
A Fast and Efficient Compression Method for Binary Images

Pasi Frnti
Dep. of Computer Science, University of Turku, Finland

Abstract: The use of arithmetic coding for binary image compression achieves a high
compression ratio while the running time remains rather slow. A composite modelling
method presented in this paper reduces the size of the data to be coded by arithmetic
coding. The method is to code the uniform areas with less computation and apply
arithmetic coding to the areas with more variation.

Keywords: Image compression, binary images, block coding, arithmetic coding.

1. Introduction

Binary images are a favourable source for statistical data compression because of the small
size of the source alphabet. The best results have been achieved by local context models
together with arithmetic coding [4]. However, the use of arithmetic coding is restricted by the
slowness of the method compared to the conventional CCITT Group 3 and 4 compression
algorithms [1] [3].

The most important criteria for the quality of an image compression algorithm are the
compression ratio and the running time.

Compression ratio = size of the original data / size of the compressed data

In this paper a composite modelling method will be given that aspires to meet both of these
demands. An A4-sized image with 150 dpi resolution consists of over 2 million individual
pixels and by the local context model method each of the pixels is to be separately coded. The
idea of the new method is simple: A global modelling method will be applied for reducing the
number of data to be coded by arithmetic coding. The uniform, non-informative areas of the
image are separated from the active areas. The primary goal here is to decrease the
compression and decompression time while losing as little as possible in the compression
ratio.

2. The Hybrid Compression Algorithm

The image is processed by 16 rows at a time. The pixels of the first 16 rows are stored into
input buffer, which is then operated by a two stage compression algorithm including global
and local stages. When these have been processed, the next 16 lines of the image are brought
to input buffer while two bottom rows of the previous bunch of lines are kept in memory for
reference. The last pixel rows of the image consist of less than 16 rows in case the image size
is not a multiple of 16. At that time the deficient rows of the buffer are filled by white pixels.

The global modelling stage is the Block Coding method given by [5]. Here the 16-row buffer
is decomposed into 16*16-pixel blocks. Again, if the last block overlaps the border of the
image, the overlapping area is filled with white pixels so that all the blocks are of size 16*16.
Each block is classified either as an all-white or non-white block. A block is all-white if and
only if all of its pixels are white. Otherwise the block is non-white. The type of each block is
coded and therefore only non-white blocks needs further processing.

Local modelling is applied to the non-white blocks. In the statistical context model each pixel
is coded by arithmetic coding according to its probability. The probabilities are given by an
8-pixel adaptive context model, shown in Fig. 1. Higher degree contexts are possible,
however they require more memory and are slower to operate with. For details of the local
modelling scheme, see [2] [7] [9].

The two-stage modelling leads into a mixture of global and local data, but that does not cause
any problems because the encoder and the decoder can be synchronised. The same arithmetic
coding method is used for both local and global data to retain the continuity of the arithmetic
code. The global modelling data consists of a one-bit decision of the block type. An 0-bit
represents a white block and 1-bit a non-white block and they are coded according to the
probability distribution adapted from the image to be compressed.

We use a QM-coder for arithmetic coding because it is fast, efficient and tailored for a binary
source [8]. One of the its features is that it updates the context model itself. As the other
arithmetic coders require a probability as input, the QM-coder requires an index to the
context (together with the symbol to be coded of course), so that no book-keeping of the
counts is needed. The 8-pixel template requires 256 different contexts. One extra context is
reserved for the global data so that 257 contexts are used overall.

The global and local modelling stages are separated in the sense that all blocks in the buffer
are analysed (and coded) before the local stage takes place, see Fig. 2. The local modelling
processes the buffer in row major order keeping track of the pixels belonging to a non-white
block and thus needs to be coded.

2

8-pixel template:

Pixel to be coded

Pixel within template

Code of the
rows 1 to 16

Code of the
rows 17 to 32

Global
data

Global
data

Local
data

Local
data

Fig. 1. The template used in the Fig. 2. Output data from the hybrid compression
local modelling. algorithm.

The hybrid compression algorithm works well with images consisting of many white pixels.
With the four test images (see Appendix) the average running time was decreased to 40% of
that with pure local modelling, while the loss in the compression ratio was only marginal. A
detailed algorithm, its analysis and results of test runs, are found in [2] where a hierarchical
variant is considered.

3. Extended Block Coding

While the compression algorithm of Section 2 works well in most cases, nevertheless some
unfavourable images exists for the method. For example an image with an unusually high
proportion of black pixels cannot be speeded-up by the basic algorithm. To overcome this
problem the blocks are classified into three categories: all-white, all-black and mixed. As a
binary arithmetic coder is used, the classifying is considered as two different binary
classifications, see Fig. 3. Note that in the basic method of Section 2, it was sufficient to
encode the first choice of the decision tree only.

For typical facsimile images, like the test images 1 to 3 of Appendix, the analysis shows that
there is not even a single 16*16 all-black block. Therefore no speed-up is expected. In fact,
experimental results show that the running time will remain almost the same. On the other
hand, the test image 4 consists of 322 all-black blocks out of 8800. Even this is too few to
have any significant impact on the running time.

At first sight it appears that the extended method would make the compression ratio worse
because there are two decisions to code instead of one. This is really the case, but the
drawback is insignificant if the block codes are encoded according to their probabilities. In
adaptive modelling, the probability for a mixed-block rapidly ends up as 0.99998 (the highest
probability in a QM-coder) yielding the entropy of only 0.00002. Thus with about 2500 non-
white blocks to be coded, the increase of the extra classification remains below 1 bit. Because

3

of the nature of the dynamic modelling, the probability is lower at the beginning, but still the
overall effect remains marginal.

ALL-WHITE
 BLOCK

ALL-BLACK
 BLOCK

MIXED
BLOCK

NON-WHITE
 BLOCK

Fig. 3. Decision tree of block classification.

Test image "black hand" (see Appendix) represents a class of images for which the extended
block classification improves. There are 26% all-white, 21% all-black and 53% of mixed
blocks in the image. Therefore the number of blocks to be coded by local modelling are
reduced (from 74% to 53%), as compared with the original algorithm. Note that similar
artifacts, like the black areas in an image "black hand", are often possible while transforming
an image into digital form.

Table 1 gives the summary of the test results, where the BQ refers to the hybrid of block
coding and the QM-coder, and BQE refers to the extended BQM-coder. While the BQ takes
only 68% of the time taken by the QM-coder, the time of the BQE decreased down to 46%.
Compare this to the results of typical white-dominating facsimile images (circa 40%), like the
test images 1-4. All the methods can compress all-white and all-black images into a fraction
of the original size, but only BQE-variant manage to do it in minimum time, while the basic
BQM-coder fails with the all-black image.

Test runs were performed in a 486/33 PC-compatible machine by using Turbo C 2.0
programming language. It is noted that the compression and decompression times for the
algorithms are of the same order of magnitude and therefore only compression times appear.

4

Table 1: Summary of test results.

QM = QM-coder.
BQM = BQM-coder.
BQME = Extended BQM-coder.

 Compression ratio Running time (sec)

QM BQM BQME QM BQM BQME
Image 1 29.9 29.1 29.1 40.7 11.5 12.0
Image 2 16.3 16.0 16.0 42.5 17.3 17.7
Image 3 22.2 21.5 21.5 41.8 15.5 15.9
Image 4 7.5 7.5 7.5 42.7 24.0 23.0

"Black hand" 8.8 8.8 8.7 41.9 28.7 19.7

100% white 139600 139600 139600 41.3 3.1 3.5
100% black 39885 34900 139600 41.3 41.4 3.8

4. Block Size

So far we have applied the global modelling to 16*16 blocks only. The effect of the block
size on the compression ratio can be summarised as follows:

Large block size Small block size

+ High compression ratio. - Low compression ratio.
- Slow compression/decompression + Fast compression/decompression.
- High consumption of working space. + Low consumption of working space.

Fig. 4 illustrates the dependency of the number of different block types as a function of the
block size. Further, the interaction of the compression ratio and running time is shown in Fig.
5. The choice of the block size should be parametrised in the implementation so that one can
fine-tune the method according to the demands at the time.

5

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A

IMAGE 1

Block size

0%

20%

40%

60%

80%

100%

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

 ALL-WHITE

 MIXED

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

IMAGE 3

Block size

0%

20%

40%

60%

80%

100%

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

 ALL-WHITE

 MIXED

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A

IMAGE 4

Block size

0%

20%

40%

60%

80%

100%

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

 ALL-WHITE

 ALL-BLACK

 MIXED

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

IMAGE "BLACK HAND"

Block size

0%

20%

40%

60%

80%

100%

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

 ALL-WHITE

 ALL-BLACK

 MIXED

Fig. 4. Number of block types as a function of block size.

14

15

16

17

18

19

20

5 10 15 20 25

Running time (sec)

C
om

pr
es

si
on

 r
at

io

4

16

32

+

+

+

Solid line = original method

Broken line = extended method

 Fig. 5. Test result of different block sizes for the test images 1 to 4.

6

5. Other similar ideas

A similar idea to ours is the Typical Prediction component in JBIG, which skips lines that are
equal to the previous one [8]. This means that successive all-white and all-black lines can be
coded with less computation. In fact, this can be considered as a special case of our variant, in
which the block size is one pixel high but as long as the width of the image. Although it gives
moderate benefit for the test image 1, it is poor for image 2 and has practically no effect on
the images 3-4, see Table 2.

The speed-up mode of JBIG tackles the same problem with a different way [8], and thus can
be seen as an alternative to our method. The coding phase can be made quicker if the context
of consecutive pixels remains identical. This is the case inside all-white and all-black areas.
The speed-up mode, however, does not allow to skip the coding of a pixel entirely. The
context must yet be determined and the coding phase is not totally costless either. For more
information of the speed-up mode, see [6].

Table 2: Proportion of pixels skipped by different methods.

Image1 Image2 Image3 Image4 "Black hand"
All-white lines 35.0 % 14.2 % 1.8 % 0.0 % 0.0 %
All-black lines 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
All-white blocks 79.4 % 65.7 % 69.7 % 50.4 % 35.8 %
All-black blocks 0.0 % 0.0 % 0.0 % 3.7 % 25.2 %

6. Conclusion

A hybrid compression algorithm for binary images was presented. The method gains
advantage from the large uniform areas existing in typical facsimile images by coding them
extremely quickly. At the same time a high compression ratio is achieved by the use of
arithmetic coding for the non-monotonic areas. The QM-coder is a good choice for the coding
algorithm while the hybrid modelling method does not exclude any other arithmetic coder.

The method works well with typical facsimile images, because both uniformly white and
uniformly black areas are benefit from an increased speed. Test results show that the
compression/decompression times are only circa 40% of the times with the pure QM-coder.
The worst case for the algorithm is an image where each block is of the mixed type,

7

consisting of both white and black pixels. While such images are rare, they can still be
compressed in the same time as with the QM-coder.

6. References

[1] K.R. McConnel, D. Bodson and R. Schaphorst, "FAX: Digital Facsimile Technology
and Application", Artech House, Boston 1992, pp. 1-338.

[2] P. Fr nti, O. Nevalainen, "A Two-Stage Modelling Method for Compressing Binary
Images by Arithmetic Coding", Manuscript 1992. (accepted for publication)

[3] R. Hunter and A.H. Robinson, "International digital facsimile coding standards", Proc.
IEEE, Vol. 68, No. 7, July 1980, pp. 854-867.

[4] ISO/IEC Committee Draft 11544, "Coded Representation of Picture and Audio
Information - Progressive Bi-level Image Compression", April 1992.

[5] M. Kunt and O. Johnsen, "Block Coding: A Tutorial Review", Proc. IEEE, Vol. 68, No.
7, July 1980, pp. 770-779.

[6] J.L. Mitchell and K.L. Anderson, "Speedup Mode", ISO/IEC JTC1/SC2/WG8
JPEG-241, January 1989.

[7] A. Moffat, "Two-level Context Based Compression of Binary Images", Proc. Data
Compression conference, Snowbird, Utah, 1991, pp. 382-391.

[8] W.B. Pennebaker and J.L. Mitchell, "JPEG Still Image Data Compression Standard",
Van Nostrand Reinhold, New York 1993.

[9] I.H. Witten, R.M. Neal and J.G. Cleary, "Arithmetic Coding for Data Compression",
Comm. of the ACM, Vol. 30, No. 6, June 1987, pp. 520-539.

8

