Higher Compression from the Burrows-Wheeler Transform by
Modified Sorting

Brenton Chapin* Stephen R. Tatef
Dept. of Computer Science
University of North Texas

P. O. Box 311366
Denton, TX 76203-1366

Abstract

We show that the ordering used in the sorting stage of the Burrows-Wheeler transform, an
aspect hitherto ignored, can have a significant impact on the size of the compressed data. We
present experimental results showing smaller compressed output achieved with two modifications
to the sorting: using a better alphabet ordering and reflecting the sorted strings as in binary
reflected Gray coding.

*E-mail: chapin@cs.unt.edu
"E-mail: srt@cs.unt.edu — Supported in part by NSF Grant CCR-9409945.

1 Introduction

The Burrows-Wheeler transform (BWT) takes a file of n bytes and creates n permutations of the
data by moving the first 1 to n bytes of the data to the end of the remaining data, in effect rotating
the data. The n strings of n bytes each are then sorted, which groups similar contexts together,
and the last byte of each string is the output data. Since similar contexts are grouped together,
this sequence of “last characters” is highly compressible. To compress the data, the output of the
transform is run through a Move-To-Front encoder, and the output of that is compressed with
arithmetic coding [1].

The choice of Move-To-Front (MTF) coding is important. While contexts are grouped together,
there is no per-context statistical information kept, and so the encoder must rapidly adapt from the
distribution of one context to the distribution of the next context. The MTF coder has precisely
this rapidly adapting quality.

The order of sorting determines which contexts are close to each other in the resulting output,
and so the sort order (including the ordering of the source alphabet) can be important in BWT-
based compression. We are not aware of any prior investigation into modifying the sorting phase
of the Burrows-Wheeler algorithm, and many people seem to consider that a fixed part of the
algorithm. For example, in an extensive study of BWT-based compression [3], Fenwick states that
“anything other than a standard sort upsets the detailed ordering and prevents recovery of the
data” — however, this is not entirely true, as any reversible transformation (such as a modified
sorting order) can be used for this first phase.

Even with the rapid adaptability of the MTF coder, placing contexts with similar probability
distributions close together reduces the cost of switching from one context to another, resulting
in reduction in the final compressed size. This dependence on input alphabet encoding is a char-
acteristic that is fairly unique among general-purpose compression schemes. Previous techniques,
including statistical techniques (such as the PPM algorithms) and dictionary techniques (repre-
sented by LZ77, LZ78, and their descendants), are largely based on pattern matching which is
entirely independent of the encoding used for the source alphabet.

It is easy to test a compression algorithm’s dependence on alphabet ordering — simply run the
source through a randomly chosen alphabet permutation and see how subsequent compression is
affected. Using readily available programs gzip (version 1.2.4) as a representative of LZ77-based
compression and bzip (version 0.21) as a representative of BWT-based compression, the following
results were obtained in performing this simple experiment. The input file is a 24 bit color version
of the popular image of Lena (original size 786,488 bytes).

Order
Algorithm || Original | Random
BWT 586,783 | 671,612
Lz77 730,980 | 731,170

Note that the random alphabet reordering has very little effect on the dictionary technique, but
makes a huge difference to the BWT-based algorithm. Clearly, using an arbitrarily chosen order
can have a significant negative impact on the size of the compressed output. In the case of images,
like in this test, the natural intensity-level encoding is not arbitrary and is quite natural (and is
taken advantage of by image coders such as DPMC), and so it seems unlikely that a modified
sorting order would make a significant improvement. However, for text files and other files where

the input coding is initially quite arbitrary, it is reasonable to ask whether reordering the sorting
stage can produce better compression results. Our experiments show that finding other orders that
improve the compression by small amounts is not difficult.

1.1 Previous Work

The paper of Burrows and Wheeler describing the BWT [1] is only barely over 3 years old, and
yet the technique has captured the interest of people in both the research community [3] and
the popular computer press [6]. There are at least two publicly released programs based on this
technique: bzip, an implementation by Julian Seward that includes coding improvements suggested
by Fenwick [3], and szip, an implementation by Michael Schindler that concentrates on speed
improvements. Unfortunately, the latter is available only in binary executable format.

Attempted improvements on the original algorithm (BWT followed by MTF coding) have shown
very limited success. The most prominent improvements come from the extensive study done
by Peter Fenwick [3] in which some improvements were made to the final coding stage of the
Burrows-Wheeler algorithm. Our current work, as summarized in this paper, also provides modest
improvements in the compression performance, but we focus on the initial sorting phase of the
Burrows-Wheeler algorithm. We are not aware of any prior research into this particular aspect.

2 Improving the Sort Order

When the data rotations are ordered in the BWT, the sorting is done in standard lexicographical
order!. If the initial alphabet encoding is assigned in an arbitrary manner (such as ASCII encoding
or opcode encoding in an object file), then the resulting sorted order is also fairly arbitrary. As
demonstrated above, the ordering of the characters can make a significant difference in the size of
the BWT compressed output. An improvement to the ordering could center on finding a better
arbitrary ordering, or perhaps by having a small library of 4 or so orderings and picking the best
one based upon some test or user choice. The speed of the algorithm would be preserved and the
ordering could be saved in a few bits.

Another way to improve on the order would be to spend time analyzing the data to determine
the best ordering. The order would then need to be saved with the data which would take about 211
bytes (actually [log,(256!)] bits). The 211 byte overhead may be mitigated somewhat by using that
order as an initial ordering for the MTF coder. This idea could in fact be applied to representative
data from some large class (such as English text), and the resulting order could be one of the small
number of available fixed orderings as described previously. This provides the reordering benefit to
commonly encountered classes of data, and yet avoids the overhead of initially selecting the order
for each compressed file. Our experiments show that this is indeed useful for classes such as English
text.

These ideas are explored in detail in the next two sections.

In this paper, “lexicographical order” always means the standard lexicographical ordering using the original
alphabet encoding.

2.1 Heuristic Orders

Our first attempt in reordering the input alphabet was simply hand-selecting orderings that seemed
to make sense to us heuristically. One of the best heuristic orderings was the one that grouped
the vowels together, but kept capital and lower case letters separate as in ASCIIL. Other seemingly
sensible heuristic orderings, such as grouping capitals with their lower case equivalent: “AaBbCec...”,
did not perform as well. Ordering by frequency of occurrence, which has the advantage of no
overhead since the decoder can determine the correct ordering from the data, turned out to be one
of the worst orderings.

Much uncompressed data is English or some other human language (text data). A heuris-
tic order optimized for text would be useful. In fact, the alphabetical order of ASCII is not the
best order. Experiments show that an order which groups similar symbols near each other gets a
small (0.25% to 0.5%) improvement over the ASCII ordering. Symbols that are similar are what
one would intuitively expect to be similar. The best heuristic orderings tried on text group vowels,
similar consonants, and punctuation together. One hand coded ordering, “AEIOUBCDGFHRLSM-
NPQJKTWVXY?Z” plus a few punctuation groupings (“?!” and “4-,.”), does well on text, and,
since it is close to the original ordering, it does not usually perform much worse on non-text data
than the original order. Table 1 shows the performance of the selected ordering on files from the
Calgary Compression Corpus, as well as on the 24-bit version of lena and the very large (3,334,517
byte) text file of Les Misérables (1esm10), obtained from Project Gutenberg. For comparison, an
order computed (with methods discussed in the next section and summarized in Table 3) from text
data outside the Calgary Compression Corpus improved compression similarly for the text files of
the corpus, but suffered a worse penalty for the non-text files.

2.2 Computed Orders

A good way to analyze the data to determine the best ordering uses the idea that a pair of different
byte values that are likely to be followed (or preceded) by the same set of byte values should be
close to each other in an ordering of the data. This reduces the “change in probability distribution”
overhead encountered in the encoding phase. For example, when “?” and “!” are encountered, it is
often at the end of a sentence. Sentences are very often followed by a space or a line feed/carriage
return.

To utilize the above idea, consider an ordering of contexts as a walk through the various con-
texts. The cost of going from one context to the next is related to the dissimilarity of the context
probability distributions, and we would like to minimize this cost. For reordering the input al-
phabet, the problem can be viewed as an instance of the traveling salesperson problem (TSP) in
which each vertex is a single character context, and the edge costs are computed based on some
probability distribution distance measure. We then try to minimize the cost of the TSP tour. Since
this is an NP-hard problem [4], we tried various approximation algorithms in order to select an
alphabet reordering, and we also tried various distance measures for computing the edge costs.

For each of the 256 possible characters, create a histogram. Each histogram contains counts of
the characters immediately preceding each occurrence in the data of the character represented by
that histogram. Characters are “close” to each other if their histograms are “close”. In the first
distance measure, the “distance” between two histograms is captured by summing the squares of
the differences of the logarithms of each of the 256 counts. The second distance measure uses a
standard measure from probability theory and information theory, the Kullback-Leibler distance,

File Original | “aeioubcdgf...”
bib 27,097 26,989
book1l 230,247 229,558
book2 155,944 155,515
geo 57,358 57,369
news 118,112 117,734
objl 10,409 10,402
obj2 76,017 76,062
paperl 16,360 16,221
paper2 24,826 24,705
pic 49,422 49,427
progc 12,379 12,331
progl 15,387 15,304
progp 10,533 10,503
trans 17,561 17,514
total 821,652 819,634
lena 586,783 589,913
lesms10 || 923,850 920,558

Table 1: Performance of hand-selected heuristic alphabet reordering.

or relative entropy [2]. The third and fourth distance measures are based on distance measures
used in the algorithms literature when analyzing the move-to-front algorithm [8] (which is the basis
for the coding phase of the BWT-based compressor): the histograms are sorted in decreasing order
of frequency, and then the number of “inversions” between the two lists are counted. The third
distance measure is precisely the number of inversions, and the fourth distance measure is the
logarithm of the number of inversions.

For one approximate solution to the resulting TSP, we used a simple approximation algorithm
based on minimum spanning trees due to Rosenkrantz, Stearns, and Lewis [7]. For distance mea-
sures satisfying the triangle inequality, the tour produced by this algorithm is guaranteed to be no
worse than twice the optimal tour length, but in our case the distances do not necessarily satisfy
the triangle inequality and so there is no guarantee on the performance of the algorithm. We also
used several of the approximation algorithms included in the TspSolve package distributed by Chat
Hurwitz [5] — specifically, we used the addition, farinsert, multifrag, and loss techniques from this
package. The results of these tests are summarized in Table 2.

Trials indicate that the various TSP algorithms do find orderings that are better (in terms of
TSP tour length) than the original alphabet encoding. In this particular text file, the improvement
in TSP lengths is roughly reflected in improvements to the compressed output size. Even with the
additional overhead of encoding the reordering permutation, the total compressed size is decreased
in the better orderings.

For files in the Calgary Compression Corpus, gains were observed for all of the English text
files, and substantial gains were obtained for the file geo. On the other hand, very little gain was
observed for the pic file, and reordering resulted in significantly degraded performance for the obj2

‘ H Orig order ‘ MST tour ‘ addition ‘ farinsert ‘ multifrag ‘ loss ‘

230,247 | 229,561 | 229,921 | 229,777 | 231,210 | 229,458
Orig metric | 230,247 | 229,351 | 229,710 | 229,566 | 230,998 | 229,247

0 210 211 211 212 211
26,860 9,415 8,824 8,587 10,829 | 9,300
230,247 | 230,216 | 230,017 | 229,868 | 230,079 | 230,424
KL dist 230,247 | 230,007 | 229,801 | 229,652 | 229,867 | 230,212
0 209 216 216 212 212
111.71 44.73 39.42 37.59 45.91 37.62
230,247 | 229,712 | 229,455 | 230,446 | 229,496 | 229,780
Inv 230,247 | 229,500 | 229,244 | 230,230 | 229,281 | 229,566
0 212 211 216 215 214

274,756 147,632 132,702 | 131,756 133704 | 131,622
230,247 229,712 229,569 | 229,808 | 229,496 | 229,832

Loglnv 230,247 229,500 229,358 | 229,597 | 229,281 | 229,620
0 212 211 211 215 212
682.1 613.5 571.7 572.2 571.8 584.8

Table 2: TSP reordering results using file bookl. Numbers in each box, from top to bottom, are
the total compressed size, the compressed size of just the reordered data, the size of encoding the
reordering permutation, and finally the TSP tour length.

file.

For non-text files, the weight of the order found by TSP was almost always much less than the
weight of the lexicographical order, yet the sizes of the compressed data for each ordering did not
always correspond. Clearly, the correlation in such cases is weak. Perhaps reordering contexts with
more than one character would result in a more direct correlation.

The largest improvement occurs in files that are not text or true color images but have some
non-standard organization for which lexicographical order is not very good. Such files would include
256 color images done with a colormap. Perhaps a measure for determining when to apply TSP
would be to compare the compressed size for lexicographical order with the compressed size for a
random order. If the two are close, then TSP will likely produce a better order.

Table 3 shows the results of using a computed reordering for all the files in the Calgary Com-
pression Corpus. Each file was run through the reordering process using our first distance measure
and the farinsert TSP approximation algorithm, and the resulting output size (including the size
required to encode the alphabet permutation) is given in the 2nd column. We also performed a
test where we took a large amount of English text unrelated to the corpus (obtained from Project
Gutenberg) and computed a good general English text ordering from this data. This fixed reorder-
ing was then used in encoding all the data files — the results benefit from the fact that you do not
have to encode the fixed permutation of the input alphabet with the compressed data. In Table 3,
the last column shows the best compression achieved on each file, and this value is marked in bold
in each row. The most interesting thing about the ordering computed from the Project Gutenberg
files is that it is an excellent selector of files written in English. With one exception, all of the files

TSP (farinsert, | Fixed (text)
Orig order 1st metric) reorder Best
bib 27,097 27,199 26,977 | 26,977
book1 230,247 229,777 229,071 | 229,071
book?2 155,944 156,077 155,613 | 155,613
geo 57,358 55,897 57,565 | 55,897
news 118,112 118,385 117,978 | 117,978
objl 10,409 10,647 10,511 | 10,409
obj2 76,017 77,450 77,080 | 76,017
paperl 16,360 16,477 16,264 | 16,264
paper2 24,826 25,132 24,654 | 24,6564
pic 49,422 49,682 49,518 | 49,422
progc 12,379 12,579 12,427 | 12,379
progl 15,387 15,571 15,364 | 15,364
progp 10,533 10,734 10,568 | 10,533
trans 17,561 17,887 17,663 | 17,561
Total size 821,652 823,494 821,253 | 818,139
lena 586,783 599,883 600,872 | 586,783
lesms10 923,850 920,541 921,392 | 920,541

Table 3: Computed alphabet reordering for all files in the Calgary Compression Corpus

from the Calgary Compression Corpus that performed best under this ordering were in fact the
English text files (even though they were not used in computing the ordering). The one exception
is the LISP program, which when examined was in fact discovered to have large pieces of English
text within it in the form of both comments and function names. The large Les Misérables text file
also was not best with this fixed text reordering. For such a large file, a data-dependent ordering
saves enough space to more than compensate for the overhead of including the ordering.

It is interesting to compare this table with the results for the hand-selected ordering of the
previous section. The performance of the fixed, computed ordering is comparable to that of the
hand-selected ordering on the text files. This is encouraging for other arbitrarily encoded input
sources, suggesting that we do not have to examine and hand-tune orderings for each input source.

2.3 Improving Sorting Using Longer Contexts

Sorting is typically done in lexicographic order using a standard character encoding such as ASCII.
For example, the phrases “ayz, aza, azz, baa, baz, bba, bbz, bza, bzz, caa, caz” are sorted in
order. But typical sorting is not always the best way to organize the data for BWT, as has already
been demonstrated. If the sorting method is changed to put similar strings closer to each other,
an improvement of around 0.5% can be achieved, even when done with one of the better orders
discussed in the previous section. Binary reflected Gray code minimizes changes in bits between
adjacent binary codes. The sorting of strings can be done in an analogous fashion.

Sorting is changed by inverting the sort order for alternating character positions. Let the jth

column of the data in the n x n BWT matrix be the jth character of all the strings created by
rotating the data. The first column is sorted as before. But all following columns will be sorted
in forward and backward orders according to data from previous columns. Specifically, whenever
a character in a column changes between string ¢ and string ¢ + 1, the sort order of all following
columns is inverted. Only the leftmost change (the lowest column) is considered if more than one
column changes. Sorting in this fashion will produce an ordered list reflected in a way analogous to
the binary reflected Gray codes. Below is an example, using lexicographical order on the phrases
given earlier.

Inversion Point
For Columns
Normal | Reflected 2 3

ayz ayz Vv
aza azz
azz aza Vv Vv
baa bza
baz bzz Vv
bba bbz
bbz bba vV
bza baa
bzz baz vV vV
caa caz
caz caa

Notice how the 2nd and 3rd columns are more homogeneous in the reflected ordering. This
greater homogeneity also exists in the last column of the BWT, which is the column used as input
to the MTF coder. Unlike the simple alphabet reordering, reflection improved the compression of
the BWT algorithm on every file tested.

One does not need to extend the reflection of sorting to all n columns to gain improvement
in the compression size. As one might expect, experiments show that the greatest improvement
occurred when reflection was done on the 2nd column. Reflecting the 2nd and 3rd columns further
improved compression and reflecting the 2nd through jth columns where j ranged from 4 up to
several hundred usually reaped further improvements, decreasing as j increased until very little
change occurred for j > 8. This is summarized in Table 4.

The reflected ordering can of course be combined with the alphabet reordering as described
in the two preceding sections. Table 5 shows the results of combining reflection (using maximum
number of columns) with some of the sort orders from previous sections.

3 Best overall results

Table 6 takes the best compression results from previous tables and shows the methods used on
each file to achieve the result. Since much of the corpus is text, the hand coded order “aeiou” is
best for most of the files. The TSP schemes did better than ASCII order on text files, but usually
not as well as “aeiou”. On geo, the one non-text file for which lexicographical order was bad, all the
TSP schemes found much better orders. For all files (except paperl when reordered with “aeiou”),
reflected-order sorting improved compression.

File Number of columns sorted in reflected order

0 1 2 4 8 max
bib 27,097 | 27,063 | 27,032 | 27,030 | 27,031 | 27,051
bookl 230,247 | 230,158 | 230,130 | 230,134 | 230,069 | 230,074
book2 155,944 | 155,885 | 155,809 | 155,708 | 155,663 | 155,666

geo 57,358 | 56,924 | 56,850 | 56,850 | 56,855 | 56,859
news 118,112 | 117,996 | 117,944 | 117,899 | 117,932 | 117,897
objl 10,409 | 10,388 | 10,384 | 10,382 | 10,381 | 10,381
obj2 76,017 | 75,978 | 75,922 | 75851 | 75817 | 75,829

paperl 16,360 | 16,347 | 16,350 | 16,347 | 16,334 | 16,341
paper2 24,826 | 24,808 | 24,819 | 24,810 | 24,818 | 24,828

pic 49,422 | 49,415 | 49,405 | 49,420 | 49,407 | 49,406
progc 12,379 | 12,364 | 12,357 | 12,348 | 12,341 | 12,340
progl 15,387 | 15,378 | 15,357 | 15,366 | 15,380 | 15,355
progp 10,533 | 10,529 | 10,536 | 10,523 | 10,529 | 10,527
trans 17,561 | 17,519 | 17,525 | 17,518 | 17,484 | 17,488
total 821,652 | 820,742 | 820,420 | 820,186 | 820,041 | 820,042
lena 586,783 | 584,060 | 582,742 | 582,657 | 582,664 | 582,664

lesms10 || 923,850 | 923,608 | 923,472 | 923,282 | 922,975 | 923,000

Table 4: The result of ordering data based on the reflected ordering described in Section 2.3.

The savings due to the combination of the two main techniques of this paper (alphabet reorder-
ing and reflected order sorting) is actually greater than the sum of the savings due to the individual
techniques. Considering the individual pieces of the compression algorithm, we estimate that the
alphabet reordering is responsible for approximately 67% of the savings, the reflected sorting is
responsible for approximately 26% of the savings, and the remaining 7% of savings comes from the
combination of the two techniques.

4 Conclusion

Sorting is a central part of compression based on the Burrows-Wheeler transform, and yet standard
lexicographic sorting is only one of many possible sorted orderings. In this paper we have considered
alternative alphabet orderings based on both hand-selected (heuristic) and structured techniques
(such as using a reduction to the traveling salesperson problem to compute an alphabet reordering),
as well as reorderings based on larger sequences of characters. Improvements in compressed size
were obtained by both alphabet reordering and selective reversal of ordering within columns of the
sorted matrix.

Both main techniques add to the compression time, but alphabet reordering adds almost nothing
to the decompression time (and reordering with a fixed permutation adds almost nothing to the
compression time). While the reflected sorting provided additional improvements, it was slower
in both compression and decompression — perhaps better algorithms designed for this modified
sorting could improve performance. Even without such improved algorithms, the efficient alphabet

file aeiou | TSP (MST, | TSP (farinsert, | Fixed (text)

bedgf | 1st metric) 1st metric) reorder
bib 26,960 27,406 27,160 26,935
book1 229,391 229,452 229,623 228,938
book2 155,207 155,809 155,957 155,399
geo 56,887 56,081 55,297 57,041
news 117,557 118,109 118,331 117,913
objl 10,383 10,801 10,639 10,483
obj2 75,818 77,693 77,181 76,922
paperl 16,237 16,503 16,466 16,257
paper2 24,728 25,167 25,166 24,622
pic 49,390 49,011 49,594 49,531
progc 12,300 12,653 12,582 12,419
progl 15,283 15,684 15,555 15,304
progp 10,489 10,805 10,758 10,566
trans 17,463 17,793 17,837 17,631
total 818,093 822,967 822,146 819,961
lena 585,754 598,230 595,720 597,031
lesms10 || 920,352 919,424 920,067 921,149

Table 5: Combining reflected-order sorting with alphabet reordering.

File Original BZIP | Our Best Size method

bib 27,097 26,935 Fixed text + reflect
book1 230,247 228,938 Fixed text + reflect
book2 155,944 155,207 aeiou + reflect
geo 57,358 55,297 | TSP (farinsert) + reflect
news 118,112 117,557 aeiou + reflect
objl 10,409 10,381 reflect

obj2 76,017 75,818 aeiou + reflect
paperl 16,360 16,221 aeiou

paper2 24,826 24,622 Fixed text + reflect
pic 49,422 49,011 TSP(MST) + reflect
progc 12,379 12,300 aeiou + reflect
progl 15,387 15,283 aeiou + reflect
progp 10,533 10,489 aeiou + reflect
trans 17,561 17,463 aeiou + reflect
total 821,652 815,522

lena 586,783 582,664 reflect
lesms10 923,850 919,424 | TSP(MST) + reflect

Table 6: Overall best results

reordering alone is responsible for approximately two-thirds of our compression improvement, and so
this technique could have very practical benefits for data that is compressed once and decompressed
many times.

References

1]

2]

M. Burrows and D. J. Wheeler. “A Block—sorting Lossless Data Compression Algorithm,” SRC
Research Report 124, Digital Systems Research Center, Palo Alto, CA, May 1994.

T. M. Cover and J. A. Thomas. Elements of Information Theory, John Wiley & Sons, Inc.,
New York, 1991.

P. Fenwick. “Block Sorting Text Compression — Final Report,” The University of Auckland,
Department of Computer Science, Technical Report 130, March 1996. Available electronically
as ftp://ftp.cs.auckland.ac.nz/out/peter-f/TechRep130.ps

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, New York, 1979.

Chat Hurwitz, “Traveling Salesperson Dispersion: Performance and Description of a Heuris-
tic,” Cal Poly San Luis Obispo Senior Project, 1992. Software available from the Stony Brook
Algorithm Repository at http://www.cs.sunysb.edu/ algorith/

M. Nelson. “Data Compression with the Burrows-Wheeler Transform,” Dr. Dobb’s Journal, pp.
46ff, Sept. 1996.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. “An analysis of serveral heuristics for the
traveling salesman problem,” SIAM J. Comput., Vol. 6, pp. 563-581, 1997.

D. D. Sleator, and R. E. Tarjan. “Amortized Efficiency of List Update and Paging Rules,”
CACM, Vol. 28, No. 2, pp. 202-208, 1985.

10

