Xlib —C LanguageX Interface
X Consortium Standard

X Version 11, Releases.3

James Gettys

Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler

Laboratory for Computer Science
Massachusetts I nstitute of Technology

with contributions from

Chuck Adams, Tektronix, Inc.
Vania Joloboff, Open Software Foundation
Hideki Hiura, SunSoft, Inc.
Bill McMahon, Hewlett-Packard Company
Ron Newman, Massachusetts Institute of Technology
Al Tabayoyon, Tektronix, Inc.
Glenn Widener, Tektronix, Inc.

Shigeru Y amada, Fujitsu OSS|

The X Window System is atrademark of X Consortium, Inc.
TekHVC isatrademark of Tektronix, Inc.

Copyright [1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994,1996 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the " Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE ISPROVIDED "ASIS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright [0 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Digital Equipment Corporation
Portions Copyright 0 1990, 1991 by Tektronix, Inc.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appearsin all copies and that both that copyright notice and this permission
notice appear in al copies, and that the names of Digital and Tektronix not be used in in advertising or publicity per-
taining to this documentation without specific, written prior permission. Digital and Tektronix makes no representa-
tions about the suitability of this documentation for any purpose. It isprovided ‘‘asis’ without express or implied
warranty.

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work of three
individuals: Robert Scheifler of the MIT Laboratory for Computer Science and Jim Gettys of
Digital Equipment Corporation and Ron Newman of MIT, both at MIT Project Athena. X version
11, however, isthe result of the efforts of dozens of individuals at almost as many locations and
organizations. At therisk of offending some of the players by exclusion, we would like to ack-
nowledge some of the people who deserve specia credit and recognition for their work on Xlib.
Our apologies to anyone inadvertently overlooked.

Releasel

Our thanks doesto Ron Newman (MIT Project Athena), who contributed substantially to the
design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all together for us
during the early releases. He handled literally thousands of requests from people everywhere and
saved the sanity of at least one of us. His calm good cheer was a foundation on which we could
build.

Our thanks also goes to Todd Brunhoff (Tektronix) who was *‘loaned’’ to Project Athena at
exactly the right moment to provide very capable and much-needed assistance during the alpha
and betareleases. He was responsible for the successful integration of sourcesfrom multiple
sites; we would not have had a rel ease without him.

Our thanks also goesto Al Mento and Al Wojtas of Digital’s ULTRIX Documentation Group.
With good humor and cheer, they took arough draft and madeit an infinitely better and more use-
ful document. The work they have done will help many everywhere. We also would liketo
thank Hal Murray (Digital SRC) and Peter George (Digital VMS) who contributed much by
proofreading the early drafts of this document.

Our thanks also goesto Jeff Dike (Digital UEG), Tom Benson, Jackie Granfield, and Vince Orgo-
van (Digital VMS) who helped with the library utilities implementation; to Hania Gajewska
(Digital UEG-WSL) who, along with Ellis Cohen (CMU and Siemens), was instrumental in the
semantic design of the window manager properties; and to Dave Rosenthal (Sun Microsystems)
who also contributed to the protocol and provided the sample generic color frame buffer device-
dependent code.

The apha and beta test participants deserve special recognition and thanksaswell. Itis
significant that the bug reports (and many fixes) during alpha and beta test came almost
exclusively from just afew of the alphatesters, mostly hardware vendors working on product
implementations of X. The continued public contribution of vendors and universitiesis certainly
to the benefit of the entire X community.

Our specia thanks must go to Sam Fuller, Vice-President of Corporate Research at Digital, who
has remained committed to the widest public availability of X and who made it possible to greatly
supplement MIT’ s resources with the Digital staff in order to make version 11 areality. Many of
the people mentioned here are part of the Western Software Laboratory (Digital UEG-WSL) of
the ULTRIX Engineering group and work for Smokey Wallace, who has been vital to the

project’ s success. Others not mentioned here worked on the toolkit and are acknowledged in the
X Toolkit documentation.

Of course, we must particularly thank Paul Asente, formerly of Stanford University and now of
Digital UEG-WSL, who wrote W, the predecessor to X, and Brian Reid, formerly of Stanford
University and now of Digital WRL, who had much to do with W’ s design.

Finally, our thanks goesto MIT, Digital Equipment Corporation, and IBM for providing the
environment where it could happen.

Releaset

Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying the new Xlib
functions for Inter-Client Communication Conventions (ICCCM) support.

We also thank Al Mento of Digital for his continued effort in maintaining this document and Jim
Fulton and Donna Converse (MIT X Consortium) for their much-appreciated effortsin reviewing
the changes.

Releaseb

The principal authors of the Input Method facilities are Vania Joloboff (Open Software Founda-
tion) and Bill McMahon (Hewlett-Packard). The principal author of the rest of the internationali-
zation facilitiesis Glenn Widener (Tektronix). Our thanks to them for keeping their sense of
humor through along and sometimes difficult design process. Although the words and much of
the design are due to them, many others have contributed substantially to the design and imple-
mentation. Tom McFarland (HP) and Frank Rojas (IBM) deserve particular recognition for their
contributions. Other contributors were: Tim Anderson (Motorola), Alka Badshah (OSF), Gabe
Beged-Dov (HP), Chih-Chung Ko (111), VeraCheng (I11), Michael Collins (Digital), Walt Daniels
(IBM), Noritoshi Demizu (OMRON), Keisuke Fukui (Fujitsu), Hitoshoi Fukumoto (Nihon Sun),
Tim Greenwood (Digital), John Harvey (IBM), Hideki Hiura (Sun), Fred Horman (AT&T), Nori-
kazu Kaiya (Fujitsu), Yuji Kamata (IBM), Y utaka Kataoka (Waseda University), Ranee Khub-
chandani (Sun), AkiraKon (NEC), Hiroshi Kuribayashi (OMRON), Teruhiko Kurosaka (Sun),
Seiji Kuwari (OMRON), SandraMartin (OSF), Narita Masahiko (Fujitsu), Masato Morisaki
(NTT), Nelson Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM), Akira
Ohsone (Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth (AT&T),
Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM), and Eiji Tosa (IBM).
We are deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Seiji Kuwari
(OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for producing one of the first
complete sample implementation of the internationalization facilities, and Hiromu Inukai (Nihon
Sun), Takashi Fujiwara (Fujitsu), Hideki Hiura (Sun), Y asuhiro Kawai (Oki Technosystems
Laboratory), Kazunori Nishihara (Fuji Xerox), Masaki Takeuchi (Sony), Katsuhisa'Y ano
(Toshiba), Makato Wakamatsu (Sony Corporation) for producing the another complete sample
implementation of the internationalization facilities.

The principal authors (design and implementation) of the Xcms color management facilities are
Al Tabayoyon (Tektronix) and Chuck Adams (Tektronix). Joann Taylor (Tektronix), Bob Toole
(Tektronix), and Keith Packard (MIT X Consortium) also contributed significantly to the design.
Others who contributed are: Harold Boll (Kodak), Ken Bronstein (HP), Nancy Cam (SGI), Donna
Converse (MIT X Consortium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe),
Ricardo Motta (HP), Chuck Peek (IBM), Wil Plouffe (IBM), Dave Sternlicht (MIT X Consor-
tium), Kumar Talluri (AT&T), and Richard Verberg (IBM).

We also once again thank Al Mento of Digital for his work in formatting and reformatting text for

this manual, and for producing man pages. Thanks also to Clive Feather (1X1) for proof-reading
and finding a number of small errors.

Releases

Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun) and Greg
Olsen (Sun) contributed substantially by testing the facilities and reporting bugs in atimely
fashion.

The principal authors of the internationalization facilities, including Input and Output Methods,

are Hideki Hiura (SunSoft) and Shigeru Y amada (Fujitsu OSSI). Although the words and much
of the design are due to them, many others have contributed substantially to the design and

implementation. They are: Takashi Fujiwara (Fujitsu), Y oshio Horiuchi (IBM), Makoto Inada
(Digital), Hiromu Inukai (Nihon SunSoft), Song JaeKyung (KAIST), Franky Ling (Digital), Tom
McFarland (HP), Hiroyuki Miyamoto (Digital), Masahiko Narita (Fujitsu), Frank Rojas (IBM),
Hidetoshi Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Katsuhisa Y ano(Toshiba) and Jinsoo Y oon (KAIST).

The principal producers of the sample implementation of the internationalization facilities are:
Jeffrey Bloomfield (Fujitsu OSSl), Takashi Fujiwara (Fujitsu), Hideki Hiura (SunSoft), Y oshio
Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Nihon SunSoft), Song JaeKyung
(KAIST), Riki Kawaguchi (Fujitsu), Franky Ling (Digital), Hiroyuki Miyamoto (Digital), Hide-
toshi Tgjima (HP), Toshimitsu Terazono (Fujitsu), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Shigeru Y amada (Fujitsu OSSI) and Katsuhisa Y ano (Toshiba).

The coordinators of the integration, testing, and release of thisimplementation of the internation-
alization facilities are Nobuyuki Tanaka (Sony) and Makoto Wakamatsu (Sony).

Others who have contributed to the architectural design or testing of the sample implementation
of the internationalization facilities are: Hector Chan (Digital), Michagl Kung (IBM), Joseph
Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng (SunSoft), Frank Rojas (IBM), Y oshiyuki
Segawa (Fujitsu OSSI), Makiko Shimamura (Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGl),
Masaki Takeuchi (Sony), Jinsoo Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler
Laboratory for Computer Science
M assachusetts Institute of Technology

Chapter 1

Introduction to Xlib

The X Window System is a network-transparent window system that was designed at MIT. X
display serversrun on computers with either monochrome or color bitmap display hardware. The
server distributes user input to and accepts output requests from various client programs located
either on the same machine or elsawherein the network. Xlib isa C subroutine library that appli-
cation programs (clients) use to interface with the window system by means of a stream connec-
tion. Although a client usually runs on the same machine asthe X server it is talking to, this need
not be the case.

Xlib — C Language X Interface is areference guide to the low-level C language interfaceto the X
Window System protocol. It isneither atutorial nor auser’s guide to programming the X Win-
dow System. Rather, it provides a detailed description of each function in the library aswell asa
discussion of the related background information. Xlib —C Language X Interface assumes a basic
understanding of a graphics window system and of the C programming language. Other higher-
level abstractions (for example, those provided by the toolkits for X) are built on top of the Xlib
library. For further information about these higher-level libraries, see the appropriate tool kit
documentation. The X Window System Protocol provides the definitive word on the behavior of
X. Although additional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:
. Overview of the X Window System

. Errors

. Standard header files

. Generic values and types

. Naming and argument conventions within Xlib

. Programming considerations

. Character sets and encodings

. Formatting conventions

1.1. Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common to other
window systems have different meaningsin X. You may find it helpful to refer to the glossary,
which islocated at the end of the book.

The X Window System supports one or more screens containing overlapping windows or subwin-
dows. A screenisaphysical monitor and hardware that can be color, grayscale, or monochrome.
There can be multiple screensfor each display or workstation. A single X server can provide
display servicesfor any number of screens. A set of screensfor asingle user with one keyboard
and one pointer (usually amouse) is called adisplay.

All thewindowsin an X server are arranged in strict hierarchies. At the top of each hierarchy isa
root window, which covers each of the display screens. Each root window is partially or com-
pletely covered by child windows. All windows, except for root windows, have parents. Thereis
usually at least one window for each application program. Child windows may in turn have their
own children. Inthisway, an application program can create an arbitrarily deep tree on each
screen. X provides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or al of the child window can extend
beyond the boundaries of the parent, but all output to awindow is clipped by its parent. If severa

Xlib — C Library X11, Release 6.3

children of awindow have overlapping locations, one of the children is considered to be on top of
or raised over the others, thus obscuring them. Output to areas covered by other windows is
suppressed by the window system unless the window has backing store. If awindow is obscured
by a second window, the second window obscures only those ancestors of the second window
that are also ancestors of the first window.

A window has aborder zero or more pixels in width, which can be any pattern (pixmap) or solid
color you like. A window usually but not always has a background pattern, which will be
repainted by the window system when uncovered. Child windows obscure their parents, and
graphic operationsin the parent window usually are clipped by the children.

Each window and pixmap hasits own coordinate system. The coordinate system hasthe X axis
horizontal and the Y axis vertical with the origin [0, O] at the upper-left corner. Coordinates are
integral, in terms of pixels, and coincide with pixel centers. For awindow, the origin isinside the
border at the inside, upper-left corner.

X does not guarantee to preserve the contents of windows. When part or al of awindow is hidden
and then brought back onto the screen, its contents may be lost. The server then sends the client
program an Exposeevent to notify it that part or al of the window needs to be repainted. Pro-
grams must be prepared to regenerate the contents of windows on demand.

X aso provides off-screen storage of graphics objects, called pixmaps. Single plane (depth 1)
pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics functions
interchangeably with windows and are used in various graphics operations to define patterns or
tiles. Windows and pixmaps together are referred to as drawables.

Most of the functionsin Xlib just add requeststo an output buffer. These requests later execute
asynchronously on the X server. Functions that return values of information stored in the server
do not return (that is, they block) until an explicit reply is received or an error occurs. Y ou can
provide an error handler, which will be called when the error is reported.

If aclient does not want arequest to execute asynchronously, it can follow the request with acall
to XSync, which blocks until al previoudy buffered asynchronous events have been sent and
acted on. Asan important side effect, the output buffer in Xlib is aways flushed by acall to any
function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource ID, which allows you to refer to objects
stored on the X server. These can be of type Window, Font, Pixmap, Colormap, Cursor, and
GContext, as defined in the file <X11/X.h>. These resources are created by reguests and are
destroyed (or freed) by requests or when connections are closed. Most of these resources are
potentially sharable between applications, and in fact, windows are manipulated explicitly by
window manager programs. Fonts and cursors are shared automatically across multiple screens.
Fonts are loaded and unloaded as needed and are shared by multiple clients. Fonts are often
cached in the server. Xlib provides no support for sharing graphics contexts between applica-
tions.

Client programs are informed of events. Events may either be side effects of arequest (for exam-
ple, restacking windows generates Exposeevents) or completely asynchronous (for example,
from the keyboard). A client program asks to be informed of events. Because other applications
can send events to your application, programs must be prepared to handle (or ignore) events of al
types.

Input events (for example, akey pressed or the pointer moved) arrive asynchronously from the
server and are queued until they are requested by an explicit call (for example, XNextEvent or
XWindowEvent). In addition, some library functions (for example, XRaiseWindow) generate
Exposeand ConfigureRequestevents. These events also arrive asynchronously, but the client
may wish to explicitly wait for them by calling XSync after calling a function that can cause the
server to generate events.

Xlib — C Library X11, Release 6.3

1.2. Errors

Some functions return Status, an integer error indication. If the function fails, it returns a zero.
If the function returns a status of zero, it has not updated the return arguments. Because C does
not provide multiple return values, many functions must return their results by writing into
client-passed storage. By default, errors are handled either by a standard library function or by
one that you provide. Functions that return pointers to strings return NULL pointers if the string
does not exist.

The X server reports protocol errors at the time that it detectsthem. If more than one error could
be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it buffers
them), errors can be reported much later than they actually occur. For debugging purposes, how-
ever, Xlib provides a mechanism for forcing synchronous behavior (see section 11.8.1). When
synchronization is enabled, errors are reported as they are generated.

When Xlib detects an error, it calls an error handler, which your program can provide. If you do
not provide an error handler, the error is printed, and your program terminates.

1.3. Standard Header Files

The following include files are part of the Xlib standard:

. <X11/Xlib.h>
Thisisthe main header file for Xlib. The majority of all Xlib symbols are declared by
including thisfile. Thisfile also contains the preprocessor symbol

XlibSpecificationRelease This symboal is defined to have the 6 in this release of the stan-
dard. (Release 5 of Xlib wasthe first release to have this symbol.)

. <X11/X.h>
Thisfile declares types and constants for the X protocol that are to be used by applications.

It isincluded automatically from <X11/Xlib.h>, so application code should never need to
referencethisfile directly.

. <X11/Xcms.h>

This file contains symbols for much of the color management facilities described in chapter
6. All functions, types, and symbols with the prefix ** Xcms'*, plus the Color Conversion
Contexts macros, are declared in thisfile. <X11/Xlib.h> must be included beforeincluding
thisfile.

. <X11/Xutil.h>

This file declares various functions, types, and symbols used for inter-client communication
and application utility functions, which are described in chapters 14 and 16. <X11/Xlib.h>
must be included before including thisfile.

. <X11/Xresource.h>

Thisfile declaresall functions, types, and symbols for the resource manager facilities,
which are described in chapter 15. <X11/Xlib.h> must be included before including this
file.

. <X11/Xatom.h>
Thisfile declaresall predefined atoms, which are symbols with the prefix ** XA_"".
. <X11/cursorfont.h>

This file declares the cursor symbols for the standard cursor font, which are listed in appen-
dix B. All cursor symbols have the prefix ** XC .

. <X11/keysymdef.l»

Thisfile declares all standard KeySym values, which are symbols with the prefix ** XK_"’.
The KeySyms are arranged in groups, and a preprocessor symbol controls inclusion of each

Xlib — C Library X11, Release 6.3

group. The preprocessor symbol must be defined prior to inclusion of the file to obtain the
associated values. The preprocessor symbols are XK_MISCELLANY, XK_XKB_KEYS,
XK_3270, XK_LATINL, XK_LATIN2, XK_LATIN3, XK_LATIN4, XK_KATAKANA,
XK_ARABIC, XK_CYRILLIC, XK_GREEK, XK_TECHNICAL, XK_SPECIAL,
XK_PUBLISHING, XK_APL, XK_HEBREW, XK_THAI, and XK_KOREAN.

. <X11/keysym.l»

This file defines the preprocessor symbols XK_MISCELLANY, XK_XKB_KEYS,
XK_LATINL, XK_LATIN2, XK_LATIN3, XK_LATIN4, and XK_GREEK and then
includes <X11/keysymdef.».

. <X11/Xlibint.h >

Thisfile declaresall the functions, types, and symbols used for extensions, which are
described in appendix C. This file automatically includes <X11/Xlib.h>.

. <X11/Xproto.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. It isincluded automatically from <X11/Xlibint.h >, so application and exten-
sion code should never need to referencethis file directly.

. <X11/Xprotostr.h>

Thisfile declares types and symbols for the basic X protocol, for use in implementing
extensions. It isincluded automatically from <X11/Xproto.h>, so application and exten-
sion code should never need to referencethis file directly.

. <X11/X10.h>

Thisfile declaresall the functions, types, and symbols used for the X10 compatibility func-
tions, which are described in appendix D.

1.4. GenericValuesand Types

The following symbols are defined by Xlib and used throughout the manual:

. Xlib defines the type Bool and the Boolean values True and False.

. None isthe universal null resource ID or atom.

. Thetype XID is used for generic resource IDs.

. The type XPointer is defined to be char* and is used as a generic opagque pointer to data.

1.5. Naming and Argument Conventionswithin Xlib

Xlib follows a number of conventions for the naming and syntax of the functions. Given that you
remember what information the function requires, these conventions are intended to make the
syntax of the functions more predictable.

The major naming conventions are:

. To differentiate the X symbols from the other symbols, the library uses mixed case for
external symbols. It leaveslowercase for variables and all uppercase for user macros, as
per existing convention.

. All Xlib functions begin with a capital X.
. The beginnings of all function names and symbols are capitalized.

. All user-visible data structures begin with acapital X. More generally, anything that a user
might dereference begins with a capital X.

. Macros and other symbols do not begin with a capital X. To distinguish them from all user
symbols, each word in the macro is capitalized.

. All elements of or variablesin adata structure are in lowercase. Compound words, where
needed, are constructed with underscores (_).

Xlib — C Library X11, Release 6.3

The display argument, where used, is awaysfirst in the argument list.

All resource objects, where used, occur at the beginning of the argument list immediately
after the display argument.

When a graphics context is present together with another type of resource (most com-
monly, a drawable), the graphics context occursin the argument list after the other
resource. Drawables outrank all other resources.

Source arguments always precede the destination arguments in the argument list.
The x argument always precedesthe y argument in the argument list.
The width argument always precedes the height argument in the argument list.

Wherethe x, y, width, and height arguments are used together, the x and y arguments
always precede the width and height arguments.

Where amask is accompanied with a structure, the mask always precedes the pointer to the
structure in the argument list.

1.6. Programming Considerations
The major programming considerations are:

Coordinates and sizesin X are actually 16-bit quantities. This decision was made to
minimize the bandwidth required for a given level of performance. Coordinates usually are
declared asan int in theinterface. Valueslarger than 16 bits are truncated silently. Sizes
(width and height) are declared as unsigned quantities.

Keyboards are the greatest variable between different manufacturers’ workstations. 1f you
want your program to be portable, you should be particularly conservative here.

Many display systems have limited amounts of off-screen memory. If you can, you should
minimize use of pixmaps and backing store.

The user should have control of his screen real estate. Therefore, you should write your
applicationsto react to window management rather than presume control of the entire
screen. What you do inside of your top-level window, however, is up to your application.
For further information, see chapter 14 and the Inter-Client Communication Conventions
Manual.

1.7. Character Setsand Encodings

Some of the Xlib functions make reference to specific character sets and character encodings.
The following are the most common:

X Portable Character Set

A basic set of 97 characters, which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a.zA..Z0.9
I"H#$%& ()* +,-/5<=>?@\]"_{[}"
<gpace>, <tab>, and <newline>

This set is the |eft/lower half of the graphic character set of 1SO8859-1 plus space, tab, and
newline. It isalso the set of graphic charactersin 7-bit ASCII plus the same three control
characters. The actual encoding of these characterson the host is system dependent.

Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the sasmein al locales supported by Xlib
onthehost. If astring is said to bein the Host Portable Character Encoding, then it only
contains charactersfrom the X Portable Character Set, in the host encoding.

Xlib — C Library X11, Release 6.3

Latin-1
The coded character set defined by the 1SO8859-1 standard.
Latin Portable Character Encoding

The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII con-
trol characters. If astring is said to bein the Latin Portable Character Encoding, then it
only contains characters from the X Portable Character Set, not al of Latin-1.

STRING Encoding
Latin-1, plus tab and newline.
POSIX Portable Filename Character Set

The set of 65 characters, which can be used in naming files on a POSIX-compliant host,
that are correctly processed in all locales. Thesetis:

a.zA.Z0.9. -

1.8. Formatting Conventions
Xlib — C Language X Interface uses the following conventions:

Global symbols are printed in this special font. These can be either function names, sym-
bols defined in includefiles, or structure names. When declared and defined, function argu-
ments are printed in italics. 1n the explanatory text that follows, they usually are printed in
regular type.

Each function isintroduced by a general discussion that distinguishes it from other func-
tions. The function declaration itself follows, and each argument is specifically explained.
Although ANSI C function prototype syntax is not used, Xlib header files normally declare
functions using function prototypesin ANSI C environments. General discussion of the
function, if any is required, follows the arguments. Where applicable, the last paragraph of
the explanation lists the possible Xlib error codes that the function can generate. For a
complete discussion of the Xlib error codes, see section 11.8.2.

To eliminate any ambiguity between those arguments that you pass and those that a func-
tion returnsto you, the explanations for al arguments that you pass start with the word
specifies or, in the case of multiple arguments, the word specify. The explanations for all
argumentsthat are returned to you start with the word returns or, in the case of multiple
arguments, the word return. The explanations for al arguments that you can pass and are
returned start with the words specifies and returns.

Any pointer to a structure that is used to return avalue is designated as such by the _return
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and areindicated by using the _in_out suffix.

Xlib — C Library X11, Release 6.3

Chapter 2

Display Functions

Before your program can use adisplay, you must establish a connection to the X server. Once
you have established a connection, you then can use the Xlib macros and functions discussed in
this chapter to return information about the display. This chapter discusses how to:

. Open (connect to) the display

. Obtain information about the display, image formats, or screens
. Generate a NoOperation protocol request

. Free client-created data

. Close (disconnect from) adisplay

. Use X Server connection close operations

. Use Xlib with threads

. Useinternal connections

2.1. Openingthe Display
To open aconnection to the X server that controls adisplay, use XOpenDisplay.

Display * XOpenDisplay (display_name)
char *display_name;

display_name Specifies the hardware display name, which determines the display and commun-
ications domain to be used. On a POSIX-conformant system, if the
display_name is NULL, it defaults to the value of the DISPLAY environment
variable.

The encoding and interpretation of the display name are implementation-dependent. Stringsin
the Host Portable Character Encoding are supported; support for other charactersis
implementation-dependent. On POSIX-conformant systems, the display name or DISPLAY
environment variable can be a string in the format:

hostname: number . screen_number

hostname Specifies the name of the host machine on which the display is physically
attached. Y ou follow the hostname with either asingle colon (:) or adouble
colon (::).

number Specifies the number of the display server on that host machine. Y ou may

optionaly follow this display number with aperiod (.). A single CPU can have
more than one display. Multiple displays are usually numbered starting with
zero.

screen_number Specifies the screen to be used on that server. Multiple screens can be controlled
by asingle X server. The screen_number sets an internal variable that can be
accessed by using the DefaultScreenmacro or the XDefaultScreenfunction if
you are using languages other than C (see section 2.2.1).

Xlib — C Library X11, Release 6.3

For example, the following would specify screen 1 of display 0 on the machine named *‘ dual-
headed'’:

dual-headed:0.1

The XOpenDisplay function returns a Display structure that serves as the connection to the X
server and that contains all the information about that X server. XOpenDisplay connects your
application to the X server through TCP or DECnet communications protocols, or through some
local inter-process communication protocol. If the hostname is a host machine name and asingle
colon () separates the hostname and display number, XOpenDisplay connects using TCP
streams. If the hostname is not specified, Xlib uses whatever it believesis the fastest transport. If
the hostname is a host machine name and a double colon (::) separates the hosthame and display
number, XOpenDisplay connectsusing DECnet. A single X server can support any or all of
these transport mechanisms simultaneously. A particular Xlib implementation can support many
more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is defined in
<X11/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL. After a successful call to
XOpenDisplay, al of the screensin the display can be used by the client. The screen number
specified in the display_name argument is returned by the DefaultScreenmacro (or the XDe-
faultScreen function). Y ou can access elements of the Display and Screenstructures only by
using the information macros or functions. For information about using macros and functions to
obtain information from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 9.8).

2.2. Obtaining Information about the Display, Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that return data
from the Display structure. The macros are used for C programming, and their corresponding
function equivalents are for other language bindings. This section discusses the:

. Display macros
. Image format functions and macros
. Screen information macros

All other members of the Display structure (that is, those for which no macros are defined) are
private to Xlib and must not be used. Applications must never directly modify or inspect these
private members of the Display structure.

Note

The XDisplayWidth , XDisplayHeight, XDisplayCells, XDisplayPlanes
XDisplayWidthMM , and XDisplayHeightMM functionsin the next sections are
misnamed. These functions really should be named Screenwhatever and X Screen-
whatever, not Displaywhatever or X Displaywhatever. Our apologies for the result-
ing confusion.

2.2.1. Display Macros

Applications should not directly modify any part of the Display and Screenstructures. The
members should be considered read-only, although they may change as the result of other opera-
tions on the display.

Thefollowing lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data both can return.

Xlib — C Library X11, Release 6.3

AllPlanes

unsigned long XAllPlanes()

Both return avalue with all bits set to 1 suitable for use in a plane argument to a procedure.

Both BlackPixel and WhitePixel can be used in implementing a monochrome application.
These pixel values are for permanently allocated entriesin the default colormap. The actual RGB
(red, green, and blue) values are settable on some screens and, in any case, may not actually be
black or white. The names are intended to convey the expected relative intensity of the colors.

BlackPixel (display, screen_number)

unsigned long XBlackPixel (display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

WhitePixel (display, screen_number)

unsigned long XWhitePixel (display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the white pixel value for the specified screen.

ConnectionNumber (display)

int X ConnectionNumber (display)
Display *display;
display Specifies the connection to the X server.

Both return a connection number for the specified display. On a POSIX-conformant system, this
isthe file descriptor of the connection.

Xlib — C Library X11, Release 6.3

DefaultColormap(display, screen_number)

Colormap XDefaultColormap(display, screen_number)
Display *display;
int screen_number;
display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine alloca-
tions of color should be made out of this colormap.

DefaultDepth(display, screen_number)

int XDefaultDepth(display, screen_number)
Display *display;
int screen_number;
display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root window for the specified screen.
Other depths may also be supported on this screen (see XMatchVisualinfo).

To determine the number of depths that are available on a given screen, use XListDepths.

int * X ListDepths(display, screen_number, count_return)

Display *display;
int screen_number;
int *count_return;

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.
count_return Returns the number of depths.

The XListDepths function returns the array of depths that are available on the specified screen.
If the specified screen_number is valid and sufficient memory for the array can be allocated,
XListDepths sets count_return to the number of available depths. Otherwise, it does not set
count_return and returns NULL. To releasethe memory allocated for the array of depths, use
XFree.

10

Xlib — C Library X11, Release 6.3

DefaultGC(display, screen_number)

GC XDefaultGC(display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root window of the specified screen. ThisGC is
created for the convenience of simple applications and contains the default GC components with
the foreground and background pixel valuesinitialized to the black and white pixels for the
screen, respectively. You can modify its contents freely becauseit is not used in any Xlib func-
tion. This GC should never be freed.

DefaultRootWindow (display)

Window X DefaultRootWindow (display)
Display *display;
display Specifies the connection to the X server.

Both return the root window for the default screen.

DefaultScreenOfDisplay(display)

Screen * X DefaultScreenOf Display (display)
Display *display;

display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplay (display, screen_number)

Screen * X ScreenOf Display (display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return a pointer to the indicated screen.

11

Xlib — C Library X11, Release 6.3

DefaultScreen(display)
int XDefaultScreen(display)
Display *display;
display Specifies the connection to the X server.
Both return the default screen number referenced by the XOpenDisplay function. This macro or

function should be used to retrieve the screen number in applications that will use only asingle
screen.

DefaultVisual (display, screen_number)

Visual *XDefaultVisual (display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the default visual type for the specified screen. For further information about visual
types, see section 3.1.

DisplayCells(display, screen_number)

int XDisplayCells(display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the number of entriesin the default colormap.

DisplayPlanes(display, screen_number)

int XDisplayPlanes(display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the depth of the root window of the specified screen. For an explanation of depth, see
the glossary.

12

Xlib — C Library X11, Release 6.3

DisplayString(display)

char * XDisplayString(display)
Display *display;
display Specifies the connection to the X server.

Both return the string that was passed to XOpenDisplay when the current display was opened.
On POSIX-conformant systems, if the passed string was NULL, these return the value of the
DISPLAY environment variable when the current display was opened. These are useful to appli-
cations that invoke the fork system call and want to open a new connection to the same display
from the child process aswell asfor printing error messages.

long X ExtendedM axRequestSize(display)
Display *display;

display Specifies the connection to the X server.

The XExtendedMaxRequestSizeunction returns zero if the specified display does not support
an extended-length protocol encoding; otherwise, it returns the maximum request size (in 4-byte
units) supported by the server using the extended-length encoding. The Xlib functions XDraw-
Lines, XDrawArcs, XFillPolygon, XChangeProperty, XSetClipRectangles and XSetRe-
gion will use the extended-length encoding as necessary, if supported by the server. Use of the
extended-length encoding in other Xlib functions (for example, XDrawPoints, XDrawRectan-
gles, XDrawSegments XFillArcs , XFillRectangles, XPutlmage) is permitted but not
required; an Xlib implementation may choose to split the data across multiple smaller requests
instead.

long XMaxRequestSize(display)
Display *display;

display Specifies the connection to the X server.

The XMaxRequestSizefunction returns the maximum request size (in 4-byte units) supported by
the server without using an extended-length protocol encoding. Single protocol requeststo the
server can be no larger than this size unless an extended-length protocol encoding is supported by
the server. The protocol guarantees the size to be no smaller than 4096 units (16384 bytes). Xlib
automatically breaks data up into multiple protocol requests as necessary for the following func-
tions: XDrawPoints, XDrawRectangles XDrawSegments XFillArcs , XFillRectangles, and
XPutlmage.

L astk nownRequestProcessed(display)

unsigned long X Lastk nownRequestProcessed(display)
Display *display;
display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlib to have been processed by

13

Xlib — C Library X11, Release 6.3

the X server. Xlib automatically sets this number when replies, events, and errors are received.

NextRequest(display)

unsigned long X NextRequest (display)
Display *display;
display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial numbers are
maintained separately for each display connection.

ProtocolVersion(display)

int XProtocolVersion(display)
Display *display;
display Specifies the connection to the X server.

Both return the major version number (11) of the X protocol associated with the connected
display.

ProtocolRevision(display)

int XProtocolRevision(display)
Display *display;
display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

QLength(display)

int XQLength(display)
Display *display;

display Specifies the connection to the X server.

Both return the length of the event queue for the connected display. Note that there may be more
events that have not been read into the queue yet (see XEventsQueued.

14

Xlib — C Library X11, Release 6.3

RootWindow (display, screen_number)

Window XRootWindow (display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the root window. These are useful with functions that need a drawable of a particular
screen and for creating top-level windows.

ScreenCount (display)

int X ScreenCount(display)
Display *display;
display Specifies the connection to the X server.

Both return the number of available screens.

ServerVendor (display)

char * X ServerVendor (display)
Display *display;
display Specifies the connection to the X server.

Both return a pointer to a null-terminated string that provides some identification of the owner of
the X server implementation. If the datareturned by the server isin the Latin Portable Character
Encoding, then the string is in the Host Portable Character Encoding. Otherwise, the contents of
the string are implementati on-dependent.

VendorRelease(display)

int XVendorRelease(display)
Display *display;
display Specifies the connection to the X server.

Both return anumber related to a vendor’ s release of the X server.

2.2.2. Image Format Functions and Macros

Applications are required to present data to the X server in aformat that the server demands. To
help simplify applications, most of the work required to convert the datais provided by Xlib (see
sections 8.7 and 16.8).

The XPixmapFormatValues structure provides an interface to the pixmap format information
that is returned at the time of a connection setup. It contains:

15

Xlib — C Library X11, Release 6.3

typedef struct {
int depth;
int bits_per_pixel;
int scanline_pad;
} XPixmapFormatV alues,

To obtain the pixmap format information for a given display, use XListPixmapFormats.

XPixmapFormatV alues * X ListPixmapFormats(display, count_return)
Display *display;
int *count_return;
display Specifies the connection to the X server.
count_return Returns the number of pixmap formats that are supported by the display.

The XListPixmapFormats function returns an array of XPixmapFormatValues structures that
describe the types of Z format images supported by the specified display. If insufficient memory
isavailable, XListPixmapFormats returns NULL. To freethe alocated storage for the XPix-
mapFormatValues structures, use XFree.

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both return for the specified server and screen. These
are often used by toolkits aswell as by simple applications.

ImageByteOrder(display)

int XImageByteOrder (display)
Display *display;
display Specifies the connection to the X server.
Both specify the required byte order for images for each scanline unit in XY format (bitmap) or

for each pixel valuein Z format. The macro or function can return either LSBFirst or
MSBFirst .

BitmapUnit(display)

int XBitmapUnit (display)
Display *display;
display Specifies the connection to the X server.

Both return the size of abitmap’s scanline unit in bits. The scanlineis calculated in multiples of
this value.

16

Xlib — C Library X11, Release 6.3

BitmapBitOrder (display)
int XBitmapBitOrder (display)
Display *display;
display Specifies the connection to the X server.
Within each bitmap unit, the left-most bit in the bitmap as displayed on the screenis either the

least significant or most significant bit in the unit. This macro or function can return LSBFirst or
MSBFirst .

BitmapPad(display)

int XBitmapPad(display)
Display *display;

display Specifies the connection to the X server.

Each scanline must be padded to a multiple of bits returned by this macro or function.

DisplayHeight(display, screen_number)

int XDisplayHeight(display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM (display, screen_number)
int XDisplayHeightMM (display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the height of the specified screen in millimeters.

17

Xlib — C Library X11, Release 6.3

DisplayWidth(display, screen_number)

int XDisplayWidth(display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the width of the screenin pixels.

DisplayWidthMM (display, screen_number)
int XDisplayWidthMM (display, screen_number)

Display *display;
int screen_number;

display Specifies the connection to the X server.
screen_number Specifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

2.2.3. Screeninformation Macros

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both can return. These macros or functions all take a
pointer to the appropriate screen structure.

BlackPixel Of Screen(screen)

unsigned long X BlackPixel Of Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the black pixel value of the specified screen.

WhitePixel Of Screen(screen)

unsigned long XWhitePixel Of Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the white pixel value of the specified screen.

18

Xlib — C Library X11, Release 6.3

CellsOf Screen(screen)

int X CellsOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the number of colormap cellsin the default colormap of the specified screen.

DefaultCol ormapOf Screen(screen)

Colormap X DefaultCol ormapOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the default colormap of the specified screen.

DefaultDepthOf Screen(screen)

int X DefaultDepthOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the depth of the root window.

DefaultGCOf Screen(screen)

GC X DefaultGCOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return a default graphics context (GC) of the specified screen, which has the same depth as
the root window of the screen. The GC must never be freed.

DefaultVisual Of Screen(screen)

Visua * XDefaultVisual Of Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the default visual of the specified screen. For information on visua types, see section
3.1

19

Xlib — C Library X11, Release 6.3

DoesBackingStore(screen)

int XDoesBackingStore(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return avalue indicating whether the screen supports backing stores. The value returned can
be one of WhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaveUnders(screen)

Bool XDoesSaveUnders(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return a Boolean value indicating whether the screen supports save unders. If True, the
screen supports save unders. If False, the screen does not support save unders (see section 3.2.5).

DisplayOf Screen(screen)

Display * X DisplayOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the display of the specified screen.

int X ScreenNumberOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

The XScreenNumberOfScreenfunction returns the screen index number of the specified screen.

EventM askOf Screen(screen)

long X EventM askOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the event mask of the root window for the specified screen at connection setup time.

20

Xlib — C Library

WidthOf Screen(screen)

int XWidthOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the width of the specified screenin pixels.

HeightOf Screen(screen)

int XHeightOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the height of the specified screen in pixels.

WidthM M Of Screen(screen)

int XWidthMM Of Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the width of the specified screenin millimeters.

HeightM M Of Screen(screen)

int XHeightM M Of Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the height of the specified screen in millimeters.

M axCmapsOf Screen(screen)

int XMaxCmapsOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

X11, Release 6.3

Both return the maximum number of installed colormaps supported by the specified screen (see

section 9.3).

21

Xlib — C Library X11, Release 6.3

MinCmapsOf Screen(screen)

int XMinCmapsOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the minimum number of installed colormaps supported by the specified screen (see
section 9.3).

PlanesOf Screen(screen)

int X PlanesOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the depth of the root window.

RootWindowOf Screen(screen)

Window X RootWindowOf Screen(screen)
Screen * screen;

screen Specifies the appropriate Screenstructure.

Both return the root window of the specified screen.

2.3. Generating a NoOperation Protocol Request
To execute a NoOperation protocol request, use XNoOp.

XNoOp(display)
Display *display;
display Specifies the connection to the X server.

The XNoOp function sends a NoOperation protocol request to the X server, thereby exercising
the connection.

2.4. Freeing Client-Created Data
To freein-memory data that was created by an Xlib function, use XFree.

XFree(data)
void *data;

data Specifies the datathat is to be freed.

The XFree function is agenera -purpose Xlib routine that frees the specified data. Y ou must use
it to free any objects that were allocated by Xlib, unless an alternate function is explicitly

22

Xlib — C Library X11, Release 6.3

specified for the object. A NULL pointer cannot be passed to this function.

2.5. Closing the Display
To close adisplay or disconnect from the X server, use XCloseDisplay.

XCloseDisplay (display)
Display *display;
display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display specified in the
Display structure and destroys all windows, resource IDs (Window, Font, Pixmap, Color-
map, Cursor, and GContext), or other resourcesthat the client has created on this display,
unless the close-down mode of the resource has been changed (see XSetCloseDownMod8.
Therefore, these windows, resource 1Ds, and other resources should never be referenced again or
an error will be generated. Before exiting, you should call XCloseDisplay explicitly so that any
pending errors are reported as XCloseDisplay performs afinal XSync operation.

XCloseDisplay can generate a BadGC error.

Xlib provides a function to permit the resources owned by a client to survive after the client’s
connection is closed. To change aclient’s close-down mode, use XSetCloseDownMode

X SetCloseDownM ode(display, close_mode)
Display *display;
int close_mode;
display Specifies the connection to the X server.

close mode Specifies the client close-down mode. You can pass DestroyAll, RetainPer-
manent, or RetainTemporary.

The XSetCloseDownModedefines what will happen to the client’ s resources at connection
close. A connection startsin DestroyAll mode. For information on what happens to the client’s
resources when the close_mode argument is RetainPermanentor RetainTemporary, see sec-
tion 2.6.

XSetCloseDownModecan generate a BadValue error.

2.6. Using X Server ConnectionCloseOperations

When the X server’s connection to aclient is closed either by an explicit call to XCloseDisplay
or by aprocessthat exits, the X server performs the following automatic operations:

. It disowns all selections owned by the client (see XSetSelectionOwney.

. It performs an XUngrabPointer and XUngrabKeyboard if the client has actively
grabbed the pointer or the keyboard.

. It performs an XUngrabServer if the client has grabbed the server.
. It releases all passive grabs made by the client.
. It marks all resources (including colormap entries) alocated by the client either as per-

manent or temporary, depending on whether the close-down mode is RetainPermanentor
RetainTemporary. However, this does not prevent other client applications from expli-
citly destroying the resources (see XSetCloseDownModg.

When the close-down mode is DestroyAll, the X server destroys all of aclient’s resources as fol-
lows:

23

Xlib — C Library X11, Release 6.3

. It examines each window in the client’ s save-set to determineif it is an inferior (subwin-
dow) of awindow created by the client. (The save-setisalist of other clients' windows
that are referred to as save-set windows.) |If so, the X server reparents the save-set window
to the closest ancestor so that the save-set window is not an inferior of awindow created by
the client. The reparenting leaves unchanged the absolute coordinates (with respect to the
root window) of the upper-left outer corner of the save-set window.

. It performs a MapWindow reguest on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior of a
window created by the client.

. It destroys all windows created by the client.

. It performs the appropriate free request on each nonwindow resource created by the client
in the server (for example, Font, Pixmap, Cursor, Colormap, and GContext).
. It freesall colors and colormap entries alocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server goes
through a cycle of having no connections and having some connections. When the last connec-
tion to the X server closes as aresult of a connection closing with the close_mode of DestroyAll,
the X server does the following:

. It resetsits state as if it had just been started. The X server begins by destroying all linger-
ing resources from clients that have terminated in RetainPermanentor RetainTem-
porary mode.

. It deletes all but the predefined atom identifiers.

. It deletes all properties on all root windows (see section 4.3).

. It resets all device maps and attributes (for example, key click, bell volume, and accelera-
tion) as well as the access control list.

. It restores the standard root tiles and cursors.

. It restores the default font path.

. It restores the input focusto state PointerRoot.

However, the X server does not reset if you close a connection with a close-down mode set to
RetainPermanentor RetainTemporary.

2.7. Using Xlib with Threads

On systems that have threads, support may be provided to permit multiple threads to use Xlib
concurrently.

To initialize support for concurrent threads, use XlInitThreads .

Status XInitThreads();

The XlnitThreads function initializes Xlib support for concurrent threads. This function must
be thefirst Xlib function a multi-threaded program calls, and it must complete before any other
Xlib call ismade. This function returns a nonzero status if initialization was successful ; other-

wise, it returns zero. On systems that do not support threads, this function always returns zero.

It isonly necessary to call this function if multiple threads might use Xlib concurrently. If all
callsto Xlib functions are protected by some other access mechanism (for example, a mutual
exclusion lock in atoolkit or through explicit client programming), Xlib thread initialization is
not required. It isrecommended that single-threaded programs not call this function.

24

Xlib — C Library X11, Release 6.3

To lock adisplay across several Xlib calls, use XLockDisplay .

void XLockDisplay (display)
Display *display;
display Specifies the connection to the X server.

The XLockDisplay function locks out all other threads from using the specified display. Other
threads attempting to use the display will block until the display is unlocked by this thread.
Nested callsto XLockDisplay work correctly; the display will not actually be unlocked until
XUnlockDisplay has been called the same number of times as XLockDisplay . This function
has no effect unless Xlib was successfully initialized for threads using XInitThreads .

To unlock adisplay, use XUnlockDisplay .

void XUnlockDisplay (display)
Display *display;
display Specifies the connection to the X server.

The XUnlockDisplay function allows other threads to use the specified display again. Any
threads that have blocked on the display are allowed to continue. Nested locking works correctly;
if XLockDisplay has been called multiple times by a thread, then XUnlockDisplay must be
called an equal number of times before the display is actually unlocked. This function has no
effect unless Xlib was successfully initialized for threads using XlInitThreads .

2.8. Using Internal Connections

In addition to the connection to the X server, an Xlib implementation may require connections to
other kinds of servers (for example, to input method servers as described in chapter 13). Toolkits
and clients that use multiple displays, or that use displaysin combination with other inputs, need
to obtain these additional connectionsto correctly block until input is available and need to pro-
cess that input when it is available. Simple clients that use asingle display and block for input in
an Xlib event function do not need to use these facilities.

To track internal connections for adisplay, use XAddConnectionWatch.

typedef void (* X ConnectionWatchProc)(display, client_data, fd, opening, watch_data)
Display *display;
XPointer client_data;
int fd;
Bool opening;
XPointer *watch_data;

Status X AddConnectionWatch(display, procedure, client_data)

Display *display;
XWatchProc procedure;
XPointer client_data;

display Specifies the connection to the X server.
procedure Specifies the procedure to be called.
client_data Specifies the additional client data.

The XAddConnectionWatch function registers a procedure to be called each time Xlib opens or

25

Xlib — C Library X11, Release 6.3

closes an internal connection for the specified display. The procedureis passed the display, the
specified client_data, the file descriptor for the connection, a Boolean indicating whether the con-
nection is being opened or closed, and a pointer to alocation for private watch data. If openingis
True, the procedure can store a pointer to private data in the location pointed to by watch_data;
when the procedureis later called for this same connection and opening is False, the location
pointed to by watch_datawill hold this same private data pointer.

This function can be called at any time after adisplay is opened. If internal connections already
exist, the registered procedure will immediately be called for each of them, before XAddConnec-
tionWatch returns. XAddConnectionWatch returns a nonzero status if the procedureis suc-
cessfully registered; otherwise, it returns zero.

The registered procedure should not call any Xlib functions. If the procedure directly or
indirectly causesthe state of internal connections or watch proceduresto change, the result is not
defined. If Xlib has been initialized for threads, the procedureis called with the display locked
and the result of acall by the procedure to any Xlib function that locks the display is not defined
unless the executing thread has externally locked the display using XLockDisplay .

To stop tracking internal connections for adisplay, use XRemoveConnectionWatch

Status XRemoveConnectionWatch(display, procedure, client_data)
Display *display;
XWatchProc procedure;
XPointer client_data;

display Specifies the connection to the X server.

procedure Specifies the procedure to be called.

client_data Specifies the additional client data.

The XRemoveConnectionWatchfunction removes a previously registered connection watch
procedure. The client_data must match the client_data used when the procedure was initially
registered.

To process input on an internal connection, use XProcessinternalConnection

void XProcess| nternal Connection(display, fd)

Display *display;

int fd;
display Specifies the connection to the X server.
fd Specifies the file descriptor.

The XProcesslinternalConnectionfunction processesinput available on an internal connection.
This function should be called for an internal connection only after an operating system facility
(for example, selector poll) hasindicated that input is available; otherwise, the effect is not
defined.

To obtain al of the current internal connections for adisplay, use XinternalConnection-
Numbers.

26

Xlib — C Library X11, Release 6.3

Status X1 nternal ConnectionNumbers(display, fd_return, count_return)
Display *display;
int **fd_return;
int *count_return;

display Specifies the connection to the X server.

fd_return Returns the file descriptors.

count_return Returns the number of file descriptors.

The XlinternalConnectionNumbers function returns alist of the file descriptorsfor all internal
connections currently open for the specified display. When the allocated list is no longer needed,
freeit by using XFree. This functions returns a nonzero statusiif thelist is successfully allo-
cated; otherwise, it returns zero.

27

Xlib — C Library X11, Release 6.3

Chapter 3

Window Functions

In the X Window System, awindow is arectangular area on the screen that lets you view graphic
output. Client applications can display overlapping and nested windows on one or more screens
that are driven by X servers on one or more machines. Clients who want to create windows must
first connect their program to the X server by calling XOpenDisplay. This chapter beginswith a
discussion of visual types and window attributes. The chapter continues with a discussion of the
Xlib functions you can use to:

. Create windows

. Destroy windows

. Map windows

. Unmap windows

. Configure windows

. Change window stacking order

. Change window attributes

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for communicat-
ing with window managersfor it to work well with the various window managersin use (see sec-
tion 14.1). Toolkits generally adhere to these conventions for you, relieving you of the burden.
Toolkits also often supersede many functionsin this chapter with versions of their own. For more
information, refer to the documentation for the toolkit that you are using.

3.1. Visual Types

On some display hardware, it may be possible to deal with color resourcesin more than one way.
For example, you may be able to deal with a screen of either 12-bit depth with arbitrary mapping
of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel dedicated to each of red,
green, and blue. These different ways of dealing with the visual aspects of the screen are called
visuals. For each screen of the display, there may be alist of valid visua types supported at
different depths of the screen. Because default windows and visual types are defined for each
screen, most simple applications need not deal with this complexity. Xlib provides macros and
functions that return the default root window, the default depth of the default root window, and
the default visua type (see sections 2.2.1 and 16.7).

Xlib uses an opague Visual structure that contains information about the possible color mapping.
The visua utility functions (see section 16.7) use an XVisuallnfo structure to return this infor-
mation to an application. The members of this structure pertinent to this discussion are class,
red_mask, green_mask, blue_mask, bits per_rgb, and colormap_size. The class member
specifies one of the possible visual classes of the screen and can be StaticGray, StaticColor,
TrueColor, GrayScale, PseudoColor, or DirectColor.

The following concepts may serve to make the explanation of visual types clearer. The screen can
be color or grayscale, can have a colormap that is writable or read-only, and can also have a color-
map whose indices are decomposed into separate RGB pieces, provided oneis not on agrayscale

screen. Thisleadsto the following diagram:

28

Xlib — C Library X11, Release 6.3

Color Gray-scale

R/O R/W R/O R/IW

Undecomposed | Static | Pseudo | Static | Gray
Colormap Color | Color Gray | Scale
Decomposed True Direct
Colormap Color | Calor

Conceptually, as each pixel is read out of video memory for display on the screen, it goes through
alook-up stage by indexing into a colormap. Colormaps can be manipulated arbitrarily on some
hardware, in limited ways on other hardware, and not at all on other hardware. The visual types
affect the colormap and the RGB values in the following ways:

. For PseudoColor, apixel value indexes a colormap to produce independent RGB values,
and the RGB values can be changed dynamically.

. GrayScaleistreated the same way as PseudoColorexcept that the primary that drives the
screen is undefined. Thus, the client should always store the same value for red, green, and
blue in the colormaps.

. For DirectColor, apixel valueis decomposed into separate RGB subfields, and each
subfield separately indexes the colormap for the corresponding value. The RGB values can
be changed dynamically.

. TrueColor istreated the same way as DirectColor except that the colormap has
predefined, read-only RGB values. These RGB values are server dependent but provide
linear or near-linear rampsin each primary.

. StaticColor is treated the same way as PseudoColorexcept that the colormap has
predefined, read-only, server-dependent RGB values.

. StaticGray istreated the same way as StaticColor except that the RGB values are equal
for any single pixel value, thus resulting in shades of gray. StaticGray with atwo-entry
colormap can be thought of as monochrome.

Thered_mask, green_mask, and blue_mask members are only defined for DirectColor and
TrueColor. Each has one contiguous set of bits with no intersections. The bits_per_rgb member
specifies the log base 2 of the number of distinct color values (individually) of red, green, and
blue. Actua RGB values are unsigned 16-bit numbers. The colormap_size member definesthe
number of available colormap entriesin anewly created colormap. For DirectColor and
TrueColor, thisisthe size of an individual pixel subfield.

To obtain the visual ID from a Visual, use XVisuallDFromVisual .

VisuallD XVisuallDFromVisual (visual)
Visua *visual ;

visual Specifies the visua type.

The XVisuallDFromVisual function returnsthe visual 1D for the specified visual type.

3.2. Window Attributes

All InputOutput windows have a border width of zero or more pixels, an optional background,
an event suppression mask (which suppresses propagation of events from children), and a pro-
perty list (see section 4.3). The window border and background can be a solid color or a pattern,
called atile. All windows except the root have a parent and are clipped by their parent. If awin-
dow is stacked on top of another window, it obscures that other window for the purpose of input.
If awindow has a background (almost all do), it obscures the other window for purposes of

29

Xlib — C Library X11, Release 6.3

output. Attempts to output to the obscured area do nothing, and no input events (for example,
pointer motion) are generated for the obscured area.

Windows also have associated property lists (see section 4.3).

Both InputOutput and InputOnly windows have the following common attributes, which are
the only attributes of an InputOnly window:

. win-gravity

. event-mask

. do-not-propagate-mask

. override-redirect

. cursor

If you specify any other attributes for an InputOnly window, a BadMatch error results.

InputOnly windows are used for controlling input eventsin situations where InputOutput win-
dows are unnecessary. InputOnly windows areinvisible; can only be used to control such
things as cursors, input event generation, and grabbing; and cannot be used in any graphics
requests. Notethat InputOnly windows cannot have InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a background pattern or
tile. Pixel values can be used for solid colors. The background and border pixmaps can be des-
troyed immediately after creating the window if no further explicit referencesto them areto be
made. The pattern can either be relative to the parent or absolute. If ParentRelative, the
parent’ s background is used.

When windows arefirst created, they are not visible (not mapped) on the screen. Any output to a
window that is not visible on the screen and that does not have backing store will be discarded.
An application may wish to create awindow long beforeit is mapped to the screen. When awin-
dow is eventually mapped to the screen (using XMapWindow), the X server generates an
Exposeevent for the window if backing store has not been maintained.

A window manager can override your choice of size, border width, and position for atop-level
window. Y our program must be prepared to use the actual size and position of the top window.
It is not acceptablefor aclient application to resizeitself unlessin direct response to a human
command to do so. Instead, either your program should use the space given to it, or if the space
istoo small for any useful work, your program might ask the user to resize the window. The
border of your top-level window is considered fair game for window managers.

To set an attribute of awindow, set the appropriate member of the XSetWindowAttributes
structure and OR in the corresponding value bitmask in your subsequent callsto XCreateWin-
dow and XChangeWindowAttributes, or use one of the other convenience functions that set the
appropriate attribute. The symbols for the value mask hits and the XSetWindowAttributes
structure are:

30

Xlib — C Library

/* Window attribute value mask bits */

#define CWBackPixmap
#define CWBackPixel
#define CWBorderPixmap
#define CWBorderPixel
#define CWBItGravity
#define CWWinGravity
#define CWBackingStore
#define CWBackingPlanes
#define CWBackingPixel
#define CWOverrideRedirect
#define CWSaveUnder
#define CWEventMask
#define CWbDontPropagate
#define CWColormap
#define CWCursor
[* Values*/
typedef struct {
Pixmap background_pixmap;
unsigned long background_pixel;
Pixmap border_pixmap;
unsigned long border_pixel;
int bit_gravity;

int win_gravity;

int backing_store;

unsigned long backing_planes,
unsigned long backing_pixel;
Bool save under;

long event_mask;

long do_not_propagate_mask;
Bool override redirect;
Colormap colormap;

Cursor cursor;

} XSetWindowAdttributes,

X11, Release 6.3

(1L<<0)
(1L<<1)
(1L<<2)
(1L<<3)
(1L<<4)
(1L<<5)
(1L<<6)
(1L<<7)
(1L<<8)
(1L<<9)
(1L<<10)
(1L<<11)
(1L<<12)
(1L<<13)
(1L<<14)

/* background, None, or ParentRelative */

* background pixel */

/* border of the window or CopyFromParent */
/* border pixel value*/

[* one of bit gravity values*/

/* one of the window gravity values*/

/* NotUseful, WhenMapped, Always */

/* planesto be preserved if possible */

[* valueto usein restoring planes */

* should bits under be saved? (popups) */

[* set of events that should be saved */

* set of eventsthat should not propagate */
/* boolean value for override_redirect */

* color map to be associated with window */
/* cursor to be displayed (or None) */

The following lists the defaults for each window attribute and indicates whether the attribute is
applicable to InputOutput and InputOnly windows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel zero Yes No

31

Xlib — C Library X11, Release 6.3

Attribute Default InputOutput InputOnly
save-under False Yes No
event-mask empty set Yes Yes
do-not-propagate-mask empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

3.2.1. Background Attribute

Only InputOutput windows can have a background. Y ou can set the background of an Inpu-
tOutput window by using apixel or a pixmap.

The background-pixmap attribute of awindow specifies the pixmap to be used for awindow’s
background. This pixmap can be of any size, although some sizes may be faster than others. The
background-pixel attribute of awindow specifies a pixel value used to paint awindow’ s back-
ground in asingle color.

Y ou can set the background-pixmap to a pixmap, None (default), or ParentRelative. Y ou can
set the background-pixel of awindow to any pixel value (no default). If you specify a
background-pixel, it overrides either the default background-pixmap or any value you may have
set in the background-pixmap. A pixmap of an undefined size that is filled with the background-
pixel is used for the background. Range checking is not performed on the background pixel; it
simply is truncated to the appropriate number of bits.

If you set the background-pixmap, it overridesthe default. The background-pixmap and the win-

dow must have the same depth, or a BadMatch error results. If you set background-pixmap to

None, the window has no defined background. If you set the background-pixmap to ParentRela-

tive:

. The parent window’ s background-pixmap is used. The child window, however, must have
the same depth asits parent, or a BadMatch error results.

. If the parent window has a background-pixmap of None, the window also hasa
background-pixmap of None.

. A copy of the parent window’ s background-pixmap is not made. The parent’s
background-pixmap is examined each time the child window’ s background-pixmap is
required.

. The background tile origin always aligns with the parent window’ s background tile origin.
If the background-pixmap is not ParentRelative, the background tile origin is the child
window’ s origin.

Setting a new background, whether by setting background-pixmap or background-pixel, overrides

any previous background. The background-pixmap can be freed immediately if no further expli-

cit referenceis madeto it (the X server will keep a copy to use when needed). If you later draw
into the pixmap used for the background, what happens is undefined because the X implementa-
tion is free to make a copy of the pixmap or to use the same pixmap.

When no valid contents are available for regions of awindow and either the regions are visible or
the server is maintaining backing store, the server automatically tiles the regions with the
window’ s background unless the window has a background of None. If the background is None,
the previous screen contents from other windows of the same depth as the window are simply |eft
in place as long as the contents come from the parent of the window or an inferior of the parent.
Otherwise, theinitial contents of the exposed regions are undefined. Exposeevents are then gen-
erated for the regions, even if the background-pixmap is None (see section 10.9).

32

Xlib — C Library X11, Release 6.3

3.2.2. Border Attribute

Only InputOutput windows can have aborder. Y ou can set the border of an InputOutput win-
dow by using a pixel or a pixmap.

The border-pixmap attribute of awindow specifies the pixmap to be used for awindow’ s border.
The border-pixel attribute of awindow specifies a pixmap of undefined size filled with that pixel
be used for awindow’ s border. Range checking is not performed on the background pixel; it Sim-
ply is truncated to the appropriate number of bits. The border tile origin is always the same as the
background tile origin.

Y ou can also set the border-pixmap to a pixmap of any size (some may be faster than others) or to
CopyFromParent (default). You can set the border-pixel to any pixel value (no default).

If you set a border-pixmap, it overridesthe default. The border-pixmap and the window must
have the same depth, or a BadMatch error results. If you set the border-pixmap to CopyFrom-
Parent, the parent window’ s border-pixmap is copied. Subsequent changesto the parent
window’ s border attribute do not affect the child window. However, the child window must have
the same depth as the parent window, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit referenceis madeto it. If you
later draw into the pixmap used for the border, what happens is undefined because the X imple-
mentation is free either to make a copy of the pixmap or to use the same pixmap. If you specify a
border-pixel, it overrides either the default border-pixmap or any value you may have set in the
border-pixmap. All pixelsin the window’s border will be set to the border-pixel. Setting a new
border, whether by setting border-pixel or by setting border-pixmap, overrides any previous
border.

Output to awindow is always clipped to the inside of the window. Therefore, graphics operations
never affect the window border.

3.2.3. Gravity Attributes

The bit gravity of awindow defines which region of the window should be retained when an
InputOutput window is resized. The default value for the bit-gravity attribute is ForgetGrav-
ity . Thewindow gravity of awindow allows you to define how the InputOutput or InputOnly
window should be repositioned if its parent is resized. The default value for the win-gravity attri-
bute is NorthWestGravity .

If the inside width or height of awindow is not changed and if the window is moved or its border
is changed, then the contents of the window are not lost but move with the window. Changing
the inside width or height of the window causes its contents to be moved or lost (depending on
the bit-gravity of the window) and causes children to be reconfigured (depending on their win-
gravity). For achange of width and height, the (X, y) pairs are defined:

Gravity Direction Coordinates

NorthWestGravity (0, 0)

NorthGravity (Width/2, 0)
NorthEastGravity (Width, 0)
WestGravity (O, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)

SouthEastGravity (Width, Height)

When awindow with one of these bit-gravity valuesis resized, the corresponding pair definesthe
change in position of each pixel in the window. When awindow with one of these win-gravities

33

Xlib — C Library X11, Release 6.3

has its parent window resized, the corresponding pair defines the change in position of the win-
dow within the parent. When awindow is so repositioned, a GravityNotify event is generated
(see section 10.10.5).

A bit-gravity of StaticGravity indicates that the contents or origin should not move relative to
the origin of the root window. If the change in size of the window is coupled with achangein
position (X, y), then for bit-gravity the change in position of each pixel is (=, —y), and for win-
gravity the changein position of achild when its parent is so resized is (—x, —y). Note that Sta-
ticGravity still only takes effect when the width or height of the window is changed, not when
the window is moved.

A bit-gravity of ForgetGravity indicates that the window’ s contents are always discarded after a
size change, even if abacking store or save under has been requested. The window istiled with
its background and zero or more Exposeevents are generated. If no background is defined, the
existing screen contents are not altered. Some X servers may also ignore the specified bit-gravity
and always generate Exposeevents.

The contents and borders of inferiors are not affected by their parent’ s bit-gravity. A serveris
permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of UnmapGravity islike NorthWestGravity (thewindow isnot moved), except
the child is also unmapped when the parent is resized, and an UnmapNotify event is generated.

3.2.4. Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of InputOutput
windows. If the X server maintains the contents of awindow, the off-screen saved pixels are
known as backing store. The backing store advises the X server on what to do with the contents
of awindow. The backing-store attribute can be set to NotUseful (default), WhenMapped, or
Always.

A backing-store attribute of NotUseful advisesthe X server that maintaining contents is unneces-
sary, athough some X implementations may still choose to maintain contents and, therefore, not
generate Exposeevents. A backing-store attribute of WhenMapped advisesthe X server that
maintaining contents of obscured regions when the window is mapped would be beneficial. In
this case, the server may generate an Exposeevent when the window is created. A backing-store
attribute of Always advisesthe X server that maintaining contents even when the window is
unmapped would be beneficial. Even if the window is larger than its parent, thisis arequest to the
X server to maintain complete contents, not just the region within the parent window boundaries.
While the X server maintains the window’ s contents, Expose events normally are not generated,
but the X server may stop maintaining contents at any time.

When the contents of obscured regions of awindow are being maintained, regions obscured by
noninferior windows are included in the destination of graphics requests (and source, when the
window is the source). However, regions obscured by inferior windows are not included.

3.2.5. SaveUnder Flag

Some server implementations may preserve contents of InputOutput windows under other
InputOutput windows. Thisis not the same as preserving the contents of awindow for you.

Y ou may get better visual appeal if transient windows (for example, pop-up menus) request that
the system preserve the screen contents under them, so the temporarily obscured applications do
not have to repaint.

Y ou can set the save-under flag to True or False (default). If save-under is True, the X server
is advised that, when this window is mapped, saving the contents of windows it obscures would
be beneficial.

34

Xlib — C Library X11, Release 6.3

3.2.6. Backing Planesand Backing Pixel Attributes

Y ou can set backing planes to indicate (with bits set to 1) which bit planes of an InputOutput
window hold dynamic data that must be preserved in backing store and during save unders. The
default value for the backing-planes attribute is all bits set to 1. Y ou can set backing pixel to
specify what bits to use in planes not covered by backing planes. The default value for the
backing-pixel attribute is all bits set to 0. The X server isfreeto save only the specified bit planes
in the backing store or the save under and is free to regenerate the remaining planes with the
specified pixel value. Any extraneous bits in these values (that is, those bits beyond the specified
depth of the window) may be simply ignored. If you request backing store or save unders, you
should use these members to minimize the amount of off-screen memory required to store your
window.

3.2.7. Event Mask and Do Not PropagateMask Attributes

The event mask defines which eventsthe client isinterested in for this InputOutput or Inpu-
tOnly window (or, for some event types, inferiors of thiswindow). The event mask is the bit-
wise inclusive OR of zero or more of the valid event mask bits. Y ou can specify that no mask-
able events are reported by setting NoEventMask (default).

The do-not-propagate-mask attribute defines which events should not be propagated to ancestor
windows when no client has the event type selected in this InputOutput or InputOnly window.
The do-not-propagate-mask is the bitwise inclusive OR of zero or more of the following masks:
KeyPress KeyRelease ButtonPress, ButtonRelease PointerMotion, Button1Motion,
Button2Motion , Button3Motion , Button4Motion , Button5Motion , and ButtonMotion .

Y ou can specify that all events are propagated by setting NoEventMask (default).

3.2.8. Override Redirect Flag

To control window placement or to add decoration, a window manager often needsto intercept
(redirect) any map or configure request. Pop-up windows, however, often need to be mapped
without awindow manager getting in the way. To control whether an InputOutput or Inpu-
tOnly window isto ignore these structure control facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this window should
override a SubstructureRedirectMask on the parent. Y ou can set the override-redirect flag to
True or False (default). Window managers use this information to avoid tampering with pop-up
windows (see also chapter 14).

3.2.9. Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the InputOutput
window. The colormap must have the same visual type as the window, or a BadMatch error
results. X servers capable of supporting multiple hardware colormaps can use this information,
and window managers can use it for callsto XinstallColormap . You can set the colormap attri-
bute to a colormap or to CopyFromParent (default).

If you set the colormap to CopyFromParent, the parent window’ s colormap is copied and used
by its child. However, the child window must have the same visual type as the parent, or a Bad-
Match error results. The parent window must not have a colormap of None, or a BadMatch
error results. The colormap is copied by sharing the colormap object between the child and
parent, not by making a complete copy of the colormap contents. Subseguent changes to the
parent window’ s colormap attribute do not affect the child window.

3.2.10. Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer isin the InputOutput
or InputOnly window. You can set the cursor to a cursor or None (default).

If you set the cursor to None, the parent’ s cursor is used when the pointer isin the InputOutput
or InputOnly window, and any change in the parent’ s cursor will cause an immediate changein

35

Xlib — C Library X11, Release 6.3

the displayed cursor. By calling XFreeCursor, the cursor can be freed immediately aslong as
no further explicit referenceto it is made.

3.3. Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-level functions
specifically for creating and placing top-level windows, which are discussed in the appropriate
toolkit documentation. If you do not use atoolkit, however, you must provide some standard
information or hints for the window manager by using the Xlib inter-client communication func-
tions (see chapter 14).

If you use Xlib to create your own top-level windows (direct children of the root window), you
must observe the following rules so that all applications interact reasonably across the different
styles of window management:

. Y ou must never fight with the window manager for the size or placement of your top-level
window.

. Y ou must be ableto deal with whatever size window you get, even if this means that your
application just prints a message like ‘* Please make me bigger’’ in its window.

. Y ou should only attempt to resize or move top-level windowsin direct response to a user
request. If arequest to change the size of atop-level window fails, you must be prepared to
live with what you get. Y ou arefreeto resize or move the children of top-level windows as
necessary. (Toolkits often have facilities for automatic relayout.)

. If you do not use atoolkit that automatically sets standard window properties, you should
set these properties for top-level windows before mapping them.

For further information, see chapter 14 and the Inter-Client Communication Conventions Manual.

XCreateWindow is the more general function that allows you to set specific window attributes
when you create awindow. XCreateSimpleWindow creates a window that inherits its attributes
from its parent window.

The X server actsasif InputOnly windows do not exist for the purposes of graphics requests,
exposure processing, and VisibilityNotify events. An InputOnly window cannot be used as a
drawable (that is, as a source or destination for graphics requests). InputOnly and InputOutput
windows act identically in other respects (properties, grabs, input control, and so on). Extension
packages can define other classes of windows.

To create an unmapped window and set its window attributes, use XCreateWindow.

36

Xlib — C Library X11, Release 6.3

Window X CreateWindow(display, parent, X, y, width, height, border_width, depth,

class, visual, valuemask, attributes)

Display *display;
Window parent;

intx,y;

unsigned int width, height;
unsigned int border_width;

int depth;

unsigned int class;

Visual *visual ;

unsigned long valuemask;
XSetWindowAttributes * attributes;

display
parent

X
y

width
height

border_width
depth

class

visual

valuemask

attributes

Specifies the connection to the X server.
Specifies the parent window.

Specify the x and y coordinates, which are the top-left outside corner of the creat-
ed window’s borders and are relative to the inside of the parent window’s bord-
ers.

Specify the width and height, which are the created window’ s inside dimensions
and do not include the created window’s borders. The dimensions must be
nonzero, or a BadValue error results.

Specifies the width of the created window’ s border in pixels.

Specifies the window’ s depth. A depth of CopyFromParent means the depth is
taken from the parent.

Specifies the created window’s class. You can pass InputOutput , InputOnly ,
or CopyFromParent. A class of CopyFromParent means the class is taken
from the parent.

Specifiesthe visua type. A visual of CopyFromParent meansthe visua typeis
taken from the parent.

Specifies which window attributes are defined in the attributes argument. This
mask is the bitwise inclusive OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced.

Specifies the structure from which the values (as specified by the value mask) are
to be taken. The value mask should have the appropriate bits set to indicate
which attributes have been set in the structure.

The XCreateWindow function creates an unmapped subwindow for a specified parent window,
returns the window ID of the created window, and causes the X server to generate a CreateNo-
tify event. The created window is placed on top in the stacking order with respect to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical with the origin [0, O] at
the upper-left corner. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
Each window and pixmap has its own coordinate system. For awindow, the origin isinside the
border at the inside, upper-left corner.

The border_width for an InputOnly window must be zero, or a BadMatch error results. For

class InputOutput , the visual type and depth must be a combination supported for the screen, or
a BadMatch error results. The depth need not be the same as the parent, but the parent must not
be awindow of class InputOnly , or a BadMatch error results. For an InputOnly window, the
depth must be zero, and the visual must be one supported by the screen. If either condition is not

37

Xlib — C Library X11, Release 6.3

met, a BadMatch error results. The parent window, however, may have any depth and class. If
you specify any invalid window attribute for a window, a BadMatch error results.

The created window is not yet displayed (mapped) on the user’ sdisplay. To display the window,
call XMapWindow . The new window initially uses the same cursor asits parent. A new cursor
can be defined for the new window by calling XDefineCursor. The window will not be visible
on the screen unless it and all of its ancestors are mapped and it is not obscured by any of its
ancestors.

XCreateWindow can generate BadAlloc, BadColor, BadCursor, BadMatch, BadPixmap,
BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent window, use XCreateSim-
pleWindow.

Window X CreateSimpleWindow (display, parent, x, y, width, height, border_width,
border, background)
Display *display;
Window parent;
intx,y;
unsigned int width, height;
unsigned int border_width;
unsigned long border ;
unsigned long background;

display Specifies the connection to the X server.

parent Specifies the parent window.

X

y Specify the x and y coordinates, which are the top-left outside corner of the new
window’ s borders and are relative to the inside of the parent window’ s borders.

width

height Specify the width and height, which are the created window’ s inside dimensions

and do not include the created window’s borders. The dimensions must be
nonzero, or a BadValue error results.

border_width Specifies the width of the created window’ s border in pixels.
border Specifies the border pixel value of the window.
background Specifies the background pixel value of the window.

The XCreateSimpleWindow function creates an unmapped InputOutput subwindow for a
specified parent window, returns the window 1D of the created window, and causes the X server
to generate a CreateNotify event. The created window is placed on top in the stacking order
with respect to siblings. Any part of the window that extends outside its parent window is
clipped. The border_width for an InputOnly window must be zero, or a BadMatch error
results. XCreateSimpleWindow inherits its depth, class, and visual from its parent. All other
window attributes, except background and border, have their default values.

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue, and BadWindow
errors.

3.4. Destroying Windows

Xlib provides functions that you can use to destroy awindow or destroy all subwindows of awin-
dow.

38

Xlib — C Library X11, Release 6.3

To destroy awindow and all of its subwindows, use XDestroyWindow.

XDestroyWindow (display, w)

Display *display;
Window w;

display Specifies the connection to the X server.
w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of its subwindows
and causes the X server to generate a DestroyNotify event for each window. The window should
never be referenced again. If the window specified by the w argument is mapped, it is unmapped
automatically. The ordering of the DestroyNotify eventsis such that for any given window
being destroyed, DestroyNotify is generated on any inferiors of the window before being gen-
erated on the window itself. The ordering among siblings and across subhierarchiesis not other-
wise constrained. If the window you specified is aroot window, no windows are destroyed. Des-
troying a mapped window will generate Exposeevents on other windows that were obscured by
the window being destroyed.

XDestroyWindow can generate a BadwWindow error.
To destroy all subwindows of a specified window, use XDestroySubwindows

XDestroySubwindows(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.
w Specifies the window.

The XDestroySubwindowsfunction destroys all inferior windows of the specified window, in
bottom-to-top stacking order. It causesthe X server to generate a DestroyNotify event for each
window. If any mapped subwindows were actually destroyed, XDestroySubwindows causesthe
X server to generate Exposeevents on the specified window. Thisis much more efficient than
deleting many windows one at a time because much of the work need be performed only once for
al of the windows, rather than for each window. The subwindows should never be referenced
again.

XDestroySubwindowscan generate a BadWindow error.

3.5. Mapping Windows

A window is considered mapped if an XMapWindow call has been made on it. It may not be
visible on the screen for one of the following reasons:

. It is obscured by another opague window.
. One of its ancestorsis not mapped.
. It isentirely clipped by an ancestor.

Exposeevents are generated for the window when part or al of it becomes visible on the screen.
A client receivesthe Exposeeventsonly if it has asked for them. Windows retain their position
in the stacking order when they are unmapped.

A window manager may want to control the placement of subwindows. If Substruc-
tureRedirectMask has been selected by awindow manager on a parent window (usually aroot
window), amap request initiated by other clients on a child window is not performed, and the
window manager is sent a MapRequestevent. However, if the override-redirect flag on the

39

Xlib — C Library X11, Release 6.3

child had been set to True (usually only on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients' windows and then
decide to map the window to its final location. A window manager that wants to provide decora-
tion might reparent the child into aframefirst. For further information, see sections 3.2.8 and
10.10. Only asingleclient at atime can select for SubstructureRedirectMask.

Similarly, asingle client can select for ResizeRedirectMaskon a parent window. Then, any
attempt to resize the window by another client is suppressed, and the client receives a ResizeRe-
quest event.

To map agiven window, use XMapWindow .

XMapWindow (display, w)

Display *display;
Window w;

display Specifies the connection to the X server.
w Specifies the window.

The XMapWindow function maps the window and all of its subwindows that have had map
reguests. Mapping awindow that has an unmapped ancestor does not display the window but
marksit as eligible for display when the ancestor becomes mapped. Such awindow is called
unviewable. When all its ancestors are mapped, the window becomes viewable and will be visi-
ble on the screen if it is not obscured by another window. This function has no effect if the win-
dow is already mapped.

If the override-redirect of the window is False and if some other client has selected Substruc-
tureRedirectMask on the parent window, then the X server generates a MapRequestevent, and
the XMapWindow function does not map the window. Otherwise, the window is mapped, and
the X server generatesa MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the X server tiles
the window with its background. If the window’s background is undefined, the existing screen
contents are not altered, and the X server generates zero or more Exposeevents. If backing-store
was maintained while the window was unmapped, no Expose events are generated. 1f backing-
store will now be maintained, a full-window exposure is always generated. Otherwise, only visi-
ble regions may be reported. Similar tiling and exposure take place for any newly viewable infe-
riors.

If the window is an InputOutput window, XMapWindow generates Expose events on each
InputOutput window that it causesto be displayed. If the client maps and paints the window
and if the client begins processing events, the window is painted twice. To avoid this, first ask for
Expose events and then map the window, so the client processes input eventsasusual. The
event list will include Exposefor each window that has appeared on the screen. The client’s nor-
mal response to an Exposeevent should be to repaint the window. This method usualy leads to
simpler programs and to proper interaction with window managers.

XMapWindow can generate a BadWindow error.

To map and raise awindow, use XMapRaised.

40

Xlib — C Library X11, Release 6.3

XMapRaised(display, w)

Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XMapRaised function essentiadly is similar to XMapWindow in that it maps the window
and all of its subwindows that have had map requests. However, it aso raises the specified win-
dow to the top of the stack. For additional information, see XMapWindow .

XMapRaised can generate multiple BadWindow errors.
To map al subwindows for a specified window, use XMapSubwindows.

XMapSubwindows(display, w)

Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in top-to-bottom
stacking order. The X server generates Exposeevents on each newly displayed window. This
may be much more efficient than mapping many windows one at a time because the server needs
to perform much of the work only once, for all of the windows, rather than for each window.

XMapSubwindows can generate a BadWindow error.

3.6. Unmapping Windows
Xlib provides functions that you can use to unmap awindow or all subwindows.

To unmap awindow, use XUnmapWindow .

XUnmapWindow (display, w)

Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XUnmapWindow function unmaps the specified window and causesthe X server to gen-
erate an UnmapNotify event. If the specified window is already unmapped, XUnmapWindow
has no effect. Normal exposure processing on formerly obscured windowsis performed. Any
child window will no longer be visible until another map call is made on the parent. In other
words, the subwindows are still mapped but are not visible until the parent is mapped. Unmap-
ping awindow will generate Exposeevents on windows that were formerly obscured by it.

XUnmapWindow can generate a BadWindow error.

To unmap all subwindows for a specified window, use XUnmapSubwindows.

41

Xlib — C Library X11, Release 6.3

XUnmapSubwindows(display, w)

Display *display;
Window w;

display Specifies the connection to the X server.
w Specifies the window.

The XUnmapSubwindows function unmaps al subwindows for the specified window in
bottom-to-top stacking order. It causesthe X server to generate an UnmapNotify event on each
subwindow and Exposeevents on formerly obscured windows. Using this function is much
more efficient than unmapping multiple windows one at a time because the server needsto per-
form much of the work only once, for al of the windows, rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

3.7. Configuring Windows

Xlib provides functions that you can use to move awindow, resize awindow, move and resizea
window, or change awindow’ s border width. To change one of these parameters, set the
appropriate member of the XWindowChanges structure and OR in the corresponding value
mask in subsequent callsto XConfigureWindow . The symbols for the value mask bits and the
XWindowChanges structure are:

/* Configure window value mask bits */

#define CWX (1<<0)
#define CwWy (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)
[* Values*/
typedef struct {

intx,y;

int width, height;
int border_width;
Window sibling;
int stack_mode;

} XWindowChanges;

The x and y members are used to set the window’s x and y coordinates, which arerelative to the
parent’ s origin and indicate the position of the upper-left outer corner of the window. The width
and height members are used to set the inside size of the window, not including the border, and
must be nonzero, or a BadValue error results. Attempts to configure aroot window have no
effect.

The border_width member is used to set the width of the border in pixels. Note that setting just
the border width leaves the outer-left corner of the window in afixed position but moves the
absolute position of the window’s origin. If you attempt to set the border-width attribute of an
InputOnly window nonzero, a BadMatch error results.

42

Xlib — C Library X11, Release 6.3

The sibling member is used to set the sibling window for stacking operations. The stack_mode
member is used to set how the window is to be restacked and can be set to Above, Below,
Toplf , Bottomlf, or Opposite.

If the override-redirect flag of the window is False and if some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequestevent, and
no further processing is performed. Otherwise, if some other client has selected Resiz-
eRedirectMask on the window and the inside width or height of the window is being changed, a
ResizeRequesevent is generated, and the current inside width and height are used instead. Note
that the override-redirect flag of the window has no effect on ResizeRedirectMaskand that Sub-
structureRedirectMask on the parent has precedence over ResizeRedirectMaskon the win-
dow.

When the geometry of the window is changed as specified, the window is restacked among
siblings, and a ConfigureNotify event is generated if the state of the window actually changes.
GravityNotify events are generated after ConfigureNotify events. If theinside width or height
of the window has actually changed, children of the window are affected as specified.

If awindow’ s size actually changes, the window’ s subwindows move according to their window
gravity. Depending on the window’ s bit gravity, the contents of the window also may be moved
(see section 3.2.3).

If regions of the window were obscured but now are not, exposure processing is performed on
these formerly obscured windows, including the window itself and itsinferiors. As aresult of
increasing the width or height, exposure processing is also performed on any new regions of the
window and any regions where window contents are lost.

The restack check (specifically, the computation for Bottomlf , Toplf , and Opposite) is per-
formed with respect to the window’ s final size and position (as controlled by the other arguments
of the request), not itsinitia position. If asibling is specified without a stack_mode, a Bad-
Match error results.

If asibling and a stack_mode are specified, the window is restacked as follows:

Above Thewindow is placed just above the sibling.

Below Thewindow is placed just below the sibling.

Toplf If the sibling occludes the window, the window is placed at the top of the stack.

BottomIf If the window occludes the sibling, the window is placed at the bottom of the
stack.

Opposite If the sibling occludes the window, the window is placed at the top of the stack.
If the window occludes the sibling, the window is placed at the bottom of the
stack.

If astack_modeis specified but no sibling is specified, the window is restacked as follows:

Above Thewindow is placed at the top of the stack.

Below Thewindow is placed at the bottom of the stack.

Toplf If any sibling occludes the window, the window is placed at the top of the stack.

BottomIf If the window occludes any sibling, the window is placed at the bottom of the
stack.

Opposite If any sibling occludes the window, the window is placed at the top of the stack.
If the window occludes any sibling, the window is placed at the bottom of the
stack.

Attempts to configure aroot window have no effect.

43

Xlib — C Library X11, Release 6.3

To configure awindow’ s size, location, stacking, or border, use XConfigureWindow .

X ConfigurewWindow (display, w, value_mask, values)
Display *display;
Window w;
unsigned int value_mask;
XWindowChanges *values;

display Specifies the connection to the X server.
w Specifies the window to be reconfigured.

value_mask Specifies which values are to be set using information in the values structure.
This mask is the bitwise inclusive OR of the valid configure window values bits.

values Specifies the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWindowChanges structure
to reconfigure awindow’ s size, position, border, and stacking order. Values not specified are
taken from the existing geometry of the window.

If asibling is specified without a stack_mode or if the window is not actually asibling, a Bad-
Match error results. Note that the computations for BottomlIf , Toplf , and Opposite are per-
formed with respect to the window’ s final geometry (as controlled by the other arguments passed
to XConfigureWindow), not itsinitial geometry. Any backing store contents of the window, its
inferiors, and other newly visible windows are either discarded or changed to reflect the current
screen contents (depending on the implementation).

XConfigureWindow can generate BadMatch, BadValue, and BadWindow errors.
To move awindow without changing its size, use XMoveWindow .

XMoveWindow (display, w, X, y)
Display *display;
Window w;
intx,y;

display Specifies the connection to the X server.
w Specifies the window to be moved.

X
y Specify the x and y coordinates, which define the new location of the top-left pix-
el of the window’ s border or the window itself if it has no border.

The XMoveWindow function moves the specified window to the specified x and y coordinates,
but it does not change the window’ s size, raise the window, or change the mapping state of the
window. Moving a mapped window may or may not lose the window’ s contents depending on if
the window is obscured by nonchildren and if no backing store exists. If the contents of the win-
dow arelogt, the X server generates Exposeevents. Moving a mapped window generates
Exposeevents on any formerly obscured windows.

If the override-redirect flag of the window is False and some other client has selected Substruc-
tureRedirectMask on the parent, the X server generates a ConfigureRequestevent, and no
further processing is performed. Otherwise, the window is moved.

XMoveWindow can generate a BadWindow error.

To change awindow’ s size without changing the upper-left coordinate, use XResizeWindow.

44

Xlib — C Library X11, Release 6.3

XResizéWindow (display, w, width, height)
Display *display;
Window w;
unsigned int width, height;

display Specifies the connection to the X server.

w Specifies the window.

width
height Specify the width and height, which are the interior dimensions of the window
after the call completes.

The XResizeWindowfunction changes the inside dimensions of the specified window, not
including its borders. This function does not change the window’ s upper-left coordinate or the
origin and does not restack the window. Changing the size of a mapped window may lose its
contents and generate Exposeevents. If amapped window is made smaller, changing its size
generates Exposeevents on windows that the mapped window formerly obscured.

If the override-redirect flag of the window is False and some other client has selected Substruc-
tureRedirectMask on the parent, the X server generates a ConfigureRequestevent, and no
further processing is performed. If either width or height is zero, a BadValue error results.

XResizeWindow can generate BadValue and BadWindow errors.

To change the size and location of awindow, use XMoveResizeWindow

XMoveResizéWindow(display, w, X, y, width, height)

Display *display;
Window w;
intx,y;
unsigned int width, height;
display Specifies the connection to the X server.
w Specifies the window to be reconfigured.
X
y Specify the x and y coordinates, which define the new position of the window re-
lative to its parent.
width
height Specify the width and height, which define the interior size of the window.

The XMoveResizeWindowfunction changes the size and location of the specified window
without raising it. Moving and resizing a mapped window may generate an Exposeevent on the
window. Depending on the new size and location parameters, moving and resizing a window
may generate Expose events on windows that the window formerly obscured.

If the override-redirect flag of the window is False and some other client has selected Substruc-
tureRedirectMask on the parent, the X server generates a ConfigureRequestevent, and no
further processing is performed. Otherwise, the window size and location are changed.

XMoveResizeWindowcan generate BadValue and BadWindow errors.

To change the border width of a given window, use XSetWindowBorderWidth .

45

Xlib — C Library X11, Release 6.3

XSetWindowBorderWidth(display, w, width)

Display *display;

Window w;

unsigned int width;
display Specifies the connection to the X server.
w Specifies the window.

width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window’ s border width to the
specified width.

XSetWindowBorderWidth can generate a BadwWindow error.

3.8. Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack windows.
To raise awindow so that no sibling window obscuresit, use XRaiseWindow.

XRaiseWindow (display, w)
Display *display;
Window w;

display Specifies the connection to the X server.
w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so that no
sibling window obscuresit. If the windows are regarded as overlapping sheets of paper stacked
on adesk, then raising awindow is analogous to moving the sheet to the top of the stack but leav-
ing its x and y location on the desk constant. Raising a mapped window may generate Expose
events for the window and any mapped subwindows that were formerly obscured.

If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequestevent, and
no processing is performed. Otherwise, the window is raised.

XRaiseWindow can generate a BadWindow error.
To lower awindow so that it does not obscure any sibling windows, use XLowerWindow .

XLowerWindow(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.
w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack so that it
does not obscure any sibling windows. If the windows are regarded as overlapping sheets of
paper stacked on adesk, then lowering awindow is analogous to moving the sheet to the bottom
of the stack but leaving its x and y location on the desk constant. Lowering a mapped window
will generate Exposeevents on any windows it formerly obscured.

46

L

Xlib — C Library X11, Release 6.3

If the override-redirect attribute of the window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequestevent, and
no processing is performed. Otherwise, the window is lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.
To circulate a subwindow up or down, use XCirculateSubwindows.

XCirculateSubwindows(display, w, direction)
Display *display;
Window w;
int direction;

display Specifies the connection to the X server.

w Specifies the window.

direction Specifies the direction (up or down) that you want to circulate the window. Y ou
can pass RaiselLowestor LowerHighest.

The XCirculateSubwindows function circulates children of the specified window in the
specified direction. If you specify RaiseLowest XCirculateSubwindows raises the lowest
mapped child (if any) that is occluded by another child to the top of the stack. If you specify
LowerHighest, XCirculateSubwindows lowers the highest mapped child (if any) that occludes
another child to the bottom of the stack. Exposure processing is then performed on formerly
obscured windows. If some other client has selected SubstructureRedirectMask on the win-
dow, the X server generates a CirculateRequestevent, and no further processing is performed.
If achild is actually restacked, the X server generatesa CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of awindow that is partially or completely occluded by another
child, use XCirculateSubwindowsUp.

XCirculateSubwindowsUp(display, w)

Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the specified win-
dow that is partially or completely occluded by another child. Completely unobscured children
are not affected. Thisis aconvenience function equivalent to XCirculateSubwindows with
RaiselLowestspecified.

XCirculateSubwindowsUp can generate a BadWindow error.

To lower the highest mapped child of awindow that partially or completely occludes another
child, use XCirculateSubwindowsDown.

47

Xlib — C Library X11, Release 6.3

XCirculateSubwindowsDown(display, w)

Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of the specified
window that partialy or completely occludes another child. Completely unobscured children are
not affected. Thisis a convenience function equivalent to XCirculateSubwindows with
LowerHighest specified.

XCirculateSubwindowsDown can generate a BadWindow error.
To restack a set of windows from top to bottom, use XRestackWindows.

XRestackWindows(display, windows, nwindows);
Display *display;
Window windows[];
int nwindows;

display Specifies the connection to the X server.

windows Specifies an array containing the windows to be restacked.
nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top to bot-
tom. The stacking order of the first window in the windows array is unaffected, but the other win-
dowsin the array are stacked underneath the first window, in the order of the array. The stacking
order of the other windows is not affected. For each window in the window array that is not a
child of the specified window, a BadMatch error results.

If the override-redirect attribute of awindow is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates ConfigureRequestevents for each
window whose override-redirect flag is not set, and no further processing is performed. Other-
wise, the windows will be restacked in top-to-bottom order.

XRestackWindows can generate a BadwWindow error.
3.9. Changing Window Attributes

Xlib provides functions that you can use to set window attributes. XChangeWindowAttributes
is the more general function that allows you to set one or more window attributes provided by the
XSetWindowAttributes structure. The other functions described in this section allow you to set
one specific window attribute, such as awindow’ s background.

To change one or more attributes for a given window, use XChangeWindowAttributes.

48

Xlib — C Library X11, Release 6.3

X ChangeWindowAttributes(display, w, valuemask, attributes)
Display *display;
Window w;
unsigned long valuemask;
XSetWindowAttributes * attributes;

display Specifies the connection to the X server.
w Specifies the window.

valuemask Specifies which window attributes are defined in the attributes argument. This
mask is the bitwise inclusive OR of the valid attribute mask bits. If valuemask is
zero, the attributes are ignored and are not referenced. The values and restric-
tions are the same as for XCreateWindow.

attributes Specifies the structure from which the values (as specified by the value mask) are
to be taken. The value mask should have the appropriate bits set to indicate
which attributes have been set in the structure (see section 3.2).

Depending on the valuemask, the XChangeWindowAttributes function uses the window attri-
butes in the XSetWindowAttributes structure to change the specified window attributes.
Changing the background does not cause the window contents to be changed. To repaint the win-
dow and its background, use XClearWindow . Setting the border or changing the background
such that the border tile origin changes causes the border to be repainted. Changing the back-
ground of aroot window to None or ParentRelative restores the default background pixmap.
Changing the border of aroot window to CopyFromParent restores the default border pixmap.
Changing the win-gravity does not affect the current position of the window. Changing the
backing-store of an obscured window to WhenMapped or Always, or changing the backing-
planes, backing-pixel, or save-under of a mapped window may have no immediate effect. Chang-
ing the colormap of awindow (that is, defining a new map, not changing the contents of the exist-
ing map) generates a ColormapNotify event. Changing the colormap of avisible window may
have no immediate effect on the screen because the map may not be installed (see XinstallColor-
map). Changing the cursor of aroot window to None restores the default cursor. Whenever
possible, you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are maintained
separately. When an event is generated, it is reported to al interested clients. However, only one
client at atime can select for SubstructureRedirectMask, ResizeRedirectMask and But-
tonPressMask If aclient attemptsto select any of these event masks and some other client has
already selected one, a BadAccesserror results. Thereis only one do-not-propagate-mask for a
window, not one per client.

XChangeWindowAttributes can generate BadAccess BadColor, BadCursor, BadMatch,
BadPixmap, BadValue, and BadWindow errors.

To set the background of awindow to agiven pixel, use XSetWindowBackground.

49

Xlib — C Library X11, Release 6.3

X SetWindowBackground(display, w, background_pixel)
Display *display;
Window w;
unsigned long background_pixel;

display Specifies the connection to the X server.

w Specifies the window.

background_pixel
Specifies the pixel that isto be used for the background.

The XSetWindowBackground function sets the background of the window to the specified
pixel value. Changing the background does not cause the window contents to be changed.
XSetWindowBackground uses a pixmap of undefined size filled with the pixel value you
passed. If you try to change the background of an InputOnly window, a BadMatch error
results.

XSetWindowBackground can generate BadMatch and BadWindow errors.

To set the background of awindow to a given pixmap, use XSetWindowBackgroundPixmap.

X SetWindowBackgroundPixmap(display, w, background_pixmap)
Display *display;
Window w;
Pixmap background_pixmap;

display Specifies the connection to the X server.

w Specifies the window.

background_pixmap
Specifies the background pixmap, ParentRelative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the window to
the specified pixmap. The background pixmap can immediately be freed if no further explicit
referencesto it areto be made. If ParentRelative is specified, the background pixmap of the
window’ s parent is used, or on the root window, the default background is restored. If you try to
change the background of an InputOnly window, a BadMatch error results. If the background
is set to None, the window has no defined background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and BadWindow
errors.

Note

XSetWindowBackground and XSetWindowBackgroundPixmap do not change
the current contents of the window.

To change and repaint awindow’ s border to a given pixel, use XSetWindowBorder.

50

Xlib — C Library X11, Release 6.3

X SetWindowBorder (display, w, border_pixel)

Display *display;

Window w;

unsigned long border_pixel;
display Specifies the connection to the X server.
w Specifies the window.

border_pixel Specifiesthe entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value you specify.
If you attempt to perform this on an InputOnly window, a BadMatch error results.

XSetWindowBorder can generate BadMatch and BadWindow errors.
To change and repaint the border tile of a given window, use XSetWindowBorderPixmap.

X SetWindowBorderPixmap(display, w, border_pixmap)
Display *display;
Window w;
Pixmap border_pixmap;
display Specifies the connection to the X server.
w Specifies the window.

border_pixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to the pixmap
you specify. The border pixmap can be freed immediately if no further explicit referencesto it
areto be made. If you specify CopyFromParent, a copy of the parent window’ s border pixmap
isused. If you attempt to perform this on an InputOnly window, a BadMatch error results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and BadWindow errors.
To set the colormap of a given window, use XSetWindowColormap.

X SetWindowColormap (display, w, colormap)

Display *display;

Window w;

Colormap colormap;
display Specifies the connection to the X server.
w Specifies the window.

colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified window. The
colormap must have the same visual type as the window, or a BadMatch error results.
XSetWindowColormap can generate BadColor, BadMatch, and BadWindow errors.

To define which cursor will be used in awindow, use XDefineCursor.

51

L

Xlib — C Library X11, Release 6.3

XDefineCursor (display, w, cursor)

Display *display;

Window w;

Cursor cursor;
display Specifies the connection to the X server.
w Specifies the window.

cursor Specifies the cursor that isto be displayed or None.

If acursoris set, it will be used when the pointer isin the window. If the cursor is None, itis
equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.
To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor (display, w)

Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XUndefineCursor function undoes the effect of a previous XDefineCursor for this win-
dow. When the pointer is in the window, the parent’s cursor will now be used. On the root win-
dow, the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

52

Xlib — C Library X11, Release 6.3

Chapter 4

Window Information Functions

After you connect the display to the X server and create a window, you can use the Xlib window
information functions to:

. Obtain information about a window

. Translate screen coordinates

. Manipulate property lists

. Obtain and change window properties
. Manipulate selections

4.1. Obtaining Window