
Transform Methods and Image
Compression

An introduction to JPEG and wavelet transform techniques
using Octave and Matlab.

by Darrel Hankerson and Greg A. Harris

This article has its origins in a data compression course we’ve
been developing over the past few years at Auburn University.
The course is elementary, and begins with the basic (text) com-
pression methods of Shannon and Huffman. Some of these meth-
ods can be appreciated with pencil-and-paper examples; others,
such as images to be modified by compression, need some ma-
chine experimentation.

Students may choose to present a project as part of their course
evaluation. We’ve seen various projects, including an amusing
example of Huffman-on-a-hand-calculator, an overview presen-
tation of PNG (Portable Network Graphics) and a project con-
cerning smoothing in JPEG.

We will introduce the transform techniques of JPEG and wave-
lets, discussing some mathematical themes shared by these meth-
ods, and illustrate the use of a high-level linear algebra package in
understanding such schemes. The images were generated using
Octave and Matlab, primarily on GNU/Linux (x86) and Solaris
(SPARC), but also on a Macintosh.

Image compression and transforms

Data compression methods with zero information loss have
been used on image data for some time. In fact, the popular GIF
format uses an LZW scheme (the basic method used in UNIX
compress) to compress 256-color images. PNG is more sophis-
ticated and capable, using a predictor (or filter) to prepare the
data for agzip-style compressor. (Greg Roelofs has an introduc-
tion to PNG and some notes on patent questions concerning GIF
[see Resources 8].) However, applications using high-resolution
images with thousands of colors may require more compression
than can be achieved with theselosslessmethods.

Lossyschemes discard some of the data in order to obtain bet-
ter compression. The problem, of course, is deciding just which
information is to be compromised. Loss of information in com-
pressing text is typically unacceptable, although simple schemes
such as elimination of every vowel from English text may find ap-
plication somewhere. The situation is different with images and
sound; in those cases, some loss of data may be quite acceptable,
even imperceptible.

In the 1980s, the Joint Photographic Experts Group (JPEG)
was formed to develop standards for still-image compression.
The specification includes both lossless and lossy modes, al-
though the latter is perhaps of the most interest (and is usually
what is meant by “JPEG compression”). G. K. Wallace has a
paper (see Resources 10) discussing the standard in some detail.

This article originally appeared in theLinux Journal, pages 18–24, January
1999. Reprinted with permission ofLinux Journal.

The method in lossy JPEG depends on an important mathe-
matical and physical theme for its compression: local approxima-
tion. The JPEG group took this idea and fine-tuned it with results
gained from studies on the human visual system. The resulting
scheme enjoys wide use, in part because it is an open standard
but mostly because it does well on a large class of images, with
fairly modest resource requirements.

JPEG and wavelet schemes fall under the general category of
transform methods. The development of wavelet techniques has
taken place more recently than the classical method in JPEG, and
is a consequence of the never-ending search for “better” basic
images.

Roughly speaking, the first step in lossy compression schemes
like JPEG and wavelets is to break down an image into a weighted
sequence of simpler, more basic images. At this stage, the image
may be reconstructedexactlyfrom knowledge of the basic images
and their corresponding weights. The effectiveness of the method
depends to a great extent on the choice of the basic images. Once
a set of basic images, orbasis, has been chosen, arbitrary images
can be replaced by equivalent collections of weights. A basic im-
age having a correspondingly large weight is an indication of its
characteristic importance in the overall image. (The assumption
here is that the basis images have beennormalized, so that they
have the same mathematical size.)

The mathematics behind this process is expressed in the lan-
guage of linear algebra. There is considerable mathematical free-
dom in the choice of basis images; however, in practice they are
usually chosen to exhibit features intrinsic to the class of images
of interest. For example, JPEG chooses basic images designed to
reflect certain classical spatial frequencies.

The process of using a basis to resolve an image into a collec-
tion of weights is called atransform. To simplify things, we’ll
consider gray-scale images (color is discussed briefly in the con-
clusion), which can be represented asm×n arrays of integers.
The range of values isn’t important in understanding the math-
ematical ideas, although it is common to restrict values to the
interval[0,255], giving a total of 256 levels of gray. As an exam-
ple, Figure 3(a) shows an image containing 256×256 pixels with
145 shades of gray represented.

Mathematically, any basis for the space ofm×n gray-scale
images must contain exactlymn images—the number of pixels
in anm×n image. Consequently, the transform of anm×n image
will havemnweights. The weights can be conveniently arranged
into anm×n array called thetransformed imageeven though it
isn’t a true image at all.

The transformation process, in itself, is certainly not a com-
pression technique (since the transformed image is the same size
as the original), but it can lead to one. Suppose the basis images
can be chosen so that, for a wide class of images, many of the
weights turn out to be small: for a given image, set these small
weights to zero and use the resulting array of modified weights
to represent it. Since the transform of the image has been modi-
fied, it can be used only to approximate the original. How good
is the approximation? That depends on how good the scheme

(a) 4×4 basic images (b) sample image and 16 partial sums

Figure 1: Image elements for the 2D cosine transform (N= 4),
sample image, and the 16 partial sums.

is for throwing out nonzero weights, that is, on the appropriate-
ness of the basis elements and the number of weights which can
be discarded. JPEG and wavelet methods both employ this type
of process and offer significant compression benefits, often with
minimal impact on the quality of the reproduction. They differ in
the choice of basis images, i.e., in the transform used, and sub-
sequently in the method used to discard small weights. However,
both share the idea of picking a basis that can efficiently represent
an image, often using only a small number of its basic images.

The cosine transform and JPEG

In this section, several examples using thecosine transform
are presented. This transform is used by JPEG, applied to 8×8
portions of an image. AnN×N cosine transform exists for every
N, which exchanges spatial information for frequency informa-
tion. For the caseN = 4, a given 4×4 portion of an image can
be written as a linear combination of the 16 basis images which
appear in Figure 1(a).

The transform provides the coefficients in the linear combi-
nation, allowing approximations or adjustments to the original
image based on frequency content. One possibility is simply to
eliminate certain frequencies, obtaining a kind of partial sum ap-
proximation. The implicit assumption in JPEG, for example, is
that the higher-frequency information in an image tends to be of
less importance to the eye.

The images in Figure 1 can be obtained from the scripts sup-
plied on our web site (see Resources 4) as follows. We’ll use “>”
to denote the prompt printed by Matlab or Octave, but this will
vary by platform.

Define the test image:

> x = round(rand(4)*50) % 4x4 random matrix,
% integer entries in [0,50]

This will display some (random) matrix, perhaps

x =

10 20 10 41
20 10 22 10
40 30 2 12
20 35 20 15

and we can view this “image” with the instructions:

> imagesc(x); % Matlab users
> imagesc(x, 8); % Octave users

1/4 1/2 3/4 Original

Figure 2: Partial sums build up to the original image.

Something similar to the smaller image at the lower left in Figure
1(b) will be displayed. (We chose the 4×4 example for clarity;
however, the viewer in Octave may fail to display it properly.
In this case, either the image can be padded before display or a
larger image can be chosen.) Now ask for the matrix of partial
sums (the larger image in Figure 1(b)):

> imagesc(psumgrid(x)); % Display the 16 partial sums

0 // 1

����
�

5 // 6

����
�

2
��

4

??���
7

����
�

12
��

3

??���
8

����
�

11

??���
13

����
�

9 // 10

??���
14 // 15

The partial sums are built up from the basis
elements in the order shown in the zigzag
sequence. This path through Figure 1(a) is
based on increasing frequency of the basis
elements. Roughly speaking, the artificial
image in Figure 1(b) is the worst kind as far
as JPEG compression is concerned. Since it is random, it will
likely have significant high-frequency terms. We can see these
by performing the discrete cosine transform:

> Tx = dct(x, 4) % 4x4 discrete cosine transform of x

For the example above, this gives the matrix

Tx=

 79.25 9.47 4.75 −11.77
−5.92 −22.36 10.42 1.52

6.25 −19.69 −4.25 −11.60
5.97 8.02 12.73 −15.64

of coefficients used to build the partial sums in Figure 1 from the
basis elements. The top left entry gets special recognition as the
DC coefficient, representing the average gray level; the others are
theAC coefficients, AC0,1 through AC3,3.

The terms in the lower right ofTx correspond to the high-
frequency portion of the image. Notice that even in this “worst
case,” Figure 1 suggests that a fairly good image can be obtained
without using all 16 terms.

The process of approximation by partial sums is applied to a
“real” image in Figure 2, where 1/4, 1/2, and 3/4 of the 1024
terms for a 32×32 image are displayed. These can be generated
with calls of the form:

> x = getpgm(’math4.pgm’); % Get a graymap image
> n = length(x); % n is the number of rows

% in the square image
> y = psum(x, n*n / 2); % y is the partial sum

% using 1/2 of the terms
> imagesc(y); % Display the result

Our approximations retain all of the frequency information corre-
sponding to terms from the zigzag sequence below some selected
threshold value; the remaining higher-frequency information is
discarded. Although this can be considered a special case of a

2

JPEG-like scheme, JPEG allows more sophisticated use of the
frequency information.

JPEG exploits the idea of local approximation for its compres-
sion: 8×8 portions of the complete image are transformed using
the cosine transform, then each block isquantizedby a method
which tends to suppress higher-frequency elements and reduce
the number of bits required for each term. To “recover” the im-
age, a dequantizing step is used, followed by an inverse trans-
form. (We’ve ignored the portion of JPEG which does lossless
compression on the output of the quantizer, but this doesn’t affect
the image quality.) The matrix operations can be diagrammed as:

x
transform−→ Tx

quantize−→ QTx
dequantize−→ Ty

invert−→ y,

In Octave or Matlab, the individual steps can be written:

> x = getpgm(’bird.pgm’); % Get a graymap image
> Tx = dct(x); % Do the 8x8 cosine transform
> QTx = quant(Tx); % Quantize, using 8x8 luminance
> Ty = dequant(QTx); % Dequantize
> y = invdct(Ty); % Recover the image
> imagesc(y); % Display the image

To be precise, a rounding procedure should be done on the matrix
y. In addition, we have ignored the zero-shift specified in the
standard, which affects the quantized DC coefficients.

It should be emphasized that we cannot recover the image
completely—there has been loss of information at the quantiz-
ing stage. It is illustrative to compare the matricesx andy, and
the difference imagex−y for this kind of experiment appears in
Figure 3(f). There is considerable interest in measuring the “loss
of image quality” using some function of these matrices. This
is a difficult problem given the complexity of the human visual
system.

The images in Figure 3 were generated at several “quality”
levels, using software from the Independent JPEG Group (see
Resources 5). The sizes are given in bits per pixel (bpp); i.e., the
number of bits, on average, required to store each of the numbers
in the matrix representation of the image. The sizes for the GIF
and PNG versions are included for reference. (‘bird’ is part of a
proposed collection of standard images at the Waterloo BragZone
(see Resources 11) and has been modified for the purposes of this
article.)

A JPEG enhancement

One troublesome aspect of JPEG-like schemes is the appear-
ance of “blocking artifacts,” the telltale discontinuities between
blocks which often follow aggressive quantizing. The image on
the left in Figure 6 was produced using a scalar multiple of the
suggested luminance quantizer. Clearly visible blocks can be
seen, especially in the “smoother” areas of the image.

JPEG operates on individual 8×8 blocks in the image and
processes them independently. There can be significant loss of
detail information within the individual blocks if the quantizing
is aggressive. The cosine transform used in JPEG has proper-
ties which may (indirectly) help smooth the transition between
neighboring blocks; however, the tracks of the block-by-block

(a) original test image
4.9 bpp GIF, 4.3 bpp PNG

(b) 1.3 bpp JPEG

(c) .74 bpp JPEG (d) .34 bpp JPEG

(e) .16 bpp JPEG (f) difference between (a) and (e)

Figure 3: GIF, PNG, and JPEG compression on ‘bird’.

processing can be apparent when the blocks are reassembled and
the image restored. In this case, it may be desirable to imple-
ment a smoothing scheme as part of the restoration process. This
section considers the back-end smoothing procedure discussed in
the bookJPEG Still Image Data Compression Standard(see Re-
sources 7).

The JPEG decompresser may have only rough estimates about
much of the original frequency information, but it typically has
fairly good estimates of the average level of gray in each origi-
nal 8×8 block (because of the way quantizers are chosen). The
idea is to use the average gray (DC-coefficient) information of its
nearest neighbors to adjust a given block’s (AC-coefficient) fre-
quency information. Figure 4 illustrates the process with a single

3

Figure 4: Original and the “smoothed” superblock.

“superblock” consisting of a center 8×8 image and its nearest
neighbors. The center block in the image on the right has been
“smoothed” by the influence of its nearest neighbors (the sur-
rounding eight 8×8 blocks).

The process on a more complicated image is illustrated in Fig-
ure 5. Here, the image is plotted as a surface where, at each pixel
(y,x), the height of the surface represents the gray value. For a
given 8×8 block, the 3×3 superblock consisting of its nearest
neighbors contains 3282 total entries. The polynomial

p(y,x)=a1x2y2+a2x2y+a3xy2+a4x2+a5xy+a6y2+a7x+a8y+a9

is fit by requiring that the average value over each subblock
matches the average gray estimate (this gives nine equations for
the unknownsa1, . . . ,a9). The polynomial defines a surface over
the center block, which approximates the corresponding portion
of the original surface. Figure 5 shows a surface in (a) and its
polynomial approximation in (b).

The JPEG decompresser can perform the transform procedure
on a polynomial approximation, obtaining a set of predictors for
the frequency information of the original image. The original
estimates passed by the compressor can be adjusted using these
predictors in the hope of reducing the blocking problem.

In Figure 5, the lowest five frequencies were considered for
adjustment by the predictors: zero values passed by the compres-
sor were replaced by the predicted values (subject to a certain
clamping). The procedure applied to an aggressively-quantized
bird image appears in Figure 6. The deblock.m script (see Re-
sources 4) performs the smoothing. The following code was used
to generate the right-hand image:

> x = getpgm(’bird.pgm’); % Get a graymap image
> Tx = dct(x); % Do the 8x8 cosine transform
> QTx = quant(Tx, 4*stdQ); % Quantize, using 4*luminance
> Ty = dequant(QTx); % Dequantize
> Tz = deblock(Ty); % Smooth
> z = invdct(Tz); % Recover the image
> imagesc(z); % Display the image

This kind of smoothing scheme is attractive, in part because
of its simplicity and the fact that it can be used as a back-end pro-
cedure to JPEG (regardless of whether the original file was com-
pressed with this in mind). However, JPEG achieves its rather
impressive compression by discarding information. The smooth-
ing procedure sometimes makes good guesses about the missing
data, but it cannot recover the original information.

0
10

20
30

40
50

0

10

20

30

40

50
−100

−50

0

50

100

(a) original surface
0

10
20

30
40

50

0

20

40

60
−100

−50

0

50

100

(b) polynomial approximation

0
10

20
30

40
50

0

10

20

30

40

50
−100

−50

0

50

100

(c) JPEG on original surface
0

10
20

30
40

50

0

10

20

30

40

50
−100

−50

0

50

100

(d) smoothed version

Figure 5: The smoothing process.

Figure 6: ‘bird’ with aggressive quantizing, then smoothed.

A wavelet example

Features of a signal we wish to examine can guide us in our
quest for the “right” basis vectors. For example, the cosine trans-
form is an offspring of the Fourier transform, the development
of which was, in a sense, a consequence of the search for basic
frequencies with which periodic signals could be resolved.

The Fourier transform is an indispensable tool in the realm of
signal analysis. When used as a compression device, we might
wish it had the additional capacity of being able to highlight lo-
cal frequency information—generally, it doesn’t. The weights
given by the Fourier expansion of a signal may yield information
about the overall strength of the frequencies, but the information
is global. Even if a weight is substantial, it doesn’t normally give
us any clue as to the location of the “time interval” over which
the corresponding frequency is significant.

The interest in and use of wavelet transforms has grown appre-
ciably in recent years since Ingrid Daubechies (see Resources 1)
demonstrated the existence of continuous (and smoother) wave-
lets with compact support. They have found homes as theoretical

4

Figure 7: The4×4 Haar basis elements.

devices in mathematics and physics and as practical tools applied
to a myriad of areas, including the analysis of surfaces, image
editing and querying and, of course, image compression.

In this section, we present an example using theHaar wavelet,
which in one sense is the simplest of wavelets. The 16 basis
elements in Figure 7 form a basis for the set of 4×4 images.
Compare these with the cosine transform elements in Figure 1.
One can begin to see the formation of elements with localized
supports even at this “coarse” resolution level.

The simple (lossy) compression scheme used in the example
is not as elaborate as the quantizing scheme used in JPEG. Ba-
sically, we throw away any weight which is smaller than some
selected threshold value. In Figure 8, we have used this simple
scheme on ‘bird’ at several tolerance settings.

Setting a weight to zero in the transformed image is equivalent
to eliminating the corresponding basis array in the expansion of
the image. This illustrates a certain kind of simple-minded partial
sum (projection) approach to compression, similar to the exam-
ple in Figure 2. Examples of more sophisticated wavelet schemes
can be done with Geoff Davis’ Wavelet Image Compression Con-
struction Kit (see Resources 2). Strang’s article (see Resources
9) provides a short, elementary introduction to wavelets.

Conclusion

The discussion of JPEG and wavelets has centered on gray-
scale images. Color images may assign a red, green and blue
triple (R,G,B) to each pixel, although other choices are possi-
ble. Color specified in terms of brightness, hue and saturation,
known as luminance-chrominance representations, may be desir-
able from a compression viewpoint, since the human visual sys-
tem is more sensitive to errors in the luminance component than
in chrominance (see Resources 7). Given a color representation,
JPEG and wavelet schemes can be applied to each of the three
planes.

This article was adapted from a recent book (see Resources
3). More information, such as details of the smoothing proce-
dure, along with the scripts and complete documentation may be
obtained from our web site (see Resources 4).

Information on Matlab (for GNU/Linux and other platforms)
is available through http://www.mathworks.com/. Octave is de-
veloped by John W. Eaton with contributions from many folks,
and is distributed under the GNU General Public License. Com-

(a) original, 97% nonzero (b) 21% nonzero

(c) 11% nonzero (d) 7% nonzero

(e) 4% nonzero (f) 1.6% nonzero

Figure 8: ‘bird’ (256×256) using Haar wavelet transform with
simple thresholding. In (b)–(f), the percentage indicates the
number of nonzero coefficients in the transformed array after a
threshold condition has been applied.

plete sources and ready-to-run executables for several platforms
are available via anonymous ftp from ftp.che.wisc.edu in the oc-
tave directory. An introduction to Octave appeared in a previous
Linux Journalarticle (see Resources 6) and on-line information
can be found via http://www.che.wisc.edu/octave/.

Resources

1. “Orthonormal bases of compactly supported wavelets”, In-
grid Daubechies,Communications on Pure and Applied
Mathematics, 41(7):909–996, October 1988.

5

2. Wavelet Image Compression Construction Kit, Geoff
Davis, http://www.cs.dartmouth.edu/˜gdavis/.

3. Introduction to Information Theory and Data Compres-
sion, D. Hankerson, G. A. Harris and P. D. Johnson Jr.,
CRC Press, 1998.

4. JPEGtool User’s Guide, documentation and software
available via http://www.dms.auburn.edu/compression/,
1997.

5. Independent JPEG Group (IJG): JPEG software release 6 is
available electronically from ftp://ftp.uu.net/graphics/jpeg,
August 1995. E-mail contact: jpeg-info@uunet.uu.net.

6. “Octave: a Free High-Level Language for Mathematics”,
Malcolm Murphy,Linux Journal, July 1997.

7. JPEG Still Image Data Compression Standard, W.B. Pen-
nebaker and J.L. Mitchell, Van Nostrand Reinhold, New
York, 1992.

8. “History of the Portable Network Graphics (PNG) For-
mat”, Greg Roelofs,Linux Journal, April 1997.

9. “Wavelets”,American Scientist, Gilbert Strang, May/June
1994.

10. “The JPEG Still Picture Compression Standard”, Gregory
K. Wallace,Communications of the ACM, April 1991. A
revised version is available with the IJG’s sources (see 5).

11. The Waterloo Fractal Compression Project,
http://links.uwaterloo.ca/. Contains a pointer to the
“Waterloo BragZone” which introduces a test suite and
includes test results from various coders.

Darrel Hankerson and Greg A. Harris joined the faculty at Auburn Uni-
versity after completing degrees in mathematics at the University of
Nebraska-Lincoln and the University of Utah, respectively. Along with
Peter D. Johnson, Jr., they are authors ofIntroduction to Information
Theory and Data Compression, CRC Press, 1997.

6

