Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

27.1
27.2
27.3
27.4
27.5

28.1
28.2
28.3
28.4

20.1
29.2
29.3
29.4
29.5
29.6

30.1
30.2
30.3

31.1
31.2
31.3

Philosophy 257

C vs. Tl: primitives 257

Object names 259

Commands: action-oriented vs. object-orient&60
Application prefixes 261

Representing information262

Interpreters and Script Evaluatior263
Interpreters 263

A simple Tcl application 263

Other evaluation procedure66

Deleting interpreters 266

Creating New Tcl Commands269
Command procedures269

Registering commands271

The result protocol 272

Procedures for managing the resut73
ClientData and deletion callback®75

Deleting commands 278

Parsing 279
Numbers and boolean279
Expression evaluation282
Manipulating lists 283

Exceptions 285
Completion codes. 285
Augmenting the stack trace in errorinf@88
Setting errorCode 290

DRAFT (4/16/93): Distribution Restricted

Chapter 32

Chapter 33

Chapter 34

Chapter 35

32.1
32.2
32.3
32.4
32.5
32.6
32.7
32.8
32.9
32.10
32.1

33.1
33.2
33.3
33.4
33.5
33.6
33.7

34.1
34.2
34.3

35.1
35.2

Accessing Tcl Variables 291
Naming variables 291

Setting variable values293

Reading variables 295

Unsetting variables 296

Setting and unsetting variable trace296
Trace callbacks 297

Whole-array traces 299

Multiple traces 299

Unset callbacks 299

Non-existent variables 300

Querying trace information 300

Hash Tables 301

Keys and values 303

Creating and deleting hash table303
Creating entries 304

Finding existing entries 305
Searching 306

Deleting entries 307

Statistics 307

String Utilities 309
Dynamic strings 309
Command completeness312
String matching 313

POSIX Utilities 315

Tilde expansion 315
Generating messages817

DRAFT (4/16/93): Distribution Restricted

35.3 Creating subprocesses818
35.4 Background processes319

DRAFT (4/16/93): Distribution Restricted

DRAFT (4/16/93): Distribution Restricted

Part |11:

Writing Tcl Applications
In C

256

DRAFT (4/16/93): Distribution Restricted

Chapter 27
Philosophy

Note:

27.1

This part of the book describes how to write C applications based.dgifice the @l
interpreter is implemented as a C library package, it can be linked into any C or C++ pro-
gram. The enclosing application invokes procedures in¢hébfary to create interpret-

ers, evaluated scripts, and extend the built-in command set with new application-
specific commands.cTalso provides a number of utility procedures for use in implement-
ing new commands; these procedures can be used to acteagdbles, parse gu-

ments, manipulatecT lists, evaluate dl expressions, and so on. This chapter discusses
several high-level issues to consider when designirgy application, such as what new

Tcl commands to implement, how to name objects, and what form to use for command
results. The following chapters present the specific C interfaces provided ky the T
library.

The interfaces described in Part Illeathose that will be available irclT7.0, which had

not been eleased at the timex this draft wagpaed. Thus ther may some diffences
between what yolead hee and what you can do with your cemt version of dl. Thee

are almost no diffemces in functionality; the diffences mostly have to do with the
interfaces. Be serto consult your manual entries when you actually write C code.

C vs. Tcl: primitives

In order to make acT application as flexible and powerful as possible, you shogkt or
nize its C code as a set of neal tommands that provide a clean sepitive opera-
tions You need not implement every imaginable feature in C, since new features can
always be implemented later ad $cripts. The purpose of the C code is to provide basic

257

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

258

Philosophy

operations that make it easy to implement a wide variety of useful scripts. If your C code
lumps several functions together into a single command then it b@possible to write

scripts that use the functions separately and your application leméry flexible or
extensible. Instead, each command should provide a single function, and you should com-
bine them together withcT scripts. Yu'll probably find that many of your applicatisn’
essential features are implemented as scripts.

Given a choice between implementing a particular piece of functionalityds a T
script or as C code, s'generally better to implement it as a script. Scripts are usually eas-
ier to write, they can be modified dynamicaliyd you can debug them more quickly
because you donhave to recompile after each bug fix. Howetegre are three reasons
why it is sometimes better to implement a new function in C. First, you may need to
access low-level machine facilities that at@tcessible indl scripts. For example, the
Tcl built-in commands dohprovide access to network sockets, so if you want to use the
network you'll have to write C code to do it. Second, you may be concerned dbout ef
ciency For example, if you need to carry out intensive numerical calculations, or if you
need to operate on g arrays of data, you'll be able to do it morficefntly in C than in
Tcl. The third reason for implementing in C is complexityou are manipulating com-
plex data structures, or if you're writing adaramount of code, the task will probably be
more manageable in C than ial.TTcl provides very little structure; this makes it easy to
connect diferent things together but hard to managgdaromplex scripts. C provides
more structure, which is cumbersome when you're implementing small things but indis-
pensable when you're implementing big complicated things.

As an example, consider a program to manipulate weather reports. Suppose that infor-
mation about current weather is available for gdarumber of measurement stations from
one or more network sites using a well-defined network protocol, and you want to write a
Tcl application to manipulate this data. Users of your application might wish to answer
questions like:

* What is the complete weather situation at station X?
* What is the current temperature at station X?
* Which station in the country has the highest current temperature?

¢ At which stations is it currently raining?
You'll need to write some C code for this application in order to retrieve weather reports
over the network. What form should these new commands take?

One approach is to implement each of the above functions in C as a seglarate-T
mand. For example, you might provide a command that retrieves the weather report from
a station, formats it into prose, and prints it on standard output. Unfortunately this com-
mand can only be used for one purpose; you'd have to provide a second command for sit-
uations where you want to retrieve a report without printing it out (e.g. to find all the
station where it is raining).

Instead, I'd suggest providing just two commands in @tha_stations com-
mand that returns a list of all the stations for which weather reports are available, and a

DRAFT (4/16/93): Distribution Restricted

27.2 Object names 259

27.2

wthr_report ~ command that returns a complete weather report for a particular station.
These commands ddnmplement any of the above features diredilyt they make it

easy to implement all of the features. For exampikalfeady has puts command that

can be used to print information on standard output, so the first feature (printing a weather
report for a station) can be implemented with a script thatwdiis report |, formats

the report, and prints it withuts . The second feature (printing just the temperature) can
be implemented by extracing the temperature from the resuthofreport and then
printing it alone. The third and fourth features (finding the hottest station and finding all
stations where it is raining) can be implemented with scripts that irwtbikereport

for each station and extract and print relevant information. Many other features could also
be implemented, such as printing a sorted list of the ten stations with the highest tempera-
tures.

The preceding paragraph suggests that ldexasl commands are better than higher
level ones. Howeveif you make the commands too low level thehstripts will
become unnecessarily complicated and you may lose opportunitieidienefmplemen-
tation. For example, instead of providing a single command that retrieves a weather report,
you might provide separatellcommands for each step of the protocol that retrieves a
report: one command to connect to a seree command to select a particular station,
one command to request a report for the selected station, and so on. Although this results
in more primitive commands, it is probably a mistake. The extra commandgdmride
any additional functionality and they make it more tedious to wadkesdripts. Further-
more, suppose that network communication delays are high, so that it takes a long time to
get a response from a weather seriat the server allows you to request reports for sev-
eral stations at once and get them all back in about the same time as a single report. In this
situation you might want an even higher level interface, perhagiscarimand that takes
any number of stations aggaments and retrieves reports for all of them at once. This
would allow the C code to amortize the communication delays across several report
retrievals and it might permit a much moréaént implementation of operations such as
finding the station with the highest temperature.

To summarize, you should pick commands that are primitive enough so that all of the
applications key functions are available individually througth dommands. On the other
hand, you should pick commands that are high-level enough to hide unimportant details
and capitalize on opportunities fofiefent implementation.

Object names

The easiest way to think about your C code is in ternabjefcts The C code in acrl
application typically implements a few new kinds of objects, which are manipulated by
the applicatiors new Tl commands. In the C code of your application you'll probably
refer to the objects using pointers to the C structures that represent the objects, but you
cant use pointers ind scripts. Strings of some sort will have to be used in ¢hecFipts,

DRAFT (4/16/93): Distribution Restricted

260

Philosophy

27.3

and the C code that implements your commands will have to translate from those strings
to internal pointers. For example, the objects in the weather application are weather sta-
tions; thewthr_stations command returns a list of station names, and the
wthr_report ~ command takes a station name as goraent.

A simple but dangerous way to name objects is to use their internal addresses. For
example, in the weather application you could name each station with a hexadecimal
string giving the internal address of the C structure for that station: the command that
returns a list of stations would return a list of hexadecimal strings, and the command to
retrieve a weather report would take one of these hexadecimal strings@meat. When
the C code receives one of these strings, it could produce a pointer by converting the string
to a binary numbet dont recommend using this approach in practice because it is hard to
verify that a hexadecimal string refers to a valid object. If a user specifies a bad address it
might cause the C code to make wild memory accesses, which could cause the application
to crash. In addition, hexadecimal strings daohvey any meaningful information to the
user

Instead, | recommend using names that can be verified and that convey meaningful
information. One simple approach is to keep a hash table in your C code that maps from a
string name to the internal pointer for the object; a name is only valid if it appears in the
hash table. ThecT library implements flexible hash tables to make it easy for you to use
this approach (see Chapter 33). If you use a hash table then you can use any strings what-
soever for names, so you might as well pick ones that convey information. For example,
Tk uses hierarchical path names likeenu.help for windows in order to indicate the
window’s position in the window hierarchycl uses names likeile3 orfile4 for
open files; these names dboonvey a lot of information, but they at least include the let-
ters ‘file " to suggest that they're used for file access, and the number is the POSIX file
descriptor number for the open file. For the weather application I'd recommend using sta-
tion names such as the city where the station is locatei tiiy U.S. Wather Service has
well-defined names for its stations then I'd suggest using those names.

Commands: action-oriented vs. object-oriented

There are two approaches you can use when defining commands in your application,
which | callaction-orientedandobject-orientedIn the action-oriented approach there is
one command for each action that can be taken on an object, and the command takes an
object name as angqument. The weather application is action-orientedwtie re-
port command corresponds to an action (retrieve weather report) and it takes a weather
station name as angument. Tl's file commands are also action-oriented: there are sepa-
rate commands for opening files, reading, writing, closing, etc.

In the object-oriented approach there is one command for each object, and the name
of the command is the name of the object. When the command is invoked itgirst ar
ment specifies the operation to perform on the objecs. Wkigets work this way: if there

DRAFT (4/16/93): Distribution Restricted

27.4 Application prefixes 261

Note:

27.4

is a button widgetb then there is also a command naniedyou can invoke
“.b flash ”to flash the widget or.b invoke " to invoke its action.

The action-oriented approach is best when there are a great many objects or the
objects are unpredictable or short-lived. For example, it wouhdake sense to imple-
ment string operations using an object-oriented approach because there would have to be
one command for each string, and in practideapplications have lge numbers of
strings that are created and deleted on a command-by-command basis. The weather appli-
cation uses the action-oriented approach because there are only a few actions and and
potentially a lage number of stations. In addition, the application probably doesed to
keep around state for each station all the time; it just uses the station name to look up
weather information when requested.

The object-oriented approach works well when the number of objedtfoismjreat
(e.g. a few tens or hundreds) and the objects are well-defined and exist for at least moder-
ate amounts of time. T&'widgets fit this description. The object-oriented approach has
the advantage that it doespbllute the command name space with lots of commands for
individual actions. For example in the action-oriented approach the command “delete”
might be defined for one kind of object, thereby preventing its use for any other kind of
object. In the object-oriented approach you only have to make sure that your object names
don't conflict with existing commands or other object names. For example, Tk claims all
command names starting with “.” for its widget commands. The object-oriented approach
also makes it possible for tifent objects to implement the same action ifediht ways.
For example, ift is a text widget and is a listbox widget in Tk, theommands
“t yview0O "and"“lyview 0 " are implemented in very dérent ways even
though they produce the same logicéteff (adjust the view to make the topmost line vis-
ible at the top of the window).
Although Tis file commands arimplemented using the action-oriented aajgh, in

retrospect | wish that | had used the object-oriented fashion, since open files fit the object-
oriented model nicely

Application prefixes

If you use the action-oriented approach, | strongly recommend that you add a unique pre-
fix to each of your command names. For example, | used the pagffix “ ” for the

weather commands. This guarantees that your commandsasofiict with other com-

mands as long as your prefix is unique, and it makes it possiblede digrent applica-

tions together without name conflicts. | also recommend using prefixes fmo€edures

that you define and for global variables, again so that multiple packages can be used
together

DRAFT (4/16/93): Distribution Restricted

262

Philosophy

27.5 Representing information

The information passed into and out of yoak @dmmands should be formatted for
easy processing byclTscripts, not necessarily for maximum human readabHity exam-
ple, the command that retrieves a weather report showuédnin English prose describing
the weatherinstead, it should return the information in a structured form that makes it
easy to extract the ddrent components under the control othsEript. You might return
the report as a list consisting of pairs of elements, where the first element of each pair is a
keyword and the second element is a value associated with that keyword, such as:

temp 53 hi 68 lo 37 precip .02 sky part

This indicates that the current temperature at the station is 53 degrees, the high and low for
the last 24 hours were 68 and 37 degrees, .02 inches of rain has fallen in the last 24 hours,
and the sky is partly cloud®r, the command might store the report in an associative
array where each keyword is used as the name of an array element and the corresponding
value is stored in that element. Either of these approaches would make it easy to extract
components of the reportod can always reformat the information to make it more read-
able just before displaying it to the user

Although machine readability is more important than human readapdiiyneed not
gratuitously sacrifice readabilitiFor example, the above list could have been encoded as

18537689375.02174

wherel8 is a keyword for current temperatuvefor 24-hour high, and so on. This is
unnecessarily confusing and will not make your scripts any mficeeaf, since €l han-
dles strings at least adiefently as numbers.

DRAFT (4/16/93): Distribution Restricted

Chapter 28
|nterpretersand Script Evaluation

28.1

This chapter describes how to create and delete interpreters and how to use them to evalu-
ate Tl scripts. Bble 28.1 summarizes the library procedures that are discussed in the
chapter

Interpreters

28.2

The central data structure manipulated by ttidifirary is a C structure of typecl_In-

terp . I'll refer to these structures (or pointers to themneerpreters Almost all of the

Tcl library procedures take a pointer td@_Interp structure as angument. An
interpreter embodies the execution state afladript, including commands implemented
in C, Tcl procedures, variables, and an execution stack that reflects partially-evaluated
commands andcT procedures. MostcT applications use only a single interpreter but it is
possible for a single process to manage several independent interpreters.

A simple T cl application

The program below illustrates how to create and use an interprétea simple but com-
plete Tl application that evaluates alBcript stored in a file and prints the result or error
message, if any

#include <stdio.h>
#include <tcl.h>

263

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

264

Interpreters and Script Evaluation

Tcl_Interp *Tcl_Createlnterp(void)

Create a new interpreter and return a token for it.
Tcl_Deletelnterp(Tcl_Interp *interp

Delete an interpreter

int Tcl_Eval(Tcl_Interp *interp, char *script)
Evaluatescript ininterp and return its completion code. The result pr
error string will be irinterp->result

int Tcl_EvalFile(Tcl_Interp *interp, char *f ileName)
Evaluate the contents of fileleName ininterp and return its comple-
tion code. The result or error string will beirmerp->result

int Tcl_GlobalEval(Tcl_Interp *interp, char *script)

Evaluatescript ininterp at global level and return its completion code.
The result or error string will be interp->result

int Tcl_VarEval(Tcl_Interp *interp, char *string, char *string,

... (char *) NULL)

Concatenate all of thetring arguments into a single string, evaluate the
resulting script innterp , and return its completion code. The result or
error string will be irinterp->result

int Tcl_RecordAndEval(Tcl_Interp *interp, char *script, int
flags)
Recordsscript ~ as an event imterp ’s history list and evaluates it if
eval isnon-zeroTCL_NO_EVALmeans dor’evaluate the script). Returns

a completion code such &EL_OKand leaves result or error message in
interp- >result

Table 28.1. Tcl library procedures for creating and deleting interpreters and for evalueting

main(int argc, char *argv[]) {
Tcl_Interp *interp;

int code;
if (argc 1= 2) {
fprintf(stderr, "Wrong # arguments: *);
fprintf("should be \"%s f ileName\"\n",
argv[0]);
exit(1);
}

interp = Tcl_Createlnterp();

code = Tcl_EvalFile(interp, argv[1]);

if (*interp->result !=0) {
printf("%s\n", interp->result);

}
if (code = TCL_OK) {

DRAFT (4/16/93): Distribution Restricted

28.2 A simple Tcl application 265

exit(1);
}
exit(0);

If Tcl has been installed properly at your site you can copy the C code into a file named
simple.c and compile it with the following shell command:

cc simple.c -ltcl -Im

Once you've compiled the program you can evaluate a scripgdilecl by typing
the following command to your shell:

a.out test.tcl

The code fosimple.c starts out witl#finclude statements fostdio.h and
tcl.h . You'll need to includécl.h in every file that usescTstructures or procedures,
since it defines structures liRel_Interp and declares thecTlibrary procedures.

After checking to be sure that a file name was specified on the command line, the pro-
gram invoked cl_Createlnterp to create a new interpretdihe new interpreter will
contain all of the built-in commands described in Part | butchprbcedures or variables.

It will have an empty execution stadkcl_Createlnterp returns a pointer to the
Tcl_Interp structure for the interpretewhich is used as a token for the interpreter
when calling other dl procedures. Most of the fields of thel_Interp structure are
hidden so that they cannot be accessed outsidettibrary. The only accessible fields

are those that describe the result of the last script evaluation; they’ll be discussed later

Nextsimple.c callsTcl_EvalFile with the interpreter and the name of the
script file as ayjumentsTcl_EvalFile reads the file and evaluates its contents at a T
script, just as if you had invoked thel Source command with the file name as agwar
ment. WhenTcl_EvalFile returns the execution stack for the interpreter will once
again be empty

Tcl_EvalFile returns two pieces of information: an integempletion codand
a string. The completion code is returned as the result of the procedure. It will be either
TCL_OK which means that the script completed normalliyf CL_ ERRORwhich means
that an error of some sort occurred (e.g. the script file cddddnead or the script aborted
with an error). The second piece of information returne@dbyEvalFile is a string, a
pointer to which is returned interp->result . If the completion code iCL_OK
theninterp->result points to the script’ result; if the completion codeT€L_ER-
RORtheninterp->result points to a message describing the error

Note: The esult string belongs tacll It may or may not be dynamically allocateduan ead
it and copy it, but you should not modify it and you should not save pointersclamayl
overwrite the string oreallocate its memory during the next calllid_EvalFile or

any of the other rcedues that evaluate scripts. Chapter 29 discussesathdtrstring in
mote detail.

DRAFT (4/16/93): Distribution Restricted

266 Interpreters and Script Evaluation

If the result string is non-empty theimple.c prints it, regardless of whether it is
an error message or a normal result. Then the program exits. It follows the UNIX style of
exiting with a status of 1 if an error occurred and O if it completed successfully

When the script file is evaluated only the built-g fommands are available: no Tk
commands will be available in this application and no application-specific commands
have been defined.

28.3 Other evaluation procedures

Tcl provides three other procedures besiti#sEvalFile for evaluating scripts. Each
of these procedures takes an interpreter as its fistreant and each returns a completion
code and string, just likEcl_EvalFile . Tcl Eval is similar toTcl_EvalFile
except that its secondgument is a @l script rather than a file name:

code = Tcl_Eval(interp, "set a 44");
Tcl_VarEval takes a variable number of stringgaments terminated withNMULL
argument. It concatenates the strings and evaluates the resultlaapt. For example,
the statement below has the sanieatfas the one above:

code = Tcl_VarEval(interp, "set a ", "44",

(char *) NULL);
Tcl_GlobalEval is similar toTcl_Eval except that it evaluates the script at global
variable context (as if the execution stack were empty) even when procedures are active. It
is used in special cases such asugiievel command and Tk event bindings.
If you want a script to be recorded on thet Aistory list, callTcl_RecordAndE-

val instead offcl_Eval

char *script;

int code;

code = Tcl_RecordAndEval(interp, script, 0);
Tcl_RecordAndEval s identical tofcl_Eval except that it records the script as a
new entry on the history list before invoking itl ®nly records the scripts passed to
Tcl_RecordAndEval , so you can select which ones to recosghidally you'll record
only commands that were typed interactivalige last ayument torcl_RecordAndE-
val is normallyO; if you specifyTCL_NO_EVAlinstead, thend will record the script
without actually evaluating it.

28.4 Deleting interpreters

The procedurdcl_Deletelnterp may be called to destroy an interpreter and all its
associated state. It is invoked with an interpreter gsnaent:

DRAFT (4/16/93): Distribution Restricted

28.4 Deleting interpreters 267

Tcl_Deletelnterp(interp);

OnceTcl_Deletelnterp returns you should never use the interpreter again. In appli-
cations likesimple.c , which use a single interpreter throughout their lifetime, there’
no need to delete the interpreter

DRAFT (4/16/93): Distribution Restricted

268 Interpreters and Script Evaluation

DRAFT (4/16/93): Distribution Restricted

Chapter 29
Creating New Tcl Commands

29.1

Each Tl command is represented bg@mmand pcedue written in C. When the com-

mand is invoked during script evaluatiom) Talls its command procedure to carry out the
command. This chapter provides basic information on how to write command procedures,
how to register command procedures in an interpreter , and how to manage the interpret-
er's result string. dble 29.1 summarizes thelTibrary procedures that are discussed in

the chapter

Command procedures

The interface to a command procedure is defined by¢h€mdProc procedure proto-
type:
typedef int Tcl_CmdProc(ClientData clientData,

Tcl_Interp *interp, int argc,

char *argv[]);
Each command procedure takes foguanents. The firstlientData , will be dis-
cussed in Section 29.5 belovhe secondnterp , is the interpreter in which the com-
mand was invoked. The third and fourtlyamnents have the same meaning asthe
andargv arguments to a C main prograargc specifies the total number of words in
the Tcl command andrgv is an array of pointers to the values of the wordkpiio-
cesses all the special characters suchasl[] before invoking command procedures,
so the values iargc reflect any substitutions that were specified for the command. The
command name is includedangc andargv , andargv[argc]is NULL A command

269

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

270 Creating New Tcl Commands

Tcl_CreateCommand(Tcl_Interp *interp, char *cmdName,
Tcl_CmdProc *cmdProc, ClientData clientData,
Tcl_CmdDeleteProc *deleteProc)
Defines a new commandiimerp with namecmdName When the com-
mand is invokegmdProc will be called; if the command is ever deleted
thendeleteProc will be called.
int Tcl_DeleteCommand(Tcl_Interp *interp, char *cmdName)
If cmdNameis a command or procedureiimierp then deletes it and
returns 0. Otherwise returns -1.

Tcl_SetResult(Tcl_Interp *interp, char *string,Tcl_FreeProc
*freeProc)
Arrange forstring (or a copy of it) to become the result fioterp
FreeProc identifies a procedure to call to eventually free the result, orfi
may beTCL_STATIC, TCL_DYNAMICor TCL_VOLATILE.
Tcl_AppendResult(Tcl_Interp *interp, char *string,
char *string, ... (char *) NULL)
Appends each of th&iring arguments to the result stringiimerp
Tcl_AppendElement(Tcl_Interp *interp, char *string)
Formatsstring as a Tl list element and appends it to the result string in
interp , with a preceding separator space if needed.
Tcl_ResetResult(Tcl_Interp *interp)
Resetdnterp s result to the default empty state, freeing up any dynarT

=

cally-allocated memory associated with it.

Table 29.1. Tcl library procedures for creating and deleting commands and for manipulating

procedure returns two values just likel_Eval andTcl_EvalFile . It returns an
integer completion code as its result (§GL_OKor TCL_ERRORand it leaves a result
string or error message iimerp->result

Here is the command procedure for a new command cadlédat compares its two
arguments for equality:

int EQCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
if (argc 1= 3) {
interp->result = "wrong # args";
return TCL_ERROR;

}

if (strcmp(argv[1], argv[2]) == 0) {
interp->result = "1";

}else {
interp->result = "0";

}

DRAFT (4/16/93): Distribution Restricted

29.2 Registering commands 271

29.2

return TCL_OK;

}
EgCmdchecks to see that was called with exactly tvguiarents (three words, including
the command name), and if not it stores an error messagerp->result and

returnsTCL_ERROROtherwise it compares its twaggaiment strings and stores a string in
interp- >result to indicate whether or not they were equal; then it refli@ls OK
to indicate that the command completed normally

Registering commands

In order for a command procedure to be invokeddyybu must register it by calling
Tcl_CreateCommand . For exampleEgCmdcould be registered with the following
statement:

Tcl_CreateCommand(interp, "eq"”, EQCmd,
(ClientData *) NULL,
(Tcl_CmdDeleteProc *) NULL);
The first agument toTcl_CreateCommand identifies the interpreter in which the com-
mand will be used. The secondament specifies the name for the command and the third
argument specifies its command procedure. The fourth and fiftimants are discussed
in Section 29.5 below; they can be specifietld& L for simple commands like this one.
Tcl_CreateCommand will create a new command fotterp namedeq; if there
already existed a command by that name then it is deleted. Wheaeisenvoked in
interp Tcl will call EQCmdto carry out its function.
After the above call tdcl_CreateCommand , eq can be used in scripts just like

any other command:

eq abc def

0

eqlil

1

set w .dlg

set w2 .dlg.ok

eq $w.ok $w2

1

When processing scriptsclicarries out all of the command-line substitutions before call-
ing the command procedure, so witrCmdis called for the las’tq command above
bothargv[l] andargv[2] are “dilg.ok .

Tcl_CreateCommand is usually called by applications during initialization to reg-
ister application-specific commands. Howewvew commands can also be created at any
time while an application is running. For example,dhl@c command creates a new

DRAFT (4/16/93): Distribution Restricted

272

Creating New Tcl Commands

29.3

command for eachcl procedure that is defined, and Tk creates a widget command for
each new widget. In Section 29.5 you'll see an example where the command procedure for
one command creates a new command.

Commands created Ayl _CreateCommand are indistinguishable fromcT's
built-in commands. Each built-in command has a command procedure with the same form
as EqCmd, and you can redefine a built-in command by caltih@reateCommand
with the name of the command and a new command procedure.

The result protocol

TheEgCmdprocedure returns a result by settinggrp- >result to point to one of
several static strings. Howeyéhne result string can also be managed in several other
ways. Tl defines a protocol for setting and using the result, which allows for dynamically-
allocated results and provides a small static area to avoid memory-allocation overheads in
simple cases.

The full definition of theTcl_Interp structure, as visible outside thel Tibrary, is
as follows:

typedef struct Tcl_Interp {

char *result;

Tcl_FreeProc *freeProc;

int errorLine;

} Tcl_Interp;
The first fieldresult , points to the interpreter current result. The second field,
freeProc , is used when freeing dynamically-allocated results; it will be discussed
below The third fielderrorLine , is related to error handling and is described in Sec-
tion XXX.
When Tl invokes a command procedure thsult andfreeProc fields always
have well-defined valuemterp->result points to a small character array that is
part of the interpreter structure and the array has been initialized to hold an empty string
(the first character of the array is zellajerp->freeProc is always zero. This state
is referred to as thiaitialized statefor the result. Not only is this the state of the result
when command procedures are invoked, but mahiibFary procedures also expect the
interpreters result to be in the initialized state when they are invoked. If a command pro-
cedure wishes to return an empty string as its result, it simply returns without modifying
interp- >result orinterp->freeProc
There are three ways that a command procedure can specify a non-empty result. First,

it can modifyinterp->result to point to a static string as EgCmd A string can be
considered to be static as long as its value will not change before thehestimand
procedure is invoked. For example, Tk stores the name of each widget in a dynamically-
allocated record associated with the widget, and it returns widget names by setting
interp->result to the name string in the widget record. This string is dynamically

DRAFT (4/16/93): Distribution Restricted

29.4 Procedures for managing the result 273

29.4

allocated, but widgets are deleted lkty Jommands so the string is guaranteed not to be
recycled before the nextlfcommand executes. If a string is stored in automatic storage
associated with a procedure it cannot be treated as static, since its value will change as
soon as some other procedure re-uses the stack space.

The second way to set a result is to use the pre-allocated spac@&ah theerp
structure. In its initialized stateterp->result points to this space. If a command
procedure wishes to return a small result it can copy it to the location pointed to by
interp- >result . For example, the procedure below implements a command
numwords that returns a decimal string giving a count of itgiarents:

int NumwordsCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
sprintf(interp->result, "%d", argc);
return TCL_OK;
}
The size of the pre-allocated space is guaranteed to be at least 200 bytes; you can retrieve
the exact size with the symbbCL_RESULT_SIZE defined bytcl.h . It's generally
safe to use this area for printing a few numbers and/or short strings, mdtisége to
copy strings of unbounded length to the pre-allocated space.

The third way to set a result is to allocate memory with a storage allocator such as
malloc , store the result string there, andis&trp->result to the address of the
memory In order to ensure that the memory is eventually freed, you must also set
interp->freeProc to the address of a procedure thatchn call to free the memgory
such adree . In this case the dynamically-allocated memory becomes the property of
Tcl. Once El has finished using the result it will free it by invoking the procedure speci-
fied byinterp->freeProc . This procedure must match the following procedure pro-
totype:

typedef void Tcl_FreeProc(char *blockPtr);

The procedure will be invoked with a singlg@ment containing the address that you
stored ininterp->result . In most cases you'll usealloc for dynamic allocation
and thus sdnterp->freeProc tofree , but the mechanism is general enough to
support other storage allocators too.

Procedures for managing the result

Tcl provides several library procedures for manipulating the result. These procedures
all obey the protocol described in the previous section, and you may find them more con-
venient than settingpterp->result andinterp->freeProc directly The first
procedure igcl_SetResult , which simply implements the protocol described above.
For exampleEqCmdcould have replaced the statement

interp->result = "wrong # args";

DRAFT (4/16/93): Distribution Restricted

274

Creating New Tcl Commands

with a call toTcl_SetResult as follows:
Tcl_SetResult(interp, "wrong # args", TCL_STATIC);

The first agument tolcl_SetResult is an interpreteiThe second gument is a string
to use as result, and the thirgq@ment gives additional information about the string.
TCL_STATIC means that the string is static,180_SetResult just stores its address
into interp->result . A value ofTCL_VOLATILE for the third agument means that
the string is about to change (e.gs #tored in the procedusestack frame) so a copy must
be made for the resulicl_SetResult will copy the string into the pre-allocated space
if it fits, otherwise it will allocate new memory to use for the result and copy the string
there (settingnterp->freeProc appropriately). If the third gument iSTCL_DY-
NAMICit means that the string was allocated wiithlloc and is now the property of
Tcl: Tcl_SetResult will setinterp- >freeProc tofree as described above.
Finally, the third agument may be the address of a procedure suitable for use in
interp- >freeProc ; in this case the string is dynamically-allocated acidvill even-
tually call the specified procedure to free it.

Tcl_AppendResult makes it easy to build up results in pieces. It takes any num-
ber of strings as guments and appends them to the interpietesult in orderAs the
result grows in lengtficl_AppendResult allocates new memory for itcl_Ap-
pendResult may be called repeatedly to build up long results incremeragaityit does
this eficiently even if the result becomes venygi(e.g. it allocates extra memory so that
it doesnt have to copy the existing result into aylawrarea on each call). Here is an imple-
mentation of theoncat command that usdxl_AppendResult

int ConcatCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
int i;
if (argc == 1) {
return TCL_OK;

}I'cI_AppendResuIt(interp, argv[1], (char *) NULL);
for (i=2;i<argc; i++) {
Tcl_AppendResult(interp, " ", argv]i],
(char *) NULL);
leturn TCL_OK;
}
TheNULLamgument in each call tbcl_AppendResult marks the end of the strings to
append. Since the result is initially emgtye first call toTcl_AppendResult just sets
the result taargv[l] ; each additional call appends one moguarent preceded by a
separator space.
Tcl_AppendElement is similar toTcl_AppendResult except that it only

adds one string to the result at a time and it appends it as a list element instead of a raw

DRAFT (4/16/93): Distribution Restricted

29.5 ClientData and deletion callbacks 275

29.5

string. It's useful for creating lists. For example, here is a simple implementation of the
list command:

int ListCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char **argv) {
inti;
for (i=1;i<argc; i++) {
Tcl_AppendElement(interp, argv[i]);

return TCL_OK;

}
Each call torcl_AppendElement adds one gument to the result. Thegament is
converted to a proper list element before appending it to the result (e.g. it is enclosed in
braces if it contains space characters). AppendElement also adds a separator
space if its needed before the new element (no space is added if the result is currently
empty or if its characters arg “*, which means that the new element will be the first ele-
ment of a sub-list). For example ListCmd is invoked with four agjuments, fist ",

“abc”, “xy ", and ‘}”, it produces the following result:

abc {x y} \}
Like Tcl_AppendResult |, Tcl_AppendElement grows the result space if needed
and does it in a way that isfiefent even for lage results and repeated calls.

If you set the result for an interpreter and then decide that you want to discard it (e.g.
because an error has occurred and you want to replace the current result with an error mes-
sage), you should call the procediid ResetResult . It will invoke
interp- >freeProc if needed and then restore the interprstezsult to its initialized
state. Yu can then store a new value in the result in any of the usual wayse¥d not
call Tcl_ResetResult if you're going to usdcl_SetResult to store the new
result, sincdcl_SetResult takes care of freeing any existing result.

ClientData and deletion callbacks

The fourth and fifth gruments tdrcl_CreateCommand , clientData and
deleteProc , were not discussed in Section 29.2 but they are useful when commands
are associated with objects. TdlientData amument is used to pass a one-word value
to a command procedureclBaves thelientData value that is passed T@l_Cre-
ateCommand and uses it as the firsigaiment to the command procedure. The type
ClientData is laige enough to hold either an integer or a pointer value. It is usually the
address of a C data structure for the command to manipulate.

Tcl and Tk useallback poceduesin many places. A callback is a procedure whose
address is passed to a library procedure and saved in a data structurat katee signif-
icant time, the address is used to invoke the procedure (“call it back”). A command proce-

DRAFT (4/16/93): Distribution Restricted

276

Creating New Tcl Commands

dure is an example of a callback! @ssociates the procedure address witti adimmand

name and calls the procedure whenever the command is invoked. When a callback is spec-
ified in Tcl or Tk aClientData argument is usually provided along with the procedure
address and thelientData value is passed to the callback as its firgtiarent.

ThedeleteProc amgument toTcl_CreateCommand specifies a deletion call-
back. If its value ist’NULLthen it is the address of a procedure fdrtd invoke when
the command is deleted. The procedure must match the following prototype:

typedef void Tcl_CmdDeleteProc(ClientData clientData);
The deletion callback takes a singlguanent, which is the ClientData value specified
when the command was created. Deletion callbacks are used for purposes such as freeing
the object associated with a command.

Figure 29.1 shows hoelientData anddeleteProc can be used to implement
counter objects. The application containing this code must reGigterterCmd as a Tl
command using the following call:

Tcl_CreateCommand(interp, "counter”, CounterCmd,

(ClientData) NULL, (Tcl_CmdDeleteProc) NULL);

New counters can then be created by invokingthmter Tcl command; each invoca-
tion creates a new object and returns a name for that object:

counter

ctr0

counter

ctrl
CounterCmd is the command procedure fayunter . It allocates a structure for the
new counter and initializes its value to zero. Then it creates a name for the counter using
the static variabléed , arranges for that name to be returned as the comsnaasilt, and
incrementsd so that the next new counter will get &atiént name.

This example uses the object-oriented style described in Section 27.3, where there is
one command for each counter object. As part of creating a new cGaoteierCmd
creates a newcl command named after the counteuses the address of @eunter
structure as th€lientData for the command and specifiésleteCounter as the
deletion callback for the new command.

Counters can be manipulated by invoking the commands named after them. Each
counter supports two options to its commaget: , which returns the current value of the
counter andnext , which increments the countewvalue. OncetrO andctrl were
created above, the following:lfcommands could be invoked:

ctrO next; ctrO next; ctrO get
2

ctrl get

0

DRAFT (4/16/93): Distribution Restricted

29.5 ClientData and deletion callbacks 277

typedef struct {
int value;
} Counter;

int CounterCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
Counter *counterPtr;
static intid = 0;
if (argc 1= 1) {
interp->result = "wrong # args";
return TCL_ERROR;

counterPtr = (Counter *) malloc(sizeof(Counter));

counterPtr->value = 0;

sprintf(interp->result, "ctr%d", id);

id++;

Tcl_CreateCommand(interp, interp->result, ObjectCmd,
(ClientData) counterPtr, DeleteCounter);

return TCL_OK;

}

int ObjectCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
CounterPtr *counterPtr = (Counter *) clientData;
if (argc 1= 2) {
interp->result = "wrong # args";
return TCL_ERROR;

}
if (strcemp(argv[1], "get") == 0) {
sprintf(interp->result, "%d", counterPtr->value);
} else if (strcmp(argv[1], "next") == 0) {
counterPtr->value++;
}else {
Tcl_AppendResult(interp, "bad counter command \"",
argv[1], "\": should be get or next",
(char *) NULL);
return TCL_ERROR;

}
return TCL_OK;
}

void DeleteCounter(ClientData clientData) {
free((char *) clientData);
}

Figure 29.1. An implementation of counter objects.

DRAFT (4/16/93): Distribution Restricted

278

Creating New Tcl Commands

Note:

29.6

ctrO clear
bad counter command "clear": should be get or next

The procedur®bjectCmd implements the dl commands for all existing counters. It is
passed a dérentClientData agument for each countexhich it casts back to a value
of typeCounter * . ObjectCmd then checkargv[l] to see which command option
was invoked. If it waget then it returns the countsrvalue as a decimal string; if it was
next then it increments the counteralue and leavesterp->result untouched
so that the result is an empty string. If an unknown command was invoked then
ObjectCmd callsTcl_AppendResult to create a useful error message.
It is not safe to @ate the elwr message with a statement like

sprintf(interp->result, "bad counter command \"%s\"; "

"should be get or next", argv[1]);

This is unsafe becausegv[1l] has unknown length. It could be so long g@intf
overflows the space allocated in the intetpr and corrupts memory .

Tcl_AppendResult is safe because it checks the lengths of garaents and
allocates as much space as needed for¢halt.

To destroy a counter you can delete tbcbmmand, for example:

rename ctrO {}

As part of deleting the command|Twill invoke DeleteProc , which frees up the mem-
ory associated with the counter

This object-oriented implementation of counter objects is similar ®iffiplementa-
tion of widgets: there is oneclfcommand to create new instances of each counter or wid-
get, and oned command for each existing counter or widget. A single command
procedure implements all of the counter or widget commands for a particular type of
object, receiving a ClientDatagument that identifies a specific counter or widget. A dif-
ferent mechanism is used to delete Tk widgets than for counters above, but in both cases
the command corresponding to the object is deleted at the same time as the object.

Deleting commands

Tcl commands can be removed from an interpreter by calthdeleteCommand
For example, the statement below will deletedin@ command in the same way as the
rename command above:

Tcl_DeleteCommand(interp, "ctr0");
If the command has a deletion callback then it will be invoked before the command is
removed. Any command may be deleted, including built-in commands, application-spe-
cific commands, andcT procedures.

DRAFT (4/16/93): Distribution Restricted

Chapter 30
Parsing

30.1

This chapter describeglibrary procedures for parsing and evaluating strings in various
forms such as integers, expressions and lists. These procedures are typically used by com-
mand procedures to process the wordscbEdmmands. Seeable 30.1 for a summary of

the procedures.

Numbers and booleans

Tcl provides three procedures for parsing numbers and boolean viadugsetint
Tcl_GetDouble , andTcl_GetBoolean . Each of these procedures takes thrga-ar
ments: an interpretea string, and a pointer to a place to store the value of the string. Each
of the procedures returi€CL_OKor TCL_ERROROo indicate whether the string was
parsed successfullifor example, the command procedure below Tisessetint to
implement assum command:

int SumCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
int num1, num2;
if (argc = 3) {
interp->result = "wrong # args";
return TCL_ERROR,;

}

if (Tcl_GetlInt(interp, argv[1], &nhum1l) = TCL_OK) {
return TCL_ERROR;

}

279

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

280 Parsing

int Tcl_GetlInt(Tcl_Interp *interp, char *string, int *intPtr)
Parsestring as an integestores value &intPtr , and returns
TCL_OK If an error occurs while parsing, retuSL_ERRORnd stores
an error message interp->result .

int TcI_GetDoubIengcI_lnte)rp *interp, char *string, double *dou-

ePtr

Same aJcl_Getint except parsestring as a floating-point value and
stores value adoublePtr .

int Tcl_GetBoolean(Tcl_Interp *interp, char *string, int *intPtr)
Same aJcl_Getint except parsestring as a boolean and stores 0/1
value atintPtr . See &ble 30.2 for legal values fetring

int Tcl_ExprString(Tcl_Interp *interp, char *string)
Evaluatestring as an expression, stores value as string in
interp- >result , and return§CL_OK If an error occurs during evalua-
tion, returnsSTCL_ERRORNd stores an error messageierp-
>result .

int Tcl_ExprLong(Tcl_Interp *interp, char *string, long *longPtr)
Same agcl_ExprString except stores value as a long integer at
*longPtr . An error occurs if the value cafve converted to an integer

int Tcl_ExprDouble(Tcl_Interp *interp, char *string,

double *doublePtr)

Same agcl_ExprString except stores value as double-precision float-
ing-point value atdoublePtr . An error occurs if the value cafse con-
verted to a floating-point number

int Tcl_ExprBoolean(Tcl_Interp *interp, char *string, int
*intPtr)
Same agcl_ExprString except stores value as 0/1 integer at
*intPtr . An error occurs if the value cafve converted to a boolean
value.

int Tcl_SplitList(Tcl_Interp *interp, char *list, int *argcPtr,
char ***argvPtr)
Parsedist as a Tl list and creates an array of strings whose values are the
elements of list. Stores count of number of list elemeriargtPtr and
pointer to array atargvPtr . ReturnsTCL_OK If an error occurs while
parsinglist , returnsTCL_ERRORnd stores an error message in
interp- >result . Space for string array is dynamically allocated; caller
must eventually pasargvPtr tofree .
char *Tcl_Merge(int argc, char **argv)
Inverse ofTcl_SplitList . Returns pointer tocT list whose elements ar¢
the members adrgv . Result is dynamically-allocated; caller must event
ally pass it tdree .

if (Tcl_GetInt(interp, argv[2], &num?2) != TCL_OK) {
return TCL_ERROR;

sprintf(interp->result, "%d", num1+num2);

DRAFT (4/16/93): Distribution Restricted

30.1 Numbers and booleans 281

return TCL_OK;

}
SumCmaexpects each of the commasntivo aguments to be an integétrcalls
Tcl_Getint to convert them from strings to integers, then it sums the values and con-
verts the result back to a decimal stringniterp->result . Tcl_Getint accepts
strings in decimal (e.g492"), hexadecimal (e.g.0x1ae ") or octal (e.g. 017"), and
allows them to be signed and preceded by white space. If the string is in one of these for-
mats theTcl_Getint returnsTCL_OKand stores the value of the string in the location
pointed to by its last gument. If the string cahbe parsed correctly thértl_Getint
stores an error messagdnterp->result and return§CL_ERRORSumCmdhen
returnsTCL_ERRORROo its caller withinterp->result still pointing to the error mes-
sage fronTcl_Getint

Here are some examples of invoking slien command in @l scripts:

sum 2 3

S

sum 011 0x14

29

sum 3 6z

expected integer but got "6z"

Tcl_GetDouble is similar toTcl_Getint except that it expects the string to
consist of a floating-point number such &2 " or “3.0e-6 " or “7". It stores the dou-
ble-precision value of the number at the location given by its Igirent or returns an
error in the same way 3sl_Getint . Tcl_GetBoolean s similar except that it con-
verts the string to a 0 or 1 integer value, which it stores at the location given by its last

argument. Any of the true values listed iable 30.2 converts to 1 and any of the false val-
ues converts to 0.

True \alues| False \alues
1 0
true false
on off
yes no

Table 30.2. Legal values for boolean strings parsedibly GetBoolean . Any of the values
may be abbreviated or capitalized.

DRAFT (4/16/93): Distribution Restricted

282

Parsing

30.2

Many other Tl and Tk library procedures are similarfidl_Getint in the way
they use ainterp amgument for error reporting. These procedures all expect the inter-
pretets result to be in its initialized state when they are called. If they complete success-
fully then they usually leave the result in that state; if an error occurs then they put an error
message in the result. The procedures’ return values indicate whether they succeeded, usu-
ally as aTCL_OKor TCL_ERRORompletion code but sometimes in other forms such as
aNULLstring pointerWhen an error occurs, all the caller needs to do is to return a failure
itself, leaving the error message in the interptetersult.

Expression evaluation

Tcl provides four library procedures that evaluate expressions of the form described in
Chapter XXX:Tcl_ExprString , Tcl_ExprLong , Tcl_ExprDouble , and
Tcl_ExprBoolean . These procedures are similar except that they return the result of
the expression in diérent forms as indicated by their names. Here is a slightly simplified
implementation of thexpr command, which usé&l_ExprString

int ExprCmd(ClientData clientData, Tclinterp *interp,
int argc, char *argv([]) {
if (argc 1= 2) {
interp->result = "wrong # args";
return TCL_ERROR,;

return Tcl_ExprString(interp, argv[1]);
}

All ExprCmd does is to check itsgument count and then cai€l_ExprString
Tcl_ExprString evaluates its secondgaiment as ad expression and returns the
value as a string imterp->result . Like Tcl_GetInt it returnsTCL_OKif it
evaluated the expression successfully; if an error occurs it leaves an error message in
interp->result and return§CL_ERROR

Tcl_ExprLong , Tcl_ExprDouble , andTcl_ExprBoolean are similar to
Tcl_ExprString except that they return the expresssasult as a long integetou-
ble-precision floating-point numbear 0/1 integerrespectivelyEach of the procedures
takes an additional gmment that points to a place to store the result. For these procedures
the result must be convertible to the requested type. For examplbgif Is passed to
Tcl_ExprLong then it will return an error becausat ” has no integer value. If the
string “40” is passed td@cl_ExprBoolean it will succeed and store 1 in the value
word (any non-zero integer is considered to be true).

DRAFT (4/16/93): Distribution Restricted

30.3 Manipulating lists 283

30.3 Manipulating lists

Tcl provides several procedures for manipulating lists, of which the most useful are

Tcl_SplitList andTcl_Merge . Given a string in the form of aclTlist,

Tcl_SplitList extracts the elements and returns them as an array of string pointers.
For example, here is an implementation cfdlindex command that uses

Tcl_SplitList

int LindexCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
int index, listArgc;
char **listArgv;
if (argc = 3) {
interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_Getlnt(interp, argv[2], &index) != TCL_OK) {
return TCL_ERROR;

}
if (Tcl_SplitList(interp, argv[1], &listArgc,
&listArgv) 1= TCL_OK) {
return TCL_ERROR,;

}
if ((index >= 0) && (index < listArgc)) {
Tcl_SetResult(interp, listArgv[index],
TCL_VOLATILE);

llree((char *) listArgv);
return TCL_OK;
}
LindexCmd checks its ajument count, call$cl_Getint to converiargv[2] (the
index) into an integethen callsTcl_SplitList to parse the lisfTcl_SplitList
returns a count of the number of elements in the lisgtiorgc . It also creates an array
of pointers to the values of the elements and stores a pointer to that déist@ygv . If
Tcl_SplitList encounters an error in parsing the list (e.g. unmatched braces) then it
returnsTCL_ERRORnd leaves an error messagtarp- >result ; otherwise it
returnsTCL_OK
Tcl_SplitList callsmalloc to allocate space for the array of pointers and for

the string values of the elements; the caller must free up this space by jstz5igg
tofree . The space for both pointers and strings is allocated in a single block of memory
so only a single call tiree is needed.indexCmd callsTcl_SetResult to copy the
desired element into the interpréteresult. It specifieSCL_VOLATILE to indicate that
the string value is about to be destroyed (its memory will be fréet)SetResult
will make a copy of théstArgv[index] forinterp ’s result. If the specified index

DRAFT (4/16/93): Distribution Restricted

284

Parsing

is outside the range of elements in the list thedexCmd leavesnterp->result
in its initialized state, which returns an empty string.

Tcl_Merge is the inverse ofcl_SplitList . Givenargc andargv informa-
tion describing the elements of a list, it returmaaloc 'ed string containing the list.
Tcl_Merge always succeeds so it dogsmeed afinterp agument for error reporting.
Heres another implementation of thet command, which usé&l_Merge :

int ListCmd2(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv([]) {
interp->result = Tcl_Merge(argc-1, argv+1);
interp->freeProc = (Tcl_FreeProc *) free;
return TCL_OK;
}
ListCmd2 takes the result fromficl_Merge and stores it in the interpreteresult.
Since the list string is dynamically allocatedtCmd2 setsinterp->freeProc to
free so that Tl will call free to release the storage for the list when it is no longer
needed.

DRAFT (4/16/93): Distribution Restricted

Chapter 31
EXxceptions

31.1

Many Tcl commands, such #s andwhile , have aguments that arecT scripts. The
command procedures for these commands infakeEval recursively to evaluate the
scripts. IfTcl_Eval returns a completion code other thHa@L_OKthen arexceptions

said to have occurred. Exceptions incldgdd. ERRORwhich was described in Chapter

31, plus several others that have not been mentioned before. This chapter introduces the
full set of exceptions and describes how to unwind nested evaluations and leave useful
information in theerrorinfo anderrorCode variables. Seeable 31.1 for a sum-

mary of procedures related to exception handling.

Completion codes.

Table 31.2 lists the full set otTcompletion codes that may be returned by command pro-
cedures. If a command procedure returns anything otheiltbanOKthen Tl aborts the
evaluation of the script containing the command and returns the same completion code as
the result offcl_Eval (or Tcl_EvalFile , etc). TCL_OKandTCL_ERRORave
already been discussed; they are used for normal returns and errors, respébtvely
completion code$CL_BREAKor TCL_CONTINUEoccur ifbreak orcontinue com-
mands are invoked by a script; in both of these cases the intepretait will be an
empty string. Th@ CL_RETURNompletion code occursiigéturn is invoked; in this
case the interpreterresult will be the intended result of the enclosing procedure.

As an example of how to generat€@._BREAKcompletion code, here is the com-
mand procedure for tHeeak command:

285

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

286 Exceptions

Tcl_AddErrorinfo(Tcl_Interp *interp, char *message)
Addsmessage to stack trace being formedtime errorinfo variable.
Tcl_SetErrorCode(Tcl_Interp *interp, char *f ield, char *f ield,
... (char *) NULL)
Creates a list whose elements areftiedd amguments, and sets the
errorCode variable to the contents of the list.

Table 31.1. A summary of €l library procedures for settiregrorinfo anderrorCode

Completion Code Meaning
TCL_OK Command completed normally
TCL_ERROR Unrecoverable error occurred.
TCL_BREAK Break command was invoked.
TCL_CONTINUE Continue command was invoked.
TCL_RETURN Return command was invoked.

Table 31.2. Completion codes that may be returned by command procedures and procedu
evaluate scripts, such @sl_Eval

int BreakCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv([]) {
if (argc 1= 2) {
interp->result = "wrong # args";
return TCL_ERROR,;

ieturn TCL_BREAK;
}

TCL_BREAKTCL_CONTINUEandTCL_RETURNMre used to unwind nested
script evaluations back to an enclosing looping command or procedure invocation. Under
most circumstances, any procedure that receives a completion code otfAeZith@K
from Tcl_Eval should immediately return that same completion code to its caller with-
out modifying the interpret&s result. Howeveml few commands process some of the spe-
cial completion codes without returning them upward. For example, here is an
implementation of thevhile command:

DRAFT (4/16/93): Distribution Restricted

31.1 Completion codes. 287

int WhileCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argvl[]) {
int bool;
int code;
if (argc '=3) {
interp->result = "wrong # args";
return TCL_ERROR;

}
while (1) {
Tcl_ResetResult(interp);
if (Tcl_ExprBoolean(interp, argv[1], &bool)
I=TCL_OK) {
return TCL_ERROR;

}
if (bool == 0) {
return TCL_OK;

}

code = Tcl_Eval(interp, argv[2]);

if (code == TCL_CONTINUE) {
continue;

} else if (code == TCL_BREAK) {
return TCL_OK;

} else if (code '= TCL_OK) {
return code;

}

}
}

After checking its agument countWhileCmd enters a loop where each iteration evalu-
ates the commanrslfirst agument as an expression and its secogdnaent as a script. If
an error occurs while evaluating the expression WhaiteCmd returns the erroif the
expression evaluates successfully but its value is 0, then the command terminates with a
normal return. Otherwise it evaluates the scrigtiarent. If the completion code is
TCL_CONTINUEBhenWhileCmd goes on to the next loop iteration. If the code is
TCL_BREAKthenWhileCmd ends the execution of the command and retti€ls OK
to its callerIf Tcl_Eval returns any other completion code besitiés_OKthenWhi-
leCmd simply reflects that code upwards. This causes the proper unwinding to occur on
TCL_ERROPRYITCL_RETURNodes, and it will also unwind if any new completion
codes are added in the future.

If an exceptional return unwinds all the way through the outermost script being evalu-
ated then @ checks the completion code to be sure it is eifiéir OKor TCL_ERROR
If not then Tl turns the return into an error with an appropriate error message. Further-
more, if aTCL_BREAKor TCL_CONTINUEexception unwinds all the way out of a pro-
cedure thendl also turns it into an erroFor example:

DRAFT (4/16/93): Distribution Restricted

288

Exceptions

31.2

break
invoked "break" outside of a loop

proc badbreak {} {break}
badbreak

invoked "break" outside of a loop

Thus applications need not worry about completion codes othef @lerOKand
TCL_ERRORvhen they evaluate scripts from the outermost level.

Augmenting the stack trace in errorinfo

When an error occursclfmodifies theerrorinfo global variable to hold a stack trace
of the commands that were being evaluated at the time of theledwes this by calling
the procedurdcl_AddErrorinfo , Which has the following prototype:

void Tcl_AddErrorinfo(Tcl_Interp *interp,

char *message)
The first call toTcl_AddErrorinfo after an error setrrorinfo to the error mes-
sage stored imterp- >result and then appenasessage . Each subsubsequent call
for the same error appencgi®ssage toerrorinfo 's current value. Whenever a com-
mand procedure returiCL_ERRORcl_Eval callsTcl_AddErrorinfo to log
information about the command that was being executed. If there are nested calls to
Tcl_Eval then each one adds information about its command as it unwinds, so that a
stack trace forms iarrorinfo

Command procedures can chll_AddErrorinfo themselves to provide addi-
tional information about the context of the erfbhis is particularly useful for command
procedures tha invoKecl_Eval recursively For example, consider the followingl T
procedure, which is a buggy attempt to find the length of the longest element in a list:
proc longest list {
set i [llength $list]
while {$i >= 0} {
set length [string length [lindex $list $i]]
if {$length > $max} {
set max $length
}

incri

return $max
}

This procedure is buggy because it never initializes the varizdoteso an error will
occur when thd command attempts to read it. If the procedure is invoked with the com-

DRAFT (4/16/93): Distribution Restricted

31.2 Augmenting the stack trace in errorinfo 289

mand ‘longest {a 12345 xyz} ", then the following stack trace will be stored in
errorinfo after the error:

can’t read "max": no such variable
while executing
"if {$length > $max} {
set max $length

("while" body line 3)
invoked from within
“while {$i >= 0} {
set length [string length [lindex $list $i]]
if {$length > $max} {
set max $length
}

incr i

3

(procedure "longest” line 3)

invoked from within

“longest {a 12345 xyz}"

All of the information is provided bycl_Eval except for the two lines with comments
in parentheses. The first of these lines was generated by the command procedure for
while , and the second was generated by thedde that evaluates procedure bodies. If
you used the implementationwhile on page 287 instead of the built-iol implemen-
tation then the first parenthesized message would be missing. The C code below is a
replacement for the lastse clause inWhileCmd ; it usesTcl_AppendResult to
add the parenthetical remark.

} else if (code != TCL_OK) {
if (code == TCL_ERROR) {
char msg[50];
sprintf(msg, "\n (\"while\" body line %d)",
interp->errorLine);
Tcl_AddErrorinfo(interp, msg);
}

return code;

}

TheerrorLine field ofinterp is set byTcl Eval whenever a command procedure
returns an error; it gives the line number of the command that produced thevighiar

the script being executed. A line number of 1 corresponds to the first line, which is the line
containing the open brace in this examplejtheeommand that generated the error is on
line 3.

DRAFT (4/16/93): Distribution Restricted

290

Exceptions

Note:

31.3

For simple €l commands you shouldmeed to invok&cl_AddErrorinfo : the
information provided byrcl_Eval will be suficient. Howeverif you write code that
callsTcl_Eval then | recommend callingcl_AddErrorinfo whenever
Tcl_Eval returns an erroto provide information about whicl_Eval was invoked
and also to include the line number of the error
You must callTcl_AddErrorinfo rather than trying to set therrorinfo variable

directly, becausdcl_AddErrorinfo contains special code to detect the first call after
an error and clear out the old contentsearforinfo

Setting errorCode

Note:

The last piece of information set after an error isstherCode variable, which pro-
vides information about the error in a form thagasy to process witlellscripts. Its
intended for use in situations where a script is likely to catch the determine exactly
what went wrong, and attempt to recover from it if possible. If a command procedure
returns an error tocT without settingerrorCode then Tl sets it tdNONEIf a command
procedure wishes to provide informatioremorCode then it should invok&@cl_Se-
tErrorCode before returning CL_ERROR

Tcl_SetErrorCode takes as guments an interpreter and any number of string
arguments ending with a null pointét forms the strings into a list and stores the list as
the value okrrorCode . For example, suppose that you have written several commands
to implement gizmo objects, and that there are several errors that could occur in com-
mands that manipulate the objects, such as an attempt to use a non-existent object. If one
of your command procedures detects a non-existent objectiemayht seerrorCode
as follows:

Tcl_SetErrorCode(interp, "GIZMQO", "EXIST",
"no object by that name", (char *) NULL);

This will leave the valueGIZMO EXIST {no object by that name} ”in
errorCode . GIZMOidentifies a general class of errors (those associated with gizmo
objects) EXIST is the symbolic name for the particular error that occurred, and the last
element of the list is a human-readable error messagecan store whatever you want in
errorCode as long as the first list element do¢swnflict with other values already in
use, but the overall idea is to provide symbolic information that can easily be processed by
a Tcl script. For example, a script that accesses gizmos might catch errors and if the error
is a hon-existent gizmo it might automatically create a new gizmo.
It's important to calllcl_SetErrorCode rather than settingrrorCode directly
with Tcl_SetVar . This is becausécl_SetErrrorCode also sets other information

in the interpeter so thaerrorCode isnt later set to its default value; if you set
errorCode directly, then €l will override your value with the default valDEONE

DRAFT (4/16/93): Distribution Restricted

Chapter 32
Accessing Tcl Variables

This chapter describes how you can accebsdriables from C codecTprovides library
procedures to set variables, read their values, and unset them. It also provides a tracing
mechanism that you can use to monitor and restrict variable accesses3Z.1 summa-
rizes the library procedures that are discussed in the chapter

32.1 Naming variables

The procedures related to variables come in pairs suttli éSetvVar andTcl_Set-

Var2 . The two procedures in each paiffelifonly in the way they name alvariable. In

the first procedure of each pauch aJcl_SetVar |, the variable is named with a single

string agumentyvarName . This form is typically used when a variable name has been

specified as angnment to a @ command. The string can name a scalar variable ¢.g. “

or “f ieldName ", or it can name an element of an armyg. ‘a(42) " or

“area(South America) ”. No substitutions or modifications are performed on the

name. For example, iarName is “a($i) " Tcl will not use the value of variableas

the element name within array it will use the string $i " literally as the element name.
The second procedure of each pair has a name endiagy m§.Tcl_SetVar2 .In

these procedures the variable name is separated intogumemtsnamel andname2.

If the variable is a scalar th@eamel is the name of the variable andme2 is NULL If

the variable is an array element timremmel is the name of the array andme2 is the

name of the element within the arrais form of procedure is less commonly used but it

is slightly faster than the first form (procedures liked_SetVar are implemented by

calling procedures lik&cl_Setvar2).

291

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

292

Accessing Tcl Variables

char *Tcl_SetVar(Tcl_Interp *interp, char *varName,

char *Tcl_SetVar2(Tcl_Interp *interp, char *namel, char *name2,

char *Tcl_GetVar(Tcl_Interp *interp, char *varName,

char *Tcl_GetVar2(Tcl_Interp *interp, char *namel, char *name2,

int Tcl_UnsetVar(Tcl_Interp *interp, char *varName,

int Tcl_UnsetVar2(Tcl_Interp *interp, char *namel, char *name2,

char *newValue, int f lags)

char *newValue, int f lags)
Sets the value of the variablertewValue , creating the variable if it didn’
already exist. Returns the new value of the variabMUirL in case of error

intf lags)

intf lags)
Returns the current value of the variablelNoH_L in case of error

intf lags)

intf lags)
Removes the variable fromterp and return§CL_OK If the variable
doesnt exist or has an active trace then it t&e removed and
TCL_ERRORS returned.

int Tcl_TraceVar(Tcl_Interp *interp, char *varName,

int Tcl_TraceVar2(Tcl_Interp *interp, char *namel, char *name2,

Tcl_UntraceVar(Tcl_Interp *interp, char *varName,

Tcl_UntraceVar2(Tcl_Interp *interp, char *namel, char *name2,

ClientData Tcl_VarTracelnfo(Tcl_Interp *interp, char *varName,

ClientData Tcl_VarTracelnfo2(Tcl_Interp *interp, char *namel,

intf lags, Tcl_VarTraceProc *proc, ClientData clientData)

intf lags, Tcl_VarTraceProc *proc, ClientData clientData)
Arrange forproc to be invoked whenever one of the operations specified by
flags is performed on the variable. RetuiifSL_OKor TCL_ERROR

intf lags, Tcl_VarTraceProc *proc, ClientData clientData)

intf lags, Tcl_VarTraceProc *proc, ClientData clientData)
Removes the trace on the variable that matphas , clientData , and
flags , if there is one.

intf lags, Tcl_VarTraceProc *proc, ClientData prevClientData)

char *name2, int f lags, Tcl_VarTraceProc *proc,

ClientData prevclientData)
If prevClientData is NULL, returns the ClientData associated with th
first trace on the variable that matclémsgs andproc (only the
TCL_GLOBAL_ONLVYit of f lags is used); otherwise returns t@é-
entData for the next trace matchiridags andproc after the one whose
ClientData isprevClientData . ReturndNULLIf there are no (more)
matching traces.

¢

Table 32.1. Tcl library procedures for manipulating variables. The procedures come in pairs
procedure the variable is named with a single string (which may specify either a scalar or a
element) and in the other procedure the variable is named with separate array and elemen
(namel andname2, respectively). Ihame2 is NULL then the variable must be a scalar

DRAFT (4/16/93): Distribution Restricted

32.2 Setting variable values 293

Flag Name Meaning

TCL_GLOBAL_ONLY Reference global variable, regardless o
current execution context.

TCL_LEAVE_ERR_MSG| If operation fails, leave error message in
interp->result

TCL_APPEND_MLUE Append new value to existing value
instead of overwriting.

TCL_LIST_ELEMENT Convert new value to a list element befare
setting or appending.

]

Table 32.2. Values that may be OR’ed together in the flagaments tarcl_SetVar and
Tcl_SetVar2 . Other procedures use a subset of these flags.

32.2 Setting variable values

Tcl_SetvVar andTcl _SetVar2 are used to set the value of a variable. For example,
Tcl_SetVar(interp, "a", "44", 0);
will set the value of variable ininterp to the string 44”. If there does not yet exist a
variable namead then a new one will be created. The variable is set in the current execu-
tion context: if a Tl procedure is currently being executed, the variable will be a local one
for that procedure; if no procedure is currently being executed then the variable will be a
global variable. If the operation completed successfully then the return value from
Tcl_SetVar is a pointer to the variabkehew value as stored in the variable table (this
value is static enough to be used as an interpsatesult). If an error occurred, such as
specifying the name of an array without also specifying an element namalUhéris
returned.

The last agument toTcl_SetVar orTcl_SetVar2 consists of an OR’ed combi-
nation of flag bits. a@ble 32.2 lists the symbolic values for the flags. Ift6é_GLOBA-
L_ONLYflag is specified then the operation always applies to a global variable, even if a
Tcl procedure is currently being execut€é@L_LEAVE_ERR_MSEontrols how errors
are reported. Normallyicl_SetVar andTcl_SetVar2 just returnNULLIf an error
occurs. Howeveiif TCL_LEAVE_ERR_MS@8Bas been specified then the procedures will
also store an error message in the intergeetesult. This last form is useful when the
procedure is invoked from a command procedure that plans to abort if the variable access
fails.

The flagTCL_APPEND_VALUIeans that the new value should be appended to the
variables current value instead of replacing itl implements the append operation in a

DRAFT (4/16/93): Distribution Restricted

294

Accessing Tcl Variables

way that is relatively étient, even in the face of repeated appends to the same variable. If
the variable doesthyet exist theMCL_APPEND_VALUBas no dect.

The last flagTCL_LIST_ELEMENT means that the new value should be converted
to a proper list element (e.g. by enclosing in braces if necessary) before setting or append-
ing. If bothTCL_LIST_ELEMENTandTCL_APPEND_VALUEre specified then a sepa-
rator space is also added before the new elemertt ifégded.

Here is an implementation of tlkeppend command that uséxl_SetVar

int LappendCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
inti;
char *newValue;
if (argc < 3) {
interp->result = "wrong # args";
return TCL_ERROR;

for (i=2;i<argc; i++) {
newValue = Tcl_SetVar(interp, argv[1], argv]i],
TCL_LIST_ELEMENT|TCL_APPEND_VALUE
|TCL_LEAVE_ERR_MSG);
if (newValue == NULL) {
return TCL_ERROR,;
}
}

interp->result = newValue;
return TCL_OK;
}

It simply callsTcl_SetVar once for each gument and let$cl_SetVar do all the
work of converting the gument to a list value and appending it to the variable. If an error
occurs therfcl_SetVar leaves an error messagaériterp->result andLap-
pendCmdreturns the message back @b. Tf the command completes successfully then it
returns the variabls’final value as its result. For example, suppose the follovaingpim-
mand is invoked:

set a 44
lappend a x {b ¢}

44x{bc}
WhenLappendCmd is invokedargc will be 4.Argv[2] will be “x” andargv[3]
will be “b ¢ ” (the braces are removed by the parser) LappendCmd makes two calls
to Tcl_SetVar ; during the first call no conversion is necessary to produce a proper list
element, but during the second ¢&dl_SetVar adds braces back arourtal¢' " before
appending it the variable.

DRAFT (4/16/93): Distribution Restricted

32.3 Reading variables 295

32.3 Reading variables

The procedure$cl_GetvVar andTcl GetVar2 may be used to retrieve variable val-
ues. For example,

char *value;

value = Tcl_GetVar(interp, "a", 0);
will store invalue a pointer to the current value of variabldf the variable doest’
exist or some other error occurs thdLL is returnedTcl_GetVar andTcl_Get-
Var2 support thefCL_GLOBAL_ONL¥YNdTCL_LEAVE_ERR_MS#@ags in the same
way asTcl_SetVar . The following command procedure ude$ Getvar and
Tcl_SetVar to implement théncr command:

int IncrCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argvl[]) {
int value, inc;
char *string;
if ((argc = 2) && (argc = 3)) {
interp->result = "wrong # args";
return TCL_ERROR;

}
if (argc == 2) {
inc =1,
} else if (Tcl_GetlInt(interp, argv[2], &inc)
I= TCL_OK) {
return TCL_ERROR,;

string = Tcl_GetVar(interp, argv[1],
TCL_LEAVE_ERR_MSG);
if (string == NULL) {
return TCL_ERROR,;

}
if (Tcl_GetlInt(interp, string, &value) = TCL_OK) {
return TCL_ERROR,;

sprintf(interp->result, "%d", value + inc);
if (Tcl_SetVar(interp, argv[1], interp->result,
TCL_LEAVE_ERR_MSG) == NULL) {
return TCL_ERROR,;

}
return TCL_OK;
}

IncrCmd does very little work itself. It just calls library procedures and aborts if errors
occur The first call toTcl_Getint converts the increment from text to binary

DRAFT (4/16/93): Distribution Restricted

296

Accessing Tcl Variables

324

Tcl_GetVar retrieves the original value of the variable, and another catiltdGet-
Int converts that value to binatpcrCmd then adds the increment to the variable’
value and callsprintf to convert the result back to teXtl_SetVar stores this
value in the variable, andcrCmd then returns the new value as its result.

Unsetting variables

32.5

To remove a variable, cdllcl_UnsetVar orTcl_UnsetVar2 . For example,
Tcl_UnsetVar2(interp, "population”, "Michigan”, 0);
will remove the elemeritlichigan from the arraypopulation . This statement has
the same ééct as the @ command
unset population(Michigan)
Tcl_UnsetVar andTcl_UnsetVar2 returnTCL_OKIif the variable was successfully
removed and CL_ERRORf the variable didrt’exist or couldrt' be removed for some
other reasonTCL_GLOBAL_ONL¥YNdTCL_LEAVE_ERR_MS@ay be specified as
flags to these procedures. If an array hame is given without an element name then the
entire array is removed.

Setting and unsetting variable traces

Variable traces allow you to specify a C procedure to be invoked whenever a variable is
read, written, or unsetrdces can be used for many purposes. For example, in Tk you can
configure a button widget so that it displays the value of a variable and updates itself auto-
matically when the variable is modified. This feature is implemented with variable traces.
You can also use traces for debugging, to create read-only variables, and for many other
purposes.

The procedure$cl_TraceVar andTcl_TraceVar2 create variable traces, as in
the following example:

Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, WriteProc,
(ClientData) NULL);

This creates a write trace on variaklen interp : WriteProc will be invoked when-
everx is modified. The third gument toTcl_TraceVar is an OR’ed combination of
flag bits that select the operations to trdc@t._TRACE_READ®r reads,
TCL_TRACE_WRITESor writes, andfCL_TRACE_UNSET®r unsets. In addition,
the flagTCL_GLOBAL_ONLYnay be specified to force the variable name to be inter-
preted as globallcl_TraceVar andTcl_TraceVar2 normally returnTCL_OK if
an error occurs then they leave an error messageenp->result and return
TCL_ERROR

DRAFT (4/16/93): Distribution Restricted

32.6 Trace callbacks 297

32.6

The library procedurescl_UntraceVar andTcl_UntraceVar2 remove vari-
able traces. For example, the following call will remove the trace set above:
Tcl_UntraceVar(interp, "x", TCL_TRACE_WRITES,
WriteProc, (ClientData) NULL);

Tcl_UntraceVar finds the specified variable, looks for a trace that matches the flags,
trace procedure, and ClientData specified by geraents, and removes the trace if it
exists. If no matching trace exists thieel_UntraceVar does nothingTcl_Un-

traceVar andTcl_UntraceVar2 accept the same flag bitsed_TraceVar

Trace callbacks

Trace callback procedures such/dsteProc in the previous section must match the
following prototype:
typedef char *Tcl_VarTraceProc(ClientData clientData,
Tcl_Interp *interp, char *namel, char *name2,
intf lags);

TheclientData andinterp amguments will be the same as the correspondigg-ar
ments passed fbcl_TraceVar orTcl_TraceVar2 .ClientData typically points
to a structure containing information needed by the trace callNackelandname2
give the name of the variable in the same form as therants tolcl_SetVar2
Flags consists of an OR’ed combination of bits. Ongd6L._TRACE_READS
TCL_TRACE_WRITESorTCL_TRACE_UNSETS set to indicate which operation trig-
gered the trace, anidCL_GLOBAL_ONLYs set if the variable is a global variable that
isn't accessible from the current execution context; the trace callback must pass this flag
back into procedures liKecl_GetVar2 if it wishes to access the variable. The bits
TCL_TRACE_DESTROYEMITCL _INTERP_DESTROYE#Hre set in special circum-
stances described below

For read traces, the callback is invoked just befateGetVar orTcl_GetVar2
returns the variabls'value to whomever requested it; if the callback modifies the value of
the variable then the modified value will be returned. For write traces the callback is
invoked after the variablevalue has been changed. The callback can modify the variable
to override the change, and this modified value will be returned as the result of
Tcl_SetVar orTcl_SetVar2 . For unset traces the callback is invoked after the vari-
able has been unset, so the callback cannot access the variable. Unset callbacks can occur
when a variable is explicitly unset, when a procedure returns (thereby deleting all of its
local variables) or when an interpreter is destroyed (thereby deleting all of the variables in
the interpreter).

A trace callback procedure can invokd _GetVar2 andTcl_SetvVar2 to read
and write the value of the traced variable. All traces on the variable are temporarily dis-
abled while the callback executes so call$d¢b Getvar2 andTcl_Setvar2 will

DRAFT (4/16/93): Distribution Restricted

298

Accessing Tcl Variables

not trigger additional trace callbacks. As mentioned above, unset tracésramaied
until after the variable has been deleted, so attempts to read the variable during unset call-
backs will fail. Howeverit is possible for an unset callback procedure to write the vari-
able, in which case a new variable will be created.
The code below sets a write trace that prints out the new value of variadth time
it is modified:
Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, Print,
(ClientData) NULL);

char *Print(ClientData clientData,

Tcl_Interp *interp, char *namel, char *name2,
intf lags) {

char *value;

value = Tcl_GetVar2(interp, namel, name2,

flags & TCL_GLOBAL_ONLY);

if (value != NULL) {

printf("new value is %s\n", value);

return NULL;
}

PrintProc must pass thECL_GLOBAL_ONLYit of itsf lags amgument on to
Tcl_GetVar2 in order to make sure that the variable can be accessed properly
Tcl_GetVar2 should never return an errdaut PrintProc checks for one anyway
and doesrt’'try to print the variablg'value if an error occurs.

Trace callbacks normally retuNULL values; a noWNULL value signals an errdn
this case the return value must be a pointer to a static string containing an error message.
The traced access will abort and the error message will be returned to whomever initiated
that access. For example, if the access was invokeddty aommand of-substitution
then a Tl error will result; if the access was invoked Vid GetVar , Tcl_GetVar
will return NULL and also leave the error messagmtearp->result if the
TCL_LEAVE_ERR_MS@ag was specified.

The code below uses a trace to make variallad-only with valud 92 :

Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, Reject,
(ClientData) "192";
char *Reject(ClientData clientData, Tcl_Interp *interp,
char *namel, char *name2, int f lags) {
char *correct = (char *) ClientData;
Tcl_SetVar2(interp, namel, name2, correct,
flags & TCL_GLOBAL_ONLY);
return "variable is read-only";
h
Reject is a trace callback thatinvoked wheneverx is written. It returns an error mes-
sage to abort the write access. Sindws already been modified bef®eject is

DRAFT (4/16/93): Distribution Restricted

32.7 Whole-array traces 299

invoked,Reject must undo the write by restoring the variableorrect value. The cor-
rect value is passed to the trace callback usingiéstData amgument. This imple-

mentation allows the same procedure to be used as the write callback for rfexapntdif
read-only variables; a didrent correct value can be passe®éject for each variable.

32.7 Whole-array traces

You can create a trace on an entire array by specifying an array nacheliaceVar

or Tcl_TracevVar2 without an element name. This creates a whole-array trace: the call-
back procedure will be invoked whenever any of the specified operations is invoked on
any element of the arralf the entire array is unset then the callback will be invoked just
once, withnamel containing the array name andme2 NULL

32.8 Multiple traces

Multiple traces can exist for the same variable. When this happens, each of the relevant
callbacks is invoked on each variable access. The callbacks are invoked in order from
most-recently-created to oldest. If there are both whole-array traces and individual ele-
ment traces, then the whole-array callbacks are invoked before element callbacks. If an
error is returned by one of the callbacks then no subsequent callbacks are invoked.

32.9 Unset callbacks

Unset callbacks are @&rent from read and write callbacks in several ways. First of all,
unset callbacks cannot return an error condition; they must always succeed. Second, two
extra flags are defined for unset callbadkst. TRACE_DELETERnd
TCL_INTERP_DESTROYEDWNhen a variable is unset all of its traces are deleted; unset
traces on the variable will still be invoked, but they will be passe@i@he TRACE DE-
LETEDflag to indicate that the trace has now been deleted antllveoinvvoked anymore.

If an array element is unset and there is a whole-array unset trace for the slemayt’

then the unset trace is not deleted and the callback will be invoked without the
TCL_TRACE_DELETELRlag set.

If the TCL_INTERP_DESTROYERBag is set during an unset callback it means that
the interpreter containing the variable has been destroyed. In this case the callback must be
careful not to use the interpreter at all, since the interpsettate is in the process of
being deleted. All that the callback should do is to clean up its own internal data struc-
tures.

DRAFT (4/16/93): Distribution Restricted

300 Accessing Tcl Variables

32.10 Non-existent variables

It is legal to set a trace on a variable that does not yet exist. The variable will continue to
appear not to exist (e.g. attempts to read it will fail), but the saediback will be

invoked during operations on the variable. For example, you can set a read trace on an

undefined variable and then, on the first access to the variable, assign it a default value.

32.11 Querying trace information

The procedurescl_VarTracelnfo andTcl_VarTracelnfo2 can be used to find
out if a particular kind of trace has been set on a variable and if so to retrieve its Client-
Data value. For example, consider the following code:

ClientData clientData;

clientData = Tcl_VarTracelnfo(interp, "x", 0, Reject,
(ClientData) NULL);

Tcl_VarTracelnfo will see if there is a trace on varialdléhat haRReject as its
trace callback. If so, it will return the ClientData value associated with the first (most
recently created) such trace; if not it will retiNbLL Given the code in Section 32.6
above, this call will tell whether is read-only; if so, it will return the variabdefead-only
value. If there are multiple traces on a variable with the same callback, you can step
through them all in order by making multiple callsTid_VarTracelnfo , asin the
following code:

ClientData clientData;

clientData = NULL;
while (1) {
clientData = Tcl_VarTracelnfo(interp, "x", 0,
Reject, clientData);
if (clientData == NULL) {
break;
}

... process trace ...
}
In each call tarcl_VarTracelnfo after the first, the previous ClientData value is
passed in as the laspament.Tcl_VarTracelnfo finds the trace with this value, then
returns the ClientData for the next trace. When it reaches the last trace it Kefiluins

DRAFT (4/16/93): Distribution Restricted

Chapter 33
Hash Tables

A hash tables a collection oEntries where each entry consists dfeyand avalue No

two entries have the same k&jven a keya hash table can very quickly locate its entry

and hence the associated valug.cbntains a general-purpose hash table package that it
uses in several places internafpr example, all of the commands in an interpreter are
stored in a hash table where the key for each entry is a command name and the value is a
pointer to information about the command. All of the global variables are stored in another
hash table where the key for each entry is the name of a variable and the value is a pointer
to information about the variable.

Tcl exports its hash table facilities through a set of library procedures so that applica-
tions can use them too (seable 33.1 for a summary). The most common use for hash
tables is to associate names with objects. In order for an application to implement a new
kind of object it must give the objects textual names for useliocommands. When a
command procedure receives an object name agamant it must locate the C data
structure for the objectypically there will be one hash table for each type of object,
where the key for an entry is an object name and the value is a pointer to the C data struc-
ture that represents the object. When a command procedure needs to find an object it looks
up its name in the hash table. If there is no entry for the name then the command procedure
returns an error

For the examples in this chapter I'll use a hypothetical application that implements
objects called “gizmos”. Each gizmo is represented internally with a structure declared
like this:

typedef struct Gizmo {
... fields of gizmo object ...
} Gizmo;

301

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

302 Hash Tables

Tcl_InitHashTable(Tcl_HashTable *tablePtr, int keyType)
Creates a new hash table and stores information about the table at
*tablePtr . KeyType is eitherTCL_STRING_KEYS
TCL_ONE_WORD_KEY& an integer greater than 1.
Tcl_DeleteHashTable(Tcl_HashTable *tablePtr)
Deletes all the entries in the hash table and frees up related storage.

Tcl_HashEntry *Tcl_CreateHashEntry(Tcl_HashTable *tablePtr,

char *key,
int *newPtr)

Returns a pointer to the entrytablePtr ~ whose key i%ey, creating a
new entry if neededNewPtr is setto 1 if a new entry was created or O ff
the entry already existed.

Tcl_HashEntry *Tcl_FindHashEntry(Tcl_HashTable *tablePtr, char
*key)
Returns a pointer to the entrytablePtr ~ whose key ikey, or NULL if
no such entry exists.

Tcl_DeleteHashEntry(Tcl_HashEntry *entryPtr)
Deletes an entry from its hash table.

ClientData Tcl_GetHashValue(Tcl_HashEntry *entryPtr)

Returns the value associated with a hash table.entry
Tcl_SetHashValue(Tcl_HashEntry *entryPtr, ClientData value)

Sets the value associated with a hash table.entry
char *Tcl_GetHashKey(Tcl_HashEntry *entryPtr)

Returns the key associated with a hash table.entry

Tcl_HashEntry *Tcl_FirstHashEntry(Tcl_HashTable *tablePtr,
Tcl_HashSearch *searchPtr)

Starts a search through all the elements of a hash table. Stores information
about the search &earchPtr and returns the hash talsldirst entry or
NULLIf it has no entries.

Tcl_HashEntry *Tcl_NextHashEntry(Tcl_HashSearch *searchPtr)
Returns the next entry in the search identifiedégrchPtr or NULLIf all
entries in the table have been returned.

char *Tcl_HashStats(Tcl_HashTable *tablePtr)
Returns a string giving usage statisticstédnlePtr . The string is dynam-
ically allocated and must be freed by the caller

The application uses names likfizZzmo42 " to refer to gizmos in @ commands, where
each gizmo has a é#frent number at the end of its name. The application follows the
action-oriented approach described in Section 27.3 by providing a collectichomiii-
mands to manipulate the objects, sucg@asate to create a new gizmgdelete to
delete an existing gizmgsearch to find gizmos with certain characteristics, and so on.

DRAFT (4/16/93): Distribution Restricted

33.1 Keys and values 303

33.1

Keys and values

33.2

Tcl hash tables support threefdient kinds of keys. All of the entries in a single hash
table must use the same kind of Keyt diferent tables may use fiifent kinds. The most
common form of key is a string. In this case each keyNiBlL-terminated string of arbi-
trary length, such agfzmol18 ” or “Waste not want not ". Different entries in a
table may have keys of éfent length. The gizmo implementation uses strings as keys.
The second form of key is a one-word value. In this case each key may be any value
that fits in a single word, such as an inte@sre-word keys are passed int dsing val-
ues of type €har * " so the keys are limited to the size of a character pointer
The last form of key is an arraly this case each key is an array of integeriafC
type). All keys in the table must be the same size.
The values for hash table entries are items of Gl@ntData , which are lage
enough to hold either an integer or a poinitemost applications, such as the gizmo
example, hash table values are pointers to records for objects. These pointers are cast into
ClientData items when storing them in hash table entries, and they are cast back from
ClientData to object pointers when retrieved from the hash table.

Creating and deleting hash tables

Each hash table is represented by a C structure offgipelashTable . Space for this
structure is allocated by the client, not lmy}; Typically these structures are global vari-
ables or elements of other structures. When calling hash table procedures you pass in a
pointer to alcl_HashTable structure as a token for the hash tabtmu ¥hould never
use or modify any of the fields off&l_HashTable directly Use the €l library proce-
dures and macros for this.

Here is how a hash table might be created for the gizmo application:

Tcl_HashTable gizmoTable;

Tcl_InitHashTable(&gizmoTable, TCL_STRING_KEYS);

The first agument toTcl_InitHashTable is aTcl_HashTable pointer and the
second ggument is an integer that specifies the sort of keys that will be used for the table.
TCL_STRING_KEYSmeans that strings will be used in the table;
TCL_ONE_WORD_VALUEBecifies one-word keys; and an integer value greater than
one means that keys are arrays with the given number ®frirgach array
Tcl_InitHashTable ignores the current contents of the table it is passed and re-ini-
tializes the structure to refer to an empty hash table with keys as specified.
Tcl_DeleteHashTable removes all the entries from a hash table and frees up
any memory that was allocated for the table (except space foclthgashTable

DRAFT (4/16/93): Distribution Restricted

304 Hash Tables

structure itself, which is the property of the client). For example, the following statement
could be used to delete the hash table initialized above:

Tcl_DeleteHashTable(&gizmoTable);

33.3 Creating entries

The procedurd&cl_CreateHashEntry creates an entry with a given key and
Tcl_SetHashValue sets the value associated with the erfior example, the code
below might be used to implement @eate command, which makes a new gizmo
object:
int GereateCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
static intid = 1;
int new;
Tcl_HashEntry *entryPtr;
Gizmo *gizmoPtr;
... check agc, etc ...
do {
sprintf(interp->result, "gizmo%.d", id);
id++;
entryPtr = Tcl_CreateHashEntry(&gizmoTable,
interp->result, &new);
} while ('new);
gizmoPtr = (Gizmo *) malloc(sizeof(Gizmo));
Tcl_SetHashValue(entryPtr, gizmoPtr);
... initialize *gizmoPtretc ...
return TCL_OK;
}
This code creates a name for the object by concatenafimgd ” with the value of the
static variablad . It stores the name interp->result so that the commarsliesult
will be the name of the new objeGcreateCmd then increment&l so that each new
object will have a unique namgcl_CreateHashEntry is called to create a new
entry with a key equal to the objextiame; it returns a token for the entdypder normal
conditions there will not already exist an entry with the given ikeyhich case
Tcl_CreateHashEntry setsnew to 1 to indicate that it created a new erittgwever
it is possible foifcl_CreateHashEntry to be called with a key that already exists in
the table. IfGecreateCmd this can only happen if a very ¢@r number of objects are cre-
ated, so thatl wraps around to zero again. If this happens TrenCreateHashEn-
try sets new to QcreateCmd will try again with the next lgerid until it eventually
finds a name that isnalready in use.

DRAFT (4/16/93): Distribution Restricted

33.4 Finding existing entries 305

Note:

33.4

After creating the hash table ent¢greateCmd allocates memory for the objext’
record and invoke$cl_SetHashValue to store the record address as the value of the
hash table entryfcl_SetHashValue s actually a macro, not a procedure; its first
argument is a token for a hash table entry and its secgadant, the new value for the
entry, can be anything that fits in the space GliantData value. After setting the
value of the hash table entBcreateCmd initializes the new object’record.

Tcl's hash tablesastructue themselves as you add entries. A tabletwse’ much
memory for the hash buckets when it has only a small number of entries, but it will

increase the size of the bucket array as the number of entrieages:; di's hash tables
should operate efficiently even with venglinumbers of entries.

Finding existing entries

The proceduré&cl_FindHashEntry locates an existing entry in a hash table. It is sim-
ilar to Tcl_CreateHashEntry except that it wort’create a new entry if the key
doesnt already exist in the hash tablel_FindHashEntry is typically used to find
an object given its name. For example, the gizmo implementation might contain a utility
procedure calleGetGizmo , which is something lik&cl_Getint except that it trans-
lates its string @ument to &izmo pointer instead of an integer:
Gizmo *GetGizmo(Tcl_Interp *interp, char *string) {
Tcl_HashEntry *entryPtr;
entryPtr = Tcl_FindHashEntry(&gizmoTable, string);
if (entryPtr == NULL) {
Tcl_AppendResult(interp, "no gizmo named \",
string, "\", (char *) NULL);
return TCL_ERROR,

return (Gizmo *) Tcl_GetHashValue(entryPtr);
}
GetGizmo looks up a gizmo name in the gizmo hash table. If the name exisGehen
Gizmo extracts the value from the entry using the macloGetHashValue , con-
verts it to aGizmo pointer and returns it. If the name dodsaxist thenGetGizmo
stores an error messaganterp->result and returnéNULL
GetGizmo can be invoked from any command procedure that needs to look up a
gizmo object. For example, suppose there is a comgiavist that performs a “twist”
operation on gizmos, and that it takes a gizmo name as its dissh@nt. The command
might be implemented like this:
int GtwistCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
Gizmo *gizmoPtr;
... check agc, etc ...

DRAFT (4/16/93): Distribution Restricted

306 Hash Tables

gizmoPtr = GetGizmo(interp, argv[1]);
if (gizmoPtr == NULL) {

return TCL_ERROR,;
}

... perform twist operation ...

33.5 Searching

Tcl provides two procedures that you can use to search through all of the entries in a hash
table.Tcl_FirstHashEntry starts a search and returns the first eamgTcl_N-
extHashEntry returns successive entries until the search is complete. For example,
suppose that there iggearch command that searches through all existing gizmos and
returns a list of the names of the gizmos that meet a certain set of criteria. This command
might be implemented as follows:

int GsearchCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
Tcl_HashEntry *entryPtr;
Tcl_HashSearch search;
Gizmo *gizmoPtr;
... process aguments to choose seércriteria ...
for (entryPtr = Tcl_FirstHashEntry(&gizmoTable,
&search); entryPtr 1= NULL;
entryPtr = Tcl_NextHashEntry(&search)) {
gizmoPtr = (Gizmo *) Tcl_GetHashValue(entryPtr);
if (...object satisfies sed criteria..) {
Tcl_AppendElement(interp,
Tcl_GetHashKey(entryPtr));

}
}
return TCL_OK;
}
A structure of typdcl_HashSearch is used to keep track of the search.
Tcl_FirstHashEntry initializes this structure antcl_NextHashEntry uses the

information in the structure to step through successive entries in the tabpeskible to
have multiple searches underway simultaneously on the same hash table by uéng a dif
entTcl_HashSearch structure for each searcfcl_FirstHashEntry returns a

token for the first entry in the table (dULL if the table is empty) anticl_NextHash-

Entry returns pointers to successive entries, eventually retuNiitid when the end of

the table is reached. For each ef@searchCmd extracts the value from the entcpn-

verts it to aGizmo pointer and sees if that object meets the criteria specified in the com-
mands aguments. If so, the@GsearchCmd uses thdcl_GetHashKey macro to get

DRAFT (4/16/93): Distribution Restricted

33.6 Deleting entries 307

the name of the object (i.e. the erdgrigey) and invoke$cl_AppendElement to
append the name to the interpr&teesult as a list element.

Note: Itis not safe to modify the strucéuof a hash table during a seér. If you ceate or delete
entries then you should terminate any sbas in pogress.

33.6 Deleting entries

The procedurd&cl_DeleteHashEntry will delete an entry from a hash table. For
example, the following procedure uSed DeleteHashEntry to implement gyde-
lete command, which takes any humber @futanents and deletes the gizmo objects they

name:
int GdeleteCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
Tcl_HashEntry *entryPtr;
Gizmo *gizmoPtr;
inti;
for (i=1;i<argc;i++){
entryPtr = Tcl_FindHashEntry(&gizmoTable,
argv[i]);
if (entryPtr == NULL) {
continue;
gizmoPtr = (Gizmo *) Tcl_HashGetValue(entryPtr);
Tcl_DeleteHashEntry(entryPtr);
... Clean up *gizmoPtr...
free((char *) gizmoPtr);
}
return TCL_OK;
}

GdeleteCmd checks each of itsguments to see if it is the name of a gizmo object. If

not, then the gument is ignored. OtherwisgdeleteCmd extracts a gizmo pointer from

the hash table entry and then calt$_DeleteHashEntry to remove the entry from

the hash table. Then it performs internal cleanup on the gizmo object if needed and frees
the objects record.

33.7 Statistics

The procedur&cl_HashStats returns a string containing various statistics about the
structure of a hash table. For example, it might be used to implergstata command
for gizmos:

DRAFT (4/16/93): Distribution Restricted

308 Hash Tables

int GstatCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
if (argc 1=1) {
interp->result = "wrong # args";
return TCL_ERROR,;

interp->result = Tcl_HashStats(&gizmoTable);
interp->freeProc = free;
return TCL_OK;

}

The string returned bycl_HashStats is dynamically allocated and must be passed to
free;GstatCmd uses this string as the commanisult, and then sets
interp- >freeProc so that Tl will free the string.

The string returned bycl_HashStats contains information like the following:

1416 entries in table, 1024 buckets
number of buckets with 0 entries: 60
number of buckets with 1 entries: 591
number of buckets with 2 entries: 302
number of buckets with 3 entries: 67
number of buckets with 4 entries:
number of buckets with 5 entries:
number of buckets with 6 entries:
number of buckets with 7 entries:
number of buckets with 8 entries:
number of buckets with 9 entries:
number of buckets with more than 10 entries: 0
average search distance for entry: 1.4

You can use this information to see hoficedntly the entries are stored in the hash table.

For example, the last line indicates the average number of entrieslthalt iave to

check during hash table lookups, assuming that all entries are accessed with equal proba-
bility.

Oooocowu

DRAFT (4/16/93): Distribution Restricted

Chapter 34
String Utilities

This chapter describe<ITs library procedures for manipulating strings, including a
dynamic string mechanism that allows you to build up arbitrarily long strings, a procedure
for testing whether a command is complete, and a procedure for doing simple string
matching. Bble 34.1 summarizes these procedures.

Note: None of the dynamic string facilitieseaavailable in versions otTearlier than 7.0.

34.1 Dynamic strings

A dynamic strings a string that can be appended to without bound. As you append infor-
mation to a dynamic stringclfautomatically grows the memory area allocated for it. If
the string is short thencTavoids dynamic memory allocation altogether by using a small
static bufer to hold the string.d provides five procedures for manipulating dynamic
strings:
Tcl_DStringlnit creates a new empty string;
Tcl_DStringAppend adds characters to a dynamic string;
Tcl_DStringAppendElement adds a new list element to a dynamic string;

Tcl_DStringFree releases any storage allocated for a dynamic string and reinitial-
izes the string;

andTcl_DStringResult moves the value of a dynamic string to the result string
for an interpreter and reinitializes the dynamic string.

309

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

310

String Utilities

Tcl_DStringlnit(Tcl_DString *dsPtr)
Initializes*dsPtr to an empty string (previous content$adéPtr are
discarded without cleanup).
char *Tcl_DStringAppend(Tcl_DString *dsPtr, char *string, int
length)
Appenddength bytes fromstring todsPtr ’'s value and returns new
value ofdsPtr . If length is less than zero, appends alstfng up to
terminatingNULL character
char *Tcl_DStringAppendElement(Tcl_DString *dsPtr, char *string)
Convertsstring to proper list element and appendsi$@tr 's value
(with separator space if needed). Returns new valdeRif .
Tcl_DStringFree(Tcl_DString *dsPtr)
Frees up any memory allocated f=Ptr and reinitializegdsPtr to an

empty string.
Tcl_DStringResult(Tcl_Interp *interp, Tcl_DString *dsPtr)
Moves the value adsPtr tointerp->result and reinitializeslsP-

tr ’'s value to an empty string.

int Tcl_CommandComplete(char *cmd)
Returnsl if cmd holds one or more complete commartild,the last com-
mand incmd is incomplete due to open braces etc.

int Tcl_StringMatch(char *string, char *pattern)
Returnsl if string matchegattern using glob-style rules for pattern
matching,0 otherwise.

The code below uses all of these procedures to implenmapaommand, which

takes a list and generates a new list by applying some operation to each element of the
original list. Map takes two aguments: a list and aclfcommand. For each element in the
list, it executes the given command with the list element appended as an addigional ar
ment. It takes the results of all the commands and generates a new list out of them, and
then returns this list as its result. Here are some exmples of how you might osgthe
command:

proc inc x {expr $x+1}

map {4 18 16 19 -7} inc

5191720-6

proc addz x {return "$x z"}
map {a b {a b c}} addz

{az}{bz}{abcz}

Here is the command procedure that implemerag:

int MapCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv([]) {

DRAFT (4/16/93): Distribution Restricted

34.1 Dynamic strings 311

Tcl_DString command, newList;

int listArgc, i, result;

char **listArgv;

if (argc '=3) {
interp->result = "wrong # args";
return TCL_ERROR,;

}
if (Tcl_SplitList(interp, argv[1], &listArgc,
&listArgv) 1= TCL_OK) {
return TCL_ERROR,;

}
Tcl_DStringlInit(&newList);
Tcl_DStringlnit(&command);
for (i = 0; i < listArgc; i++) {
Tcl_DStringAppend(&command, argv[2], -1);
Tcl_DStringAppendElement(&command,
listArgv[i]);
result = Tcl_Eval(interp, command.string);
Tcl_DStringFree(&command);
if (result I= TCL_OK) {
Tcl_DStringFree(&newlList);
free((char *) listArgv);
return result;

}
Tcl_DStringAppendElement(&newlList,
interp->result);

Tcl_DsStringResult(interp, &newlList);

free((char *) listArgv);

return TCL_OK;

}
MapCmduses two dynamic strings. One holds the result list and the other holds the com-
mand to execute in each step. The first dynamic string is needed because the length of the
command is unpredictable, and the second one is needed to store the result list as it builds
up (this information cab’be placed immediately interp->result because the
interpretets result will be overwritten by the command te&valuated to process the next
list element). Each dynamic string is represented by a structure ofdlydg@String
The structure holds information about the string such as a pointer to its current value, a
small array to use for small strings, and a length. The only field that you should ever
access is thetring field, which is a pointer to the current valuel doesnt allocate
Tcl_DString structures; i up to you to allocate the structure (e.g. as a local variable)
and pass its address to the dynamic string library procedures.
After checking its ayjument count, extracting all of the elements from the initial list,

and initializing its dynamic stringdjapCmdenters a loop to process the elements of the

DRAFT (4/16/93): Distribution Restricted

312

String Utilities

34.2

list. For each element it first creates the command to execute for that element. It does this
by callingTcl_DStringAppend to append the part of the command provided in
argv[2] , then it callsTcl_DStringAppendElement to append the list element as
an additional ayjument. These procedures are similar in that both add new information to
the dynamic string. HoweveFcl_DStringAppend adds the information as raw text
whereaslcl_DStringAppendElement converts its string gument to a proper list
element and adds that list element to the dynamic string (with a separator space, if
needed). I8 important to us&cl_DStringAppendElement for the list element so
that it becomes a single word of thed §ommand being formed. Ticl_DStringAp-
pend were used instead and the element ware € " as in the example on page 310,
then the command passedit_Eval would be ‘addzabc ", which would result
in an error (too many guments to thaddz procedure). Wheilicl_DStringAppen-
dElement is used the command iaddz {a b c} ", which parses correctly
OnceMapCmdhas created the command to execute for an element, it invokes
Tcl_Eval to evaluate the command. Thel_DStringFree call frees up any mem-
ory that was allocated for the command string and resets the dynamic string to an empty
value for use in the next command. If the command returned an errdvidp&md
returns that same error; otherwise it ugels DStringAppendElement to add the
result of the command to the result list as a new list element.
MapCmdcalls Tcl_DStringResult after all of the list elements have been pro-
cessed. This transfers the value of the string to the intergredsult in an dtient way
(e.g. if the dynamic string uses dynamically allocated memoryTbeStringRe-
sult just copies a pointer to the resuliriterp->result rather than allocating new
memory and copying the string).
Before returningMapCmdmust be sure to free up any memory allocated for the
dynamic strings. It turns out that this has already been domel bpStringFree for
commandand byTcl_DStringResult for newList

Command completeness

When an application is reading commands typed interactivslymportant to wait until a
complete command has been entered before evaluating it. For example, suppose an appli-
cation is reading commands from standard input and the user types the following three
lines:

foreachi{12345}{
puts "$i*$i is [expr $i*$i]"
}

If the application reads each line separately and passekcit téval , a “missing

close-brace " error will be generated by the first line. Instead, the application should
collect input until all the commands read are complete (e.g. there are no unmatched braces

DRAFT (4/16/93): Distribution Restricted

34.3 String matching 313

or quotes) then execute all of the input as a single script. The prodetiuB®mmand-
Complete makes this possible. It takes a string gsiarent and returns 1 if the string
contains syntactically complete commands, O if the last commangéticomplete.

The C procedure below uses dynamic stringsfahdCommandComplete to read
and evaluate a command typed on standard input. It collects input until all the commands
read are complete, then it evaluates the command(s) and returns the completion code from
the evaluation. It usékcl_RecordAndEval to evaluate the command so that the com-
mand is recorded on the history list.

int DoOneCmd(Tcl_Interp *interp) {
char line[200];
Tcl_DString cmd;
int result;
Tcl_DStringlnit(&cmd);
while (1) {
if (fgets(line, 200, stdin) == NULL) {
break;

}

Tcl_DStringAppend(&cmd, line, -1);

if (Tcl_CommandComplete(cmd.string)) {
break;

}

result = Tcl_RecordAndEval(interp, cmd.string, 0);
Tcl_DsStringFree(&cmd);
return result;
}
In the example of the previous pageOneCmdwill collect all three lines before evaluat-
ing them. If an end-of-file occufgets will return NULL andDoOneCmdwill evaluate
the command even if it isncomplete yet.

34.3 String matching

The procedurd&cl_StringMatch provides the same functionality as tis¢ring

match ” Tcl command. Given a string and a pattern, it retdriighe string matches the
pattern using glob-style matching abatherwise. For example, here is a command pro-
cedure that usécl_StringMatch to implementsearch . It returns the index of the
first element in a list that matches a patternloif no element matches:

int LsearchCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
int listArgc, i, result;
char **listArgv;
if (argc '=3) {

DRAFT (4/16/93): Distribution Restricted

314

String Utilities

interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_SplitList(interp, argv[1], &listArgc,
&listArgv) = TCL_OK) {
return TCL_ERROR,;

result = -1;
for (i = 0; i < listArgc; i++) {
if (Tcl_StringMatch(listArgvli], argv[2])) {
result = i;
break;

}

sprintf(interp->result, "%d", result);
free((char *) listArgv);
return TCL_OK;

DRAFT (4/16/93): Distribution Restricted

Chapter 35
POSI X Utilities

35.1

This chapter describes several utilities that you may find useful if you use POSIX system
calls in your C code. The procedures can be used to expanatation in file names, to
generate messages for POSIX errors and signals, and to manage sub-procesable See T
35.1 for a summary of the procedure.

Tilde expansion

Tcl and Tk allow you to use notation when specifying file names, and if you write new
commands that manipulate files then you should support tildes also. For example, the
command

open ~ouster/.login
opens the file nametbgin in the home directory of useuster , and

open ~/.login
opens a file nametbgin in the home directory of the current user (as given by the
HOMEenvironment variable). Unfortunateljides are not supported by the POSIX sys-
tem calls that actually open files. For example, in thedpeh command above the name
actually presented to tlopen system call must be something like

/users/ouster/.login

where~ouster has been replaced bhe home directory fasuster . Tcl_TildeS-
ubst is the procedure that carries out this substitution. It is used internallyt bpd Tk

315

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

316 POSIX Utilities

char *Tcl_TildeSubst(Tcl_Interp *interp, char *name,
Tcl_DString *resultPtr)

If name starts with~, returns a new name with theand following charac-
ters replaced with the corresponding home directory namanié doesnt
start with~, returnsname. UsestresultPtr if needed to hold new name
(caller need not initializ&resultPtr , but must free it by callingicl_D-
StringFree). If an error occurs, returddULL and leaves an error mes-
sage innterp- >result.

char *Tcl_PosixError(Tcl_Interp *interp)
Sets theerrorCode variable ininterp based on the current value of
errno , and returns a string identifying the error

char *Tcl_Errnold(void)
Returns a symbolic name corresponding to the current vaérenof , such
asENOENT

char *Tcl_Signalld(int sig)
Returns the symbolic name feig , such aSIGINT .

char *Tcl_SignalMsg(int sig)
Returns a human-readable message describing signal

int Tcl_CreatePipeline(Tcl_Interp *interp, int argc, char

*argv(],

int **pidPtr, int *inPipePtr, int *outPipePtr, int *errFi-
lePtr)
Creates a process pipeline, returns a count of the number of processes cre-
ated, and stores &idPtr the address ofmalloc -ed array of process
identifiers. If an error occurs, retursis and leaves an error message in
interp->result . InPipePtr , outPipePtr , anderrFilePtr are
used to control default I/O redirection (see text for details).

Tcl_DetachPids(int numPids, int *pidPtr)
Passes responsibility foumPids at*pidPtr to Tcl: Tcl will allow them
to run in backround and reap them in some future caitkdReapDe-
tachedProcs

Tcl_ReapDetachedProcs(void)
Checks to see if any detached processes have exited; if so, cleans up their
state.

to process file names before using them in system calls, and you may find it useful if you
write C code that deals with POSIX files.
For example, the implementation of thhgen command contains code something
like the following:
int fd;
Tcl_DString buffer;
char *fullName;

DRAFT (4/16/93): Distribution Restricted

35.2 Generating messages 317

35.2

fullName = Tcl_TildeSubst(interp, argv[1], &buffer);
if (fullName == NULL) {
return TCL_ERROR,;

}
fd = open(fullName, ...);
Tcl_DStringFree(fullName);

Tcl_TildeSubst takes as guments an interpretea file name that may start with a
tilde, and a dynamic string. It returns a new file name, which is either the original name (if
it didn’t start with~), a new tilde-expanded name NIJLL if an error occurred; in the last
case an error message is left in the interpgetesult.

If Tcl_TildeSubst has to generate a new name, it uses the dynamic string given
by its final agument to store the name. Wheel_TildeSubst is called the dynamic
string should either be uninitialized or empkgl_TildeSubst initializes it and then
uses it for the new name if needed. Once the caller has finished using the new file name it
must invokeTcl_DStringFree to release any memory that was allocated for the
dynamic string.

Generating messages

When an error or signal occurs in the C code aflapplication, the application should
report the error or signal back to tha Jcript that triggered it, usually as & €rror To do
this, information about the error or signal must be converted from the binary form used in
C to a string form for use incTscripts. €l provides four procedures to do this:
Tcl_PosixError , Tcl_Erronld , Tcl_Signalld , andTcl_SignalMsg

Tcl_PosixError provides a simple “all in one” mechanism for reporting errors in
system callsTcl_PosixError examines the C variab&rno to determine what
kind of error occurred, then it callel_SetErrorCode to set theerrorCode vari-
able appropriately and it returns a human-readable string suitable for use in an error mes-
sage. For example, consider the following fragment of code, which might be part of a
command procedure;

FILE *f;

f = fopen("prolog.ps", "r");
if (f == NULL) {
char *msg = Tcl_PosixError(interp);
Tcl_AppendResult(interp,
“"couldn’t open prolog.ps: ", msg,
(char *) NULL);
return TCL_ERROR,;

DRAFT (4/16/93): Distribution Restricted

318

POSIX Utilities

35.3

If the file doesrt’ exist or isnt readable then an error will occur wHepen invokes a
system call to open the file. An integer code will be stored ierttm® variable to iden-
tify the error andopen will return a null pointerThe above code detects such errors and
invokesTcl_PosixError . If the file didnt exist thenTcl_PosixError will set
errorCode to

POSIX ENOENT {no such f ile or directory}

and return the stringid such f ile or directory ". The code above incorporates
Tcl_PosixError 's return value into its own error message, which it stores in
interp->result . In the case of an non-existent file, the code above will return
“couldn’t open prolog.ps: no such f ile or directory " as its error
message.

Tcl_Errmold takes no gjuments and returns thdiofal POSIX name for the error
indicated byerrno . The names are the symbolic ones defined in the header file
errno.h . For example, ierrno 's value iENOENThenTcl_Errnold will return
the string ENOENT. The return value froriicl_Errnold is the same as the value that
Tcl_PosixError will store in the second elementaforCode

Tcl_Signalld andTcl_SignalMsg each take a POSIX signal number agiar
ment, and each returns a string describing the sigoklSignalld returns the dicial
POSIX name for the signal as definedgignal.h , andTcl_SignalMsg returns a
human-readable message describing the signal. For example,

Tcl_Signalld(SIGILL)
returns the stringSIGILL ", and
Tcl_SignalMsg(SIGILL)
returns fllegal instruction

Creating subprocesses

Tcl_CreatePipeline is the procedure that does most of the work of creating
subprocesses faxec andopen. It creates one or more subprocesses in a pipeline con-
figuration. It has the following guments and result:

int Tcl_CreatePipeline(Tcl_Interp *interp, int argc,

char *argv[], int **pidPtr, int *inPipePtr,

int *outPipePtr, int *errFilePtr)
Theargc andargv amguments describe the commands for the subprocesses in the same
form they would be specified &xec . Each string irargv becomes one word of one
command, except for special strings like ‘and “| ” that are used for 1/O redirection and
separators between commanfd. CreatePipeline normally returns a count of the
number of subprocesses created, and it stofeidttr a pointer to an array containing
the process identifiers for the new processes. The array is dynamically allocated and must

DRAFT (4/16/93): Distribution Restricted

35.4 Background processes 319

35.4

be freed by the caller by passing iftee . If an error occurred while spawning the sub-
processes (e.grgc andargv specified that output should be redirected to a file but the

file couldnt be opened) thefcl_CreatePipeline returns-1 and leaves an error
message iimterp- >result
The last three guments tdrcl_CreatePipeline are used to control I/O to and

from the pipeline irgv andargc dont specify I/O redirection. If thesequments are
NULL then the first process in the pipeline will takes its standard input from the standard
input of the parent, the last process will write its standard output to the standard output of
the parent, and all of the processes will use the pargtiandard error channel for their
error message. IPipePtr is notNULL then it points to an integefcl_Cre-
atePipeline will create a pipe, connect its output to the standard input of the first sub-
process, and store a writable file descriptor for its inptinRipePtr . If
outPipePtr is notNULL then standard output goes to a pipe and a read descriptor for
the pipe is stored &butPipePtr . If errFilePtr is notNULL thenTcl_Cre-
atePipeline creates a temporary file and connects the standard error files for all of the
subprocesses to that file; a readable descriptor for the file will be stéerd-at
lePtr . Tcl_CreatePipeline removes the file before it returns, so the file will only
exist as long as it is open.

If argv specifies input or output redirection then this overrides the requests made in
the aguments tal'cl_CreatePipeline . For example, iirgv redirects standard
input then no pipe is created for standard inputiRipePtr is notNULLthen-1 is
stored atinPipePtr to indicate that standard input was redirectedrdf/ redirects
standard output then no pipe is created for dutPipePtr is notNULLthen-1 is
stored atoutPipePtr . If argv redirects some or all of the standard error output and
errFilePtr is notNULL, the file will still be created and a descriptor will be returned,
even though i§ possible that no messages will actually appear in the file.

Background processes

Tcl_DetachPids andTcl_ReapDetachedProcs are used to keep track of
processes executing in the background. If an application creates a subprocess and aban-
dons it (i.e. the parent never invokes a system call to wait for the child to exit), then the
child executes in background and when it exits it becomes a “zombie”. It remains a zom-
bie until its parent dicially waits for it or until the parent exits. Zombie processes occupy
space in the systemprocess table, so if you create enough of them you will overflow the
process table and make it impossible for anyone to create more procedssep this
from happening, you must invoke a system call suchagpid , which will return the
exit status of the zombie process. Once the status has been returned the zombie relin-
quishes its slot in the process table.

In order to prevent zombies from overflowing the process table you should pass the
process identifiers for background processé@xtoDetachPids

DRAFT (4/16/93): Distribution Restricted

320

POSIX Utilities

Tcl_DetachPids(int numPids, int *pidPtr)

ThepidPtr amgument points to an array of process identifiersramdPids gives the
size of the arrayEach of these processes now becomes the property arid the caller
should not refer to them agaircl Will assume responsibility for waiting for the processes
after they exit.

In order for El to clean up background processes you may need fbataReap-
DetachedProcs from time to timeTcl ReapDetachedProcs invokes the
waitpid kernel call on each detached process so that its state can be cleaned up if it has
exited. If some of the detached processes are still executingi¢hdteapDetached-
Procs doesnt actually wait for them to exit; it only cleans up the processes that have
already exited. dl automatically invoke3cl_ReapDetachedProcs each time
Tcl_CreatePipeline is invoked, so under normal circumstances you tever
need to invoke it. Howevelf you create processes without callifig) _CreatePipe-
line (e.g. by invoking théork system call) and subsequently pass the processes to
Tcl_DetachPids , then you should also invoResl ReapDetachedProcs from
time to time. For example, a good place to Tall ReapDetachedProcs s in the
code that creates new subprocesses.

DRAFT (4/16/93): Distribution Restricted

