
A Two-Stage Modelling Method for Compressing
Binary Images by Arithmetic Coding

Pasi Frnti and Olli Nevalainen
Dept. of Computer Science, University of Turku

Lemminkisenkatu 14 A, SF-20520 Turku, FINLAND
E-mail: franti@utu.fi

Abstract:

A two-stage modelling schema to be used together with arithmetic coding is
proposed. Main motivation of the work has been the relatively slow operation of
arithmetic coding. The new modelling schema reduces the use of arithmetic coding
by applying to large white regions global modelling which consumes less time. This
composite method works well and with a set of test images it took only ca. 41% of
time required by QM-coder. At the same time the loss in compression ratio is only
marginal.

Index terms: Image compression, arithmetic coding, block coding, modelling.

1. Introduction

Pictorial information is expressed by a very simple model in black-and-white images. Only two
colours, black and white, are recognised and even the greyness of different picture elements is
omitted so that the image consists of a configuration of pixels each representing the pure black or
white colour. In spite of the binary nature of the image files they have a high demand of the
storage space. This brings major problems to practical applications with image data in terms of
long transmitting times and large space requirements on the secondary storage. A standard
solution to the space problem is the application of a compression-decompression system. This
gives typically an order of magnitude reduction in the size but simultaneously frustrates the user
with a long processing time.

Data compression can be divided into two disjoint processes, modelling and coding [Ly] [BWC].
The modelling phase is highly application dependent and one should use a statistical model
which takes into the consideration the characteristics of the data. The coding (encoding and
decoding) can be done optimally by the arithmetic coding technique [Gu] [RL] which means that
the compression efficiency depends on the quality of the modelling only.

The task of modelling binary images is theoretically clearcut because of the small size of the
source alphabet. It is possible to use a relatively large prediction context (i.e. a set of
neighbouring points) in this case, and even more than one context can be used at the same time
[Mo]. The prediction models can be classified to static and dynamic types. In a static model the
conditional probabilities of symbol values are precalculated and they are the same for all parts of
the image. In a dynamic model the probabilities are determined at the time of compression (and
decompression). This is advantageous in particular when the images consist of regions with
strongly differing statistical character.

The arithmetic coding suffers from a relatively large running time. Much of this originates from
the type of modelling schemes used; the models are local in the sense they handle an image pixel
by pixel. This means about 2 million encoding steps for normal A4-sized images with 150 dpi
resolution.

In the present paper we propose a new practical compression algorithm which is a hybrid of
arithmetic coding and block coding. The latter compression technique [KJ] has turned out to be
fast and give good (though suboptimal) compression ratios for regions with a high density of
white pixels (or black pixels). Our idea is thus to gain speed at the expense of the compression
result.

The state of art in the binary image compression with arithmetic coding is JBIG1, which is a draft
for international standard by ISO2/IEC3 and CCITT4 [PM93 Section 20.3] [JBIG]. The main
component of the algorithm is QM-coder, a highly sophisticated arithmetic coder, which will be
the point of comparison made in this paper later on.

Comparison of different compression methods is commonly done by analysing the compression
ratio and running time. The first criterion is specified by the formula:

Compression ratio = number of input bits / number of output bits

Execution time is consumed by the coding and decoding phases. These two times are about the
same for our technique and we thus show the coding times only. (In fact the decoding times may
be critical in some applications.)

We start in Section 2 by describing the two-phase compression algorithm. Analysis of the
running time is found in Section 3. Variants of the arithmetic coding algorithms are shortly
discussed in Section 4. Problems of local modelling and block coding are discussed and an
algorithm for a non-hierarchical variant is given in Section 5. Analysis of the non-hierarchical
method is presented in Section 6. Section 7 contains a summary of test results and finally
conclusions on the subject are drawn in Section 8.

1Joint Bi-level Image Group
2International Organization for Standardization
3International Electrotechnical Committee
4Consultative Committee for International Telegraphy and Telephony

2

2. Combining block coding and arithmetic coding

Our idea is to reduce the use of time-critical arithmetic coding by replacing it with block coding
[KJ] as much as possible. Here we will use the two-dimensional hierarchical block coding. The
following facts are known for these two compression methods:

1) Block coding is fast but its compression result is suboptimal.
2) Inefficiency of the hierarchical block coding doesn't appear at the upper levels of coding.
3) Arithmetic coding is space optimal but it runs slowly.

We use a two-phase modelling schema in the present paper. At the first phase the hierarchical
block coding is applied. The encoding starts with the block size 16*16. If the whole block is
white (i.e. all pixels in it are white) it is coded by a single 0-bit. Otherwise the block is non-white,
including at least one black pixel. Such a block is coded by bit 1 and then divided into four equal
sized subblocks which are then recursively encoded in the same manner.

Block coding continues until the block size reaches a predefined lower limit, jumplevel. At this
moment the second phase is entered by changing the modelling schema to local modelling. The
block is now coded pixel by pixel by arithmetic coding. Jumplevel can be any of the values
16*16, 8*8, 4*4, 2*2, 1*1. The present paper presupposes a dynamic modelling technique with
an 8-pixel prediction context, see Fig.1.

4-pixel context: 8-pixel context: 12-pixel context:

Pixel to be coded

Pixel within context

 Figure 1: Alternative prediction contexts.

The two-phase modelling schema thus results in a mixture of bit strings containing data of block
coding stage and local modelling stage. All these bits are coded by an arithmetic coder. For a
description of the algorithm see Fig. 2.

3

By the selection of the value of jumplevel we can control the compression ratio and the speed of
the algorithm. A large jumplevel causes much local modelling and frequent use of arithmetic
coding with high compression ratio but a large running time. On the other hand a small
jumplevel increases the speed at the cost of the compression gain.

WHILE unprocessed rows of image exists DO
-Read the next 16 lines of image into buffer.
-Split the lines into 16*16-pixel blocks.
-FOR each block DO

-IF block size = jumplevel THEN
-Encode the pixels of the block with arithmetic coding.

-ELSE
-Check whether the block is white by scanning the pixels.
-Encode the block code (0=white, 1=non-white) with arithmetic coding.
-IF the block is non-white THEN

-Split it into four equal sized subblocks.
-Process the subblocks recursively in the same way.

END-WHILE.

Figure 2: Hybrid algorithm of hierarchical block coding and arithmetic coding.

3. Analysis

Encoding can be seen as a three-step sequential process:

Step 1: Input.
Step 2: Divide the input into B*B blocks5.
Step 3: Process the blocks.

In the following analysis Step 1 is ignored because it is always the same regardless of the steps 2
and 3. Step 2 is done on the addressing level and its time is insignificant in comparison with the
other two steps. The Step 3 can be divided into two substeps:

Step 3a: Check whether the block is white.
Step 3b: Code the block-bit (0 if the block is white, 1 otherwise).

Further processing is necessary for non-white blocks called also active blocks:

Step 3c: Divide the active block into four subblocks.
Step 3d: Process the subblocks recursively.

5An earlier work on the subject has shown 16*16 to be a good choice for a starting block size [FN].

4

Step 3c is also considered to be non-time consuming as Step 2 was. We will next use the
notations:

B = Block size parameter.
J = Jumplevel size parameter.
sb = Average execution time to process a b*b-block, where b=(B,B/2,...,1)
pb = Probability for the occurrence of a non-white b*b-block (conditional).
ub = Proportion of pixels needed to test in a b*b-block on an average.
W = Execution time to test the colour of a single pixel.
A = Execution time to encode a bit with the arithmetic coding and updating

 the model.

Let Tn be the total running time for an n-pixel image and assume that the image is in a square,
i.e. the pixel matrix consists of n rows and n columns. Then the total running time of the
coding is

T
n

B

n

B
sn B=

L

M
M

O

P
P

L

M
M

O

P
P* * (1)

where sB is the average execution time for a B*B-block. Execution time for a b*b-block
(b=B,B/2,...,J) is:

s b A b J

s p s u b W A b J

b

b b b b

= ⋅ =

= ⋅ ⋅ + ⋅ ⋅ + >

2

2

24

 if (jumplevel)

 if
 (2)

At jumplevel the execution time depends linearly on the number of pixels in the block (b2*A). At
higher levels the time consists of checking the block's colour (ub*b2*W), coding the block-bit
(A) and possibly processing the four subblocks (4*pb*sb/2). We assume that the time for coding
a block-bit is the same as that of coding a pixel in arithmetic coding. For the jumplevel J we have
z = log2(B/J) levels of recursion and thus from (2):

5

s p s u B W A

u B p u
B

p p u
B

p p p u
B

W

p p p p p p A p p p
B

B B B B

B B B B B B
z

B B B B z

B B B
z

B B B B B B

z z

z z

= + +

= + F
HG

I
KJ

+ F
HG

I
KJ

+ + F
H

I
K

F
HG

I
KJ

L

N
M
M

O

Q
P
P

+

+ + + + F
H

I
K

L
NM

O
QP

+

−
−

−

− −

− −

4

4
2

4
2

4
2

1 4 4 4 4 4 4
2

2
2

2

2

2

2

2 4
2

2

1

2 2 2
1

2

2

2

1

2 2 2 2

2 1

2 1

... ...

...
z

B B B B B B B B B B

B B B
z

B B B B B B

B B
j

i

i

z
i

B
j

A

u p u p p u p p p u B W

p p p p p p A p p p B A

B W u p p

z z

z z

i j j

F
HG

I
KJ

L

N
M
M

O

Q
P
P

= + + + +F
H

I
K

L
NM

O
QP

+

+ + + + F
H

I
K

L
NM

O
QP

+ L
NM

O
QP

= +

− −

− −

−

=

−

=

−

=
∏∑

2

2 2 4 2 2 2

2

2

2

1

2 2 2 2

2

2

2 20

1

0

1

20

2 1

2 1
1 4 4 4

4

... ...

...

i

i

z

B
i

z

j

p B A
i

−

=

−

=

−

=

−

∏∑ ∏

∏

+ F
H

I
K

L

N
M

O

Q
P

1

0

1

2

2

0

1

0

1

3, e j

where is defined to be 1.

For the arithmetic coding the running time of a B*B-block is B2A and therefore the ratio of
execution times of the pure arithmetic coding and the hybrid compression algorithm is

s

B A

W

A
u p

p

B
pB

B B
j

i

i

z

i
B

j

i

i

z

B
i

z

i j

j

i
2

2 20

1

0

1
20

1

0

1

2
20

1
4

= + +
=

−

=

−
=

−

=

−

=

−

∏∑
∏∑

∏ (4)

The pixel processing times W and A are machine dependent constants whereas pb and ub
(b=B/2i) depend on the image to be compressed. Table 1 shows estimates for pb and ub (ub=
number of colour tests divided by b2) calculated from a set of test images, see Appendix. The
number of pixels to be tested was 52% to 74% of all pixels. At the same time the proportion of
non-white blocks (pb) was 34% to 67%. Notice that pb stand for the conditional probability
excluding the blocks belonging to larger all-white blocks and are thus already encoded.

Table 1: Statistics from test images 1 to 4 of Appendix.

16*16 8*8 4*4 2*2
Number of blocks: 8745 11834 31943 80139
Non-white blocks: 2958 7986 20035 49521
pb: 34% 67% 63% 62%

Number of colour tests: 188.90 32.99 9.05 2.57
b2: 256 64 16 4
ub: 74% 52% 57% 64%

6

If we let k=A/W, we can write (4) in the form

f k
s

B A k
u p

p

B
pB

B B
j

i

i

z

i
B

j

i

i

z

B
i

z

i j

j

i
1 2

2 20

1

0

1
20

1

0

1

2
20

11
4

() = = + +
=

−

=

−
=

−

=

−

=

−

∏∑
∏∑

∏ (5)

The factor k is a machine dependent constant and obviously k>1, i.e. coding of a pixel and
updating the probability model is more time-consuming than finding out the colour of a pixel. In
the case of 486/33 PC-compatible k would fall between 5 and 10. Table 2 shows formulas of s16
for different selections of jumplevel when p- and u-estimates of Table 1 have been applied in (5).

Table 2: s16 values for the set of test images due to factor k.

Jumplevel J: f(k):
16 s16 = 1.00
 8 s16 = 0.34 + 0.74 / k
 4 s16 = 0.24 + 0.91 / k
 2 s16 = 0.17 + 1.04 / k
 1 s16 = 0.15 + 1.13 / k

Fig. 3 shows values of f(k) for different selections of jumplevel. Values f(k)<1 indicate that the
hybrid method is faster than arithmetic coding. Composite modelling schema turns out to be
faster than local modelling if k is greater than a limit, say k≈ 1.3. Another observation is that
even relatively small k-values give a significant speed-up in the processing time.

k

f(k)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

J=16

J=8

J=4

J=2

J=1

 Figure 3: Comparison of the pure arithmetic coding and the hybrid algorithm.

7

Fig. 4 shows the observed values of f(k) from the test runs with images of Appendix. The same
figure shows also theoretical values for different k-values from (5). It is assumed that at the
jumplevel 16 the theoretical and observed running times are equal. The difference between the
curves for k=10,20,100 and the observed running times is relatively small which confirms the
idea that the actual value of k is large enough so that significant benefit from the block coding
schema will be achieved.

Jumplevel

f(k)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 4 8 16

k=5

k=10 k=20
k=100

 Figure 4: Theoretical (broken lines) and observed (thick line) running times.

8

4. Selecting the arithmetic coding algorithm

The hybrid modelling schema allows the use of any version of the arithmetic coding. At least 5-7
different algorithms were available beginning with a general version given by Witten, Neal,
Cleary [WNC], a fixed-length version of arithmetic coding by Teuhola, Raita [TR], Skew-code
by Langdon, Rissanen [LR], Q-coder by Pennebaker, Mitchell, Langdon, Arps [Pe] [MP88a]
[MP88b] [PM88], its newer improved version QM-coder [PM93], Quasi-arithmetic coding by
Howard, Vitter [HV] and few others [CKW] [RM]. Two of these were implemented and tested.

The first one chosen was the version by Witten, Neal, Cleary [WNC] referred as A. There are
several reasons for choosing this algorithm: It is optimal, relatively clear, it is easy to embed into
our algorithm and the source code was available. The algorithm is general in the sense that it
allows the use of a multi-alphabet source. However, our compression algorithm requires a binary
alphabet only so in the C-language implementation we modified the source code to gain
advantage of this fact.

QM-coder [PM93] [JBIG], abbreviated QM, has been specially tailored for binary images and
one of the primary aspects in its designing has obviously been the speed. For example all
multiplication operations have been replaced by fast approximations or by shift-left-operations.
Therefore QM-coder clearly outperforms the algorithm A in speed. Moreover, QM-coder is the
arithmetic coding component in both JBIG and JPEG standards [PM93].

QM-coder includes its own modelling procedures, which makes the linking to block coding
somewhat unconventional, see Fig. 5. The modelling phase determines the context to be used and
the binary decision to be coded. QM-coder then picks up the corresponding probability, performs
the actual coding and updates the probability distribution if necessary. The way QM-coder
handles the probabilities is based on an approximation algorithm and the method adapts quickly
to local variations in the image. For details see [PM93].

Compression with
arithmetic coding

Modelling Coding

Compression
with QM-coder

QM-coderModelling

Arithmetic
 Coding

Modelling
the image

Determining
 probab.

Updating
 model

Arithmetic
 Coding

Modelling
the image

Updating
 model

Determining
 probab.

 Figure 5: Compression with arithmetic coding (left) and with QM-coder (right).

9

5. The prediction modelling

Images are usually processed in row major order from left to right. This has an influence on
design of the prediction context. One can use in the prediction of a particular pixel only pixels
that have already been encoded. On the other words each pixel in context must stand on the same
row to the left of the pixel to be coded or above it.

Figure 6: Morton-order.

A different order of processing is applied in hierarchical block
coding. Here the blocks are visited in the so-called Morton-order
(Z-pattern) [Sa], see Fig. 6. This sequence will recursively repeat
itself in every subblock. Morton-order has the property that each
block (or pixel) on the north-west of current block has been visited
earlier. However the block on the north-east may still contain some
pixels which have not yet been encoded. The original 8-pixel model
cited earlier contains two such pixels (marked by '*' in Fig. 7). This
causes that the coding algorithm in Fig. 2 is irreversible.

There are two possible ways to solve the problem. First we can change the context such that it is
suited to the Morton-order, see Fig. 7. The value of the new context was tested by compressing
all test images with arithmetic coding (A) by this context, see Table 3. The results for the
alternative context are relatively weak and a better solution to the problem is therefore needed.

Pixel to be coded

Pixels within context

Boundaries
 of blocks

Original context: Alternative context:

or

 Figure 7: Original and alternative contexts.

10

Table 3: Compression ratios with alternative context.

Context: Image1 Image2 Image3 Image4 Average
Original 29,42 16,26 21,86 7,22 18,69
Alternative 24,32 13,45 20,20 6,57 16,14

Second approach is to change the order of scanning the image so that the original context will
still be correct. This can be done by dividing the process into two stages. At the first stage blocks
are examined (in Morton-order) to find the non-white blocks. This is done at each level until
jumplevel has been reached. Block code bits are also encoded. At the second stage the 16 row
buffer is handled traditionally row by row and every pixel is encoded with arithmetic coding by
the original 8-pixel context model if and only if the pixel belongs to an active block.

The test results in section 7 will show that the best overall performance, when both running time
and compression ratio are considered, is reached for jumplevel 8. For these reasons we will not
give the algorithm for the general case, but instead the algorithm is tailored for jumplevel 8. We
call this algorithm the non-hierarchical variant of block coding because no recursion is needed in
it, see Fig. 8.

WHILE unprocessed rows of image exists DO
-Read the next 16 lines of image into buffer.
-Split the lines into 16*16-pixel blocks, Bi, (i=1..m).
-FOR i:=to m DO (Stage 1)

-Check whether the block Bi is white by scanning the pixels.
-IF Bi is white THEN

-SET White[i] := TRUE.
-ELSE

-SET White[i] := FALSE.
-Encode the block code (0=white, 1=non-white) with arithmetic coding.

-FOR each row of the input buffer DO (Stage 2)
-Split the row horisontaly into 16-pixel slices.
-FOR each slice DO

-IF the slice belongs into an active block THEN
-Encode the pixels of the slice with arithmetic coding.

END-WHILE.

Figure 8: Hybrid algorithm of non-hierarchical block coding and arithmetic coding.

11

6. Analysis of the non-hierarchical variant

The running time for the non-hierarchical variant is got as a special-case of formula (3)

s p B A u B W A BW SB B B= + + + +2 2 (6)

The two last terms originate from the two-stage encoding process. When implementing the
algorithm of Fig. 8. we note that for each block one extra SET-clause is needed (the factor S).
Another additional cost (BW) is caused by the IF-clause at the stage 2 which is executed once for
each of the B slices in a B*B-block. The ratio of the running times of the non-hierarchical two-
phase modelling and one-phase arithmetic coding is

f k
s

B A
p

B k
u

B

S

B A

B
B B2 2 2

2

1 1 1
() ,

.

= ≅ + + +F
HG

I
KJ

where we have omitted the term

 (7)

The worst case for the algorithm is an image where every block is non-white, but each of them
contains only one black pixel which is the last one checked. Then we have pB=1 and uB=1 and
for this very rare case:

$f k
B k B2 2

1
1 1

1
1

b g = + + +F
HG

I
KJ

 (8)

Thus for the k-values appearing in practice, the running time of the worst case is only slightly
longer than the time for the arithmetic coding, see Fig. 9. As shown in the same figure the variant
is extremely fast for all-white images. For the set of test images it used ca. 40% of the time of
arithmetic coding.

k

f(k)

0.00

0.50

1.00

1.50

2.00

2.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Set of test images

All-white image

All-black image

The worst case

 Figure 9: The ratio f(k) for the non-hierarchical two-phase modelling
 with the block size B=16.

12

7. Summary of test results

The compression methods were implemented in TurboC language in an MS-DOS environment
with a 486/33 PC-compatible. The test runs were performed for all jumplevels (1,2,4,8,16) with
each of the test images.

The hierarchical variant was tested with the arithmetic coding algorithm A. Fig. 10 shows the
dependency of the compression ratio and running time when jumplevel parameter was varied. An
ideal selection of jumplevel turns out to be 8, since it gives a high compression ratio at a
relatively high speed. (Superiority of jumplevels yet depends on how much one emphasises
compression ratio and how much speed.)

10 20 30 40 50 60

1

2

4

8
16

Running time (sec)

C
om

pr
es

si
on

 ra
tio

12

14

18

16

Figure 10: Dependency of time and compression ratio for different
values of jumplevel.

Compression efficiency and running time of the non-hierarchical variant are given in Table 4
for both versions of arithmetic coding. As to the compression efficiency the results with
arithmetic coding by Witten, Neal, Cleary (A and BA) are similar to those with QM-coder
(Q and BQM). Difference in the speed is more significant. QM-coder outperforms A as expected,
however the benefit of the composite method is almost the same with both versions of arithmetic
coding (BA/A≈0.38, BQM/QM≈0.41).

Notice that the running time depends on the proportion of the white blocks in the image. An
all-white image is the best case for the two-stage modelling schema and BQM algorithm took
only 2 seconds for an A4-size all-white image (1275*1745 pixels). On the other hand for an all-
black image the time was 41 seconds, i.e. the same as for the local modelling schema.

13

Table 4: Summary of the test results for the non-hierarchical variant.

A = Local modelling + Arithmetic coding by Witten, Neal, Cleary.
BA = Two-stage modelling + Arithmetic coding by Witten, Neal, Cleary.
QM = Local modelling + QM-coder.
BQM = Two-stage modelling + QM-coder.

Compression ratios

Image1 Image2 Image3 Image4 Average
A 29.42 16.26 21.86 7.22 18.69
BA 28.54 15.93 21.08 7.30 18.21

QM 29.94 16.31 22.19 7.46 18.98
BQM 29.09 16.02 21.47 7.49 18.52

Running time (sec)

Image1 Image2 Image3 Image4 Average
A 62.1 64.0 63.8 65.2 63.8
BA 15.4 24.6 22.0 35.1 24.3

QM 38.6 39.9 39.7 40.5 39.7
BQM 10.9 16.5 14.8 22.6 16.2

A similar idea to ours is the Typical Prediction component in JBIG, which skips lines that are
equal to the previous one [JPEG]. This means that successive all-white lines can be coded with
less computation, just like in our method. In fact, white line skipping can be considered as a
special case of our non-hierarchical variant, in which the block size is one pixel high but as long
the width of the image. Although it gives moderate benefit for the test image 1, it is poor for
image 2 and has practically no effect on the images 3 and 4, see Table 5.

Table 5: Proportion of white pixels skipped by different methods.

Image1 Image2 Image3 Image4 Average
All-white lines 35,0 % 14,2 % 1,8 % 0,2 % 12,8 %
All-white blocks 79,4 % 65,7 % 69,7 % 50,4 % 66,3 %

14

Different algorithms are compared in Fig. 11. Here G4 stands for the CCITT Group IV standard
compression algorithm, also known as READ-code [Ya]. The results for G4 are got by
compressing the images into TIFF-format by shareware software called Image Alchemy [Wo].

20

16

A
BA

G4

QM
BQM

18

14

C
om

pr
es

si
on

 f
ac

to
r

20 40 6010 30 50 70

Running time (sec)

 Figure 11: A comparison of the compression algorithms.

Finally, we tested the non-hierarchical BQM-variant also for the standard CCITT test images.
Observed running times for these images was from 20 to 60 % in comparison to those of
QM-coder and was 39 % in an average. Compression ratio decreased only 3 %.

8. Conclusions

A new two-stage modelling schema was presented for binary image compression. Combining the
block coding as global modelling and the 8-pixel Markov model as local modelling turned out to
be an efficient way to reduce the use of time-consuming arithmetic coding: fewer pixels remain
to be coded. Block coding can be used hierarchically as seen in Section 2, but it causes problems
in local modelling. On the other hand non-hierarchical block coding was the best choice in all.

The block coding is used only in the modelling, so arithmetic coding remains an autonomous
phase. Therefore different versions of arithmetic coding can be used and even QM-coder fits for
this purpose. The proportional benefit gained by the composite method is the same with
arithmetic coding by Witten et al. [WNC] than it is with QM-coder.

15

The two-stage method works the better the more white there is in an image. The method is as
slow as the pure arithmetic coding when compressing all-black images. An all-white image is the
best case for the algorithm, only a fraction of the time required by the arithmetic coding is then
needed for the composite method.

The composite method can still be improved and work on this subject is in progress. Block codes
were compressed used by zero order Markov model. We can naturally extend this model to
higher orders. For example we get an improvement of circa 1.3 % in the compression ratio with a
first order model (using the previously coded block as a context) .

Another improvement is possible by classifying the blocks into three classes: all-white, all-black
and mixed blocks. This involves two binary decisions when coding the block codes and it may
have an effect on the compression ratio. An advantage of this is the capability of fast coding of
blocks containing lots of black pixels.

References

[BWC] Bell T., Cleary J., Witten I., Text Compression. Prentice-Hall, Englewood Cliffs, New
Jersey, 1990.

[CKW] Chevion D., Karnin E., Walach E., High Efficiency, Multiplication Free
Approximation of Arithmetic Coding. Proceedings Data Compression conference,
Snowbird, Utah, pp. 43-52, 1991.

[FN] Fr nti P., Nevalainen O., Compression of Binary Images by Composite Method Based
on the Block Coding. Manuscript, 1992. (submitted for publication)

[Gu] Guazzo M., A General Minimum-Redundancy Source-Coding Algorithm. IEEE Trans.
Inf. Theory, vol. IT-26 (1), pp.15-25, January 1980.

[HV] Howard P., Vitter J., Design and Analysis of Fast Text Compression Based on
Quasi-Arithmetic Coding. IEEE Proceedings Data Compression conference, Snowbird,
Utah, pp. 98-107, 1993.

[JBIG] ISO/IEC Committee Draft 11544, Coded Representation of Picture and Audio
Information - Progressive Bi-level Image Compression, April 1992.

[KJ] Kunt M., Johnsen O., Block Coding: A Tutorial Review. Proc. IEEE, vol. 68 (7),
pp. 770-779, July 1980.

16

[LR] Langdon G.G., Rissanen J., A Simple General Binary Source Code. IEEE Trans. Inf.
Theory, vol. IT-28 (5), pp. 800-803, September 1982.

[Ly] Lynch T.J., Data Compression - Techniques and Applications. Lifetime Learning
Publications, Belmont, CA, 1985.

[MP88a] Mitchell J.L., Pennebaker W.B., Optimal Hardware and Software Arithmetic Coding
Procedures for the Q-coder. IBM Journal of Research and Development, vol. 32 (6),
pp. 727-736, November 1988.

[MP88b] Mitchell J.L., Pennebaker W.B., Software Implementations of the Q-coder. IBM
Journal of Research and Development, vol. 32 (6), pp. 753-774, November 1988.

[Mo] Moffat A., Two-level Context Based Compression of Binary Images. IEEE Proceedings
Data Compression conference, Snowbird, Utah, pp. 382-391, 1991.

[Pe] Pennebaker W.B., Mitchell J.L., Langdon G.G., Arps R.B., An Overview of the
Basic Principles of the Q-coder Adaptive Binary Arithmetic Coder. IBM Journal of
Research and Development, vol. 32 (6), pp. 717-726, November 1988.

[PM88] Pennebaker W.B., Mitchell J.L., Probability Estimation for the Q-coder. IBM Journal
of Research and Development, vol. 32 (6), pp. 737-752, November 1988.

[PM93] Pennebaker W.B., Mitchell J.L., JPEG Still Image Data Compression Standard. Van
Nostrand Reinhold, 1993.

[RL] Rissanen J., Langdon G.G., Arithmetic coding. IBM Journal of Research and
Development, vol. 23 (2), pp. 149-162, March 1979.

[RM] Rissanen J., Mohiuddin K., A Multiplication-Free Multialphabet Arithmetic Code.
IEEE Trans. Communications, vol.37 (2), pp. 93-98, February 1989.

[Sa] Samet H., The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA, 1990.

[TR] Teuhola J., Raita T., Arithmetic Coding into Fixed-Length Codewords. 1993.
(to appear in IEEE Trans. Inf. Theory)

[WNC] Witten I. Neal R., Cleary J., Arithmetic Coding for Data Compression. Comm. ACM,
vol. 30 (6), pp. 520-539, June 1987.

[Wo] Woehrmann M., Hessenflow A., Kettmann D., Documentation of Alchemy.
(version 1.5), File: ALCHEMY.DOC, 1991.

17

[Ya] Yasuda Y., Overview of Digital Facsimile Coding Techniques in Japan. Proc. IEEE,
vol. 68 (7), pp. 830-845, July 1980.

18

