zjs) become more and more \poor"

and the redundancy of universal coding grows proportionally with the number 3d of

di�erent states s. Therefore d = 3 is a reasonable choice.

Coding of z
n

0

2
: We group f2; : : : ;M � 1g into disjoint subsets f2g, f3; : : : ; 4g,

f5; : : : ; 8g; : : : ; f65; : : : ; 128g; f129; : : : ; 255g except, if 129 � M < 255, then we form

the group f65; : : : ;M � 1g, and if 65 �M < 128 (the typical case), then we form the

group f33; : : : ;M � 1g, etc. Thus usually the number � of groups is � 7. A similar

grouping scheme was used in [5] and in [1]. Any number a = z 2 zn
0

2 is encoded with

arithmetic coding and the conditional probabilities

#(ajzk) =
Ti(z

k) + 1=2

T (zk) + �=2

t(ajzk) + 1=2

Ti(zk) +mi=2
; (1)

where t(ajzk) is the number of occurrences of a in zk2 , Ti(z
k) is the sum of t(ajzk) over

all the numbers a of the ith group, 1 � i � �, T (zk) =
P

i Ti(z
k) is the length of zk2 ,

and mi is the number of elements in the ith group. The two factors on the right hand

side of (1) describe the number of the group and the element in this group.

Updating Scheme: A slight improvement of the e�ciency is achieved by updating

the frequencies �(zjs) and t(ajzk). All the frequencies �(zjs) are replaced by the

integer parts of �(zjs)=2 whenever one of these frequencies exceeds 50. A similar

updating scheme was used for the values of t(ajzk) but with threshold 150 (the values

of Ti(z
k) and T (zk) are recalculated correspondingly). Updating allows to adapt (in

some degree) to the change of the statistics of the encoded fragments. For a more

detailed description of this updating scheme, see [1].

5



5 Complexity of the Implementation

Since the computation of the BWT dominates the space and time requirement of the

BW-algorithm, we now consider how to compute the transformation e�ciently.

As already observed in [3], the BWT can be computed in linear time and space.

The idea is to construct the su�x tree ST for the input sequence xn$ [10], where $

is a symbol not occurring in xn. The construction takes O(n) time and space [10].

There is a one-to-one correspondence between the non-empty su�xes of xn$ and the

leaves of ST. If for each node of ST, the edges outgoing from that node are stored

appropriately, then a simple depth �rst traversal of ST (in linear time and space)

computes the lexicographic order of the non-empty su�xes of xn$. Given this order,

it is trivial to compute the BWT for xn in O(n) time. For more details on this

method, we refer the reader to [1].

In our data compression program the su�x tree based method is used to compute

the BWT of xn. Su�x trees are constructed using the algorithm of McCreight [10].

Two di�erent representations of the su�x tree were implemented:

The �rst representation stores the edges of the su�x tree in a linked list. Since it

takes O(M) time to select a certain edge outgoing from a node, this representation

is computed in O(Mn) time. Using the space reduction techniques of [7], about 10n

bytes of space are required in the average case. This is a considerable improvement

over previous implementation techniques for su�x trees (see [10]), which require about

19n bytes on average.1

The second representation stores the edges of the su�x tree in a hash table. This

table implements a function mapping each pair (v; a), consisting of a node v of ST

and a symbol a, to the node w, whenever there is an edge from v to w whose edge

label starts with symbol a. The hash table is implemented using an open address-

ing technique with double hashing to resolve collisions. Using the space reduction

techniques of [7], the hash table representation requires about 15n bytes of space on

average.

As shown in [7], the hash table representation of the su�x tree is computed

faster than the linked list representation for long input sequences or large alphabets.

Unfortunately, the hash table representation does not directly allow the depth �rst

traversal of the su�x tree to run in linear time. As remarked in [8], the hash table

can be sorted in O(n), such that the edges outgoing from some node are stored in

consecutive positions. However, as shown in [7], the additional sorting of the hash

table is slow in practice and requires considerable amount of extra space. So the hash

table representation only gives a speed advantage for large alphabets.

Based on these observations, our data compression program selects one of the two

su�x tree representations, based on the size of the input alphabet: If the alphabet

contains at least 200 symbols, then the hash table representation is used. In all other

cases, the linked list representation is used. Note that the program described in [1]

only uses the linked list representation.

1The assumption is that the symbols of the input sequence can be represented by one byte, and
that integers occupy 4 bytes.

6



There are other algorithms to compute the BWT, which do not run in linear time:

� The algorithm of Manber and Myers [9] runs in O(n logn) worst case time and

it requires 8n bytes of space. In practice it was shown to be considerably slower

than a su�x tree based method, see [9, 11].

� The algorithm of Bentley and Sedgewick [2] is based on quicksort. It is space

e�cient (5n bytes plus stack space for quicksort) and fast in the average case,

but the worst case running time is O(n2). This occurs, if the input sequence

contains long repeated substrings. For example, for the �le pic of the Calgary

Corpus the algorithm requires about 190 seconds.2 This behavior rules out

the Bentley-Sedgewick Algorithm to be used in our program. Note that this

algorithm is used in the bzip2 -program [13], which is also based on the BWT.

However, in contrast to our program, bzip2, applies a run length encoding to

the input sequence, before computing the BWT. So the worst case behavior of

the Bentley-Sedgewick algorithm is less likely to occur in bzip2.

� Recently, Sadakane [11] has shown how to combine the Manber-Myers Algo-

rithm with the Bentley-Sedgewick Algorithm, to achieve a method running in

O(n logn) worst case time and using 8n bytes of space. Experiments in [11]

show that Sadakane's algorithm is on average slightly slower than a su�x tree

based sorting method implemented by Larsson.

The main advantage of these non-linear algorithms is that they use less space than

a su�x tree based method. However, with the space reduction techniques of [7],

this advantage has decreased considerably. So using a su�x tree based method to

compute the BWT, is a reasonable choice.

6 Experimental Results

In a �rst experiment we determined the compression rate of our program in bits/byte

for the �les of the Calgary Corpus, and compared it to other programs. Table 1

shows the compression rate of the switching method VW98 of Volf and Willems [14],

of CTW (Context Tree Weighting with PPMDE, D = 8), of PPMDE (D = 5), of

gzip with option {9, of the program BW94 developed by Burrows and Wheeler [3],

of the program F96 by Fenwick [5], of the program BK98 developed by Balkenhol

and Kurtz [1], and of the program BKS98 described in this paper. The last row

of the table shows the total length of the �les and for each program the average

compression rate. The three programs VW98, CTW, and PPMDE have a better

compression rate than our program: While we achieve an average compression rate

of 2:30, they achieve 2:12, 2:19, and 2:27, respectively. However, they require much

more computational resources. If we restrict to the programs which have similar

requirements in space and time (the last �ve columns of Table 1) then our program

2For pic our su�x tree based method requires 2.3 seconds, while the Manber Myers Algorithm
takes 20.3 seconds. These numbers are for the computer mentioned in Section 6.

7



shows the best compression rates for most �les (see the grey boxes). In particular,

we have improvements over BK98 (a predecessor of BKS98 ), except for book1, book2,

paper2, and pic. The improvement for geo is mainly due to the fact that we reverse

an input sequence, if M = 256. This heuristic makes sense, because ifM = 256, then

the input sequence is usually encoded in some way (e.g. object code), so that it is

of advantage to look at the preceeding context of the symbols. This is achieved by

reversing the input sequence, a technique which is also applied in szip [12].

In a second experiment we applied our program to the Canterbury Corpus (in-

cluding the large �les e.coli, bible.txt, and world192.txt). Since this corpus is rather

new, compression rates were not available for VW98, CTW, PPMDE, BW98, and

F96. Therefore, Table 2 shows the compression rates of gzip, of PPM with option

-o3 and escape method D, of bred (a program developed by Wheeler), of bzip2 with

option {9 (see [13]), of szip with block size 1.7MB (see [12]), of BK98, and �nally

of BKS98. Note that all these programs, except for gzip and PPM, are based on

the BWT. For most �les BKS98 achieves the best compression rate. The average

compression rate is 2:04. BKS98 improves over BK98, except for ptt5, kennedy, and

xargs.1. Note that for the DNA sequence e.coli (alphabet size 4), we exactly hit the

base line �gure of 2 bits per symbol. Some people prefer to split the Canterbury Cor-

pus into two groups: the group of small �les (alice29; : : : ;asyoulik) and the group of

large �les (the remaining). For the former group we achieve an average compression

rate of 2.13 bits/byte and for the latter it is 1.72 bits/byte. For each of the large �les

of the Canterbury Corpus we could achieve even better compression rates by choosing

a larger block size. (The results presented are for the block size of maximal 900,000

symbols.)

To demonstrate the practical relevance of our program, we measured its running

time and compared it to gzip. Since gzip is available on most computers, these results

allow an indirect comparison to other programs. Table 3 shows compression time

(ctime) and decompression time (dtime) for gzip and for BKS98 when applied to

the �les of the Calgary and the Canterbury Corpus. The last row gives the sums

of the corresponding columns. The results were obtained on a Toshiba Notebook

460 CDT (Pentium MMX-processor, 166 MHz, 32 MB RAM) under the operating

system Linux. We used the gcc compiler, version 2.7.2.3 with the optimizing option

{O3. Times are user times in seconds (averaged over ten runs) as reported by the

gnu time utility. For the Calgary Corpus gzip achieves about 2.6 times the speed of

BKS98 for compression. BKS98 is slightly slower than BK98 (by factor 1.1) for the

Calgary Corpus (we refer to the results of [1]). This is due to the fact that BKS98

does not apply run length encoding and that the encoding after the BWT is more

complicated in BKS98. For the Canterbury Corpus BKS98 is about 1.6 times faster

than gzip. This is because of the good performance for e.coli and kennedy (for the

latter �le the hash table representation of the su�x tree is used). We con�rmed

this speed advantage of BKS98 over gzip on a di�erent computer architecture: on

a Sun-UltraSparc (143 MHz, 64 MB RAM) our program is 1.43 times faster than

gzip, when compressing the Canterbury Corpus. For both corpora, gzip decompresses

much faster than our program does. However, this is a general disadvantage of the

BW-algorithm.

8



�le length M VW98 CTW PPMDE gzip BW94 F96 BK98 BKS98

bib 111261 81 1.71 1.79 1.84 2.51 2.02 1.95 1.94 1.93

book1 768771 81 2.15 2.19 2.30 3.25 2.48 2.39 2.31 2.33

book2 610856 96 1.82 1.87 1.96 2.70 2.10 2.04 2.00 2.00

geo 102400 256 4.53 4.46 4.73 5.34 4.73 4.50 4.49 4.27

news 377109 98 2.21 2.29 2.35 3.06 2.56 2.50 2.49 2.47

obj1 21504 256 3.61 3.68 3.72 3.84 3.88 3.87 3.87 3.79

obj2 246814 256 2.25 2.31 2.39 2.63 2.53 2.46 2.46 2.47

paper1 53161 95 2.15 2.25 2.31 2.79 2.52 2.46 2.45 2.44

paper2 82199 91 2.14 2.21 2.30 2.89 2.50 2.41 2.38 2.39

pic 513216 159 0.76 0.79 0.81 0.82 0.79 0.77 0.74 0.75

progc 39611 92 2.20 2.29 2.35 2.68 2.54 2.49 2.50 2.47

progl 71646 87 1.48 1.56 1.66 1.80 1.75 1.72 1.71 1.70

progp 49379 89 1.46 1.60 1.67 1.81 1.74 1.70 1.70 1.69

trans 93695 99 1.26 1.34 1.44 1.61 1.52 1.50 1.48 1.47

3141622 2.12 2.19 2.27 2.70 2.40 2.34 2.32 2.30

Table 1: Compression rates (in bits/byte) for the Calgary Corpus

�le length M gzip ppm bred bzip2 szip BK98 BKS98

alice29 152089 74 2.85 2.31 2.55 2.27 2.25 2.23 2.21

ptt5 513216 159 0.82 0.99 0.82 0.78 0.82 0.74 0.75

�elds 11150 90 2.24 2.11 2.17 2.18 2.19 2.11 2.09

kennedy 1029744 256 1.63 1.08 1.21 1.01 0.84 0.90 0.92

sum 38240 255 2.67 2.68 2.77 2.70 2.70 2.62 2.57

lcet10 426754 84 2.71 2.19 2.47 2.02 2.00 1.97 1.96

plrabn12 481861 81 3.23 2.48 2.89 2.42 2.38 2.36 2.35

cp 24603 86 2.59 2.38 2.50 2.48 2.44 2.43 2.42

grammar 3721 76 2.65 2.43 2.69 2.79 2.60 2.55 2.54

xargs.1 4227 74 3.31 3.00 3.26 3.33 3.25 3.11 3.12

asyoulik 125179 68 3.12 2.53 2.84 2.53 2.51 2.49 2.48

e.coli 4638690 4 2.24 2.03 2.16 2.16 2.07 2.04 2.00

bible 4047392 63 2.33 1.66 2.09 1.67 1.62 1.63 1.62

world192 2473400 94 2.33 1.66 2.24 1.58 1.60 1.56 1.54

13970266 2.48 2.11 2.33 2.14 2.09 2.05 2.04

Table 2: Compression rates (in bits/byte) for the Canterbury Corpus

gzip BKS98

�le length ctime dtime ctime dtime

bib 111261 0.35 0.04 0.96 0.41

book1 768770 3.64 0.25 10.29 3.22

book2 610856 2.14 0.18 7.01 2.38

geo 102400 1.00 0.06 1.66 0.72

news 377109 0.99 0.12 5.27 1.56

obj1 21504 0.06 0.02 0.29 0.14

obj2 246814 1.08 0.08 3.36 1.02

paper1 53161 0.14 0.03 0.43 0.20

paper2 82199 0.31 0.04 0.72 0.31

pic 513216 2.95 0.08 3.42 1.61

progc 39611 0.10 0.03 0.33 0.15

progl 71646 0.26 0.02 0.50 0.24

progp 49379 0.19 0.03 0.33 0.17

trans 93695 0.20 0.03 0.67 0.31

3141621 13.40 1.01 35.23 12.45

gzip BKS98

�le length ctime dtime ctime dtime

alice29 152089 0.69 0.06 1.52 0.59

ptt5 513216 2.94 0.08 3.41 1.62

�eldsc 11150 0.03 0.02 0.09 0.06

kennedy 1029744 36.36 0.23 13.21 5.48

sum 38240 0.42 0.03 0.36 0.17

lcet10 426754 1.66 0.13 4.74 1.66

plrabn12 481861 3.30 0.17 6.19 2.02

coptr 24603 0.05 0.03 0.18 0.10

grammar 3721 0.02 0.01 0.04 0.03

xargsman 4227 0.03 0.01 0.04 0.03

asyoulik 125179 0.50 0.05 1.28 0.51

ecoli 4638690 166.49 1.20 52.13 19.53

bible 4047392 25.65 1.00 43.31 15.23

world192 2473400 7.84 0.60 26.77 9.18

13970266 245.97 3.62 153.28 56.22

Table 3: Running times (in seconds) for Calgary Corpus and Canterbury Corpus

9



Acknowledgements: We wish to thank Jan �Aberg for providing the compression rates of

the programs CTW and PPMDE.

References

[1] B. Balkenhol and S. Kurtz. Universal Data Compression Based on the Burrows and

Wheeler Transformation: Theory and Practice. Technical Report, Sonderforschungs-

bereich: Diskrete Strukturen in der Mathematik, Universit�at Bielefeld, 98-069, 1998.

http://www.mathematik.uni-bielefeld.de/sfb343/preprints/.

[2] J. Bentley and R. Sedgewick. Fast Algorithms for Sorting and Searching Strings. In

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 360{369,

1997. http://www.cs.princeton.edu/~rs/strings/.

[3] M. Burrows and D.J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm.

Research Report 124, Digital Systems Research Center, 1994. http://gatekeeper.

dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-124.html.

[4] J.G. Cleary, W. Teahan, and I.H. Witten. Unbounded Length Contexts for PPM. In

Proceedings of the IEEE Data Compression Conference, Snowbird, Utah, pages 52{61.

IEEE Computer Society Press, 1995.

[5] P. Fenwick. Block Sorting Text Compression. In Proceedings of the 19th Australian

Computer Science Conf., Melbourne, Australia, Jan. 31 - Feb. 2, 1996, 1996.

[6] O. Franceschi, Y.M. Shtarkov, and R. Forchheimer. An Adaptive Coding Method for

Still Images. In Picture Coding Symp, PCS-88, Torini, Italy, pages 6.5{1 { 6.5{2, 1988.

[7] S. Kurtz. Reducing the Space Requirement of Su�x Trees. Manuscript, 1998.

[8] N.J. Larsson. The Context Trees of Block Sorting Compression. In Proceedings of

the IEEE Data Compression Conference, Snowbird, Utah, March 30 - April 1, pages

189{198. IEEE Computer Society Press, 1998.

[9] U. Manber and E.W. Myers. Su�x Arrays: A NewMethod for On-Line String Searches.

SIAM Journal on Computing, 22(5):935{948, 1993.

[10] E.M. McCreight. A Space-Economical Su�x Tree Construction Algorithm. Journal of

the ACM, 23(2):262{272, 1976.

[11] K. Sadakane. A Fast Algorithm for Making Su�x Arrays and for Burrows-Wheeler

Transformation. In Proceedings of the IEEE Data Compression Conference, Snowbird,

Utah, March 30 - April 1, pages 129{138. IEEE Computer Society Press, 1998.

[12] M. Schindler. A Fast Block-Sorting Algorithm for Lossless Data Compression. Tech-

nical report, 1996. http://www.compressconsult.com/szip/.

[13] J. Seward. The bzip2 program, version 0.1pl2, 1997. http://www.muraroa.demon.

co.uk.

[14] P.A.J. Volf and F.M.J. Willems. The Switching Method: Elaborations. In Proc. 19-th

Symp. Inform. Theory in the Benelux, Veldhoven, The Netherlands, May 28-29, pages

13{20, 1998.

[15] F.M.J. Willems. Universal Data Compression and Repetition Times. IEEE Trans. on

Inform. Theory, 35(1):54{58, 1989.

10


