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Abstract

Most designers of object-based languages adopt a reference model of variables without explicit

justi�cation, despite its wide ranging consequences. This paper argues that the traditional container

model of variables is more e�cient than the reference model, nearly as 
exible, and more appropriate

to parallel and distributed systems. The topics addressed are object lifetime and its implications

for storage management, dynamic typing and its implications for object representation, aliasing

and its implications for interference between operations, parameter passing and its implications for

communication, and sharing and its implications for contention. We present our experience with

the container model in a prototype parallel language. Neither model is always better than the

other, and the choice of model should not be left to default.
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1 Introduction

A model of variables de�nes the nature of the information associated with a variable, and the

manner in which that information may change. Since variables are a fundamental part of any

programming language, the choice of a variable model a�ects the fundamental character of a pro-

gramming language. In most procedure-based languages (e.g. Fortran and Algol) variables contain

copies of values. We call this the container model of variables. In contrast, in most object-based

languages (e.g. Smalltalk and Actors) variables refer to other objects. We call this the reference

model of variables. (x1.1{1.3 elaborate these de�nitions.)

Programmers generally associate the container model with statically typed languages and fast

execution, and the reference model with dynamically typed languages and 
exible programming.

The reference model is so pervasive in the object community that language designers often fail

to mention their justi�cation for adopting the model. In our view, the choice between these two

models of variables is not so simple and deserves more explicit treatment by language designers. In

particular, we argue that the container model will always be more e�cient than the reference model,

can be nearly as expressive, and is more appropriate to parallel and distributed systems. The topics

we address are object lifetime and its implications for storage management (x2), dynamic typing and

its implications for object representation (x3), aliasing and its implications for interference between

operations (x4), parameter passing and its implications for communication (x5), and sharing and

its implications for contention (x6). With our conclusions (x7), we present our experience with the

container model in a prototype parallel language. We are not saying that designers of object-based

languages should always choose the container model over the reference model, just that they should

carefully consider the choice.

1.1 The Reference Model

In the reference model of variables, a variable refers to (points to) an object. (Variables may also

be nil, referring to no object.) For example, �gure 1 shows the relationship between objects and

variables in the reference model. Two distinct variables may refer to the same object. In �gure 1,
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Figure 1: Reference Model of Variables

the two bounds variables refer to the same object, so changes to the lower variable is visible from

the objects referred to by both iter0 and iter1.
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Since variables may only hold references, for consistency parameters and results of expressions

must also refer to objects. Parameters and results by themselves will not change the state of an

objects. In order for objects to change state, they must change (assign to) one of their variables.

Assignment under the reference model consists of making a variable refer to an object. In our

examples, we use the notation variable <- expression to indicate the binding of a variable to the

result of an expression. We also use variable.operation(arguments) to indicate the invocation of an

operation on an object. (Expressions bind left-to-right, as in C++.) For example, in the expression

x <- y.add(z), y and z are variables referring to integers, the result of the addition is a reference

to another integer, and x is made to refer to that integer. Note that assignment is always possible,

regardless of the objects referenced. Assignment is not a data operation, and may be implemented

independently of any objects.

The reference model avoids an \in�nite regression" in its pattern of objects being composed

of references to other objects by grounding references in primitive objects, such as the integer 3.

Programming systems must recognize these objects and implement them as something other than

a set of references.

Since variables are not themselves objects, they cannot be referenced externally to an ob-

ject's methods, and any changes to a variable must be done within an object method. This

has implications for objects providing data structuring services. In particular, we must ask ar-

rays to change their elements. For example, the Pascal statement a[i]:=b[i] would translate

to a.put(i,b.get(i)) where put and get correspond to the Smalltalk operations. Fortunately,

the need for put only extends to one level of array access because outer data structures may sim-

ply return references to inner structures. For example, the Pascal statement a[i][j]:=b[i][j]

translates to

a.get(i).put(j,b.get(i).get(j))

The reference model model places emphasis on object identity, and hence is appropriate to

problems where identity is important, such as simulations of railroad networks.

1.2 The Strict Container Model

In the container model of variables, a variable contains an object. (Variables may also be nil,

containing no object.) Figure 2 illustrates the relationship between objects and variables in the

container model. Two distinct variables cannot refer to the same storage, as in the two bounds

iter0: bounds: lower: 2

upper: 5

offset: 0

stride: 2

iter1: bounds: lower: 2

upper: 5

offset: 1

stride: 2

Figure 2: Container Model of Variables

variables in �gure 2. Changing the lower variable in iter0 will not a�ect the value in iter1.
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Since variables hold entire objects, for consistency parameters and results of expressions must

also be entire objects. When using a variable in an expression, we need access to its state, or

value. Unlike in the reference model, objects in the container model must support a copy operation

that permits us to obtain the current value of the object. The value is in essence an object

unbound to any variable. Thus, given the variables y, we can obtain its value (another object

with identical state) with the expression y.copy(), and use the object's value in an addition with

x.add(y.copy()). This copy operation is implicit in most procedural programming languages via

rvalue interpretation, with Bliss [Wulf et al., 1975] a notable exception. In the remainder of this

paper, we explicitly mark the copy operation, but due to its frequency, use the shorthand # in

place of .copy(). The addition example becomes x.add(y#). Note that objects for which a copy

operation does not make sense (e.g. semaphores) need not support a copy operation.

Parameters and results by themselves will not change the state of an object. In order to change

the state of an object, we must assign variables. Unlike in the reference model, there are two types

of assignment in the container model:

binding: The binding assignment binds a variable to an object. This form is needed when changing

the type of a variable. For example, in the expression x <- y#, the result of the copy is an

object and x is bound to that object. (The expression x <- y is not legal because y is not a

value.) Note that binding assignment is always possible, regardless of the objects referenced.

Binding assignment is not a data operation, and may be implemented independently of the

types of objects. The binding assignment is what gives the container model the 
exibility to

implement dynamic structures and types.

state-changing: Assignment may also mean a request to an object to change its state to match

a given object. This form is useful when the type of the variables does not change. For

example, in the expression x.assign(y#), the result of the copy is an object as before, but

it is then a parameter to the assignment operation on the object contained in the variable x.

This means that assignment is a data operation. For those types which make sense, the type

must provide a state-changing assignment operation. This form of assignment is common in

procedural languages.

A programming language can usefully provide both forms of assignment. For example, in Natasha

[Crowl, 1991] the de�nition of a variable includes a binding assignment, while subsequent assign-

ments must use state-changing data operations.

In the container model, objects as containers grounds itself in primitive objects, recognized and

implemented by the language processor.

Since references do not exist in a strict container model, data structuring objects cannot

provide references to their components. This means, for example, that we must ask arrays

to ask their elements to change state. The Pascal statement a[i]:=b[i] would translate to

a.put(i#,b.get(i#)), which is the same as in the reference model except for the copy opera-

tion. Unlike the reference model, outer data structures cannot return references to inner structures

and access to inner structures is more complex than in the reference model. For example, the

Pascal statement a[i][j]:=b[i][j] might translate to

a.put(i#,a.get(i#).put(j#,b.get(i#).get(j#)))
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which involves a substantial amount of data copying. An alternative is to make the outer structure

aware of the type and operations of elements, and provide explicit operations to pass data through.

The corresponding code might be

a.put2(i#,j#,b.get2(i#,j#)).

This awareness of element type and operations introduces undue complexity into the de�nition of

data structuring objects. A better alternative is to have data structing objects provide an opera-

tion that applies another operation to its elements. With such an operation, the two-dimensional

assignment becomes

a.atdo(i#,put(j#,(b.atdo(i#,get(j#)))))

In this example, get(j#) is not a function call, but is an operation name bound to a set of

parameters, which when applied to an object will result in method invocation. With appropriate

compiler support for in-lining operations, this operation passing approach can be as e�cient as

normal array access.

The container model places emphasis on object state, and hence is appropriate to problems

where state is important but identity is not, such as physical simulations.

1.3 The Reference-Augmented Container Model

The reference model can directly represent an arbitrary graph of object relationships with its vari-

ables. On the other hand, the variables of the strict container model can only represent tree-

structured (hierarchical) relationships. There are two solutions to this problem, the �rst is to re-

quire programmers to emulate references with indices into arrays, as they currently do in Fortran.

The second solution is to introduce explicit reference values. With reference values, programmers

may specify non-hierarchical relationships directly.

The presence of reference values permits data structuring objects to act much like they do in

standard procedural languages. The Pascal statement a[i]:=b[i] would translate to

a.index(i#).assign(b.index(i#)#)

The use of references extends to multiple levels. In the two-dimensional example

a[i][j]:=b[i][j], the operations are

a.index(i#).index(j#).assign(b.index(i#).index(j#)#)

which is exactly the code that a Pascal compiler generates. Note that this sequence of operations

does not require sophisticated compiler support to execute e�ciently.

The reference-augmented container model is appropriate when state is most important, but

identity may also be important. It may also be appropriate when compiler support is minimal.
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1.4 The C++ Variable Model

Variables in C++ are clearly containers for the language's primitive types [Ellis and Stroustrup,

1990]. Since C++ also provides pointers, we could infer that C++ provides a reference-augmented

container model. However, C++ facilities for dynamic typing and virtual functions only work when

using pointers, so programmers must restrict themselves to pointers to all objects that need the

full expressiveness of the language. Practically, C++ provides a reference model of variables for

some objects and the reference-augmented container model for other objects.

2 Object Lifetime and Storage Management

Under the reference model, references to an object may spread freely. Because objects are often

extensively shared, the programming system cannot reasonably delete objects until they are no

longer referenced, and the lifetimes of objects cannot always be associated with the lifetimes of

the variables that reference them. The indeterminate lifetime of objects implies dynamic heap

allocation and asynchronous garbage collection of objects, which can be expensive. When compiler

analysis can associate the lifetime of an object with the lifetime of a variable [Ruggeri and Murtagh,

1988], or with the lifetime of another object [Hutchinson, 1987; Hayes, 1991], the compiler can insert

explicit deallocation operations and improve performance of storage management.

To reclaim storage (collect garbage), the system must examine the entire set of references in the

system to insure that no references to an object exist before deleting the object. This is possible

on multiprocessors [Appel et al., 1988], but on large or widely distributed systems, the number

of possible locations for a reference becomes very large, substantially a�ecting the methods and

expense of garbage collection [Liskov and Ladin, 1986; Eckart and LeBlanc, 1987; Schelvis, 1989;

Ladin and Liskov, 1992].

On the other hand, under the strict container model, objects may not be referenced when

the variable containing them no longer exists | objects have a lifetime corresponding exactly to

that of the variable containing them. This enables compilers to explicitly deallocate all objects,

which makes deallocation synchronous and relatively e�cient. Explicit deallocation makes space

and time for storage management more predictable, which is important for real-time systems. In

addition, whenever procedures are activated within a stack discipline, their variables' objects may

be allocated on a stack, further increasing the e�ciency of storage management. (We consider the

pro
igate use of virtual address space [Appel, 1987] to have limited applicability.)

The augmented container model re-introduces the situation where references to an object may

persist after the corresponding variable, which may result in dangling references. There are three

solutions to this problem. First, one may de�ne programs with dangling references as erroneous,

as in C [Kernighan and Ritchie, 1988]. Second, one may restrict the propagation of references so

that dangling references may not occur, as in Algol 68 [van Wijngaarden et al., 1976]. Finally, one

may de�ne objects to exist as long as references to them exist, as in Ada [U. S. DoD, 1983]. In the

last solution, we re-introduce the storage management problems of the reference model, but since

there will likely be fewer references, compiler analysis should be more e�ective.

Storage management costs are no worse in the container model than in the reference model,

and may be substantially better.
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3 Dynamic Typing and Object Representation

The dynamic allocation of objects imposed by the unstructured lifetimes of object under the refer-

ence model permits dynamic typing with little additional storage. Each object need only contain

a pointer to its type. Figure 3 illustrates this structure.
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var: �
...

��
��1
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Figure 3: Variable and Object Structure in the Reference Model

Most reference-based languages de�ne many primitive objects to be immutable, meaning that

no operation will change their value. The implementation is free to in-line the representations of

such objects in place of references to them [Goldberg and Robson, 1983; Black et al., 1986a]. For

example, instead of pointers to integers, implementations may use the integers themselves. In-lining

is typically used only for pointer-sized objects. In a dynamically typed language, the pointers and

integers must generally be tagged to distinguish between them, though compiler analysis will help

eliminate some tags [Kaplan and Ullman, 1978; Mishra and Reddy, 1985; Boehm, 1989; Wand, 1989;

Aiken and Murphy, 1991; Lincoln and Mitchell, 1992]. Figure 4 illustrates the in-lining of primitive

objects and the associated tagging.

...
var: tag: int

data: 4

var: tag: ptr

data: �
...

��
��*

gc bits

type: �

var: ?
...

��
��1

Figure 4: In-lining Primitive Objects in the Reference Model

Implementations of the container model can use the object representations described above for

the reference model. Indeed, when the variable may not be bound, or may be bound to objects

of di�erent types1, some form of indirection is required. The implicit indirection enables the

container model to support dynamic allocation and typing, which in turn supports structures like

variable-length polymorphic lists. However, the indirection is not visible to the programmer and

the programmer has no way to determine that the indirection is actually present, and no way to

create an alias to the object (x4). Thus, the container model can support dynamic typing in a

manner similar to the reference model.

1We use type to indicate implementation, and not interface because it is the implementation which is relevant to

representation.
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In the presence of static typing, more e�cient object representations are available. In particular,

if the type of a variable is static (through language de�nition or compiler analysis) and there is

always an object de�ned for that variable, the implementation may place the representation of an

object inside the representation for another. Figure 5 illustrates this in-lining. We can remove

...
var: ...

var: ?
...

...

Figure 5: In-lining Staticly-Typed Objects in the Container Model

the type pointer from the de�nition of objects by making use of type-speci�c garbage collection

routines [Goldberg, 1991; Diwan et al., 1992]. In-lined representations also remove the storage and

interpretation required for tags and pointers. This optimization is particularly important for arrays

of simple objects. This optimization is possible for the reference model, but requires the compiler

to demonstrate both static type and static lifetime.

The reference-augmented container model may introduce a requirement to reference an in-lined

object from a context in which the type of the reference is not known staticly. This problem is

easily solved by associating the type pointer with the data pointer rather than with the object itself.

Figure 6 illustrates this approach. This representation will not use an undue amount of storage,

...
var: type: �

data: �
...

A
A
A
A
AK

��
��

��
�*

...
var: ...

var: ?
...

...

Figure 6: Dynamicly Typed References in the Reference-Augmented Container Model

provided that most small data items have static types and are in-lined. This representation can

also serve when the references are used implicitly to support dynamic allocation and typing.

The container model can support dynamic allocation and typing as e�ciently as the reference

model, and can support static allocation and typing more e�ciently than the reference model.
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4 Aliasing and Operation Interference

In the reference model, the state of an object is determined by its set of references. Since the

change in state of one object may change the behavior of objects that reference it, we also de�ne

the extended state of an object to be the transitive closure of the extended states of the objects it

references. Because two objects may have variables referencing a third object, operations ostensibly

on the �rst object may change the extended state of the second object. Improperly managing this

aliasing will introduce obscure, unexpected and di�cult-to-debug interference between operations.

The reference model makes strict encapsulation di�cult. This problem was deemed signi�cant

enough that Hogg [1991] introduced additional language mechanisms to control aliasing.

Also in the reference model, it is not generally possible to determine a priori when two variables

will refer to distinct objects. The result is that the programmers and language systems must assume

that the variables may refer to the same object (until proven otherwise). This potential aliasing

inhibits dependency detection, which inhibits the detection and exploitation of parallelism by both

programmers and compilers. Given that a potential alias exists, programmers and compilers must

either avoid any attempt to operate on the two variables concurrently, or enforce mutual exclusion

within each potentially aliased object.

In contrast, the strict container model ensures that each variable contains a di�erent object,

and that each object is contained within a single variable. The state of a variable is simply the

state, or value, of the object it contains. The state of an object is the Cartesian product of the

states of its variables. Since only the states of variables contained within an object can a�ect the

behavior of the object, operations on one object cannot a�ect the state of another and we do not

need a notion of the extended state of objects. Strict encapsulation is a by-product of the variable

model. Thus errors due to aliasing are considerably reduced. In addition, the programmer and

the compiler are free to operate on two di�erent variables concurrently. We expect parallelizing

programs based on the container model to be no more di�cult than parallelizing equivalent Fortran

programs, for which there is considerable expertise [Sarkar and Hennessy, 1986; Allen et al., 1987;

Polychronopoulos, 1988; Wolfe, 1989; Sarkar, 1990]. The current research e�ort in parallelizing

sequential programs may aid in further parallelizing parallel programs by inferring unstructured

parallelism within the structured parallelism that programmers typically provide.

The augmented container model re-introduces the di�culties of performing alias detection, but

with fewer aliases than would occur in the reference model. Again, there is substantial research

devoted to this problem [Cooper, 1985; Landi and Ryder, 1991; Landi and Ryder, 1992].

The container model can substantially reduce the problem of aliasing, and in any case will be

no worse than the reference model.

5 Parameter Passing and Communication

One consequence of the reference model is that parameters are passed by reference. This parameter

mechanism is called pass-by-sharing in CLU [Liskov et al., 1977]. This parameter mechanism may

cause unacceptable performance penalties on distributed systems due to heavy communication

between machines as operations traverse back and forth across machine boundaries to reach the

objects referenced by the parameters. For example, if we pass iter0 of �gure 1 as a parameter to
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an operation for another machine, the operation on that machine must then return to the original

machine for the bounds variable and then again for the lower variable. This approach results in

�ve messages between processors, which is quite high for such a small amount of information.

The problem of increased communication due to the reference model is severe enough that

Argus [Liskov and Schei
er, 1983], which uses CLU's reference model on a single machine, uses

a container model for parameters between machines [Herlihy and Liskov, 1982]. On the other

hand, Emerald [Black et al., 1986b] uses the reference model both within and between machines.

Emerald mitigates the cost of remote arguments with three mechanisms, call-by-move, call-by-visit,

and attach. Call-by-move indicates that the argument object is to be moved to the node containing

the called object. Call-by-visit indicates that the argument object is to be moved to the node

containing the called object for the duration of the call and then moved back to the caller's node

upon completion. Attach indicates that one object should be moved whenever the object it is

attached to moves. The Emerald compiler attempts to determine when an object is only referenced

from within another and therefore can be implicitly attached to the other.

Note that even with object movement under the reference model, the objects are still potentially

referenced and accessed from other machines and therefore are still possible sources of contention

(x6).

In contrast, systems using the container model pass all data associated with a parameter at

the same time as it passes the parameter. For example, passing iter0 of �gure 2 will also pass its

bounds. This approach requires only one message between processors.

One possible objection to the container model is that the copying of parameter objects may

introduce unacceptable overhead when processors share memory. We believe this problem is man-

ageable because:

� For small objects, the most e�cient way to pass parameters is in registers, which is copying.

� The object model reduces the need to pass large objects because the object operated on is

not a parameter and is not copied. So for operations involving one small object and one large

object, programmers can make the large object the target of the operation. For example, in

table lookup, programmers would make the table the target of the operation, and the index

would be the parameter.

� For non-uniform memory access multiprocessors supporting block copy, such as the BBN

Butter
y, it is often more e�cient to copy a large object across processors once rather than

access individual words remotely, even when a substantial fraction of the words are not used.

� For large parameter objects, the reduced aliasing properties of the container model (x4) may

permit the implementation to determine that the parameter may be safely aliased with the

source object, and hence passed by reference.

� Finally, systems with virtual memory may copy large objects with copy-on-write.

The container model also permits a language to unify message passing and shared memory into

operation invocation [Crowl, 1991]. A programming system is then free to implement operations

on objects as either local procedures on local data, local procedures on remote data, and remote

procedures on remote data. The ability to choose the appropriate implementation can substantially
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improve performance [Fowler and Kontothanassis, 1992; Cox et al., 1992; LeBlanc and Markatos,

1992].

Where object identity is not important, the container model of variables and parameters permits

the implementation to reduce the communication costs by sending fewer messages where messages

are appropriate and by using remote procedure calls or shared memory where they are appropriate.

6 Sharing and Contention

Whenever parallel or distributed programs share information (objects), they introduce the possi-

bility of contention for those objects. While some contention is unavoidable, excessive contention

leads to poor performance. So, one should write parallel and distributed programs in a manner

that shares objects as little possible, and therefore choose a model of variables that aids this task.

When sharing actively changing (mutable) objects, contention is inevitable and the choice of

the model of variables will have little e�ect on contention. When sharing objects that never change

(immutable objects), both the reference and container models may copy the objects freely so as to

reduce contention.2

The two models of variables di�er when sharing the current state of an object. Many objects

may be accessed in phases, where for long periods of time the program is interested in an object's

current state, and not in tracking its changes in state. For example, in LU-decomposition each row

changes state until it becomes the pivot row, at which point further reductions need only the value

of the row. To reduce contention in the reference model, the programmer has two options: to make

the rows immutable or to copy the pivot row explicitly. Both approaches have drawbacks, however:

� When making the rows immutable, the compiler is free to copy each argument row to the

local node. Unfortunately, this involves increased dynamic allocation and deallocation of row

objects in the normal maintenance of the matrix because immutable rows cannot be updated

in-place. The new value of the row must be computed in new storage. In the container

model, programmers may pass copies of the row, rather than making them immutable. Each

processor accesses a copy of the row, thus reducing contention.

� Because one cannot generally determine the lifetime of objects in the reference model, an

explicit copy increases the amount of dynamic allocation and deallocation within the system.

In contrast, the implicit copy under the container model has a �xed lifetime and can have more

e�cient allocation and deallocation. The explicit copy in the reference model is analogous to

the implicit copy in the container model, but with higher run-time and programmer costs.

The reference model encourages the sharing of objects, which is inappropriate for parallel and

distributed systems. In contrast, the container model discourages the sharing of objects which are

not necessarily shared.

2Note that under some systems, such as Emerald [Hutchinson, 1987], the representation of an immutable object

may change over time, so long as its abstract value does not. The change in representation enables objects to adapt

to changes in access patterns.
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7 Experience and Conclusions

Our programming experience with the container model includes �ve programs implementing sig-

ni�cant parallel application kernels and several other small programs. These programs represent

over 1400 lines of code in Natasha, a staticly-typed prototype language and implementation of the

Matroshka parallel programming model [Crowl, 1991], which is based on the reference-augmented

container model.

The association of object lifetime with variable lifetime in the container model enables more

predictable and e�cient storage management than the reference model. The container model can

accommodate dynamic typing as e�ciently as the reference model, and can make better use of

storage when types are static. We have no direct experience with dynamic types in the container

model because Natasha is statically typed, but we can attest to the e�ectiveness of in-lining staticly-

typed objects.

The reference model naturally encourages aliasing, which violates encapsulation and discourages

parallelism. In contrast, the container model enforces encapsulation and encourages parallelism.

Because of the enforced encapsulation, the strict container model requires more compiler support

to e�ciently access data structures than do either the reference model or the reference-augmented

container model. Natasha provides reference values, variables and parameters, but our example

programs used reference values exclusively for access to elements of data structuring objects. The

use of reference values occurred whenever we used arrays, but almost exclusively as intermediate

values in expressions. We never declared reference variables and declared reference parameters

only six times, and then in the de�nition of iterators for data structures. Had we anticipated a

compiler with signi�cant in-lining capabilities, we would have avoided reference parameters using

the technique mentioned in x1.2. We believe that a strict container model will serve for many

applications.

The copying of parameters implied by the container model improved the performance of parallel

LU-decomposition on the BBN Butter
y, even when passing large vectors [Crowl, 1991]. The

container model is more appropriate for parallel and distributed environments because it encourages

communication through copied parameters, rather than through shared references.

The many advantages of the container model of variables and parameters over the reference

model, both in semantics and implementation, particularly with respect to parallel and distributed

programming, indicate that the container model deserves more explicit treatment by the object

language community as well further research into its costs and bene�ts.
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