
Tail-Recursive Stack Disciplines for an Interpreter

Richard A. Kelsey

NEC Research Institute

kelsey@research.nj.nec.com

8 March 1993

Abstract

Many languages, including Scheme, ML, and Haskell, require that their

implementations support tail-recursive calls to arbitrary depth. This re-

quirement means that a traditional stack discipline cannot be used for these

languages. This paper examines several di�erent methods of implement-

ing proper tail recursion in a stack-based interpeter, including passing ar-

guments in a heap, copying arguments to tail-recursive calls, and garbage

collecting the stack. Benchmark timings and other run-time statistics are

used to compare the di�erent methods. The results show that using a stack

is a good idea, and that the overhead of the interpreter largely overshadows

the di�erences in performance of the various stack disciplines.

This is a slightly enhanced version of Technical Report NU-CCS-93-03, Col-

lege of Computer Science, Northeastern University, 1992.

1 The Problem

A programming language implementation is properly tail recursive if un-

bounded iterative computations that are expressed recursively can be ex-

ecuted in constant space. Implementations of languages such as Scheme

[Rees 86], ML [Milner 88], and Haskell [Hudak 90] are required to be tail

recursive.

These languages also require that some lexical environments have in-

de�nite extent. That is, arguments passed to a procedure may need to be

preserved until long after the procedure has returned. Similarly, in Scheme,

continuations also may have inde�nite extent. A continuation is all of the

information that is saved across a procedure call and used to restart the

procedure's caller once the procedure returns. In Scheme procedure invoca-

tions may return more than once, so continuations may need to be saved for

later use.

1

Why do I, normally a compiler hacker, want to use interpreters to imple-

ment such languages? There are several advantages of an interpreter over

a native-code compiler. Interpreters are much more portable and usually

provide much better debugging information for the user. The interpreter

I used for the experiments reported here is a C program that can be run

without modi�cation on a large number of di�erent types of machines. An

interpreter usually does a minimal amount of processing of a source program

before execution. This makes it easy to relate an interpreter's internal state

to the source program in a way that is comprehensible to the user. Inter-

preters should be simple, fast, and provide good debugging information for

the user. I will judge the stack disciplines on how well they support these

goals.

The best stack discipline might be not to have a stack at all. It is advo-

cated in [Appel 87] that with a very e�cient garbage collector and a good

compiler, heaps may be more e�cient than stacks. With an interpreter this

appears not to be the case. Making e�cient use of a heap for procedure

calls requires more sophisticated compilation than is usual for interpreters.

When not using a stack, and with an e�cient garbage collector, the bench-

marks used in this paper ran 13% more slowly than the slowest of the stack

implementations, and 27% more slowly than the fastest.

2 Why a traditional stack won't work

Stacks are the standard way to implement continuations and lexical envi-

ronments [Aho 86]. To make a procedure call, the arguments are pushed on

the stack followed by the saved program counter, environment pointer and

whatever else will be needed once the procedure returns. In the called pro-

cedure, the pushed arguments become the new lexical environment and the

saved state of the caller is the current continuation. The environment and

continuation together are often refered to as an `activation record'. When

the procedure returns, the environment and the continuation are removed

from the stack. Figure 1 shows how such a stack might look just as control

transfers to the body of procedure G and again at the beginning of F in the

following Scheme example:

(DEFINE FOO

(LAMBDA (A D)

(F A B (G C D))))

The interpreter is assumed to have three registers: a program counter

PC; the current environment *ENV*; and the current continuation *CONT*.

All three of these are saved when a new continuation is created. The environ-

ment includes a pointer to the called procedure's saved lexical environment

to be used for reaching variables bound in outer lexical contours.

2

Size 5

PC

CONT

ENV

Size 3

Access Link

D

C

B

A

PC

CONT

ENV

Size 3

Access Link

D

A

*CONT**ENV*

Continuation
to call to G

Environment
for G

Continuation

Environment Access Link

Size 3

Size ?

D

A

ENV

CONT

PC

Size ?

A

B

(G C D)

Access Link

Size 4

ENV

CONT

PC

Size 3

ENV *CONT*

Continuation
to call to F

Environment
for F

Continuation

Environment

(includes

the first two
arguments to F)

to call to FOO

for FOO

to call to FOO

for FOO

Figure 1: Examples of traditional stack usage

The standard stack discipline is not an obstacle to implementing long-

lived environments or continuations. In most cases, the environment and

continuation passed to a procedure are removed from the stack when the

procedure returns. If they need to be preserved they may be copied to a

heap [Clinger 88]. Copying requires that each environment and continua-

tion include an indication of its size. For continuations, this may be either

unnecessary, if continuations need not be preserved, or it may be found at

a known o�set from the saved program counter and not take up any space

on the stack.

The di�culty with the standard stack discipline is that it does not im-

plement proper tail recursion. When control transfers to the body of F the

stack contains the environment and the continuation of the call to FOO. But

since the call to F is tail recursive, these do not contain any necessary in-

formation. The values in the environment will never be used again. The

continuation will just remove itself and the environment from the stack and

return to its saved value of *CONT*. After a series of such calls the stack

may over
ow, even though it contains very little useful data. The traditional

stack discipline eventually recovers the stack space used for a procedure call,

but in the case of tail-recursive loops, it recovers it too late.

Over
owing the stack in this fashion puts a limit on the number of times

a recursively expressed iterative loop can execute. This is not a problem in

3

languages such as C, Pascal, or FORTRAN which include various forms of

iterative control constructs. For languages that provide recursion, but not

direct iteration, environments and continuations must be implemented in

some other fashion.

Dealing with the continuations is easy. Simply do not make a new con-

tinuation for a tail-recursive call, and reuse the current continuation instead.

In the example, the call to F does not require a new continuation and could

use the one passed to FOO. The real problem is the environments. A tail-

recursive call simultaneously creates a new environment and makes the old

one obsolete. On a stack, the storage used for the old environment is lost,

as it lies beneath the new environment.

3 Methods for implementing proper tail recur-

sion

I will consider three general approaches to implementing proper tail recur-

sion on a stack.

1. Use the heap instead of a stack

One obvious solution, since there has to be a heap for some environ-

ments and continuations, is just to put the environments there in the �rst

place. Unused heap storage will eventually be reclaimed, which allows for

an unbounded number of tail-recursive calls. [Appel 87] advocates placing

all environments, as well as all continuations, in the heap.

2. Overwrite the environment during tail-recursive calls

It is also possible to implement proper tail recursion and still use a stack

for the environments. If no new continuation were created for the call to F

and its arguments overwrote the environment of FOO, the call could be made

with no unnecessary data on the stack. Any number of such calls could be

made without over
owing.

There are two possibilities here. The current environment could be incre-

mentally overwritten as the new arguments are produced, as in [Kranz 88,

Hanson 90], or the arguments could be stored in temporary locations and

then copied on top of the current environment once they are all available,

also in [Hanson 90, McDermott 80]. The �rst is usually more e�cient, as

a clever implementation can get away with moving fewer values, and the

second is clearly simpler, as data dependencies between the values in the

environment and the arguments can be ignored. In the worst case, where

every element of the environment is needed to compute each argument, the

�rst method degenerates to the second.

There is a di�culty with incrementally overwriting the current environ-

ment that makes it unsuitable for an interpreter. If an error occurs during

the evaluation of an argument, the calling procedure's environment will be

partially overwritten by the arguments to the called procedure. This makes

4

Access Link

Size 3

D

C

Size 5

PC

CONT

ENV

B

A

Size 3

Access Link

D

A

Size ?

PC

CONT

ENV

ENV *CONT*

Environment
for G

Continaution
for G (including
the first two
arguments to F)

Environment

Continuation

Access Link

Size 3

A

B

(G C D)

D

A

Size ?

PC

CONT

ENV

ENV *CONT*

Arguments
to F

Environment

Continuation

Environment
for F

Continuation

ENV *CONT*

Access Link

Size 4

(G C D)

B

A

Size ?

PC

CONT

ENV

for FOO For FOO

to call to FOO to call to FOO to call to FOO
now used for F

Figure 2: The stack with environments and continuations switched: just

before jumping to G; after G returns; and after overwriting the environment

of FOO

providing coherent debugging information to the user very di�cult. The

goals of simplicity and maximal debugging information become mutually

exclusive. Delaying the overwriting until all of the arguments have been

produced avoids this problem, so from here on I will only consider that

alternative.

To avoid complications, the stack usage would have to be changed so

that continuations to calls were pushed before the arguments, rather than

afterwards. Figure 2 shows how such a stack would appear at various times

during the execution of the example. A similar calling sequence is presented

in [Steele 77]. Otherwise a procedure would sometimes be called with its

arguments on the top of the stack, while at other times there would be a

continuation above the arguments.

3. Garbage collect the stack

Another possibility is to wait until the stack is full and then reclaim any

unused space. The stack can be treated as a constrained heap, containing

only environments and continuations. With this method many environments

can be reclaimed without cost when procedures return. The additional cost

5

of garbage collection matters only in the relatively rare instance of the stack

actually �lling up.

Garbage collecting the stack is simple as pointers between continuations

and environments follow a very regular pattern. There are at most three

pointers into the stack from the outside: the stack pointer, the control link,

and the current environment. In a highly optimized implementation there

may only be the stack pointer, with the other two pointers being implicit.

Continuations contain a control link which points into the stack, and a saved

environment pointer that may or may not point into the stack. Again, in a

complex implementation the control link may be implicit. The access link of

environments on the stack may also point into the stack. There are no other

pointers into the stack. Control links always point to continuations, and

saved environment pointers and access links always point to environments.

Thus the stack garbage collector never needs to check the type of an object.

There are at least three strategies for a stack garbage collector. The

stack could be compacted in place, it could be copied to another stack, or

it could be copied into a heap.

The �rst possibility, compacting the stack in place, can be implemented

using a pointer reversal algorithm as long as the compiler maintain certain

invariants. The requirement is that pointers to environments on the stack

must point to the next highest used environment; they cannot skip over any

environment that is still in use. This is not di�cult for the compiler to do

{ indeed generating correct code that violates this requires some program

analysis { but it does eliminate certain potential optimizations.

The second method, copying the live data into a second stack, does not

restrict the compiler as the additional space allows the use of forwarding

pointers. It could result in thrashing if a program pushed a large quantity of

live data and then repeatedly caused the stack to over
ow. A system similar

to that described in [Hieb 90] for minimizing the cost of saving continuations

could be used to reduce or avoid copying data multiple times.

The third possibility, copying the live data into a heap, reduces the pos-

sibility of thrashing. It is also simpler as it avoids the necessity of preserving

the relative positions of the environments and continuations. There is the

additional overhead of copying continuations back onto the stack as they are

needed (the environments might as well remain in the heap). Checking for

stack under
ow during procedure returns can be avoided by placing a spe-

cial continuation at the base of the stack which copies the next continuation

from the heap onto the stack. Locality considerations might keep the cost

of copying fairly low, as argued in [Clinger 88]. This is certainly the most

attractive strategy for languages that already require a heap.

6

4 Saving Environments

All of the languages which were given as examples of properly tail-recursive

languages are also lexically scoped and allow procedures to escape upwards.

This means that a local environment may be needed long after the return

of the call that created it. When it is determined that an environment may

outlive the call that created it, the environment can be preserved by a sort

of sub-garbage-collection, which migrates the environment (and its superior

environments if they are also on the stack) from the stack to the heap. The

decision to save an environment on the heap may be made at compile time

or by a check at run time. The same restrictions on pointers into the stack

that make the full garbage collection simple are useful here as well. The

cost of migrating an environment to the heap is linear in the size of the

environment and the number of continuations that reference it; the size of

the rest of the stack does not matter.

Compile-time analysis and run-time checks can both be used to reduce

the number of environments that are migrated to the heap, as reported in

[McDermott 80, Kranz 88, Hanson 90] and elsewhere. The ability to garbage

collect the stack increases the number of environments that can be allocated

on the stack, even for a compiler that normally overwrites the current lexical

environment when making tail-recursive calls. Environments that would not

be allowed on the stack according to a strict interpretation of proper tail

recursion can be stack-allocated and migrated in the unlikely event of a stack

over
ow. Using a compiler that allows destructive reuse of environments will

greatly decrease the frequency of the already rare stack over
ows.

5 Analysis

The three possibilities are: put all environments in the heap, move the

arguments to tail-recursive calls, or garbage-collect the stack. What are

the relative costs? For brevity, I will call the three disciplines heap-envs,

move-args, and stack-gc. A fourth option, not to use a stack at all, will

be refered to as no-stack.

Cost of making continuations

Continuations are identical in the three stack disciplines, with one mi-

nor exception. In heap-envs the stack contains only continuations, since

the environments are all in the heap. With no environments to interfere,

the current continuation will always be found on the top of the stack. The

CONT register can be eliminated, and no longer needs to be saved in con-

tinuations. This saves some work when continuations are created, and again

when procedures return.

Continuations have an additional cost for no-stack because they require

copying values into and out of the heap. Avoiding this copying would require

7

signi�gantly more complex preprocessing of the user's program.

Cost of procedure calls

Here I need to distinguish between two possible implementations of

heap-envs. The sequence for creating a new environment for a call may be

either (method A)

1. Create a new heap environment

2. Put the arguments in the environment as they are created

or (method B)

1. Push all the arguments on the stack

2. Create a new heap environment

3. Copy the arguments from the stack to the environment

Method A does not require copying each argument, but it does require a new

register to hold the new environment while the arguments are being evalu-

ated. This register must be saved in continuations. In a sense it replaces

the *CONT* register. The other methods need the *CONT* register because

an environment may be on the top of the stack, while Method A requires

a *NEW-ENV* register because the new environment cannot be on top of the

stack.

Method A does not work for Scheme. In Scheme, use of call-with-

current-continuation may cause procedure calls to return more than

once. If the environment were created before the arguments were gener-

ated, and one of the arguments was produced by a call that returned twice,

there would be no place to put the second version of the argument. It cannot

replace the �rst value in the environment as both values may be needed by

the program. With Method B, the code that created the environment for

the call would be executed twice, creating two di�erent environments.

no-stack and heap-envs create all environments in the heap, with

method B of heap-envs also requiring that every argument be moved once.

move-args and stack-gc create all environments on the stack, with move-

args requiring that every argument to a tail recursive call be moved once.

For move-args and stack-gc, when an environment needs to be preserved

for future use, that environment must be copied into the heap. In no-stack

and heap-envs this is unnecessary.

Garbage collection costs

heap-envs puts environments in the heap that the other methods leave

on the stack. no-stack puts everything in the heap. These will result in

more frequent heap garbage collections.

The stack-gc method will cause occasional stack garbage collections.

These may either be in place, or operate by copying all of the currently live

8

no heap move stack

stack env args gc Description

bubblesort 2.44 2.15 1.99 1.83 bubble sort on 200 integers

quicksort 1.97 1.74 1.70 1.64 quicksort on 1500 integers

tak 2.94 2.38 2.00 1.98 Takeuchi

tak2 1.73 1.44 1.24 1.20 " with inlined call to not

cpstak 3.30 2.93 3.10 2.92 Takeuchi in CPS

cpstak2 2.07 1.97 2.31 2.14 " with inlined call to not

�b 2.82 2.40 2.15 2.15 Recursive Fibonnaci

towers 1.90 1.57 1.31 1.29 Towers of Hanoi

matrix-mult 4.46 3.91 3.43 3.36 Integer matrix multiply

matrix-mult2 2.08 2.06 2.03 1.99 " with inlined procedures

length 1.05 1.01 0.91 0.87 Length of a list

Figure 3: Benchmark times in seconds running a DEC5000 workstation

data on the stack into the heap. The second method is equivalent to preserv-

ing the current continuation for later use. This is exactly what is required

to implement the Scheme procedure call-with-current-continuation, so

for Scheme the stack garbage collector does not involve any additional code.

The bottom line

There is no analytical bottom line. The relative costs of the di�er-

ent disciplines depend on the behavior of the executed code. If the stack

never over
ows and no environments need to be preserved, then stack-gc

is clearly the fastest, as it would not copy any arguments or have any other

overhead. If every environment needed to be preserved, then heap-envs

would be fastest, as it would not have to copy any arguments (for the �rst

method). move-args will likely be slower than stack-gc, because of the

additional argument copying it involves, but it is simpler than stack-gc,

and might be worthwhile if the di�erence in speed were not much. Unless the

code makes frequent use of call-with-current-continuation, no-stack

is likely to be slow due to increased garbage collection overhead and higher

costs for continuations.

6 Experimental Results

I have implemented the three stack disciplines, along with a heap-only imple-

mentation, in Scheme48, which is based on a byte-code interpreter. A very

simple compiler, which performs almost no optimizations, is used to com-

pile Scheme programs into byte-codes. Scheme48 runs these benchmarks at

35% of the speed of Chez Scheme, a commercial Scheme implementation

9

Conts Envs Closed Tail

words # words # words # words

bubblesort 50 201 111 263 1 1 41 41

quicksort 32 130 102 243 22 50 54 61

tak 111 493 127 382 0 0 16 48

tak2 48 239 64 254 0 0 16 48

cpstak 64 254 175 541 48 143 111 302

cpstak2 0 0 111 413 48 143 111 302

�b 93 417 93 185 0 0 0 0

towers 57 254 90 254 0 0 8 25

matrix-mult 85 477 143 509 3 6 58 86

matrix-mult2 1 6 31 90 3 6 29 57

length 0 0 50 150 0 0 50 100

Figure 4: The number of and total number of words used in environments,

closed-over environments, and tail-recursive calls while running the bench-

marks; all numbers are in 1000s

that uses a native code compiler (this number is somewhat unfair as the two

systems were not running in identical modes; it does show that Scheme48 is

not unreasonably slow).

The results of running several benchmarks are shown in �gures 3 and 4.

With the exception of length and cpstak, the benchmarks were taken from

[Kranz 88] and modi�ed to run in Scheme instead of T. length is a simple

loop in which all of the calls are tail recursive. cpstak was written by Will

Clinger.

The benchmarks were run with a heap size of one megabyte and a 40,000

byte stack. All methods required heap garbage collections for the two cpstak

benchmarks. Only no-stack and heap-envs caused heap garbage collec-

tions for the other benchmarks. These garbage collections accounted for

no more than �ve percent of the time used, and usually much less. Live

data accounted for less than two percent of the total heap space. With

more live data or a slower garbage collector the relative runtimes could be

very di�erent. For example, in running bubblesort, no-stack used a to-

tal of 2.5 megabytes of heap space, while move-args and stack-gc used

8K bytes. Only cpstak and cpstak2 caused stack-gc to over
ow the stack.

The statistics require a little explanation. A word is the space required

to store one pointer. The word totals for continuations, environments and

closed-over environments do not include the space needed to store the sizes

of the objects. The word totals for environments do include the space taken

up by each environment's pointer to its lexically superior environment. The

10

number of environments is equal to the number of calls with at least one

argument. For example, the �gures for the length benchmark show that

50,000 calls were made, each of which passed two arguments (two argu-

ments plus the pointer to the superior gives 150,000 words). There were

50,000 tail-recursive calls, so every call was tail recursive, and indeed had

two arguments, as the tail-recursive calls totalled 100,000 arguments.

Only on cpstak2 is stack-gc slower than another method. move-

args is almost as fast, running only three percent slower. heap-envs is

eleven percent slower than stack-gc. Not using a stack at all is twenty-

six percent slower than stack-gc. These di�erences make sense given the

numbers in �gure 4. Very few of the environments need to be preserved (the

`Closed' column), and the majority of arguments are to non-tail-recursive

calls. heap-envs was expected to prevail only if many environments had

to be preserved, while stack-gc and move-args are identical except for

move-args copying the arguments to tail-recursive calls. With relatively

few tail-recursive calls and almost no preserved environments, heap-envs

loses and stack-gc and move-args tie.

7 Comparison with other work

The methods of implementing tail recursion with a stack that I have de-

scribed here have been discussed in [Hanson 90, McDermott 80, Appel 87,

Kranz 88], usually in the context of a native-code compiler. Interpreters re-

quire a di�erent set of priorities. Simple translation and preserving debug-

ging information are much more important than with native-code compilers.

The inherent ine�ciency of interpretation a�ects the relative e�ciencies of

di�erent techniques. For example, much of the concern in [Hanson 90] and

[Kranz 88] is with trying to get the maximum number of environments on

the stack. In the benchmarks in this paper, the e�ects of not putting any

environments on the stack are not all that great.

In [Clinger 88] di�erent stack implementations are compared in terms

of implementing continuations with unlimited extent. In terms of imple-

menting explicit continutions, the no-stack version here corresponds to their

`garbage collection strategy', and the others are all variations on their `in-

cremental stack/heap strategy'. None of the benchmarks in this paper made

use of explicit continuations.

8 Conclusion

The above results are disappointing. The original title of this paper was

Stack Garbage Collection, and for most code the stack garbage collector

does greatly reduce the amount of data that the interpreter copies when

performing procedure calls. Unfortunately the benchmarks show that this

11

advantage is overshadowed by the relative ine�ciency of the Scheme48's

byte-code interpreter.

When compiled for a MIPS microprocessor, which uses a RISC architec-

ture, byte-code dispatch takes �ve machine instructions, and the 17 byte-

codes executed in the loop of the length benchmark average 8.3 machine

instructions apiece. The argument copying that accounts for the di�er-

ences is done by tight loops, using only a few instructions for every value

copied. One iteration of the tail-recursive loop in length, which involves

one procedure call with two arguments, requires around 180 instructions.

The additional overhead, with heap-envs or move-args, of moving the

two arguments does not matter enormously.

On the positive side, the benchmarks do show the advantage of using

some kind of stack. For Scheme, the presence of call-with-current-

continuation requires code to move the stack into the heap, and that same

code can be used for implementing proper tail recursion. For other lan-

guages, move-args is probably the best choice: it is nearly as fast, requires

little code to implement, and does not put the burden on the heap garbage

collector that move-args does.

Acknowledgements

Scheme48 was written by Jonathan Rees and myself. Jonathan Rees and

Mitch Wand provided many helpful comments on earlier drafts of this paper.

12

References

[Aho 86] Alfred V. Aho, Ravi Sethi, and Je�ery D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison Wesley, 1986.

[Appel 87] Andrew W. Appel. Garbage collection can be faster than stack

allocation. In Information Processing Letters 25, 1987.

[Clinger 88] William D Clinger, Anne H Hartheimer, and Eric M Ost. Im-

plementation strategies for continuations. In Proceedings Record of the

1988 ACM Symposium on Lisp and Functional Programming, ACM,

1988.

[Hanson 90] Chris Hanson. E�cient stack allocation for tail recursive lan-

guages. In Proceedings of the 1990 ACM Symposium on Lisp and Func-

tional Programming, ACM, 1990.

[Hudak 90] P. Hudak and P. Wadler (editors). Report on the program-

ming language Haskell. Technical Report YALEU/DCS/TR-777, De-

partment of Computer Science, Yale University, 1990.

[Hieb 90] Robert Hieb, R. Kent Dybvig and Carl Bruggeman. Representing

Control in the Presence of First-Class Continuations. In Proceddings of

the ACM SIGPLAN '90 Conference on Programming Language Design

and Implementation, ACM, 1990.

[Kranz 88] David Andrew Kranz. ORBIT: An optimizing compiler for

Scheme. Technical Report YALEU/DCS/TR-632, Department of Com-

puter Science, Yale University, 1988.

[McDermott 80] Drew McDermott. An e�cient environment allocation

scheme in an interpreter for a lexically-scoped Lisp. In Proceedings of

the 1980 Lisp Conference, ACM, 1980

[Milner 88] R. Milner. A proposal for Standard ML. In Proceedings of the

1984 ACM Symposium on Lisp and Functional Programming, ACM,

1984.

[Rees 86] Jonathan A. Rees and William Clinger, editors. Revised3 report

on the algorithmic language Scheme. SIGPLAN Notices 21(12), pages

37{79, 1986.

[Steele 77] Guy Lewis Steele Jr. Debunking the \expensive procedure call"

myth. AI Memo 443, Arti�cial Intellegence Laboratory, Massachusetts

Institute of Technology, 1977.

13

