R ERTITIT

OREILLY

Pageiii
L ear ning Python
Mark Lutz and David Ascher
O'REILLY*
Beifing - Cambridge - Farnbam - Kdln - Paris - Sebastopol - Taipei - Tokyo
Pageiv
Learning Python
by Mark Lutz and David Ascher

Copyright & 1999 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United State of America

Published by O'Rellly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.
Editor: Frank Willison

Production Editor: Mary Anne Weeks Mayo

Printing History:

March 1999: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered

trademarks of O'Reilly & Associates, Inc. The association between the image of awood rat
and the topic of learning Python is atrademark of O'Reilly & Associates, Inc. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was
aware of atrademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein..

ISBN: 1-56592-464-9 [1/00]
[M]

Pagev

TABLE OF CONTENTS

Preface X
|. The Core Language 1
1. Getting Started 3
Why Python? 3
How to Run Python Programs 10
A First Look at Module Files 17
Python Configuration Details 19
Summary 24
Exercises 24
2. Types and Operators 26
Python Program Structure 26
Why Use Built-in Types? 27
Numbers 28

Srinns 20

— g~

€

Lists 44
Dictionaries 49
Tuples 53
Files 56
Genera Object Properties 58
Built-in Type Gotchas 63
Summary 66
Exercises 67
Pagevi
3. Basic Statements 70
Assignment 71
Expressions 74
Print 75
if Tests a4
while Loops A
for Loops 87
Common Coding Gotchas 92
Summary 93
Exercises A
4. Functions 97
Why Use Functions? 97
Fiinction Rasies o

B e e e U

Scope Rulesin Functions 101

Argument Passing 105
Odds and Ends |110
Function Gotchas 117
Summary 123
Exercises 123
5 Modules 126
Why Use Modules? 126
Module Basics 127
Module Files Are Namespaces 129
Import Model 131
Reloading Modules 133
Odds and Ends 136
Module Gotchas 143
Summary 148
Exercises 148
6. Classes 150
Why Use Classes? 150
Class Basics 152
Using the Class Statement 158
Using Class Methods 160
Inheritance Searches Namespace Trees 161

Oneratar Overloadinn in Classes 1R/

e ettt ittt i Tttt auT

Namespace Rules: The Whole Story 168

Page vii
Designing with Classes 170
Odds and Ends 181
Class Gotchas 183
Summary 189
Exercises 190
7. Exceptions 14
Why Use Exceptions? 194
Exception Basics 196
Exception Idioms 200
Exception Catching Modes 201
Odds and Ends 204
Exception Gotchas 208
Summary 211
Exercises 212
1. The Outer Layers 213
8. Built-in Tools 215
Built-in Functions |217
Library Modules 224
Exercises 242

QO Cnmmnn Tacke in Buthnn 2/

Ve \NVITILIVL Im\\JIIII]LII\JII "TJ

Data Structure Manipulations 243

Manipulating Files 249
Manipulating Programs 262
Internet-Related Activities 265
Bigger Examples 267
Exercises 273
10. Frameworks and Applications 275
An Automated Complaint System 276
Interfacing with COM: Cheap Public Relations 282
A Tkinter-Based GUI Editor for Managing Form Data 288
Design Considerations 293
JPython: The Felicitous Union of Python and Java 294
Other Frameworks and Applications 302
Exercises 304
Page viii
[11. Appendixes 307
A. Python Resources 309
B. Platform-Specific Topics 321
C. Solutions to Exercises 326
Index 35/

Pageix

PREFACE

About This Book

This book provides a quick introduction to the Python programming language. Pythonisa
popular object-oriented language used for both standalone programs and scripting applications
in avariety of domains. It's free, portable, powerful, and remarkably easy to use. Whether
you're new to programming or a professional developer, this book's goal isto bring you up to
speed on the core Python language in a hurry. Before we jump into details, we'd like to use this
preface to say afew words about the book's design.

This Book's Scope

Although thistext covers the essentials of the Python language, we've kept its scope narrow in
the interest of speed and size. Put another way, the presentation is focused on core concepts
and is sometimes deliberately simplistic. Because of that, this book is probably best described
as both an introduction and a stepping stone to more advanced and compl ete texts.

For example, we won't say anything about Python/C integration—a big, complicated topic, with
lots of big, complicated examples, which is nevertheless central to many Python-based

systems. We a so won't talk much about the Python community, Python's history, or some of the
philosophies underlying Python development. And popular Python applications such as GUIS,
system tools, network scripting, and numeric programming get only a short survey at the end (if
they are mentioned at al). Naturaly, this misses some of the big picture.

By and large, Python is about raising the quality bar afew notches in the scripting world. Some
of itsideas require more context than can be provided here, and

Page x

wed be remiss if we didn't recommend further study after you finish thistext. We hope that
most readers of this book will eventually go on to gain a deeper and more compl ete
understanding, from texts such as O'Reilly's Programming Python. The rest of the Python story
requires studying examples that are more realistic than there is space for here.*

But despite its limited scope (and perhaps because of it), we think you'll find this to be a great
first book on Python. Y ou'll learn everything you need to get started writing useful standalone
Python programs and scripts. By the time you've finished this book, you will have learned not
only the language itself, but also how to apply it to day-to-day tasks. And you'll be equipped to
tackle more advanced topics as they come your way.

ThisBook's Style

Much of this book is based on training materials devel oped for a three-day hands-on Python
course. You'l find exercises at the end of most chapters, with solutions in Appendix C. The
exercises are designed to get you coding right away, and are usually one of the highlights of the
course. We strongly recommend working through the exercises along the way, not only to gain
Python programming experience, but also because some exercises raise issues not covered

elsawhere in the text. The solutions at the end should help if you get stuck (we encourage you to
cheat as much and as often as you like). Naturally, you'll need to install Python to run the
exercises, more on thisin a moment.

Because this text is designed to introduce language basics quickly, we've organized the
presentation by major language features, not examples. Well take a bottom-up approach here:
from built-in object types, to statements, to program units, and so on (in fact, if you've seen
Appendix E in Programming Python, parts of this book may stir up feelings of d§avu). Each
chapter isfairly self-contained, but later chapters use ideas introduced in earlier ones (e.g., by
the time we get to classes, we'll assume you know how to write functions), so alinear reading
probably makes the most sense. From a broader perspective, this book is divided into three
sections:

Part I: The Core Language

This part of the book presents the Python language, in a bottom-up fashion. It's organized with
one chapter per major language feature—types, functions, and so forth—and most of the
examples are small and self-contained (some might also

* See http://www.ora.corr and http: //www.python.org for details on supplemental Python texts.
Programming Python was written by one of this book's authors. Asitstitle implies, it discusses
practical programming issuesin detail.

Page Xi

call the examplesin this section artificia, but they illustrate the points we're out to make). This
section represents the bulk of the text, which tells you something about the focus of the book.

Chapter 1, Getting Started
We begin with a quick introduction to Python and then look at how to run Python programs
S0 you can get started coding examples and exercises immediately.

Chapter 2, Types and Operators
Next, we explore Python's mgjor built-in object types:. numbers, lists, dictionaries, and so
on. You can get alot done in Python with these tools aone.

Chapter 3, Basic Statements
The next chapter moves on to introduce Python's statements—the code you type to create
and process objects in Python.

Chapter 4, Functions
This chapter begins our look at Python's higher-level program structure tools. Functions
turn out to be asimple way to package code for reuse.

Chapter 5, Modules
Python modules |et you organize statements and function into larger components, and this
chapter illustrates how to create, use, and reload modules on the fly.

Chapter 6, Classes
Here we explore Python's object-oriented programming (OOP) tool, the class. Asyou'll
see, OOP in Python is mostly about looking up namesin linked objects.

Chapter 7, Exceptions
We wrap up the section with alook at Python's exception handling model and statements.
This comes last, because exceptions can be classesif you want them to be.

Part II: TheOuter Layers

In this section, we sample Python's built-in tools, and put them to use in amore or less random
collection of small example programs.

Chapter 8, Built-in Tools
This chapter presents a selection of the modules and functions that are included in the
default Python installation. By definition, they comprise the minimum set of modules you
can reasonably expect any Python user to have access to. Knowing the contents of this
standard toolset will likely save you weeks of work.

Page xii

Chapter 9, Common Tasks in Python
This chapter presents afew nontrivia programs. By building on the language core
explained in Part | and the built-in tools described in Chapter 8, we present many small but
useful programs that show how to put it all together. We cover three areas that are of
interest to most Python users: basic tasks, text processing, and system interfaces.

Chapter 10, Frameworks and Applications
Thisfinal chapter shows how real applications can be built, leveraging on more
specialized libraries that are either part of the standard Python distribution or freely
available from third parties. The programsin this chapter are the most complex, but also
the most satisfying to work through. We close with a brief discussion of JPython, the Java
port of Python, and a substantial JPython program.

Part I11: Appendixes

The book ends with three appendixes that list Python resources on the Net (Appendix A), give
platform-specific tips for using Python on Unix, Windows, and Macintosh-based machines
(Appendix B), and provide solutions to exercises that appear at the end of chapters (Appendix
C). Note: the index can be used to hunt for details, but there are no reference appendixesin this
book per se. The Python Pocket Reference from O'Reilly (http://www.ora.con), aswell asthe
free Python reference manuals maintained at http://www.python.org, will fill in the details.

Prerequisites

There are none to speak of, really. Thisis an introductory-level book. It may not be an ideal
text for someone who has never touched a computer before (for instance, we're not going to
spend alot of time explaining what a computer is), but we haven't made many assumptions
about your programming background or education. On the other hand, we won't insult readers
by assuming they are "dummies’ either (whatever that means); it's easy to do useful thingsin
Python, and we hope to show you how. The text occasionally contrasts Python with languages
such as C, C++, and Pascal, but you can safely ignore these comparisons if you haven't used
such languagesin the past.

One thing we should probably mention up front: Python's creator, Guido van Rossum, named if
after the BBC comedy series Monty Python's Flying Circus. Because of this legacy, many of
the examples in this book use referencesto that show. For instance, the traditional "foo" and
"bar" become "spam™ and "eggs" in the Python world. Y ou don't need to be familiar with the
series to make sense of the examples (symbols are symbols), but it can't hurt.

Page xiii
Book Updates

Improvements happen (and so do mis*H*H"H typos). Updates, supplements, and corrections
for this book will be maintained (or referenced) on the Web, at one of the following sites:

* http://www.oreilly.com (O'Relilly's site)

o http://rmi.net/~lutz (Mark's site)

* http://starship.skyport.net/~da (David's site)

* http://www.python.org (Python's main site)

If we could be more clairvoyant, we would, but the Web tends to change faster than books.

Font Conventions
This book uses the following typographical conventions:

Italic
For email addresses, filenames URLS, for emphasizing new terms when first introduced,
and for some comments within code sections.

Constant wi dth
To show the contents of files or the output from commands and to designate modules,
methods, statements, and commands.

Constant wi dth bold
In code sections to show commands or text that would be typed.

Constant width italic
To mark replaceablesin code sections.

#

The owl icon designates a note, which is an important aside to the nearby
text.

About the Programsin This Book

This book, and all the program examplesin it, are based on Python Version 1.5. But since welll
stick to the core language here, you can be fairly sure that most of

Page xiv

what we have to say won't change very much in later releases of Python.* Most of this book
appliesto earlier Python versions too, except when it doesn't; naturally, if you try using
extensions added after the release you've got, all bets are off. Asarul e of thumb, the latest
Python is the best Python. Because this book focuses on the core language, most of it also
applies to JPython, the new Java-based Python implementation.

Source code for the book's examples, as well as exercise solutions, can be fetched from
O'Reilly's web site http://www.oreilly.com/catal og/I python/.

So how do you run the examples? We'll get into start-up detailsin afew pages, but the first
step isinstalling Python itself, unlessit's already available on your machine. Y ou can aways
fetch the latest and greatest Python release from http: //www.python.org, Python's official web
site. There, you'll find both prebuilt Python executables (which you just unpack and run) and the
full source-code distribution (which you compile on your machine). Y ou can aso find Python
on CD-ROMSs, such as those sold by Walnut Creek, supplied with Linux distributions, or
shipped with bigger Python books. Installation steps for both executable and source forms are
well documented, so we won't say much more about this beyond a cursory overview in Chapter
1 (see Programming Python for install details).

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O'Rellly & Associates

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in United States or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (fax)

Y ou can also sent us messages electronically. To be put on the mailing list or request a catal og,
send email to nuts@oreilly.com.

To ask technica questions or comment on the book, send email to:
bookquestions@oreilly.com.

* Well, probably. Judging from how Programming Python has stayed current over the last few years,
the language itself changes very little over time, and when it does, it's still usually backward
compatible with earlier releases (Guido adds things, but rarely changes thingsthat are already there).
Peripheral tools such as the Python/C API and the Tkinter GUI interface seem to be more prone to
change, but we'll mostly ignore them here. Still, you should always check the rel ease notes of later
versions to see what's new.

Page xv

Acknowledgments

We'd like to express our gratitude to all the people who played a part in devel oping this book,

but thisis too short abook to list them all. But we'd like to give a special thanks to our editor,
Frank Willison, and O'Rellly in general, for supporting another Python book. Thanks also to
everyone who took part in the early review of this book—Eric Raymond, Guido van Rossum,
Just van Rossum, Andrew Kuchling, Dennis Allison, Greg Ward, and Jennifer Tanksey. And
for creating such an enjoyable and useful language, we owe an especially large debt to Guido,
and the rest of the Python community; like most freeware systems, Python is the product of
many heroic efforts.

Mark Also Says.

Since writing Programming Python, I've had the opportunity to travel around the country
teaching Python to beginners. Besides racking up frequent flyer miles, these courses helped me
refine the core language materia you'll seein thefirst part of this book. I'd like to thank the
early students of my course, at Badger, Lawrence Livermore, and Fermi Labs, in particular.

Y our feedback played a big role in shaping my contributions to thistext. | also want to givea
specia thanksto Softronex, for the chance to teach Python in Puerto Rico this summer (a better
perk would be hard to imagine).

Finally, afew personal notes of thanks. To coauthor David Ascher, for his hard work and
patience on this project. To the people | worked with a Lockheed Martin while writing this
book, including my teammate Linda Cordova, to whom I've lost a bet or two. To the late Carl
Sagan, for inspiration. To Lao Tzu, for deep thoughts. To the Denver Broncos, for winning the
big one. And most of all, to my wife Lisa, and my kids—a set which now consists of Michael,
Samantha, and Roxanne—for tolerating yet another book project. | owe the latter bunch atrip to
Wally World.

November 1998
Longmont, Colorado

David Also Says:

In addition to the thanks listed above, I'd like to extend special thanks to severa people.

Fird, thanks to Mark Lutz for inviting me to work with him on this book and for supporting my
efforts as a Python trainer. Belated thank yous go to the Python folks who encouraged me in my
early days with the language and its tools, especially Guido, Tim Peters, Don Beaudry, and
Andrew Mullhaupt.

Page xvi

Like Mark, I've developed a course in which | teach Python and JPython. The studentsin these
courses have helped me identify the parts of Python that are the trickiest to learn (luckily, they
arerare), aswell as remind me of the aspects of the language that make it so pleasant to use. |
thank them for their feedback. | would also like to thank those who have given me the chance to
develop these courses: Jim Anderson (Brown University), Cliff Dutton (then at Distributed
Data Systems), Geoff Philbric (Hibbitt, Karlson & Sorensen), Paul Dubois (Lawrence
Livermore National Labs), and Ken Swisz (KLA-Tencor).

Thanks to my scientific advisors, Jm Anderson, Ledlie Welch, and Norberto Grzywacz, who
have al kindly supported my efforts with Python in general and this book in particular, not
necessarily understanding why | was doing it but trusting me nonethel ess.

Thefirst victims of my Python evangelization efforts deserve gold stars for tolerating my most
enthusiastic (some might say fanatical) early days. Thanass Protopapas, Gary Strangman, and
Steven Finney. Thanassi also gave histypically useful feedback on an early draft of the book.

Finally, thanks to my family: my parents JacSue and Philippe for always encouraging me to do
what | want to do; my brother Ivan for reminding me of some of my early encounters with
programming; my wife Emily for her constant support and utter faith that writing a book was
something | could do. | thank our son Hugo for letting me use the keyboard at |east some of the
time, and only learning how to turn the computer off in the last phase of this project. He was
three days old when | received the first email from Mark about this book. He's eighteen months
old now. It's been a great year and a half.

To the reader of this book, | hope you enjoy the book and through it, the Python language.
Through Python, I've learned more than | ever thought I'd want to about many aspects of
computing that once seemed foreboding. My aim in helping write this book was to allow others
the same experience. If your aim in learning Python is to work on a specific problem, | hope
that Python becomes so transparent that it becomes invisible, letting you focus your efforts on
the issues you're dealing with. | suspect, however, that at least afew readers will have the
same reaction that | had when discovering Python, which was to find in Python itself aworld
worth learning more about. If that's the case for you, be aware that exploring Python is not
necessarily a short-term project. After countless hours, I'm still poking around, and still having
fun.

November 1998
San Francisco, California

Pagel

THE CORE LANGUAGE

In thisfirst section, we study the Python language itself. We call this part "The Core Language,”
because our focus will be on the essentials of Python programming: its built-in types,
statements, and tools for packaging program components. By the time you finish reading this
section and working through its exercises, you'll be ready to write scripts of your own.

We also use the word "Core" in the title on purpose, because this section isn't an exhaustive
treatment of every minute detail of the language. While we may finesse an obscurity or two
along the way, the basics you'll see here should help you make sense of the exceptions when

they pop up.

Page 3

Getting Started

In this Chapter:

» Why Python?

» How to Run Python Programs
* AFirst Look at Module Files
* Python Configuration Details
s ummary

» Exercises

This chapter starts with a nontechnical introduction to Python and then takes a quick look at
ways to run Python programs. Its main goal isto get you set up to run Python code on your own
machine, so you can work along with the examples and exercisesin the later chapters. Along
the way, we'll study the bare essentials of Python configuration—just enough to get started. You
don't have to work aong with the book on your own, but we strongly encourageit if possible.
Even if you can't, this chapter will be useful when you do start coding on your own.

Welll also take aquick first look at Python module files here. Most of the examples you see
early in the book are typed at Python's interactive interpreter command-line. Code entered this
way goes away as soon as you leave Python. If you want to save your codein afile, you need
to know abit about Python modules, so module fundamentals are introduced here. We'll save
most module details for alater chapter.

Why Python?

If you've bought this book, chances are you already know what Python is, and why it's an
important tool to learn. If not, you probably won't be sold on Python until you've learned the
language by reading the rest of this book. But before jumping into details, we'd like to use a
few pages to briefly introduce some of the main reasons behind Python's popularity. (Even if
you don't care for nontechnical overviews, your manager might.)

An Executive Summary
Python is perhaps best described as an object-oriented scripting language: its design mixes
software engineering features of traditiona languages with the

Page 4
usability of scripting languages. But some of Python's best assets tell a more complete story.
It's Object-Oriented

Python is an object-oriented language, from the ground up. Its class model supports advanced
notions such as polymorphism, operator overloading, and multiple inheritance; yet in the

context of Python's dynamic typing, object-oriented programming (OOP) is remarkably easy to
apply. Infact, if you don't understand these terms, you'll find they are much easier to learn with
Python than with just about any other OOP language available.

Besides serving as a powerful code structuring and reuse device, Python's OOP nature makes it
ideal as a scripting tool for object-oriented systems languages such as C++ and Java. For
example, with the appropriate glue code, Python programs can subclass (specialize) classes
implemented in C++ or Java. Of equal significance, OOP is an option in Python; you can go far
without having to become an object guru al at once.

It'sFree

Python is freeware—something which has lately been come to be called open source software.
Aswith Tcl and Perl, you can get the entire system for free over the Internet. There are no
restrictions on copying it, embedding it in your systems, or shipping it with your products. In
fact, you can even sall Python, if you're so inclined.

But don't get the wrong idea: "free" doesn't mean "unsupported.” On the contrary, the Python
online community responds to user queries with a speed that most commercial software
vendors would do well to notice. Moreover, because Python comes with complete source
code, it empowers devel opers and creates a large team of implementation experts. Although
studying or changing a programming language's implementation isn't everyone'sidea of fun, it's
comforting to know that it's available as afinal resort and ul timate documentation source.

It's Portable

Python is written in portable ANSI C, and compiles and runs on virtually every mgor platform
in use today. For example, it runs on Unix systems, Linux, MS-DOS, M S-Windows (95, 98,
NT), Macintosh, Amiga, Be-OS, OS2, VMS, QNX, and more. Further, Python programs are
automatically compiled to portable bytecode, which runs the same on any platform with a
compatible version of Python installed (more on thisin the section "It's easy to use").

What that meansis that Python programs that use the core language run the same on Unix,
MS-Windows, and any other system with a Python interpreter. Most

Page 5

Python ports a so contain platform-specific extensions (e.g., COM support on MS-Windows),
but the core Python language and libraries work the same everywhere.

Python a so includes a standard interface to the Tk GUI system called Tkinter, whichis
portable to the X Window System, MS Windows, and the Macintosh, and now provides a
native look-and-feel on each platform. By using Python's Tkinter API, Python programs can
implement full-featured graphical user interfaces that run on al major GUI platforms without
program changes.

It's Powerful

From afeatures perspective, Python is something of a hybrid. Itstool set placesit between
traditional scripting languages (such as Tcl, Scheme, and Perl), and systems languages (such as
C, C++, and Java). Python provides al the simplicity and ease of use of a scripting language,
along with more advanced programming tools typically found in systems devel opment

languages. Unlike some scripting languages, this combination makes Python useful for
substantial development projects. Some of the things well find in Python's high-level toolbox:

Dynamic typing
Python keeps track of the kinds of objects your program uses when it runs; it doesn't require
complicated type and size declarations in your code.

Built-in object types
Python provides commonly used data structures such as|lists, dictionaries, and strings, as
an intrinsic part of the language; as we'll see, they're both flexible and easy to use.

Built-in tools
To process all those object types, Python comes with powerful and standard operations,
including concatenation (joining collections), slicing (extracting sections), sorting,
mapping, and more.

Library utilities
For more specific tasks, Python also comes with alarge collection of precoded library
tools that support everything from regular-expression matching to networking to object
persistence.

Third-party utilities
Because Python is freeware, it encourages developers to contribute precoded tools that
support tasks beyond Python's built-ins; you'll find free support for COM, imaging, CORBA
ORBs, XML, and much more.

Automatic memory management
Python automatically allocates and reclaims (" garbage collects') objects when no longer
used, and most grow and shrink on demand; Python, not you, keepstrack of low-level
memory details.

Page 6

Programming-in-the-large support
Finally, for building larger systems, Python includes tools such as modules, classes, and
exceptions; they alow you to organize systems into components, do OOP, and handle
events gracefully.

Degspite the array of toolsin Python, it retains a remarkably simple syntax and design. Aswelll
see, the result is a powerful programming tool, which retains the usability of a scripting
language.

It'sMixable

Python programs can be easily "glued" to components written in other languages. In technical
terms, by employing the Python/C integration APIs, Python programs can be both extended by
(called to) components written in C or C++, and embedded in (called by) C or C++ programs.
That means you can add functiondlity to the Python system as needed and use Python programs
within other environments or systems.

Although we won't talk much about Python/C integration, it's a mgjor feature of the language
and one reason Python is usually called a scripting language. By mixing Python with

components written in a compiled language such as C or C++, it becomes an easy-to-use
frontend language and customization tool. It aso makes Python good at rapid prototyping:
systems may be implemented in Python first to leverage its speed of development, and later
moved to C for delivery, one piece at atime, according to performance requirements.

Speaking of glue, the PythonWin port of Python for MS-Windows platforms also lets Python
programs talk to other components written for the COM AP, allowing Python to be used as a
more powerful alternative to Visual Basic. And a new aternative implementation of Python,
called JPython, lets Python programs communicate with Java programs, making Python an idesl
tool for scripting Java-based web applications.

It's Easy to Use

For many, Python's combination of rapid turnaround and language smplicity make
programming more fun than work. To run a Python program, you simply type it and run it. There
are no intermediate compile and link steps (as when using languages such as C or C++). As
with other interpreted languages, Python executes programs immediately, which makes for both
an interactive programming experience and rapid turnaround after program changes.

Strictly speaking, Python programs are compiled (trandated) to an intermediate form called
bytecode, which is then run by the interpreter. But because the compile step is automatic and
hidden to programmers, Python achieves the develop-

Page 7

ment speed of an interpreter without the performance loss inherent in purely interpreted
languages.

Of course, development cycle turnaround is only one aspect of Python's ease of use. It also
provides a deliberately simple syntax and powerful high-level built-in tools. Python has been
called "executable pseudocode”: because it eliminates much of the conrplexity in other tools,
you'll find that Python programs are often afraction of the size of equivaent programsin
languages such as C, C++, and Java.

It'sEasy toLearn

This brings us to the topic of this book: compared to other programming languages, the core
Python language is amazingly easy to learn. In fact, you can expect to be coding significant
Python programs in a matter of days (and perhapsin just hours, if you're already an
experienced programmer). That's good news both for professional developers seeking to learn
the language to use on the job, aswell asfor end users of systems that expose a Python layer
for customization or control .*

Python on the Job

Besides being a well-designed programming language, Python is also useful for accomplishing
real-world tasks—the sorts of things developers do day in and day out. It's commonly used in a
variety of domains, as atool for scripting other components and implementing standalone
programs. Some of Python's major roles help definewhat it is.

System Utilities

Python's built-in interfaces to operating-system services make it ideal for writing portable,
maintai nable system-administration tools (sometimes called shell scripts). Python comes with
POSIX bindings and support for the usual OS tools: environment variables, files, sockets,
pipes, processes, threads, regular expressions, and so on.

GUIs

Python's smplicity and rapid turnaround also make it a good match for GUI programming. As
previously mentioned, it comes with a standard object-oriented interface to the Tk GUI API
called Tkinter, which allows Python programs to implement portable GUIs with native look
and fedl. If portability isn't apriority,

* So, you might ask, how in the world do Python trainers get any business? For one thing, there are
till challenges in Python beyond the core language that will keep you busy beyond those first few
days. Aswelll see, Python's collection of libraries, aswell asits peripheral tools (e.g., the Tkinter
GUI and Python/C integration APIs) are abig part of real Python programming.

Page 8

you can also use MFC classes to build GUIs with the PythonWin port for MS Windows, X

Window System interfaces on Unix, Mac toolbox bindings on the Macintosh, and KDE and
GNOME interfaces for Linux. For applications that run in web browsers, JPython provides
another GUI option.

Component I ntegration

Python's ability to be extended by and embedded in C and C++ systems makes it useful asa
glue language, for scripting the behavior of other systems and components. For instance, by
integrating a C library into Python, Python can test and launch its components. And by
embedding Python in a product, it can code onsite customizations without having to recompile
the entire product (or ship its source code to your customers). Python's COM support on

M S-Windows and the JPython system provide aternative ways to script applications.

Rapid Prototyping

To Python programs, components written in Python and C look the same. Because of this, it's
possible to prototype systems in Python initially and then move components to a compiled
language such as C or C++ for delivery. Unlike some prototyping tools, Python doesn't require
a complete rewrite once the prototype has solidified; parts of the system that don't require the
efficiency of alanguage such as C++ can remain coded in Python for ease of maintenance and
use.

Internet Scripting

Python comes with standard Internet utility modules that allow Python programs to
communicate over sockets, extract form information sent to a server-side CGI script, parse
HTML, transfer filesby FTP, process XML files, and much more. There are dso a number of
periphera tools for doing Internet programming in Python. For instance, the HTMLGen and
pythondoc systems generate HTML files from Python class-based descriptions, and the JPython
system mentioned above provides for seamless Python/Java integration.*

Numeric Programming

The NumPy numeric programming extension for Python includes such advanced tools as an
array object, interfaces to standard mathematical libraries, and much more. By integrating
Python with numeric routines coded in a compiled language

* We say more about JPython and other systemsin Chapter 10, Frameworks and Applications.
Among other things, JPython can compile Python programs to Java virtual machine code (so they may
run as client-side appletsin any Java-aware browser) and allows Python programsto talk to Java
libraries (for instance, to create AWT GUIson aclient).

Page 9
for speed, NumPy turns Python into a sophisticated yet easy-to-use numeric programming tool.
Database Programming

Python's standard pickle module provides a simple object-persistence system: it allows
programs to easily save and restore entire Python objects to files. For more traditional
database demands, there are Python interfaces to Sybase, Oracle, Informix, ODBC, and more.
Thereis even aportable SQL database API for Python that runs the same on avariety of
underlying database systems, and a system named gadfly that implements an SQL database for

Python programs.
And More: Image Processing, Al, Distributed Objects, Etc.

Python is commonly applied in more domains than can be mentioned here. But in general, many
are just instances of Python's component integration role in action. By adding Python as a
frontend to libraries of components written in a compiled language such as C, Python becomes
useful for scripting in avariety of domains.

For instance, image processing for Python isimplemented as a set of library components
implemented in a compiled language such as C, along with a Python frontend layer on top used
to configure and launch the compiled components. The easy-to-use Python layer complements
the efficiency of the underlying compiled-language components. Since the magjority of the
"programming” in such a system is done in the Python layer, most users need never deal with
the complexity of the optimized components (and can get by with the core language covered in
this text).

Python in Commercial Products

From a more concrete perspective, Python is also being applied in real revenue-generating
products, by real companies. For instance, hereisapartia list of current Python users:

* Red Hat uses Python inits Linux install tools.
» Microsoft has shipped a product partially written in Python.

* Infoseek uses Python as an implementation and end-user customization language in web
search products.

* Yahoo! uses Python in avariety of its Internet services.

* NASA uses Python for mission-control-system implementation.
* Lawrence Livermore Labs uses Python for avariety of numeric programming tasks.

* Industria Light and Magic and others use Python to produce commercial-grade animation.

Page 10

There are even more exciting applications of Python we'd like to mention here, but alas, some
companies prefer not to make their use of Python known because they consider it to be a
competitive advantage. See Python's web site (http: //www.python.org) for a more
comprehensive and up-to-date list of companies using Python.

Python Versus Similar Tools

Finaly, in terms of what you may aready know, people sometimes compare Python to
languages such as Perl, Tcl, and Java. While these are also useful tools to know and use, we
think Python:

* Is more powerful than Tcl, which makes it applicable to larger systems development

» Has a cleaner syntax and smpler design than Perl, which makes it more readable and
maintai nable.

» Doesn't compete head-on with Java; Python is a scripting language, Javais a systems
language such as C++

Especialy for programs that do more scan text files, and that might have to be read in the future
by others (or by you!), we think Python fits the bill better than any other scripting language
available today. Of course, both of your authors are card-carrying Python evangelists, so take
these comments as you may.

And that concludes the hype portion of this book. The best way to judge alanguage isto seeit
in action, so now we turn to a strictly technical introduction to the language. In the remainder of
this chapter, we explore ways to run Python programs, peek at some useful configuration and
install details, and introduce you to the notion of module files for making code permanent.
Again, our goal hereisto give you just enough information to run the examples and exercisesin
the rest of the book; we won't really start programming until Chapter 2, Types and Operators,
but make sure you have a handle on the start-up details shown here before moving on.

How to Run Python Programs

So far, we've mostly talked about Python as a programming language. But it's aso a software
package called an interpreter. Aninterpreter isakind of program that executes other
programs. When you write Python programs, the Python inter-

Page 11

preter reads your program, and carries out the instructions it contains.* In this section we
explore ways to tell the Python interpreter which programs to run.

When the Python package isinstalled on your machine, it generates a number of components.
Depending on how you use it, the Python interpreter may take the form of an executable
program, or a set of libraries linked into another program. In general, there are at least five
ways to run programs through the Python interpreter:

* Interactively

» As Python modulefiles

* AsUnix-style script files

» Embedded in another system

* Platform-specific launching methods

Let'slook at each of these strategiesin turn.

Other Waysto Launch Python Programs

Caveat: to keep things simple, the description of using the interpreter in this chapter is
fairly generic and stresses lowest-common-denominator ways to run Python programs
(i.e., the command line, which works the same everywhere Python runs). For information
on other ways to run Python on specific platforms, flip ahead to Appendix B,
Platform-Specific Topics. For instance, Python ports for MS-Windows and the
Macintosh include graphical interfaces for editing and running code, which may be more
to your taste.

Depending on your platform and background, you may also beinterested in seeing a
description of the new IDLE Integrated Devel opment Environment for Python—a
graphical interface for editing, running, and debugging Python code that runs on any
platform where Python's Tk support isinstalled (IDLE is a Python program that uses the
Tkinter extension we'll meet in Part [1). Y ou can find this description in Appendix A,
Python Resources. Emacs users can aso find support at Python's web site for launching
Python code in the Emacs environment; again, see Appendix A for details.

* Technically, Python programs are first compiled (i.e., translated) to an intermediate
form—byte-code—which is then scanned by the Python interpreter. This byte-code compilation step
is hidden and automatic, and makes Python faster than a pure interpreter.

Page 12
The I nteractive Command Line

Perhaps the smplest way to run Python programs is to type them at Python's interactive
command line. Assuming the interpreter isinstalled as an executable program on your system,
typing pyt hon at your operating system's prompt without any arguments starts the interactive
interpreter. For example:

% pyt hon

>>> print 'Hello world!"

Hel l o worl d!
>>> | unberj ack = "okay"
>>> # Grl-Dto exit (CGrl-Z on sone platforms)

Here pyt hon istyped a a Unix (or MS-DOS) prompt to begin an interactive Python session.
Python prompts for input with >>> when it's waiting for you to type a new Python statement.
When working interactively, the results of statements are displayed after the >>> lines. On
most Unix machines, the two-key combination Ctrl-D (press the Ctrl key, then press D while
Ctrl is held down) exists the interactive command-line and returns you to your operating
system's command line; on MS-DOS and Windows systems, you may need to type Cirl-Z to
exit.

Now, we're not doing much in the previous example: we type Python pr i nt and assignment
statements, which welll study in detail later. But notice that the code we entered is executed
immediately by the interpreter. For instance, after typing apr i nt statement at the >>>
prompt, the output (a Python string) is echoed back right away. There's no need to run the code
through a compiler and linker first, as you'd normally do when using alanguage such as C or
C++.

Because code is executed immediately, the interactive prompt turns out to be a handy place to
experiment with the language, and welll use it often in this part of the book to demonstrate
small examples. In fact, thisisthe first rule of thumb: if you're ever in doubt about how a piece
of Python code works, fire up the interactive command line and try it out. That's what it's there
for.

The interactive prompt is also commonly used as a place to test the components of larger
systems. Aswelll see, the interactive command line lets us import components interactively
and test their interfaces rapidly. Partly because of thisinteractive nature, Python supports an
experimental and exploratory programming style you'll find convenient when starting out.

#

A word on prompts: we won't meet compound (multiple-ling) statements
until Chapter 3, Basic Statements, but as a preview, you should know that
when typing lines two and beyond of acompound statement interactively,
the prompt changesto ... instead of >>>. At the ... prompt, ablank line
(hitting the Enter key) tells Python that you're done typing the statement.
Thisis different from compound statements typed into files, where blank
lines are simply ignored. Y ou'll see why this mattersin Chapter 3. These
two prompts can aso be changed (in Part |1, we'll seethat they are
attributes in the built-in SYS modul€), but we'll assume they haven't been
in our examples.

Page 13

Running Module Files

Although the interactive prompt is great for experimenting and testing, it has one big

disadvantage: programs you type there go away as soon as the Python interpreter executes
them. The code you type interactively is never stored in afile, so you can't run it again without
retyping it from scratch. Cut-and-paste and command recall can help some here, but not much,
especialy when you start writing larger programs.

To save programs permanently, you need Python modul e files. Module files are simply text
files containing Python statements. Y ou can ask the Python interpreter to execute such afile by
listing itsname in apyt hon command. As an example, suppose we start our favorite text
editor and type two Python statements into a text file named spam.py:

i mport sys
print sys.argv # nore on this later

Again, we're ignoring the syntax of the statementsin this file for now, so don't swest the

details; the point to notice is that we've typed code into afile, rather than at the interactive
prompt. Once we've saved our text file, we can ask Python to run it by listing the filename as an
argument on apyt hon command in the operating system shell:

% pyt hon spam py -i eggs -0 bacon

['spampy', '-i', 'eggs', '-0', 'bacon']
Notice that we called the module file spam.py; we could aso call it ssimply spam, but for
reasons we'll explain later, files of code we want to import into a client have to end with a.py
suffix. We also listed four command-line arguments to be used by the Python program (the
items after pyt hon spam py); these are passed to the Python program, and are available
through the name sys. ar gv, which workslike the C

Page 14

ar gv array. By theway, if you're working on a Windows or MS-DOS platform, this example
works the same, but the system prompt is normally different:

C.\ book\tests> python spampy -i eggs -o bacon
['spampy', '-i', 'eggs', '-0', 'bacon']

Running Unix-Style Scripts

So far, we've seen how to type code interactively and run files of code created with atext
editor (modules). If you're going to use Python on a Unix, Linux, or Unix-like system, you can
also turn files of Python code into executable programs, much as you would for programs
coded in ashell language such as csh or ksh. Such files are usually called scripts; in ssmple
terms, Unix-style scripts are just text files containing Python statements, but with two specia
properties.

Their first lineis special
Scripts usually start with afirst line that begins with the characters#! , followed by the
path to the Python interpreter on your machine.

They usually have executable privileges
Script files are usually marked as executable, to tell the operating system that they may be
run astop-level programs. On Unix systems, acommand suchaschnod +x fil e.py
usually doesthe trick.

Let'slook at an example. Suppose we use our favorite text editor again, to create afile of
Python code called brian:

#!/usr/ 1 ocal / bi n/ pyt hon
print 'The Bright Side of Life.. # anot her comment here

We put the special line at the top of the file to tell the system where the Python interpreter

lives. Technicaly, thefirst lineis a Python comment. All commentsin Python programs start
with a# and span to the end of the ling; they are a place to insert extrainformation for human
readers of your code. But when a comment such asthefirst line in thisfile appears, it's specidl,
since the operating system usesit to find an interpreter for running the program code in the rest
of thefile.

We dso called thisfile ssimply brian, without the .py suffix we used for the module file earlier.
Adding a.py to the name wouldn't hurt (and might help us remember that thisis a Python
program file); but since we don't plan on letting other modules import the code in thisfile, the
name of thefileisirrelevant. If we give our file executable privileges with a

chnod +x bri an shell command, we can run it from the operating system shell as though it
were abinary program:

% bri an
The Bright Side of Life...

Page 15

A note for Windows and MS-DOS users: the method described here isa Unix trick, and may
not work on your platform. Not to worry: just use the module file technique from the previous
section. List the file's name on an explicit pyt hon command line:

C.\ book\tests> python brian
The Bright Side of Life...

In this case, you don't need the special # comment at the top (though Python just ignores it if it's
present), and the file doesn't need to be given executable privileges. In fact, if you want to run
files portably between Unix and MS-Windows, your life will probably be simpler if you
always use the module file approach, not Unix-style scripts, to launch programs.

#

On some systems, you can avoid hardcoding the path to the Python
interpreter by writing the special first-line comment like this: #!/

usr/ bi n/ env pyt hon.When coded thisway, theenv program
locates the pyt hon interpreter according to your system search-path
settings (i.e., in most Unix shells, by looking in al directories listed in the
PATH environment variable). ThisenV -based scheme can be more
portable, since you don't need to hardcode a Python install path in the first
line of all your scripts; provided you have accessto € Nv everywhere, your
scripts will run no matter wherepyt hon lives on your system.

Embedded Code and Objects

We've seen how to run code interactively, and how to launch module files and Unix-style
scripts. That covers most of the cases we'll seein this book. But in some specialized domains,
Python code may aso be run by an enclosing system. In such cases, we say that Python
programs are embedded in (i.e., run by) another program. The Python code itself may be
entered into atext file, stored in a database, fetched from an HTML page, and so on. But from
an operational perspective, another system—not you—may tell Python to run the code you've
created.

For example, it's possible to create and run strings of Python code from a C program by calling
functionsin the Python runtime API (a set of services exported by the libraries created when
Python is compiled on your machine):

#i ncl ude <Pyt hon. h>

Py Initialize();
PyRun_Sinpl eString("x = brave + sir + robin");

Page 16

In this code snippet, a program coded in the C language (sonef i | e. ¢) embeds the Python
interpreter by linking in its libraries and passes it a Python assignment statement string to run. C
programs may also gain access to Python objects, and process or execute them using other
Python API tools.

This book isn't about Python/C integration, so we won't go into the details of what's really
happening here.* But you should be aware that, depending on how your organization plansto
use Python, you may or may not be the one who actually starts the Python programs you create.
Regardless, you can till use the interactive and file-based launching techniques described
here, to test code in isolation from those enclosing systems that may eventually use it.

Platform-Specific Startup Methods

Finally, depending on which type of computer you are using, there may be more specific ways
to start Python programs than the general techniques we outlined above. For instance, on some
Windows ports of Python, you may either run code from a Unix-like command-line interface, or
by double-clicking on Python program icons. And on Macintosh ports, you may be able to drag
Python program icons to the interpreter'sicon, to make program files execute. We'll have more
to say about platform-specific details like thisin an gppendix to this book.

What You Type and Where You Type It

With all these options and commands, it's easy for beginners to be confused about which
command is entered at which prompt. Here's a quick summary:

Sarting interactive Python
The Python interpreter is usualy started from the system's command line;

% pyt hon

Entering code interactively
Programs may be typed at Python's interactive interpreter command line:

>>> print X

Entering code in files for later use
Programs may aso be typed into text files, using your favorite text editor:

print Xx

Sarting script files
Unix-style script files are started from the system shell:

% brain

* See Programming Python for more details on embedding Python in C/C++.

Page 17

Sarting program (module) files
Module files are run from the system shell:

% pyt hon spam py

Running embedded code
When Python is embedded, Python code may be entered in arbitrary ways.

#

When typing Python programs (either interactively or into atext file), be
sureto start all your unnested statementsin column 1. If you don't, Python
prints a"SyntaxError" message. Until the middle of Chapter 3, al our
statements will be unnested, so thisincludes everything for now. Well
explain why later—it has to do with Python's indentation rules—but this
seems to be arecurring confusion in introductory Python classes.

A First Look at Module Files

Earlier in this chapter, we saw how to run module files (i.e., text files containing Python
statements) from the operating-system shell's command line. It turns out that we can aso run
module files from Python's interactive command line by importing or reloading them, aswed
normally do from other system components. The details of this process are covered in Chapter
5, Modules, but since this turns out to be a convenient way to save and run examples, well
give aquick introduction to the process.

The basic idea behind importing modules is that importers may gain access to names assigned
at thetop level of amodulefile. The names are usually assigned to services exported by the
modules. For instance, suppose we use our favorite text editor to create the one-line Python
module file myfile.py, shown in the following code snippet. This may be one of the world's
simplest Python modules, but it's enough to illustrate basic module use:

title = "The Meaning of Life"

Notice that the filename has a .py suffix: this naming convention is required for filesimported
from other components. Now we can access this modul€'s variablet i t | e in other
components two different ways, either by importing the module as awhole with ani npor t
statement and qualifying the module by the variable name we want to access:

% pyt hon Sart Python

>>> jnport nyfile Run file, load module as
awhole

>>> print nyfile.title Useits names.”
qualification

The Meaning of Life

Page 18

or by fetching (redly, copying) names out of amodule with f r on statements:

% pyt hon Sart Python

>>> fromnyfile inport title Run file, load its names

>>> print title Use name directly: no need
to qualify

The Meaning of Life

Aswell seelater, fromismuch likean i npor t , with an extra assgnment to namesin the
importing component. Notice that both statements list the name of the module file as smply
myfile, without its .py suffix; when Python looks for the actual file, it knows to include the
suffix.

Whether we usei npor t or f r o, the statements in the module filemyfile.py are executed,
and the importing component (here, the interactive prompt) gains access to names assigned at
the top level of thefile. There's only one such namein this simple example—the variable
titl e, assigned to astring—but the concept will be more useful when we start defining
objects such as functions and classes. Such objects become services accessed by name from
one or more client modules.

When amodule file isimported the first time in a session, Python executes all the code inside
it, from the top to the bottom of the file. Because of this, importing a module interactively is
another way to execute its code all at once (instead of, for instance, running it from the system
shell with acommand such aspyt hon nyfi |l e. py). But there's one catch to this process:
Python executes a module file's code only the first timeit'simported. If you import it again

during the same interactive session, Python won't reexecute the file's code, even if you've
changed it with your editor. To really rerun afil€e's code without stopping and restarting the
interactive interpreter, you can use the Python r el oad function, as follows:

% Pyt hon Sart Python

>>> jnmport nyfile Run/load module
>>> print nyfile.title Qualify to fetch name
The Meaning of Life

Change myfile.py in your text editor

>>> jnport nyfile Will NOT rerun thefile's
code

>>> reload (nyfile) WILL rerun thefile's
(current)code

While this scheme works, r el oad has afew complications, and we suggest you avoid it for
now (just exit and reenter the interpreter between file changes). On the other hand, this has
proven to be a popular testing technique in Python classes, so you be the judge.

A First Look at Namespace | nspection

Another trick that has proven popular isusing the di r built-in function to keep track of defined
names while programming interactively. We'll have more to say

Page 19

about it later, but before we turn you loose to work on some exercises, here is a brief
introduction. If you call thedi r function without arguments, you get back a Python list
(described in Chapter 2) containing al the names defined in the interactive namespace:

>>> x = 1

>>> y = "shrubbery"
>>> dir()
['_builtins_', '_doc_ ', '_name_ ', 'x', 'y']

Here, the expression di r () isafunction call; it asks Python to run the function named di r .
WEe'l meet functions in Chapter 4, Functions; but for now, keep in mind that you need to add
parenthesis after afunction name to call it (whether it takes any arguments or not).

When di r iscalled, some of the namesit returns are names you get "for free": they are built-in
names that are aways predefined by Python. For instance, __nane___isthe modul€'s filename,
and__bui I tins__ isamodule containing al the built-in namesin Python (including di r).
Other names are variables that you've assigned values to (here, x and y). If you call di r with
amodule as an argument, you get back the names defined inside that module:*

% cat t hreenanes. py

a = 'dead

b = 'parrot’
c = 'sketch'
% pyt hon

>>> jnport threenanes

>>> dir(threenanes)

[_builtins_ ', ' doc_ ', ' _ file_ ', ' name_ ', "a', '"b'", 'c¢c']
>>> dir(__builtins_)

Al'l the names Python predefines for you

Later, we'll see that some objects have additional ways of telling clients which names they
expose (e.g., specid attributessuchas__net hods___and __nenbers__). But for now,
thedi r function lets you do as much poking around as you'll probably care to do.

Python Configuration Details

So far, we've seen how to make the Python interpreter execute programs we've typed. But
besides the interpreter, a Python installation also comes with a collec-

* Technicaly, in the module's namespace—aterm we'll soon use so often that you'll probably get
tired of hearing it. Since we're being technical anyhow, the interactive command lineisredly a
moduletoo, called __mai n__; code you enter there works asif it were put in amodulefile, except
that expression results are printed back to you. Notice that the result of adi r call isalist, which
could be processed by a Python program. For now, hold that thought: namespaces can be fetched in
other waystoo.

Page 20

tion of utility programs, stored in the Python source library. Moreover, the Python interpreter
recognizes settings in the system shell's environment, which let ustailor the interpreter's
behavior (where it finds the source-code files, for example). This section talks about the
environment settings commonly used by Python programmers, peeks at Python installation
details, and presents an example script that illustrates most of the configuration steps you'll
probably need to know about. If you have access to a ready-to-run Python, you can probably
skip much of this section, or postponeit for alater time.

Environment Variables

The Python interpreter recognizes a handful of environment variable settings, but only afew are
used often enough to warrant explanation here. Table 1-1 summarizes the main Python variable
settings.

Table 1-1. Important Environment Variables

Role Variable

System shell search path (for finding "python™) PATH (or pat h)

Python module search path (for imports) PYTHONPATH

Path to Python interactive startup file PYTHONSTARTP

GUI extension variables (Tkinter) TCL_LI BRARY, TK_LI BRARY

These variables are straightforward to use, but here are afew pointers:

» The PATH setting lists a set of directories that the operating system searches for executable
programs. It should normally include the directory where your Python interpreter lives (the
pyt hon program on Unix, or the python.exe file on Windows). Y ou don't need to set thison
the Macintosh (the install handles path details).

» The PYTHONPATH setting serves arole similar to PATH: the Python interpreter consults the
PYTHONPATH variable to locate modul e files when you import them in aprogram. This
variableis set to alist of directoriesthat Python searches to find an imported module at
runtime. Y ou'll usually want to include your own source-code directories and the Python
source library's directory (unlessit's been preset in your Python installation).

* If PYTHONSTARTUP is st to the pathname of afile of Python code, Python executes the
file's code automatically whenever you start the interactive interpreter, as though you had typed
it a the interactive command line. Thisis ahandy way to make sure you aways load utilities
whenever you're working interactively.

Page 21

* Provided you wish to use the Tkinter GUI extension (see Chapter 10, Frameworks and
Applications), the two GUI variablesin Table 1-1 should be set to the name of the source
library directories of the Tcl and Tk systems (much like PYTHONPATH).

Unfortunately, the way to set these variables and what to set them to depends on your system's
configuration. For instance, on Unix systems the way to set variables depends on the shell;
under the csh shell, you might set this to the Python module search path:

setenv PYTHONPATH .:/usr/local/lib/python:/usr/local/lib/python/tkinter

which tells Python to look for imported modules in three directories: the current directory (.),
the directory where the Python source library isinstalled on your machine (here,
lusr/local/lib/python), and thet ki nt er source library subdirectory, where the Python GUI
extension support code resides. But if you're using the ksh shell, the setting might instead ook
likethis:

export PYTHONPATH=" .:/usr/local/lib/python:/usr/local/lib/python/tkinter"

And if you're usng MS-DOS, an environment configuration could be something very different
still:

set PYTHONPATH=. ; c:\python\lib;c:\python\lib\tkinter

Since thisisn't abook on operating system shells, we're going to defer to other sources for
more details. Consult your system shell's manpages or other documentation for details. And if
you have trouble figuring out what your settings must be, ask your system administrator (or
other local guru) for help.

An Example Startup Script

The code below, call it runpy, pulls some of these details together in a smple Python startup

script. It sets the necessary environment variables to reasonable values (on Mark's machine, at
least) and starts the Python interactive interpreter. To useit, typer unpy at your system shell's
prompt.

#!1/bi n/ csh
Gve this file executable privileges (chmod +x runpy).
Put this info in your .cshrc file to make it permanent.

1) Add path to command-line interpreter
set path = (/usr/local/bin $path)

2) Set python library search paths (unless predefined)
add your nodule file directories to the list as desired setenv PYTHONPATH

.. lusr/local/lib/python:/usr/local/lib/python/tkinter

3) Set tk library search paths for GQUs (unless predefined)

Page 22

setenv TCL _LIBRARY /usr/local/lib/tcl18.0
setenv TK LI BRARY /usr/local/lib/tk8.0

4) Start up the interactive comand-Iline
pyt hon

runpy illustrates atypical Python configuration, but it has afew drawbacks:

* [t's written to only work under the csh shell, a command-line processor common on Unix and
Linux platforms; you'll need to interpolate if you're not a csh user.

» The settings it illustrates are usually made once in your shell's startup file (~/.cshrc for csh
users), instead of each time you run Python.

* Depending on how your Python was built, you may not need to list the paths to standard
source libraries, since they might be hardwired into your installation.

A note for MS-Windows users: asimilar configuration can be created in aMS-DOS batch file,
which might look something like this, depending on which Windows port of Python you've
installed:

PATH c: \ pyt hon; %ATHY%

set PYTHONPATH= .;c:\python\lib;c:\python\Ilib\tkinter
set TCL_LIBRARY=c:\Program Files\Tcl\lib\tc18.0

set TK LI BRARY=c:\Program Files\Tcl\lib\tk8.0

pyt hon

A GUI Test Session

If you or your administrator have installed Python with the Tkinter GUI extension, the following
interactive session shows one way to test your Python/GUI configuration. (Y ou can skip this
section if you won't be using Tkinter.)

% runpy
Ver si on/ copyright information..

>>> from Tkinter inport *

>>> w = Button(text="Hello", command="exit')
>>> w, pack()

>>> w. mai nl oop()

Typer unpy at the system shell and then all the Python code shown after the Python >>>
prompts. Ignore the details in the exampl€'s code for now; we study Tkinter in Chapter 10. If
everything is set up properly, you should get awindow on your screen that looks something like
Figure 1-1 (shown running on a MS-Windows machine; it looks dlightly different on the X
Window System or a Macintosh, since Tkinter provides for native look and feel).

If thistest doesn't work, start checking your environment variable path settings, and/or the
Python install. Tkinter isan optiona extension that must be explicitly enabled, so make sureit's
in your version of Python. Also make sure you have

Page 23

Hello

Figure 1-1
Tkinter GUI test screen

accessto the Tcl/Tk source libraries; they're required by the current Python Tkinter
implementation. See the README files in the Python source distribution and the Python web
site for more details.

I nstallation Overview

In the interest of completeness, this section provides afew pointers on the Python installation
process. When you're just getting started with Python, you normally shouldn't need to care about
Python installation procedures. Hopefully, someone el se—perhaps your system
administrator—has aready Python on your platform, and you can skip most of the information
here.

But thisisn't always the case, and even if Python is already installed on your machine,
installation details may become more important as your knowledge of Python grows. In some
scenarios, it's important to know how to build Python from its source code, so you can bind in
extensions of your own statically. But again, thisisn't abook on Python/C integration, so if
Python has already been installed for you, you may want to file this section away for future
reference.

Python comesin binary or C source-code forms
Y ou can get Python as either a prebuilt binary executable (which runs "out of the box™) or
in its C source-code form (which you must compile on your machine before it can run).
Both forms can be found in a variety of media—the Python web/FTP sites (see Appendix
A), CDs accompanying Python books, independent CD distributors, Linux distributions, and
so on. Naturally, if you go for the binary format, you must get one that's compatible with
your machine; if you use the C source-code distribution, you'll need a C compiler/build

system on your machine. Both forms are usually distributed as compressed archive files,
which means you usually need utilities such asgzi p and tar to unpack the file on your
computer (though some Windows ports install themselves).

C source code configures/builds automatically
Although getting Python in binary form means you don't need to compileit yoursdlf, it also
means you have little control over what extensions are enabled; you'll get the extensions
that the person who built the binary happened to think were important. Moreover, besides
the Python binary itsdlf,

Page 24

you need to get and install the Python source library, which may or may not be included in
a Python binary package. For more control, fetch the full Python C source-code
distribution and compile it on your machine. We won't list the compile commands here, but
the source-code build procedure is largely automatic; Python configuresits own

makef i | es according to your platform, and Python compiles without a glitch on just
about any platform you might mention.

Don't build from source unless you've used a C compiler before
Having said that, we should note that even automated C compiles of alarge system like
Python are not to be taken lightly. If you've never used a C compiler before, we suggest you
try to obtain a Python binary package for your platform first, before faling back on building
Python from its source-code on your machine. And as usual, you can aways ask alocal C
guru for assistance with the build or install.

Prebuilt Python binaries exist for most platforms now, including MS-Windows, the Macintosh,
and most flavors of Unix; see Python's web site for links. We should also note that the full C
source-code distribution contains the entire Python system, and istrue freeware; there are no
copyright constraints preventing you from using it in your products. Although hacking an
interpreter's source code isn't everybody's cup of tea, it's comforting to know that you have
control over all the source code in your Python system.

For more details on installing and building Python, see the README filesin the C source-code
distribution, the Python web site, and other Python texts such as Programming Python. And for
pointers to various Python distributions, see the URLslisted in Appendix A.

Summary

In this chapter, we've explored ways to launch Python programs, the basics of Python module
files and namespace inspection, and Python configuration and installation details. Hopefully,
you should now have enough information to start interacting with the Python interpreter. In
Chapter 2, we explore basic object types in Python, before looking at statements and larger
program components.

Exercises

Okay: timeto start doing alittle coding on your own. This sessionisfairly simple, but afew of
these questions hint at topics to comein later chapters. Remember, check Appendix C,
Solutions to Exercises, for the answers; they sometimes contain

Page 25

supplemental information not discussed in the chapters. In other words, you should peek, even
if you can manage to get al the answers on your own.

1. Interaction. Start the Python command line, and type the expression: " Hel | o Wor | d!”
(including the quotes). The string should be echoed back to you. The purpose of this exerciseis
to get your environment configured to run Python. Y ou may need to add the path to the pyt hon
executable to your PATH environment variable. Set it in your .cshrc or .kshrc file to make
Python permanently available on Unix systems; use a setup.bat or autoexec.bat file on
Windows.

2. Programs. With the text editor of your choice, write asimple module file—afile containing
the single statement: pri nt 'Hel | o nodul e wor | d! . Store this statement in afile named
modulel.py. Now, run thisfile by passing it to the Python interpreter program on the system
shell's command line.

3. Modules. Next, start the Python command line and import the module you wrote in the prior
exercise. Does your PYTHONPATH setting include the directory where thefile is stored? Try
moving the file to a different directory and importing it again; what happens? (Hint: is there
still afile named modulel.pyc in the original directory?)

4. Seripts. If your platform supportsit, add the #! line to the top of your modulel.py module,
give the file executable privileges, and run it directly as an executable. What does the first line
need to contain?

5. Errors. Experiment with typing mathematical expressions and assignments at the Python
command line. First type the expression: 1 / 0; what happens? Next, type a variable name you
haven't assigned a value to yet; what happens thistime? Y ou may not know it yet, but you're
doing exception processing, atopic well explore in depth in Chapter 7, Exceptions. We'll also
see Python's source debugger, pdb, in Chapter 8, Built-in Tools; if you can't wait that long,
either flip to that chapter, or see other Python documentation sources. Python's default error
messages will probably be as much error handling as you need when first starting out.

6. Breaks. At the Python command line, type:

L=11 2]
L. append(L)
L

What happens? If you're using a Python version older than 1.5.1, a Ctrl-C key combination
will probably help on most platforms. Why do you think this occurs? What does Python
report when you type the Ctrl-C key combination? Warning: if you have a Python older
than release 1.5.1, make sure your machine can stop a program with a break-key
combination of some sort before running thistest, or you may be waiting along time..

Page 26

2—
Types and Operators

In this chapter:

* Python Program Structure
» Why Use Built-in Types?

» Numbers

* Strings

e Lists

* Dictionaries

* Tuples

* Files

*» General Object Properties
* Built-in Type Gotchas

s UmMmary

* Exercises

This chapter begins our tour of the Python language. From an abstract perspective, in Python
we write programs that do things with stuff.* Programs take the form of statements, which
we'll meet later. Here, we're interested in the stuff our programs do things to. And in Python,
stuff alwaystakes the form of objects. They may be built-in kinds of objects Python provides
for us, or objects we create using Python or C tools. Either way, we're always doing things to
objectsin Python.

Naturaly, there's more to Python development than doing things to stuff. But since the subjects
of Python programs are the most fundamental notion in Python programming, we start with a
survey of Python's built-in object types.

Python Program Structure

By way of introduction, let'sfirst get a clear picture of how what we study in this chapter fits
into the overall Python picture. From a more concrete perspective, Python programs can be
decomposed into modules, statements, and objects, as follows:

1. Programs are composed of modules.

2. Modules contain statements.

3. Statements create and process objects.

* Pardon our formality: we're computer scientists.

Page 27

Why Use Built-in Types?

If you've used lower-level languages such as C or C++, you know that much of your work
centers on implementing objects—what some folks call data structures—to represent the
components in your gpplication's domain. Y ou need to lay out memory structures, manage
memory allocation, implement search and access routines, and so on. These chores are about as
tedious (and error prone) as they sound, and usually distract from your programs rea goals.

In typical Python programs, most of this grunt work goes away. Because Python provides
powerful object types as an intrinsic part of the language, there's no need to code object
implementations before you start solving problems. In fact, unless you have aneed for special
processing that built-in types don't provide, you're almost always better off using a built-in
object instead of implementing your own. Here are some reasons why:

Built-in objects make simple programs easy to write
For smple tasks, built-in types are often all you need to represent the structure of problem
domains. Because we get things such as collections (lists) and search tables (dictionaries)
for free, you can use them immediately. Y ou can get alot of work done with just Python's
built-in object types alone.

Python provides objects and supports extensions
In some ways, Python borrows both from languages that rely on built-in tools (e.g., LISP),
and languages that rely on the programmer to provide tool implementations or frameworks
of their own (e.g., C++). Although you can implement unique object typesin Python, you
don't need to do so just to get started. Moreover, because Python's built-ins are standard,
they're always the same; frameworks tend to differ from site to Site.

Built-in objects are components of extensions
For more complex tasks you still may need to provide your own objects, using Python
statements and C language interfaces. But aswe'll seein later chapters, objects
implemented manually are often built on top of built-in types such aslists and dictionaries.
For instance, a stack data structure may be implemented as a class that manages a built-in
list.

Built-in objects are often more efficient than custom data structures
Python's built-in types employ already optimized data structure algorithms that are
implemented in C for speed. Although you can write smilar object types on your own,
you'll usually be hard-pressed to get the level of performance built-in object types provide.

In other words, not only do built-in object types make programming easier, they're also more
powerful and efficient than most of what can be created from scratch.

Page 28

Regardless of whether you implement new object types or not, built-in objects form the core of
every Python program.

Table 2-1 previews the built-in object types in this chapter. Some will probably seem familiar
if you've used other languages (e.g., numbers, strings, and files), but others are more general
and powerful than what you may be accustomed to. For instance, you'll find that lists and
dictionaries obviate most of the work you do to support collections and searching in
lower-level languages.

Table 2-1. Built-in Objects Preview

Object Type Example Constants/Usage

Numbers 3. 1415, 1234, 999L, 3+4j

Strings ‘spam, "guido's"

Lists [1, [2, "three'], 4]

Dictionaries {'food":'spani, 'taste':'yn}
Tuples (1, 'spanm, 4, 'U)

Files text = open ('eggs', 'r'). read()
Numbers

On to the nitty-gritty. The first object type on our tour is Python numbers. In genera, Python's
number types are fairly typical and will seem familiar if you've used just about any other
programming language in the past. Python supports the usua numeric types (integer and floating
point), constants, and expressions. In addition, Python provides more advanced numeric
programming support, including a complex number type, an unlimited precision integer, and a
variety of numeric tool libraries. The next few sections give an overview of the numeric
support in Python.

Standard Numeric Types

Among its basic types, Python supports the usua suspects: both integer and floating-point
numbers, and all their associated syntax and operations. Like C, Python aso allows you to
write integers using hexadecimal and octal constants. Unlike C, Python also has a complex
number type (introduced in Python 1.4), as well as along integer type with unlimited precision
(it can grow to have as many digits as your memory space allows). Table 2-2 shows what
Python's numeric types ook like when written out in aprogram (i.e., as constants).

Table 2-2. Numeric Constants
Constant Interpretation

1234,-24,0 Normal intergers (C longs)
9999999999999L Long integers (unlimited size)

Page 29

Table 2-2. Numeric Constants (continued)

Constant Interpretatio

1.23,3. 14e-10,4E210, Floating-point (C doubles)
4. 0e+210

0177,0x9f f Octal and hex constants
3+4j) ,3. 0+4. 0 ,3J Complex number constants

By and large, Python's numeric types are straightforward, but a few are worth highlighting here:

Integer and floating-point constants
Integers are written as a string of decimal digits. Floating-point numbers have an embedded
decimal point, and/or an optional signed exponent introduced by an e or E. If you write a
number with adecimal point or exponent, Python makes it a floating-point object and uses
floating-point (not integer) math when it's used in an expression. The rules for writing
floating-point numbers are the same as with C.

Numeric precision
Plain Python integers (row 1) are implemented asC | ongs interndly (i.e., at least 32
bits), and Python floating-point numbers are implemented as C doubl es; Python numbers
get as much precision as the C compiler used to build the Python interpreter givesto
| ongs and doubl es. On the other hand, if an integer constant endswithan | or L, it
becomes a Python long integer (not to be confused with a C long) and can grow aslarge as
needed.

Hexadecimal and octal constants
The rules for writing hexadecimal (base 16) and octal (base 8) integers are the same asin
C: octal constants start with aleading zero (0), and hexadecimals start with aleading Ox or
0X. Notice that this means you can't write normal base-ten integers with aleading zero
(e.g., 01); Python interprets them as octal constants, which usually don't work as you'd

expect!

Complex numbers
Python complex constants are written asr eal - part + i magi nary- part,and
terminated withaj or J. Internaly, they are implemented as a pair of floating-point
numbers, but all numeric operations perform complex math when applied to complex
numbers.

Built-in Tools and Extensions

Besides the built-in number types shown in Table 2-2, Python provides a set of tools for
processing number objects:

Expression operators

+1 *1 >>1 **1 etc

Page 30
Built-in mathematical functions
pow, abs, etc.
Utility modules
rand, math, etc.

WE'l meet all of these aswe go along. Finally, if you need to do serious number-crunching, an
optional extension for Python called Numeric Python provides advanced numeric programming
tools, such as amatrix data type and sophisticated computation libraries. Because it's so
advanced, we won't say more about Numeric Python in this chapter; see the exampleslater in
the book and Appendix A, Python Resources. Also note that, as of this writing, Numeric
Python is an optiona extension; it doesn't come with Python and must be installed separately.

Python Expression Operators

Perhaps the most fundamental tool that processes numbers is the expression: a combination of
numbers (or other objects) and operators that computes a value when executed by Python. In
Python, expressions are written using the usua mathematical notation and operator symbols.
For instance, to add two numbers X and Y, wesay X + Y, which tells Python to apply the +
operator to the values named by X and Y. The result of the expressionisthesumof Xand Y,
another number object.

Table 2-3 lists all the operator expressions available in Python. Many are self-explanatory; for
instance, the usual mathematical operators are supported: +, -, *,/ , and so on. A few will be
familiar if you've used C in the past: % computes adivision rerrainder, < performs a bitwise
left-shift, & computes a bitwise and result, etc. Others are more Python-specific, and not al are
numeric in nature: the is operator tests object identity (i.e., address) equality, | anbda creates
unnamed functions, and so on.

Table 2-3. Python Expression Operators and Precedence

Operators Description

x or y, lanbda args: expr¢q Logical or (y isevaluated only if x isfalse), anonymous
function

x and y Logica and (y isevaluated only if x istrue)

not x Logica negation

<, <=,>,>=, ==, <>, | 5, Comparison operators,

is,is not, identity tests,

in,not in sequence membership

X |y Bitwise or

X Ny Bitwiseexcl usi ve or

X &Yy Bitwiseand

Page 31

Table 2-3. Python Expression Operators and Precedence (continued)

Operators Description

X <y,X >>y Shift x left or right by y bits

X + Yy, X -y Addition/concatenation, subtraction

X *yx/!l yx %y Multiplication/repetition, division, remainder/format
- X, +X, ~X Unary negation, identity, bitwise compliment
X[i].x[i:j],x.y,x(..) Indexing, slicing, qualification, function cals

G TP Y TP (Y Tuple, list, dictionary, conversion to string

Table 2-3 ismostly included for reference; since we'll see its operatorsin action later, we
won't describe every entry here. But there are afew basic points we'd like to make about
expressions before moving on.

Mixed operators. Operatorsbind tighter lower in thetable

Asin most languages, more complex expressions are coded by stringing together operator
expressionsin the table. For instance, the sum of two multiplications might be written as:

A * B + C* D. Sohow doesPython know which operator to perform first? When you
write an expression with more than one operator, Python groups its parts according to what are
called precedence rules, and this grouping determines the order in which expression parts are
computed. In the table, operators lower in the table have higher precedence and so bind more
tightly in mixed expressions. For example, if youwrite X + Y * Z, Python evauates the
multiplication first (Y * Z), then addsthat result to X, because * has higher precedence (is
lower inthetable) than +.

Par entheses group subexpressions

If the prior paragraph sounded confusing, relax: you can forget about precedence completely if
you're careful to group parts of expressions with parentheses. When you parenthesize
subexpressions, you override Python precedence rules; Python always eval uates parenthesized
expressions first, before using their results in enclosing expressions. For instance, instead of
X+ Y* Zwrite(X + Y)* Z, orforthat matter X + (Y * Z) toforcePythonto
evaluate the expression in the desired order. In the former case, + isapplied to X and Y first; in
the latter, the * is performed first (asif there were no parentheses at all). Generally speaking,
adding parentheses in big expressionsis agreat idea; it not only forces the evaluation order
you want, but it also aids readability.

Mixed types: Converted up just asin C

Besides mixing operators in expressions, you can aso mix numeric types. For instance, you can
add an integer to a floating-point number, but this leads to

Page 32

another dilemma: what type is the result—integer or floating-point? The answer is ssmple,
especidly if you've used amost any other language before: in mixed type expressions, Python
first converts operands up to the type of the most complex operand, and then performs the math

on same-type operands. Python ranks the complexity of numeric types like so: integers are
simpler than long integers, which are smpler than floating-point numbers, which are smpler
than complex numbers. So, when an integer is mixed with a floating-point, the integer is
converted up to afloating-point value first, and then floating-point math yields the
floating-point result. Similarly, any mixed-type expression where one operand is a complex
number results in the other operand being converted up to a complex, and yields a complex
result.

Preview: operator overloading

Although we're focusing on built-in numbers right now, keep in mind that all Python operators
may be overloaded by Python classes and C extension types, to work on objects you
implement. For instance, you'll see later that objects coded with classes may be added with +
expressions, indexed with [1] expressions, and so on. Furthermore, some operators are
already overloaded by Python itself: they perform different actions depending on the type of
built-in objects being processed. For example, the + operator performs addition when applied
to numbers, but (as we'll see in amoment) performs concatenation when applied to sequence
objects such as strings and lists.*

Numbersin Action

Perhaps the best way to understand numeric objects and expressionsis to see them in action.
Let'sfire up the interactive command line and type some basic, but illustrative operations.

Basic operations

First of al, let's exercise some basic math: addition and division. In the following interaction,
wefirst assign two variables (a and b) to integers, so we can use them later in alarger
expression. We'll say more about this later, but in Python, variables are created when first
assigned; there is no need to predeclare the names a and b before using them. In other words,
the assignments cause these variables to spring into existence automatically.

% pyt hon
>>> g = 3 # nanme created
>>> ph = 4

* Thisisusually called polymor phism—the meaning of an operation depends on the type of objects
being operated on. But we're not quite ready for object-oriented ideas like this yet, so hold that
thought for now.

Page 33

We've aso used a comment here. These were introduced in Chapter 1, Getting Sarted, but as
arefresher: in Python code, text after a# mark and continuing to the end of thelineis
considered to be a comment, and isignored by Python (it's a place for you to write
human-readable documentation for your code; since code you type interactively is temporary,
you won't normally write comments there, but we've added them to our examplesto help
explain the code). Now, let's use our integer objects in expressions; as usual, expression
results are echoed back to us at the interactive prompt:

>> b/ 2 + a # sanme as ((4/ 2) + 3)
5

>>> b/ (2.0 + a) # sane as (4 / (2.0 + 3))
0.8

In the first expression, there are no parentheses, so Python automatically groups the components
according to its precedence rules; since/ islower in Table 2-3 than +, it binds more tightly,
and so is evaluated first. Theresult is asif we had parenthesized the expression as shown in
the comment to the right of the code. Also notice that al the numbers are integersin the first
expression; because of that, Python performs integer division and addition.

In the second expression, we add parentheses around the + part to force Python to evaluate it
first (i.e., beforethe/). We aso made one of the operands floating point by adding a decimal
point: 2. 0. Because of the mixed types, Python converts the integer referenced by a upto a
floating-point value (3. 0) before performing the +. It a'so converts b up to afloating-point
value (4. 0) and performs afloating-point division: (4. 0 / 5. 0) yields afloating-point
result of 0. 8. If thiswereinteger division instead, the result would be atruncated integer
zero.

Bitwise operations

Besides the normal numeric operations (addition, subtraction, and so on), Python supports most
of the numeric expressions available in the C language. For instance, hereit's at work
performing bitwise shift and Boolean operations:

>>> x = 1 # 0001

>>> x < 2 # shift left 2 bits: 0100
4

>>> x | 2 # bitwise OR 0011

3

>>> x & 1 # bitwi se AND: 0001

1

In the first expression, abinary 1 (inbase2, 0001) isshifted left two slots to create a binary
4 (0100) . Thelast two operations performabinary or (0001 | 0010 = 0011),and
abinary and (0001 & 0001 = 0001). Wewon't go into much more detail on bit-twiddling
here. It's supported if you need it, but be aware that it's often not as important in a high-level
language such as Python asit isin alow-level language

Page 34

such as C. Asarule of thumb, if you find yourself wanting to flip bits in Python, you should
think long and hard about which language you're really using. In general, there are often better
ways to encode information in Python than bit strings.*

Longintegers

Now for something more exotic: here'salook at long integersin action. When an integer
constant endswith an L (or lowercase|), Python creates along integer, which can be
arbitrarily big:

>>> 9999999999999999999999999999 + 1
OverflowError: integer literal too large
>>> 9999999999999999999999999999L + 1
10000000000000000000000000000L

Here, the first expression fails and raises an error, because normal integers can't accommodate
such alarge number. On the other hand, the second works fine, because we tell Python to
generate along integer object instead.

,i Long integers are a convenient tool. In fact, you can use them to
count the national debt in pennies, if you are so inclined. But because
Python must do extrawork to support their extended precision, long
integer math is usually much slower than normal integer math. If you need
the precision, it'sbuilt in for you to use. But as usual, there's no such thing
asafreelunch.

Complex numbers

Complex numbers are a recent addition to Python. If you know what they are, you know why
they are useful; if not, consider this section optional reading.** Complex numbers are
represented as two floating-point numbers—the real and imaginary parts—and are coded by
adding aj or J suffix to the imaginary part. We can aso write complex numbers with a
nonzero real part by adding the two parts with a+. For example, the complex number with a
real part of 2 and an imaginary part of - 3 iswritten: 2 + - 3] . Some examples of complex
math at work:

>>> 1) * 1]
(-1+0j)

>>> 2 + 1] * 3
(2+3))

* Usually. Asfor every rule there are exceptions. For instance, if you interface with C libraries that
expect bit stringsto be passed in, our preaching doesn't apply.

** One of your authorsis quick to point out that he has never had aneed for complex numbersin
some 15 years of development work. The other author isn't so lucky.

Page 35
>>> (2+1))*3
(6+3))

Complex numbers also allow usto extract their parts as attributes, but since complex math isan
advanced tool, check Python's language reference manual for additional details.

Other numeric tools

As mentioned above, Python a so provides both built-in functions and built-in modules for
numeric processing. Here are the built-in mat h module and afew built-in functions at work;
we'll meet more built-insin Chapter 8, Built-in Tools.

>>> jnport math
>>> mat h. pi

3. 14159265359
>>>

>>> abs(-42), 2**4, pow(2, 4)
(42, 16, 16)

Notice that built-in modules such as mat h must be imported and qualified, but built-in
functions such as abs are always available without imports. Really, modules are external
components, but built-in functions live in an implied namespace, which Python searches to find
names used in your program. This namespace corresponds to the module called
__builtin__.Wetak about name resolution in Chapter 4, Functions; for now, when we
say "modul€e”, think "import.”

Strings

The next major built-in type is the Python string—an ordered collection of characters, used to
store and represent text-based information. From afunctional perspective, strings can be used
to represent just about anything that can be encoded as text: symbols and words (e.g., your
name), contents of text files loaded into memory, and so on.

Y ou've probably used strings in other languages too; Python's strings serve the samerole as
character arrays in languages such as C, but Python's strings are a higher level tool. Unlike C,
thereisno char typein Python, only one-character strings. And <trictly speaking, Python
strings are categorized as immutabl e sequences—big words that just mean that they respond to
common sequence operations but can't be changed in place. In fact, strings are representative of
the larger class of objects called sequences; we'll have more to say about what thismeansin a
moment, but pay attention to the operations introduced here, because they'll work the same on
types we'll see later.

Table 2-4 introduces common string constants and operations. Strings support expression
operations such as concatenation (combining strings), slicing (extracting

Page 36

sections), indexing (fetching by offset), and so on. Python also provides a set of utility modules
for processing strings you import. For instance, the st r i ng module exports most of the
standard C library's string handling tools, and ther egex and r e modules add regular
expression matching for strings (all of which are discussed in Chapter 8).

Table 2-4. Common String Constants and Operations

Operation I nter pretation
s1="" Empty string
s2 = "spanm s” Double quotes
bl ock = """ ..""" Triple-quoted blocks
sl + s2 Concatenate,
s2 * 3 repeat

s2[i], Index,
s2[i:j], slice,

l en(s2) length

"a % parrot" %' dead | Stringformatting
for x in s2, Iteration,

'min s2 membership

Empty strings are written as two quotes with nothing in between. Notice that string constants
can be written enclosed in either single or double quotes; the two forms work the same, but
having both allows a quote character to appear inside a string without escaping it with a
backslash (more on backslashes later). The third line in the table also mentions a triple-quoted
form; when strings are enclosed in three quotes, they may span any number of lines. Python
collects al the triple-quoted text into a multiline string with embedded newline characters.

Stringsin Action

Rather than getting into too many details right away, let's interact with the Python interpreter
again to illustrate the operations in Table 2-4.

Basic operations

Strings can be concatenated using the + operator, and repeated using the * operator. Formally,
adding two string objects creates a new string object with the contents of its operands joined;
repetition is much like adding a string to itself a number of tinres. In both cases, Python lets you
create arbitrarily sized strings; there's

Page 37

no need to predeclare anything in Python, including the sizes of data structures.* Python aso
provides al en built-in function that returns the length of strings (and other objects with a
length):

% pyt hon

>>> | en(' abc') # length: nunber itens

3

>>> 'abc' + 'def’ # concatenation: a new string
"abcdef’

>>> "Ni!' * 4 #like "N !I'" + "N !I'" + ..
"NiI'NIINi !Nt

Notice that operator overloading is at work here already: we're using the same operators that
were called addition and multiplication when we looked at numbers. Python is smart enough to
do the correct operation, because it knows the types of objects being added and multiplied. But
be careful; Python doesn't allow you to mix numbers and stringsin + and * expressions: '‘abc’
+ 9 raises an error, instead of automatically converting 9 to astring. Asshown in the last line
in Table 2-4, you can aso iterate over stringsin loopsusing f or statements and test
membership with the in expression operator:

>>> nyj ob = "hacker"
>>> for ¢ in nyjob: print c, # step though itens

hacker
>>> "K" in nyjob # 1 nmeans true
1

But since you need to know something about statements and the meaning of truth in Python to
really understand f or andi n, let's defer details on these examples until later.

Indexing and dicing

Because strings are defined as an ordered collection of characters, we can access their
components by position. In Python, charactersin a string are fetched by indexing—providing
the numeric offset of the desired component in square brackets after the string. Asin C, Python
offsets start at zero and end at one less than the length of the string. Unlike C, Python also lets
you fetch items from sequences such as strings using negative offsets. Technically, negative
offsets are added to the length of a string to derive a positive offset. But you can aso think of
negative offsets as counting backwards from the end (or right, if you prefer).

* Unlike C character arrays, you don't need to alocate or manage storage arrays when using Python
strings. Simply create string objects as needed, and let Python manage the underlying memory space.
Internally, Python reclaims unused objects memory space automatically, using a reference-count
garbage collection strategy. Each object keeps track of the number of names, data-structures, etc.
that reference it; when the count reaches zero, Python frees the object's space. This scheme means
Python doesn't have to stop and scan all of memory to find unused space to free; it also means that
objects that reference themselves might not be collected automatically.

Page 38
>>> S = ' spani
>>> §[0], 9[-2] # indexing fromfront or end
(‘s 'a)
>>> §[1:3], S1:], 9:-1] # slicing: extract section

("pa', 'pam, 'spa')

In the first line, we define afour-character string and assign it the name S. We then index it two
ways. S[0] fetchestheitem at offset O from the |eft (the one-character string 'S'), and [- 2]
getstheitem at offset 2 from the end (or equivalently, at offset (4 + -2) from the front). Offsets
and slices map to cells as shown in Figure 2-1.

[sharfend]
dices rafer Jo ploces the knife ‘ufs’.

01 2 -2

| . S, (R |
SILIT|C|E|O|F|S|P|AIM
f ¥
[: :]

Defoults ore begioning of sequence ond end of sequense,

Figure 2-1.
Using offsets and slices

The last line in the example aboveis our first look at dlicing. When we index a sequence object
such asastring on a pair of offsets, Python returns a new object containing the contiguous
section identified by the offsets pair. The left offset is taken to be the lower bound, and the right
isthe upper bound; Python fetches all items from the lower bound, up to but not including the
upper bound, and returns a new object containing the fetched items.

For instance, S 1: 3] extractsitemsat offsetsland 2, §[1:] getsall items past the first (the
upper bound defaults to the length of the string), and S : - 1] getsall but the last item (the

lower bound defaults to zero). This may sound confusing on first glance, but indexing and
dicing are smple and powerful to use, once you get the knack. Here's a summary of the details
for reference; remember, if you're unsure about what a dice means, try it out interactively.

Indexing (S[i]):

* Fetches components at offsets (the first item is at offset zero)

* Negative indexes mean to count from the end (added to the positive length)

* 5[0] fetchesthefirst item

* §[- 2] fetchesthe second fromtheend (it'sthesameasS[1 en(S) - 2])

Page 39
Sicing (S[i:j1]):
» Extracts contiguous sections of a sequence
» Slice boundaries default to zero and the sequence length, if omitted
* §[1: 3] fetchesfrom offsets 1 up to, but not including, 3
* 5[1:] fetchesfrom offsets 1 through the end (length)
*S[:-1] fetchesfrom offsets O up to, but not including, the last item

Later in this chapter, we'll see that the syntax used to index by offset (the square brackets) is
also used to index dictionaries by key; the operations look the same, but have different
interpretations.

Why You Will Care: Slices
Throughout this part of the book, we include sidebars such as thisto give you a peek
at how some of the language features being introduced are typically used in real
programs. Since we can't show much of real use until you've seen most of the Python
picture, these sidebars necessarily contain many references to topics we haven't
introduced yet; at most, you should consider them previews of ways you may find
these abstract language concepts useful for common programming tasks.

For instance, you'll see later that the argument words listed on a command line used to
launch a Python program are made available in the ar gv attribute of the built-in sy s
module:

% cat echo. py2

i mport sys

print sys.argv

% pyt hon echo.py -a -b -c¢

F' AmAlhAa s

A1

|l ecnu.py , -4, -0, -U |

Usually, we're only interested in inspecting the arguments past the program name.
Thisleadsto avery typical application of slices: asingle slice expression can strip
off al but thefirst item of thelist. Here, sys. ar gv[1:] returnsthe desired lit,
[*-a, ‘-b’, ‘“-c’].Youcanthen processwithout having to accommodate the
program name at the front.

Slices are also often used to clean up lines read from input files; if you know that a
line will have an end-of-line character at theend (a"\ n' newline marker), you can get
rid of it with asingle expression such asl i ne[: - 1] , which extracts all but the last
character in the line (the lower limit defaultsto 0). In both cases, slices do the job of
logic that must be explicit in alower-level language.

Page 40

Changing and for matting

Remember those big words—immutable sequence? The immutable part means that you can't
change a string in-place (e.g., by assigning to an index). So how do we modify text information
in Python? To change a string, we just need to build and assign a new one using tools such as
concatenation and dicing:

>>> S = ' spani

>>> §[0] = "x"

Rai ses an error!

>>> S =S + ' Spam' # to change a string, nake a new one
>>> S

' spanpam '

>>> S = §:4] + 'Burger' + §[-1]

>>> S

' spanBur ger !’

>>> "That is % % bird!' % (1, 'dead') # like C sprintf
That is 1 dead bird!

Python also overloads the % operator to work on strings (it means remainder-of-division for
numbers). When applied to strings, it servesthe sameroleas C'sspri nt f function: it
provides a simple way to format strings. To make it go, simply provide aforrrat string on the
left (with embedded conversion targets—e.g., %), along with an object (or objects) on the
right that you want Python to insert into the string on the left, at the conversion targets. For
instance, in the last line above, the integer 1 is plugged into the string where the %@ appears,
and the string 'dead’ isinserted at the % . String formatting isimportant enough to warrant a
few more examples:

>>> exclamation = "N "

>>> "The kni ghts who say %!" % exclamation

' The knights who say N !'

>>> "0d 9% % you" % (1, 'spam, 4)

"1l spam 4 you'

>>> "0 -- U -- WB" % (42, 3.14159, [1, 2, 3])
"42 -- 3.14159 -- [1, 2, 3]

In thefirst example, plug the string “ Ni ™ into the target on the left, replacing the %6 marker. In
the second, insert three values into the target string; when there is more than one value being
inserted, you need to group the values on the right in parentheses (which really meansthey are
put in atuple, aswe'll see shortly).

Python's string % operator always returns a new string as its result, which you can print or not.
It also supports al theusua C pri nt f format codes. Table 2-5 lists the more common
string-format target codes. One special case worth noting isthat & converts any object to its
string representation, so it's often the only conversion code you need to remember. For
example, the last line in the previous example converts integer, floating point, and list objects
to stringsusing s (listsare up

Page 41

next). Formatting also allows for a dictionary of values on the right, but since we haven't told
you what dictionaries are yet, we'll finesse this extension here.

Table 2-5. Sring Formatting Codes

% String (or any object's | %X Hex integer (uppercase)
print format)

% Chapter % Floating-point format 12
%l Decimal (int) %E Floating-point format 3
% Integer % Floating-point format 3
% Unsigned (int) % floating-point format 4
%0 Octal integer % Floating-point format 5
Ux Hex integer o Literal %

a The floating-point codes produce alternative representations for
floating-point numbers. Seepri nt f documentation for details; better yet,
try these formats out in the Python interative interpreter to see how the
aternative floating-point formats look (e.g.,

"%¢e % %" % (1.1, 2.2, 3.3)).

Common string tools

As previously mentioned, Python provides utility modules for processing strings. Thest ri ng
module is perhaps the most common and useful. It includes tools for converting case, searching
strings for substrings, converting string to numbers, and much more (the Python library
reference manual has an exhaustive list of string tools).

>>> jnport string # standard utilities nodule
>>> S = "spamm fy"

>>> string. upper(s) # convert to uppercase

' SPAMM FY'

>>> string. find(S, "mt') # return index of substring
3

>>> string.atoi ("42"), 42 # convert fronfto string
(42, '42")

>>> string.join(string.split(S, "mi'), "XX")

"spaXXi fy'

The last example is more complex, and we'll defer a better description until later in the book.
But the short story isthat thespl i t function chops up astring into alist of substrings around a
passed-in delimiter or whitespace; j oi n puts them back together, with a passed-in delimiter
or space between each. This may seem like aroundabout way to replace * rmi” with “ XX” , but
it's one way to perform arbitrary global substring replacements. We study these, and more
advanced text processing tools, later in the book.

Incidentally, notice the second-to-last line in the previous example: the at oi function converts
astring to a number, and backquotes around any object convert that object to its string
representation (here, * 42" converts a number to a string). Remember that you can't mix strings
and numbers types around operators such as +, but you can manually convert before that
operation if needed:

Page 42

>>> "spant + 42

Rai ses an error

>>> "spant + "42°

' spami2'

>>> string.atoi("42") + 1
43

Later, we'll also meet a built-in function called eval that converts a string to any kind of
object; st ri ng. at oi and itsrelatives convert only to numbers, but this restriction means
they are usually faster.

String constant variations

Finally, we'd like to show you afew of the different ways to write string constants; all produce
the same kind of object (astring), so the special syntax hereisjust for our convenience.
Earlier, we mentioned that strings can be enclosed in single or double quotes, which allows
embedded quotes of the opposite flavor. Here's an example:

>>> m xed
>>> m xed
"Qui do' s"
>>> m xed
>>> m xed
''Qui do"s'
>>> m xed
>>> m xed
"Qui do' s"

"Qui do' s" # single in double

'Qui do"s' # double in single

"Quido\'s' # backsl ash escape

Notice the last two lines: you can also escape a quote (to tell Python it's not really the end of
the string) by preceding it with a backdash. In fact, you can escape all kinds of special
charactersinside strings, as listed in Table 2-6; Python replaces the escape code characters
with the special character they represent. In general, the rules for escape codes in Python
strings are just like those in C strings.* Also like C, Python concatenates adjacent string
constants for us:

>>> gplit = "This" "is" "concatenated"
>>> split

' Thi si sconcat enat ed'

And last but not least, here's Python's triple-quoted string constant form in action: Python
collects al the linesin such a quoted block and concatenates them in a single multiline string,
putting an end-of-line character between each line. The end-of-line printsasa“\ 012" here
(remember, thisis an octal integer); you can

* But note that you normally don't need to terminate Python stringswith a\ 0 null character asyou
would in C. Since Python keeps track of a string's length internally, there's usually no need to manage
terminatorsin your programs. In fact, Python strings can contain the null byte\ 0, unlike typical
usage in C. For instance, we'll seein amoment that file datais represented as strings in Python
programs; binary data read from or written to files can contain nulls because strings can too.

Page 43

asocalit“\ n” asinC. For instance, aline of text with an embedded tab and aline-feed at
the end might be written in aprogram as pyt hon\ t st uf f \ n (see Table 2-6).

>>> big = """This is

..a mlti-line block

...of text; Python puts

...an end-of-1ine

nmar ker

...after each line.

>>>

>>> hig

"This is\012a nmulti-line bl ock\012of text; Python puts\0l2an end-of-line ma

Python also has a specia string constant form called raw strings, which don't treat backslashes
as potential escape codes (see Table 2-6). For instance, stringsr * a\ b\ ¢’ and R* a\ b\ ¢”
retain their backslashes asreal (literal) backslash characters. Since raw strings are mostly
used for writing regular expressions, we'll defer further details until we explore regular
expressions in Chapter 8.

Table 2-6. String Backslash Characters

\ new i ne Ignored (acontinuation) \'n Newline (linefeed)

\\ Backslash (keeps one\) \v Vertica tab

\! Single quote (keeps ") \t Horizontal tab

\ " Double quote (keeps ") \r Carriagereturn

\a Bell \ f Formfeed

\b Backspace \0OXX Octal value XX

\e Escape (usually) \ XXX HexvaueXX

\ 000 Null (doesn't end string) \ ot her Any other char (retained)

Generic Type Concepts

Now that we've seen our first composite datatype, let's pause a minute to define afew general
type concepts that apply to most of our types from here on. One of the nice things about Python

isthat afew general ideas usually apply to lots of situations. In regard to built-in types, it turns
out that operations work the same for all typesin a category, so we only need to define most
ideas once. We've only seen numbers and strings so far, but they are representative of two of
the three mgjor type categories in Python, so you aready know more about other types than you
think.

Types shar e operation sets by categories

When we introduced strings, we mentioned that they are immutable sequences: they can't be
changed in place (the immutable part), and are ordered collections accessed by offsets (the
sequence hit). Now, it so happensthat all the sequences

Page 44

seen in this chapter respond to the same sequence operations we previously say at work on
strings—concatenation, indexing, iteration, and so on. In fact, there are three type (and
operation) categoriesin Python:

» Numbers support addition, multiplication, etc.
* Sequences support indexing, dicing, concatenation, etc.
» Mappings support indexing by key, etc.

We haven't seen mappings yet (we'll get to dictionariesin afew pages), but other types are
going to be mostly more of the same. For example, for any sequence objects X and Y:

* X + Y makes anew sequence object with the contents of both operands.
* X * Nmakes anew sequence object with N copies of the sequence operand X.

In other words, these operations work the same on any kind of sequence. The only differenceis
that you get back anew result object that is the same type as the operands X and Y (if you
concatenate strings, you get back a new string, not alist). Indexing, dicing, and other sequence
operations work the same on all sequences too; the type of the objects being processed tells
Python which flavor to perform.

Mutable types can be changed in place

The immutable classification might sound abstract, but it's an important constraint to know and
tends to trip up new users. If we say an object type isimmutable, you shouldn't change it
without making a copy; Python raises an error if you do. In genera, immutable types give us
some degree of integrity, by guaranteeing that an object won't be changed by another part of a
program. WEe'll see why this matters when we study shared object references later in this
chapter.

Lists

Our next stop on the built-in object tour isthe Python list. Lists are Python's most flexible
ordered collection object type. Unlike strings, lists can contain any sort of object: numbers,
strings, even other lists. Python lists do the work of most of the collection data structures you
might have to implement manualy in lower-level languages such as C. In terms of some of their

main properties, Python lists are:

Ordered collections of arbitrary objects
From afunctional view, lists are just a place to collect other objects, so you can treat them
asagroup. Lists also define aleft-to-right positional ordering of the itemsin the list.

Page 45

Accessed by offset
Just as with strings, you can fetch a component object out of alist by indexing the list on the
object's offset. Since lists are ordered, you can aso do such tasks as slicing and
concatenation.

Variable length, heterogeneous, arbitrarily nestable
Unlike strings, lists can grow and shrink in place (they're variable length), and may contain
any sort of object, not just one-character strings (they're heterogeneous). Because lists can
contain other complex objects, lists also support arbitrary nesting; you can create lists of
lists of lists, and so on.

Of the category mutable sequence
In terms of our type category qualifiers, lists can be both changed in place (they're mutable)
and respond to all the sequence operations we saw in action on stringsin the last section. In
fact, sequence operations work the same on lists, so we won't have much to say about them
here. On the other hand, because lists are mutable, they aso support other operations
strings don't, such as deletion, index assignment, and methods.

Arrays of object references
Technically, Python lists contain zero or more references to other objects. If you've used a
language such as C, lists might remind you of arrays of pointers. Fetching an item from a
Python listsis about asfast asindexing aC array; in fact, listsredly are C arraysinside the
Python interpreter. Moreover, references are something like pointers (addresses) in a
language such as C, except that you never process a reference by itself; Python always
follows areference to an object whenever the reference is used, so your program only
deals with objects. Whenever you stuff an object into a data structure or variable name,
Python always stores a reference to the object, not a copy of it (unless you request a copy
explicitly).

Table 2-7 summarizes common list object operations.

Table 2-7. Common List Constants and Operations

Operation I nter pretation

L1 =[] Anempty list

L2 =[]0, 1, 2, 3] Four items: indexes 0.3
L3 = ["abc',['def', "ghi']] Nested sublists

L2 [i],L3[i][j1 L2[i:j],len(L2) Index, slice, length

L1 + L2,L2 * 3 Concatenate, repest
for x in L2,3in L2 Iteration, membership

Page 46

Table 2-7. Common List Constants and Operations (continued)

Operation I nter pretation

L2. append(4),L2.sort (), Methods: grow, sort, search,

L2.index(1),L2. reverse() reverse, etc.

del L2[k],L2[i:j] =11 Shrinking

L2[i] = 1,L2[i:j] =1[4,5,6] Index assignment, slice
assignment

range(4), xrange(0, 4) Make lists/tuples of integers

Lists are written as a series of objects (really, expressions that return objects) in square
brackets, separated by commas. Nested lists are coded as a nested square-bracketed series,
and the empty list isjust a square-bracket set with nothing inside.*

Most of the operations in Table 2-7 should look familiar, since they are the same sequence
operations we put to work on strings earlier—indexing, concatenation, iteration, and so on. The
last few table entries are new; lists also respond to method calls (which provide utilities such
as sorting, reversing, adding items on the end, etc.), as well asin-place change operations
(deleting items, assignment to indexes and dlices, and so forth). Remember, lists get these last
two operation sets because they are a mutable object type.

Listsin Action

Perhaps the best way to understand lists is to see them at work. Let's once again turn to some
simpleinterpreter interactions to illustrate the operations in Table 2-7.

Basic operations

Listsrespond to the + and * operators as with strings; they mean concatenation and repetition
here too, except that the result isanew list, not astring. And as Forrest Gump was quick to
say, "that's al we have to say about that"; grouping typesinto categoriesisintellectually frugal
(and makes life easy for authors like us).

% pyt hon

>>> len([1, 2, 3]) # length

3

>>> [1, 2, 3] + [4, 5, 6] # concat enati on

[la 25 35 4; 5, 6]

* But we should note that in practice, you won't see many lists written out like thisin list-processing
programs. It's more common to see code that processes lists constructed dynamically (at runtime). In
fact, although constant syntax isimportant to master, most data structuresin Python are built by
running program code at runtime.

Page 47

>>> ['N!'] * 4 # repetition

["N!, "N, "N, TN
>>> for x in[1, 2, 3]: print X, # iteration
123

Wetalk about iteration (aswell asr ange built-ins) in Chapter 3, Basic Satements. One
exception worth noting here: + expects the same sort of sequence on both sides, otherwise you
get atype error when the code runs. For instance, you can't concatenate alist and a string,
unless you first convert the list to a string using backquotes or % formatting (we met thesein the
last section). You could aso convert the string to alist; thel i st built-in function does the
trick:

>>>[1, 2] + "34" # sanme as "[1, 2]" + "34"
"[1, 2]34'
>>> [1, 2] + list("34") # sane as [1, 2] + ["3", "4"]

[1, 2, '3, '4']
Indexing and dicing

Because lists are sequences, indexing and slicing work the same here too, but the result of
indexing alist iswhatever type of object lives at the offset you specify, and dicing alist
alwaysreturnsanew list:

>>> L = ['spami, 'Spani, 'SPAM']

>>> L[2] # offsets start at zero

' SPAM '

>>> L[-2] # negative: count fromthe right
' Spam

>>> L[1:] # slicing fetches sections

[' Spami, ' SPAM']
Changing listsin place

Finally something new: because lists are mutable, they support operations that change a list
object in-place; that is, the operations in this section al modify the list object directly, without
forcing you to make a new copy as you had to for strings. But since Python only deals in object
references, the distinction between in-place changes and new objects can matter; if you change
an object in place, you might impact more than one reference to it at once. More on that later in
this chapter.

When using alist, you can change its contents by assigning to a particular item (offset), or an
entire section (dlice):

>>> L = ['spam, 'Spam, 'SPAM']

>>> L[1] = 'eggs' # i ndex assignnment

>>> L

['spami, 'eggs', 'SPAM']

>>> L[0:2] =['eat', 'nore'] # slice assignment: del ete+insert
>>> L # replaces itens 0, 1

["eat', "nmore', 'SPAM']

Page 48

Index assignment works much asit doesin C: Python replaces the object reference at the
designated dlot with anew one. Slice assignment is best thought of as two steps. Python first
deletes the dlice you specify on the left of the =, and then inserts (splices) the new itemsinto
thelist at the place where the old slice was deleted. In fact, the number of items inserted
doesn't have to match the number of items deleted; for instance, given alist L that has the value
[1, 2, 3],theassgnmentL[1:2] = [4, 5] sdsLtothelist[1, 4, 5, 3].
Python first deletes the 2 (a one-item dlice), then insertsitems 4 and 5 where 2 used to be.
Python list objects aso support method calls:

>>> L. append(' pl ease') # append net hod cal |

>>> L

["eat', '"nore', 'SPAM', 'please']

>>> L.sort () # sort list items ('S < 'e€')
>>> L

['"SPAM ', 'eat', 'nore', 'please']

Methods are like functions, except that they are associated with a particular object. The syntax
used to call methodsis similar too (they're followed by argumentsin parentheses), but you
qualify the method name with the list object to get to it. Qualification is coded as a period
followed by the name of the method you want; it tells Python to look up the namein the object's
namespace—set of qualifiable names. Technically, names such asappend andsort are
called attributes—names associated with objects. We'll see lots of objects that export
attributes later in the book.

Thelist append method ssimply tacks a single item (object reference) to the end of the list.
Unlike concatenation, append expects usto passin asingle object, not alist. The effect of

L. append(X) issimilar to L+[X] , but the former changes L in place, and the |atter makes a
new list.* The sort method orders alist in-place; by default, it uses Python standard
comparison tests (here, string comparisons; you can aso pass in a comparison function of your
own, but we'll ignore this option here).

* Also unlike + concatenation, append doesn't have to generate new objects, and so is usually much
faster. On the other hand, you can mimicappend with clever slice assignments: L[| en(L)

:1=[X] islikeL. append(X) ,andL[: 0] =[X] islike appending at the front of alist. Both delete
an empty slice and insert X, changing L in place quickly likeappend. C programmers might be
interested to know that Python lists are implemented as single heap blocks (rather than alinked list),
andappend isreally acall tor eal | oc behind the scenes. Provided your heap manager is smart
enough to avoid copying and re-mallocing, append can be very fast. Concatenation, on the other
hand, must always create new list objects and copy the items in both operands.

Page 49

'i Here's another thing that seemsto trip up new users: append

andsoOr t changethe associated list object in-place, but don't return the
list as aresult (technically, they both return avalue called None, which
well meet in amoment). If you say something like

L = L. append(X), youwon't get the modified value of L (in fact,
you'll lose the reference to the list altogether); when you use attributes

suchasappend andsor t , objects are changed as a side effect, so
there's no reason to reassign.

Finally, because lists are mutable, you can also usethe del statement to delete an item or
section. Since dice assignment is adeletion plus an insert, you can also delete sections of lists
by assigning an empty listtoadice(L[1:]j] = []) ; Python deetesthe dice named on the
left and then inserts nothing. Assigning an empty list to an index, on the other hand, just storesa
reference to the empty list in the specified dlot: L[0] = [] setsthefirstitem of L to the
object [] , rather than deleting it (L windsup looking like[[], ..}):

>>> L

['"SPAM ', 'eat', 'nore', 'please']

>>> del L[O0] # delete one item

>>> L

['eat', "nore', 'please']

>>> del L[1:] # delete an entire section

>>> L # same as L[1:] =]

["eat']
Here are afew pointers before moving on. Although all the operations above are typical, there
are additiona list methods and operations we won't illustrate here (including methods for
reversing and searching). Y ou should always consult Python's manuals or the Python Pocket
Reference for a comprehensive and up-to-date list of type tools. Even if this book was
complete, it probably couldn't be up to date(new tools may be added any time). We'd also like
to remind you one more time that all the in-place change operations above work only for
mutable objects: they won't work on strings (or tuples, discussed ahead), no matter how hard

you try.
Dictionaries

Besides lists, dictionaries are perhaps the most flexible built-in data type in Python. If you
think of lists as ordered collections of objects, dictionaries are unordered collections; their
chief distinction isthat items are stored and fetched in dictionaries by key, instead of offset. As
we'll see, built-in dictionaries can replace many of the searching algorithms and data-structures
you might have to implement manually in lower-level languages. Dictionaries aso sometimes
do the work

Page 50

of records and symbol tables used in other languages. In terms of their main properties,
dictionaries are:

Accessed by key, not offset
Dictionaries are sometimes called associative arrays or bashes. They associate a set of
values with keys, so that you can fetch an item out of adictionary using the key that stores
it. You use the same indexing operation to get components in a dictionary, but the index
takes the form of akey, not arelative offset.

Unordered collections of arbitrary objects
Unlike lists, items stored in a dictionary aren't kept in any particular order; in fact, Python
randomizes their order in order to provide quick lookup. Keys provide the symbolic (not

physical) location of itemsin adictionary.

Variable length, heterogeneous, arbitrarily nestable
Like lists, dictionaries can grow and shrink in place (without making a copy), they can
contain objects of any type, and support nesting to any depth (they can contain lists, other
dictionaries, and so on).

Of the category mutable mapping
They can be changed in place by assigning to indexes, but don't support the sequence
operations we've seen work on strings and lists. In fact, they can't: because dictionaries are
unordered collections, operations that depend on afixed order (e.g., concatenation, slicing)
don't make sense. Instead, dictionaries are the only built-in representative of the mapping
type category—aobjects that map keysto vaues.

Tables of object references (hash tables)
If lists are arrays of object references, dictionaries are unordered tables of object
references. Internaly, dictionaries are implemented as hash tables (data structures that
support very fast retrieval), which start small and grow on demand. Moreover, Python
employs optimized hashing algorithmsto find keys, so retrieva is very fast. But at the
bottom, dictionaries store object references (not copies), just like lists.

Table 2-8 summarizes some of the most common dictionary operations (see the library manua
for acomplete list). Dictionaries are written asa series of key: val ue pairs, separated by
commas, and enclosed in curly braces* An empty dictionary is an empty set of braces, and
dictionaries can be nested by writing one as avalue in another dictionary, or aniteminalist
(or tuple).

* The same note about the relative rarity of constants applies here: we often build up dictionaries by
assigning to new keys at runtime, rather than writing constants. But see the following section on
changing dictionaries; lists and dictionaries are grown in different ways. Assignment to new keys
worksfor dictionaries, but failsfor lists (lists are grown with append).

Page 51

Table 2-8. Common Dictionary Constants and Operations

Operation Interpretation

di = {} Empty dictionary

d2 = {'spam : 2,"eggs' : 3} Two-item dictionary

d3 = {'food" : {"ham : 1,'egqg’ : 2}} Nesting

d2['eggs'], d3['food]['ham] Indexing by key

d2. has_key(' eggs'),d2. keys(), Methods: membership test, keys
d2. val ues() list, valuesligt, etc.

[en(dl) Length (number stored entries)
d2[key] = new, del d2[key] Adding/changing, deleting

As Table 2-8 illustrates, dictionaries are indexed by key; in this case, the key is a string object
(* eggs’), and nested dictionary entries are referenced by a series of indexes (keysin square

brackets). When Python creates adictionary, it storesitsitemsin any order it chooses; to fetch
avalue back, supply the key that storesit.

Dictionariesin Action
Let's go back to the interpreter to get afeel for some of the dictionary operationsin Table 2-8
Basic operations

Generaly, you create dictionaries and access items by key. The built-in | en function works on
dictionaries too; it returns the number of items stored away in the dictionary, or equivalently,
the length of its keys list. Speaking of keyslists, the dictionary keys method returns al the
keysin the dictionary, collected in alist. This can be useful for processing dictionaries
sequentialy, but you shouldn't depend on the order of the keys list (remember, dictionaries are
randomized).

% pyt hon

>>> d2 = {'spaml : 2, '"ham: 1, 'eggs' : 3}

>>> d2["' spani] # fetch value for key

2

>>> | en(d2) # nunber of entries in dictionary

3

>>> d2. has_key(' hanl) # key menbership test (1 neans true)
1

>>> d2. keys() # list of ny keys

['eggs', 'spam, 'hanm]
Changing dictionaries

Dictionaries are mutable, so you can change, expand, and shrink them in place without making
new dictionaries, just asfor lists. Simply assign avalueto akey to

Page 52

change or create the entry. Thedel statement works here too; it deletes the entry associated
with the key specified as an index. Notice that we're nesting alist inside adictionary in this
example (the value of key "han").

>>> d2["ham] = ["grill', 'bake', 'fry'] # change entry

>>> d2

{"eggs' : 3, 'spam: 2, "hami: ['grill', 'bake', '"fry']}

>>> del d2['eggs'] # delete entry

>>> d2

{*spami: 2, *ham: ['grill', 'bake', 'fry']}

>>> d2[' brunch'] = 'Bacon' # add new entry

>>> d2 {'brunch' : 'Bacon', 'spam:

Aswith lists, assigning to an existing index in adictionary changes its associated value. Unlike
lists, whenever you assign a new dictionary key (i.e., one that hasn't been assigned before), you
create a new entry in the dictionary, as done previoudly for * br unch’ . This doesn't work for
lists, because Python considers an off-set out of boundsiif it's beyond the end of alist. To
expand alist, you need to use such tools as the append method or dlice assignment instead.

A marginally morereal example

Here isamore redlistic dictionary example. The following example creates a table that maps
programming language names (the keys) to their creators (the values). Y ou fetch a creator name
by indexing on language name:

>>> table = {' Python' : 'Quido van Rossuni,
. "Perl': "Larry Vall',

"Tel ' "John CQusterhout' }
>>> | anguage = ' Pyt hon'

>>> creator = tabl e[l anguage]

>>> creat or

' @Qui do van Rossun

>>> for lang in table.keys(): print lang, '\t', table[lang]

Tcl John Cust er hout

Pyt hon Quido van Rossum
Per | Larry Wal

Notice the last command. Because dictionaries aren't sequences, you can't iterate over them
directly with af or statement, asfor strings and lists. But if you need to step through the items
inadictionary it's easy: calling the dictionary keys method returns alist of all stored keys you
can iterate through with af or . If needed, you can index from key to valueinside thef or loop
as done previoudy. Well talk about thepr i nt andf or statementsin more detail in Chapter
3.

Page 53
Dictionary Usage Notes

Before we move on to more types, here are afew additional details you should be aware of
when using dictionaries:

Sequence operations don't work
We're being redundant on purpose here, because thisis another common question from new
users. Dictionaries are mappings, not sequences; because there's no notion of ordering
among their items, things like concatenation (an ordered joining) and slicing (extracting
contiguous section) smply don't apply. In fact, Python raises an error when your code runs,
if you try.

Assigning to new indexes adds entries
Keys can be created either when you write a dictionary constant (in which case they are
embedded in the constant itself), or when you assign values to new keys of an existing
dictionary object. The end result is the same.

Keys need not always be strings
We've been using strings as keys here, but other immutable objects (not lists) work just as
well. In fact, you could use integers as keys, which makes a dictionary look much like alist
(albeit, without the ordering). Tuples (up next) are sometimes used as dictionary keys too,
allowing for compound key values. And class instance objects (discussed in Chapter 6,
Classes) can be used as keys, as long as they have the proper protocol methods; they need
to tell Python that their values won't change, or else they would be useless as fixed keys.

Tuples

The last collection type in our survey isthe Python tuple. Tuples construct ssmple groups of
objects. They work exactly like lists, except that tuples can't be changed in place (they're
immutable) and are usually written as a series of items in parentheses, not square brackets.
Tuples share most of their properties with lists. They are:

Ordered collections of arbitrary objects
Like strings and lists, tuples are an ordered collection of objects; like lists, they can embed
any kind of object.

Accessed by offset
Like strings and lists, itemsin atuple are accessed by offset (not key); they support al the
offset-base access operations we've aready seen, such asindexing and dlicing.

Of the category immutable sequence
Like strings, tuples are immutable; they don't support any of the in-place change operations
we saw applied to lists. Like strings and lists, tuples are sequences; they support many of
the same operations.

Page 54

Why You Will Care: Dictionary | nterfaces
Besides being a convenient way to store information by key in your programs, some
Python extensions a so present interfaces that ook and work the same as dictionaries.
For instance, Python's interface to dbm access-by-key files looks much like adictionary
that must be opened; strings are stored and fetched using key indexes:

i rport anydbm

file = anydbm open("fil enane") # link to external file
file['key'] = 'data' # store data by key
data = file['key'] # fetch data by key

Later, we'll see that we can store entire Python objects this way too, if we replace
"anydbm" in the above with "shelve" (shelves are access-by-key databases of persistent
Python objects). For Internet work, Python's CGI script support also presents a
dictionary-like interface; a cal to cgi.FieldStorage yields a dictionary-like object, with
one entry per input field on the client's web page:

i mport cgi
form= cgi.FieldStorage() # parse formdata (stdin, environ)
if formhas_key(' nanme'):

showRepl y(' Hello, ' + forni'nanme']. val ue)

All of these (and dictionaries) are instances of mappings. More on CGI scriptsin
Chapter 9, Common Tasks in Python.

Fixed length, heterogeneous, arbitrarily nestable

Because tuples are immutable, they can't grow or shrink without making a new tuple; on the
other hand, tuples can hold other compound objects (e.g., lists, dictionaries, other tuples)
and so support nesting.

Arrays of object references
Likelists, tuples are best thought of as object reference arrays; tuples store access points to
other objects (references), and indexing atupleis relatively quick.

Table 2-9 highlights common tuple operations. Tuples are written as a series of objects (redlly,
expressions), separated by commas, and enclosed in parentheses. An empty tupleisjust a
parentheses pair with nothing inside.

Table 2-9. Common Tuple Constants and Operations

Operation Interpretation

() An empty tuple

t1=(0,) A one-item tuple (not an expression)
t2=(0, 1, 2, 3) A four-item tuple

t3 =0,1, 2, 3 Another four-item tuple (same as prior line)

Page 55

Table 2-9. Common Tuple Constants and Oper ations (continued)

Operation I nter pretation
t3 =("abc', ('def', "ghi')) Nested tuples
ta[i],t3[i]1[]] Index,
ta[i:j], slice,
len(tl) length

tl +t2 Concatenate,
t2 * 3 repeat

for xint2, Iteration,
3int2 membership

The second and fourth entriesin Table 2-9 merit a bit more explanation. Because parentheses
can also enclose expressions (see the previous section "Numbers'), you need to do something
specia to tell Python when a single object in parentheses is a tuple object and not asimple
expression. If you realy want asingle-item tuple, ssimply add a trailing comma after the single
item and before the closing parenthesis.

Asaspecia case, Python also allows us to omit the opening and closing parentheses for a
tuple, in contexts where it isn't syntactically ambiguous to do so. For instance, in the fourth line
of the table, we ssimply listed four items, separated by commas; in the context of an assignment
statement, Python recognizes this as a tuple, even though we didn't add parentheses. For
beginners, the best advice hereisthat it's probably easier to use parentheses than it isto figure
out when they're optional.

Apart from constant syntax differences, tuple operations (the last three rowsin the table) are
identical to strings and lists, so we won't show examples here. The only differences worth
nothing are that the +, *, and dicing operations return new tuples when applied to tuples, and
tuples don't provide the methods we saw for lists and dictionaries; generally speaking, only
mutabl e objects export callable methods in Python.

Why Lists and Tuples?

This seemsto be the first question that always comes up when teaching beginners about tuples:
why do we need tuplesif we have lists? Some of it may be historic. But the best answer seems
to be that the immutability of tuples provides some integrity; you can be sure atuple won't be
changed through another reference elsewhere in a program. There's no such guarantee for lists,
aswe'll discover in amoment. Some built-in operations a so require tuples, not lists; for
instance, argument lists are constructed as tuples, when calling functions dynamically with
built-ins such asappl y (of course, we haven't met appl y yet, so you'll have to take our

Page 56

word for it for now). Asarule of thumb, lists are the tool of choice for ordered collections you
expect to change; tuples handle the other cases.

Files

Hopefully, most readers are familiar with the notion of files—named storage compartments on
your computer that are managed by your operating system. Our last built-in object type
provides away to access those filesinside Python programs. The built-in open function
creates a Python file object, which serves as alink to afile residing on your machine. After
calling open, you can read and write the associated external file, by calling file object
methods.

Compared to types we've seen so far, file objects are somewhat unusual. They're not numbers,
sequences, or mappings; instead, they export methods only for common file processing tasks.
Technically, files are a prebuilt C extension type that provides a thin wrapper over the
underlying C st di o filesystem; in fact, file object methods have an aimost 1-to-1
correspondence to file functions in the standard C library.

Table 2-10 summarizes common file operations. To open afile, aprogram calsthe open
function, with the external name first, followed by a processing mode (* r’ means open for
input, * W means create and open for output, * 2’ means open for appending to the end, and
others welll ignore here). Both arguments must be Python strings.

Table 2-10. Common File Operations

Operation Interpretation

out put =open('/tnp/span, 'wW) Create output file ("W means write)
i nput =open('data','r") Createinput file 'r ' means read)
S=input.read() Read entirefileinto asingle string
S=input.read(N) Read N bytes (1 or more)

S=input.readline() Read next line (through end-line marker)

1 L T | - A AR NanAd Aanbivafilalmia ik Af llinA ~dvimmna

L — 1IIpuL.l eaul 1 1iesy) edu eriure e Inu st vl Hrie suinys

output.wite(S) Write string S onto file
out put witelines(L) Writeall linesstringsinlist L onto file
out put .cl ose() Manual close (or it's done for you when collected)

Once you have afile object, call its methods to read from or write to the externa file. In al
cases, file text takes the form of strings in Python programs; reading afile returnsitstext in
strings, and text is passed to thewr i t e methods as strings. Reading and writing both comein
multiple flavors; Table 2-10 gives the most common.

Page 57

Cdling thefilecl ose method terminates your connection to the externa file. We talked about
garbage collection in afootnote earlier; in Python, an object's memory space is automatically
reclaimed as soon as the object is no longer referenced anywhere in the program. When file
objects are reclaimed, Python automatically closes the file if needed. Because of that, you don't
need to aways manually close your files, especially in smple scripts that don't run long. On
the other hand, manual cl ose calls can't hurt and are usualy agood ideain larger systems.

Filesin Action

Hereis a simple example that demonstrates file-processing basics. We first open anew file for
output, write a string (terminated with an end-of-line marker, ‘ \ n’), and close thefile. Later,
we open the same file again in input mode, and read the line back. Notice that the second

r eadl i ne cal returns an empty string; thisis how Python file methods tell us we've reached
the end of the file (empty lines are strings with just an end-of-line character, not empty strings).

>>> nyfile = open(' nyfile', "w) # open for output (creates)
>>> nyfile.wite('hello text file\n') # wite a line of text

>>> nyfile.close()

>>> nyfile = open(' nyfile', 'r") # open for input

>>> nyfile.readline() # read the line back
"hello text file\012'

>>> nyfile.readline() # enpty string: end of file

There are additional, more advanced file methods not shown in Table 2-10; for instance, seek
resets your current positionin afile, f | ush forces buffered output to be written, and so on.
See the Python library manual or other Python books for a complete list of file methods. Since
we're going to see file examples in Chapter 9, we won't present more examples here.

Related Python Tools

File objects returned by the open function handle basic file-interface chores. In Chapter 8,
you'll see ahandful of related but more advanced Python tools. Here's a quick preview of al
the file-like tools available:

File descriptor-based files
The os module provides interfaces for using low-level descriptor-based files.

DBM keyed files
The anydbmrr module provides an interface to access-by-key files.

Page 58

Persistent objects
Theshel ve and pi ckl e modules support saving entire objects (beyond simple strings).

Pipes
The os module aso provides POSIX interfaces for processing pipes.

Other
There are also optional interfaces to database systems, B-Tree based files, and more.

General Object Properties

Now that we've seen all of Python's built-in types, let's take a quick look at some of the
properties they share. Some of this section is areview of ideas we've aready seen at work.

Type Categories Revisited

Table 2-11 classifies adl the types we've seen, according to the type categories we introduced
earlier. As we've seen, objects share operations according to their category—for instance,
strings, lists, and tuples al share sequence operations. As we've also seen, only mutable
objects may be changed in place. Y ou can change lists and dictionaries in place, but not
numbers, strings, or tuples.* Files only export methods, so mutability doesn't really apply (they
may be changed when written, but thisisn't the same as Python type constraints).

Table 2-11. Object Classifications

Object type Category | Mutable?
Numbers Numeric | No
Strings Sequence | No

Lists Sequence | Yes
Dictionaries Mapping | Yes
Tuples Sequence | No

Files Extension| N/A

* Y ou might think that number immutability goes without saying, but that's not the case in every
programming language. For instance, some early versions of FORTRAN allowed usersto change the
value of an integer constant by assigning to it. Thiswon't work in Python, because numbers are
immutable; you can rest assured that 2 will aways be 2.

Page 59

Why You Will Care: Operator Overloading
Later, we'll see that objects we implement ourselves with classes can pick and choose
from these categories arbitrarily. For instance, if you want to provide a new kind of
specialized sequence object that is consistent with built-in sequences, code a class that
overloads things like indexing, dlicing, and concatenation:

cl ass MySequence:
def _ getitem (self, index) :
called on self[index], for x in self, x in self
def _ getslice_ (self, low, high) :
called on self[low high]
def _ add_ (self, other) :
called on self + other

and so on. Y ou can also make the new object mutable or not, by selectively
implementing methods called for in-place change operations (e.g., _setitem s
caledonsel f [i ndex] =val ue assgnments). Although this book isn't about C
integration, it's also possible to implement new objectsin C, as C extension types. For
these, you fill in C function pointer dots to choose between number, sequence, and
mapping operation sets. Python built-in types are really precoded C extension types; like
Guido, you need to be aware of type categories when coding your own.

Generality

We've seen a number of compound object types (collections with components). In generd:
* Lists, dictionaries, and tuples can hold any kind of object.

* Lists, dictionaries, and tuples can be arbitrarily nested.

» Lists and dictionaries can dynamically grow and shrink.

Because they support arbitrary structures, Python's compound object types are good at
representing complex information in a program. For instance, the following interaction defines
atree of nested compound sequence objects; to access its components, we string as many index
operations as required. Python evaluates the indexes from left to right, and fetches areference
to amore deeply nested object at each step. (This may be a pathologically complicated data
structure, but it illustrates the syntax used to access nested objectsin general.)

>>> L = ["abc', [(1, 2), ([3], 4], 5]
>>> L[1]

[(1, 2), ([3]. 4]
>>> L[1] [1]

Page 60

([31., 4)
>>> L[1] [1] [0]
[3]

>>> L[1] [1] [O] [0]
3

Shared References

We mentioned earlier that assignments always store references to objects, not copies. In
practice, thisis usually what you want. But because assignments can generate multiple
references to the same object, you sometimes need to be aware that changing a mutabl e object
in place may affect other references to the same object in your program. For instance, in the
following, we create alist assigned to X and another assigned to L that embeds a reference
back to list X. We also create adictionary D that contains another reference back to list X:

>>> X = [1, 2, 3]
>>> L =["a", X 'b']
>>> D= {'"x":X 'y':2}

At this point, there are three references to the list we created first: from name X, from the list
assigned to L, and from the dictionary assigned to D. The situation is sketched in Figure 2-2.

Objects

Sy

Figure 2-2.
Shared object references

Since lists are mutable, changing the shared list object from any of the three references changes
what the other two reference:

>>> X[1] = 'surprise' # changes all three references!
>>> L

["a', [1, '"surprise', 3], 'b']

>>> D

{*x": [1, "surprise', 3], 'y': 2}

Page 61

One way to understand thisisto realize that references are a higher-level analog of pointersin
languages such as C. Although you can't grab hold of the referenceitself, it's possible to store
the same reference in more than one place

Comparisons, Equality, and Truth

All Python objects also respond to the comparisons: test for equality, relative magnitude, and
so on. Unlike languages like C, Python comparisons always inspect al parts of compound

objects, until aresult can be determined. In fact, when nested objects are present, Python
automatically traverses data structures and applies comparisons recursively. For instance, a
comparison of list objects compares all their components automatically:

>>> L1 =11, (‘a', 3)] # sane val ue, unique objects
>>> L2 = [1, ('a', 3)]

>>> |1 == L2, L1 is L2 # equival ent?, sanme object?
(1, 0)

Here, L1 and L2 are assigned lists that are equivalent, but distinct objects. Because of the
nature of Python references, there are two ways to test for equality:

The == operator tests value equivalence
Python performs an equivalence test, comparing all nested objects recursively

The i s operator tests object identity
Python tests whether the two are really the same object (i.e., live a the same address).

In our example, L1 and L2 pass the == test (they have equivaent values because al their
components are equivalent), but fail thei s check (they are two different objects). Asarule of
thumb, the == operator isused in amost al equality checks, but well see cases of both
operators put to use later in the book. Relative magnitude comparisons are applied recursively
to nested data structures too:

>>> L1 =11, (‘a', 3)]

>>> 2 =1, (‘a', 2)]

>>> L1 < L2, L1 == L2, L1 > L2 # less, equal, greater: a tuple of result:
(0, 0, 1)

Here, L1 isgreater than L2 because the nested 3 is greater than 2. Notice that the result of the
last line above isreally atuple of three objects—the results of the three expressions we typed
(an example of atuple without its enclosing parentheses). The three values represent true and
fase vaues; in Python asin C, aninteger O represents false and an integer 1 representstrue.
Unlike C, Python also recognizes any empty data structure as false and any nonempty data
structure as true. Table 2-12 gives examples of true and fal se objects in Python.

Python also provides a special object called None (thelast item in Table 2-12), whichis
aways considered to be false. None isthe only value of a special datatype

Page 62

Table 2-12. Example Object

Truth Values

Object Value

"spant True

" False

[] False

{} False

1 True

0.0 False

nuiiIc rasc

in Python; it typically serves as an empty placeholder, much likeaNULL pointer in C. In
general, Python compares the types we've seen in this chapter, as follows:

» Numbers are compared by relative magnitude.

» Strings are compared |exicographically, character-by-character ("abc" < "ac").
* Lists and tuples are compared by comparing each component, from left to right.
* Dictionaries are compared as though comparing sorted (key, value) lists.

In later chapters, we'll see other object types that can change the way they get compared. For
instance, class instances are compared by address by default, unless they possess special
comparison protocol methods.

Python's Type Hierarchies

Finaly, Figure 2-3 summarizes al the built-in object types available in Python and their

relationships. In this chapter, we've looked at the most prominent of these; other kinds of

objectsin Figure 2-3 either correspond to program units (e.g., functions and modules), or
exposed interpreter internals (e.g., stack frames and compiled code).

The main point we'd like you to notice hereis that everything is an object type in a Python
system and may be processed by your Python programs. For instance, you can pass a stack
frame to afunction, assign it to avariable, stuff it into alist or dictionary, and so on. Even
types are an object type in Python: acall to the built-in function t ype (X) returns the type
object of object X. Besides making for an amazing tongue-twister, type objects can be used for
manual type comparisons in Python.

Built-in Type Gotchas

In this and most of the next few chapters, we'll include a discussion of common problems that
seem to bite new users (and the occasional expert), along with their

Page 63

Cee) [T ()
‘ | (o) (oo) [

I Callables i Other i Internals l

|
el

= = =

Figure 2-3.
Built-in type hierarchies

solutions. We call these gotchas—a degenerate form of "got you"—because some may catch
you by surprise, especially when you're just getting started with Python. Others represent
esoteric Python behavior, which comes up rarely (if ever!) in real programming, but tends to
get an inordinate amount of attention from language aficionados on the Internet (like us).* Either
way, all have something to teach us about Python; if you can understand the exceptions, the rest

IS easy.
Assignment Creates References, Not Copies

We've talked about this earlier, but we want to mention it again here, to underscore that it can
be agotchaif you don't understand what's going on with shared

* We should also note that Guido could make some of the gotchas we describe go away in future
Python releases, but most reflect fundamental properties of the language that are unlikely to change
(but don't quote us on that).

Page 64

references in your program. For instance, in the following, the list object assigned to nameL is
referenced both from L and from inside the list assigned to name IV Changing L in place
changes what M references too:

"X, L 'Y # enbed a reference to L
>>>

['X, [1, 2, 3], 'Y]

>>> L[1] =0 # changes M too

>>> M

['X, [1, O, 3], 'Y]

Solutions

This effect usually becomes important only in larger programs, and sometimes shared
references are exactly what you want. If they're not, you can avoid sharing objects by copying

them explicitly; for lists, you can adways make atop-level copy by using an empty-limits dice:
>>> [1
>>> [
>>> =
>>>
[1,
>>>
[*X, [1, 2, 3], 'Y]

) 2! 3]
X, L1, "Y] # enbed a copy of L
0 # only changes L, not M

—
=l
fl

3]

Remember, dice limits default to 0 and the length of the sequence being diced; if both are
omitted, the dlice extracts every item in the sequence, and so makes atop-level copy (anew,
unshared object).*

Repetition Adds One-Level Deep

When we introduced sequence repetition, we said it's like adding a sequence to itself a number
of times. That's true, but when mutable sequences are nested, the effect might not always be
what you expect. For instance, in the following, X isassigned to L repeated f our times,
whereas Y isassigned to alist containing L repeated f our times:

>>> L = [4, 5, 6]

>>> X = L * 4 #like [4, 5 6] +[4, 5 6] + ..
>>> Y = [L] * 4 # L] +[L] + ..=]L, L, .}
>>> X

* Empty-limit slices still only make atop-level copy; if you need acomplete copy of adeeply nested
data structure, you can also use the standard copy modul e that traverses objects recursively. Seethe
library manual for details.

Page 65

[4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5 6]
>>> Y
[[4, 5 6], [4, 5 6], [4, 5 6], [4, 5 6]]

Because L was nested in the second repetition, Y winds up embedding references back to the
original list assigned to L, and is open to the same sorts of side effects we noted in the last
section:

>>> L[1] =0 # inmpacts Y but not X
>>> X

[4, 5 6, 4, 5 6, 4, 5 6, 4, 5 6]
>>> Y
[[4, O, 6], [4, O, 6], [4, O, 6], [4, O, 6]]

Solutions

Thisis really another way to trigger the shared mutable object reference issue, so the same
solutions above apply here. And if you remember that repetition, concatenation, and sicing
copy only the top level of their operand objects, these sorts of cases make much more sense.

Cyclic Data Structures Can't Be Printed

We actually encountered this gotchain aprior exercise: if acompound object contains a
reference to itself, it's called a cyclic object. In Python versions before Release 1.5.1, printing
such objects failed, because the Python printer wasn't smart enough to notice the cycle (you'll
keep seeing the same text printed over and over, until you break execution). This caseis how
detected, but it's worth knowing; cyclic structures may also cause code of your own to fall into
unexpected loopsif you're not careful. See the solutions to Chapter 1 exercises for more
details.

>>> L = ["hi."']; L.append(L) # append reference to sane object
>>> L # before 1.5.1: a loop! (cntl-C breaks)

Solutions

Don't do that. There are good reasons to create cycles, but unless you have code that knows
how to handle them, you probably won't want to make your objects reference themselves very
often in practice (except as a parlor trick).

I mmutable Types Can't Be Changed in Place

Finally, as we've mentioned plenty of times by now: you can't change an immutable object in
place:

T=1(1, 2, 3)

T2] =4 # error!
T=T:2] + (4,) # okay: (1, 2, 4)
Page 66
Solutions

Construct a new object with slicing, concatenation, and so on, and assign it back to the original
reference if needed. That might seem like extra coding work, but the upside is that the previous
gotchas can't happen when using immutable objects such as tuples and strings; because they
can't be changed in place, they are not open to the sorts of side effects that lists are.

Summary

In this chapter, we've met Python's built-in object types—numbers, strings, lists, dictionaries,
tuples, and files—al ong with the operations Python provides for processing them. We've aso
noticed some of the themes underlying objects in Python aong the way; in particular, the

notions of operation overloading and type categories help to smplify typesin Python. Finaly,

we've seen afew common pitfalls of built-in types.

Almost all the examples in this chapter were deliberately artificia to illustrate the basics. In
the next chapter, we'll start studying statements that create and process objects and let us build
up programs that do more realistic work.

Other Typesin Python

Besides the core objects we've studied in this chapter, atypical Python installation has
dozens of other object types available as linked-in C extensions or Python classes. Well

see examples of afew later in the book—regular expression objects, DBM files, GUI
widgets, and so on. The main difference between these extra tools and the built-in types

we've just seen is that the built-ins provide special language creation syntax for their
objects (e.g., 4 for aninteger, [1, 2] for alist, theopen function for files). Other tools
are generaly exported in a built-in module that you must first import to use. See Python's

library reference for a comprehensive guide to all the tools available to Python
programs.

Exercises

This session asks you to get your feet wet with built-in object fundamentals. As before, afew
new ideas may pop up along the way, so be sure to flip to Appendix C when you're done (and
even when you're not).

1. The basics. Experiment interactively with the common type operations found in this chapter's
tables. To get you started, bring up the Python interactive

Page 67
interpreter, type the expressions below, and try to explain what's happening in each case:

2 ** 16
2/ 5 21/ 5.0

"spamt + "eggs"

S = "hant
"eggs " + S
S* 5

S[: 0]

"green % and %" % ("eggs", S

("x,) [0]
("x', tyt) [1]

L =1[1273] +[45 6]

L, L[:], L[:0], L[-2], L[-2:]
([1,2,3] + [4,5 6]) [2:4]
[L[2], L[3]]

L.reverse(); L

L.sort(); L

L. i ndex(4)

{*a':1, 'b':2} ['b"]

D={"x":1, 'y':2, "z':3}

D'w] =0

D'x'] +O"w]

D(1,2,3)] =14

D. keys(), D.values(), D. has_key((1,2,3))

[[]]! [""! []! {}, l\bne]

2. Indexing and slicing. At the interactive prompt, define alist named L that contains four
strings or numbers (e.g., L=[0, 1, 2, 3]). Now, let's experiment with some boundary cases.

a. What happens when you try to index out of bounds (e.g., L[4])?
b. What about dicing out of bounds (e.g., L[- 1000: 100])?

c. Findlly, how does Python handleit if you try to extract a sequence in reverse—with the
lower bound greater than the higher bound (e.g., L[3: 1])? Hint: try assigning to this dice
(L[3:1] =[*7?"]) and seewherethe vaueis put. Do you think this may be the same
phenomenon you saw when dicing out of bounds?

3. Indexing, slicing, and del. Define another list L with four items again, and assign an empty
list to one of itsoffsets (e.g., L[2] =[]): what happens? Then try assigning an empty list to a
slice (L[2: 3] =[]): what happens now? Recall that dlice assignment deletes the dlice and
inserts the new value where it used to be. Thedel statement deletes offsets, keys, attributes,
and names: try using it on your list to delete an item (e.g., del L[0]). What happensif

Page 68

youdel anentiredice(del L[1:])?What happenswhen you assign a nonsequence to a
sice(L[1:2] = 1)?

4. Tuple assignment. What do you think is happening to X and Y when you type this sequence?
WEI| return to this construct in Chapter 3, but it has something to do with the tuples we've seen
here.

>>> X ' spam
>>> Y = 'eggs'
>>> X Y=Y, X

5. Dictionary keys. Consider the following code fragments:

>>> D = {}
>>> q 1] ='a'
>>> q 2] ='p

We learned that dictionaries aren't accessed by offsets; what's going on here? Does the
following shed any light on the subject? (Hint: strings, integers, and tuples share which
type category?)
>>> D(1, 2, 3)] ='c

>>> D
{1. 'a', 2. 'b", (1, 2, 3): 'c'}

6. Dictionary indexing. Create a dictionary named D with three entries, for keysa, b,andc.

What happensif you try to index anonexistentkey d (D] ‘ d’]) ? What does Python do if you
try toassgntoanonexistentkey d (eg., 0 * d’] = ‘ spam)?How does this compare to
out-of-bounds assignments and references for lists? Does this sound like the rule for variable
names?

7. Generic operations. Run interactive tests to answer the following questions.

a What happens when you try to use the + operator on different/mixed types (e.g., string +
list, list + tuple)?

b. Does + work when one of the operands is adictionary?

c. Doesthe append method work for both lists and strings? How about the using the
keys method on lists? (Hint: What does append assume about its subject object?)

d. Finally, what type of object do you get back when you dlice or concatenate two lists or
two strings?

8. Sring indexing. Defineastring S of four characters: S = “ spani . Thentypethe
following expression: S[0] [0] [0] [O] [O].Anycluesastowhat's happening this
time? (Hint: recall that a string is a collection of characters, but Python characters are
one-character strings.) Does this indexing expression still work if you apply it to alist such as:
[‘s’, ‘p, ‘&, ‘m]?Why?

9. Immutable types. Defineastring S of 4 charactersagain: S = “ spani . Writean
assignment that changesthe stringto “ sl ani , using only slicing and concate-

Page 69

nation. Could you perform the same operation using just indexing and concatenation? How
about index assgnment?

10. Nesting. Write a data-structure that represents your persona information: name (first,
middle, last), age, job, address, email ID, and phone number. Y ou may build the data structure
with any combination of built-in object typesyou like: lists, tuples, dictionaries, strings,
numbers. Then access the individual components of your data structures by indexing. Do some
structures make more sense than others for this object?

11. Files. Write a script that creates a new outpuit file called myfile.txt and writes the string
“Hello file world!” init. Then write another script that opens myfile.txt, and reads
and printsits contents. Run your two scripts from the system command line. Does the new file
show up in the directory where you ran your scripts? What if you add a different directory path
to the filename passed to open”?

12. The dir function revisited. Try typing the following expressions at the interactive prompt.
Starting with Version 1.5, thedi r function we met in Chapter 1 has been generalized to list all
attributes of any Python object you're likely to be interested in. If you're using an earlier
versonthan 1.5,the _net hods__ scheme has the same effect.

. _nmethods # 1.4 or 1.5
r([1) # 1.5 and later
. _nmethods

[]
di
{}
dir({})

Page 70

In this chapter:

* Assignment

* Expressions

* Print

o if Tests

* while Loops

» for Loops

» Common Coding Gotchas
s UmMmary

» Exercises

3_
Basic Statements

Now that we've seen Python's fundamental built-in object types, we're going to move on in this
chapter to explore its basic statement types. In smple terms, statements are the things you write
to tell Python what your programs should do. If programs do things with stuff, statements are
the way you specify what sort of things a program does. By and large, Python is a procedural,
statement-based language; by combining statements, you specify a procedure Python performs
to satisfy a program's goals.

Another way to understand the role of statementsisto revisit the concept hierarchy we
introduced in Chapter 2, Types and Operators. In that chapter we talked about built-in objects;
now we climb the hierarchy to the next level:

1. Programs are composed of modules.
2. Modules contain statements.
3. Statements create and process objects.

Statements process the objects we've already seen. Moreover, statements are where objects
spring into existence (e.g., in assignment statement expressions), and some statements create
entirely new kinds of objects (functions, classes, and so on). And athough we won't discuss
thisin detail until Chapter 5, Modules, statements always exist in modules, which themselves
are managed with statements.

Table 3-1 summarizes Python's statement set. We've introduced a few of these aready; for
instance, in Chapter 2, we saw that thedel statement del etes data structure components, the
assignment statement creates references to objects, and so on. In this chapter, we fill in details
that were skipped and introduce the rest of Python's basic procedural statements. We stop short
when statements that have to do with larger program units—functions, classes, modules, and
exceptions—are

Page 71

reached. Since these statements lead to more sophisticated programming ideas, we'll give them
each a chapter of their own. More exotic statements like exec (which compiles and executes

code we create as strings) and asser t are covered later in the book.

Table 3-1. Python Statements

Statement Role Examples

Assignment Creating references | curly, noe, larry = 'good', 'bad', 'ugly'
Cdls Running functions | st dout . write("spam ham toast\n")

Print Printing objects print 'The Killer', joke

If/elif/else Selecting actions if "python" in text: print text

For/else Sequenceiteration | for X in nylist: print X

While/else General loops while 1: print 'hello

Pass Empty placeholder | while 1: pass

Break, Continue Loop j unps while 1: if not line: break

Trylexcept/finally

Catching exceptions

try: action() except: print 'action error'

Raise Triggering rai se endSearch, |ocation
exception
Import, From Module access i mport sys; fromsys inport stdin
Def, Return Building functions | def f(a, b, c=1, *d): return atb+c+d[0]
Cless Building objects cl ass subcl ass: staticData = []
Globd Namespaces def function(): global X Y; X = "'new
Del Deleting things del data[k]; del data[i:j]; del obj.attr
Exec Running code yexec "inport" + nodNane in gdict, Idict
strings
Assert Debugging checks assert X >Y
Assignment

We've been using the Python assignment statement already, to assign objects to names. In its
basic form, you write atarget of an assgnment on the left of an

Page 72

equals sign and an object to be assigned on the right. The target on the left may be a name or
object component, and the object on the right can be an arbitrary expression that computes an

object. For the most part, assgnment is straightforward to use, but here are afew properties to
keep in mind:

Assignments create object references
Aswe've already seen, Python assignment stores references to objects in names or data
structure slots. It always creates references to objects, instead of copying objects. Because
of that, Python variables are much more like pointers than data storage areas asin C.

Names are created when first assigned
Asweve aso seen, Python creates variables names the first time you assign them avalue
(an object reference). There's no need to predeclare names ahead of time. Some (but not
all) data structure slots are created when assigned too (e.g., dictionary entries, some object
attributes). Once assigned, aname isreplaced by the value it references when it appearsin
an expression.

Names must be assigned before being referenced
Conversdly, it's an error to use a name you haven't assigned a value to yet. Python raises an
exception if you try, rather than returning some sort of ambiguous (and hard to notice)
default value.

Implicit assignments: import, from, def, class, for, function arguments, etc.
In this section, we're concerned with the = statement, but assignment occurs in many
contexts in Python. For instance, we'll see later that module imports, function and class
definitions, f or loop variables, and function arguments are all implicit assgnments. Since
assignment works the same everywhere it pops up, al these contexts ssimply bind names to
object references at runtime.

Table 3-2 illustrates the different flavors of the assignment statement in Python.

Table 3-2. Assignment Statement Forms

Operation Inter pretation

spam = ' Spani Basic form

spam ham = 'yum, 'yuni Tuple assignment (positional)
[spam han] = ['yum, 'YUM] List assignment (positional)
spam = ham = 'l unch' Multiple-target

Thefirst lineis by far the most common: binding a single object to a name (or data-structure
dot). The other table entries represent special forms:

Tuple and list unpacking assignments
The second and third lines are related. When you use tuples or lists on the left side of the =,
Python pairs objects on the right side with targets on the left and

Page 73

assigns them from |eft to right. For example, in the second line of the table, name sparris
assigned thestring * yumi , and name harr isbound to string * YUM . Internaly, Python
makes a tuple of the items on the right first, so thisis often called tuple (and list) unpacking

assgnment.

Multiple-target assignments
The last line shows the multiple-target form of assignment. In this form, Python assignsa
reference to the same object (the object farthest to the right) to al the targets on the l€eft. In
the table, names s parn and han would both be assigned a reference to the string
‘1l unch’ , and so share the same object. The effect isthe same asif you had coded
ham=* | unch’ , followed by spam=har, since ham evaluates to the original string
object.

Here's asimple example of unpacking assignment in action. We introduced the effect of the last
line in a solution to the exercise from Chapter 2: since Python creates atemporary tuple that
saves the items on the right, unpacking assignments are also away to swap two variables
values without creating atemporary of our own.

>>> nudge = 1

>>> wink = 2

>>> A, B = nudge, wi nk # tuples

>>> A B

(1, 2

>>> [C, D] = [nudge, w nk] # lists

>>> C, D

(1, 2

>>> nudge, w nk = wi nk, nudge # tupl es: swaps val ues
>>> nudge, W nk # sane as T=nudge; nudge=wi nk; wi nk=T
(2, 1)

Variable Name Rules

Now that we've told you the whole story of assignment statements, we should also get a bit
more formal in our use of variable names. In Python, names come into existence when you
assign values to them, but there are afew rules to follow when picking names for thingsin our
program. Python's variable name rules are similar to C's:

Syntax: (underscore or letter) + (any number of letters, digits, or underscores)
Variable names must start with an underscore or letter, and be followed by any number of
letters, digits, or underscores. _spar, spar, and Spam 1 arelega names, but 1 _Span,
span$, and @# are not.

Case matters: SPAM is not the same as spam
Python always pays attention to case in programs, both in names you create and in reserved
words. For instance, names X and x refer to two different variables.

Page 74

Reserved words are off limits
Names we define cannot be the same as words that mean specia thingsin the Python
language. For instance, if wetry to use avariable namelikecl ass, Python will raise a
syntax error, but kl ass and Cl ass work fine. Thelist below displays the reserved
words (and hence off limitsto us) in Python.

and assert br eak cl ass conti nue
def del elif el se except

exec finally for from gl obal

i f i nport in is | anmbda
not or pass print raise
return try whi | e

Before moving on, we'd like to remind you that it's crucial to keep Python's distinction between
names and objects clear. Aswe saw in Chapter 2, objects have atype (e.g., integer, list), and
may be mutable or not. Names, on the other hand, are just references to objects. They have no
notion of mutability and have no associated type information apart from the type of the object
they happen to be bound to at a given point in time. In fact, it's perfectly okay to assign the same
name to different kinds of objects at different times:

>>> x =0 # x bound to an integer object
>>> x = "Hell 0" # nowit's a string
>>> x = [1, 2, 3] # and nowit's a |ist

In later examples, we'll see that this generic nature of names can be a decided advantage in
Python programming.*

Expressions

In Python, you can use expressions as statements too. But since the result of the expression
won't be saved, it makes sense to do so only if the expression does something useful asaside
effect. Expressions are commonly used as statements in two situations:;

For callsto functions and methods

Some functions and methods do lots of work without returning a value. Since you're not
interested in retaining the value they return, you can call such functions with an expression
statement. Such functions are sometimes called proce-

* |f you've used C++ in the past, you may be interested to know that there is no notion of C++'s
const declaration in Python; certain objects may be immutable, but names can always be assigned.
Or usualy; aswe'll seein later chapters, Python aso has ways to hide names in classes and modul es,
but they're not the same as C++'s declarations.

Page 75
dures in other languages; in Python, they take the form of functions that don't return a value.
For printing values at the interactive prompt

Aswe've already seen, Python echoes back the results of expressions typed at the interactive
command line. Technically, these are expression statements too; they serve as a shorthand
for typing pri nt statements.

Table 3-3 lists some common expression statement forms in Python; we've seen most before.
Calls to functions and methods are coded with alist of objects (really, expressions that
evaluate to objects) in parentheses after the function or method.

Table 3-3. Common Python Expression Statements
Operation Interpretation

Anand A~~~ hAanr I Foimmdl mm Al A~

Spal cyys>, lially FUrcuuI cers

spam han(eggs) Method calls

spam Interactive print

spam <ham and ham ! = eggs Compound expressions
spam < ham < eggs Range tests

Thelast linein the table is a special form: Python lets us string together magnitude comparison
tests, in order to code chained comparisons such as range tests. For instance, the expression

(A<B<C) testswhether B is between A and C; it;s equivalent to the Boolean test (A<B and
B<C) but iseasier on the eyes (and keyboard). Compound expressions aren't normally written
as statements, but it's syntactically legal to do so and can even be useful at the interactive
prompt if you're not sure of an expression's result.

'i Although expressions can appear as statementsin Python,
statements can't be used as expressions. For instance, unlike C, Python

doesn't allow usto embed assignment statements (=) in other expressions.
Therationale for thisisthat it avoids common coding mistakes; you can't
accidentally change avariable by typing = when you really mean to use the
== equality test.

Print

The print statement simply prints objects. Technically, it writes the textual representation of
objects to the standard output stream. The standard output stream happens to be the same as the
C st dout stream and usually maps to the window

Page 76

where you started your Python program (unless you've redirected it to afilein your system's
shell).

In Chapter 2, we also saw file methods that write text. The pri nt statement is similar, but
more focused: pri nt writes objectsto the st dout stream (with some default formatting),
but filewr i t e methods write strings to files. Since the standard output stream is availablein
Python asthe st dout object in the built-in sysmodule (akasys. st dout), it's possible to
emulate pr i nt with file writes (see below), but pri nt iseasier to use.

Table 3-4 liststhepr i nt statement's forms.

Table 3-4. Print Statement Forms
Operation Interpretation

print spam ham Print objectstosys. st dout , add a space between
print spam hanm, Same, but don't add newline at end

By default, pr i nt adds a space between items separated by commas and adds a linefeed at
the end of the current output line. To suppress the linefeed (so you can add more text on the
same line later), end your pri nt statement with acomma, as shown in the second line of the
table. To suppress the space between items, you can instead build up an output string using the
string concatenation and formatting tools in Chapter 2:

>>> print "a", "b"

ab

>>> print "a" + "b"

ab

>>> print "%.9%" % ("a", "b")
a.b

The Python ""Hello World" Program

And now, without further delay, here's the script you've al been waiting for (drum roll
please)—the hello world program in Python. Alas, it's more than alittle anticlimactic. To print
a hello world message in Python, you simply print it:

>>> print 'hello world # print a string object
hello world

>>> 'hello world' # interactive prints
"hello world

>>> jnport sys # printing the hard way

>>> gys.stdout.wite(' hello world\n')
hello world

Page 77

Printing is as smple as it should be in Python; athough you can achieve the same effect by
calingthewr i t e method of thesys. st dout fileobject, thepri nt statement is provided
asasimpler tool for ssmple printing jobs. Since expression results are echoed in the interactive
command line, you often don't even need to useapr i nt statement there; smply type
expressions you'd like to have printed.

Why You Will Care: print and stdout

The equivalence between the pr i nt statement and writingto sys. st dout isimportant to
notice. It'spossibleto reassign sys. st dout to auser-defined object that provides the same
methods asfiles(e.g., wri t e). Sincethe pri nt statement just sends text to the

sys. st dout . wri t e method, you can capture printed text in your programs by assigning
Sys. st dout to an object whosewr i t e method saves the text. For instance, you can send
printed text to a GUI window by defining an object with awr i t e method that does the routing.
Well see an example of thistrick later in the book, but abstractly, it looks like this:

cl ass Fil eFaker:
def wite (self, string):
do something with the string
i mport sys
sys. stdout = Fil eFaker ()

e e N e L o LT N L AnnmAdA A A sar i b A et lhAd AF +hhn Al AAA~

pPriimn svliewwj ect 5 H SEIUS LU LIle wille Jetiivu vl Lile Cl d>5S

Python's built-in r aw_i nput () functionreadsfromthesys. st di n file, so you can
intercept read requestsin asimilar way (using classes that implement file-like read methods).
Notice that sSince pr i nt text goesto the stdout stream, it's the way to print HTML in CGI
scripts (see Chapter 9, Common Tasks in Python). It aso means you can redirect Python script
input and output at the operating system's command line, as usua:

python script.py < inputfile > outputfile
python script.py | filter

if Tests

ThePythoni f statement selects actions to perform. It's the primary selection tool in Python
and represents much of the logic a Python program possesses. It's also our first compound
statement; like all compound Python statements, thei f may contain other statements, including
otheri f s. In fact, Python lets you combine statements in a program both sequentially (so that
they execute one after another), and arbitrarily nested (so that they execute only under certain
conditions).

Page 78
General Format

ThePythoni f statement istypical of most procedural languages. It takestheformof an'i f
test, followed by one or more optional el i f tests (meaning "elseif"), and endswith an
optional el se block. Each test and the el se have an associated block of nested statements
indented under a header line. When the statement runs, Python executes the block of code
associated with the first test that evaluatesto true, or the el se block if all tests prove false.
Thegenera formof ani f looks like this:

i f <testi1>: # if test
<statenmentsl> # associ ated bl ock

elif <test2>: # optional elif's
<st at enment s2>

el se: # optional else

<st at enent s3>
Examples

Here are two simple examples of thei f statement. All parts are optional except theinitia i f
test and its associated statements. Here's the first:

>>> i f 1:
print 'true'

true

>>> jf not 1:

.. print 'true'

...el se:
print 'false'

fal se

Now, here's an example of the most complex kind of i f statement—uwith all its optional parts
present. The statement extendsfromthei f line, through the el se'sblock. Python executes the
statements nested under the first test that istrue, or elsethe el se part. In practice, both the

el i f and el se parts may be omitted, and there may be more than one statement nested in
each section:

>>> x = '"killer rabbit'

>>> if x == 'roger':

o print "how s jessica?"
...elif x == "bugs':

.. print "what's up doc?"
...el se:
print 'Run away! Run away!'

Run away! Run away!

If you've used languages like C or Pascal, you might be interested to know that thereis no
swi t ch (or case) statement in Python. Instead, multiway branching is

Page 79

coded asaseriesof i f/ el i f testsas done above, or by indexing dictionaries or searching
lists. Since dictionaries and lists can be built at runtime, they're sometimes more flexible than
hardcoded logic:

>>> choi ce = 'hani

>>> print {'spanmi: 1.25, # a dictionary-based 'switch'
"hani ; 1. 99, #use has_key() test for default case
"eggs': 0.99,

"bacon': 1.10}[choi ce]
1.99
Anamost equivalent i f statement might look like the following:

>>> i f choice == 'spani
print 1.25

..elif choice == 'hani:

.. print 1.99

..elif choice == 'eggs':

print 0.99

..elif choice == 'bacon":

.. print 1.10

..el se:
print 'Bad choice'

1.99

Dictionaries are good at associating values with keys, but what about more complicated
actionsyou cancodeini f statements? We can't get into many details yet, but in Chapter 4,
Functions, we'll see that dictionaries can also contain functions to represent more complex
actions.

Python Syntax Rules

Sincethei f statement isour first compound statement, we need to say a few words about
Python's syntax rules now. In general, Python has a ssimple, statement-based syntax. But there
are afew properties you need to know:

Satements execute one after another, until you say otherwise
Python normally runs statements in afile or nested block from first to last, but statements
likethei f (and, aswelll see in amoment, loops) cause the interpreter to jump around in
your code. Because Python's path through a program is called the control flow, things like
thei f that affect it are called control-flow statements.

Block and statement boundaries are detected automatically
There are no braces or begin/end delimiters around blocks of code; instead, Python uses the
indentation of statements under a header to group the statements in a nested block.
Similarly, Python statements are not normally termi-

Page 80
nated with asemicolon asin C; rather, the end of aline marks the end of most statements.

Compound statements = header, ':', indented statements
All compound statements in Python follow the same pattern: a header line terminated with a
colon, followed by one or more nested statements indented under the header. The indented
statements are called a block (or sometimes, asuite). Inthei f statement, theel i f and
el se clausesare part of thei f , but are header linesin their own right.

Spaces and comments are usually ignored
Spaces inside statements and expressions are amost aways ignored (except in string
constants and indentation). So are comments: they start with a# character (not inside a
string constant) and extend to the end of the current line. Python also has support for
something called documentation strings associated with objects, but well ignore these for
the time being.

Aswe've seen, there are no variable type declarations in Python; this fact alone makes for a
much ssmpler language syntax than what you may be used to. But for most new users, the lack of
braces and semicolons to mark blocks and statements seems to be the most novel syntactic
feature of Python, so let's explore what this means in more detail here.*

Block ddlimiters

As mentioned, block boundaries are detected by lien indentation: all statements indented the
same distance to the right belong to the same block of code, until that block is ended by aline
less indented. Indentation can consist of any combination of spaces and tabs; tabs count for
enough spaces to move the current column number up to amultiple of 8 (but it's usually not a
good ideato mix tabs and spaces). Blocks of code can be nested by indenting them further than
the enclosing block. For instance, Figure 3-1 sketches the block structure of this example:

x =1
if x:
y =2
if y:
print 'block2

print 'blockl
print 'block0'

* |t's probably more novel if you're aC or Pascal programmer. Python's indentati on-based syntax is
actually based on the results of a usability study of nonprogrammers, conducted for the ABC
language. Python's syntax is often called the "what you see iswhat you get" of languages; it enforces a
consistent appearance that tends to aid readability and avoid common C and C++ errors.

Page 81
Block0
| Header-line:
; Block1
: Header-line:
Black1
BlackO
Figure 3-1.
Nested code blocks

Notice that code in the outermost block must start in column 1, since it's unnested; nested
blocks can start in any column, but multiples of 4 are acommon indentation style. If thisall
sounds complicated, just code blocks as you would in C or Pascal, and omit the delimiters,
consistently-indented code always satisfies Python's rules.

Statement delimiters

As also mentioned, statements normally end at the end of the line they appear on, but when
statements are too long to fit on asingle line, afew specia rules may be used:

Satements may span lines if you're continuing an open syntactic pair
For statements that are too long to fit on one line, Python lets you continue typing the
statement on the next line, if you're coding something enclosedin () ,{},or[] pairs. For
instance, parenthesized expressions and dictionary and list constants can span any number
of lines. Continuation lines can start at any indentation level.

Statements may span lines if they end in a backslash
Thisisasomewhat outdated feature, but if a statement needs to span multiple lines, you can
also add a backslash (\) at the end of the prior line to indicate you're continuing on the next
line (much like C #def i ne macros). But since you can aso continue by adding
parentheses around long constructs, backslashes are almost never needed.

Other rules
Very long string constants can span lines arbitrarily. In fact, the triple-quoted string blocks
in Chapter 2 are designed to do so. Y ou can aso terminate state-

Page 82

ments with asemicolon if you like (thisis more useful when more than one statement
appears on aline, aswell seein amoment). Finaly, comments can appear anywhere.

A few special cases

Here's what a continuation line looks like, using the open pairs rule; we can span delimited
constructs across any number of lines:

L = ["Good",
"Bad",
"Ugl y"] # open pairs may span |ines.

Thisworks for anything in parentheses too: expressions, function arguments, functions headers
(see Chapter 4), and so on. If you like using backslashes to continue you can, but it's more
work, and not required.

if a==Dbandc ==4d and \
d ==e and f == g:
print 'olde' #backl ashes al | ow conti nuati ons
if (a ==Db and c == d and
d == e and e == f):
print 'new # but parentheses usually do too

Asaspecia case, Python allows you to write more than one simple statement (one without
nested statementsin it) on the same line, separated by semicolons. Some coders use this form
to save program file real estate:

x =1,y =2; print x #nore than 1 sinple statenent
And finaly, Python also lets you move a compound statement's

body up to the header line, provided the body isjust a smple statement. You'll usualy see this
most often used for smplei f statements with asingle test and action:

if 1. print "hello # sinple statenment on header |ine

Y ou can combine some of these specia casesto write code that it difficult to read, but we don't
recommend it; as arule of thumb, try to keep each statement on aline of its own. Six months
down the road, you'll be happy you did.

Truth Tests Revisited

We introduced the notions of comparison, equality, and truth valuesin Chapter 2. Sincei f
statements are the first statement that actually uses test results, we'll expand on some of these
ideas here. In particular, Python's Boolean operators are a bit different from their counterparts
in languages like C. In Python:

* True means any nonzero number or nonempty object.

* False means not true: a zero number, empty object, or None.

Page 83

» Comparisons and equality testsreturn 1 or O (true or false).
* Boolean and and or operators return atrue or false operand object.

The last item here is new; in short, Boolean operators are used to combine the results of other
tests. There are three Boolean expression operatorsin Python:

X and Y
Istrueif both X and Y are true

XorY
Istrueif ether X or Y aretrue

not X
Istrueif X isfalse (the expression returns 1 or 0)

Here, X and Y may be any truth value or an expression that returns atruth value (e.g., an
equality test, range comparison, and so on). Unlike C, Boolean operators are typed out as
words in Python (instead of C's&&, | | , and!). Also unlike C, Boolean and and or operators
return atrue or false object in Python, not an integer 1 or 0. Let'slook at afew examplesto see
how this works:

>>> 2 <3, 3 <2 # less-than: return 1 or O
(1,0)

Magnitude comparisons like these return an integer 1 or O as ther truth value result. But and
and or operators always return an object instead. For or tests, Python eva uates the operand
objects from left to right, and returns and first one that is true. Moreover, Python stops at the
first true operand it finds; thisis usually called short-circuit evaluation, since determining a
result short-circuits (terminates) the rest of the expression:

>>> 2 or 3, 3 or 2 # return left operand if true
(2,3) # else return right operand (whether true or false)

>>> [] or 3
3
>>> [] or {}

{}

In thefirst line above, both operands are true (2, 3), so Python aways stops and returns the
one on the left. In the other two tests, the left operand is false, so Python evaluates and returns
the object on the right (that may have atrue or false value). and operations also stop as soon
asthe result is known; in this case, Python evaluates operands from left to right and stops at the
first false object:

>>> 2 and 3, 3 and 2 # return left operand if false
(3,2) # else return right operand (whether true or false)

>>> [] and {}
[]

>>> 3 and []

[1]

Page 84

Both operands are true in the first line, so Python evaluates both sides and returns the object on
the right. In the second test, the left operand isfalse ([]), so Python stops and returnsiit asthe
test result. In the last test, the left side istrue (3), so Python evaluates and returns the object on
the right (that happens to be false). The end result isthe same asin C (true or false), but it's
based on objects, not integer flags.*

While L oops

Python'swhi | e statement isits most general iteration construct. In simple terms, it repeatedly
executes a block of indented statements, as long as atest at the top keeps evaluating to atrue
value. When the test becomes false, control continues after all the statementsinthewhi | e, and
the body never runsif the test is false to begin with.

Thewhi | e statement is one of two looping statements (along with the f or , which we'll meet
next). We calfsit aloop, because control keeps looping back to the start of the statement, until
the test becomes false. The net effect is that the loop's body is executed repeatedly while the
test at the top is true. Python also provides a handful of tools that implicitly loop (iterate), such
asthemap, reduce,andfi | t er functions, and thei n membership test; we explore some
of these later in this book.

General Format

Inits most complex form, thewhi | e statement consists of a header line with atest expression,
abody of one or more indented statements, and an optional el se part that is executed if
control exits the loop without running into abr eak statement (more on these last few words
later). Python keeps evaluating the test at the top, and executing the statements nested in the

whi | e part, until the test returns afalse value.

while <test>: # | oop test
<st at enent s1> # | oop body
el se: # optional else
<st at enent s2> #run if didn't exit loop with break

* One common way to use Python Boolean operators isto select from one or more objects with an
or; astalement suichasX = A or B or C setsXtothefirst nonempty (true) object among

A, B, and C. Short-circuit evaluation isimportant to understand, because expressions on the right of a
Boolean operator might call functions that do much work or have side effects that won't happen if the
short-circuit rule takes effect.

Page 85
Examples

Toillustrate, here are a handful of smplewhi | e loopsin action. Thefirst just printsa
message forever, by nesting apr i nt statementinawhi | e loop. Recall that an integer 1
means true; since the test is always true, Python keeps executing the body forever or until you
stop its execution. This sort of behavior isusually called an infinite loop (and tends to be much
less welcome when you don't expect it):

>>> while 1:
print 'Type -Cto stop ne!’

The next example keeps dicing off the first character of a string, until the string is empty. Later
in this chapter, well see other ways to step more directly through the itemsin a string.

>>> x = ' span
>>> while x:
print x,
x = x[1:] # strip first character off x

spam pam am m

Finally, the code below counts from the value of a, up to but not including b. It works much
likeaCf or loop; well see an easier way to do thiswithaPython f or andr ange ina
momert.

>>> a=0; b=10

>>> while a < b: # one way to code counter |oops
print a,
a = atl

01234567809
break, continue, pass, and the Loop else

Now that we've seen our first Python loop, we should introduce two simple statements that
have a purpose only when nested inside loops—the br eak and cont i nue statements. If
you've used C, you can skip most of this section, since they work the same in Python. Since

br eak and loop el se clauses are inter-twined, we'll say more about el se here too. And
whilewere at it, let'salso look at Python's empty statement—the pass, which worksjust like
C'sempty statement (a bare semicolon). In Python:

br eak
Jumps out of the closest enclosing loop (past the entire loop statement).

conti nue
Jumps to the top of the closest enclosing loop (to the loop's header line).

Page 86

pass
Does nothing at all: it's an empty statement placeholder.

loop el se block
Run if and only if the loop is exited normally—i.e., without hitting a break.

General loop format

When we factor in break and continue statements, the general format of thewhi | e loop looks
likethis:

while <test>:
<st at ement s>
if <test>: break # exit loop now, skip else
if <test>: continue # go to top of |oop now

el se:

<st at enent s> #if we didn't hit a 'break'

br eak and cont i nue statements can appear anywhere inside thewhi | e loop's body, but
they are usually coded further nestedinan i f test as we've shown, to take action in response to
some sort of condition.

Examples

Let'sturn to afew simple examples to see how these statements come together in practice. The
pass statement is often used to code an empty body for a compound statement. For instance, if
you want to code an infinite loop that does nothing each time through, do it with apass:

while 1. pass # type CGrl-Cto stop ne!

Since the body isjust an empty statement, Python gets stuck in thisloop, silently chewing up
CPU cycles* pass isto statements as None isto objects—an explicit nothing. Notice that the
whi | e loop's body is on the same line as the header above; asinthei f , thisonly worksif the
body isn't acompound statement.

Thecont i nue statement sometimes lets you avoid statement nesting; here's an example that

usesit to skip odd numbers. It prints all even numbers less than 10 and greater than or equal to
0. Remember, 0 means false, and % is the remainder-of-division operator, so this|oop counts
down to zero, skipping numbers that aren't multiples of two (it prints8 6 4 2 0):

x =10

while x:
X = x-1
if x %2 !'=0: continue # odd?--skip print
print x,

* This probably isn't the most useful Python program ever written, but frankly, we couldn't think of a
better pass example. We'll see other places where it makes sense later in the book (for instance, to
define empty classes).

Page 87

Because cont i nue jumpsto the top of the loop, you don't need to nest the pr i nt statement
insideani f test; thepri nt isonly reached if thecont i nue isn't run. If this sounds similar
to agot o in other languagesit should; Python has no got o per se, but because cont i nue
lets you jump around a program, all the warnings about readability you may have heard about
got o apply. It should probably be used sparingly, especialy when you're first getting started
with Python.

The br eak statement can often eliminate the search status flags used in other languages. For
instance, the following piece of code determinesif anumber y is prime, by searching for
factors greater than one;

x=y/l 2
while x > 1:
ify %x == 0: # remai nder
print y, 'has factor', x
br eak # skip el se
X = x-1

el se: # normal exit

print y, "is prine'

Rather than setting aflag to be tested when the loop is exited, insert abr eak where afactor is
found. Thisway, theloop el se can assume that it will be executed only if no factor was
found; if you don't hit the br eak, the number is prime. Noticethat aloop el se isalso runif
the body of the loop is never executed, since you don't run abr eak in that event either; in a
whi | e loop, this happensif the test in the header is false to begin with. In the example above,
you still getthei s pri me messageif x isinitially lessthan or equal to 1 (e.g., if y iS 2).

for Loops

Thef or loop isageneric sequence iterator in Python: it can step through the itemsin any
object that responds to the sequence indexing operation. Thef or works on strings, lists,
tuples, and new objects we'll create later with classes. We've already seen thef or in action,
when we mentioned the iteration operation for sequence typesin Chapter 2. Here, welll fill in
the details we skipped earlier.

General Format

The Python f or |oop begins with a header line that specifies an assignment target (or targets),
along with an object you want to step through. The header is followed by a block of indented
statements, which you want to repest:

for <target> in <object>: # assign object itens to target
<st at enent s> # repeated | oop body: use targel
el se:
<st at enent s> #if we didn't hit a 'break’
Page 88

When Python runsaf or loop, it assignsitemsin the sequence object to the target, one by
one, and executes the loop body for each. * The loop body typically uses the assignment target
to refer to the current item in the sequence, as though it were a cursor stepping through the
sequence. Technically, thef or works by repeatedly indexing the sequence object on
successively higher indexes (starting at zero), until an index out-of-bounds exception is raised.
Becausef or loops automatically manage sequence indexing behind the scenes, they replace
most of the counter style loops you may be used to coding in languages like C.

Thef or aso supports an optional el se block, which works exactly asit doesin whi | e
loops; it's executed if the loop exits without running into abr eak statement (i.e., if al itemsin
the sequence were visited). The br eak and cont i nue statements we introduced above
work the sameinthef or loop asthey dointhewhi | e too; we won't repeat their descriptions
here, but the for loop's complete format can be described this way:

for <target> in <object>: # assign object itens to target
<st at ement s>
if <test>: break # exit loop now, skip else
if <test>: continue # go to top of |oop now

el se:

<st at ement s> # if we didn't hit a 'break'

Examples

Let'stypeafew f or loopsinteractively. In the first example below, the name x is assigned to
each of the three itemsin the list in turn, from left to right, and the pr i nt statement is executed
for each. Insgdethe pri nt statement (the loop body), the name x refers to the current item in
thelist:

>>> for x in ["spani, "eggs", "ham']:
print Xx,

;pam eggs ham

The next two examples compute the sum and product of al theitemsin alist. In Chapter 8,
Built-in Tools, we'll see built-insthat apply operations like + and * to itemsin alist, but it's
usually just aseasy touseaf or :

>>> sum = 0

>>> for x in[1, 2, 3, 4]:
sum = sum + X

>>> sum

* The name used asthe assignment target in afor header line is simply a (possibly new) variable in the
namespace (scope) where the for statement is coded. There's not much special about it; it can even be
changed inside the for loop's body, but it's automatically set to the next item in the sequence when
control returnsto the top of the loop again.

Page 89

10
>>> prod = 1
>>> for itemin [1, 2, 3, 4]: prod = prod * item

>>> prod
24

Asmentioned, f or loops work on strings and tuples too. One thing we haven't mentioned is
that, if you're iterating through a sequence of tuples, the loop target can actually be atuple of
targets. Thisisjust another case of tuple unpacking assignment at work; remember, the f or
assignsitems in the sequence to the target, and assignment works the same everywhere:

>>> s, T = "lunberjack", ("and", "I'nl, "okay")
>>> for x in s: print X,

| umber j ack
>>> for x in T: print X,

z.i.nd I ' m okay
>>> T =1[(1, 2), (3, 4), (5 6)]
>>> for (a, b) inT: # tupl e assignnent at work

print a, b

g w ek
[SN \V]

Now, let'slook at something a bit more sophisticated. The next example illustrates both the
loop el se inaf or and statement nesting. Given alist of objects (i t ens) and alist of keys
(tests), thiscode searches for each key in the objects list, and reports on the search's
SUCCeSS:

>>> jtenms = ["aaa", 111, (4, 5), 2.01] # a set of objects
>>> tests = [(4, 5), 3.14] # keys to search for
>>>
>>> for key in tests: # for all keys
for itemin itens: # for all itens
if item== key: # check for match
print key, "was found"
br eak
el se:

print key, "not found!"

(4, 5) was found
3. 14 not found!

Sincethenested i f runsabr eak when amatch isfound, theloop el se can assumethat the
search has failed. Notice the nesting here: when this code runs, there are two loops going at the
same time. The outer loop scans the keys list, and

Page 90

the inner loop scansthe items list for each key. The nesting of theloop el se iscritical; it's
indented at the same level as the header line of theinner f or loop, so it's associated with the
inner loop (not thei f or outer f or). By the way, this example is easier to code if you employ
thei n operator from Chapter 2, to test membership for us; sincei n implicitly scans alist
looking for amatch, it replaces the inner loop:

>>> for key in tests: # for all keys
if key in items: # let Python check for a natch
print key, "was found"
el se:

print key, "not found!"

(4, 5) was found
3.14 not found!

In generdl, it'sagood ideato let Python do the work like this. The next example performs a
typical data-structure task with af or —collecting common items in two sequences (strings).
It'sroughly asimple set intersection routine; after the loop runs, r es refersto alist that
contains all theitemsfound in both seql and seq2:*

>>> seql = "span

>>> seq2 = "scan

>>>

>>> res = [] # start enpty

>>> for x in seql: # scan first sequence

if x in seq2: # common iten?

res. append(x) # add to result end
>>> res
['s', "a, '"'m]
Unfortunately, this code is equipped to work only on two specific variables: seql and seq2.

It would be nice if thisloop could be somehow generalized into atool we could use more than
once. Aswe'll see, that smple idealeads usto functions, the topic of our next chapter.

range and Counter Loops

Thef or loop subsumes most counter-style loops, so it's the first tool you should reach for
whenever you need to step though a sequence. But there are a so situations where you need to
iterate in amore specialized way. Y ou can always code unique iterations with a\Wi | e loop,
but Python aso provides away to specialize

* Thisisn't exactly what some folks would call set intersection (an item can appear more than oncein
theresult if it appears more than oncein seql), but thisisn't exactly atext on set theory either. To
avoid duplicates,sayi f x in seg2and xnot in res insidetheloopinstead. Incidentaly,
thisisagreat example of how lists get built up dynamically (by program code), rather than being
written out as a constant. Aswe mentioned before, most data structures are built, rather than written.

Page 91

Why You Will Care: File Scanner Loops
In general, loops come in handy any place you need to repeat or process something more than once
Since files contain multiple characters and lines, they are one of the more typical uses for loops. F
example it's conrmon to see file scanning loops coded with awhi | e and br eaks, instead of
end-of-file tests at the top:

file = open("nane", "r")
whil e 1:
line = file.readline() # fetch next line, if any
if not line: break # exit loop on end-of-file (enpty string)

Process |ine here

Thef or loop comein handy for scanning filestoo; ther eadl i nes file method introduced in
Chapter 2 hands you alineslist to step through:

file = open("nane", "r")
for line in file.readlines(): # read into a lines |ist
Process line here

In other cases, you might scan byte-by-byte (usngwhi | e andfil e. read(1)), or load thefile
atonce(eg.,for char infile.read()).Welllearn more about file processing later in the
book.

indexing in af or ; the built-in r ange function returns alist of successively higher integers,
which can be used asindexesin af or .*

Examples

A few examples will make this more concrete. Ther ange function is really independent of
f or loops; dthough it's used most often to generate indexesin af or , you can use it anywhere
you need alist of integers:

>>> range(5), range(2, 5), range(0, 10, 2)
([0, 1, 2, 3, 4], [2, 3, 4], [0, 2, 4, 6, 8])

With one argument, r ange generates a list with integers from zero, up to but not including the
argument's value. If you pass in two arguments, the first is taken as the lower bound. An
optional third argument can give a step; if used, Python adds the step to each successive node
in the result (steps default to one). Now, the easiest way to step through a sequence iswith a
simplef or ; Python handles most of the details for you:

>>> x = 'spani
>>> for itemin x: print item # sinmple iteration

* Python also provides a built-in called xrange that generates indexes one at atime instead of storing
all of themin alist at once. There's no speed advantage to xrange, but it's useful if you haveto
generate a huge number of values.

Page 92

span

Internally, thef or initializes an index, detects the end of the sequence, indexes the sequenceto
fetch the current item, and increments the index on each iteration. If you really need to take over
the indexing logic explicitly, you can do it with awhi | e loop; thisformisasclosetoaCf or
loop as you can come in Python:

>>> | =0

>>> while i < len(X): # while iteration
oprint X[i],; i =i+l

spanmn

And findly, you can still do manual indexing with af or , if you user ange to generate alist
of indexesto iterate through:

>>> for i inrange(len(X)) : print X[i], # manual indexing
.s.pan

But unless you have a special indexing requirement, you're always better off using the smple
f or loop formin Python. One situation wherer ange does come in handy is for repeating an
action a specific number of times; for example, to print three lines, use ar ange to generate
the appropriate number of integers:

>>> for i in range(3): print i, 'Pythons'

0 Pythons

1 Pyt hons
2 Pyt hons

Common Coding Gotchas

Before we turn you lose on some programming exercises, we'd like to point out some of the
most common mistakes beginners seem to make when coding Python statements and programs.
You'll learn to avoid these once you've gained a bit of Python coding experience (in fact, Mark
commonly gets into trouble because he uses Python syntax in C++ code!); but afew words
might help you avoid falling into some of these trapsinitially.

Don't forget the colons
Don't forget to type a: at the end of compound statement headers (the first lineof anii f,
whi | e, f or, etc.). You probably will at first anyhow (we did too), but you can take some
comfort in the fact that it will soon become an unconscious habit.

Page 93

Sart in column 1
We mentioned thisin Chapter 1, Getting Started, but as areminder: be sure to start
top-level (unnested) code in column 1. That includes unnested code typed into module files,
aswell as unnested code typed at the interactive prompt.

Blank lines matter at the interactive prompt
Blank linesin compound statements are always ignored in module files, but, when typing
code, end the statement at the interactive prompt. In other words, blank linestell the
interactive command line that you've finished a compound statement; if you want to
continue, don't hit the Return key at the ... prompt until you're reglly done.

Indent consistently
Avoid mixing tabs and spaces in indentation, unless you're sure what your editor does with
tabs. Otherwise, what you see in your editor may not be what Python sees when it counts
tabs as a number of spaces.

Don't code C in Python
A note to C/C++ programmers. you don't need to type parentheses around testsini f and
whi | e headers (e.g., if (X==1) : pri nt X), but you can if you like; any expression can
be enclosed in parentheses. And remember, you can't use{} around blocks; indent nested
code blocks instead.

Don't always expect a result
Another reminder: in-place change operations likethel i st .append() and
l'ist.sort () methodsin Chapter 2 don't return avalue (redly, they return None) ; call
them without assigning the result. I1t's common for beginnersto say something like
l'ist=list.append(X) totry togettheresult of an append; instead, this assigns
| i st toNone, rather than the modified list (in fact, you'll lose areference to the list
altogether).

Use calls and imports properly
Two fina reminders: you must add parentheses after afunction name to call it, whether it
takes arguments or not (e.g., f uncti on(),not f uncti on), and you shouldn't include

the file suffix in import statements (e.g., | nport nod, not i nport nod. py) .In
Chapter 4, we'll see that functions are ssmply objects that have a special operation—a call
you trigger with the parentheses. And in Chapter 5, well see that modules may have other
suffixes besides .py (a.pyc, for instance); hard-coding a particular suffix is not only illegal
syntax, it doesn't make sense.

Summary
In this chapter, we explored Python's basic procedural statements:

» Assignments store references to objects.

Page 94
» Expressions call functions and methods.
* pri nt sendstext to the standard output stream.
«if/elif/else selectsbetween one or more actions.
*whi | e/ el se loops repeat an action until atest proves false.
 f or/ el se loops step through the items in a sequence object.
* br eak and cont i nue jump around loops.
* pass isan empty placeholder.

We also studied Python's syntax rules along the way, looked at Boolean operators and truth
tests, and talked a little about some general programming concepts in Python.

By combining basic statements, we are able to code the basic logic needed to process objects.
In Chapter 4, we move on to look at a set of additiona statements used to write functions,
which package statements for reuse. In later chapters, we'll see more statements that deal with
bigger program units, as well as exceptions. Table 3-5 summarizes the statement sets we'll be
studying in the remaining chapters of this part of the book.

Table 3-5. Preview: Other Statement Sets

Unit Role

Functions Procedural units
Modules Code/data packages
Classes New objects
Exceptions | Errorsand special cases

Exercises

Now that you know how to code basic program logic, this session asks you to implement some
simple tasks with statements. Most of the work isin Exercise 4, which lets you explore coding
alternatives. There are always many ways to arrange statements and part of learning Python is
learning which arrangements work better than others.

1. Coding basic loops.

a Writeaf or loop that prints the ASCII code of each character in astring named S. Use
the built-in function or d(char act er) to convert each character to an ASCII integer
(test it interactively to see how it works).

b. Next, change your loop to compute the sum of the ASCII codes of all charactersin a
string.

Page 95

c. Finaly, modify your code again to return anew list that contains the ASCII codes of each
character in the string. Does this expression have asimilar effect—map (or d, S) ? (Hint:
see Chapter 4, Functions.)

2. Backslash characters. What happens on your machine when you type the following code
interactively?

for i in range(50):
print "hello %l\n\a %i

Warning: this example beeps at you, so you may not want to run it in a crowded lab
(unless you happen to enjoy getting lots of attention). Hint: see the backslash escape
charactersin Table 2-6.

3. Sorting dictionaries. In Chapter 2, we saw that dictionaries are unordered collections.
Writeaf or loop that prints adictionary's items in sorted (ascending) order. Hint: use the
dictionary keys and list sor t methods.

4. Program logic alternatives. Consider the following code, which usesawhi | e loop and
f ound flag to search alist of powers-of-2, for the value of 2 raised to the power 5 (32). It's
stored in amodule file called power.py.

L=1[1 2, 4, 8, 16, 32, 64]
X =5
found =i =0
while not found and i < len(L):
if 2 ** X ==L[i]:
found = 1
el se:
i =i+l
i f found:
print "at index', i

el se:

print X, 'not found
C.\ book\t est s> pyt hon power. py
at index 5

Asis, the example doesn't follow normal Python coding techniques. Follow the steps below to
improve it; for al the transformations, you may type your code interactively or storeitina
seript file run from the system command line (though using a file makes this exercise much
easier).

a First, rewrite this code with awhi | e loop el se, to diminatethef ound flag and final

i f statement.

b. Next, rewrite the exampleto useaf or loop with an el se, to eliminate the explicit list
indexing logic. Hint: to get the index of an item, use thelist index method (L. i ndex(X)
returns the offset of thefirst Xinlist L).

Page 96

c. Now remove the loop completely by rewriting the examples with a simple in operator
membership expression (see Chapter 2 for more details, or typethis2i n[1, 2, 3]).

d. Findly, useaf or loop and thelist append method to generate the powers-of-2 list
(L), instead of hard-coding alist constant.

e. Deeper thoughts:. (1) Do you think it would improve performance to move the 2** X
expression outside the loops? How would you code that? (2) Aswe saw in Exercise 1,
Python also includesamap(f uncti on, | i st that can generate the powers-of-2 list too,
asfollows: map (lambdax: 2** X, r ange(7)) . Try typing this code interactively; we'll
meet | anbda more formally in Chapter 4.

Page 97

4—
Functions

In this chapter:

* Why Use
Functions?

* Function Basics

*» Scope Rulesin
Functions

» Argument Passing
» Odds and Ends

* Function Gotchas
e Summary

» Exercises

In the last chapter, we looked at basic procedural statements in Python. Here, we'll move on to
explore a set of additional statements that create functions of our own. In smple terms,

functions are a device that groups a bunch of statements, so they can be run more than oncein a
program. Functions also let us specify parameters, which may differ each time a function's code
isrun. Table 4-1 summarizes the function-related statements we'll study in this chapter.

Table 4-1. Function-Related Statements

Statement Examples

Cdls nyfunc("spam ham toast\n")

def, return def adder (a, b, c=1, *d): return a+b+c+d[0]
gl obal def function(): global x, y; x = "'new

Why Use Functions?

Before we get into the detalls, let's get a clear picture of what functions are about. Functions
are anearly universal program-structuring device. Most of you have probably come across
them before in other languages, but as a brief introduction, functions serve two primary
development roles:

Code reuse
Asin most programming languages, Python functions are the simplest way to package logic
you may wish to use in more than one place and more than one time. Up to now, al the
code we've been writing runs immediately; functions allow us to group and parametize
chunks of code to be used arbitrarily many times later.

Page 98

Procedural decomposition
Functions also provide atool for splitting systems into pieces that have a well-defined
role. For instance, to make a pizza from scratch, you would start by mixing the dough,
rolling it out, adding toppings, baking, and so on. If you were programming a pizza-making
robot, functions would help you divide the overall "make pizza' task into chunks—one
function for each subtask in the process. It's easier to implement the smaller tasksin
isolation than it is to implement the entire process at once. In general, functions are about
procedure—how to do something, rather than what you're doing it to. We'll see why this
distinction mattersin Chapter 6, Classes.

Here, wetalk about function basics, scope rules and argument passing, and a handful of related
concepts. Aswelll see, functions don't imply much new syntax, but they do lead usto some
bigger programming idess.

Function Basics

Although we haven't gotten very formal about it, we've aready been using functionsin earlier
chapters. For instance, to make afile object, we call the built-in open function. Similarly, we
usethel en built-in function to ask for the number of itemsin a collection object.

In this chapter, we will learn how to write new functions in Python. Functions we write
ourselves behave the same way as the built-ins we've already seen—they are called in
expressions, are passed values, and return results. But writing functions requires afew new

ideas; here's an introduction to the main concepts:

def creates a function object and assignsit to a name
Python functions are written with a new statement, the def . Unlike functionsin compiled
languages such as C, def isan executable statement—when run, it generates a new
function object and assignsit to the function's name. Aswith all assignments, the function
name becomes a reference to the function object.

return sends a result object back to the caller
When afunction is called, the caller stops until the function finishes its work and returns
control to the caller. Functions that compute a value send it back to the caller with a
r et ur n statement.

global declares module-level variables that are to be assigned
By default, al names assigned in afunction are local to that function and exist only while
the function runs. To assign a name in the enclosing module, functionsneed tolistitina
gl obal statement.

Page 99

Arguments are passed by assignment (object reference)
In Python, arguments are passed to functions by assignment (i.e., by object reference). As
well seg, thisisn't quite like C's passing rules or C++'s reference parameters—the caller
and function share objects by references, but there is no name aliasing (changing an
argument name doesn't al'so change anamein the caller).

Arguments, return types, and variables are not declared
Aswith everything in Python, there are no type constraints on functions. In fact, nothing
about a function needs to be declared ahead of time; we can passin arguments of any type,
return any sort of object, and so on. As one consequence, a single function can often be
applied to avariety of object types.

Let's expand on these ideas and look at afew first examples.
General Form

The def statement creates a function object and assigns it afunction name. As with all
compound Python statements, it consists of a header line, followed by a block of indented
statements. The indented statements become the function's body—the code Python executes
each time the function is called. The header specifies a function name (which is assigned the
function object), along with alist of arguments (sometimes called parameters), which are
assigned to the objects passed in parentheses at the point of call:

def <nanme> (argl, arg2,...argN):
<st at ement s>
return <val ue>

ThePython r et ur n statement can show up in function bodies; it ends the function call and
sends aresult back to the caller. It consists of an object expression that gives the function's
result. Ther et ur n isoptional; if it's not present, a function exits when control flow falls off
the end of the function body. Technically, afunction without ar et ur n returnsthe None
object automatically (more on this later in this chapter).

Definitions and Calls

Let'sjump into a simple example. There are really two sides to the function picture: a
definition (the def that creates afunction) and acall (an expression that tells Python to run the
function). A definition follows the genera format above; here's one that defines afunction
caledt i mes, which returns the product of its two arguments:

>>> def tines(x, y): # create and assign function
return x * vy # body executed when called

Page 100

When Python runsthisdef , it creates a new function object that packages the function's code
and assignsitthenamet i mes. After thedef hasrun, the program can run (call) the function
by adding parentheses after the function name; the parenthesis may optionally contain one or
more object arguments, to be passed (assigned) to the names in the function's header:

>>> tines(2, 4) # argunments in parentheses
8

>>> times('"N ‘', 4) # functions are 'typel ess
"NiNiNiNi '

In thefirst line, we pass two argumentstot i mes: the name x in the function header is
assigned thevalue 2, y isassigned 4, and the function's body is run. In this case, the body is
just ar et ur n statement, which sends back the result 8 as the value of the call expression.

In the second call, we passin astring and an integer to x andy instead. Recall that * works on
both numbers and sequences; because there are no type declarations in functions, you can use

t i mes to multiply numbers or repeat sequences. Python is known as a dynamically typed
language: types are associated with objects at runtime, rather than declared in the program
itself. In fact, a given name can be assigned to objects of different types at different times.*

Example: | ntersecting Sequences

Here'samore realistic example that illustrates function basics. Near the end of Chapter 3,
Basic Statements, we saw af or loop that collected items in common in two strings. We noted
there that the code wasn't as useful as it could be because it was set up to work only on specific
variables and could not be rerun later. Of course, you could cut and paste the code to each
place it needsto be run, but thisisn't agenera solution; you'd still have to edit each copy to
support different sequence names, and changing the algorithm requires changing multiple
copies.

Definition

By now, you can probably guess that the solution to this dilemmais to package the f or loop
inside afunction. By putting the code in afunction, it becomes atool that can be run as many
times asyou like. And by allowing callers to pass in arbitrary arguments to be processed, you

make it general enough to work on any two sequences you wish to intersect. In effect, wrapping
the code in afunction makes it ageneral intersection utility:

* |f you've used compiled languages such as C or C++, you'll probably find that Python's dynamic
typing makes for an incredibly flexible programming language. It aso means that some errors a
compiler roots out aren't caught by Python until a program runs (adding a string to an integer, for
instance). Luckily, errors are easy to find and repair in Python.

Page 101
def intersect (seql, seq2):
res =[] # start enpty
for x in seql: # scan seql
if x in seqg2: # comon iten?
res. append(x) # add to end

return res

The transformation from simple code to this function is straightforward; you've just nested the
original logic under adef header and made the objects on which it operates parameters. Since
this function computes aresult, you've dso added ar et ur n statemrent to send it back to the
caller.

Calls
>>> sl = " SPAM
>>> s2 = "SCAM
>>> jntersect(sl, s2) # strings

['S, "A, "M]

>>> intersect([1, 2, 3], (1, 4)) # m xed types
[1]

Again, we passin different types of objectsto our function—first two strings and then alist and
atuple (mixed types). Since you don't have to specify the types of arguments ahead of time, the
i nt er sect function happily iterates though any kind of sequence objects you send it.*

Scope Rulesin Functions

Now that we've stepped up to writing our own functions, we need to get a bit more formal
about what names mean in Python. When you use a name in a program, Python creates, changes,
or looks up the name in what is known as a namespace—a place where names live. Aswe've
seen, names in Python spring into existence when they are assigned a value. Because names
aren't declared ahead of time, Python uses the assignment of a name to associate it with a
particular namespace. Besides packaging code, functions add an extra namespace layer to your
programs—~by default, names assigned inside a function are associated with that function's
namespace, and no other.

Here's how this works. Before you started writing functions, all code was written at the
top-level of amodule, so the names either lived in the module itself, or

* Technically, any object that responds to indexing. The for loop and in tests work by repeatedly
indexing an object; when we study classesin Chapter 6, you'll see how to implement indexing for
user-defined objects too, and hence iteration and membership.

Page 102

were built-ins that Python predefines (e.g., open).* Functions provide a nested namespace
(sometimes called a scope), which localizes the names they use, such that names inside the
function won't clash with those outside (in a module or other function). We usually say that
functions define alocal scope, and modules define a global scope. The two scopes are related
asfollows:

The enclosing module is a global scope
Each module is a global scope—a namespace where variables created (assigned) at the top
level of amodulefilelive.

Each call to a function is a new local scope
Every time you call afunction, you create anew local scope—a namespace where names
created inside the function usualy live.

Assigned names are local, unless declared global
By default, al the names assigned inside a function definition are put in the local scope (the
namespace associated with the function call). If you need to assign a name that lives at the
top-level of the module enclosing the function, you can do so by declaring itinagl obal
statement inside the function.

All other names are global or built-in
Names not assigned a value in the function definition are assumed to be globals (in the
enclosing module's namespace) or built-in (in the predefined names module Python
provides).

Name Resolution: The LGB Rule

If the prior section sounds confusing, it really boils down to three ssimple rules:
» Name references search at most three scopes: local, then global, then built-in.
» Name assignments create or change local names by default.

* "Global" declarations map assigned names to an enclosing module's scope.

In other words, all names assigned inside afunction def statement are locals by defaullt;
functions can use globals, but they must declare globals to change them. Python's name
resolution is sometimes called the LGB rule, after the scope names:

» When you use an unqualified name inside a function, Python searches three scopes—the local
(L), then the global (G), and then the built-in (B)—and stops at the first place the nameis
found.

* Remember, code typed at the interactive command lineisreally entered into a built-in module
caled __mai n__, sointeractively created names live in amodule too. There's more about modules
in Chapter 5, Modul es.

Page 103

» When you assign anamein afunction (instead of just referring to it in an expression). Python
always creates or changes the name in the local scope, unlessit's declared to be global in that
function.

» When outside afunction (i.e., at the top-level of amodule or at the interactive prompt), the
local scope is the same as the global—a modul €'s namespace.

Figure 4-1 illustrates Python's three scopes. As a preview, we'd also like you to know that
these rules only apply to ssimple names (such as sparr). In the next two chapters, well see that
the rules for qualified names (such as obj ect . spam, called attributes) live in a particular
object and so work differently.

{ Built-in (Python)
|« Predefined nomes—apen, len, efe.

|| Global (module)

{ | » Nomes azsigned of top-fevel of o madule
[| = Nomes “plobal” i fumct

' Local

: {furiction)
+ » Mames gssigned inside r foncion et

Figure 4-1.
The LGB scope lookup rule

Example

Let'slook at an example that demonstrates scope ideas. Suppose we write the following code
inamodulefile:

gl obal scope

X =99 # X and func assigned in nodul e: gl oba

def fun(Y): # Y and Z assigned in function: |ocals
| ocal scope
Z=X+Y # X is not assigned, so it's a gl oba
return Z

func(l) # func in nodul e: result=10

This module, and the function it contains, use a number of names to do their business. Using
Python's scope rules, we can classify the names as follows:

Page 104

Global names: X, f unc
Xisaglobal because it's assigned at the top level of the module file; it can be referenced
inside the function without being declared global. f unc is global for the same reason; the

def statement assigns afunction object to the namef unc at the top leve of the module.

Local names:. Y, Z
Y and Z arelocal to the function (and exist only while the function runs), because they are
both assigned avalue in the function definition; Z by virtue of the = statement, and Y
because arguments are always passed by assignment (more on thisin aminute).

The whole point behind this name segregation scheme is that local variables serve as
temporary names you need only while afunction is running. For instance, the argument Y and
the addition result Z exist only inside the function; they don't interfere with the enclosing
modul€e's namespace (or any other function, for that matter). The local/global distinction also
makes a function easier to understand; most of the names it uses appear in the function itself,
not at some arbitrary place in amodule.*

The global Statement

Thegl obal statement isthe only thing that's anything like a declaration in Python. It tells
Python that a function plans to change globa names—names that live in the enclosing modul€'s
scope (namespace). We've talked about gl obal in passing aready; as asummary:

* gl obal means"aname at the top-level of amodule file."
* Global names must be declared only if they are assigned in a function.
* Global names may be referenced in a function without being declared.

Thegl obal statement isjust the keyword gl obal , followed by one or more names
separated by commas. All the listed names will be mapped to the enclosing modul€'s scope
when assigned or referenced within the function body. For instance:

y, z =1, 2 # gl obal variables in nodul e

def all _global () :
gl obal x # decl are gl obal s assi gned
X =y + 2z # no need to declare y,z: 3-scope rule

* The careful reader might notice that, because of the LGB rule, namesin the local scope may
override variables of the same name in the global and built-in scopes, and global names may override
built-ins. A function can, for instance, create alocal varieble called open, but it will hide the built-in
function called open that livesin the built-in (outer) scope.

Page 105

Here, x,y, and z aredl globalsinside function al | _gl obal .y and z are global because
they aren't assigned in the function; x is global because we said so: wellisted it inagl obal
statement to map it to the modul€'s scope explicitly. Without the gl obal here, x would be
considered local by virtue of the assignment. Noticethat y and z are not declared global;
Python's LGB lookup rule finds them in the module automatically. Also notice that X might not
exist in the enclosing module before the function runs; if not, the assgnment in the function
creates x in the module.

Argument Passing

Let's expand on the notion of argument passing in Python. Earlier, we noted that arguments are
passed by assignment; this has afew ramifications that aren't always obvious to beginners:

Arguments are passed by assigning objectsto local names
Function arguments should be familiar territory by now: they're just another instance of
Python assignment at work. Function arguments are references to (possibly) shared objects
referenced by the caller.

Assigning to argument names inside a function doesn't affect the caller
Argument names in the function header become new, local names when the function runs, in
the scope of the function. There is no aliasing between function argument names and names
inthe caller.

Changing a mutable object argument in a function may impact the caller
On the other hand, since arguments are Smply assigned to objects, functions can change
passed-in mutable objects, and the result may affect the caller.

Here's an example that illustrates some of these properties at work:
>>> def changer(x, y) :
X =2 # changes | ocal nane's val ue only
y[0] = 'spam # changes shared object in place

>>> X = 1

>>> L =[1, 2]
>>> changer (X, L) # pass i mmutabl e and nutabl e
>>> X, L # X unchanged, L is different

(1, ["spam, 2])

In this code, thechanger function assigns to argument name X and a component in the object
referenced by argument y. Since x isalocal namein the function's scope, the first assignment
has no effect on the caler; it doesn't change the binding of name X inthe caller. Argument y is
alocal nametoo, but it's passed a mutable object (the list called L in the caller); the result of
the assgnmenttoy[O] in

Page 106

the function impacts the value of L after the function returns. Figure 4-2 illustrates the
name/object bindings that exist when the function is called.

Figure 4-2.
References: arguments share objects with the caller

If you recall some of the discussion about shared mutable objects in Chapter 2, Types and
Operators, you'll recognize that thisis the exact same phenomenon at work: changing a mutable
object in place can impact other references to the object. Here, its effect is to make one of the
arguments an output of the function. (To avoid this, typey = y[:] tomakeacopy.)

Python's pass-by-assignment scheme isn't the same as C++'s reference parameters, but it turns
out to be very similar to C'sin practice:

Immutable arguments act like C's "by value" mode
Objects such asintegers and strings are passed by object reference (assignment), but since
you can't change immutable objects in place anyhow, the effect is much like making a copy.

Mutable arguments act like C's "by pointer” mode
Objects such aslists and dictionaries are passed by object reference too, which is similar
to the way C passes arrays as pointers—mutabl e objects can be changed in place in the
function, much like C arrays.

Of course, if you've never used C, Python's argument-passing mode will be simpler still; it's
just an assignment of objects to names, which works the same whether the objects are mutable
or not.

Page 107

Moreon return

We've already discussed ther et ur n statement, and used it in afew examples. But here'sa
trick we haven't shown yet: because r et ur n sends back any sort of object, it can return
multiple vaues, by packaging them in atuple. In fact, athough Python doesn't have call by
reference, we can smulate it by returning tuples and assigning back to the origina argument
namesin the caller:

>>> def multiple(x, y):
X =2 # changes | ocal nanes only

y =[3, 4]

return x, y # return new values in a tuple
>>> X =1
>>> L =[1, 2]
>>> X, L =nmultiple (X L) # assign results to caller's nanes
>>> X, L
(2, [3, 4])

It looks like we're returning two values here, but it's just one—a two-item tuple, with the
surrounding parentheses omitted. If you've forgotten why, flip back to the discussion of tuples
in Chapter 2.

Special Argument-Matching Modes

Although arguments are always passed by assignment, Python provides additional tools that
alter the way the argument objectsin the call are paired with argument names in the header. By
default, they are matched by position, from left to right, and you must pass exactly as many
arguments as there are argument names in the function header. But you can aso specify amatch
by name, default values, and collectors for extra arguments.

Some of this section gets complicated, and before we get into syntactic details, we'd like to
stress that these special modes are optional and only have to do with matching objectsto
names; the underlying passing mechanism is still assignment, after the mratching takes place.
But as an introduction, here's a synopsis of the available matching modes:

Positionals: matched left to right
The normal case which we've used so far is to match arguments by position.

Keywords: matched by argument name
Callers can specify which argument in the function isto receive a value by using the
argument's namein the call.

Page 108

varargs. catch unmatched positional or keyword argument
Functions can use specia argumentsto collect arbitrarily many extra arguments (much as
thevar ar gs feature in C, which supports variable-length argument lists).

Defaults: specify values for arguments that aren't passed
Functions may also specify default values for argumentsto receive if the call passestoo
few values

Table 4-2 summarizes the syntax that specify the special matching modes.

Table 4-2. Function Argument-Matching Forms

Syntax Location | Interpretation

func(val ue) Caller Normal argument: matched by position

f unc(name=val ue) Caller Keyword argument: matched by name

def (func(name) Function Normal argument: matches any by position or
name

AAf fFriinmAal nAannm—rn I 1A Mrmadl A MNAafaiidt At simmmind csaliia 1 mmmmad Lm dlaa AAll

ucit 1 ulILv Halle—=val uc) Furicuornl peiauil dyuliierit vaue, 11 passeu i uie tdi

def func(*name) Function Matches remaining positional args (in tuple)
def func(**nane) Function matches remaining keyword args (in a
dictionary)

In the caller (the first two rows of the table), smple names are matched by position, but using
thenanme=val ue form tells Python to match by name instead; these are called keyword
arguments.

In the function header, a simple name is matched by position or name (depending on how the
caler passesit), but the nanme=val ue form specifies a default value, the * name collects any
extra positional argumentsin atuple, and the * * name form collects extra keyword arguments
inadictionary.

Asaresult, specia matching modes let you be fairly liberal about how many arguments must
be passed to afunction. If afunction specifies defaults, they are used if you passtoo few
arguments. If afunction usesthevar ar gs forms, you can pass too many arguments, the

var ar gs names collect the extra arguments in a data structure.

A first example

Let'slook at an example that demonstrates keywords and defaultsin action. In the following,
the caller must always pass at |east two arguments (to match sparn and eggs), but the other
two are optional; if omitted, Python assignst oast and han to the defaults specified in the

header:

def func(spam eggs, toast=0, ham=0): # first 2 required
print (spam eggs, toast, ham

Page 109
func(l, 2) # output: (1, 2, 0, 0)
func(l, hamel, eggs=0) # output: (1, 0, 0, 1)
func(spanrl, eggs=0) # output: (1, 0, 0, 0)
func(toast=1, eggs=2, span¥3) # output: (3, 2, 1, 0)
func(l, 2, 3, 4) # output: (1, 2, 3, 4)

Notice that when keyword arguments are used in the call, the order in which arguments are
listed doesn't matter; Python matches by name, not position. The caller must supply values for
span and eggs, but they can be matched by position or name. Also notice that the form
name=val ue meansdifferent thingsin the call and def : akeyword in the call, and a default
in the header.

A second example: Arbitrary-argument set functions

Here's amore useful example of special argument-matching modes at work. Earlier in the
chapter, we wrote a function that returned the intersection of two sequences (it picked out items
that appeared in both). Here is aversion that intersects an arbitrary number of sequences (1 or
more), by using the var ar gs matching form * ar gs to collect all arguments passed. Because
the arguments come in as atuple, we can processtheminasmplef or loop. Just for fun,

we've aso coded an arbitrary-number-arguments uni on function too; it collects items which
appear in any of the operands:

def intersect(*args):
res =[]
for x in args[0]:
for other in args[1l:]:
if x not in other: break
el se:
res. append(x)
return res

scan first sequence
for all other args
itemin each one?

no: break out of |oop
yes: add itens to end

T I g

def union(*args):
res =[]

for seq in args: # for all args
for x in seq: # for all nodes
if not x in res:
res. append(x) # add new itens to result

return res

Since these are tools worth reusing (and are way too big to retype interactively), we've stored
our functionsin amodule file called inter2.py here (more on modules in Chapter 5, Modules).
In both functions, the arguments passed in at the call comein asthear gs tuple. Asinthe
origina i nt er sect , both work on any kind of sequence. Here they are processing strings,
mixed types, and more than two sequences:

% pyt hon
>>> frominter2 inport intersect, union
>>> sl, s2, s3 = "SPAM', "SCAM', "SLAM

Page 110

>>> jntersect(sl, s2), union(sl, s2) # 2 operands
(r's, "A, 'M1, ['S, 'P, "A, "M, 'C])

>>> intersect([1,2,3], (1,4)) # m xed types
[1]

>>> jntersect(sl, s2, s3) # 3 operands
['S, "A, "M]

>>> union(sl, s2, s3)
['s., "P, A, "M, "C, L]

Thegritty details
If you choose to use and combine the special matching modes, Python has two ordering rules:
* In the call, keyword arguments must appear after all nonkeyword arguments.

* In afunction header, the * nanme must be after normal arguments and defaults, and * * nanme
must be last.

Moreover, Python internally carries out the following steps to match arguments before
assignment:

1. Assign nonkeyword arguments by position

2. Assign keyword arguments by matching names

3. Assign extra nonkeyword argumentsto * namne tuple

4. Assign extra keyword argumentsto * * nane dictionary
5. Assign default values to unassigned arguments in header

Thisisas complicated asit looks, but tracing Python's matching algorithm helps to understand
some cases, especialy when modes are mixed. We'll postpone additional examples of these
specia matching modes until we do the exercises at the end of this chapter.

Asyou can see, advanced argument matching modes can be complex. They are also entirely
optional; you can get by with just simple positional matching, and it's probably a good ideato
do soif you'rejust starting out. However, some Python tools make use of them, so they're
important to know.

Odds and Ends

So far, we've seen what it takes to write our own functions in Python. There are a handful of
additional function-related ideas we'd like to introduce in this section:

* | anbda creates anonymous functions.

Page 111

Why You Will Care: Keyword Arguments

Keyword arguments play an important role in Tkinter, the de facto standard GUI API for
Python. We meet Tkinter in Chapter 10, Frameworks and Applications, but as a
preview, keyword arguments set configuration options wren GUI components are built.
For instance, acall of the form:

from Tkinter inport *
wi dget = Button(text="“Press ne”, command=soneFuncti on)

creates a new button and specifies its text and cal | back
function, using the text and conmand keyword argunments. Since

t he nunber of configuration options for a wi dget can be |arge, keyword
arguments | et you pick and choose. Wthout them you might have to
either list all possible options by position or hope for a judicious
positional argunent defaults protocol that handl es every possible
option arrangenent.

* appl y cdlsfunctions with argument tuples.
» map runs afunction over a sequence and collects results.

* Functionsreturn None if they don't usear et ur n statement.

* Functions present design choices.

* Functions are objects, just like numbers and strings.
lambda Expressions

Besidesthe def statement, Python also provides an expression form that generates function
objects. Because of itssimilarity to atool inthe LISP language, it'scalled | anbda. Its genera
form isthe keyword | anbda, followed by one or more arguments, followed by an expression
after acolon:

| anbda argunentl, argunent?2,...argunmentN : Expression using argunents

Function objects returned by | anbda expressions are exactly the same as those created and
assigned by def . But thel anbda has afew differences that make it useful in specialized
roles:

lambda is an expression, not a statement
Because of this, al anmbda can appear in placesadef can't—inside alist constant, for
example. As an expression, the | anbda returns a value (a new function), which can be
assigned a name optionally; thedef statement always assigns the new function to the name
in the header, instead of returning it as a result.

Page 112

lambda bodies are a single expression, not a block of statements
Thel anbda' s body issimilar to what you'd put inadef body'sr et ur n statement;
smply type the result as a naked expression, instead of explicitly returning it. Because it's
limited to an expression, | anbda isless genera than adef ; you can only squeeze so
much logic into al armbda body without using statements such asi f .

Apart from those distinctions, thedef and | anbda do the same sort of work. For instance,
we've seen how to make functionswith def statements:

>>> def func(x, y, z): return x +y + z

>>> func(2, 3, 4)
9

But you can achieve the same effect with al anbda expression, by explicitly assigning its
result to a name:

>>>f = lanbda x, y, z: X +y + 2z
>>> f(2, 3, 4)
9

Here, f isassigned the function object the | anbda expression creates (thisis how def
works, but the assgnment is automatic). Defaults work on | anbda arguments too, just like the
def:

>>> x = (lanbda a="fee", b="fie", c="foe": a + b +)
>>> x("wee")
"weefi ef oe'

| anmbdas come in handy as a shorthand for functions. For instance, we'll see later that
callback handlers are frequently coded as| antbda expressions embedded directly in a
registration call, instead of being defined elsewherein afile and referenced by narre.

The apply Built-in

Some programs need to call arbitrary functionsin a generic fashion, without knowing their
names or arguments ahead of time. We'll see examples of where this can be useful later, but by
way of introduction, the appl y built-in function does the job. For instance, after running the
code in the prior section, you can call the generated functions by passing them as arguments to
appl y, along with atuple of arguments:

>>> appl y(func, (2, 3, 4))
9

>>> apply(f, (2, 3, 4))

9

Page 113

Why You Will Care: lambdas

Thel anmbda expression is most handy as a shorthand for def , when you need to stuff
small pieces of executable code in places where statements are illegal syntactically. For
example, you can build up alist of functions by embedding | antbda expressionsin alist
constant:

L = [lanbda x: x**2, lanbda x: x**3, |lanbda x: x**4]

for f in L:
print f(2) # prints 4, 8, 16
print L[O] (3) # prints 9

W t hout | anbda, you'd need to instead code three def statements outsidethelist in
which the functions that they define are to be used. | anbdas aso comein handy in
function argument lists; one very common application of thisisto define in-line callback
functions for the Tkinter GUI API (more on Tkinter in Chapter 10). The following creates a
button that prints a message on the console when pressed:

i mport sys
wi dget = Button(text
comrand

"Press ne",
| anbda: sys.stdout.wite("Hello world\n"))

appl y smply cals the passed-in function, matching the passed-in arguments list with the
function's expected arguments. Since the arguments list is passed in as atuple (a data structure),
it can be computed at runtime by a program. The rea power of appl y isthat it doesn't need to
know how many arguments afunction is being called with; for example, you canusei f logic
to select from a set of functions and argument lists, and use appl y to cal any:

i f <test>:

action, args = funcl, (1,)
el se:
action, args

func2, (1, 2, 3)
épply(action, ar gs)
The map Built-in

One of the more common things programs do with listsis to apply an operation to each node
and collect the results. For instance, updating all the countersin alist can be done easily with a
f or loop:

>>> counters = [1, 2, 3, 4]

>>>
>>> updated = []

Page 114

>>> for x in counters:
updat ed. append(x + 10) # add 10 to each item

>>> updat ed
[11, 12, 13, 14]

Because thisis such a common operation, Python provides a built-in that does most of the work
for you: the map function applies a passed-in function to each item in a sequence object and
returnsalist containing all the function call results. For example:

>>> def inc(x): return x + 10 # function to be run

>>> map(inc, counters) # collect results
[11, 12, 13, 14]

Since map expects afunction, it also happensto be one of the placeswhere| anbdas
commonly appear:

>>> map((lanbda x: x + 3), counters) # function expression
[4, 5 6, 7]

map isthe simplest representative of a class of Python built-ins used for functional
programming (which mostly just means tools that apply functions to sequences). Its relatives
filter out itemsbased onatest (fi | t er) and apply operationsto pairs of items (r educe).
We say more about these built-in tools in Chapter 8, Built-in Tools.

Python *'Procedures’

In Python functions, r et ur n statements are optional. When a function doesn't return avalue
explicitly, the function exits when control falls off the end. Technicaly, all functionsreturn a
value; if you don't provide ar et ur n, your function returns the None object automatically:

>>> def proc(x):
print Xx # no return is a None return

>>> x = proc('testing 123..)
testing 123...

>>> print x
None

Functions such asthiswithout ar et ur n are Python's equivalent of what are called
procedures in some languages (such as Pascal). They're usually called as a statement (and the
None result isignored), since they do their business without computing a useful result. Thisis
worth knowing, because Python won't tell you if you try to use the result of afunction that
doesn't return one. For instance, assigning the result of alist append method won't raise an
error, but you'll really get back None, not the modified list:

Page 115
>>> |ist =1, 2, 3]
>>> |ist = |ist.append(4) # append is a ' procedure'
>>> print |ist # append changes |ist in-place
None

Function Design Concepts

When you start using functions, you're faced with choices about how to glue components
together—for instance, how to decompose atask into functions, how functions should
communicate, and so on. Some of thisfalls into the category of structured analysis and design,
which istoo broad atopic to discuss in this book. But here are afew general hints for Python
beginners:

Use arguments for inputs and return for outputs
Generally speaking, you should strive to make a function independent of things outside of it.
Argumentsand r et ur n statements are often the best way to isolate dependencies.

Use global variables only when absolutely necessary
Global variables (i.e., names in the enclosing module) are usually a poor way to
communicate with afunction. They can create dependencies that make programs difficult to
change.

Don't change mutable arguments unless the caller expects it
Functions can aso change parts of mutable objects passed in. But as with global variables,
thisimplies lots of coupling between the caller and callee, which can make a function too
specific and brittle.

Table 4-3 summarizes the ways functions can talk to the outside world; inputs may come from
itemsin the left column, and results may be sent out in any of the forms on the right. Politically
correct function designers usualy only use arguments for inputs and r et ur n statements for
outputs. But there are plenty of exceptions, including Python's OOP support—as we'll seein
Chapter 6, Python classes depend on changing a passed-in mutable object. Class functions set
attributes of an automatically passed-in sel f object, to change per-object state information
(eg., sel f.nanme = ‘ bob’); sideeffects aren't dangerous if they're expected.

Table 4-3. Common Function Inputs and Outputs
Function Inputs | Function Outputs

Arguments Return statement
Global (module) variables Mutable arguments

Filan ~vAamman Alalhal fiaaAdd A v av Al Aa

e, stedliis LIuud (ITIVUUIE) vd ldules

Page 116
Functions Are Objects: Indirect Calls

Because Python functions are objects at runtime, you can write programs that process them
generically. Function objects can be assigned, passed to other functions, stored in data
structures, and so on, asif they were ssmple numbers or strings. Function objects happen to
export aspecia operation; they can be caled by listing argumentsin parentheses after a
function expression. But functions belong to the same general category as other objects.

For instance, as we've seen, there's really nothing special about the name we usein adef
statement: it'sjust avariable assigned in the current scope, asif it had appeared on the left of
an =dign. After adef runs, the function name is areference to an object; you can reassign that
object to other names and cdll it through any reference—not just the origina name:

>>> def echo(nessage): # echo assigned to a function object
print nmessage

>>> x = echo # now x references it too

>>> x('Hello world!'") # call the object by adding ()
Hel l o worl d!

Since arguments are passed by assigning objects, it's just as easy to pass functions to other
functions, as arguments; the callee may then call the passed-in function just by adding
arguments in parentheses:

>>> def indirect(func, arg):
func(arag) # call object by adding ()

>>> jndirect(echo, 'Hello jello!") # pass function to a function
Hello jellol

Y ou can even stuff function objects into data structures, as though they were integers or strings.
Since Python compound types can contain any sort of object, there's no specia case here either:

>>> schedule = [(echo, 'Spam'), (echo, 'Haml')]
>>> for (func, arg) in schedul e:
appl y(func, (arg,))

Spami
Ham

This code smply steps through the schedul e ligt, calling the echo function with one
argument each time through. As we hope you're starting to notice by now, Python's lack of type
declarations makes for an incredibly flexible programming language. Notice the use of appl y
to run functions generically, the single-item tuple in the second argument to appl y, and the
tuple unpacking assgnment in thef or loop header (al ideas introduced earlier).

Page 117

Function Gotchas

Here are some of the more jagged edges of functions you might not expect. They're al obscure,
but most have been known to trip up anew user.

Local Names Are Detected Statically

Aswe've seen, Python classifies names assigned in afunction as locals by default; they livein
the function’s scope and exist only while the function is running. What we didn't tell you is that
Python detects locals statically, when it compiles the code, rather than by noticing assignments
asthey happen at runtime. Usually, we don't care, but this leads to one of the most common
oddities posted on the Python newsgroup by beginners.

Normally, aname that isn't assigned in afunction islooked up in the enclosing module:

>>> x = 99
>>> def selector(): # x used but not assigned
print Xx # x found in gl obal scope

>>> sel ector ()
99

Here, the X in the function resolves to the X in the module outside. But watch what happens if
you add an assignment to X after the reference:

>>> def selector():
print X # does not yet exist!
X = 88 # X classified as a | ocal nane (everywhere)
. # can al so happen if "inmport X', "def X'
>>> sel ector ()
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
File "<stdin>", line 2, in selector
NanmeError: X

Y ou get an undefined name error, but the reason is subtle. Python reads and compiles this code
when it's typed interactively or imported from a module. While compiling, Python seesthe
assgnment to X and decides that X will be alocal name everywhere in the function. But later,
when the function is actually run, the assignment hasn't yet happened whenthe pri nt executes,
so Python says you're using an undefined name. According to its name rules, it should; local X
is used before being assigned.*

* |nfact, any assignment in a function body makesanamelocal:i nmport , =, nested def s, nested
cl asses,and soon.

Page 118
Solution

The problem occurs because assigned names are treated as locals everywhere in afunction, not
just after statements where they are assigned. Really, the code above is ambiguous at best: did
you mean to print the global X and then create alocal X, or is thisagenuine programming
error? Since Python treats X as alocal everywhere, itisan error; but if you really mean to print

global X, you need to declareitinagl obal statement:

>>> def selector():

gl obal x # force x to be global (everywhere)
print Xx
x = 88

>>> sel ector ()
99

Remember, though, that this means the assignment also changes the global X, not alocal X.
Within afunction, you can't use both local and global versions of the same ssimple name. If you
really meant to print the global and then set alocal of the same narre, import the enclosing
module and qualify to get to the global version:

>>> x = 99
>>> def selector():

import _ main__ # inmport encl osing nodul e

print __main__.x # qualify to get to global version of nane
x = 88 # unqualified x classified as |oca

print Xx # prints local version of nane

>>> sel ector ()
99
88

Qualification (the . X part) fetches a value from a namespace object. The interactive
namespaceisamodulecaled _main__,so__mai n__. Xreachesthe global version of X.
If that isn't clear, check out Chapter 5.

Nested Functions Aren't Nested Scopes

Asweve seen, the Python def isan executable statement: when it runs, it assigns a new
function object to aname. Because it's a statement, it can appear anywhere a statement
can—even nested in other statements. For instance, it's completely legal to nest afunction def
insideani f statement, to select between alternative definitions:

if test:

def func(): # define func this way
el se:
def func(): # or else this way instead
Page 119
func()

One way to understand this code isto realize that the def ismuch like an = statement: it
assigns aname at runtime. Unlike C, Python functions don't need to be fully defined before the
program runs. Since def is an executable statement, it can also show up nested inside another
def . But unlike languages such as Pascdl, nested def s don't imply nested scopesin Python.
For instance, consider this example that defines afunction (out er), which in turn defines and

calls another function (i nner) that calsitself recursively:*

>>> def outer(x):

def inner(i): # assign in outer's |oca
print i, #1 is ininner's |loca
if i: inner(i-1) # not in ny local or gl obal
i nner (x)

>>> outer(3)

3

Traceback (innernost |ast):
File "<stdin>", line 1, in ?
File "<stin>", line 5, in outer
File "<stdin>", line 4, in inner

NanmeError: inner

Thiswon't work. A nested def redlly only assigns a new function object to anamein the
enclosing function's scope (namespace). Within the nested function, the LGB three-scope rule
still appliesfor al names. The nested function has access only to its own local scope, the
global scope in the enclosing module, and the built-in names scope. It does not have accessto
names in the enclosing function's scope; no matter how deeply functions nest, each sees only
three scopes.

For instance, in the example above, the nested def createsthenamei nner intheout er
function'slocal scope (like any other assignment in out er would). But insidethei nner
function, the namei nner isn't visible; it doesn't livein i nner 'slocal scope, doesn't livein
the enclosing modul€'s scope, and certainly isn't a built-in. Becausei nner has no access to
namesin out er 'sscope, thecall toi nner fromi nner failsand raises an exception.

* By "recursively," we mean that the function is called again, before a prior call exits. In thisexample,
the function callsitself, but it could also call another function that callsit, and so on. Recursion could
be replaced with asimplewhi | e or f or | oop here (all we're doing is counting down to zero), but
we're trying to make a point self-recursive function names and nesting. Recursion tends to be more
useful for processing data structures whose shape can't be predicted when you're writing a program.

Page 120
Solution

Don't expect scopes to nest in Python. Thisis really more amatter of understanding than
anomaly: thedef statement isjust an object constructor, not a scope nester. However, if you
really need access to the nested function name from inside the nested function, smply force the
nested function's name out to the enclosing modul€'s scope with agl obal declarationin the
outer function. Since the nested function shares the globa scope with the enclosing function, it
finds it there according to the LGB rule:

>>> def outer(x):
gl obal inner

def inner(i): # assign in encl osing nodul e
print i,
if i: inner(i-1) # found in ny gl obal scope now
i nner (x)

>>> outer(3)

3210
Using Defaults to Save References

Redlly, nested functions have no access to any names in an enclosing function, so thisis
actually a more general gotcha than the example above implies. To get access to names
assigned prior to the nested function'sdef statement, you can also assign their valuesto the
nested function's arguments as defaults. Because default arguments save their values when the
def runs (not when the function is actually called), they can squirrel away objects from the
enclosing function's scope:

>>> def outer(x, y):
def inner(a=x, b=y): # save outer's x,y bindings/objects
return a**b # can't use x and y directly here
return inner

>>> x = outer(2, 4)
>>> x()
16

Here, acall to out er returnsthe new function created by the nested def . When the nested
def statement runs, i nner 'sargumentsa and b are assigned the values of x andy from the
out er function'slocal scope. In effect, i nner 'sa and b remembers the values of out er 'sx
andy.when a and b areused later in i nner 'sbody, they still refer to the valuesx andy had
when out er ran (even though

Page 121

out er hasalready returned to its caller).* This schemeworksin | anbdastoo, since
| anbdasareredly just shorthand for def s:

>>>def outer(x,y):
return | anbda a=x, b=y: a**Db

>>> vy = outer(2, 5)

>>> y()
32

Note that defaults won't quite do the trick in the last section's example, because the name
i nner isn't assigned until theinner def has completed. Global declarations may be the best
workaround for nested functions that call themselves:

>>> def outer(x):
def inner(i, self=inner): # nane not defined yet
print i,
if i: self(i-1)
i nner (x)

>>> outer(3)
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
File "<stdin>", line 2, in outer
NaneError: inner

But if you're interested in exploring the Twilight Zone of Python hackerage, you can instead

save amutable object as adefault and plug in areferencetoi nner after thefact, in the
enclosing function's body:

>>> def outer(x):
fillin = [None]

def inner(i, self=fillin): # save nutabl e
print i,
if i: self[0] (i-1) # assume it's set
fillin[0] = inner # plug val ue now
i nner (x)

>>> outer(3)
3210

Although this code illustrates Python properties (and just might amaze your friends, coworkers,
and grandmother), we don't recommend it. In this example, it makes much more sense to avoid
function nesting altogether:

>>> def inner(i): # define nodul e | evel nane
print i,
if i: inner(i-1) # no worries: it's a gl obal

* |n computer-science lingo, this sort of behavior is usually called a closure—an object that
remembers values in enclasing scopes, even though those scopes, even though those scopes may not
be around any more. In Python, you need to explicitly list which values are to be remembered, using
argument defaults (or class object attributes, aswe'll seein Chapter 6).

Page 122

>>> def outer(x):
i nner (x)

>>> outer(3)
3210

Asarule of thumb, the easy way out is usually the right way out.
Defaults and Mutable Objects

Default argument values are evaluated and saved when the def statement is run, not when the
resulting function is called. That's what you want, since it lets you save values from the
enclosing scope, as we've just seen. But since defaults retain an object between calls, you have
to be careful about changing mutable defaults. For instance, the following function uses an
empty list as adefault value and then changesiit in place each time the function is called:

>>> def saver(x=[]): # saves away a |ist object
X. append(1) # changes same object each ti me!
print x

>>> saver ([2]) # default not used

[2, 1]

>>> saver () # default used

[1]

>>> saver () # grows on each cal
[1, 1]

>>> saver ()

[1, 1, 1]

The problem is that there's just one list object here—the one created when the def was
executed. Y ou don't get anew list every time the function is called, so the list grows with each
new append

Solution

If that's not the behavior you wish, smply move the default value into the function body; aslong
asthe value resides in code that's actually executed each time the function runs, you'll get a new
object each time through:

>>> def saver (x=None):

if x is None: # no argunment passed?

X = 1] # run code to make a new | i st
X. append(1) # changes new |ist object
print Xx

>>> saver([2])
[2, 1]
>>> saver () # doesn't grow here

[1]

>>> saver ()

[1]

Page 123

By theway, thei f statement above could almost be replaced by the assignment

X = X or [],which takes advantage of the fact that Python'sor returns one of its operand
objects: if no argument was passed, X defaultsto None, sotheor returns empty list is passed
in, the function extends and returns a newly created list, rather than extending and returning the
passed-in list like the previous version (the expression becomes[] or [], which evaluates to
the new empty list on the right; see the discussion of truth testsin Chapter 3 if you don't recall
why). Since real program requirements may call for either behavior, we won't pick a winner
here.

Summary

In this chapter, you've learned how to write and call functions of your own. We've explored
scope and namespace issues, talked about argument passing, saw a number of functional tools
suchas| anbda and map, and studied new function-related statements—def , r et ur n, and
gl obal . Welve dso talked alittle about how to go about gluing functions together, and looked
at common function cases that can trip up new users. In Chapter 5 welll learn about modules,
which, among other things, lets you group functionsinto packages of related tools.

Exercises

We're going to start coding more sophisticated programs in this session. Be sure to check
Appendix C if you get stuck, and be sure to start writing your code in modulefiles. Y ou won't
want to retype some of these exercises from scratch if you make a mistake.

1. Basics. At the Python interactive prompt, write afunction that prints its single argument to
the screen and call it interactively, passing avariety of object types: string, integer, list,
dictionary. Then try calling it without passing any argument: what happens? What happens
when you pass two arguments?

2. Arguments. Write afunction called adder in a Python module file. adder should accept
two arguments and return the sum (or concatenation) of its two arguments. Then add code at the
bottom of the file to call the function with a variety of object types (two strings, two lists, two
floating points), and run thisfile as a script from the system command line. Do you have to
print the call statement results to see results on the screen?

3. varargs. Generalizethe adder function you wrote in the last exercise to compute the sum of
an arbitrary number of arguments, and change the calls to pass more or less than two. What type
isthe return value sum? (Hints: aslicesuch as [: 0] returns an empty sequence of the same
typeas S, and the

Page 124

t ype built-in function can test types.) What happensif you pass in arguments of different
types? What about passing in dictionaries?

4. Keywords. Changetheadder function from Exercise 2 to accept and add three arguments:
def adder (good, bad, ugly).Now, provide default valuesfor each argument and
experiment with calling the function interactively. Try passing one, two, three, and four
arguments. Then, try passing keyword arguments. Does the call adder

(ugl y=1, good=2) work?Why? Finally, generalize the new adder to accept and add an
arbitrary number of keyword arguments, much like Exercise 3, but you'll need to iterate over a
dictionary, not atuple. (Hint: thedi ct i onary. keys() method returnsalist you can step
through with af or or whi | e.)

5. Writeafunction called copyDi ct (di ct) that copiesitsdictionary argument. It should
return a new dictionary with all the itemsin its argument. Use the dictionary keys method to
iterate. Copying sequencesiseasy (X[:] makesatop-level copy); does thiswork for
dictionaries too?

6. Write afunction called addDi ct (di ct 1, di ct2) that computesthe union of two
dictionaries. It should return a new dictionary, with al the itemsin both its arguments (assumed
to be dictionaries). If the same key appears in both arguments, feel free to pick avalue fromr
either. Test your function by writing it in afile and running the file as a script. What happens if
you pass listsinstead of dictionaries? How could you generalize your function to handle this
casetoo? (Hint: seethet ype built-in function used earlier.) Does the order of arguments
passed matter?

7. More argument matching examples. First, define the following six functions (either
interactively, or in an importable modulefile):

def fi1(a, b): print a, b # normal args
def f2(a, *b): print a, b # positional varargs

def f3(a, **b): print a, b # keyword varargs

def f4(a, *b, **c): print a, b, ¢ # m xed nodes
def f5(a, b=2, c=3): print a, b, ¢ # defaults
def f6(a, b=2, *c): print a, b, ¢ # defaults + positional varargs

Now, test the following calls interactively and try to explain each result; in some cases,
you'll probably need to fall back on the matching algorithm shown earlier in this chapter.
Do you think mixing matching modes is agood idea in genera? Can you think of cases
where it would be useful anyhow?

>>> f1(1, 2)
>>> f1(b=2, a=1)

>>> 2(1, 2, 3)

Page 125

>>> f3(1, x=2, y=3)
>>> f4(1, 2, 3, x=2, y=3)

>>> f5(1)
>>> f5(1, 4)

>>> f6(1)
>>> f6(1, 3, 4)
Page 126

5___
Modules

In this chapter:

* Why Use
Modules?

* Module Basics

* Module Files Are
Namespaces

* Import Model

* Reloading
Modules

* Odds and Ends
* Module Gotchas
e Summary

» Exercises

This chapter presents the Python module—the highest-level program organization unit, which p
program code and data for reuse. In concrete terms, modules take the form of Python program
files (and C extensions); clients import modules to use the names they define. Modules are
processed with two new statements and one important built-in function we explore here:

i mport
Lets aclient fetch a module as awhole

from
Allows clients to fetch particular names from a module

rel oad
Provides away to reload a modul€'s code without stopping Python

We introduce module basics in Chapter 1, Getting Started, and you may have been using
module filesin the exercises, so some of this chapter may be areview. But we also flesh out
modul e details we've omitted so far: reloads, module compilation semantics, and so on.
Because modules and classes are redlly just glorified namespaces, we explore namespace
basics here as well, so be sure to read most of this chapter before tackling the next.

Why Use M odules?

Let's start with the obvious first question: why should we care about modules? The short
answer isthat they provide an easy way to organize components into a system. But from an
abstract perspective, modules have at least three roles:

Page 127

Code reuse
Aswe saw in Chapter 1, modules let us save code in files permanently.* Unlike code you
type at the Python interactive prompt (which goes away when you exit Python), code in
module filesis persistent—it can be reloaded and rerun as many times as needed. More to
the point, modules are a place to define names (called attributes) that may be referenced
by external clients.

System namespace partitioning
Modules are aso the highest-level program organization unit in Python. Aswe'll see,
everything "lives' in amodule; code you execute and some objects you create are always
implicitly enclosed by a module. Because of that, modules are a natural tool for grouping
System components.

Implementing shared services or data
From afunctional perspective, modules also come in handy for implementing components
shared across a system, and hence only require a single copy. For instance, if you need to
provide a global data structure that's used by more than one function, you can codeitin a
module that's imported by many clients.

M odule Basics

Python modules are easy to create; they're just files of Python program code, created with your
favorite text editor. Y ou don't need to write specia syntax to tell Python you're making a
module; amost any text file will do. Because Python handles al the details of finding and
loading modules, modules are also easy to use; clients simply import a module or specific
names a modul e defines and use the objects they reference. Here's an overview of the basics:

Creating modules: Python files, C extensions
Modules can actually be coded as either Python files or C extensions. We won't be studying
C extensions in this book, but we'll use afew aong the way. Many of Python's built-in tools
arereally imported C extension modules; to their clients, they look identical to Python file
modules.

Using modules: import, from, reload()
Aswell seein amoment, clients can load modules with either i nport orfrom
statements. By calling ther el oad built-in function, they may also reload a modul€'s code
without stopping programs that use it. Module files can also be run as top-level programs
from the system prompt, as we saw in Chapter 1.

* Until you delete the modulefile, at least.

Page 128

Module search path: PYTHONPATH
Aswe also saw in Chapter 1, Python searches for imported module files by inspecting all
directories listed on the PYTHONPATH environment variable. Y ou can store modules
anywhere, so long as you add all your source directories to this variable.

Definition

Let'slook at asimple example of module basicsin action. To define a module, use your text
editor to type Python code into atext file. Names assigned at the top level of the module
become its attributes (names associated with the module object), and are exported for clientsto
use. For instance, if we typethedef below into afile called modulel.py, we create amodule
with one attribute—the name pr i nt er which happens to be areference to a function object:

def printer(x): # nodul e attribute
print x

A word on filenames: you can call modules just about anything you like, but module filenames
should end in a.py suffix if you plan to import them. Since their names become variablesinside
a Python program without the .py, they should also follow the variable naming rules in Chapter
3, Basic Satements. For instance, a module named if.py won't work, because if is a reserved
word (you'll get a syntax error). When modules are imported, Python maps the internal module
name to an external filename, by adding directory paths in the PYTHONPATH variable to the
front and a .py at the end: a module name IV maps to the externa file <directory-path>/M.py
which stores our code.*

Usage

Clients can use the module file we just wrote by running i npor t or f r o statements. Both
load the module file's code; the chief differenceisthat i mport fetchesthe module as awhole
(so you must qualify to fetch its names out), but f r orr fetches specific names out of the module.
Here are three clients of the module at work:

% pyt hon

>>> jnport nodul el # get nodul e

>>> nodul el. printer('Hello world!") # qualify to get nanmes (nodul e. nane)
Hel | o worl d!

>>> from nodul el inport printer # get an export

* |t can also map to <directory-path>/M.pyc if there's already a compiled version of the module
lying around; more on this later. Dynamically loaded C extension modules are found on
PYTHONPATH too, but that's outside this book's scope.

Page 129
>>> printer (‘'Hello world!") # no need to qualify name
Hel l o worl d!
>>> from nodul el i nport * # get all exports
>>> printer (‘'Hello world!")
Hel l o worl d!

The last example uses a specia form of f r orr when we usea* , we get copies of all the names
assigned at the top-level of the referenced module. In each of the three cases, we wind up
calingthepri nt er function defined in the external module file. And that's it; modules really
are smpleto use. But to give you a better understanding of what really happens when you
define and use modules, let's look at some of their propertiesin more detail.

Module Files Are Namespaces

Modules are probably best understood as places to define names you want visible to the rest of
a system. In Python-speak, modules are a namespace—a place where names are created. And
names that live in amodule are called its attributes. Technically, modul es correspond to files,
and Python creates a module object to contain all the names defined in thefile; but in smple
terms, modules are just namespaces.

So how do files become namespaces? Every name that is assigned avalue at the top level of a
modulefile (i.e., not in afunction body) becomes an attribute of that module. For instance,
given an assgnment statement such as X=1 at the top level of amodul e file M.py, the name X
becomes an attribute of M, which we can refer to from outside the module as M.X. The name X
also becomes a global variable to other code inside M.py, but we need to explain the notion of
module loading and scopes a bit more formally to understand why:

Module statements run on the first import
Thefirst time amodule is imported anywhere in a system, Python creates an empty module
object and executes the statements in the modul e file one after another, from the top of the
file to the bottom.

Top-level assignments create module attributes
During an import, statements at the top-level of the file that assign names (e.g., =, def)
create attributes of the module object; assigned names are stored in the modul€'s
namespace.

Module namespace: attribute dict__, or dir()
M odule namespaces created by imports are dictionaries; they may be accessed through the
built-in__di ct __ attribute associated with module objects and may be inspected with
thedi r function we met in Chapter 1.

Page 130

Modules are a single scope (local is global)
Aswe saw in Chapter 4, Function, names at the top level of amodule follow the same
reference/assignment rules as names in afunction, but the local and global scopes are the
same (or, if you prefer, the LGB rule, without the G). But in modules, the local scope
becomes an attribute dictionary of a module object, after the module has been loaded.
Unlike functions (where the local namespace exists only while the function runs), a module
file's scope becomes a module object's attribute namespace and may be used after the
import.

Let'slook at an example of these ideas. Suppose we create the following module file with our
favorite text editor and call it module2.py:

print 'starting to |oad...

i mport sys
name = 42

def func (): pass

cl ass kl ass: pass
print 'done |oading.'

Thefirst time this module is imported (or run as a program), Python executes its statements
from top to bottom. Some statements create names in the modul€'s namespace as a Sde effect,
but others may do actua work while the import is going on. For instance, the two pr i nt
statementsin this file execute at import time:

>>> j nport nodul e2
starting to | oad..
done | oadi ng.

But once the module is |oaded, its scope becomes an attribute namespace in the module object
we get back from i nmpor t ; we access attributes in the namespace by qualifying them with the
name of the enclosing module:

>>> nodul e2. sys

<nmodul e ' sys' >

>>> nodul e2. nane

42

>>> nodul e2. func, nodul e2. kl ass

(<function func at 765f20>, <class klass at 76df 60>)

Here, sys, nane, f unc, andkl ass were all assigned while the modul€e's statements were
being run, so they're attributes after the import. Well talk about classes in Chapter 6, Classes,
but notice the sys attribute; i nport statements really assign modul e objects to names (more
on thislater). Internally, module namespaces are stored as dictionary objects. In fact, we can
access the namespace

Page 131

dictionary through the module's__di ct ___ attribute; it's just anormal dictionary object, with
the usual methods:

>>> nodul e2. __dict__. keys()
[_file_ ', "name', ' name_ ', 'sys', ' doc_ ', ' builtins__', 'klass',

"func']

The names we assigned in the module file become dictionary keysinternally. Asyou can see,
some of the names in the modul€'s namespace are things Python adds for us; for instance,
__file__ givesthe name of the file the module was loaded from, and __nanme___ givesits
name as known to importers (without the .py extension and directory path).

Name Qualification

Now that you're becoming familiar with modules, we should clarify the notion of name
qualification. In Python, you can access attributes in any object that has attributes, using the
qualification syntax obj ect . at t ri but e. Qualification isreally an expression that returns
the value assigned to an attribute name associated with an object. For example, the expression
nodul e2. sys inthe next-to-last example fetches the value assigned to sy s in nodul e2.
Similarly, if we have abuilt-in list object L, L. append returns the method associated with
thelist.

So what does qualification do to the scope rules we saw in Chapter 4? Nothing, really: it'san
independent concept. When you use qualification to access names, you give Python an explicit
object to fetch from. The LGB rule applies only to bare, unqualified names. Here are the rules:

Smple variables
“ X’ means search for name X in the current scopes (LGB rule)

Qualification
“X. Y" means search for attribute Y in the object X (not in scopes)

Qualification paths
“X. Y. Z" meanslook up nameY in object X, then look up Z in object X. Y

Generality
Quialification works on al objects with attributes: modules, classes, C types, etc.

In Chapter 6, we'll see that qualification means a bit more for classes (it's also the place where
inheritance happens), but in genera, the rules here apply to al namesin Python.

Page 132

Import Model

Asweve seen, qualification is needed only when you usei nport tofetchamoduleasa
whole. When you usethef r ornr statement, you copy names from the module to the importer, so
the imported names are used without qualifying. Here are afew more details on the import
process.

I mports Happen Only Once

One of the most common questions beginners seem to ask when using modulesis. why won't
my imports keep working? The first import works fine, but later imports during an interactive
session (or in a program) seem to have no effect. They're not supposed to, and here's why:

* Modules are loaded and run on thefirst i nport or frorm.
* Running a modul€'s code creates its top-level names.
o Lateri nport andf r orr operations fetch an already loaded module.

Python loads, compiles, and runs code in amodule file only on the first import, on purpose;
since thisis an expensive operation, Python does it just once per process by default. Moreover,
since code in amoduleis usualy executed once, you can useit to initialize variables. For
example:

% cat si npl e. py
print 'hello

spam = 1 # initialize variable

% pyt hon

>>> jnport sinple # first inport: loads and runs file's code
hel | o

>>> sinpl e. span # assignnent nakes an attribute

>>> sinpl e.spam= 2 # change attribute in nodule

>>>

>>> jnport sinple # just fetches already-| oaded nodul e

>>> sinpl e. span # code wasn't rerun: attribute unchanged
2

In thisexample, thepr i nt and = statements run only the first time the module isimported. The
second import doesn't rerun the modul€'s code, but just fetches the aready created module
object in Python's internal modules table. Of course, sometimes you really want a module's
code to be rerun; we'll see how to do it with r el oad in amomen.

import and from Are Assignments

Just likedef , i mport, andf r o are executable statements, not compile-time declarations.
They canbenested ini f tests, appear in function def s, and so on.

Page 133

Imported modules and names aren't available until importing statements run. Moreover,
i mport andf r omr areaso implicit assignments, just likethe def :

* i nport assignsan entire module object to a name.
* f r o assigns one or more names to objects of the same name in another module.

All the things we've aready said about assignment apply to module access too. For instance,
names copied with af r on become references to possibly shared objects; like function
arguments, reassigning a fetched name has no effect on the module it was copied from, but
changing a fetched mutable object can change it in the module it was imported from:*

% cat small. py

x =1

y =[1, 2]

% pyt hon

>>> fromsnall inmport x, y # copy two nanes out

>>> X = 42 # changes local x only

>>> y[0] = 42 # changes shared nutabl e in-place
>>>

>>> jnport small # get nodul e nanme (from doesn't)
>>> smal | . x # small's x is not ny Xx

1

>>> smal |l .y # but we share a changed nutabl e
[42, 2]

Here, we change a shared mutable object we got with the f r o assgnment: namey inthe
importer and importee reference the same list object, so changing it from one place changes it
in the other. Incidentally, notice that we haveto executean i npor t statement after thef r o,
in order to gain access to the module name to quaify it; f r o copies names only in the module
and doesn't assign the module name itself. At least symbolicaly, f r o isequivalent to this
sequence:

i mport nodul e # fetch the nodul e object
namel = nodul e. nanel # copy nanes out by assignment

nane2 = nodul e. nane2

del nodul e # get rid of the nodul e nane

Reloading Modules

At the start of the last section, we noted that a modul€e's code is run only once per process by
default. To force amodul€'s code to be reloaded and rerun, you need to ask Python explicitly to
do so, by caling ther el oad built-in function. In this

* |nfact, for agraphical picture of what from does, flip back to Figure 4-2 (function argument
passing). Just replace caller and function with imported and importer, to see what f r orr assignments
do with references; it's the exact same effect, except that here we're dealing with names in modules,
not functions.

Page 134
section, we'll explore how to user el oad to make your systems more dynamic. In anutshell:
* Imports load and run amodul€'s code only the first time.
» Later imports use the aready |oaded module object without rerunning code.
» Ther el oad function forces an already |oaded modul€e's code to be reloaded and rerun.

Why al the fuss about reloading modules? Ther el oad function alows parts of programs to
be changed without stopping the whole program. With r el oad, the effects of changesin
components can be observed immediately. Reloading doesn't help in every situation, but where
it does, it makes for a much shorter development cycle. For instance, imagine a database
program that must connect to a server on startup; since program changes can be tested
immediately after reloads, you need to connect only once while debugging.*

General Form

Unlikei nport andf r onm:

* r el oad isabuilt-in function in Python, not a statement.
* r el oad is passed an existing module object, not a name.

Becauser el oad expects an object, a module must have been previously imported
successfully before you can reload it. (In fact, if the import was unsuccessful due to a syntax or
other error, you may need to repeat an import before you can reload). Reloading looks like
this:

i mport nodul e # initial inport
Use nodul e. attri butes
now, go change the nmodule file

r el oad(nodul e) # get updated exports
Use nodul e. attributes

Y ou typically import amodule, then change its source code in atext editor and reload. When
you call r el oad, Python rereads the module fil€'s source code and reruns its top-level

statements. But perhaps the most important thing to know about r el oad isthat it changes a
module object in-place; because of that, every reference to a module object is automatically
effected by ar el oad. The details:

* We should note that because Python isinterpreted (more or less), it already getsrid of the
compile/link steps you need to go through to get a C program to run: modules are loaded dynamically,
when imported by a running program. Reloading adds to this, by allowing you to also change parts of
running programs without stopping. We should also note that r el oad currently only works on
modulesywritten in PythonU{"W x"ension modules can be dynamically loaded at runtime too, but
they can't be reloaded. We shoul d finally note that since this book isn't about C modules, we've
probably aready noted too much.

Page 135

reload runs a module file's new code in the modul€'s current namespace
Rerunning a module file's code overwrites its existing namespace, rather than deleting and
recreating it.

Top-level assignmentsin the file replace names with new values
For instance, rerunning adef statement replaces the prior version of the function in the
modul €'s namespace.

Reloads impact all clients that use import to fetch modules
Because clientsthat usei npor t qualify to fetch attributes, they'll find new vauesin the
module efter ar el oad.

Rel oads impacts future from clients only
Clientsthat usef r orr to fetch attributes in the past won't be effected by ar el oad; they'll
still have references to the old objects fetched before ther el oad (we'll say more about
this later).

Example

Here's amore concrete example of r el oad in action. In the following session, we change and
reload a module file without stopping the interactive Python session. Reloads are used in many
other scenarios too (see the next sidebar), but we'll keep things sirple for illustration here.
First, let's write amodule file with the text editor of our choice:

% cat changer. py
nessage = "First version”

def printer():
print nmessage

This module creates and exports two names—one bound to a string, and another to a function.
Now, start the Python interpreter, import the module, and call the function it exports; as you
should know by now, the function prints the value of the global variable message:

% pyt hon

>>> j nport changer
>>> changer.printer()
First version

>>>

Next, let's keep the interpreter active and edit the module file in another window; here, we
change the global nessage variable, aswell asthe pri nt er function body:

Modify changer.py without stopping Python

% vi changer. py
% cat changer. py

Page 136

nessage = "After editing"

def printer():
print 'rel oaded:', nessage

Finally, we come back to the Python window and reload the module to fetch the new code we
just changed. Notice that importing the module again has no effect; we get the original message
even though the file's been changed. We haveto call r el oad in order to get the new version:

Back to the Python inter preter/program

>>> j nport changer
>>> changer.printer() # no effect: uses | oaded nodul e
First version

>>> rel oad(changer) # forces new code to | oad/run
<nmodul e ' changer' >
>>> changer. printer() # runs the new versi on now

rel oaded: After editing

Noticethat r el oad actually returns the module object for us; its result is usually ignored, but
since expression results are printed at the interactive prompt, Python shows us a default
<nmodul e namne> representation.

Why You Will Care: Module Reloads

Besides allowing you to reload (and hence rerun) modules at the interactive prompt,
module reloads are also useful in larger systems, especially when the cost of restarting
the entire application is prohibitive. For instance, systems that must connect to servers
over anetwork on startup are prime candidates for dynamic reloads.

They're aso useful in GUI work (awidget's callback action can be changed while the
GUI remains active) and when Python is used as an embedded languagein aC or C++
program (the enclosing program can request areload of the Python code it runs, without
having to stop). See Programming Python for more on reloading GUI callbacks and
embedded Python code.

Odds and Ends

In this section, we introduce a few module-related ideas that seem important enough to stand on

their own (or obscure enough to defy our organizational skills).

Page 137
Module Compilation Model

As currently implemented, the Python system is often called an interpreter, but it'sreally
somewhere between a classic interpreter and compiler. Asin Java, Python programs are
compiled to an intermediate form called bytecode, which is then executed on something called
avirtual machine. Since the Python virtual machine interprets the bytecode form, we can get
away with saying that Python isinterpreted, but it still goes through a compile phase first.

Luckily, the compile step is completely automated and hidden in Python. Python programmers
simply import modules and use the names they define; Python takes care to automatically
compile modules to bytecode when they are first imported. Moreover, Python triesto save a
modul€'s bytecode in afile, so it can avoid recompiling in the future if the source code hasn't
been changed. In effect, Python comes with an automatic make system to manage recompiles.*

Here's how thisworks. Y ou may have noticed .pyc filesin your module directories after
running programs; these are the files Python generates to save a modul€e's bytecode (provided
you have write access to source directories). When amodule M isimported, Python loads a
M.pyc bytecode file instead of the corresponding M.py source file, aslong asthe M.py file
hasn't been changed since the M.pyc bytecode was saved. If you change the source code file (or
delete the .pyc), Python is smart enough to recompile the module when imported; if not, the
saved bytecode files make your program start quicker by avoiding recompiles at runtime.

Data Hiding | sa Convention

Aswe've seen, Python modules export al names assigned at the top level of their file. Thereis
no notion of declaring which names should and shouldn't be visible outside the module. In fact,
there's no way to prevent a client from changing names inside @ module if they want to.

In Python, data hiding in modules is a convention, not a syntactical constraint. If you want to
break amodule by trashing its names, you can (though we have yet to meet a programmer who
would want to). Some purists object to this liberal attitude towards data hiding and claim that it
means Python can't implement encapsulation. We disagree (and doubt we could convince
purists of anything in any event). Encapsulation in Python is more about packaging, than
restricting.*

* For readers who have never used C or C++, amake system is away to automate compiling and
linking programs. make systems typically use file modification dates to know when afile must be
recompiled (just like Python).

** Purists would probably aso be horrified by the rogue C++ programmer who types#def i ne
privat e publ i ¢ to break C++'s hiding mechanism in asingle blow. But then those are rogue
programmers for you.

Page 138

Why You Will Care: Shipping Options

Incidentally, compiled .pyc bytecode files also happen to be one way to ship a system
without source code. Python happily loads a .pyc fileif it can't find a .py sourcefile for
amodule on its module search path, so al you really need to ship to customers are the
.pyc files. Moreover, since Python bytecode is portable, you can usualy run a.pyc file
on multiple platforms. To force pre-compilation into .pycfiles, simply import your
modules (also seetheconpi | eal | utility module).

It's also possible to "freeze" Python programsinto a C executable; the standard

f r eeze tool packages your program's compiled byte code, any Python utilities it uses,
and as much of the C code of the Python interpreter as needed to run your program. It
produces a C program, which you compile with a generated makefile to produce a
standal one executable program. The executable works the same as the Python files of
your program. Frozen executables don't require a Python interpreter to be installed on
the target machine and may start up faster; on the other hand, since the bulk of the
interpreter isincluded, they aren't small. A similar tool, squeeze, packages Python
bytecode in a Python program; search Python's web site for details.

Asaspecia case, prefixing names with an underscore (e.g., _X) prevents them from being
copied out when a client importswith af r ont statement. Thisreally isintended only to
minimize namespace pollution; sincef r ont copies out all names, you may get nmore than you
bargained for (including names which overwrite names in the importer). But underscores aren't
"private” declarations: you can still see and change such names with other i mport forms.

Mixed Modes: __name__and _main__

Here's a specia module-related trick that lets you both import a module from clients and run it
as a standalone program. Each module has a built-in attribute called __nane__, which Python
sets as follows:

o If thefileisbeingrunasaprogram, __nanme__ issettothestring __mai n__ whenit garts
o If thefileisbeing imported, _nane__ isset to the module's name as known by its clients

The upshot isthat amodule cantestitsown __nane__ to determine whether it's being run or
imported. For example, suppose we create the module file below, to export a single function
caledtester:

def tester() :
print "It's Christmas in Heaven..

Page 139

if nane_ =="'_main_': # only when run

tester() # not when inported

This module defines a function for clients to import and use as usudl:

% pyt hon

>>> jnport runme

>>> runne. tester()

It's Christmas in Heaven...

But the module also includes code at the bottom that is set up to call the function when thisfile
isrun as a program:

%pyt hon runme. py
It's Christmas in Heaven...

Perhaps the most common placeyou'll seethe _nmai n__ test applied isfor self-test code:
you can package code that tests a modul€e's exports in the module itself by wrappingitina
__mai n___ test at the bottom. Thisway, you can usethefilein clientsand test itslogic by
running it from the system shell.

Changing the Module Search Path

We've mentioned that the module search path isalist of directoriesin environment variable
PYTHONPATH. What we haven't told you is that a Python program can actually change the
search path, by assigning to abuilt-in list called sys. pat h (the pat h attribute in the built-in
sys module). sys. pat hisinitialized from PYTHONPATH (plus compiled-in defaults) on
startup, but thereafter, you can delete, append, and reset its components however you like:

>>> j nport sys
>>> sys. path

[".", "c:\\pythonm\\lib', "c:\\pythonm\\lib\\tkinter']
>>> sys.path = ["."] # change nodul e search path
>>> sys. pat h. append(' c:\\ book\\ exanpl es') # escape backl ashes as "\\"

>>> sys. path
[".", "c:\\book\\exanpl es']

>>> jnport string
Traceback (innernost |ast):
File "<stdin>", line 1, in?
I nport Error: No nodul e naned string

Y ou can use thisto dynamically configure a search path inside a Python program. Be careful,
though; if you delete a critical directory from the path, you may lose accessto critical utilities.
In the last command above, for example, we no longer have accessto the st ri ng module,
since we deleted the Python source library's directory from the path.

Page 140
Module Packages (New in 1.5)

Packages are an advanced tool, and we debated whether to cover them in this book. But since
you may run across them in other peopl€e's code, here's a quick overview of their machinery.

In short, Python packages allow you to import modules using directory paths; qualified names
ini npor t statements reflect the directory structure on your machine. For instance, if some

module C livesin adirectory B, whichisin turn a subdirectory of directory A, you can say
i nport A. B. Ctoload the module. Only directory A needs to be found in adirectory listed
in the PYTHONPATH variable, since the path from A to C is given by qualification.

Packages come in handy when integrating systems written by independent developers; by
storing each system's set of modules in its own subdirectory, we can reduce the risk of name
clashes. For instance, if each developer writes a module called spam.py, there's no telling
which will be found on PYTHONPATH first if package qualifier paths aren't used. If another
subsystem's directory appears on PYTHONPATH first, a subsystem may see the wrong one.

Again, if you're new to Python, make sure that you've mastered simple modules before stepping
up to packages. Packages are more complex than we've described here; for instance, each
directory used asapackagemust includea__i nit __ . py moduleto identify itself as such.
See Python's reference manuals for the whole story.

Why You Will Care: Module Packages

Now that packages are a standard part of Python, you're likely to start seeing
third-party extensions shipped as a set of package directories, rather than aflat list of
modules. The PythonWin port of Python for MS-Windows was one of the first to jump
on the package bandwagon. Many of its utility modules reside in packages, which you
import with qualification paths; for instance, to load client-side COM tools, we say:

from win32com.client import constants, Dispatch

whi ch fetches nanmes fromthe client moduleof the PythonWin
Wi n32corm package (an install directory). We'll see more about COM in Chapter 10,
Frameworks and Applications.

Page 141

Module Design Concepts

Like functions, modules present design tradeoffs: deciding which functions go in which
module, module communication mechanisms, and so on. Here too, it's abigger topic than this
book allows, so we'll just touch on afew general ideas that will become clearer when you start
writing bigger Python systems:

You're alwaysin a module in Python
There's no way to write code that doesn't live in some module. In fact, code typed at the
interactive prompt really goesin abuilt-inmodulecaled __ mai n__.

Minimize module coupling: global variables
Like functions, modules work best if they're written to be closed boxes. As arule of thumb,
they should be as independent of global names in other modules as possible.

Maximize module cohesion: unified purpose
Y ou can minimize amodul€'s couplings by maximizing its cohesion; if al the components
of amodule shareits general purpose, you're less likely to depend on external names.

Modules should rarely change other modules' variables
It's perfectly okay to use globals defined in another module (that's how clients import
services, after al), but changing globals in another module is usually a symptom of a design
problem. There are exceptions of course, but you should try to communicate results through
devices such as function return values, not cross-module changes.

Modules Are Objects. Metaprograms

Finally, because modules expose most of their interesting properties as built-in attributes, it's
easy to write programs that manage other programs. We usually call such manager programs
metaprograms, because they work on top of other systems. Thisisaso referred to as
introspection, because programs can see and process object internals.

For instance, to get to an attribute called nane in amodule called v, we can either use
qualification, or index the modul€'s attribute dictionary exposed inthe built-in __di ct
attribute. Further, Python also exports the list of all loaded modules asthe sys. nodul es
dictionary (that is, the nodul es attribute of the sys module), and provides a built-in called
get at t r that lets us fetch attributes from their string names. Because of that, all the following
expressions reach the same attribute and object:

M nane # qualify object

M __dict__ ['nane'] # i ndex nanespace dictionary manual |y
sys. nmodul es[' M]. nane # index | oaded-nodul es tabl e manual |y
getattr(M 'nane') # call built-in fetch function

Page 142

By exposing module internals like this, Python helps you build programs about programs.* For
example, hereis amodule that puts these ideas to work, to implement a customized version of
thebuilt-in di r function. It defines and exports afunction called | i st i ng, which takesa
module object as an argument and prints a formatted listing of the module's namespace:

a nodul e that |ists the nanespaces of other nodul es
verbose = 1

def listing(nodule):

i f verbose:
print "-"*30
print "name:", nodule.___ name__, "“file:", module. _file__
print "-"*30
count = 0
for attr in nmodule. dict__.keys (): # scan nanespace
print "9%92d) % % (count, attr),
if attr[0:2] == "--":
print "<built-in name>" # skip file_ , etc
el se:
print getattr(nodul e, attr) # sane as .__dict_[attr]

count = count +1

i f verbose:
print "-"*30

print nodul e. __nanme, "has %l nanes" % count

print "-"*30
if _npane__ =="_main__
i mport nydir
l'isting(nydir) # self-test code: list nyself

We've also provided self-test logic at the bottom of this module, which narcissistically imports
and listsitself. Here's the sort of output produced:

C:\ pyt hon> pyt hon nydir. py

name: nydir file: nydir.py

00) file_ <built-in name>

01) _ name__ <built-in name>

02) listing <function listing at 885450>
03) doc__ <built-in name>

04) __builtins__ <built-in nane>

* Notice that because afunction can access its enclosing module by going through the

sys. nodul es tablelikethis, it's possible to emulate the effect of thegl obal statement we
met in Chapter 4. For instance, the effect of gl obal X; X=0 can be simulated by saying, inside a
function: i nport sys; gl ob=sys.nodules [__nanme__] ; gl ob. X=0 (albeit with much
more typing). Remember, each module getsa___name___ attribute for free; it'svisible asaglobal
name inside functions within amodule. Thistrick provides away to change both local and global
variables of the same name, inside afunction.

Page 143

05) verbose 1

WEIl meet get at t r and itsrelatives again. The point to notice hereisthat nydi r isa
program that lets you browse other programs. Because Python exposesitsinternals, you can
process objects generically.*

M odule Gotchas

Finally, hereisthe usual collection of boundary cases, which make life interesting for
beginners. Some are so obscure it was hard to come up with examples, but most illustrate
something important about Python.

I mporting Modules by Name String

Aswe've seen, the module nameinani nport or f r on statement is a hardcoded variable
name; you can't use these statements directly to load a module given its name as a Python string.
For instance:

>>> jnport "string"
File "<stdin>", line 1
i mport "string"

SyntaxError: invalid syntax
Solution

Y ou need to use special toolsto load modules dynamically, from a string that exists at runtime.
The most general approach isto construct an i nmpor t statement as a string of Python code and
passit to the exec statement to run:

>>> npodnane = "string"
>>> exec "inport " + nodnane # run a string of code
>>> string # inmported in this namespace

<nmodul e 'string' >

The exec statement (and its cousin, theeval function) compilesastring of code, and passes
it to the Python interpreter to be executed. In Python, the bytecode compiler is available at
runtime, so you can write programs that construct and run other programs like this. By defaullt,
exec runsthe codein the current scope, but

* By theway, toolssuch asmnydi r. | i sting canbe preloaded into the interactive namespace, by

importing them in the file referenced by the PYTHONSTARTUP environment variable. Since codein
the startup file runsin the interactive namespace (module___nmai n__), imports of common toolsin
the startup file can save you some typing. See Chapter 1 for more details.

Page 144

you can get more specific by passing in optional namespace dictionaries. We'll say more about
these tools later in this book.

The only real drawback to exec isthat it must compilethei nport statement each timeit
runs, if it runs many times, you might be better off using the built-in __i nport __ function to
load from aname string instead. The effect issimilar, but __i nport __ returnsthe module
object, so we assign it to a name here:

>>> npodnane = "string"

>>> string = __inmport__(nmodnane)
>>> string

<modul e 'string' >

from Copies Names but Doesn't Link

Earlier, we mentioned that the f r o statement isreally an assignment to namesin the
importer's scope—a name-copy operation, not a name aiasing. The implications of this are the
same as for al assgnments in Python, but subtle, especialy given that the code that shares
objectslivesin different files. For instance, suppose we defineamodule nest edl as
follows:

X =99
def printer(): print X

Now, if we import itstwo names using f r on in another module, we get copies of those names,
not links to them. Changing a name in the importer resets only the binding of the local version
of that name, not the namein nest ed1:

fromnestedl inport X, printer # copy nanes out

X = 88 # changes ny "X' only!
printer() # nestedl's X is still 99
% pyt hon nest ed2. py

99

Solution

On the other hand, if you usei npor t to get the whole module and assign to a qualified name,
you changethenamein nest ed1. Qualification directs Python to a name in the module object,
rather than a name in the importer:

i nport nestedl # get nodul e as a whol e
nestedl. X = 88 # okay: change nestedl's X
nestedl. printer()

% pyt hon nest ed3. py

88

Page 145
Statement Order Mattersin Top-Level Code

Aswe aso saw earlier, when amoduleisfirst imported (or reloaded), Python executesits
statements one by one, from the top of file to the bottom. This has afew subtle implications
regarding forward references that are worth underscoring here:

* Code at the top level of amodule file (not nested in afunction) runs as soon as Python
reaches it during an import; because of that, it can't reference names assigned lower in thefile.

* Code inside afunction body doesn't run until the function is called; because namesin a
function aren't resolved until the function actually runs, they can usually reference names
anywherein thefile.

In genera, forward references are only a concern in top-level module code that executes
immediately; functions can reference names arbitrarily. Here's an example that illustrates
forward reference dos and don'ts:

funcl() # error: "funcl" not yet assigned

def funcl():
print func2() # okay: "func2" |ooked up later

funcl() # error: "func2" not yet assigned

def func2():
return "Hel |l o"

funcl() # okay: "funcl" and "func2" assigned

When thisfileisimported (or run as a standalone program), Python executes its statements
from top to bottom. Thefirst call tof unc1 fails becausethef uncl def hasn't runyet. The
cal tof unc2 insidef uncl worksaslong asf unc2'sdef has been reached by thetime
funcl iscaled (it hasn't when the second top-level f uncl call isrun). Thelast call to

f uncl at the bottom of the file works, because f unc1 and f unc2 have both been assigned.

Solution

Don't do that. Mixing def s with top-level code is not only hard to read, it's dependent on
statement ordering. Asarule of thumb, if you need to mix immediate code with def s, put your
def s at thetop of the file and top-level code at the bottom. That way, your functions are
defined and assigned by the time code that uses them runs.

Page 146
Recursive " from" Imports May Not Work

Because imports execute afile's statements from top to bottom, we sometimes need to be
careful when using modules that import each other (something called recursive imports). Since
the statements in a module have not al been run when it imports another module, some of its
names may not yet exist. If you usei nport to fetch amodule as awhole, this may or may not
matter; the modul€e's names won't be accessed until you later use qualification to fetch their
values. But if you usef r orr to fetch specific names, you only have access to names aready
assigned.

For instance, take the following modulesr ecur 1 andr ecur 2. r ecur 1 assignsaname X,
and then importsr ecur 2, before assigning name Y. At thispoint, r ecur 2 canfetchr ecur 1
asawholewith ani nmport (it aready existsin Python'sinternal modules table), but it can see
only name X if it usesf r om; thename Y below thei nport inrecur 1 doesn't yet exist, so
you get an error:

module recur 1.py

X=1
i mport recur?2 # run recur2 now i f doesn't exist
Y =2

module recur2.py

fromrecurl inport X # okay: "X' already assigned
fromrecurl inport Y # error: "Y' not yet assigned

>>> jnport recurl
Traceback (innernost |ast):

File "<stdin>", line 1, in ?
File "recurl.py", line 2, in

i mport recur?2
File "recur2.py", line 2, in ?

fromrecurl inport Y # error: "Y' not yet assigned
| nport Error: cannot inport nane Y

Python is smart enough to avoid rerunning r ecur 1's statements when they are imported
recursively from r ecur 2 (or else the imports would send the script into an infinite loop), but
r ecur 1's namespace is incomplete when imported by r ecur 2.

Solutions

Don't do that...really! Python won't get stuck in acycle, but your programs will once again be
dependent on the order of statements in modules. There are two ways out of this gotcha:

* You can usually eliminate import cycles like this by careful design; maximizing cohesion and

minimizing coupling are good first steps.

Page 147

* If you can't break the cycles completely, postpone module name access by using i nport and
qualification (instead of f r orr), or running your f r ons inside functions (instead of at the top
level of the module).

reload May Not | mpact from I mports

Thef r on statement is the source of al sorts of gotchasin Python. Here's another: because

f r o copies (assigns) names when run, there's no link back to the module where the names
came from. Names imported with f r orr ssimply become references to objects, wkich happen to
have been referenced by the same namesin the importee when the f r orr ran. Because of this
behavior, reloading the importee has no effect on clientsthat use f r orr; the client's names still
reference the objects fetched with f r o, even though names in the original module have been
reset:

fromnodul e inport X # X may not reflect any nodul e rel oads!
r el oad(nodul e) # changes nodul e, not ny nanes
X # still references ol d object

Solution

Don't do it that way. To make reloads more effective, usei npor t and name qualification,
instead of f r on. Because qualifications aways go back to the module, they will find the new
bindings of module names after calling r el oad:

i mport nodul e # get nodul e, not nanes
r el oad(nodul e) # changes nodul e in-pl ace
nodul e. X # get current X reflects nodul e rel oads

reload Isn't Applied Transitively

When you reload a module, Python only reloads that particular modul€e'sfile; it doesn't
automatically reload modules that the file being rel oaded happens to import. For example, if
we reload some module A, and A imports modules B and C, the reload only appliesto A, not B
and C. The statementsinside A that import B and C are rerun during the reload, but they'll just
fetch the already loaded B and C module objects (assuming they've been imported before):

% cat A. py

i nport B # not rel oaded when A is

i nport C # just an inmport of an already | oaded nodul e
Ypyt hon

>>> |,

>>> rel oad(A)

Page 148

Solution

Don't depend on that. Use multipler el oad calls to update subcomponents independently. If
desired, you can design your systems to reload their subcomponents automatically by adding
r el oad calsin parent moduleslike A. *

Summary

We've learned al about modules in this chapter—how to write them and how to use them.
Along the way we explored namespaces and qualification, saw how to reload modules to
change running programs, peeked at a few module design issues, and studied the

modul e-related statements and functions listed in Table 5-1. In the next chapter, we're going to
move on to study Python classes. Aswe'll see, classes are cousins to modules; they define
namespaces too, but add support for making multiple copies, specialization by inheritance, and
more.

Table 5-1. Module Operations

Operation Interpretation

i nport nod Fetch amodule asawhole

fromnod inport name Fetch a specific name from amodule
fromnod inport* Fetch all top-level names from amodule
r el oad(nod) Force areload of aloaded modul€'s code
Exercises

1. Basics, import. With your favorite text editor, write a Python module called mymod.py,
which exports three top-level names:

— A count Li nes (nane) function that reads an input file and counts the number of
linesinit (hint: fil e. readl i nes() doesmost of thework for you)

— A count Char s(nane) function that reads an input file and counts the number of
charactersinit (hint: fi | e. read() returnsasingle string)

— At est (nane) function that calls both counting functions with a given input filename

A filename string should be passed into all three mynod functions. Now, test your module
interactively, using i npor t and name qualification to fetch your exports. Does your
PYTHONPATH include the directory where you created mymod.py? Try running your modul e
onitsef: eg.,test (“nynod. py”) . Note

* You could also write agenera tool to do transitive reloads automatically, by scanning
module__di ct __ s(seethe section "Modules Are Objects: Metaprograms'), and checking each
item'st ype() tofind nested modulesto reload recursively. Thisis an advanced exercise for the
ambitious.

Page 149

that t est opensthefiletwice; if you're feeling ambitious, you might be able to improve this
by passing an open file object into the two count functions.

2. from/from. Test your my nod module from Exercise 1 interactively, by using from to load
the exports directly, first by name, then using thef r on* variant to fetch everything.

3. _main__. Now, add alinein your mynod module that callsthet est function
automatically only when the module isrun asascript. Try running your module from the system
command line; then import the module and test its functions interactively. Does it still work in
both modes?

4. Nested imports. Finally, write a second module, myclient.py, which imports ny nod and
testsits functions; run myclient from the system command line. If myclient usesf r onr to fetch
from mymod, will mymod's functions be accessible from the top level of myclient? What if it
importswith i nport instead? Try coding both variationsin myclient and test interactively,
by importing myclient and inspectingits__di ct __.

5. Reload. Experiment with module reloads. perform the tests in the changer.py example,
changing the called function's message and/or behavior repeatedly, without stopping the Python
interpreter. Depending on your system, you might be able to edit changer in another window,
or suspend the Python interpreter and edit in the same window (on Unix, a Ctrl-Z key
combination usually suspends the current process, and af g command later resumesit).

6. Circular imports (and other acts of cruelty).* In the section on recursive import gotchas,
importing r ecur 1 raised an error. But if we restart Python and import r ecur 2 interactively,
the error doesn't occur: test and see this for yourself. Why do you think it works to import
recur 2, but not r ecur 1? (Hint: Python stores new modulesin the built-in sys. nodul es
table (adictionary) before running their code; later imports fetch the module from this table
first, whether the module is"complete” yet or not.) Now try running r ecur 1 as a script:

% pyt hon recur 1. py. Do you get the same error that occurswhen r ecur 1 isimported
interactively? Why? (Hint: when modules are run as programs they aren't imported, so this case
has the same effect asimporting r ecur 2 interactively; r ecur 2 isthe first module imported.)
What happenswhen you run r ecur 2 asascript?

* We should note that circular imports are extremely rarein practice. In fact, we have never coded or
come across acircular import in six years of Python coding—except on the Internet (where such
things receive an inordinate amount of attention), and when writing books like this. On the other hand,
if you can understand why it's a potential problem, you know alaot about Python's import semantics.

Page 150

Classes

In this chapter:
» Why Use Classes?
* Class Basics

» Using the Class
Statement

* | nheritance
Searches
Namespace Trees

* Operator
Overloading in
Classes

* Namespace Rules:
The Whole Story

* Designing with
Classes

* Odds and Ends
¢ Class Gotchas
e Summary

» Exercises

This chapter explores the Python class—a device used to implement new kinds of objectsin
Python. Classes are Python's main object-oriented programming (OOP) tool, so we'll also look
at OOP basics aong the way in this chapter. In Python, classes are created with a new
statement we'll meet here too: the class statement. Aswelll see, objects defined with classes
can look alot like the built-in types we saw earlier in the book.

One note up front: Python OOP is entirely optional, and you don't need to use classesjust to get
started. In fact, you can get plenty of work done with smpler constructs such as functions. But
classes turn out to be one of the most useful tools Python provides, and we hope to show you
why here. They're a'so employed in popular Python tools like the Tkinter GUI API, so most
Python programmers will usualy find at least a working knowledge of class basics helpful.

Why Use Classes?

Remember when we told you that programs do things with stuff? In simple terms, classes are
just away to define new sorts of stuff, which reflect real objectsin your program's domain. For
instance, suppose we've decided to implement that hypotheti-

Page 151

cal pizza-making robot we used as an example in Chapter 4, Functions. If we implement it
using classes, we can model more of its real-world structure and relationships:

Inheritance
Pizza-making robots are akind of robot, and so posses the usual robot-y properties. In OOP
terms, we say they inherit properties from the general category of al robots. These common
properties need be implemented only once for the general case and reused by all types of
robots we may build in the future.

Composition
Pizza-making robots are redly collections of components that work together as ateam. For
instance, for our robot to be successful, it might need armsto roll dough, motors to
maneuver to the oven, and so on. In OOP parlance, our robot is an example of composition;
it contains other objectsit activates to do its bidding. Each component might be coded as a
class, which definesits own behavior and relationships.

Of course, most of us aren't getting paid to build pizza-making robots yet, but general OOP
ideas like inheritance and composition apply to any application that can be decomposed into a
set of objects. For example, in typical GUI systems, interfaces are written as collections of
widgets (buttons, labels, and so on), which are all drawn when their container is
(composition). Moreover, we may be able to write our own custom widgets, which are
specialized versions of more general interface devices (inheritance).

From a more concrete programming perspective, classes are a Python program unit, just like
functions and modules. They are another compartment for packaging logic and data. In fact,
classes also define a new namespace much like modules. But compared to other program units
we've already seen, classes have three critical distinctions that make them more useful when it
comes to building new objects:

Multiple instances
Classes are roughly templates for generating one or more objects. Every time we call a
class, we generate a new object, with a distinct namespace. Aswe'll see, each object
generated from a class has access to the class's attributes and gets a namespace of its own
for data that varies per object.

Customization via inheritance
Classes also support the OOP notion of inheritance; they are extended by overriding their
attributes outside the classitself. More generally, classes can build up namespace
hierarchies, which define names to be used by objects created from classes in the
hierarchy.

Page 152

Operator overloading
By providing specia protocol methods, classes can define objects that respond to the sorts
of operations we saw work on built-in types. For instance, objects made with classes can
be dliced, concatenated, indexed, and so on. Aswelll see, Python provides hooks classes
can use to intercept any built-in type operation.

Class Basics

If you've never been exposed to OOP in the past, classes can be somewhat complicated if taken
in asingle dose. To make classes easier to absorb, let's start off by taking aquick first look at
classesin action here, to illustrate the three distinctions described previously. We'll expand on
the details in amoment; but in their basic form, Python classes are easy to understand.

Classes Generate Multiple | nstance Objects

Aswe mentioned at the end of Chapter 5, Modules, classes are mostly just a namespace, much
like modules. But unlike modules, classes also have support for multiple copies, namespace
inheritance, and operator overloading. Let'slook at the first of these extensions here.

To understand how the multiple copies idea works, you have to first understand that there are
two kinds of objectsin Python's OOP model—class objects and instance objects. Class objects
provide default behavior and serve as generators for instance objects. Instance objects are the
real objects your programs process; each is a hamespace in its own right, but inherits (i.e., has
access to) namesin the class it was created from. Class objects come from statements and
instances from calls; each time you call aclass, you get a new instance. Now, pay attention,
because we're about to summarize the bare essentials of Python OOP.

Class objects provide default behavior

The class statement creates a class object and assignsit a name
Likedef , the Python cl ass statement is an executable statement; when run, it generates a
new class object and assignsit the nameinthecl ass header.

Assignments inside class statements make class attributes
Like modules, assgnmentsinacl ass statement generate attributes in a class object; class
attributes are accessed by name qualification (obj ect . nane).

Class attributes export object state and behavior
Attributes of a class object record state information and behavior, to be shared by all
instances created from the class; function def statementsinsideacl| ass generate
methods, which process instances.

Page 153
I nstance objects are generated from classes

Calling a class object like a function makes a new instance object
Eachtimeaclassiscalled, it generates and returns a new instance object.

Each instance object inherits class attributes and gets its own namespace
Instance objects generated from classes are new namespaces, they start out empty, but
inherit attributes that live in the class object they were generated from.

Assignments to self in methods make per -instance attributes
Inside class method functions, the first argument (called sel f by convention) references
the instance object being processed; assignments to attributes of self create or change data
in the instance, not the class.

An example

Apart from afew details, that's all thereisto OOP in Python. Let'sturn to areal example to
show how these ideas work in practice. First, let'sdefineaclasscalled Fi r st C ass, using
the Python cl ass statement:

>>> cl ass Firstd ass: # define a class object
def setdata(self, value): # define class nethods
sel f.data = val ue # self is the instance
def display(self):
print self.data # self.data: per instance

Like all compound statements, class starts with a header line that lists the class name, followed
by abody of one or more nested and indented statements. Here, the nested statements are

def s; they define functions that implement the behavior the class means to export. Aswe've
seen, def isan assignment; here, it assignsto namesinthecl ass statement's scope and so
generates attributes of the class. Functionsinside a class are usually called method functions;
they're normal def s, but the first argument automatically receives an implied instance object
when called. We need a couple of instances to see how:

>>> X
>>> y

Firstd ass() # nmake two instances
Firstd ass() # each is a new nanespace

By calling the class as we do, we generate instance objects, which are just namespaces that get
the class's attributes for free. Properly speaking, at this point we have three objects—two
instances and a class; but really, we have three linked namespaces, as sketched in Figure 6-1.
In OOPterms, we say that X isaFi r st Cl ass, asisy. Theinstances start empty, but have
links back to the class; if we quaify an instance with the name of an attribute in the class
object, Python fetches the name from the class (unlessiit also lives in the instance):

>>> x.setdata("King Arthur") # call methods: self is x or y
>>> y. set dat a(3. 14159) # runs: Firstd ass.setdata(y, 3.14159)

Page 154

Neither x nor y hasaset dat a of its own; instead, Python follows the link from instance to
classif an attribute doesn't exist in an instance. And that's about al there isto inheritance in
Python: it happens at attribute qualification time, and just involves looking up namesin linked
objects (by following thei s- a linksin Figure 6-1).

Intheset dat a functionin Fi r st Cl ass, thevalue passedinisassignedtosel f . dat a;
within amethod, sel f automatically refersto the instance being processed (x or y), so the
assignments store values in the instances namespaces, not the class (that's how the dat a
names in Figure 6-1 get created). Since classes generate multiple instances, methods must go
through thesel f argument to get to the instance to be processed. When we call the class's

di spl ay method to print sel f . dat a, we seethat it's different in each instance; on the other
hand, di spl ay isthesamein x andy, sinceit comes (isinherited) from the class:

>>> x. di spl ay() # self.data differs in each
Ki ng Arthur

>>> y. di splay()

3. 14159

Notice that we stored different object typesin the dat a member (astring and afloat). Like
everything else in Python, there are no declarations for instance attributes (sometimes called
members); they spring into existence the first time they are assigned avalue, just like ssimple
variables. In fact, we can change instance attributes either in the class itself by assigning to
sel f in methods, or outside the class by assigning to an explicit instance object:

>>> x.data = "New val ue" # can get/set attributes
>>> x. di spl ay() # outside the class too
New val ue
I 5
- data FirstClass
- setdata
Y S - display
= data
Figure 6-1.

Classes and instances are linked namespace objects
Classes Are Specialized by Inheritance

Unlike modules, classes also allow us to make changes by introducing new components
(subclasses), instead of changing existing components in place. We've aready seen that
instance objects generated from a class inherit its attributes.

Page 155

Python aso allows classes to inherit from other classes, and this opens the door to what are
usually called frameworks—hierarchies of classes that specialize behavior by overriding
attributes lower in the hierarchy. The key ideas behind this machinery are:

Superclasses are listed in parentheses in a class header
To inherit attributes from another class, just list the class in parenthesesin aclass
statement's header. The class that inheritsis called a subclass, and the class that is
inherited from is its superclass.

Classes inherit attributes from their superclasses
Just like instances, a class gets all the names defined in its superclasses for free; they're
found by Python automatically when qualified, if they don't exist in the subclass.

Instances inherit attributes from all accessible classes
Instances get names from the class they are generated from, as well as all of the class's
superclasses; when looking for a name, Python checks the instance, then its class, then all
superclasses above.

Logic changes are made by subclassing, not by changing superclasses
By redefining superclass names in subclasses, subclasses override inherited behavior.

An example

Our next example builds on the one before. Let's define anew class, Secondd ass, which
inheritsall of Fi r st Gl ass' s names and provides one of its own:

>>> cl ass Secondd ass(Firstd ass): # inherits setdata
def display(self): # changes di spl ay
print 'Current value = "%"' %self.data

Secondd ass redefines the display method to print with a different format. But because
Secondd ass defines an attribute of the same name, it replacesthe di spl ay attributein
Fi r st A ass. Inheritance works by searching up from instances, to subclasses, to
superclasses, and stops at the first appearance of an attribute name it finds. Since it finds the
di spl ay namein SecondC ass beforetheonein Fi r st G ass, we say that
Secondd ass overridesFi r st Cl ass' s di spl ay. Inother words, SecondCl ass
specializesFi r st G ass, by changing the behavior of thedi spl ay method. On the other
hand, SecondCl ass (and instances created from it) still inheritsthe set dat a method in
Fi r st C ass verbatim. Figure 6-2 sketches the namespaces involved; |et's make an instance
to demonstrate:

>>> z = Secondd ass()

>>> z.setdata(42) # setdata found in Firstd ass
>>> z.display() # finds overridden nethod in Secondd ass
Current value = "42"

Page 156

As before, we make aSecondC ass instance object by calling it. The setdata call still runs
theversonin Fi r st O ass, but thistimethedi spl ay attribute comes from

Secondd ass and prints a different message. Now here's avery important thing to notice
about OOP: the speciaization introduced in SecondCl ass iscompletely externa to

Fi rst d ass; it doesn't effect existing or future Fi r st C ass objects, like x from the prior
example:

>>> x. di splay() # x is still a Firstdass instance (old nessage
New val ue

Naturaly, thisisan artificial example, but as arule, because changes can be made in externa
components (subclasses), classes often support extension and reuse better than functions or
modules do.

FirstClass

3 - setdato
SecondClass - display

- display

Z (instance)
el ol e At e e

Figure 6-2.
Specidization by overriding inherited names

Classes Can | ntercept Python Operators

Finally, let's take a quick look at the third major property of classes. operator overloading in
action. In smple terms, operator overloading lets objects we implement with classes respond
to operations we've aready seen work on built-in types: addition, dicing, printing,
qualification, and so on. Although we could implement all our objects behavior as method
functions, operator overloading lets our objects be more tightly integrated with Python's object
model. Moreover, because operator overloading makes our own objects act like built-ins, it
tends to foster object interfaces that are more consistent and easy to learn. The main ideas are:

Methods with namessuchas X are special hooks
Python operator overloading isimplemented by providing specially named methods to
intercept operations.

Page 157

Such methods are called automatically when Python evaluates operators
For instance, if an object inheritsan __add___ method, it is called when the object
appearsin a+ expression.

Classes may override most built-in type operations
There are dozens of special operator method names for catching nearly every built-in type
operation.

Operators allow classes to integrate with Python's object model
By overloading type operations, user-defined objects implemented with classes act just
like built-ins.

An example

On to another example. Thistime, we define a subclass of Secondd ass, which implements
three special attributes: i ni t __ iscalled when anew instance object is being constructed
(sel f isthenew Thi r dCl ass object),and __add___and__nul __ arecalled whena
Thi r dd ass instance appearsin + and * expressions respectively:

>>> cl ass Thirdd ass(Secondd ass): # is-a Secondd ass
def __init__ (self, value): # on "Thirdd ass(val ue)"
sel f.data = val ue
def add_ (self, other): # on "self + other"

return Thirdd ass(sel f.data + other)
def mul _ (self, other):

self.data = self.data * other # on "self * other"
>>> g = Thirdd ass("abc") # new __init__ called
>>> a. display() # inherited nethod
Current val ue = "abc"
>>> b = a + 'xyz' # new add__ called: nakes a new instance

>>> b. di spl ay()
Current value = "abcxyz"

>>> g * 3 # new __mul __ call ed: changes
i nstance in-pl ace

>>> a. di spl ay()

Current val ue = "abcabcabc"

Thi rdd ass isaSecondd ass, soitsinstancesinherit di spl ay from

Secondd ass. But Thi rdd ass generation calls pass an argument now (* abc”); it's
passed to theval ue asgumentinthe i nit__ constructor and assignedtosel f . dat a
there. Further, Thi r dCl ass objects can show upin + and * expressions; Python passes the
instance object on the left to the sel f argument and the value on theright to ot her , as
illustrated in Figure 6-3.

Special methodssuchas __init_ and__add__ areinherited by subclasses and instances,
just like any other name assigned in a class statement. Noticethat the _add__ method makes
anew object (by calling Thi r dCl ass with the result

Page 158

| i

L

:)
\— _mul_(self, other

Figure 6-3.
Operators map to special methods

value), but _ nmul __ changesthe current instance object in place (by reassigning asel f
atribute). The* operator makes a new object when applied to built-in types such as numbers
and lists, but you can interpret it any way you like in class objects.*

Using the Class Statement

Did all of the above make sense? If not, don't worry; now that we've had a quick tour, we're
going to dig a bit deeper and study the concepts we've introduced in more detail. We met the

cl ass statement in our first examples, but let's formalize some of the ideas we introduced. As
in C++, thecl ass statement in Python's main OOP tool. Unlikein C++, cl ass isn'tredly a
declaration; likedef , cl ass, isan object builder, and an implicit assignment—when run, it
generates a class object, and stores a reference to it in the name used in the header.

General Form

Aswe saw on our quick tour, cl ass isacompound statement with abody of indented
statements under it. In the header, superclasses are listed in parentheses after the class name,
separated by commas. Listing more than one superclass leads to multiple inheritance (which
we'll say more about later in this chapter):

cl ass <nanme>(supercl ass, .): # assign to name
data = val ue # shared class data

def nethod(sel f, .): # net hods
sel f. menber = val ue # per-instance data

* But you probably shouldn't (one reviewer went so far asto call this example "evil!"). Common
practice dictates that overloaded operators should work the same way built-in operator
implementations do. In this case, that meansour __mul __ method should return anew object asiits
result, rather than changing theinstance (sel) in place; anmul method may be better stylethan a*
overload here (e.g., a. mul (3) instead of a* 3). On the other hand, one person's common practice
may be another person's arbitrery constraint.

Page 159

Within the class statement, specially-named methods overload operators; for instance, a
functioncalled i nit __ iscalled at instance object construction time, if defined.

Example

At the start of this chapter, we mentioned that classes are mostly just namespaces—a tool for
defining names (called attributes) that export data and logic to clients. So how do you get fromr
the statement to a namespace?

Here's how. Just as with modules, the statements nested in acl ass statement body create its
atributes. When Python executesacl ass statement (not acall to aclass), it runsall the
statements in its body from top to bottom. Assignments that happen during this process create
names in the class's local scope, which become attributes in the associated class object.
Because of this, classes resemble both modules and functions:

* Likefunctions, cl ass statements are alocal scope where names created by nested
assignmentslive.

* Like modules, names assigned inacl ass statement become attributes in a class object.

The main distinction for classes is that their namespaces are a so the basis of inheritance in
Python; attributes are fetched from other classesif not found in a class or instance object.
Because cl ass isacompound statement, any sort of statement can be nested inside its
body—for instance, pri nt ,=,i f,and def . Aswe've seen, nested def s make class
methods, but other assignments make attributes too. For example, suppose we run the following
class:

cl ass Subcl ass(aSuper cl ass): # define subcl ass
data = 'span # assign class attr
def __init__ (self, value): # assign class attr
sel f.data = val ue # assign instance attr
def display(self):
print self.data, Subclass.data # instance, class

This class containstwo def s, which bind class attributes to method functions. It also contains
a = assgnment statement; since the name dat a isassigned insidethecl ass, it livesin the
classslocal scope and becomes an attribute of the class object. Like all class attributes, dat a
isinherited and shared by all instances of the class:*

* |f you've used C++, you may recognize this as similar to the notion of C++'sst at i ¢ class
data—membersthat are stored in the class, independent of instances. In Python, it's nothing special:

all class attributes are just names assigned intheCl ass statement, whether they happen to
reference functions (C++'smethods) or something else (C++'smembers).

Page 160
>>> x = Subcl ass(1) # make two instance objects
>>> y = Subcl ass(2) # each has its own "data"
>>> x. display(); y.display() # "self.data" differs, "Subclass.data" sane
1 spam
2 spam

When we run this code, the name dat a livesin two places—in instance objects (created in the
__init__ congructor) and in the class they inherit names from (created by the = assignment).
The classsdi spl ay method prints both versions, by first quaifying the self instance, and
then the class itself. Since classes are objects with attributes, we can get to their names by
qualifying, even if there's no instance involved.

Using Class M ethods

Since you aready know about functions, you already know class methods. Methods are just
function objects created by def statementsnestedinacl ass statement's body. From an
abstract perspective, methods provide behavior for instance objects to inherit. From a
programming perspective, methods work in exactly the same way as simple functions, with one
crucial exception: their first argument always receives the instance object that is the implied
subject of amethod call. In other words, Python automatically maps instance method callsto
class method functions like so:

i nstance. net hod(args..) => becones => cl ass. net hod(i nstance, args..)

where the class is determined by Python's inheritance search procedure. The special first
argument in a class method isusualy called sel f by convention; it'ssimilar to C++'st hi s
pointer, but Python methods must aways explicitly qualify sel f to fetch or change attributes
of the instance being processed by the current method call.

Example

Let's turn to an example; suppose we define the following class:

cl ass Next d ass: # define class
def printer(self, text): # define nethod
print text

Thenamepr i nt er references afunction object; becauseit'sassigned inthecl ass
statement's scope, it becomes a class attribute and is inherited by every instance made from the
class. Thepri nt er function may be called in one of two ways—through an instance, or
through the classitsdlf:

>>> x = Nextd ass() # make instance
>>> x.printer('Hello world!") # call its nethod
Hel l o worl d!

Page 161

When called by qualifying an instance like this, pri nt er' s sel f argument is automatically
assigned the instance object (x), and t ext getsthe string passed at the call

(*Hell o worl d!”).Insideprinter,sel f canaccessor set per-instance data, since it
refers to the instance currently being processed. We can also call pri nt er by going through
the class, provided we pass an instance to the sel f argument explicitly:

>>> NextCl ass.printer(x, 'Hello world!") # cl ass net hod
Hel | o worl d!

Calls routed through the instance and class have the exact same effect, provided we pass the
same instance object in the class form. In amoment, we'll seethat calls through a class are the
basis of extending (instead of replacing) inherited behavior.

I nheritance Sear ches Namespace Trees

The whole point of a namespacetool likethecl ass statement isto support name inheritance.
In Python, inheritance happens when an object is qualified, and involves searching an attribute
definition tree (one or more namespaces). Every time you use an expression of the form

obj ect . at t r whereobject is an instance or class object, Python searches the namespace
tree at and above obj ect , for thefirst at t r it can find. Because lower definitionsin the tree
override higher ones, inheritance formsthe basis of specialization.

Attribute Tree Construction

Figure 6-4 sketches the way namespace trees are constructed. In general:

* Instance attributes are generated by assignmentsto sel f attributes in methods.

* Class attributes are created by statements (assignments) in cl ass statements.

* Superclass links are made by listing classesin parenthesesin acl ass statement header.

The net result isatree of attribute namespaces, which grows from an instance, to the class it
was generated from, to all the superclasses listed in the class headers. Python searches upward
in this tree from instances to superclasses, each time you use qualification to fetch an attribute
name from an instance object.*

* This description isn't 100% complete, because instance and class attributes can also be created by
assigning to objects outsidecl ass statements. But that's less common and sometimes more error
prone (changes aren't isolated tocl ass statements). In Python all attributes are always accessible by
default; we talk about privacy later in this chapter.

Page 162

1 Superdass I Superclass | [dass $1:

» | class §2:
Ii.ﬂ“é. =i © (dass X051, 2

A def atir(self....):

E“.ﬂ:‘f :
| Instance | 2
o)

(‘object = X0)

Figure 6-4.
Namespaces tree construction and inheritance

Specializing I nherited Methods

The tree-searching model of inheritance we just described turns out to be a great way to
specialize systems. Because inheritance finds names in subclasses before it checks
superclasses, subclasses can replace default behavior by redefining the superclass's attributes.
In fact, you can build entire systems as hierarchies of classes, which are extended by adding
new external subclasses rather than changing existing logic in place.

The idea of overloading inherited names |leads to a variety of specialization techniques. For
instance, subclasses may replace inherited names completely, provide names a superclass
expectsto find, and extend superclass methods by calling back to the superclass from an
overridden method. We've already seen replacement in action; here's an example that shows
how extension works:

>>> cl ass Super:
def nethod(sel f):
print 'in Super.nethod

>>> cl ass Sub(Super):

def nethod(sel f): # override nethod
print 'starting Sub. nmethod' # add actions here
Super. net hod(sel f) # run default action

print 'endi ng Sub. method'

Page 163

Direct superclass method calls are the crux of the matter here. The Sub class replaces
Super' s net hod function with its own specialized version. But within the replacement,
Sub calls back to the version exported by Super to carry out the default behavior. In other
words, Sub. net hod just extends Super . et hod' s behavior, rather than replace it

completely:

>>> x = Super () # make a Super instance
>>> x. met hod() # runs Super. et hod
i n Super. met hod

>>> x = Sub() # make a Sub instance

>>> x. et hod() # runs Sub. met hod, which calls Super. nethod
starting Sub. nethod

i n Super. met hod

endi ng Sub. net hod

Extension is commonly used with constructors; since the specialy named __init __ method is
an inherited name, only one isfound and run when an instance is created. To run superclass
constructors, subclass __i nit __ methods should call superclass i ni t __ methods, by
qualifying classes(e.g.,Cl ass. _init__(self, .)).

Extension is only one way to interface with a superclass; the following shows subclasses that
illustrate these common schemes:

» Super definesanet hod function and adel egat e that expects an action in a subclass.
eI nherit or doesn't provide any new names, so it gets everything defined in Super .
* Repl acer overridesSuper' s net hod with aversion of its own.

* Ext ender customizesSuper' s net hod by overriding and calling back to run the
defauilt.

* Provi der implementstheact i on method expected by Super ' s del egat e method.

cl ass Super:
def rmethod(sel f):

print 'in Super.nethod # defaul t
def del egate(self):
sel f.action() # expected

cl ass I nheritor(Super):
pass

cl ass Repl acer (Super):
def rmethod(sel f):
print 'in Replacer.nethod

cl ass Ext ender (Super):
def rmethod(sel f):

Page 164

print 'starting Extender. nmethod
Super . net hod(sel)
print 'endi ng Extender. nethod

cl ass provider (Super):
def action(self):
print 'in Provider.action

if _nane__ =="'_main__":
for klass in (Inheritor, Replacer, Extender):
print '\n'" + klass. _nane__ + '.!
kl ass(). net hod()
print '\ nProvider...
Provi der (). del egat e()

A few things are worth pointing out here: the self-test code at the end of this example creates
instances of three different classes; because classes are objects, you can put them in atuple and
create instances generically (more on thisidealater). Classes also have the special
__name___ attribute as modules; it's just preset to a string containing the name in the class
header. When you call thedel egat e method though aPr ovi der instance, Python finds the
acti on methodin Pr ovi der by the usua tree search: inside the Super del egat e
method, sel f references a Provider instance.

% pyt hon speci al i ze. py

I nheritor...
i n Super. net hod

Repl acer ...
i n Repl acer. net hod

Ext ender ...

starting Extender. nethod
i n Super. net hod

endi ng Ext ender . net hod

Provi der ...
in Provider.action

Operator Overloading in Classes

We introduced operator overloading at the start of this chapter; let'sfill in afew blanks here
and look at a handful of commonly used overloading methods. Here's areview of the key ideas
behind overloading:

* Operator overloading lets classes intercept normal Python operations.
» Classes can overload all Python expression operators.

» Classes can also overload object operations: printing, calls, qualification, etc.

Page 165
* Overloading makes class instances act more like built-in types.
* Overloading isimplemented by providing specialy named class methods.

Here's a ssmple example of overloading at work. When we provide specially named methods
in aclass, Python automatically calls them when instances of the class appear in the associated
operation. For instance, the Number class below provides a method to intercept instance
construction (__i nit__), aswell asonefor catching subtraction expressions(__sub__).
Specia methods are the hook that lets you tie into built-in operations:

cl ass Nunber:

def __init__ (self,

start):

self.data = start

def _ sub_ (self,
return Number (self.data - other)

ot her):

>>> from nunber inport Nunber
>>> X = Nunber (5)

>>> Y = X -
>>> VY, dat a

3

2

on Nunber(start)

on i nstance - other
result is a new instance

fetch class from nodul e
calls Nunmber. __init__ (X 5)

calls Nunmber. _sub_ (X, 2)

Common Operator Overloading Methods

Just about everything you can do to built-in objects such asintegers and lists has a
corresponding specially named method for overloading in classes. Table 6-1 lists a handful of
the most common; there are many more than we have time to cover in this book. See other
Python books or the Python Library Reference Manual for an exhaustive list of special method
names available. All overload methods have names that start and end with two underscores, to
keep them distinct from other names you define in your classes.

Table 6-1. A Sampling of Operator Overloading Methods

Method Overloads Called for

_init__ Constructor Object creation: C ass()
__del Destructor Object reclamation
_add__ Operator * +’ X+Y

_or__ Operator * |’ (bitwiseor) | X | Y

_repr__ Printing, conversions print X, ' X

_call__ Function calls X()

__getattr__ Qualification X. undefi ned
__getitem _ Indexing X[key] , for loops, in tests
_setitem _ Index assignment X key] = val ue
__getslice__ | Slicing X[| ow. hi gh]

Page 166

Table 6-1. A Sampling of Operator Overloading Methods (continued)

M ethod Overloads Called for

_len__ Length len (X), truth tests
_cnp__ Comparison X=Y, X<Y
__radd__ Right-side operator ' +' Noninstance+ X

Examples

Let'sillustrate afew of the methodsin Table 6-1 by example.
__getitem___interceptsall index references

The _getitem__ method intercepts instance indexing operations. When an instance X
appearsin anindexing expression like X[i] , Pythoncallsa___geti t em__ method inherited
by the instance (if any), passing X to the first argument and the index in brackets to the second
argument. For instance, the following class returns the square of index values:

>>> cl| ass i ndexer:
def _getitem (self, index):
return i ndex ** 2

;>> X = indexer ()
>>> for i in range(5):
print Xi], # Xi] calls __getitem (X, i)

0140916

Now, here's a special trick that isn't always obvious to beginners, but turns out to be incredibly
useful: when we introduced the f or statement back in Chapter 3, Basic Statements, we
mentioned that it works by repeatedly indexing a sequence from zero to higher indexes, until an
out-of-bounds exception is detected. Because of that, getitem _ alsoturnsout to bethe
way to overload iteration and membership testsin Python. It's a case of "buy one, get two free":
any built-in or user-defined object that responds to indexing also responds to iteration and
membership automaticaly:

>>> cl ass stepper:
def _ getitem (self, i):
return self.data[i]

>>> X = stepper() # X is a stepper object
>>> X. data = " Span
>>>
>>> for itemin X # for loops call _ getitem _

print item # for indexes items 0..N
Span
>>>

Page 167

>>>'p' in X # 'in' operator calls _ _getitem too
1

__getattr__catchesundefined attribute references

The _get attr__ method intercepts attribute qualifications. More specificaly, it's caled
with the attribute name as a string, whenever you try to qualify an instance on an undefined
(nonexistent) attribute name. It's not called if Python can find the attribute using its inheritance
tree-search procedure. Because of thisbehavior, getattr __ isuseful asahook for
responding to attribute requests in a generic fashion. For example:

>>> class enpty:

def _ getattr__ (self, attrnane):
if attrnane == "age":
return 36
el se:
raise AttributeError, attrnane

>>> X = enpty()

>>> X. age
36
>>> X. nane
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
File "<stdin>", line 6, in __getattr__

AttributeError: nane

Here, the enpt y class and itsinstance X have no real attributes of their own, so the accessto
X. agegetsroutedtothe _getattr__ method; sel f isassigned theinstance (X), and

at t r nanme isassigned the undefined attribute name string (“ age”). Our class makes age
look like aredl attribute by returning areal value as the result of the X. age qualification
expression (36).

For other attributes the class doesn't know how to handle, it raises the built-in

Attri but eError exception, to tell Python that thisis a bona fide undefined name; asking
for X. nane triggersthe error. Welll see_get attr __ again when we show delegation at
work, and we will say more about exceptions in Chapter 7, Exceptions.

__repr__returnsastring representation

Here's an example that exercisesthe i nit __ constructor andthe __add__ + overload
methods we've aready seen, but also definesa__ r epr __ that returns a string representation
of instances. Backquotes are used to convert the managed sel f . dat a object to a string. If
defined, __repr __ iscalled automatically when class objects are printed or converted to
strings.

>>> cl| ass adder:
def __init_ (self, value=0):

Page 168

sel f.data = val ue #initialize data
def __add_ (self, other):

self.data = self.data + other # add ot her in-place
def __repr__(self):

return 'self.data' # convert to string

>>> X = adder (1) # _init__
>>> X + 2; X + 2 # add__
>>> X # __repr__
5

That's as many overloading examples as we have space for here. Most work similarly to ones
we've already seen, and al are just hooks for intercepting built-in type operations we've
already studied; but some overload methods have unique argument lists or return values. Welll
see afew othersin action later in the text, but for a complete coverage, we'll defer to other

documentation sources.

Namespace Rules:
TheWhole Story

Now that we've seen class and instance objects, the Python namespace story is complete; for
reference, let's quickly summarize al the rules used to resolve names. The first things you need
to remember are that qualified and unqualified names are treated differently, and that some
scopes serve to initialize object namespaces.

» Unqualified names (X) deal with scopes.

* Qualified names (obj ect . X) use object namespaces.

* Scopes initialize object namespaces (in modules and classes).

Unqualified Names. Global Unless Assigned

Unqualified names follow the LGB rules we outlined for functions in Chapter 4.

Assignment: X = val ue
Makes names local: creates or changes name X in the current local scope, unless declared
gl obal

Reference: X
Looks for name X in the current local scope, then the current global scope, then the built-in
scope

Qualified Names: Object Namespaces

Qualified names refer to attributes of specific objects and obey the rules we met when
discussing modules. For instance and class objects, the reference rules are augmented to
include the inheritance search procedure:

Page 169

Assignment: obj ect. X = val ue
Creates or dters the attribute name X in the namespace of the object being qualified

Reference: obj ect . X
Searches for the attribute name X in the object, then in all accessible classes above it (but
not for modules)

Namespace Dictionaries

Finally, in Chapter 5, we saw that module namespaces were actually implemented as
dictionaries and exposed with the built-in __di ct __ attribute. The same holds for class and
instance objects: qualification isrealy adictionary indexing internally, and attribute
inheritance is just a matter of searching linked dictionaries.

The following example traces the way namespace dictionaries grow when classes are
involved. The mgor bug to notice is this: whenever an attribute of sel f isassigned in one of
the two classes, it creates (or changes) an attribute in the instance's namespace dictionary, not

the class's. Instance object namespaces record data that can vary from instance to instance; they
also have links to class namespaces that are followed by inheritance lookups. For example,
X. hel | o isultimately found inthe super class's namespace dictionary.

>>> cl ass super:
def hello(self):
sel f.datal = "spani

>>> cl ass sub(super):
def howdy(self):
sel f.data2 = "eggs"

>>> X = sub() # make a new nanespace (dictionary)
>>> X dict

{}

>>> X. hel |l o() # changes i nstance nanmespace

>>> X dict__
{'datal': 'spanm}

>>> X. howdy() # changes i nstance nanmespace
>>> X dict__
{'data2': 'eggs', 'datal': 'spani}

>>> super.__dict__

{"hello': <function hello at 88d9b0>, ' _doc__ ': None}
>>> sub. __dict__

{* _doc__': None, 'howdy': <function howdy at 88ea20>}
>>> X. data3 = "toast"

>>> X dict__
{'data3': 'toast', 'data2': 'eggs', 'datal': 'spam}

Page 170

Note that the di r function we met in Chapters 1 and 2 works on class and instance objects too.
In fact, it works on anything with attributes. di r (obj ect) returnsthe samelist asa
object. dict__.keys() call.

Designing with Classes

So far, we've concentrated on the OOP tool in Python—the class. But OOP is also about design
issues—how to use classes to model useful objects. In this section, we're going to touch on a
few OOP core ideas and look at some examples that are more readlistic than the ones we've
seen so far. Most of the design terms we throw out here require more explanation than we can
provide; if this section sparks your curiosity, we suggest exploring atext on OOP design or
design patterns as a next step.

Python and OOP

Python's implementation of OOP can be summarized by three idess:

Inheritance
Is based on attribute lookup in Python (in X. name expressions).

Polymorphism
In X. met hod, the meaning of met hod depends on the type (class) of X.

Encapsulation
Methods and operators implement behavior; data hiding is a convention by default.

By now, you should have agood feel for what inheritanceis al about in Python. Python's
flavor of polymorphism flows from itslack of type declarations. Because attributes are always
resolved at runtime, objects that implement the same interfaces are interchangeable; clients
don't need to know what sort of object isimplementing a method they call.* Encapsulation
means packaging in Python, not privacy; privacy is an option, as we'll see later in this chapter.

OOP and Inheritance: "'is-a

We've talked about the mechanics of inheritance in depth already, but we'd like to show you an
example of how it can be used to model real-world relationships.

* Some OOP languages a so define polymorphism to mean overloading functions based on the type
signatures of their arguments. Since there is no type declaration in Python, the concept doesn't really
apply, but type-base selections can be always be coded using if tests and type (X) built-in functions

(e.g., if type(X) istype(0): dolntegerCase()).

Page 171

From a programmer's point of view, inheritance is kicked off by attribute qualifications and
searches for aname in an instance, its class, and then its superclasses. From a designer's point
of view, inheritance is away to specify set membership. A class defines a set of properties that
may be inherited by more specific sets (i.e., subclasses).

Toillustrate, let's put that pizza-making robot we talked about at the start of the chapter to
work. Suppose we've decided to explore aternative career paths and open a pizza restaurant.
One of thefirst things we'll need to do is hire employees to service customers, make the pizza,
and so on. Being engineers at heart, we've also decided to build arobot to make the pizzas; but
being politically and cybernetically correct, we've also decided to make our robot a
full-fledged employee, with asalary.

Our pizza shop team can be defined by the following classes in the example file employees.py.
It defines four classes and some self-test code. The most generd class, Enpl oyee, provides
common behavior such as bumping up salaries (giveRaise) and printing (__repr __). There
are two kinds of employees, and so two subclasses of Enpl oyee- Chef and Ser ver . Both
override the inherited wor k method to print more specific messages. Finally, our pizza robot
ismodeled by an even more specific class: Pi zzaRobot isakind of Chef , whichisakind
of Enpl oyee. In OOP terms, we call these relationships "is-a" links: arobot is a chef, which
isa(n) employee.

cl ass Enpl oyee:
def __init_ (self, name, salary=0):
sel f. name = name
self.salary = salary
def giveRai se(self, percent):
self.salary = self.salary + (self.salary * percent)

def work(self):
print self.nane, "does stuff"
def __repr__(self):
return "<Enpl oyee: nanme=%, sal ary=%>" % (self.nane, self.salary)

Cl ass Chef (Enpl oyee):
def _init_ (self, nane):
Enpl oyee. __init__(self, name, 50000)
def work(self):
print self.nanme, "makes food"
Cl ass Server (Enpl oyee):
def _init_ (self, nane):
Enpl oyee. _init__ (self, name, 40000)
def work(self):
print self.nanme, "interfaces with custoner"
cl ass Pi zzaRobot (Chef):
def _init_ (self, nane):

Page 172

chef. _init__(self, nane)
def work(self):
print self.name, "makes pizza"

if _npnane__ =="_main_":
bob = Pi zzaRobot (' bob") # make a robot nanmed bob
print bob # runs inherited __repr__
bob. gi veRai se(0. 20) # give bob a 20%rai se

print bob; print

for klass in Enpl oyee, Chef, Server, PizzaRobot:
obj = klass(klass.__nane_)
obj . wor k()

When we run this modul€e's self-test code, we create a pizza-making robot named bob, which
inherits names from three classes: Pi zzaRobot , Chef , and Enpl oyee. For instance,
printing bob runsthe Enpl oyee. __repr __ method, and giving bob araiseinvokes
Enpl oyee. gi veRai se, because that's where inheritance findsiit.

C.\ pyt hon\ exanpl es> pyt hon enpl oyees. py
<Enpl oyee: nane=bob, sal ary=50000>
<Enpl oyee: nane=bob, sal ary=60000. 0>

Enpl oyee does stuff

Chef nakes food

Server interfaces wth custoner
Pi zzaRobot nakes pizza

In aclass hierarchy like this, you can usually make instances of any of the classes, not just the
ones at the bottom. For instance, thef or loop in this modul€'s self-test code creates instances
of all four classes; each responds differently when asked to work, because the wor k method is
different in each. Really, these classes just simulate real world objects; wor k prints a message
for the time being, but could be expanded to really work later.

OOP and Composition: " has-a"

We introduced the notion of composition at the start of this chapter. From a programmer's point
of view, composition involves embedding other objects in a container object and activating
them to implement container methods. To a designer, composition is another way to represent
relationships in a problem domain. But rather than set membership, composition has to do with
components—parts of awhole. Composition also reflects the rel ationships between parts; it's
usually called a"has-a" relationship, when OOP people speak of such things.

Now that we've implemented our employees, let's throw them in the pizza shop and let them get
busy. Our pizza shop is a composite object; it has an oven, and employees like servers and
chefs. When a customer enters and places an order, the components of the shop spring into
action—the server takes an order, the chef

Page 173

makes the pizza, and so on. The following example ssimulates all the objects and relationships
in this scenario:

from enpl oyees i nport Pi zzaRobot, Server

cl ass Custoner:
def __init_ (self, nane):
sel f. name = name
def order(self, server):
print self.name, "orders fronl, server
def pay(sel f, server):
print self.name, "pays for itemto", server

cl ass Oven:
def bake(self):
print "oven bakes"

cl ass Pi zzaShop:
def __init_ (self):
sel f.server = Server (' Pat')
sel f.chef = Pi zzaRobot (' Bob')
sel f. oven Oven()

enbed ot her objects
a robot naned bob

#*

def order(self, nane):
cust omer = Cust oner (nane)
cust orer . order (sel f.server)

activate other objects
custoner orders from server

#*

sel f. chef.work()
sel f. oven. bake()
cust omer . pay(sel f.server)

if nane_ =="_ main_":
scene = Pi zzaShop() # make the conposite
scene. order (' Homer ') # sinul ate Honer's order
print '
scene. order (' Shaggy') # sinul ate Shaggy's order

ThePi zzaShop classisacontainer and controller; its constructor makes and embeds
instances of the employee classes we wrote in the last section, aswell as an Oven class
defined here. When this modul€'s self-test code callsthe Pi zzaShop order method, the

embedded objects are asked to carry out their actionsin turn. Notice that we make a new
Cust onrer object for each order, and pass on the embedded Ser ver object to Cust oner
methods; customers come and go, but the server is part of the pizza shop composite. Also
notice that employees are still involved in an inheritance relationship; composition and
inheritance are complementary tools:

C.\ pyt hon\ exanpl es>pyt hon pi zzashop. py

Hormer orders from <Enpl oyee: nane=Pat, sal ary=40000>

Bob nakes pizza

oven bakes

Hormer pays for itemto <Enpl oyee: nane=Pat, sal ary=40000>

Page 174

Shaggy orders from <Enpl oyee: nanme=Pat, sal ary=40000>

Bob nakes pizza

oven bakes

Shaggy pays for itemto <Enpl oyee: nane=Pat, sal ary=40000>

When we run this module, our pizza shop handles two orders—one from Homer, and then one
from Shaggy. Again, thisis mostly just atoy smulation; areal pizza shop would have more
parts, and there's no real pizzato be had here. But the objects and interactions are
representative of composites at work. As arule of thumb, classes can represent just about any
objects and relationships you can express in a sentence; just replace nouns with classes and
verbs with methods, and you have afirst cut at adesign.

Why You Will Care: Classes and Persistence

Besides allowing us to simulate real-world interactions, the pizza shop classes could
also be used as the basis of a persistent restaurant database. Aswe'll seein Chapter 10,
Frameworks and Applications, instances of classes can be stored away on disk in a
single step using Python's pi ckl e or shel ve modules. The object pickling interface
is remarkably easy to use:

i mport pickle

obj ect = somed ass()

file = open(filenanme, 'wW) # create external file
pi ckl e. dunp(object, file) # save object in file

file = open(filenanme, 'r")
obj ect = pickle.load(file) # fetch it back later

Shelves are similar, but they automatically pickle objects to an access-by-key database:

i nport shel ve

obj ect = soned ass()

dbase = shel ve. open(' fil enane')

dbase[' key'] = object # save under key

obj ect = dbase[' key'] # fetch it back later

(Pickling converts objects to serialized byte streams, which may be stored in files, sent
across a network, and so on.) In our example, using classes to model employees means
we can get a ssimple database of employees and shops for free: pickling such instance
objects to afile makes them persistent across Python program executions. See Chapter
10 for more details on pickling.

OOP and Delegation

Object-oriented programmers often talk about something called delegation too, which usually
implies controller objects that embed other objects, to which they

Page 175

pass off operation requests. The controllers can take care of administrative activities such as
keeping track of accesses and so on. In Python, delegation is often implemented with the
__getattr__ method hook; because it intercepts accesses to nonexistent attributes, a
wrapper classcanuse ___get attr__ toroute arbitrary accesses to a wrapped object. For
instance:

cl ass wrapper:

def __init__ (self, object):
sel f . wrapped = obj ect # save object
def _ getattr_ (self, attrnane):
print 'Trace:', attrname # trace fetch
return getattr(self.wapped, attrnane) # del egate fetch

Y ou can use thismodule'swr apper classto control any object with attributes—lists,

dictionaries, and even classes and instances. Here, the class ssmply prints a trace message on
each attribute access:

>>> fromtrace inport w apper

>>> x = wapper([1,2,3]) # wap a list

>>> x. append(4) # del egate to list method
Trace: append

>>> X. w apped # print ny nmenber

[1, 2, 3, 4]

>>> x = wapper({"a": 1, "b": 2}) # wap a dictionary

>>> x. keys() # del egate to dictionary nethod
Trace: keys

[*a', "b']

Extending Built-in Object Types

Classes are also commonly used to extend the functionality of Python's built-in types, to support
more exotic data structures. For instance, to add queue insert and delete methodsto lists, you
can code classes that wrap (embed) alist object, and export insert and del ete methods that
process the list.

Remember those set functions we wrote in Chapter 4? Here's what they look like brought back
to life as a Python class. The following example implements a new set object type, by moving
some of the set functions we saw earlier in the book to methods, and adding some basic
operator overloading. For the most part, this class just wraps a Python list with extra set
operations, but because it'saclass, it also supports multiple instances and customization by
inheritance in subclasses.

class Set:
def __init_ (self, value =1[]): # constructor
self.data = [] # manages a |i st
sel f. concat (val ue)

def intersect(self, other): # other is any sequence
res =[] # self is the subject

Page 176
for x in self.data:
if x in other: # pick common itens
res. append(x)
return Set(res) # return a new Set

def union(self, other):
res = self.data[:]
for x in other:
if not x in res:
res. append(x)
return Set(res)

other is any sequence
copy of ny Iist
add itens in other

#*

def concat(self, value): # value: list, Set..
for x in value: # renoves duplicates
if not x in self.data:

sel f . dat a. append(x)

def _ len_ (self): return len(sel f.data) # on len(self)
def _getitem (self, key): return self.datalkey] # on self[i]

def __and_ (self, other): return self.intersect(other) # on self & other
def __or_(self, other): return sel f.union(other) # on self | other
def _repr_ (self): return 'Set:' + 'self.data' # on print

By overloading indexing, our set class can often masquerade as areal list. Since we're going to
ask you to interact with and extend this class in an exercise at the end of this chapter, we won't
say much more about this code until Appendix C, Solutions to Exercises.

Multiple Inheritance

When we discussed details of the cl ass statement, we mentioned that more than one
superclass can be listed in parentheses in the header line. When you do this, you use something
called multiple inheritance; the class and its instances inherit names from al listed
superclasses. When searching for an attribute, Python searches superclassesin the class header
from left to right until amatch is found. Technically, the search proceeds depth-first, and then
left to right, since any of the superclasses may have superclasses of its own.

In theory, multiple inheritance is good for modeling objects which belong to more than one set.
For instance, a person may be an engineer, awriter, amusician, and so on, and inherit
properties from all such sets. In practice, though, multiple inheritance is an advanced tool and
can become complicated if used too much; well revisit this as a gotcha at the end of the
chapter. But like everything else in programming, it's a useful tool when applied well.

One of the most common ways multiple inheritance is used isto "mix in" general-purpose
methods from superclasses. Such superclasses are usually called mixin classes; they provide
methods you add to application classes by inheritance. For instance, Python's default way to
print a class instance object isn't incredibly useful:

Page 177
>>> cl ass Spam
def __init_ (self): #no __repr__
self.datal = "food"

>>> X = Sparr()
>>> print X # default format: class, address
<Spam i nstance at 87f 1b0>

As seen in the previous section on operator overloading, you can providea __repr
method to implement a custom string representation of your own. But rather than code a
__repr__ineachand every class you wish to print, why not codeit oncein a
general-purpose tool class, and inherit it in al classes?

That's what mixins are for. The following code definesamixin classcalled Li st er that
overloadsthe _repr ___ method for each classthat includesLi st er initsheader line. It
simply scans the instance's attribute dictionary (remember, it'sexportedin __di ct __) to
build up a string showing the names and values of all instance attributes. Since classes are

objects, Li st er' s formatting logic can be used for instances of any subclass; it's a generic
tool.

Li st er usestwo special tricks to extract the instance's classname and address. Instances
haveabuilt-in __cl ass___ attribute that references the class the instance was created from,
and classeshavea _nane__ that isthe namein the header, so

self. class__. _nane__ fetchesthe name of aninstance's class. You get the
instance's memory address by calling the built-in i d function, which returns any object's
address:

Lister can be mxed-in to any class, to
provide a formatted print of instances
via inheritance of _ repr__ coded hereg;
self is the instance of the | owest class;

class Lister:
def __repr__(self):
return ("<lInstance of %, address %:\n%>" %

(self. class_ . name__, # ny class's nane
id(self), # nmy address
self.attrnanmes())) # nanme=val ue |i st
def attrnanes(self):
result ="
for attr in self.__dict__.keys(): # scan instance nanespace di ct
if attr[:2] =="'_":
result =result + "\tnane %=<built-in>\n" %attr
el se:

result = result + "\tnane %=%\n" % (attr, self. dict_[att
return result

Now, theLi st er classisuseful for any class you write—even classes that already have a
superclass. Thisiswhere multiple inheritance comes in handy: by adding

Page 178

Li st er tothelist of superclassesin aclass header, you getits__repr __ for free, while
still inheriting from the existing superclass:

fromnytools inport Lister # get tool class

cl ass Super:
def __init_ (self): # superclass __init__
sel f.datal = "spant

cl ass Sub(Super, Lister): # mx-ina __repr__
def __init_ (self): # Lister has access to self
Super. __init__ (self)
sel f.data2 = "eggs" # nore instance attrs
sel f.data3 = 42
if _nane__ =="_main__
X = Sub()

print X # mxed-in repr

Here, Sub inherits names from both Super and Li st er ; it'sacomposite of its own names
and names in both its superclasses. When you make a Sub instance and print it, you get the
custom representation mixed infrom Li st er :

C.\ pyt hon\ exanpl es> pyt hon testm xi n. py
<l nstance of Sub, address 7833392:

name dat a3=42

name dat a2=eggs

name dat al=spam

Li st er worksin any classit's mixed into, because sel f refersto an instance of the subclass
that pullsLi st er in, whatever that may be. If you later decideto extend Li ster' s
__repr__ toalso print class attributes an instance inherits, you're safe; because it's an
inherited method, changing Li ster's __ repr __ updates each subclass that mixesitin.* In
some sense, mixin classes are the class equivalent of modules. HereisLi st er working in
single-inheritance mode, on a different class's instances; like we said, OOP is about code
reuse:

>>> from mytools inport Lister
>>> class x(Lister):

pass
>>>t = x()
>>t.a=1, t.b=2; t.c =3
>>> t
<Instance of x, address 7797696:
nane b=2

* For the curious reader, classes also have abuilt-in attribute called __bases__, whichisatuple of
the class's superclass objects. A general-purpose class hierarchy lister or browser can traverse from
aninstance's__cl ass__ toitsclass, and thenfromtheclasss__bases__ to all superclasses
recursively. We'll revisit thisideain an exercise, but see other books or Python's manuals for more
details on special object attributes.

Page 179

nanme a=1
nanme c=3
>

Classes Are Objects: Generic Object Factories

Because classes are objects, it's easy to pass them around a program, store them in data
structures, and so on. Y ou can also pass classes to functions that generate arbitrary kinds of
objects; such functions are sometimes called factories in OOP design circles. They are amajor
undertaking in a strongly typed language such as C++, but dmost trivia in Python: theappl y
function we met in Chapter 4 can call any class with any argument in one step, to generate any
sort of instance.*

def factory(ad ass, *args): # varargs tuple
return apply(ad ass, args) # call ad ass

cl ass Spam
def doit(self, message):
print nessage

cl ass Person:

def _init__ (self, nane, job):
sel f. name = nane
self.job = job
obj ectl = factory(Spam # make a Spam
obj ect2 = factory(Person, "Quido", "guru") # make a Person

In this code, we define an object generator function, called f act or y. It expects to be passed
aclass object (any class will do), aong with one or more arguments for the class's constructor.
The function uses appl y to cdl the function and return an instance. The rest of the example
simply defines two classes and generates instances of both by passing themtothef act ory
function. And that'sthe only f act or y function you ever need write in Python; it works for any
class and any constructor arguments. The only possible improvement worth noting: to support
keyword arguments in constructor calls, the factory can collect them with a* * ar gs argument
and pass them as athird argument to appl y:

def factory(ad ass, *args, **kwargs): # +kwar gs dict
return apply(ad ass, args, kwargs) # call ad ass

By now, you should know that everything is an "object” in Python; even things like classes,
which are just compiler input in languages like C++. However, only objects derived from
classes are OOP objects in Python; you can't do inheritance with nonclass-based objects such
as lists and numbers, unless you wrap them in classes.

* Actudly, appl y can call any callable object; that includes functions, classes, and methods. The
f act ory function here can run any callable, not just a class (despite the argument name).

Page 180
Methods Are Objects. Bound or Unbound

Speaking of objects, it turns out that methods are a kind of object too, much like functions.
Because class methods can be accessed from either an instance or a class, they actually come
in two flavorsin Python:

Unbound class methods: no self
Accessing aclass's function attribute by qualifying a class returns an unbound method
object. To cdl it, you must provide an instance object explicitly asits first argument.

Bound instance methods: self + function pairs
Accessing a classs function attribute by qualifying an instance returns a bound method
object. Python automatically packages the instance with the function in the bound method
object, so we don't need to pass an instance to call the method.

Both kinds of methods are full-fledged objects; they can be passed around, stored in lists, and
so on. Both also require an instance in their first argument whenrun (i.e., avauefor sel f),
but Python provides one for you automatically when calling a bound method through an
instance. For example, suppose we define the following class:

cl ass Spam
def doit(self, message):
print nmessage

Now, we can make an instance, and fetch a bound method without actually calling it. An

obj ect . nane qualification is an object expression; here, it returns a bound method object
that packages the instance (obj ect 1) with the method function (Spam doi t). Wecan
assign the bound method to another name and call it as though it were a ssmple function:

obj ectl = Spam()
X = objectl. doit # bound net hod obj ect
X("hello world") # instance is inplied

On the other hand, if we qualify the classto get to doi t , we get back an unbound method
object, which is ssimply areference to the function object. To call thistype of method, passin
an instance in the leftmost argument:

t = Spam doi t # unbound rnet hod obj ect
t(objectl, 'howdy') # pass in instance

Most of the time, you call methods immediately after fetching them with qudification (e.g.,

sel f.attr(args)), soyoudon't aways notice the method object along the way. But if you
start writing code that calls objects generically, you need to be careful to treat unbound
methods specialy; they require an explicit object.

Page 181

Odds and Ends
Private Attributes (New in 1.5)

In the last chapter, we noted that every name assigned at the top level of afileis exported by a
module. By default, the same holds for classes; data hiding is a convention, and clients may
fetch or change any class or instance attribute they like. In fact, attributes are all publ i ¢ and
vi rtual inC++ terms; they're al accessible everywhere and all looked up dynamically at
runtime.

At least until Python 1.5. In 1.5, Guido introduced the notion of name mangling to localize
some names in classes. Private names are an advanced feature, entirely optional, and probably
won't be very useful until you start writing large class hierarchies. But here's an overview for
the curious.

In Python 1.5, namesinsideacl| ass statement that start with two underscores (and don't end
with two underscores) are automatically changed to include the name of the enclosing class.
For instance, anamelike _ XinaclassC ass ischangedto _Cl ass__ X automatically.
Because the modified name includes the name of the enclosing class, it's somewhat unusual; it
won't clash with similar names in other classesin a hierarchy.

Python mangles names wherever they appear in the class. For example, an instance attribute
caledsel f. _ Xistransformedtosel f. C ass__ X, thereby mangling an attribute name
for instance objects too. Since more than one class may add attributes to an instance, name
mangling helps avoid clashes automaticaly.

Name mangling happensonly in cl ass statements and only for names you write with two
leading underscores. Because of that, it can make code somewhat unreadable. It aso isn't quite
thesameaspr i vat edeclarationsin C++ (if you know the name of the enclosing class, you
can still get to mangled attributes!), but it can avoid accidental name clashes when an attribute
name is used by more than one class of a hierarchy.

Documentation Strings

Now that we know about classes, we cantell what those _doc__ attributes we've seen are
all about. So far we've been using comments that start with a# to describe our code. Comments
are useful for humans reading our programs, but they aren't available wiren the program runs.
Python also let us associate strings of documentation with program-unit objects and provides a
specia syntax for it. If amodulefile, def statement, or cl ass statement begins with a string
constant instead of a statement, Python stuffsthe stringintothe __doc___ attribute of the

Page 182

generated object. For instance, the following program defines documentation strings for
multiple objects:

"I am docstr._ doc_

cl ass spam
"I am spam ___doc__ or docstr.spam __doc_

def nethod(self, arg):
"I am spam nethod. doc__ or self.method. doc_
pass

def func(args):
"I am docstr.func. doc_
pass

The main advantage of documentation stringsis that they stick around at runtime; if it's been
coded as a documentation string, you can qualify an object to fetch its documentation.

>>> jnport docstr

>>> docstr. __doc__

"I am docstr.__doc_ '

>>> docstr.spam __doc__

"I am spam __doc__ or docstr.spam __doc_

>>> docstr.spam net hod. __doc___

"I am spam nethod. doc__ or self.method. doc_
>>> docstr.func. __doc_

"I am docstr.func. doc_

This can be especially useful during development. For instance, you can look up components
documentation at the interactive command line as done above, without having to go to the
source file to see # comments. Similarly, a Python object browser can take advantage of
documentation strings to display descriptions along with objects.

On the other hand, documentation strings are not universally used by Python programmers. To
get the most benefit from them, programmers need to follow some sort of conventionsin their

documentation styles, and it's our experience that these sorts of conventions are rarely
implemented or followed in practice. Further, documentation strings are available at runtime,
but they are also less flexible than # comments (which can appear anywhere in a program).
Both forms are useful tools, and any program documentation is agood thing, aslong asit's
accurate.

Classes Versus Modules

Finaly, let's step back for amoment and compare the topics of the last two chapters—modules
and classes. Since they're both about namespaces, the distinction can sometimes be confusing.
In short:

Page 183
Modules
* Are data/l ogic packages
* Are created by writing Python files or C extensions
* Are used by being imported
Classes
* Implement new objects
* Are created by class statements
* Are used by being called
* Alwayslivein amodule

Classes also support extra features modules don't, such as operator overloading, multiple
instances, and inheritance. Although both are namespaces, we hope you can tell by now that
they're very different animals.

Class Gotchas

Most class issues can usually be boiled down to namespace issues (which makes sense, given
that classes are just namespaces with afew extratricks up their sleeves).

Changing Class Attributes Can Have Side Effects

Theoretically speaking, classes (and class instances) are all mutable objects. Just as with
built-in lists and dictionaries, they can be changed in place, by assigning to their attributes. As
with lists and dictionaries, this also means that changing a class or instance object may impact
multiple referencestoiit.

That's usually what we want (and is how objects change their state in generd), but this
becomes especidly critical to know when changing class attributes. Because all instances
generated from a class share the class's namespace, any changes at the class level are reflected
in al instances, unless they have their own versions of changed class attributes.

Since classes, modules, and instances are all just objects with attribute namespaces, you can

normally change their attributes at runtime by assignments. Consider the following class; insde
the class body, the assignment to name a generates an attribute X.a, which livesin the class
object at runtime and will beinherited by all of X'sinstances:

>>> cl ass X

a=1 # class attribute
Page 184
>>> | = X()
>>> | . a # inherited by instance
1
>>> X a
1

So far so good. But notice what happens when we change the class attribute dynamicaly: it
also changes it in every object which inherits from the class. Moreover, new instances created
from the class get the dynamically set value, regardless of what the class's source code says:

>>> X.a = 2 # may change nore than X
>>> |.a # | changes too
2
>>> J = X() # J inherits fromX s runtime val ues
>>> J. a # (but assigning to J.a changes a in J, not X or |)
2
Solution

Useful feature or dangerous trap? Y ou be the judge, but you can actually get work done by
changing class attributes, without ever making a single instance. In fact, this technique can
simulate "records’ or "structs' in other languages. For example, consider the following unusual
but legal Python program:

class X pass # make a few attri bute nanespaces

class Y. pass

Xa-=1 # use class attributes as vari abl es
Xb =2 # no instances anywhere to be found
Xc =3

Y.a=Xa+ Xb+ Xc

for Xi inrange(Y.a): print Xi # prints 0..5

Here, classes X and Y work like file-less modules—namespaces for storing variables we don't
want to clash. Thisis aperfectly legal Python programming trick, but is less appropriate when
applied to classes written by others; you can't always be sure that class attributes you change
aren't critical to the classsinternal behavior. If you're out to simulate a C struct, you may be
better off changing instances than classes, since only one object is affected:

>>> cl ass Record: pass

>>> X = Record()
>>> X. nanme = ' bob'
>>> X job = 'pizza maker'

Page 185
Multiple Inheritance: Order Matters

Thismay be obvious, but isworth underscoring: if you use multiple inheritance, the order in
which superclasses arelisted inacl ass statement header can be critical. For instance, in the
example we saw earlier, suppose that the Super implementeda___ r epr __ method too;
would we then want to inherit Li st er 'sor Super ' s? We would get it from whichever class
islisted first in Sub' s class header, since inheritance searches |eft to right. But now suppose
Super andLi st er havether own versions of other names too; if we want one name from
Super andonefrom Li st er , we have to override inheritance by manually assigning to the
attribute name in the Sub class:

class Lister:
def __repr__(self):
def other(self):

cl ass Super:
def __repr__(self):
def other(self):

cl ass Sub(Super, Lister): # pick up Super's __repr__, by listing it first
other = Lister.other # but explicitly pick up Lister's version of othi

def __init_ (self):

Solution

Multiple inheritance is an advanced tool; even if you understood the last paragraph, it's still a
good ideato use it sparingly and carefully. Otherwise, the meaning of a name may depend on
the order in which classes are mixed in an arbitrarily far removed subclass.

Class Function Attributes Are Special

Thisoneissmpleif you understand Python's underlying object model, but it tendsto trip up
new users with backgrounds in other OOP languages (especially Smalltalk). In Python, class
method functions can never be called without an instance. Earlier in the chapter, we talked
about unbound methods: when we fetch a method function by qualifying a class (instead of an
instance), we get an unbound method. Even though they are defined with adef statement,
unbound method objects are not smple functions; they cannot be called without an instance.

For example, suppose we want to use class attributes to count how many instances are
generated from a class. Remember, class attributes are shared by all instances, so we can store
the counter in the class object itself:

cl ass Spam
nunl nstances = 0

Page 186

def __init_ (self):
Spam numl nst ances = Spam num nstances + 1
def printNum nstances():
print "Nunber of instances created: ", Spam num nstances

Thiswon't work: the pr i nt Nuni nst ances method still expects an instance to be passed in
when called, because the function is associated with a class (even though there are no
arguments in the def header):

>>> from spaminport *

>>> a = Span()
>>> b = Span()
>>> ¢ = Span()

>>> Spam pri nt Nuni nst ances()
Traceback (innernost |ast):
File "<stdin>", line 1, in?
TypeError: unbound nethod nmust be called with class instance 1st argunent

Solution

Don't expect this: unbound methods aren't exactly the same as simple functions. Thisisredly a
knowledge issue, but if you want to call functions that access class members without an
instance, just make them simple functions, not class methods. Thisway, an instance isn't
expected in the call:

def printNum nstances():
print "Nunber of instances created: ", Spam num nstances

cl ass Spam
num nstances = 0
def __init_ (self):
Spam nuni nst ances = Spam nuni nstances + 1

>>> jnport spam

>>> a = spam Span()

>>> b = spam Span()

>>> ¢ = spam Span()

>>> spam pri nt Nuni nst ances()
Nurmber of instances created: 3

We can aso make thiswork by calling through an instance, as usual:

cl ass Spam
num nstances = 0
def __init_ (self):
Spam nuni nst ances = Spam nuni nstances + 1
def printNum nstances(self):
print "Nunber of instances created: ", Spam num nstances

>>> from spam i nport Spam

>>> a, b, ¢ = Span(), Span(), Span()
>>> a. print Num nstances()

Nunber of instances created: 3
>>> b, print Num nst ances()

Page 187

Nunber of instances created: 3
>>> Span(). pri nt Nurml nst ances()
Nunber of instances created: 4

Some language theorists claim that this means Python doesn't have class methods, only instance
methods. We suspect they really mean Python classes don't work the same as in some other
language. Python really has bound and unbound method objects, with well-defined semantics;
qualifying a class gets you an unbound method, which is a specia kind of function. Python
really does have class attributes, but functions in classes expect an instance argument.

Moreover, since Python already provides modules as a namespace partitioning tool, there's
usually no need to package functions in classes unless they implement object behavior. Smple
functions in modules usually do most of what instance-less class methods could. For example,
in the first examplein this section, pr i nt Num nst ances is aready associated with the
class, because it lives in the same module.

Methods, Classes, and Nested Scopes

Classesintroduce alocal scope just as functions do, so the same sorts of scope gotchas can
happeninacl ass statement body. Moreover, methods are further nested functions, so the
same issues apply. Confusion seems to be especially common when classes are nested. For
instance, in the following example, the gener at e function is supposed to return an instance
of the nested Sparr class. Within its code, the class name Span isassigned inthegener at e
function's local scope. But within the class's met hod function, the class name Sparr is not
visible; met hod has access only to its own local scope, the module surrounding gener at e,
and built-in names:

def generate():
cl ass Spam

count =1
def rmethod(sel f): # nanme Spam not visible
print Spam count # not | ocal (def), global (nodule), built-

return Spam)
gener at e() . nmet hod()

C.\ pyt hon\ exanpl es> pyt hon nester. py
Traceback (innernost |ast):

File "nester.py", line 8 in ?
gener at e() . nmet hod()
File "nester.py", line 5 in method
print Spam count # not | ocal (def), global (nodule), built-

Page 188

Solution

The most general piece of advice we can pass aong here isto remember the LGB rule; it
worksin classes and method functions just as it doesin simple functions. For instance, inside a
method function, code has unqualified access only to local names (in the method def), global
names (in the enclosing module), and built-ins. Notably missing isthe enclosing cl ass
statement; to get to class attributes, methods need to qualify sel f , theinstance. To call one
method from another, the caller must route the call through sel f (e.g., sel f. net hod()).

There are avariety of ways to get the example above to work. One of the simplest isto move
the name Span out to the enclosing modul€'s scope with global declarations; since et hod
sees names in the enclosing module by the LGB rule, Spar references work:

def generate():

gl obal Spam # force Spamto nodul e scope
cl ass Spam
count =1
def rmethod(sel f):
print Spam count # works: in global (enclosing nodule)

return Spam)
gener at e() . nmet hod() # prints 1

Perhaps better, we can also restructure the example such that class Sparr is defined at the top
level of the module by virtue of its nesting level, rather than gl obal declarations. Both the
nested met hod function and the top-level gener at e find Span in their global scopes:

def generate():
return Spam)

cl ass Spam # define at nodul e top-Ievel
count =1
def rmethod(sel f):
print Spam count # works: in global (enclosing nodule)

gener at e() . nmet hod()

We can also get rid of the Span referencein met hod atogether, by using the specid
__class__ attribute, which, as we've seen, returns an instance's class object:

def generate():
cl ass Spam
count =1
def rmethod(sel f):
print self.__class__.count # works: qualify to get class

return Spam)

gener at e() . nmet hod()

Page 189

Finally, we could use the mutabl e default argument trick we saw in Chapter 4 to make this
work, but it's so complicated we're amost embarrassed to show you; the prior solutions
usually make more sense:

def generate():
cl ass Spam

count =1

fillin = [None]

def method(self, klass=fillin): # save from encl osi ng scope
print klass[0].count # works: default plugged-in

Spam fillin[0] = Spam
return Spam)
gener at e() . nmet hod()

Notice that we can't say kl ass=Sparmrinnet hod' s def header, because the name Spam
isn't visiblein Span's body either; it's not local (in the class body), global (the enclosing
module), or built-in. Span only existsin the gener at e function'slocal scope, which neither
the nested class nor its method can see. The LGB rule works the same for both.

Summary

This chapter has been about two special objects in Python—classes and instances—and the
language tools that create and process them. Class objects are created with cl ass statements,
provide default behavior, and serve as generators for multiple instance objects. Together, these
two objects support full-blown object-oriented development and code reuse. In short, classes
allow usto implement new objects, which export both data and behavior.

In terms of their main distinctions, classes support multiple copies, specialization by
inheritance, and operator overloading, and we explored each of these featuresin this chapter.
Since classes are all about namespaces, we aso studied the ways they extend module and
function namespace notions. And finally, we explored afew object-oriented design ideas such
as composition and delegation, by seeing how to implement them in Python.

The next chapter concludes our core language tour, with a quick look at exception handling—a
simple tool used to process events, rather than build program components. As a summary and
reference of what we learned in this chapter, here's a synopsis of the terms we've used to talk
about classes in Python:

Class
An object (and statement) that defines inherited attributes

Instance
Objects created from a class, which inherit its attributes, and get their own namespace

Page 190

Method
An attribute of a class object that's bound to a function object

self
By convention, the name given to the implied instance object in methods

Inheritance
When an instance or class accesses a class's attributes by qualification

Superclass

A class another class inherits attributes from

Subclass
A class that inherits attribute names from another class

Exercises

This laboratory session asks you to write afew classes and experiment with some existing
code. Of course, the problem with existing code is that it must be existing. To work with the set
classin Exercise 5, either pull down the class source code off the Internet (see the Preface) or
type it up by hand (it'sfairly small). These programs are starting to get more sophisticated, so
be sure to check the solutions at the end of the book for pointers. If you're pressed for time, we
suspect that the last exercise dealing with composition will probably be the most fun of the
bunch (of course, we aready know the answers).

1. The basics. Write aclass called Adder that exportsamethod add (sel f, x,y) that
prints a"Not Implemented” message. Then define two subclasses of Adder that implement the
add method:

— Li st Adder , with an add method that returns the concatenation of its two list
arguments

— Di ct Adder , with an add method that returns a new dictionary with the itemsin both
its two dictionary arguments (any definition of addition will do)

Experiment by making instances of all three of your classes interactively and calling their
add methods. Finally, extend your classes to save an object in a constructor (alist or a
dictionary) and overload the + operator to replace the add method. Where is the best
place to put the constructors and operator overload methods (i.e., in which classes)? What
sorts of objects can you add to your class instances?

2. Operator overloading. Write aclasscalled Myl i st that "wraps' a Python list: it should
overload most list operators and operations—+, indexing, iteration, slicing, and list methods
such asappend and sor t . See the Python reference manual for alist of all possible methods
to overload. Also provide a construc-

Page 191

tor for your class that takes an existing list (or aMy| i st instance) and copies its components
into an instance member. Experiment with your class interactively. Things to explore:

— Why is copying the initia value important here?

— Canyou use an empty dice(e.g., start [:]) tocopy theinitia valueif it'sa
Myl i st instance?

— Isthere agenera way to route list method calls to the wrapped list?

— CanyouaddaMyl i st and aregular list? How about alist and aMyl i st instance?

— What type of object should operations like + and dicing return; how about indexing?
3. Subclassing. Now, make asubclassof Myl i st from Exercise 2 called Myl i st Sub,

which extends Myl i st to print amessageto st dout before each overloaded operation is
called and counts the number of calls. Myl i st Sub should inherit basic method behavior from
Myl i st . For instance, adding asequenceto aMy| i st Sub should print a message, increment
the counter for + calls, and perform the superclass's method. Also introduce a new method that
displays the operation countersto st dout and experiment with your classinteractively. Do
your counters count calls per instance, or per class (for all instances of the class)? How would
you program both of these? (Hint: it depends on which object the count members are assigned
to: class members are shared by instances, sel f members are per-instance data.)

4. Metaclass methods. Write a class called Met a with methods that intercept every attribute
qualification (both fetches and assignments) and prints a message with their argumentsto

st dout . Create a Met a instance and experiment with qualifying it interactively. What
happens when you try to use the instance in expressions? Try adding, indexing, and dlicing the
instance of your class.

5. Set objects. Experiment with the set class described in this chapter (from the section
"Extending Built-in Object Types'). Run commands to do the following sorts of operations:

a. Create two sets of integers, and compute their intersection and union by using & and |
operator expressions.

b. Create a set from a string, and experiment with indexing your set; which methodsin the
class are called?

c. Try iterating through the itemsin your string set using af or loop; which methods run
thistime?

d. Try computing the intersection and union of your string set and a smple Python string;
doesit work?

Page 192

e. Now, extend your set by subclassing to handle arbitrarily many operands using a

*ar gs argument form (hint: see the function versions of these algorithms in Chapter 4).
Compute intersections and unions of multiple operands with your set subclass. How can
you intersect three or more sets, given that & has only two sides?

f. How would you go about emulating other list operations in the set class? (Hints:
__add__ can catch concatenation,and __get attr ___ can passmost list method calls
off to the wrapped list.)

6. Classtree links. In afootnote in the section on multiple inheritance, we mentioned that
classeshavea___bases attribute that returns atuple of the class's superclass objects (the
onesin parenthesesin the class header). Use __bases__ toextendtheLi st er mixin class,
so that it prints the names of the immediate superclasses of the instance's class too. When
you're done, the first line of the string representation should look like this:

<l nstance of Sub(Super, Lister), address 7841200:
How would you go about listing class attributes too?

7. Composition. Simulate a fast-food ordering scenario by defining four classes:

— Lunch: acontainer and controller class

— Cust oner : the actor that buys food

— Enpl oyee: the actor that a customer orders from

— Food: what the customer buys

To get you started, here are the classes and methods you'll be defining:

cl ass Lunch:

def _init__ (self) # make/ enbed Custoner and Enpl oyee
def order(self, foodNane) # start a Custoner order sinulation
def result(self) # ask the Customer what kind of Food it has

cl ass Custoner:
def __init_ (self) #initialize nmy food to None

def placeOrder(self, foodNanme, enployee) # place order with an Enpl oye:

def printFood(self) # print the nanme of ny food

cl ass Enpl oyee:

def takeOrder(self, foodNane) # return a Food, with requested nane
cl ass Food:
def __init__(self, nane) # store food name

The order simulation works as follows;

— The Lunch class's constructor should make and embed an instance of Cust oner and
Enpl oyee, and export amethod called or der . When called, thisor der method should
ask the Cust oner to place an order, by

Page 193

calingitspl aceOr der method. The Cust oner ' s pl aceOr der method should in
turn ask the Enpl oyee object for anew Food object, by caling the Enpl oyee' s
t akeOr der method.

— Food objects should store afood name string (e.g., “ burri t 0s™), passed down
fromLunch. or der to Cust oner . pl aceOr der, to Enpl oyee. t akeOr der , and
finally to Food' s constructor. The top-level Lunch class should aso export a method
calledr esul t , which asksthe customer to print the name of the food it received from the
Enpl oyee (this can be used to test your smulation).

— Notethat Lunch needsto either passthe Enpl oyee tothe Cust oner , or pass itself
tothe Cust oner , in order to allow the Cust oner to call Enpl oyee methods.

8. Experiment with your classesinteractively by importing the Lunch class, calling itsor der
method to run an interaction, and then calling itsr esul t method to verify that the Cust onrer

got what he or she ordered. In this simulation, the Cust oner isthe active agent; how would
your classes changeif Enpl oyee were the object that initiated customer/employee interaction

instead?

7—
Exceptions

In this chapter:

» Why Use Exceptions?

* Exception Basics

* Exception I dioms

* Exception Catching Modes
* Odds and Ends

* Exception Gotchas

* Summary

* Exercises

Page 194

Our last chapter in this part of the book has to do with exceptions—events that can modify the
flow of control through a program. In Python, exceptions can be both intercepted and triggered

by our programs. They are processed by two new statements we'll study in this chapter:

try

Catches exceptions raised by Python or a program

rai se

Triggers an exception manually

With afew exceptions (pun intended), welll find that exception handling is smple in Python,

because it's integrated into the language itself as another high-level tool.

Why Use Exceptions?

In anutshell, exceptions let us jJump around arbitrarily large chunks of a program. Remember
that pizza-making robot we talked about in the last chapter? Suppose we took the idea seriously
and actually built such a machine (there are worse hobbies, after all). To make a pizza, our
culinary automaton would need to execute a plan, which we implement as a Python program. It

would take an order, prepare the dough, add toppings, bake the pie, and so on.

Now, suppose that something goes very wrong during the "bake the pie" step. Perhaps the oven
is broken. Or perhaps our robot miscalculates its reach and spontaneously bursts into flames.
Clearly, we want to be able to jump to code that handles such states quickly (especialy if our
robot is melting all over the kitchen floor!). Since we have no hope of finishing the pizzatask
in such unusual cases, we might as well abandon the entire plan.

Page 195

That's exactly what exceptions let you do; you can jump to an exception handler in asingle
step, past al suspended function calls. They're a sort of "super-goto."* An exception handler
(t ry statement) leaves a marker and executes some code. Somewhere further ahead in the
program, an exception is raised that makes Python jump back to the marker immediately,
without resuming any active functions that were called since the marker was left. Code in the
exception handler can respond to the raised exception as appropriate (calling the fire
department, for instance). Moreover, because Python jumps to the handler statement
immediately, thereis usually no need to check status codes after every cal to afunction that
could possibly fail.

In typical Python programs, exceptions may be used for avariety of things:

Error handling
Python raises exceptions when it detects errors in programs at runtime; you can either catch
and respond to the errors internally in your programs or ignore the exception. If ignored,
Python's default exception-handling behavior kicksin; it kills the program and prints an
error message showing where the error occurred.

Event notification
Exceptions can also signa avalid condition, without having to pass result flags around a
program or test them explicitly. For instance, a search routine might raise an exception on
success, rather than return an integer 1.

Special-case handling
Sometimes a condition may happen so rarely that it's hard to justify convoluting code to
handleit. Y ou can often eliminate special-case code by handling unusual casesin exception
handlers instead.

Unusual control-flows
And finally, because exceptions are atype of high-level goto, you can use them as the basis
for implementing exotic control flows. For instance, although back-tracking is not part of
the language itsdlf, it can be implemented in Python with exceptions and a bit of support
logic to unwind assgnments.**

Well see some of these typical usesin action later in this chapter. First, let's get started with a
closer look at Python's exception-processing tools.

* Infact, if you've used C, you may beinterested to know that Python exceptions are roughly
equivalent to C'sset | np/ | ongj np standard function pair. Thet r y statement acts much like a
setj np,andr ai se workslikeal ongj np. But in Python, exceptions are based on objects and are
astandard part of the execution model.

** Backtracking isn't part of the Python language, so we won't say more about it here. See abook on

artificial intelligence or the Prolog or icon programming languagesif you're curious.

Page 196

Exception Basics

Python exceptions are a high-level control flow device. They may be raised either by Python or
by our programs; in both cases, they may be caught by t r y statements. Python't r y statements
come in two flavors—one that handles exceptions and one that executes finalization code
whether exceptions occur or not.

try/except/else

Thet r y isanother compound statement; its most complete form is sketched below. It starts
with at r y header line followed by a block of indented statements, then one or more optional
except clausesthat name exceptions to be caught, and an optiona el se clause at the end:

try:

<st at enent s> # run/call actions
except <nane>:

<st at enent s> # if '"nane' raised during try bl ock
except <nane>, <data>:

<st at enent s> # if 'nanme' raised; get extra data
el se:

<st at enent s> # if no exception was raised

Hereshow t r y statementswork. When at r y statement is started, Python marks the current
program context, so it can come back if an exception occurs. The statements nested under the
t ry header are run first; what happens next depends on whether exceptions are raised while
thet r y block's statements are running or not:

* If an exception occurs whilethet r y block's statements are running, Python jumps back to the
t ry and runsthe statements under the first except clause that matches the raised exception.
Control continues past the entiret r y statement after theexcept block runs (unless the
except block raises another exception).

* |f an exception happensinthet r y block and no except clause matches, the exceptionis
propagated up to at r y that was entered earlier in the program, or to the top level of the
process (which makes Python kill the program and print a default error message).

* If no exception occurs while the statements under the't r y header run, Python runs the
statements under the el se line (if present), and control then resumes past the entiret r y
Satement.

In other words, except clauses catch exceptions that happen whilethet r y block isrunning,
andtheel se clauseisrun only if no exceptions happen whilethet r y block runs. The
except clausesare very focused exception handlers; they catch exceptions that occur only
within the statementsin the associated t r y block.

Page 197

However, sincethet r y block's statements can call functions el sewhere in a program, the

source of an exception may be outsidethet ry.
tryffinally

The other flavor of thet r y statement is a specialization and has to do with finalization
actions. If afi nal | y clauseisusedinat ry, itsblock of statements are aways run by
Python "on the way out,” whether an exception occurred whilethet r y block was running or
not:

* [f no exception occurs, Python runsthet r y block, thenthef i nal | y block, and then
continues execution past the entiret r y statement.

* If an exception does occur during thet r y block's run, Python comes back and runs the
fi nal | y block, but then propagates the exception to ahigher t r y (or the top level); control
doesn't continue past thet r y statement.

Thetry/final |y formisuseful when you want to be completely sure that an action
happens after some code runs, regardless of the exception behavior of the program; we'll see
an exampleinamoment. Thef i nal | y clause can't be used in the samet r y statement as
except andel se, sothey are best thought of as two different statements:

try:
<st at enent s>
finally:
<st at enent s> # always run "on the way out"

raise

To trigger exceptions, you need to coder ai se statements. Their general form issimple: the
word r ai se followed by the name of the exception to be raised. Y ou can also pass an extra
dataitem (an object) aong with the exception, by listing it after the exception name. If extra
datais passed, it can be caught in at r y by listing an assignment target to recelveit: except
namne, dat a:

rai se <name> # manual |y trigger an exception
rai se <name>, <data> # pass extra data to catcher too

So what's an exception name? It might be the name of a built-in exception from the built-in
scope (e.g., | ndexEr r or), or the name of an arbitrary string object you've assigned in your
program. It can aso reference aclass or class instance; thisform generalizesr ai se
statements, but we'll postpone thistopic till later in this chapter. Exceptions are identified by
objects, and at most oneis active at any given time. Once caught by an except clause, an
exception dies (won't propagate to another t r y), unless reraised by ar ai se or error.

Page 198
First Examples

Exceptions are simpler than they seem. Since control flow through a program is easier to
capture in Python than in English, let's look at some simple examples that illustrate exception
basics.

Default behavior: Error messages

As mentioned, exceptions not caught by t r y statements reach the top level of a Python process
and run Python's default exception-handling logic. By default, Python terminates the running
program and prints an error message describing the exception, showing where the program was
when the exception occurred. For example, running the following module generates a
divide-by-zero exception; since the program ignores it, Python kills the program and prints:

% cat bad. py

def gobad(x, y) :
return x / vy

def gosouth(x) :
print gobad(x, 0)

gosout h(1)

% pyt hon bad. py
Traceback (innernost |ast):

File "bad. py", line 7, in ?
gosout h(1)

File "bad.py", line 5, in gosouth
print gobad(x, 0)

File "bad.py", line 2, in gobad

return x / vy
ZeroDi vi sionError: integer division or nodul o

When an uncaught exception occurs, Python ends the program, and prints a stack trace and the
name and extra data of the exception that was raised. The stack trace shows the filename, line
number, and source code, for each function active when the exception occurred, from oldest to
newest. For example, you can see that the bad divide happens at the lowest entry in the
trace—line 2 of file bad.py, ar et ur n statement.

Because Python reports amost all errors at runtime by raising exceptions, exceptions are
intimately bound up with the idea of error handling in general. For instance, if you've worked
through the examples, you've amost certainly seen an exception or two along the way (even
typos usualy generate a Synt axEr r or exception). By default, you get a useful error display
like the one above, which

Page 199

helps track down the problem. For more heavy-duty debugging jobs, you can catch exceptions
with try statements.*

Catching built-in exceptions

If you don't want your program terminated when an exception is raised by Python, ssimply catch
it by wrapping program logicin at r y. For example, the following code catches the

| ndexEr r or Python raises when thelist isindexed out of bounds (remember that list indexes
are zero-based offsets; 3 is past the end):

def kaboon(list, n):
print list[n] # trigger |ndexError

try:

kaboonm([0, 1, 2], 3)
except | ndexError: # catch exception here
print 'Hello world!'

When the exception occursin function kaboor, control jumpsto thet r y statement'sexcept
clause, which prints amessage. Since an exception is "dead" after it's been caught, the program
continues past the wholet r y, rather than being terminated by Python. In effect, you process
and ignore the error.

Raising and catching user-defined exceptions

Python programs can raise exceptions of their own too, using ther ai se statement. In their
simplest form, user-defined exceptions are usually string objects, like the one MyEr r or is
assigned to in the following:

MyError = "ny error”

def stuff(file):
rai se MyError

file = open('data', 'r'") # open an existing file
try:

stuff(file) # rai ses exception
finally:

file.close() # always close file

User-defined exceptions are caught with t r y statements just like built-in exceptions. Here,
we've wrapped acall to afile-processing functioninat ry withaf i nal | y clause, to make
sure that the file is ways closed, whether the function triggers an exception or not. This
particular function isn't all that useful (it just raises an exception!), but wrapping callsin
try/ finally statementsisagood way to ensure that your closing-time activities dways
run.

* Y ou can also use Python's standard debugger, pdb, to isolate problems. Like C debuggers such as
dbx andgdb, pdb letsyou step through Python programs line by line, inspect variable values, set
breakpoints, and so on. pdb is shipped with Python as a standard module and is written in Python.
See Python'slibrary manual or other Python texts for information on pdb usage.

Page 200

Exception Idioms

We've seen the mechanics behind exceptions; now, let's take look at some of the ways they're
typically used.

Exceptions Aren't Always a Bad Thing

Python raises exceptions on errors, but not all exceptions are errors. For instance, we saw in
Chapter 2, Types and Operators, that file object r ead methods return empty strings at the end
of afile. Python aso provides abuilt-in function called r aw_i nput for reading from the
standard input stream; unlike file methods, r aw_i nput raisesthe built-in EOFEr r or a end
of file, instead of returning an empty string (an empty string means an empty line when

raw_i nput isused). Because of that, r aw _i nput often appearswrapped inat ry handler

and nested in aloop, as in the following code

while 1:
try:
line = raw_i nput () # read line fromstdin
except ECFError:
br eak # exit loop at end of file
el se:
Process next 'line' here

Searches Sometimes Signal Success by raise

User-defined exceptions can signal nonerror conditions also. For instance, a search routine can
be coded to raise an exception when amatch is found, instead of returning a status flag that
must be interpreted by the caller. In thefollowing, thet r y/ except / el se exception handler
doesthework of ani f / el se return value tester:

Found = "Item f ound"

def searcher():
rai se Found or return

try:
sear cher ()
except Found: # exception if itemwas found
Success
el se: # el se returned: not found
Failure

Outer try Statements Can Debug Code

Y ou can aso make use of exception handlers to replace Python's default top-level
exception-handling behavior seen previously. By wrapping an entire program (or acall toit) in
anouter t ry, you can catch any exception that may occur while

Page 201

your program runs, thereby subverting the default program termination. In the following, the
empty except clause catches any uncaught exception raised while the program runs. To get
hold of the actual exception that occurred, fetchtheexc_t ype andexc_val ue attributes
from the built-in sys module; they're automatically set to the current exception's name and
extra datac*

try:

Run program

except : # all uncaught exceptions cone here
i mport sys
print 'uncaught!', sys.exc_type, sys.exc_val ue

Exception Catching Modes
Now that we've taken afirst ook, let'sfill in afew details behind Python's exception model.

try Statement Clauses

When you writet r y statements, a variety of clauses can appear after thet r y statement block;

Table 7-1 summarizes all the possible forms. We've aready seen most of these in the previous

examples—empty except clauses catch any exception, f i nal | y runs on the way out, and so
on. There may be any number of except s, but fi nal | y must appear by itself (without an

el se or except), and there should be only oneel seinatry.

Table 7-1. try Statement Clause Forms

Clause Form Interpretation

except : Catch all (other) exception types
except narme: Catch a specific exception only
except nane, val ue: Catch exception and its extra data
except (nanel, nane2): Catch any of the listed exceptions
el se: Run block if no exceptions raised
finally: Always perform block

* By theway, the built-int r aceback module allows the current exception to be processed in a
generic fashion, and as of Python 1.5.1, anew sys. exc_i nf o() function returns atuple
containing the current exception'stype, data, and traceback. sys. exc_t ype andsys. exc_val ue
still work, but manage asingle, global exception; exc_i nf o() keepstrack of each thread's
exception information and so is thread-specific. This distinction matters only when using multiple
threads in Python programs (a subject beyond this book's scope). See the Python library manual for
more details.

Page 202
Catching 1-of-N Exceptions

Thefourth entry in Table 7-1 isnew. except clauses can also provide a set of exceptionsto
be caught, in parentheses; Python runs such a clause's statement block if any of the listed
exceptions occur. Since Python looks for a match withinagivent r y by inspecting except
clauses from top to bottom, the parenthesized version is like listing each exception in its own
except clause, except that the statement body needs to be coded only once.

Here's an example of multipleexcept clauses at work. In the following, when an exception is
raised whilethe call totheact i on function is running, Python returnsto thet r y and
searchesfor thefirst except that catches the exception raised. It inspects except clauses
from top to bottom and |eft to right, and runs the statements under the first that matches. If none
match, the exception is propagated past thist r y; theel se runsonly when no exception
occurred. If you really want a catch-all clause, an empty except doesthetrick:

try:

action()
except NameError:

except | ndexError

except KeyError:
except (AttributeError, TypeError, SyntaxError):

el se:

Exceptions Nest at Runtime

So far, our examples have used only asinglet r y to catch exceptions, but what happens if one
t ry isphysicaly nested inside another? For that matter, what doesit meanif at ry callsa
function that runs another t r y ? Both these cases can be understood if you redlize that Python
stackst r y statements at runtime. When an exception is raised, Python returns to the most
recently entered t r y statement with amatching except clause. Sinceeach t r y statement
leaves a marker, Python can jump back to earlier t r y s by inspecting the markers stack.

An example will help make this clear. The following module defines two functions; act i on2
is coded to trigger an exception (you can't add numbers and sequences), and act i onl wraps
acal toacti on2inat ry handler, to catch the exception. However, the top-level module
code at the bottom wrapsacall toacti onl inat ry handler too. When act i on2 triggers
the TypeEr r or exception, there will be two activet r y statements—theoneinacti onl,
and the one a the top level of the module. Python picks the most recent (youngest) with &
matching

Page 203

except ,whichinthiscaseisthet ry insideact i onl. In general, the place where an
exception winds up jumping to depends on the control flow through a program at runtime:

def action2():

print 1 + [] # generate TypeError
def actionl () :
try:
action2()
except TypeError: # nost recent matching try

print "inner try'

try:
actionl()

except TypeError: # here only if actionl reraises
print 'outer try'

% pyt hon nest exc. py
inner try

finally Clauses Run " On the Way Out"

We've aready talked about thef i nal | y clause, but here's a more sophisticated example. As
we've seen, thef i nal | y clause doesn't really catch specific exceptions; rather, it tapsinto
the exception propagation process. When used, af i nal | y block is always executed on the
way out of at r y statement, whether the exit is caused by an exception or norma completion
of the statementsin thet r y block. Thismakesf i nal | y blocks agood place to code

clean-up actions (like closing files, as in the previous example).

The next code snippet showsf i nal | y in action with and without exceptions. It defines two
functions: di vi de, which may or may not trigger a divide-by-zero error, andt est er , which
wrapsacal todi videinatry/final | y statement:

def divide(x, y):
return x / y # divi de-by-zero error?

def tester(y):
try:
print divide(8, y)
finally:
print 'on the way out...

print '\nTest 1:' ; tester(2)
print '\nTest 2:' ; tester(0) # trigger error

% pyt hon finally. py

Test 1:
4
on the way out ...

Page 204

Test 2:
on the way out...
Traceback (innernost |ast):

File "finally.py", line 11, in ?
print 'Test 2:'; tester(0)
File "finally.py", line 6, in tester
print divide(8, y)
File "finally.py", line 2, in divide
return x / y # divi de-by-zero error?

ZeroDi vi sionError: integer division or nodul o
Now, the modul€e's top-level code at the bottom callst est er twice:

» Thefirst call doesn't generate an exception (8/2 works fine), and the result (4) is printed. But
thefi nal | y clause'sblock isrun anyhow, so you get theon t he way out message.

* The second call does generate an exception (8/0 isavery bad thing to say). Control
immediately jumps fromthedi vi de functiontothef i nal | y block, and the message prints
again. However, Python continues propagating the exception, which reaches the top level and
runs the default exception action (a stack trace).

Odds and Ends

Passing Optional Data

Asweve seen, r ai se statements can pass an extra data item aong with the exception for use
in ahandler. In general, the extra data alows you to send context information to a handler. In
fact, every exception has the extra data; much like function results, it's the special None object
if nothing was passed explicitly. The following code illustrates:

nyException = 'Error’ # string object

def raiserl()
rai se nyException, "hello" # raise, pass data

def raiser2():

rai se nmyException # raise, None inplied
def tryer(func)
try:
func()
except nyException, extralnfo: # run func, catch exception + data
print 'got this:', extralnfo
% pyt hon
>>> from hel | oexc inport *
>>> tryer(raiserl) # gets explicitly passed extra data

Page 205

Why You Will Care: Lazy Programs

One way to see why exceptions are useful isto compare coding stylesin Python and languages
without exceptions. For instance, if you want to write robust programs in the C language, you
have to test return values or status codes after every operation that could possibly go astray:

doSt uff ()
{ /1 C program
if (doFirstThing() == ERROR) // nust detect errors everywhere
return ERROR /1 even if not processed here

i f (doNext Thing() == ERROR)
return ERROR

return doLast Thing() ;

}
mai n()
{
if (doStuff() == ERROR)
badEndi ng() ;
el se
goodEndi ng() ;
}

In fact, realistic C programs have as much code devoted to error detection as to doing actual
work. But, in Python, you don't have to be so methodical; instead you can wrap arbitrarily vast
pieces of aprogram in exception handlers and write the parts that do the actual work to assume
al iswell:

def doStuff():
doFi r st Thi ng() # we don't care about exceptions here
doNext Thi ng() # so we don't need to detect them here

doLast Thi ng()

if_ nane_ _ =="'_ min_ _
try:
doSt uf f () # this is where we care about the result
except : # soit's the only place we need to check
badEndi ng()
el se:

goodEndi ng()

Because control jumpsimmediately and automatically to a handler when an exception occurs,
there's no need to instrument all your code to guard for errors. The upshot is that exceptions let
you largely ignore the unusual cases and avoid much error-checking code.

Page 206

got this: hello
>>> tryer(raiser2) # gets None by default
got this: None

The assert Statement

Asaspecia case, Python 1.5 introduced an asser t statement, which is mostly syntactic
shorthand for ar ai se. A statement of the form:

assert <test>, <data> # the <data> part is optiona

works like the following code:

if _ debug__:
if not <test>:
rai se AssertionError, <data>

but assert statements may be removed from the compiled program's byte code if the - O
command-line flag is used, thereby optimizing the program. Asser t i on- Er r or isabuilt-in
exception, andthe _debug__ flag isabuilt-in name which is automatically set to 1 unless
the - C flag is used. Assertions are typically used to verify program conditions during
development; when displayed, their message text includes source-code line information
automatically.

Class Exceptions

Recently, Python generalized the notion of exceptions. They may now aso be identified by
classes and class instances. Like module packages and private class attributes, class
exceptions are an advanced topic you can choose to use or not. If you're just getting started, you
may want to mark this section as optiona reading.

So far we've used strings to identify our own exceptions; when raised, Python matches the
exception to except clauses based on object identity (i.e., using thei s test we saw in
Chapter 2). But when aclass exception israised, an except clause matches the current
exception if it names the raised class or a superclass of it. The upshot isthat class exceptions
support the construction of exception hierarchies: by naming a general exception superclass, an
except clause can catch an entire category of exceptions; any more specific subclass will
match.

In general, user-defined exceptions may be identified by string or class objects. Beginning with
Python 1.5, al built-in exceptions Python may raise are pre-defined class objects, instead of
strings. Y ou normally won't need to care, unless you assume some built-in exception is a string
and try to concatenate it without converting (e.g., KeyError + “spani, versus
str(KeyError) + “spant).

Page 207
General raiseforms

With the addition of class-based exceptions, ther ai se statement can take the following five
forms: the first two raise string exceptions, the next two raise class exceptions, and the last is
an addition in Python Version 1.5, which simply reraises the current exception (it's useful if
you need to propagate an arbitrary exception you've caught inaexcept block). Raising an
instance really raises the instance's class; the instance is passed aong with the class as the
extra dataitem (it's a good place to store information for the handler).

rai se string # mat ches except with sane string object
rai se string, data # optional extra data (defaul t=None)

rai se class, instance # matches except with this class, or a superclass of
rai se i nstance # same as: raise instance. class_, instance
raise # re-raise the current exception (newin 1.5)

For backward compatibility with Python versions in which built-in exceptions were strings,
you can aso usethese forms of ther ai se statement:

rai se cl ass # sane as: raise class()
rai se class, arg # all are really: raise instance
rai se class, (arg, arg,..

These are dl thesameassaying r ai se cl ass (ar g..), and therefore the same asthe

rai sei nst ance form above (Python calls the class to create and raise an instance of it).
For example, you may raise an instance of the built-in KeyEr r or exception by saying smply
rai se KeyEr r or, eventhough KeyEr r or isnow aclass.

If that sounds confusing, just remember that exceptions may be identified by string, class, or
classinstance objects, and you may pass extra data with the exception or not. If the extra data
you pass with a classisn't an instance object, Python makes an instance for you.

Example

Let'slook at an example to see how class exceptions work. In the following, we define a
superclass Gener al and one subclass of it called Speci f i c. Weretrying to illustrate the
notion of exception categories here; handlersthat catch Gener al will also catch a subclass of
it like Speci f i c. Wethen create functions that raise instances of both classes as exceptions
and atop-level t r y that catches Gener al ; thesamet r y catches Gener al and Speci fic
exceptions, because Speci fi ¢ isasubclassof Gener al :

cl ass Ceneral: pass
cl ass Specific(General): pass

Page 208
def raiserl():
X = Ceneral () # raise listed class instance
rai se X
def raiser2():
X = Specific() # rai se instance of subcl ass
rai se X
for func in (raiserl, raiser2):
try:
func()
except Ceneral: # match General or any subclass of it
i mport sys

print 'caught:', sys. exc_type

% pyt hon cl assexc. py
caught: <class General at 88lee0>
caught: <class Specific at 881100>

Since there are only two possible exceptions here, this doesn't really do justice to the utility of
class exceptions; we can achieve the same effects by coding alist of string exception namesin
theexcept (eg.,except (a, b, c) :),andpassingaong an instance object asthe
extradataitem. But for large or high exception hierarchies, it may be easier to catch categories
using classes than to list every member of acategory inasingleexcept clause. Moreover,
exception hierarchies can be extended by adding new subclasses, without breaking existing
code.

For example, the built-in exception Ari t hnet i cEr r or isasuperclassto more specific
exceptionssuch asOver f | owEr r or and Zer oDi vi si onEr r or, but catching just
Arithmeti cError inatry, you catch any more specific kind of numeric error subclass
raised. Furthermore, if you add new kinds of numeric error subclasses in the future, existing
code that catchesthe Ari t hnet i cEr r or superclass (category) also catches the new
specific subclasses without modification; there's no need to explicitly extend alist of exception
names.

Besides supporting hierarchies, class exceptions also provide storage for extra state
information (as instance attributes), but thisisn't much more convenient than passing compound
objects as extra data with string exceptions (e.g., r ai se st ri ng, obj ect). Asusua in
Python, the choice to use OOP or not is mostly yours to make.

Exception Gotchas

Thereisn't much to trip over here, but here are afew genera pointers on exception use.

Page 209
Exceptions Match by | dentity, Not Equality

Aswe've seen, when an exception israised (by you or by Python itself), Python searches for
the most recently entered t r y statement with amatching except clause, where matching
means the same string object, the same class object, or a superclass of the raised class object.
It's important to notice that matching is performed by identity, not equality. For instance,
suppose we define two string objects we want to raise as exceptions:

>>> ex1l = "spanf

>>> ex2 = "spani

>>>

>>> exl == ex2, exl is ex2
(1, 0)

Applying the == test returns true (1) because they have equal values, but is returns false (0)
since they are two distinct string objects in memory. Now, an except clause that names the
same string object will aways match:

>>> try:

rai se exl
...except ex1:

print 'got it'

éot it
But one that lists an equal but not identical object will fail:

>>> try:

rai se exl
...except ex2:

print 'CGot it'

Traceback (innernost |ast):
File "<stdin>", line 2, in ?
span

Here, the exception isn't caught, so Python climbsto the top level of the process and prints a
stack trace and the exception automatically (the string “ spant). For class exceptions, the
behavior issimilar, but Python generalizes the notion of exception mratching to include
superclass relationships.

Catching Too Much?

Because Python lets you pick and choose which exceptions to catch, you sometimes have to be
careful to not be too inclusive. For example, you've seen that an empty except clause catches
every exception that might be raised while the code in thet r y block runs. Sometimes that's
wanted, but you may also wind up intercepting an error that's expected by at r y handler higher
up in asystem. An

Page 210

exception handler such as the following catches and stops every exception that reachesit,
whether or not another handler iswaiting for it:

try:

except :
everything cones here!

The problem hereis that you might not expect al the kinds of exceptions that could occur
during an operation:

try:
x = nydi tctionary[spani # oops: msspelled
except:
X = None # assunme we got KeyError or |ndexError
Solution

In this case, you're assuming the only sort of error that can happen when indexing a dictionary
isan indexing error. But because the name nydi ct i onar y ismisspelled (you meant to say
nydi ct i onary), PythonraisesaNaneEr r or instead (since it's an undefined name
reference), which will be silently caught and ignored by your handler. Y ou should say:
except (KeyError, | ndexError): to make your intentions explicit.

Catching Too Little?

Conversely, you sometimes need to not be so exclusive. When listing specific exceptionsin a
t ry, you catch only what you actualy list. Thisisn't necessarily abad thing either, but if a
system evolves to raise other exceptionsin the future, you may need to go back and add them to
exception lists elsawhere in the code. For instance, the following handler is written to treat
nyerror1landnyerror2 asnormal casesand treat everything else asan error. If a

myer r or 3 isadded in the future, it is processed as an error unless you update the exception
list:

try:
except (nyerrorl, nyerror2): # what if | add a nyerror3?
nonerrors
el se:
assuned to be an error
Solution

Careful use of class exceptions can make this gotcha go away completely. Aswe saw earlier in
this chapter, if you catch a general superclass, you can add and raise more specific subclasses
in the future without having to extend except clause lists manually.

Page 211

Whether you use classes here or not, alittle design goes along way. The moral of the story is
that you have to be careful not to be too general or too specific in exception handlers.
Especially in larger systems, exception policies should be a part of the overall design.

Summary

In this chapter, we've learned about exceptions—both how to catch them with t r y statements
and how to trigger them with r ai se statements. Exceptions are identified by string objects or
class objects; built-in exceptions are predefined class objects in Python 1.5, but user-defined
exceptions may be strings or classes. Either way, exceptions let us jJump around programs
arbitrarily, and provide a coherent way of dealing with errors and other unusual events. Along
the way, we studied common exception idioms, touched on error handling in general, and saw a
variety of ways to catch and match raised exceptions.

This chapter concludes our ook at the core Python programming language. If you've gotten this
far, you can consider yourself an official Python programmer; you've already seen just about
everything there isto see in regards to the language itself. In this part of the book, we studies
built-in types, statements, and exceptions, as well as tools used to build-up larger program
units—functions, modules, and classes. In general, Python provides a hierarchy of tool sets:

Built-ins
Built-in types like strings, lists, and dictionaries make it easy to write Ssmple programs
fast.

Python extensions
For more demanding tasks, we can extend Python in Python, by writing our own functions,
modules, and classes.

C extensions
Although we don't cover them in this book, Python can also be extended with modules
written in C or C++.

Because Python layersits tool sets, we can decide how complicated we need to get for agiven
task. We've covered the first two of the categories above in this book already, and that's plenty
to do substantia programming in Python.

The next part of this book takes you on atour of standard modules and common tasks in Python.
Table 7-2 summarizes some of the sources of built-in or existing functionality available to
Python programmers, and topics we'll explore in the remainder of this book. Up until now,
most of our examples have been very small and self-contained. We wrote them that way on
purpose, to help you master the basics. But now that you know all about the core language, it's
timeto start learn-

Page 212

ing how to use Python's built-in interfaces to do real work. We'l find that with asimple
language like Python, common tasks are often much easier than you might expect.

Table 7-2. Python's Built-in Toolbox

Category Examples

Object types lists,dictionaries,files,strings
Functions | en,range, appl y, open

Modules string,os,Tkinter,pickle
Exceptions | ndexError, KeyErr or

Attributes _dict__, nanme__

Peripheral tools NurrPy, SW G, JPyt hon, Pyt honW n
Exercises

Since we're at the end of Part |, we'll just work on afew short exception exercises to give you
achanceto play with the basics. Exceptionsreally are asimple tool, so if you get these, you've
got exceptions mastered.

1. try/except. Write afunction called oops that explicitly raisesal ndexEr r or exception
when called. Then write another function that callsoops insideat r y/ except Staement to
catch the error. What happensif you change oops to raise KeyEr r or instead of

| ndexEr r or ?Where do thenames KeyEr r or and | ndexEr r or come from? (Hint:
recall that all unqualified names come from one of three scopes, by the LGB rule.)

2. Exception lists. Changethe oops function you just wrote to raise an exception you define
yourself, called MyEr r or , and pass an extra data item along with the exception. Then, extend
thet r y statement in the catcher function to catch this exception and its data in addition to

| ndexEr r or, and print the extra dataitem.

3. Error handling. Write afunction called saf e (f unc, * ar gs) that runs any function using

appl y, catches any exception raised while the function runs, and prints the exception using the
exc_type andexc_val ue attributesin the sys module. Then, use your saf e function to
runthe oops function you wrote in Exercises 1 and/or 2. Put saf e inamodulefile called
tools.py, and passit the oops function interactively. What sort of error messages do you get?
Finally, expand saf e to aso print a Python stack trace when an error occurs by calling the
built-inpri nt _exc() functioninthe standard t r aceback module (see the Python library
reference manual or other Python books for details).

Page 213

I—
THE OUTER LAYERS

In Part | we covered the core of the Python language. With this knowledge, you should be able
to read almost al Python code written, with few language-related surprises. However, as
anyone who's ever looked at existing programs knows, understanding the syntax of alanguage
doesn't guarantee a clear and easy understanding of a program, even if it iswell written.
Indeed, knowing which tools are being used, be they simple functions, coherent packages, or
even complex frame-works, is the important step between a theoretical understanding of a
language and a practical, effective mastery of a system.

How can you make this trangition? No amount of reading of woodworking magazines is going
to turn a novice into a master woodworker. For that to happen, you have to have talent, of
course, but also spend years examining furniture, taking furniture apart, building new pieces,
learning from your mistakes and others successes. The sameistrue in programming. Therole
of textbooksisto give abird's eye view of the kinds of problems and appropriate solutions, to
show some of the basic tricks of the trade, and, finally, to motivate the frustrated beginner by
showing some of the nicer pieces of work others have built. This section presents a different
view of the Python landscape in each chapter and each gives plentiful pointers to other sources
of information.

Page 215

8_
Built-in Tools

In this chapter:
* Built-in Functions
e Library Modules

* Exercises

This chapter presents a selection of the essentia tools that make up the Python standard
library—nbuilt-in functions, library modules, and their most useful functions and classes. These
are the sine qua non; while you most likely won't use all of thesein any one program, no useful
program we've ever seen avoids al of these. Just as Python provides a list data structure object
type because sequence manipulations occur in al programming contexts, the library provides a
set of modulesthat will come in handy over and over again. Before designing and writing any
piece of generally useful code, check to see if asimilar module already exists. If it's part of the
standard Python library, you can be assured that it's been heavily tested; even better, others are
committed to fixing any remaining bugs—for free.

Note that this chapter gives only a brief look at the best of the standard library. As of current
writing, the Python Library Reference is over 200 pages long. More details on the reference
are availablein Appendix A, Python Resour ces, but you should know that it's the ideal
companion to this book; it provides the completeness we don't have the room for, and, being
available online, is the most up-to-date description of the standard Python toolset. Also,
O'Rellly's Python Pocket Reference, written by coauthor Mark Lutz, covers the most important
modules in the standard library, along with the syntax and built-in functions.

This chapter includes descriptions of two kinds of tools—built-in functions and standard
modules. Before we get to those sections, however, we'll say a brief word about built-in
objects. When introducing lists, for example, we've presented their behavior as well astheir
most important methods (append, i nsert,sort,reverse, i ndex, etc.). We have not
been exhaustive in this coverage in order to focus on the most important aspects of the objects.
If you're curious about what we've left out, you can look it up in the Library Reference, or you
can poke around in the Python interactive interpreter. Starting with Python 1.5, the di r

Page 216

built-in function returns alist of al of the important attributes of objects, and, along with the
t ype built-in, provides a great way to learn about the objects you're manipulating. For
example:

>>> dir([]) # what are the attributes of lists
["append', 'count', 'index', 'insert', 'renove', 'reverse', 'sort']

>>> dir(()) # what are the attributes of tuple:
[1 # tupl es have no attributes!

>>> dir(sys.stdin) # what are the attributes of files
['close', 'closed', 'fileno', 'flush', 'isatty', 'nmode', 'nane', 'read
'readinto', 'readline', 'readlines', 'seek', 'softspace', 'tell', 'truncate
'wite', '"witelines']

>>> dir(sys) # nmodul es are objects too

[' _doc_ ', ' name__', "argv', 'builtin_nodul e_nanmes', 'copyright',

"dll handl e' 'exc_info', 'exc type', 'exec_prefix', 'executable', 'exit',
"getrefcount', '"maxint', 'nodules', 'path', 'platform, 'prefix', 'psl’
'ps2', 'setcheckinterval', 'setprofile', 'settrace', 'stderr', 'stdin',

"stdout', 'version', 'wnver']

>>> type(sys. version) # what kind of thing is 'version'?

<type 'string >
>>> print sys.version # what is the value of this string

1.5 (#0, Dec 30 1997, 23:24:20) [MSC 32 bit (Intel)]
Aside: The sysModule

The sys module contains severa functions and attributes internal to Python; sys in this case
means Python system, not operating system. Some of the most useful attributes are:

sys. path
A list containing the directories Python |ooks into when doing imports.

sys. nodul es
A dictionary of the modules that have been loaded in the current session.

sys. platform
A string referring to the current platform. Its possible valuesinclude 'wi n32', 'mac’,
‘osf 1','l'i nux-1i 386, 'sunos4’, etc. It's sometimes useful to check the value of
sys. pl at f or m when doing platform-specific things (such as starting a window
manager).

Sys. pslandsys. ps2
Two printable objects, used by Python in the interactive interpreter as the primary and
secondary prompts. Their default values are ... and >>>. Y ou can set them to strings or to
instances of classesthat definea__r epr __ method.

One of the most frequently used attributes of thesys moduleissys. ar gv, alist of the words
input on the command line, excluding the reference to Python itself if it exists. In other words, if
you type at the shell:

csh> python run.py a x=3 foo

Page 217

thenwhen r un. py sarts, thevalue of thesys. ar gv attributeis['r un. py', 'a’, 'f 0o’]. The
Sys. ar gv atributeis mutable (after al, it'sjust alist). Common usage involvesiterating
over the arguments of the Python program, that is, sys. ar gv[1:] ; slicing from index 1 till
the end gives al of the argumentsto the program itself, but doesn't include the name of the
program (module) storedin sys. ar gv[0] .

Finaly, there are threefile attributes in the sys module: sys. st di n, sys. st dout , and
sys. st derr. They are references to the standard input, output, and error streams
respectively. Standard input is generally associated by the operating system with the user's
keyboard; standard output and standard error are usually associated with the console. The

pri nt statement in Python outputs to standard output (sys. st dout), while error messages
such as exceptions are output on the standard error stream (sys. st derr) . Finaly, aswell
seein an example, these are mutable attributes: you can redirect output of a Python program to
afilesmply by assigningtosys. st dout :

sys.stdout = open('log.out', 'w)

Built-in Functions

The dir function is a built-in function: it livesin the built-in namespace. Applying the LGB rule
means that the function is always available, and that no i nport statement is needed to access
it.* You've already encountered many of the built-in functions, such as| en, open, t ype,
l'ist,map, range,rel oad. You canfind them listed with the standard exceptionsin the
__builtins__ namespace:

>>> dir(__builtins_)

["ArithneticError', 'AssertionError', 'AttributeError', 'ECFError',
"Ellipsis', 'Exception', 'FloatingPointError', 'IOError', 'lnportError',
"IndexError', 'KeyError', 'Keyboardlnterrupt', 'LookupError', 'MenoryError’'.

"NaneError', 'None', 'OverflowError', 'RuntinmeError', 'StandardError',
"SyntaxError', 'SystenkError', 'Systenkxit', 'TypeError', 'ValueError',

'ZeroDi visionError', ' debug_', ' _doc_ ', ' _inmport_', ' nane_ ', 'abs'
"apply', 'callable', 'chr', 'cnp', 'coerce', 'conpile', 'conplex', 'delattr'
"dir', '"divhrod', 'eval', 'execfile', 'filter', 'float', 'getattr', 'globals'
"hasattr', 'hash', "hex', 'id', '"input', 'int', 'intern', 'isinstance',
"issubclass', 'len', '"list', '"locals', 'long', 'map', 'nmax', 'mn', 'oct',
"open', 'ord', 'pow, ‘'range', 'raw.input', 'reduce', 'reload', 'repr',
‘round', 'setattr', 'slice', 'str', 'tuple', 'type', 'vars', 'xrange']

* |t also meansthat if you define alocal or module-global reference with the same name, subsequent
uses of di r will use your new variable instead of the built-in version. This feature is the source of
some subtle bugs; one of us recently wrote a program that used avariable called O and alist of such
variablescalled 0S (asin the plural of 0). Surprise surprise, the (supposedly unrelated) previously
bugfree code that used 0S. Sy St en now complained of AttributeErrors! Another frequent bug of
thesamekindisdoingt ype = type (nyQbj ect), whichworksonly thefirst time around, since
it resultsin assigning to anew local variable (called t ype) areference to the type of whatever

ny Cbj ect was. Thislocal variableis what Python tries (and fails) to call the second time around.

Page 218
Conversions, Numbers, and Comparisons

A few functions are used for converting between object types. We've already seen st r, which
takes anything and returns a string representation of it, and | i st andt upl e, which take
sequences and return list and tuple versions of them, respectively. i nt , conpl ex, f | oat,
and | ong take numbers and convert them to their respective types. hex and oct take integers
(i nt or | ong) asarguments and return string representations of them in hexadecimal or octal
format, respectively.

int,long,andf| oat have additional featuresthat can be confusing. First,i nt and| ong
truncate their numeric arguments if necessary to perform the operation, thereby losing
information and performing a conversion that may not be what you want (ther ound built-in
rounds numbers the standard way and returns afloat). Second, i nt , | ong, andf | oat
convert strings to their respective types, provided the strings are valid integer (or long, or

float) literals:*

>>> int(1.0), int(1.4), int(1.9), round(1.9), int(round(1.9))
(1, 1, 1, 2.0, 2
>>> int("1")

1

>>> int("1.2") # this doesn't work

Traceback (innernost |ast):

File "<stdin>", line 1, in ?

ValueError: invalid literal for int() : 1.2

>>> int("1.0") # neither does this

Traceback (innernost |ast): # since 1.0 is also not a valid
File "<stdin>", line 1, in ? # integer litera

ValueError: invalid literal for int() : 1.0
>>> hex(1000), oct(1000), conpl ex(1000), I ong(1000)
(' 0x3e8', '01750', (1000+0j), 1000L)

Given the behavior of i nt , it may make sense in some cases to use a custom variant that does
only conversion, refusing to truncate:

>>> def safeint(candidate):

i mport math

truncated = mat h. fl oor (fl oat (candi date))

rounded = round(fl oat (candi date))

if truncated == rounded:
return int(truncated)

el se:
rai se ValueError, "argunent woul d | ose precision when cast to int

>>> saf ei nt (3.0)
3
>>> safeint("3.0")

* Literals are the text strings that are converted to numbers early in the Python compilation process.
So, the string "1244" in your Python program file (which is necessarily astring) isavalid integer
literal, but "def foo() :"isnt.

Page 219

3
>>> safeint(3.1)
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
File "<stdin>", line 6, in safeint
Val ueError: argunent would | ose precision when cast to integer

The abs built-in returns the absolute value of scalars (integers, longs, floats) and the
magnitude of complex numbers (the square root of the sum of the squared real and imaginary
parts):

>>> abs(-1), abs(-1,2), abs(-3+4j)
(1, 1.2, 5.0 # 5 is sqrt(3*3 + 4*4)

Theor d and chr functions return the ASCII value of single characters and vice versa,
respectively:

>>> map(ord, "test") # renmenber that strings are sequences
[116, 101, 115, 116] # of characters, so map can be used
>>> chr (64)

'@

>>> ord(' @)

64

map returns a list of single characters, so it

needs to be 'join'ed into a str

>>> map (chr, (83, 112, 97, 109, 33))

['s', '"p'", '@, 'm, "I'']

>>> jnport string

>>> string.join(map(chr, (83, 112, 97, 109, 33)), ")

' Spam '

The cnp built-in returns a negative integer, 0, or a positive integer, depending on whether its
first argument is greater than, equal to, or less than its second one. It's worth emphasizing that
cnp works with more than just numbers; it compares characters using their ASCII values, and
sequences are compared by comparing their elements. Comparisons can raise exceptions, so
the comparison function is not guaranteed to work on all objects, but all reasonable
comparisons will work. The comparison process used by cnp isthe same as that used by the
sort method of lists. It's also used by the built-ins m n and max, which return the smallest
and largest elements of the objects they are called with, dealing reasonably with sequences:

>>> mn("pif", "paf", "pof") # when called with multiple

"paf' argunents #ireturn appropriate one

>>> min ("ZELDA!'"), max("ZELDAI") # when called with a sequence,
e,z # return the mn/max elenent of it

Table 8-1 summarizes the built-in functions dealing with type conversions.

Page 220

Table 8-1. Type Conversion Built-in Functions

Function Name Behavior
str(string) t:tht:0.005:Returns the string representation of any object:
>>> str(dir())
“[* _builtins_ ', ' _doc_', '_nane_ ']"
list(seq) Returnsthe list version of a sequence:

>>> |jist("tomato")

['t', ‘o', 'm, 'a, '"t', lO']
>>> |ist((1,2,3))

[1, 2, 3]

tupl e(seq) Returns the tuple version of a sequence:

>>> tuple("tomato")

('t', 'o", 'm, "a, 't', '0")

>>> tupl e([0])

(0,)

i nt(x) Converts a string or number to a plain integer; truncates floating point
values:

>>> int("3")

I ong(x)

fl oat (x)

conpl ex(real,

hex(i)

oct (i)

ord(c)

chr(i)

mn(i [, i]%)

i mag)

S

Convertsastring or number to along integer; truncates floating point

vaues:
>>> | ong("3")
3L

Converts astring or a number to floating point:
>>> float("3")
3.0

Creates a complex number with the valuereal + imag*;j:
>>> conpl ex (3,5)
(3+5j)

Converts an integer number (of any size) to a hexadecimal string:
>>> hex(10000)
' 0x2710'

Converts an integer number (of any size) to an octal string:
>>> oct (10000)
' 023420’

Returnsthe ASCII value of astring of one character:
>>> ord('A)
65

Returns a string of one character whose ASCII codeisthe integer i:

>>> chr (65)
DA

Returns the smallest item of a nonempty sequence:
>>> mn([5,1,2,3,4])

1

>>> mn (5,1,2,3,4)

1

Table 8-1. Type Conversion Built-in Functions (continued)

Function Name

Behavior

Page 221

mex(i [, i]1%)

Returns the largest item of a nonempty sequence:
>>> max([5,1,2,3,4])

5

>>> max(5, 1, 2, 3,4)

5

Attribute Manipulation

Thefour built-in functionshasat tr,getattr,setattr,anddel attr test attribute
existence, get, set, and delete attributes of namespaces, respectively, given the attribute's name
as the second argument. They are useful when manipulating objects and attributes whose names
aren't available beforehand. They can be used with modules, classes, and instances, and are

summarized in Table 8-2.

Table 8-2. Built-ins that Manipulate Attributes of Objects

Fivimmbimn Nlmtan A

| P Al A A

FuricLurn Naririe DeEllavivl

hasattr(object, attributenane) | Returnslifobject hasanattribute
attri butename, Ootherwise

getattr(object, attributenane Returns the attributeat t r i but enane of obj ect ;
[, default]) if it doesn't exist, returnsdef aul t if it's specified
orraisesan At t ri but eError if not

del attr(object, attributename) | Deletestheattributeattri but ename of obj ect
orraisesan Att ri but eEr r or exception if it
doesn't exist

We saw these built-ins put to good use in the examples in Chapter 6, Classes, but for now,
consider atoy example that creates a specified attribute in a given namespace (in this case, a
class object), or incrementsit if it's already there:

>>> def increment_attribute(object, attrnane):
if not hasattr(object, attrnane):
setattr(object, attrname, 1)
el se:
setattr(object, attrname, getattr(object, attrnane) + 1)

>>> cl ass Test: pass

>>> agnanme = 'foo'

>>> jncrement _attribute(Test, anane) # create Test.foo and set it to 1
>>> jncrement _attribute(Test, aname) # increment Test.foo

>>> Test.foo

2

Page 222

In Python 1.5.2, an optional third argument to get at t r has been added that specifies what
valueto useif the object doesn't have the specified argument. Thus the code above can now be
simplified:

def increment_attribute(object, attrnane):
setattr(object, attrnane, getattr(object, attrname, 0) +)

Executing Programs

The last set of built-in functions in this section have to do with creating, manipulating, and
caling Python code. See Table 8-3 for a summary.

Table 8-3. Ways to Execute Python Code
Name Behavior

i nport Executes the code in amodule as part of the importing and
returns the module object

exec code [in global di ct | Executesthe specified code (string, file, or compiled code
object) in the optionally specified global and local
[, localdict]] namespaces

conpi | e(string, Compilesthest r i ng into acode object (see following

fil anam i nAN [N PRPAN

111 crHale, niiiuy nNuLe)

execfile(filenane Executes the program in the specified filename, using the

[, gl obaldict optionally specified global and local namespaces

[, localdict]])

eval (code[, gl obal dict Evaluates the specified expression (string or compiled code

[, localdict]]) object) in the optionally specified global and local
namespaces

It'sa smple matter to write programs that run other programs. Shortly, we'll talk about ways to
call any program from within a Python program. And we've seenthei nport statement that
executes code existing in files on the Python path. There are several mechanismsthat let you
execute arbitrary Python code. Thefirst usesexec, which is a statement, not a function. Here
istheexec syntax:

exec code [in globaldict [, localdict]]

Asyou can see, exec takes between one and three arguments. The first argument must contain
Python code—either in astring, as in the following example; in an open file object; or in a
compiled code object (more on thislater). For example:

>>> code = "x = ' Somet hing'"

>>> x = "Not hi ng" # sets the value of x

>>> exec code # nodifies the value of x!
>>> print X

' Sonet hi ng'

exec can take optiona arguments. If asingle dictionary argument is provided (after the
then-mandatory i n word), it's used as both the local and global namespaces for the execution
of the specified code. If two dictionary arguments

Page 223

are provided, they are used as the global and local namespaces, respectively. If both arguments
are omitted, asin the previous example, the current global and local namespaces are used.

*i When eXec iscalled, Python needs to parse the code that is being
executed. This can be a computationally expensive process, especidly if a
large piece of code needs to be executed thousands of times. If thisisthe
case, it'sworth compiling the code first (once), and executing it as many
times as needed. Theconpi | e function takes a string containing the
Python code and returns a compiled code object, which can then be
processed efficiently by theexec statement. cOnpi | e takesthree
arguments. Thefirst isthe code string. The second is the filename
corresponding to the Python source file (or '<st r i ng>'if it wasn't read
from afile); it'sused in the traceback in case an exception is generated
when executing the code. The third argument isone of 'si ngl e’
'‘exec’, or'eval ', depending on whether the code is asingle statement
whose result would be printed (just asin the interactive interpreter), a set
of statements, or an expression (creating a compiled code object for use by

theeval function).

A related function to theexec statement istheexecf i | e built-in function, which works
similarly to exec, but itsfirst argument must be the filename of a Python script instead of afile
object or string (remember that file objects are the things the open built-in returns when it's
passed afilename). Thus, if you want your Python script to start by running its arguments as
Python scripts, you can do something like:

i mport sys
for argunment in sys.argv[1l:]: # we'll skip ourselves, or it'll loo
execfil e(argunent) # do what ever

Two more functions can execute Python code. Thefirst istheeval function, which takesa
code string (and the by now usual optional pair of dictionaries) or a compiled code object and
returns the evaluation of that expression. For example:

>>> z = eval ("' xo0' *10")
>>> print z
' XOXOXOXOX0OX0OX0X0X0X0'

Theeval function can't work with statements, as shown in the following example, because
expressions and statements are different syntactic beasts:

>>> z = eval ("x = 3")
Traceback (innernost |ast):

File "<stdin>", line 1, in ?
File "<string>", line 1
x =3

SyntaxError: invalid syntax

Page 224

The last function that executes codeisappl y. It's called with a callable object, an optional
tuple of the positional arguments, and an optiona dictionary of the keywords arguments. A
callable objects is any function (standard functions, methods, etc.), any class object (that
creates an instance when called), or any instance of aclassthat definesa___cal | __ method.
If you're not sure what's callable (e.g., if it's an argument to a function), test it using the

cal | abl e built-in, which returnstrueif the object it's called with is callable.*

>>> cal l abl e(sys.exit), type(sys.exit)

(1, <type 'builtin_function_or_nethod >)

>>> cal | abl e(sys. version), type(sys.version)
(0, <type 'string'>)

There are other built-in functions we haven't covered; if you're curious, check areference
source such as the Library Reference (Section 2.3).

Library Modules

Currently, there are more than 200 modules in the standard distribution, covering topics such as
string and text processing, networking and web tools, system interfaces, database interfaces,
serialization, data structures and algorithms, user interfaces, numerical computing, and others.

We touch on only the most widely used here and mention some of the more powerful and
specialized ones in Chapter 9, Common Tasks in Python, and Chapter 10, Frameworks and
Applications.

Basic String Operations. The string Module

Thest ri ng moduleis somewhat of ahistorica anomaly. If Python were being designed
today, chances are many functions currently inthe st r i ng module would be implemented
instead as methods of string objects. ** The st r i ng module operates on strings. Table 8-4
lists the most useful functions defined in the st ri ng module, along with brief descriptions,

just to give you an idea as to the modul€'s purpose. The descriptions given here are not
complete; for an exhaustive listing, check the Library Reference or the Python Pocket
Reference. Except when otherwise noted, each function returns a string.

* Y ou can find many things about callable objects, such as how many arguments they expect and what
the names and default values of their arguments are by checking the Language Reference for details,
especialy Section 3.2, which describes all attributes for each type.

** For amore detailed discussion of thisand of many other commonly asked questions about Python,
check out the FAQ list at http://www.python.org/doc/FAQ.html . For the question of string methods
versus string functions, see Question 6.4 in that document.

Page 225

Table 8-4. Sring Module Functions
Function Name Behavior
atof (string) Converts a string to afloating point number (seethef | oat built-in):

>>> string.atof ("1.4")

1.4
atoi (string [, Converts astring to an integer, using the base specified (base 10 by default (seethe
base]) i nt built-in):

>>> string.atoi ("365")

365

atol (string [,
base])

capitalize(word)

capwor ds(string)

expandt abs(
string, tabsize)
find(s, sub [,
start [, end]])

rfind(s, sub [,
start [, end]])
i ndex(s, sub [,

~F A+ r AnmAT TN

Same asat oi , except convertsto along integer (seethel ong built-in):
>>> string. atol ("987654321")
987654321L

Capitalizes the first letter of wor d:
>>> string.capitalize("tomato")
' Tormat o

Capitdizeseach word inthest ri ng:
>>> string. capwords("now is the tine")
"Now I's The Tine'

Expandsthetab charactersin st ri ng, using the specified tab size (no default)

Returnsthe index of the string s corresponding to the first occurrence of the
substringsub ins, or- 1 if subisntins:

>>> string.find("nowis the tine", 'is")

4

Same asf i nd, but gives the index of the last occurrence of sub ins

Same asf i nd, but raisesaVal ueErr or exceptionif sub isn't foundins

stalt [, enujj)
rindex(s, sub |
, start [, end]])

count (s, sub [,
start [, end]])

repl ace(str, old,
new , maxsplit])

| ower (string),
upper (string)

split(s [, sep
[, maxsplit]])

Sameasr fi nd, but raisesaVal ueEr r or exception if sub isnotfoundins

Returns the number of occurrences of sub ins:

>>> string.count("nowis the time", "i'")

2

Returns astring likest r except that all (or some) occurrences of ol d have been
replaced with new:

>>> string.replace("nowis the time", ' ', '_")

"now is the tineg'
Returns alowercase (or uppercase) version of st ri ng

Splitsthe string s at the specified separator string sep (whitespace by default), and
returnsalist of the "split" substrings:

>>> string.split("nowis the tine")

["now, "is', "the', "time']

Page 226

Table 8-4. Sring Module Functions (continued)

Function Name

Behavior

join(wordlist
[, sep
[, maxsplit]])

Istrip(s),,
rstrip(s),
strip(s),

swapcase(s)

[just(s, wdth),
rjust (s, wdth),
center (s, wdth)

Joins a sequence of strings, inserting copies of sep between each (asingle space
by default):

>>> string.join(["now', "is", "the", "tinme", '*'])
'now*i s*the*time'
>>> string.join("nowis the time", '*")

' n*o*vvk *i *S* *t*h*e* *t*i *rnke'
Remember that a string isitself a sequence of one-character strings!

Strips whitespace occurring at the left, right, or both ends of s:
>>> string.strip(" before and after ")
"before and after’

Returns aversion of s with the lowercase |etters replaced with their uppercase
equivalent and vice versa

L eft-pads, right-pads, or centers the string s with spaces so that the returned string
haswi dt h characters

The string module also defines afew useful constants, as shown in Table 8-5.

Table 8-5. Sring Module Constants

Constant Name Value

digits ' 0123456789'

octdigits ' 01234567

hexdigits ' 0123456789abcdef ABCDEF'
| ower case

upper case

I A4 & Av A

" abcdef ghi j kl mopgr st uvwxyz' @
" ABCDEFGHI J KL MNOPCQRSTUWKYZ'

leLLer s I VYW LadSE T upperl tase

whi t espace " At\n\r\v' (al whitespace characters)

8 On most systems, thest ri ng. | ower case, stri ng. uppercase,andstring.letters
have the values listed above. If one usesthel ocal e module to specify adifferent cultural locale,
they are updated. Thusfor example, after doingl ocal e. set| ocal e (I ocal e. LC_ALL,'fr"),
thestring. | etters attribute will also include accented letters and other valid French letters.

The constants in Table 8-5 generally test whether specific charactersfit a criterion—for
example, X inst ri ng. whi t espace returnstrueonly if x isone of the whitespace
characters.

A typical use of thest r i ng moduleisto clean up user input. The following line removes all
"extra" whitespace, meaning it replaces sequences of whitespace with single space characters,
and it deletes leading and trailing spaces:

thestring = string.strip(string.join(string.split(thestring)))

Page 227
Advanced String Operations. There Module

The st r i ng module defines basic operations on strings. It shows up in almost all programs
that interact with files or users. Because Python strings can contain null bytes, they can aso
process binary data—more on this when we get to the st r uct module.

In addition, Python provides a specialized string-processing tool to use with regular
expressions. For along time, Python's regular expressions (availableinther egex and

r egsub modules), while adequate for some tasks, were not up to par with those offered by
competing languages, such as Perl. As of Python 1.5, anew module called r e provides a
completely overhauled regular expression package, which significantly enhances Python's
string-processing abilities.

Regular expressions

Regular expressions are strings that |et you define complicated pattern matching and
replacement rules for strings. These strings are made up of symbols that emphasize compact
notation over mnemonic value. For example, the single character . means "match any single
character." The character + means "one or more of what just preceded me." Table 8-6 lists
some of the most commonly used regular expression symbols and their meanings in English.

Table 8-6. Common Elements of Regular Expression Syntax
Special Character Meaning

Matches any character except newline by default
Matches the start of the string

Matches the end of the string

"Any number of occurrences of what just preceded me"

@

*

"One or more occurrences of what just preceded me"
"Either the thing before me or the thing after me"

.

M ~bAlhan A s AlmlAid Al A Al A AAb A

\ v viatllies d iy dpiic et e ulid aoler
\d Matches any decimal digit
t omat o Matchesthe stringt omat o

A real regular expression problem

Suppose you need to write a program to replace the strings "green pepper” and "red pepper”
with "bell pepper" if and only if they occur together in a paragraph before the word "salad” and
not if they are followed (with no space) by the string "corn." These kinds of requirements are
surprisingly common in computing. Assume that the file you need to processis called
pepper.txt. Here'sasilly example of such afile:

Page 228

This is a paragraph that nentions bell peppers nmultiple times. For
one, here is a red pepper and dried tomato salad recipe. | don't like
to use green peppers in ny salads as nuch because they have a harsher
flavor.

Thi s second paragraph nmentions red peppers and green peppers but not
the "s" word (s-a-l-a-d), so no bells should show up.

Thi s second paragraph nentions red peppers and green peppercorns,

whi ch aren't vegetabl es but spices (by the way, bell peppers really
aren't peppers, they're chilies, but would you rather have a good cook
or a good bot ani st prepare your sal ad?).

Thefirst task isto open it and read in the text:

file
t ext

open(' pepper.txt')
file.read()

We read the entire text at once and avoid splitting it into lines, since we will assume that
paragraphs are defined by two consecutive newline characters. Thisis easy to do using the
spl it functionof thest ri ng module:

i mport string
paragraphs = string.split(text, '"\n\n")

At this point we've split the text into alist of paragraph strings, and all thereisleftistodois
perform the actual replacement operation. Here's where regular expressions comein:

i mport re
mat chstr = re. conpil e(

r*""\'b(red| green) # 'red" or 'green' starting new words

(\s+ # foll owed by whitespace
pepper # the word ' pepper'
(?!'corn) # if not followed i Mmediately by 'corn'
(?=.*salad))""", # and if followd at sone point by 'salad"

re. | GNORECASE | # al | ow pepper, Pepper, PEPPER etc.

re. DOTALL | # allow to match new ines as well

re. VERBOSE) # this allows the comments and the new i nes above

for paragraph in paragraphs:

fi xed_paragraph = matchstr.sub(r' bell\2', paragraph)
print fixed_paragraph+ \n'

The bold lineis the hardest one; it creates a compiled regular expression pattern, which islike
aprogram. Such a pattern specifies two things: which parts of the strings we're interested in
and how they should be grouped. Let's go over thesein turn.

Defining which parts of the string we're interested in is done by specifying a pattern of
characters that defines a match. Thisis done by concatenating smaller patterns, each of which
specifies asmple matching criterion (e.g., "match the string 'pepper '," "match one or more
whitespace characters,” "don't match ‘cor n’ " etc.). As mentioned, we're looking for the
wordsr ed or gr een, if they're followed by the word pepper , that isitself followed by the

word sal ad, aslong as

Page 229

pepper isn't followed immediately by ‘cor n'. Let'stake each line of ther e. conpi | e(..)
expression in turn.

Thefirst thing to notice about the stringinther e. conpi | e() isthatit'sa"raw” string (the
guotation marks are preceded by an r). Prepending such an r to a string (single-or
triple-quoted) turns off the interpretation of the backdash characters within the string.* We
could have used aregular string instead and used \ \ b instead of \ b and\ \ s instead of \ s. In
this case, it makes little difference; for complicated regular expressions, raw strings allow
much more clear syntax than escaped backsashes.

Thefirst linein the patternis\ b(r ed| gr een) .\ b standsfor "the empty string, but only at
the beginning or end of aword"; using it here prevents matchesthat haver ed or gr een asthe
fina part of aword (asin "tired pepper"). The (r ed| gr een) pattern specifies an
aternation: either 'r ed' or 'gr een’. Ignore the left parenthesis that follows for now. \ s isa
special symbol that means "any whitespace character,” and + means "one or more occurrence
of whatever comes before me," so, put together, \ s+ means "one or more whitespace
characters.” Then, pepper just meansthe string ‘pepper . (?! cor n) prevents matches of
"patternsthat have 'cor n' at this point,” so we prevent the match on '‘pepper cor n'. Finaly,
(?=. *sal ad) saysthat for the pattern to match, it must be followed by any number of
characters (that's what .* means), followed by the word sal ad. The ?= bit specifies that
while the pattern should determine whether the match occurs, it shouldn't be "used up" by the
match process; it's a subtle point, which well ignore for now. At this point we've defined the
pattern corresponding to the substring.

Now, note that there are two parentheses we haven't explained yet—the one before\ s+ and
the last one. What these two do is define a"group,” which starts after the red or green and go to
the end of the pattern. We'll use that group in the next operation, the actual replacement. First,
we need to mention the three flags that are joined by the logical operation "or". These specify
kinds of pattern matches. Thefirst, r e. | GNORECASE, says that the text comparisons should
ignore whether the text and the match have similar or different cases. The second,

re. DOTALL, specifiesthat the . character should match any character, including the newline
character (that's not the default behavior). Finaly, the third, r e. VERBOSE, allows us to insert
extranewlines and # commentsin the regular expression, making it easier to read and
understand. We could have written the statement more compactly as:

mat chstr = re.conpil e(r“\b(red| green) (\s+pepper(?'corn) (?=.*salad))”, re.l

The actual replacement operation is done with the line;

fi xed_paragraph = matchstr.sub(r' bell\2', paragraph)

* Raw strings can't end with an old number of backdlash characters. That's unlikely to be a problem
when using raw strings for regular expressions, however, since regular expressions can't end with
backslashes.

Page 230

First, it should be fairly clear that we're calling the sub method of the mat chst r object.
That object isacompiled regular expression object, meaning that some of the processing of
the expression has already been done (in this case, outside the loop), thus speeding up the total
program execution. We use araw string again to write the first argument to the method. The

\ 2 i sareferenceto group 2 in the regular expressi on—the second group of parenthesesin the
regular expression—in our case, everything starting with pepper and up to and including the
word ‘ sal ad’ . Thisline therefore means, "Replace the matched string with the string that is
'bel | ' followed by whatever starts with 'pepper ' and goes up to the end of the matched
string, in the par agr aph string.”

S0, does it work? The pepper .txt file we saw earlier had three paragraphs: the first satisfied
the requirements of the match twice, the second didn't because it didn't mention the word
"sdlad," and the third didn't because ther ed and gr een words are before pepper cor n,
not pepper . Asit was supposed to, our program (saved in afile called pepper.py) modifies
only the first paragraph:

/ hore/ Davi d/ book$ pyt hon pepper. py
This is a paragraph that nentions bell peppers nmultiple times. For

one, here is a bell pepper and dried tomato salad recipe. | don't like
to use bell peppers in ny salads as nmuch because they have a harsher
flavor.

Thi s second paragraph nmentions red peppers and green peppers but not
the "s" word (s-a-l-a-d), so no bells should show up.

This third paragraph nentions red peppercorns and green peppercorns,
whi ch aren't vegetabl es but spices (by the way, bell peppers really
aren't peppers, they're chilies, but would you rather have a good cook
or a good bot ani st prepare your sal ad?).

This example, while artificial, shows how regular expressions can compactly express
complicated matching rules. If thiskind of problem occurs often in your line of work, mastering
regular expressions is a worthwhile investment of time and effort.

A thorough coverage of regular expressions is beyond the scope of this book. Jeffrey Friedl
gives an excellent coverage of regular expressionsin his book Mastering Regular Expressions
(O'Reilly & Associates). His description of Python regular expressions (at least in the First
Edition) uses the old-style syntax, which is no longer the recommended one, so those specifics
should mostly be ignored; the regular expressions currently used in Python are much more

similar to those of Perl. Still, his book is a must-have for anyone doing serious text processing.
For the casual user (such as these authors), the descriptions in the Library Reference do the job
most of thetime. Usether e module, not ther egexp, r egex, and r egsub modules, which
are deprecated.

Page 231
Generic Operating-System Interfaces: The os Module

The operating-system interface defines the mechanism by which programs are expected to
manipulate things like files, processes, users, and threads.

The osand os.path modules

The os module provides a generic interface to the operating system's most basic set of tools.
The specific set of callsit defines depend on which platform you use. (For example, the
permission-related calls are available only on platforms that support them, such as Unix and
Windows.) Nevertheless, it's recommended that you always use the os module, instead of the
platform-specific versions of the module (called posi x, nt , and mac). Table 8-7 lists some
of the most often-used functions in the os module. When referring to files in the context of the
0s module, oneis referring to filenames, not file objects.

Table 8-7. Most Freguently Used Functions From the os Module
Function Name Behavior

get cwd() t:Returns a string referring to the current working directory (cwd):
>>> print os.getcwd()
h: \ Davi d\ book

l'i stdir(path) Returnsalist of all of the filesin the specified directory:
>>> os.listdir(os.getcwd())
[' preface.doc', 'partl.doc', 'part2.doc']

chown (pat h, Changes the owner ID and group ID of specified file
uid, gid)
chnod(pat h, node) Changes the permissions of specified file with numeric modenode
(e.g., 0644 means read/write for owner, read for everyone else)

renanme(src, dest) Renamesfile named sr ¢ with namedest
remove(path) or Deletes specified file (seer ndi r to remove directories)
unl i nk(pat h)
nkdi r (pat h Creates adirectory named path with numeric mode node (see
[, node]) os. chnod):
>>> os.nkdir (' newdir')
rdi r (pat h) Removes directory named pat h
syst en{ conmand) Executes the shell command in asubshell; the return value is the return

code of the command
sym ink(src, dest) | Createssoftlink fromfilesrc tofiledst
link(src, dest) Creates hard link from filesr c to filedst

There are many other functionsin the os module; in fact, any function that's part of the POSIX
standard and widely available on most Unix platformsis supported by Python on Unix. The

interfaces to these routines follow the POSI X conventions. Y ou

Page 232

can retrieve and set UIDs, PIDs, and process groups; control nice levels; create pipes,
manipulate file descriptors; fork processes; wait for child processes; send signals to processes,
usetheexecv variants; etc.

The os module aso defines some important attributes that aren't functions:

» Theos. nane attribute defines the current version of the platform-specific operating-system
interface. Registered values for os. nane are'posi x', 'nt ', 'dos’, and 'mac’. It's different
fromsys. pl at f or i, which we discussed earlier in this chapter.

* 0S. error definesaclass used when calsin the os module raise errors. When this
exception israised, the value of the exception contains two variables. The first is the number
corresponding to the error (known as er r no), and the second is a string message explaining it
(knownasstrerror):

>>> os.rmdir(' nonexi stent _directory') # how it usually shows up
Traceback (innernost |ast):
File "<stdin>", line 1, in ?
os.error: (2, 'No such file or directory")
>>> try: # we can catch the error and tak

os.rndir (' nonexistent directory') # it apart
...except os.error, val ue:
print value[0], value[1]

2 No such file or directory

* Theos. envi r on dictionary contains key/value pairs corresponding to the environment
variables of the shell from which Python was started. Because this environment is inherited by
the commands that are invoked using the os. syst en cdl, modifying theos. envi r on
dictionary modifies the environment:

>>> print os.environ[' SHELL']

/ bi n/ sh

>>> os.environ[' STARTDIR] = 'MWStartDir'

>>> 0s.systen(' echo $STARTDI R) # ' echo Y%GTARTDI R% on DOS/ Wn
M/StartDir # printed by the shell

0 # return code from echo

The os module also includes a set of strings that define portable waysto refer to
directory-related operations, as shown in Table 8-8.

Table 8-8. Sring Attributes of the os Module
AttributeName | Meaning and Value

curdir A string that denotes the current directory:
"' on Unix, DOS, and Windows; "' on the Mac
pardir A string that denotes the parent directory:

".." on Unix, DOS, and Windows, "::' on the Mac
sep The character that separates pathname components:

N mma 1 Lmivse N oma A WAL mdlmisim Wl omim bl a R A ~a

I UIUILIX, \ UITDUDS, VVITIULUWS, . UlIlUIEIVIde

Page 233

Table 8-8. String Attributes of the os Modul e (continued)

Attribute Name

Meaning and Value

al t sep

pat hsep

An aternate character to sep when available; set to None on all systems except
DOS and Windows, whereit's'/'

The character that separates path components: "' on Unix; ';' on DOS and
Windows

These strings are especially useful when combined with the functionality inthe os. pat h
module, which provides many functions that manipulate file paths (see Table 8-9). Note that the
0s. pat h moduleisan attribute of the os module; it's imported automatically when the os
module is loaded, so you don't need to import it explicitly. The outputs of the examplesin
Table 8-9 correspond to code run on a Windows or DOS machine. On another platform, the
appropriate path separators would be used instead.

Table 8-9. Most Frequently Used Functions from the os.path Module

Function Name

Behavior

split(path)is
equivalent to the tuple:
(di rnane (path),
basenane(pat h))

join(path, .)

exi st s(pat h)
expanduser (pat h)

expandvar s(pat h)

i sfile(path),
i sdi r(path),

i slink(path),
i smount (pat h),

nor npat h(pat h)

sanefile(p, Q)

Splitsthe given path into apair consisting of ahead and atail; the head isthe path up
to the directory, and the tail isthe filename:
>>> os. path.split("h:/David/ book/part 2. doc"
(' h:/Davi d/ book', 'part2.doc')

Joins path componentsintelligently:

>>> print os.path.join(os.getcwd(),
...os.pardir, 'backup', 'part2.doc')
h: \ Davi d\ book\ . . \ backup\ part 2. doc

Returns true if pat h corresponds to an existing path

Expands the argument with an initial argument of ~ followed optionally by a
username:

>>> print os.path. expanduser (' ~/nmydir')

h: \ Davi d\ mydi r

Expands thepat h argument with the variables specified in the environment:
>>> print os.path. expandvars(' $TM')

C. \ TEMP

Returnstrue if the specified pat h isafile, directory, link, or mount point,
respectively

Normalizes the given path, collapsing redundant separators and uplevel references:
>>> print os.path.nornmpath("/foo/bar\\../tnp")\foo\tnp

Returnstrue if both arguments refer to the samefile

Page 234

Table 8-9. Most Frequently Used Functions from the os.path Module (continued)
Function Name Behavior

wal k(p, visit, arg) | Calsthefunctionvi sit witharguments(ar g, di r nane, nanes) for each
directory in the directory tree rooted at p (including p itself, if it'sadirectory); the
argument di r nane specifies the visited directory; the argument nanes liststhe
filesinthe directory:

>>> def test _wal k(arg, dirnanme, nanes):

...print arg, dirname, nanes

>>> os.path.wal k('.."', test_walk, 'show)
show ..\logs ["errors.log', 'access.log']
show ..\cgi-bin {'test.cgi']

Copying Files and Directories. The shutil Module

The keen-eyed reader might have noticed that the os module, while it provides lots of
file-related functions, doesn't include acopy function. On DOS, copying afileisbasicaly the
same thing as opening one file in read/binary modes, reading al its data, opening a second file
in write/binary mode, and writing the data to the second file. On Unix and Windows, making
that kind of copy failsto copy the so-called stat bits (permissions, modification times, etc.)
associated with the file. On the Mac, that operation won't copy the resource fork, which
contains data such as icons and dialog boxes. In other words, copying isjust not so smple.
Nevertheless, often you can get away with afairly smple function that works on Windows,
DOS, Unix, and Macs as long as you're manipulating just data files with no resource forks. That
function, called copyfi | e, livesintheshut i | module. It includes afew generally useful
functions, shown in Table 8-10.

Table 8-10. Functions of the shutil Module
Function Name Behavior

copyfile(src, dest) | Makesacopy of thefilesr ¢ and callsitdest (straight binary copy).
copynode(src, dest) | Copiesmodeinformation (permissions) fromsr c todest .

copystat (src, dest) | Copiesal stat information (mode, utime) from sr ¢ todest .

copy(src, dest) Copies data and mode information from sr ¢ to dest (doesn't include
the resource fork on Macs).
copy2(src, dest) Copies data and stat information from sr ¢ to dest (doesn't include the

resource fork on Macs).

copytree(src, dest, | Copiesadirectory recursively using copy2. Thesyn i nks flag
specifies whether symbolic linksin the source tree must result in
synl i nks=0) symbolic links in the destination tree, or whether the files being linked
to must be copied. The destination directory must not already exist.

Table 8-10. Functions of the shutil Module (continued)

Function Name

Behavior

Page 235

rmtree(path,

i gnor e|

Recursively deletes the directory indicated by pat h. If

Otherwisg, if onerr or isset, it's called to handle the error; if not, an
exception israised on error.

i gnor e_error issetto 0 (the default behavior), errors areignored.

| nternet-Related Modules

The Common Gateway Interface: The cgi module

Python programs often process forms from web pages. To make this task easy, the standard
Python distribution includes amodule called cgi . Chapter 10 includes an example of a Python
script that uses the CGl.

Manipulating URLSs: the urllib and urlpar se modules

Universal resource locators are strings such as http://www.python.org/ that are now
ubiquitous.* Two modules, ur | | i b and ur | par se, providetools for processing URLS.

ur | |i b definesafew functions for writing programs that must be active users of the Web
(robots, agents, etc.). These are listed in Table 8-11.

Table 8-11. Functions of the urllib Module

Function Name

Behavior

url open
(url
[, data])

urlretrieve
(url

[, filenane]
[, hook])

url cl eanup ()

guot e(string
[, safe])

Opens a network aobject denoted by a URL for reading; it can also open loca
files:

>>> page = url open(' http://www.python.org')

>>> page. readl i ne()

" <HTML>\ 012'

>>> page. readl i ne()

"<I-- TH S PAGE | S AUTOVATI CALLY GENERATEL.

DO NOT EDIT. -->\012'

Copies a network object denoted by a URL to alocal file (uses a cache):
>>> urllib.urlretrieve(' http://www.python.org/',

"wwwpyt hon. htm ")

Cleansupthecacheusedby urlretri eve

Replaces special charactersin string using the % x escape; the optional safe
parameter specifies additional characters that shouldn't be quoted: its default
vaueis.

>>> quote('this & that @hone')

't hi s9%209%26%20t hat ¥20%40%20homne’

The syntax for URLswas designed in the early days of the Web with the expectation that users would
rarely see them and would instead click on hyperlinks tagged with the URLs, which would then be
processed by computer programs. Had their future in advertising been predicted, a syntax making
them more easily pronounced would probably have been chosen!

Page 236

Table 8-11. Functions of the urllib Module (continued)

Function Name

Behavior

quot e_pl us Likequot e(), but aso replaces spaces by plussigns

(string

[, safe])

unquot e Replaces % x escapes by their single-character equivalent:

(string) >>> unquot e(' t hi s%209%26%20t hat ¥20%0%20hone")
"this & that @ hone'

url encode Converts adictionary to a URL-encoded string, suitable to passtour | open()

(dict) asthe optional data argument:
>>> | ocal s()
{*urllib': <module "urllib'> '_doc_': None, 'X':
3, ' __name__': ' main_', ' builtins_': <nodule

" builtin_'>}

>>> urllib.urlencode(locals())

"urlli b=%3cnodul e+927url i b%27%8e& doc_=None&x=3&
__nane_= mai n_& builtins =%3cnodul e+%27

__builtin_ 9%7%3e'

ur | par se defines afew functions that smplify taking URLs apart and putting new URLS
together. These are listed in Table 8-12.

Table 8-12. Functions of the urlparse Module

Function Name

Behavior

url parse(urlstring
[, default_schene
[, allow fragnents]]

url unpar se(tupl e)

urlj oi n(base,
url
[, allow fragments]

Parses a URL into six components, returning a six tuple:(addressing scheme,
network location, path, parameters, query, fragment i dentifier):

>>> url parse(' http://www.python.ora/FAQ.html')
('http','www.python.org', /FAQ.html", "', ", "',)

Constructs a URL string from atuple as returned by ur | par se()

Constructs afull (absolute) URL by combining abase URL (base) withs
relative URL (url):

>>> urljoi n(' http://www.python.ord', 'doc/lib')

" http://www.python.org/doc/lib'

Specific Internet protocols

The most commonly used protocols built on top of TCP/IP are supported with modules named
after them. Thesearetheht t pl i b module (for processing web pages with the HTTP
protocol); thef t pl i b module (for transferring files using the FTP protocol); the

gopher | i b module (for browsing Gopher servers); thepopl i b andi mapl i b modulesfor

reading mail files on POP3 and IMAP servers, respectively; the nnt pl i b module for reading
Usenet news from NNTP servers; thesnt pl i b protocol for communicating with standard
mail servers. We'll use some of these in Chapter 9. There are also modules that can build
Internet servers, spe-

Page 237

cifically ageneric socket-based IP server (socket ser ver), asimple web server
(Si nmpl eHTTPSer ver), and a CGl-compliant HTTP server (CA HTTPSser ver) .

Processing I nternet data

Once you use an Internet protocol to obtain files from the Internet (or before you serve them to
the Internet), you must process these files. They come in many different formats. Table 8-13
lists each module in the standard library that processes a specific kind of Internet-related file
format (there are others for sound and image format processing: see the Library Reference).

Table 8-13. Modules Dedicated to Internet File Processing

Module Name File Format

sgmlib A simple parser for SGML files

htmlib A parser for HTML documents

xmlib A parser for XML documents

formatter Generic output formatter and device interface

rfc822 Parse RFC-822 mail headers (i.e., "Subj ect: hi there!")

m met ool s Toolsfor parsing MIME-style message bodies (a.k.a. file attachments)
multifile Support for reading files that contain distinct parts

bi nhex Encode and decode filesin binhex4 format

uu Encode and decode files in uuencode format

bi nasci i Convert between binary and various ASCII-encoded representations
xdrlib Encode and decode XDR data

nmai | cap Mailcap file handling

m met ypes Mapping of filename extensionsto MIME types

base64 Encode and decode MIME base64 encoding

quopri Encode and decode MIME quoted-printable encoding

nmai | box Read various mailbox formats

mmfy Convert mail messages to and from MIME format

Dealing with Binary Data: The struct Module

A frequent question about file manipulation is"How do | process binary filesin Python?' The
answer to that question usualy involvesthe st r uct module. It has asimple interface, sinceit
exportsjust three functions: pack, unpack, andcal csi ze.

Let's start with the task of decoding a binary file. Imagine abinary file bindat.dat that contains
datain a specific format: first there's afloat corresponding to a version number, then along
integer corresponding to the size of the data, and then the number of unsigned bytes

corresponding to the actual data. The key to using

Page 238

thest ruct moduleisto definea"format" string, which corresponds to the format of the data
you wish to read, and find out which subset of the file corresponds to that data. For our
example, we could use:

i mport struct

data = open(' bindat.dat').read()

start, stop = 0, struct.calcsize('fl")

ver si on_nunber, numbytes = struct.unpack('fl', data[start:stop])
start, stop = stop, start + struct.calcsize('B *num bytes)

bytes = struct. unpack(' B' *num bytes, data[start:stop])

'f "isaformat string for asingle floating point number (a C float, to be precise), 'l 'isfor a
long integer, and 'B' isaformat string for an unsigned char. The available unpack format strings
are listed in Table 8-14. Consult the Library Reference for usage details.

Table 8-14. Format Codes Used by the struct Module

Format | CType Python
X pad byte No value
c char String of length 1
b si gned char Integer
B unsi gned char Integer
h short Integer
H unsi gned short | Integer

i i nt Integer

I unsi gned i nt Integer

I [ong Integer
L unsi gned | ong | Integer
f f1 oat Float

d doubl e Float

S char[] String

p char[] String

P void * Integer

At thispoint, bytesisatuple of num byt es Python integers. If we know that thedat a isin
fact storing characters, we could either usechars = map(chr, bytes).Tobemore
efficient, we could change the last unpack to use'c' instead of 'B', which would do the
conversion for usand return atuple of num byt es single-character strings. More efficiently
still, we could use aformat string that specifies astring of characters of a specified length,
such as:

chars = struct.unpack(str(numbytes)+'s', data[start:stop])

Page 239

The packing operation is the exact converse; instead of taking aformat string and a data string,
and returning atuple of unpacked values, it takes aformat string and a variable number of
arguments and packs those arguments using that format string into a new "packed” string.

Notethat thest r uct module can process data that's encoded with either kind of
byte-ordering,* thus allowing you to write platform-independent binary file manipulation code.
For largefiles, consider using the ar r ay module.

Debugging, Timing, Profiling
These last few modules will help debug, time, and optimize your Python programs.

Thefirst task is, not surprisingly, debugging. Python's standard distribution includes a debugger
called pdb. Usng pdb isfairly straightforward. Y ou import the pdb module and call itsr un
method with the Python code the debugger should execute. For exarrple, if you're debugging the
program in spam.py from Chapter 6, do this:

>>> jnport span # inport the nodul e we wish to debug

>>> jnport pdb # inport pdb
>>> pdb. run('instance = spam Span()') # start pdb with a statenent to run

> <string>(0) ?()

(Pdb) break spam Spam __init__ # we can set break points
(Pdb) next

> <string>(1)?()

(Pdb) n #'n' is short for 'next'

> spampy(3)__init_ ()

® def __init_ (self):

(Pdb) n

> spampy(4)__init_ ()

® Spam num nstances = Spam numl nstances + 1

(Pdb) i st # show t he source code listing

cl ass Spam
num nstances = 0
B def __init_ (self): # note the B for Breakpoint

WN P

® Spam nuni nst ances = Spam nuni nstances + 1 # where we are
def printNum nstances(self):
print "Nunmber of instances created: ", Spam num nstances

~No o b~

[ECF]

(Pdb) where # show the calling stack
<string>(1)?()

> spampy(4) __init_ ()

* The order with which computers list multibyte words depends on the chip used (so much for
standards). Intel and DEC systems use so-called little-endian ordering, while Motorola and Sun-based
systems use big-endian ordering. Network transmissions al so use big-endian ordering, so the struct
module comes in handy when doing network 1/0 on PCs.

Page 240

® Spam nunl nst ances = Spam nunm nst ances + 1

(Pdb) Spam nuni nstances = 10 # note that we can nodify vari abl es
(Pdb) print Spam nunl nstances # while the programis bei ng debugged
10

(Pdb) conti nue # this continues until the next break
--Return-- # point, but there is none, so we're
> <string>(1)?()® None # done

(Pdb) ¢ # this ends up quitting Pdb
<spam Spam i nst ance at 80ee60> # this is the returned instance

>>> j nst ance. nunl nst ances # note that the change to nuninstance
11 # was *before* the increnent op

Asthe session above shows, with pdb you can list the current code being debugged (with an
arrow pointing to the line about to be executed), examine variables, modify variables, and set
breakpoints. The Library Reference's Chapter 9 covers the debugger in detail.

Even when a program is working, it can sometimes be too dow. If you know what the
bottleneck in your program is, and you know of alternative ways to code the same algorithm,
then you might time the various aternative methods to find out which isfastest. Thet i me
module, which is part of the standard distribution, provides many time-manipulation routines.
WEII use just one, which returns the time since a fixed "epoch™ with the highest precision
available on your machine. Aswelll use just relative times to compare agorithms, the
precision isn't al that important. Here's two different ways to create alist of 10,000 zeros:

def |ots_of appends():
zeros = []
for i in range(10000):
zer 0s. append(0)

def one_multiply():
zeros = [0] * 10000

How can we time these two solutions? Here's a simple way:

i mport tinme, makezeros

def do_timng(numtines, *funcs):
totals = {}
for func in funcs: totals[func] = 0.0
for x in range(numtines):
for func in funcs:

starttime = time.tinme() # record starting tine
appl y(func)
stoptinme = tine.tine() # record ending tine

el apsed = stoptinme-starttine # difference yields tinme el apsed

total s[func] = total s[func] + el apsed
for func in funcs:
print "Running % %l tines took % 3f seconds" % (func.__nanme__,
numtines

total s[func])
do_timng(100, (nmakezeros.|ots_of appends, nakezeros.one multiply))

Page 241
And running this program yields:

csh> python tim ngs. py
Runni ng | ots_of appends 100 tinmes took 7.891 seconds
Runni ng one_nultiply 100 tines took 0.120 seconds

Asyou might have suspected, asingle list multiplication is much faster than lots of appends.
Note that in timings, it's aways a good idea to compare lots of runs of functions instead of just
one. Otherwise the timings are likely to be heavily influenced by things that have nothing to do
with the algorithm, such as network traffic on the computer or GUI events.

What if you've written a complex program, and it's running slower than you'd like, but you're
not sure what the problem spot is? In those cases, what you need to do is profile the program:
determine which parts of the program are the time-sinks and see if they can be optimized, or if
the program structure can be modified to even out the bottlenecks. The Python distribution
includesjust the right tool for that, the pr of i | e module, documented in the Library
Reference. Assuming that you want to profile a given function in the current namespace, do
this:

>>> fromtimngs inport *
>>> from nmakezeros inport *
>>> profile.run('do_timng(100, (lots_of appends, one multiply))")
Runni ng | ots_of _appends 100 times took 8.773 seconds
Runni ng one_rnul tiply 100 times took 0.090 seconds
203 function calls in 8.823 CPU seconds

O dered by: standard nane

ncalls tottime percall cuntine percall filenane:lineno(function)
100 8.574 0.086 8.574 0.086 makezeros. py: 1(| ots_of _appends)
100 0.101 0.001 0.101 0.001 makezeros. py:6(one_mrul tiply)
1 0.001 0.001 8.823 8.823 profile:0(do_tim ng(100,
(I ots_of _appends, one_multiply)’

0 0.000 0. 000 profile:O(profiler)
1 0.000 0.000 8.821 8.821 python:0(194.C. 2)
1 0.147 0.147 8.821 8.821 timngs.py:2(do_timng)

Asyou can see, this gives afairly complicated listing, which includes such things as per-call
time spent in each function and the number of calls made to each function. In complex
programs, the profiler can help find surprising inefficiencies. Optimizing Python programsis
beyond the scope of this book; if you're interested, however, check the Python newsgroup:
periodically, auser asks for help speeding up a program and a spontaneous contest starts up,
with interesting advice from expert users.

Page 242

Exercises

1. Describing a directory. Write afunction that takes a directory name and describes the
contents of the directory, recursively (in other words, for each file, print the name and size, and
proceed down any eventual directories).

2. Modifying the prompt. Modify your interpreter so that the prompt is, instead of the >>>
string, a string describing the current directory and the count of the number of lines entered in
the current Python session.

3. Avoiding regular expressions. Write a program that obeys the same requirements as
pepper.py but doesn't use regular expressions to do the job. Thisis somewhat difficult, but a
useful exercise in building program logic.

4. Wrapping a text file with a class. Write a class that takes a filename and reads the datain
the corresponding file as text. Make it so that this class has three methods: par agr aph,

I i ne,wor d, each of which take an integer argument, so that if mywr apper isan instance of
thisclass, printing mywr apper . par agr aph[0] printsthefirst paragraph of thefile,
mywr apper. | i ne[- 2] printsthe next-to-last linein the file, and mywr apper . wor d[3]
prints the fourth word in the file.

5. Common tasks. These exercises don't have solutions in Appendix C, but instead are selected
from the examples shown in Chapter 9. Try them now before you read Chapter 9 if you wish to
be challenged!

— How would you make a copy of alist object? How about a dictionary?

— How would you sort alist? How about randomizing the order of its e ements?
— |If you've heard of a stack data structure before, how would you code it?

— Write a program to count the number of linesin afile,

— Write aprogram that prints all the linesin afile starting with a# character.
— Write a program that prints the fourth word in each line of afile.

— Write a program that counts the number of times a given word existsin afile.
— Write a program that looks for every occurrence of astring in al thefilesin a

directory.

Page 243

oO—
Common Tasksin Python

In this chapter:

* Data Structure Manipulations
* Manipulating Files

* Manipulating Programs

* | nternet-Related Activities

* Bigger Examples

* Exercises

At this point, we have covered the syntax of Python, its basic data types, and many of our
favorite functions in the Python library. This chapter assumes that al the basic components of
the language are at least understood and presents some ways in which Python is, in addition to
being elegant and "cool," just plain useful. We present a variety of tasks common to Python
programmers. These tasks are grouped by categories—data structure manipulations, file
manipulations, etc.

Data Structure Manipulations

One of Python's greatest features isthat it providesthe list, tuple, and dictionary built-in types.
They are so flexible and easy to use that once you've grown used to them, you'll find yourself
reaching for them automatically.

Making Copies Inline

Due to Python's reference management scheme, the statement a = b doesn't make a copy of
the object referenced by b; instead, it makes a new reference to that object. Sometimes a new
copy of an object, not just a shared reference, is needed. How to do this depends on the type of
the object in question. The simplest way to make copies of lists and tuplesis somewhat odd. If
nmyLi st isalist, then to make a copy of it, you can do:

newLi st = myList[:]

which you can read as "dice from beginning to end,” since you'll remember from Chapter 2,
Types and Operators, that the default index for the start of adice isthe beginning of the
sequence (0), and the default index for the end of adliceis the end of sequence. Since tuples
support the same dlicing operation as lists, this same

Page 244

technique can also copy tuples. Dictionaries, on the other hand, don't support dicing. To make
acopy of adictionary nyDi ct , you can use:

newDi ct = {}
for key in nyDict.keys() :
newDi ct[key] = nyDi ct[key]

Thisis such acommon task that a new method was added to the dictionary object in Python 1.5,
thecopy() method, which performs this task. So the preceding code can be replaced with the
single statement:

newDi ct = nyDi ct. copy()

Another common dictionary operation is also now a standard dictionary feature. If you have a
dictionary oneDi ct , and want to update it with the contents of a different dictionary
ot her Di ct,smply typeoneDi ct . updat e (ot her Di ct). Thisisthe equivalent of:

for key in otherDi ct.keys():
oneDi ct [key] = otherDi ct[key]

If oneDi ct shared some keyswith ot her Di ct beforetheupdat e() operation, the old
values associated with the keysin oneDi ct are obliterated by the update. This may be what
you want to do (it usualy is, which iswhy this behavior was chosen and why it was called
"update”). If it isn't, the right thing to do might be to complain (raise an exception), asin:

def nergeWt hout Overl ap(oneDict, otherDict):
newDi ct = oneDi ct. copy()
for key in otherDi ct.keys():
if key in oneDict.keys():
rai se ValueError, "the two dictionaries are sharing keys!"
newDi ct [key] = ot herDi ct[key]
return newbDi ct

or, alternatively, combine the values of the two dictionaries, with atuple, for example:

def nmergeWthQverlap (onebDict, otherDct):
newD ct = onebDi ct. copy()
for key in otherDi ct.keys():
if key in oneDict.keys():
newDi ct [key] = oneDict[key], otherDi ct[key]
el se:
newDi ct [key] = otherD ct[key]
return newbDi ct

To illustrate the differences between the preceding three algorithms, consider the following
two dictionaries:

phoneBookl = {' michael' : '555-1212', 'nark': '554-1121', 'em|ly': '556-009

phoneBook2 = {'latoya': '555-1255', 'emly': '667-1234"'}

Page 245

If phoneBook1 ispossibly out of date, and phoneBook2 is more up to date but less
complete, the right usage is probably phoneBook1. updat e(phoneBook?2) . If thetwo
phoneBooks are supposed to have nonoverlapping sets of keys, using

newBook = nergeWt hout Overl ap(phoneBookl, phoneBook2) letsyou know
if that assumption iswrong. Findly, if oneisaset of home phone numbers and the other a set of
office phone numbers, chances are

newBook = nergeWthOverl ap (phoneBookl, phoneBook?2) iswhatyou
want, as long as the subsequent code that uses newBook can deal with the fact that

newBook[‘ em |y’ Jisthetuple (* 556- 0091’ , ‘ 667-1234").

Making Copies. The copy Module

Back to making copies. the[:] and . copy() trickswill get you copiesin 90% of the cases. If
you are writing functions that, in true Python spirit, can deal with arguments of any type, it's
sometimes necessary to make copies of X, regardless of what X is. In comesthe copy module.
It provides two functions, copy and deepcopy. Thefirstisjust likethe[:] sequence dlice
operation or the copy method of dictionaries. The second is more subtle and has to do with
deeply nested structures (hence the term deepcopy). Take the example of copying alist

I i st One by dicing it from beginning to end using the [:] construct. This technique makes a
new list that contains references to the same objects contained in the origind list. If the
contents of that original list are immutable objects, such as numbers or strings, the copy is as
good as a"true" copy. However, suppose that thefirst elementin | i st One isitself a
dictionary (or any other mutable object). The first element of the copy of | i st One isanew
reference to the same dictionary. So if you then modify that dictionary, the modification is
evidentinboth | i st One and thecopy of | i st One. An example makes it much clearer:

>>>
>>>

>>>
>>>
>>>
>>>
>>>

i mport copy
l[istOne = [{"nane": "WIIlie", "city": "Providence, RI"}, 1, "tonmato",
[istTwo = listOne[:]

listThree = copy. deepcopy(li st One)

i stOne. append("kid")

[istOne[O0]["city"] = "San Francisco, CA"
print listOne, listTwo, listThree

[{'name': "WIlie', 'city': 'San Francisco, CA'}, 1, '"tomato', 3.0, 'kid']

[{'name': "WIlie', 'city': 'San Francisco, CA'}, 1, '"tomato', 3.0]
[{'name': "WIlie', 'city': "Providence, RI'}, 1, '"tomato', 3.0]

Asyou can see, modifying | i st One directly modified only | i st One. Modifying the first
entry of thelist referenced by | i st One led to changesin| i st Two, butnotinl i st Thr ee;
that's the difference between a shallow copy ([:]) and a deep-

Page 246

copy. The copy module functions know how to copy all the built-in types that are reasonably
copyable,* including classes and instances.

Sorting and Randomizing

In Chapter 2, you saw that lists have a sort method that does an in-place sort. Sometimes you
want to iterate over the sorted contents of alist, without disturbing the contents of thislist. Or
you may want to list the sorted contents of atuple. Because tuples are immutable, an operation
suchassor t , which modifiesit in place, is nhot allowed. The only solution isto make alist
copy of the elements, sort the list copy, and work with the sorted copy, asin:

listCopy = list(nyTuple)
i stCopy.sort()
for itemin |istCopy:

print item # or whatever needs doing

This solution is also the way to deal with data structures that have no inherent order, such as
dictionaries. One of the reasons that dictionaries are so fast is that the implementation reserves
the right to change the order of the keysin the dictionary. It's really not a problem, however,
given that you can iterate over the keys of a dictionary using an intermediate copy of the keys of
the dictionary:

keys = nyDict. keys() # returns an unsorted |ist of
the keys in the dic
keys. sort ()
for key in keys: # print key, value pairs
print key, nyD ct[key] # sorted by key

Thesort method on lists uses the standard Python comparison scheme. Sometimes, however,
that scheme isn't what's needed, and you need to sort according to some other procedure. For
example, when sorting alist of words, case (lower versus UPPER) may not be significant. The
standard comparison of text strings, however, says that all uppercase letters "come before” all
lowercase letters, so * Baby’ is"lessthan" * appl e’ but* baby’ is"greater than"

‘appl e’ . In order to do a case-independent sort, you need to define a comparison function that
takes two arguments, and returns- 1, 0, or 1 depending on whether the first argument is
smaller than, equa to, or greater than the second argument. So, for our case-independent
sorting, you can use:

>>> def casel ndependent Sort (sonet hi ng, other):
sonet hing, other = string.|ower(sonething), string.|ower(other)
return cnp(sonething, other)

>>> testList = ["this', 'is'
>>> testList.sort()

, "A, 'sorted', 'List']

* Some objects don't qualify as "reasonably copyable," such as modules, file objects, and sockets.
Remember that file objects are different from files on disk.

Page 247

>>> print testList

["A, '"List', "is', "sorted, '"this']

>>> testList.sort(casel ndependent Sort)

>>> print testList

["A, "is', "List', "sorted, '"this']
WEe're using the built-in function cnp, which does the hard part of figuring out that 'a' comes
before'b’, 'b' before 'c’, etc. Our sort function simply lowercases both items and sorts the
lowercased versions, which is one way of making the comparison case-independent. Also note

that the lowercasing conversion is local to the comparison function, so the elementsin the list
aren't modified by the sort.

Randomizing: The random Module

What about randomizing a sequence, such asalist of lines? The easiest way to randomize a
sequence isto repeatedly use the choi ce functioninther andon module, which returns a
random element from the sequence it receives as an argument.* In order to avoid getting the

same line multiple times, remember to remove the chosen item. When manipulating alist
object, use ther enove method:

whi | e nyLi st: # will stop |ooping when nyList is enpt

el ement = random choi ce(nmyLi st)
nyLi st . renove(el ement)
print el enent,

If you need to randomize a nonlist object, it's usually easiest to convert that object to alist and
randomize the list version of the same data, rather than come up with anew strategy for each
datatype. This might seem awasteful strategy, given that it involves building intermediate lists
that might be quite large. In genera, however, what seems large to you probably won't seem so
to the computer, thanks to the reference system. Also, consider the time saved by not having to
come up with adifferent strategy for each datatype! Python is designed to savetime; if that
means running a dlightly slower or bigger program, so beit. If you're handling enormous
amounts of data, it may be worthwhile to optimize. But never optimize until the need for
optimization is clear; that would be awaste of time.

Making New Data Structures

Thelast point about not reinventing the whedl is especially true when it comes to data
structures. For example, Python lists and dictionaries might not be the lists and dictionaries or
mappings you're used to, but you should avoid designing your own data structure if these
structures will suffice. The agorithms they use have been tested under wide ranges of
conditions, and they're fast and stable. Sometimes, however, the interface to these algorithms
isn't convenient for a particular task.

* Ther andon module provides many other useful functions, such asther andon function, which
returns a random floating-point number between 0 and 1. Check areference source for details.

Page 248

For example, computer-science textbooks often describe algorithms in terms of other data
structures such as queues and stacks. To use these algorithms, it may make sense to come up
with a data structure that has the same methods as these data structures (such as pop and push
for stacks or enqueue/ dequeue for queues). However, it also makes sense to reuse the
built-in list type in the implementation of a stack. In other words, you need something that acts
like a stack but isbased on alist. The easiest solution isto use a class wrapper around alist.
For aminima stack implementation, you can do this:

cl ass Stack:
def init_ (self, data):
self. data = list(data)
def push(self, iten):
sel f. _data. append(iten
def pop(self) :
item= self. data[-1]
del self. _data[-1]
return item

The following is smple to write, to understand, to read, and to use:

>>> thingsToDo = Stack(['wite to nomi, "invite friend over', 'wash the kid'

>>> t hi ngsToDo. push(' do the di shes')
>>> print thingsToDo. pop()

do the dishes

>>> print thingsToDo. pop()

wash the kid

Two standard Python naming conventions are used in the St ack class above. Thefirst isthat
class names start with an uppercase letter, to distinguish them from functions. The other is that
the _dat a attribute starts with an underscore. Thisis a half-way point between public
attributes (which don't start with an underscore), private attributes (which start with twao
underscores; see Chapter 6, Classes), and Python-reserved identifiers (which both start and
end with two underscores). What it meansisthat _dat a isan attribute of the class that
shouldn't be needed by clients of the class. The class designer expects such "pseudo-private"
attributes to be used only by the class methods and by the methods of any eventual subclass.

Making New Lists and Dictionaries. The UserList and UserDict Modules

The St ack class presented earlier doesits minimal job just fine. It assumes afairly minimal
definition of what a stack is, specifically, something that supports just two operations, apush
and apop. Quickly, however, you find that some of the features of lists are really nice, such as
the ability to iterate over all the elementsusingthef or ... i n ... construct. This can be done
by reusing existing code. In this case, you should usethe User Li st classdefined in the

User Li st moduleasa

Page 249

class from which the St ack can be derived. Thelibrary also includesaUser Di ¢t module
that is aclass wrapper around adictionary. In general, they are there to be specialized by
subclassing. In our case:

inmport the UserList class fromthe UserlList nodul e
from UserList inport UserlList

subcl ass the UserlList class
class Stack(UserlList):
push = UserLi st. append
def pop(self):
item= self[-1] # uses _ getitem _
del sel f[-1]
return item

This St ack isasubclassof the User Li st class. TheUser Li st classimplementsthe
behavior of the[] bracketsby definingthespecia getiten__and delitem
methods among others, which iswhy the code in pop works. Y ou don't need to define your
own __init__ method because User Li st defines a perfectly good default. Finaly, the
push method is defined just by saying that it'sthe sameasUser Li st 'sappend method.
Now we can do list-like things as well as stack-like things:

>>> thingsToDo = Stack(['wite to nomi, '"invite friend over', 'wash the kid

>>> print thingsToDo # inherited from UserlLi st

["wite to nomi, "invite friend over', 'wash the kid']

>>> t hi ngsToDo. pop()

"wash the kid'

>>> t hi ngsToDo. push(' change the oil")

>>> for chore in thingsToDo: # we can also iterate over the content

print chore # as "for .. in .." uses _getitem _
wite to nom

invite friend over
change the oil

*i Asthis book was being written, Guido van Rossum announced that
in Python 1.5.2 (and subsequent versions), list objects now have an
additional method called pop, which behavesjust like the one here. It also
has an optional argument that specifies what index to use to do the pop
(with the default being the last element in the list).

Manipulating Files

Scripting languages were designed in part in order to help people do repetitive tasks quickly
and simply. One of the common things webmasters, system administrators,

Page 250

and programmers need to do isto take a set of files, select a subset of those files, do some sort
of manipulation on this subset, and write the output to one or a set of output files. (For example,
in each filein adirectory, find the last word of every other line that starts with something other
than the # character, and print it along with the name of thefile.) Thisisatask for which
special-purpose tools have been developed, such as sed and awk. We find that Python does the
job just fine using very simple tools.

Doing Something to Each Linein aFile

The sys module is most helpful when it comesto dealing with an input file, parsing the text it
contains and processing it. Among its attributes are three file objects, called sys. st di n,
sys. st dout ,andsys. st der r . The names come from the notion of the three streams,
called standard in, standard out, and standard error, which are used to connect command line
tools. Standard output (st dout) isused by every pri nt statement. It's afile object with all
the output methods of file objects opened in write mode, suchaswrite andwr i t el i nes.
The other often-used stream is standard in (st di n) , whichisaso afile object, but with the
input methods, such asr ead, r eadl i ne, andr eadl i nes. For example, the following
script counts al the linesin thefile that is"piped in":

i mport sys
data = sys.stdin.readlines()
print "Counted", len(data), "lines."

On Unix, you could test it by doing something like:

% cat countlines.py | python countlines. py
Counted 3 lines.

On Windows or DOS, you'd do:

C \> type countlines.py | python countlines.py
Counted 3 lines.

Ther eadl i nes function is useful when implementing simple filter operations.
Here are afew examples of such filter operations:
Finding all lines that start with a #

i mport sys
for line in sys.stdin.readlines():
if line[O] == "#":
print line,

Note that afinal commais needed after the pri nt statement becausethel i ne string
aready includes a newline character asits last character.

Extracting the fourth column of a file (where columns are defined by whitespace)

i mport sys, string
for line in sys.stdin.readlines():

Page 251

words = string.split(line)
if len(words) >= 4:
print words[3]

We look at the length of the words list to find if there are indeed at least four words. The
last two lines could also be replaced by the try/except idiom, which is quite common in

Python:

try:
print words[3]

except | ndexError: # there aren't enough words
pass

Extracting the fourth column of a file, where columns are separated by colons, and
lowercasing it

i mport sys, string
for line in sys.stdin.readlines():
words = string.split(line, ':")
if len(words) >= 4:
print string.lower(words[3])

Printing the first 10 lines, the last 10 lines, and every other line

i mport sys, string
lines = sys.stdin.readlines()

sys.stdout.witelines(lines[:10]) # first ten lines

sys.stdout.witelines(lines[-10:]) # last ten lines
for linelndex in range(0, len(lines), 2) : # get 0, 2, 4,
sys.stdout.wite(lines[linelndex]) # get the indexed line

Counting the number of times the word "Python" occursin afile

i mport string
text = open(fnane).read()
print string.count(text, 'Python")

Changing a list of columnsinto a list of rows
In this more complicated example, the task isto "transpose” afile; imagine you have afile
that looks like:

Nare: Willie Mar k Qui do Mary Rachel Ahned
Level : 5 4 3 1 6 4
Tag#: 1234 4451 5515 5124 1881 5132

And you redlly want it to look like the following instead:

Narme: Level: Tag#:
Wllie 5 1234
Mark 4 4451

Y ou could use code like the following:

i mport sys, string
lines = sys.stdin.readlines()
wordlists =[]
for line in lines:
words = string.split(line)
wor dl i st s. append(wor ds)

Page 252

for rowin range(len(wordlists[0])):
for col in range(len(wordlists)):
print wordlists[col][row + "\t',
print

Of course, you should really use much more defensive programming techniques to deal
with the possibility that not all lines have the same number of words in them, that there
may be missing data, etc. Those techniques are task-specific and are | eft as an exercise to
the reader.

Choosing chunk sizes

All the preceding examples assume you can read the entire file at once (that's what the

r eadl i nes cal expects). In some cases, however, that's not possible, for example when
processing really huge files on computers with little memory, or when dealing with files that
are constantly being appended to (such aslog files). In such cases, you can use a

whi | e/ r eadl i ne combination, where some of the fileisread abit at atime, until the end

of fileisreached. In dealing with files that aren't line-oriented, you must read thefilea
character at atime:

read character by character

whil e 1:
next = sys.stdin.read(1) # read a one-character string
if not next: # or an enpty string at EOF
if not next:
br eak

Process character 'next

Notice that ther ead() method on file objects returns an empty string at end of file, which
breaks out of thewhi | e loop. Most often, however, the files you'll deal with consist of
line-based data and are processed aline at atime:

read line by line

whil e 1:
next = sys.stdin.readline() # read a one-line string
if not next: # or an enpty string at EOF
br eak

Process line 'next'

Doing Something to a Set of Files Specified on the Command Line

Being ableto read st di n isagreat feature; it's the foundation of the Unix toolset. However,
one input is not always enough: many tasks need to be performed on sets of files. Thisis
usually done by having the Python program parse the list of arguments sent to the script as
command-line options. For example, if you type:

% pyt hon nmyScript.py inputl.txt input2.txt input3.txt output.txt

Page 253

you might think that myScript.py wants to do something with the first three input files and write
anew file, called output.txt. Let's see what the beginning of such a program could look like:

i mport sys
i nputfil enanes, outputfil ename = sys.argv[1l:-1], sys.argv[-1]
for inputfilenanme in inputfilenanes:
inputfile = open(inputfilenane, "r")
do_sonet hing_wi th_i nput (i nputfile)
outputfile = open(outputfil enane, "w')
wite results(outputfile)

The second line extracts parts of the ar gv attribute of the sys module. Recall that it'salist of
the words on the command line that called the current program. It starts with the name of the
script. So, in the example above, thevalue of sys. ar gv is.

["nmyScript.py', "inputl.txt', "input2.txt', "input3.txt', 'output.txt'].

The script assumes that the command line consists of one or more input files and one output
file. So the dicing of the input file names starts at 1 (to skip the name of the script, which isn't
an input to the script in most cases), and stops before the last word on the command line, which
isthe name of the output file. The rest of the script should be pretty easy to understand (but
won't work until you providethedo_sonet hi ng_wi t h_i nput () and

write results() functions).

Note that the preceding script doesn't actually read in the data from the files, but passesthefile
object down to afunction to do the real work. Such afunction often usesther eadl i nes()
method on file objects, which returns alist of thelinesin that file. A generic version of
do_sonet hi ng_wi th_i nput () is:

def do_sonething_ w th_input(inputfile):
for line in inputfile.readlines()
process(|line)

Processing Each Line of One or More Files: The fileinput Module

The combination of this idiom with the preceding one regarding opening each file in the
sys. argv[1:] listissocommon that Python 1.5 introduced a new module that's designed to
help do just thistask. It'scalledf i | ei nput and works like this:

i mport fileinput
for line in fileinput.input():
process(line)

Thefil ei nput.input () cal parsesthe arguments on the command line, and if there are
no arguments to the script, usessys. st di n instead. It also provides a bunch of useful
functions that et you know which file and line number you're currently manipulating:

Page 254

import fileinput, sys, string
take the first argunment out of sys.argv and assign it to searchterm
searchterm sys.argv[1l:] = sys.argv[1l], sys.argv[2:]
for line in fileinput.input():
num nmat ches = string.count(line, searchterm
i f num_nmat ches: # a nonzero count neans there was a

print "found '%' %l tines in % on line %l." % (searchterm num nma
fileinput.filename(), fileinput.filelineno())

If this script were called mygrep.py, it could be used as follows:

% pyt hon nygrep.py in *.py

found 'in' 2 tinmes in countlines.py on line 2.
found 'in' 2 tinmes in countlines.py on line 3.
found '"in' 2 times in nmygrep.py on line 1
found 'in' 4 times in nygrep.py on line 4.
found 'in' 2 times in nygrep.py on line 5.
found 'in' 2 times in nygrep.py on line 7.
found 'in' 3 tinmes in nygrep.py on line 8.
found '"in' 3 times in nygrep.py on line 12.

Filenames and Directories

We have now covered reading existing files, and if you remember the discussion on the open
built-in function in Chapter 2, you know how to create new files. There are alot of tasks,
however, that need different kinds of file manipulations, such as directory and path management

and removing files. Y our two best friendsin such cases arethe os and os. pat h modules
described in Chapter 8, Built-in Tools.

Let'stake atypical example: you have lots of files, al of which have a space in their name, and
you'd like to replace the spaces with underscores. All you really needistheos. cur di r
attribute (which returns an operating-system specific string that corresponds to the current
directory), theos. | i st di r function (which returnsthelist of filenamesin a specified
directory), and the os. r enane function:

i mport os, string

if len(sys.argv) == 1: #if no filenanes are specified,
filenanmes = os.listdir(os.curdir) # use current dir
el se: # otherw se, use files specified
filenames = sys.argv[1l:] # on the command |ine
for filenane in fil enanes:
if ' ' in filenane:
newf il ename = string.replace(filenane, ' ', '_")

print "Renam ng", filenane, "to", newfilename, ".!
os. rename(fil ename, newfil enane)

This program works fine, but it reveals a certain Unix-centrism. That is, if you call it with
wildcards, such as:

pyt hon despacify. py *.txt

Page 255

you find that on Unix machines, it renames all the files with names with spaces in them and that
end with .txt. In aDOS-style shell, however, thiswon't work because the shell normally used
in DOS and Windows doesn't convert from *.txt to the list of filenames; it expects the program
todoit. Thisis called globbing, because the * is said to match a glob of characters.

Matching Sets of Files: The glob Module

The gl ob module exports asingle function, also called gl ob, which takes a filename pattern
and returns alist of al the filenames that match that pattern (in the current working directory):

i mport sys, glob, operator

print sys.argv[1l:]

sys.argv = reduce(operator.add, map(glob.glob, sys.argv))
print sys.argv[1l:]

Running this on Unix and DOS shows that on Unix, the Python gl ob didn't do anything because
the globbing was done by the Unix shell before Python was invoked, and on DOS, Python's
globbing came up with the same answer:

[usr/ pyt hon/ book$ python showgl ob. py *.py
['countlines.py', 'nygrep.py', 'retest.py', 'showglob.py', 'testglob.py']

['countlines.py', 'nygrep.py', 'retest.py', 'showglob.py', 'testglob.py']

C.\ pyt hon\ book> pyt hon showgl ob. py *. py

["*. py']
['countlines.py', 'nygrep.py', 'retest.py', 'showglob.py', 'testglob.py']

This script isn't trivial, though, because it uses two conceptually difficult operations; anmap
followed by ar educe. map was mentioned in Chapter 4, Functions, but r educe isnew to
you at this point (unless you have background in LISP-type languages). map is afunction that
takes a callable object (usually a function) and a sequence, calls the callable object with each
element of the sequencein turn, and returns alist containing the values returned by the function.
For an graphical representation of what map does, see Figure 9-1.*

map is needed here (or something equivalent) because you don't know how many arguments
were entered on the command line (e.g., it could havebeen *. py *.txt *. doc). Sothe
gl ob. gl ob function is called with each argument in turn. Each gl ob. gl ob call returns a
list of filenames that match the pattern. The map operation then returns alists of lists, which
you need to convert to asingle list—the combination of al the listsin thislist of lists. That
meansdoinglistl + list2 + ...+

* |t turns out that maP can do more; for example, if None isthe first argument, map convertsthe
sequence that isits second argument to alist. It can also operate on more than one sequence at atime.
Check areference source for details.

Page 256
x map{ £, x)
x2[0] e p- £ ([0}
! =1l e flx(1])
x[2] 0} — P TPILITR

def £ ({x)

11wk i L (2137 |
xille Feturn ?,C-pf:xm:a
xi5le / - £ix[5])
FALEE £ [B]) |

| £ ,

Figure 9-1.
Graphical representation of the behavior of the map built-in

I'i st N. That'sexactly the kind of situation where ther educe function comesin handy.

Just aswith map, r educe takesafunction asitsfirst argument and appliesit to the first two
elements of the sequence it receives as its second argument. It then takes the result of that call
and cdlls the function again with that result and the next e ement in the sequence, etc. (See
Figure 9-2 for anillustration of r educe.) But wait: you need + applied to a set of things, and
+ doesn't look like afunction (it isn't). So afunction is needed that works the same as +. Here's
one:

defi ne nyAdd(sonet hi ng, other) :
return sonething + other

You would then user educe (myAdd, map(..)). Thisworksfine, but better yet, you can use

theadd function defined inthe oper at or module, which does the same thing. The

oper at or module defines functions for every syntactic operation in Python (including
attribute-getting and dicing), and you should use those instead of homemade ones for two
reasons. First, they've been coded, debugged, and tested by Guido, who has a pretty good track
record at writing bugfree code. Second, they're actually C functions, and applying r educe (or
map, orfilter) toCfunctionsresultsin much faster performance than applying it to Python
functions. This clearly doesn't matter when all you're doing is going through afew hundred files
once. If you do thousands of globs all the time, however, speed can become an issue, and now
you know how to do it quickly.

Thefi | t er built-infunction, like map and r educe, takes afunction and a sequence as
arguments. It returns the subset of the elements in the sequence for which the specified function
returns something that's true. To find all of the even numbersin a set, type this:

>>> nunbers = range(30)
>>> def even(x):
return x %2 == 0

Page 257

x0T @F— dof Elx, vl

g XS arv

i return = %,

3 def £ix,¥)z - \.
x1llef o » reduce|f,x)
raturn = \
“[2]® N ekl | £CELE0x[01,x[11),
PatirrL x(211,x[31)
®x[2]w - "
|
Figure 9-2.

Graphical representation of the behavior of the reduce built-in

>>> print nunbers
[0, 1, 2, 3, 4, 5 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

>>> print filter(even, nunbers)
[0, 2, 4 6, 8 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

Or, if you wanted to find all the words in afilethat are at least 10 characters long, you could
use:

i mport string
words = string.split(open('nyfile.txt"').read()) # get all the words

def at_I|east_ten(word) :
return len(word) >= 10
longwords = filter(at_| east_ten, words)

For agraphical representation of what f i | t er does, see Figure 9-3. One nice special feature

of filter isthatif onepassesNone asthefirst argument, it filtersout all false entriesin the
sequence. So, to find al the nonempty linesin afile called myfile.txt, do this:

i nes
i nes

open('nyfile.txt').readlines()
filter(None, |ines) # renmenber, the enpty string is fal:

map,filter,andreduce arethree powerful constructs, and they're worth knowing about;
however, they are never necessary. It's fairly smple to write a Python function that does the
same thing as any of them. The built-in versions are probably faster, especially when operating
on built-in functions written in C, such asthe functionsin the oper at or module.

Using Temporary Files

If you've ever written a shell script and needed to use intermediary files for storing the results
of some intermediate stages of processing, you probably suffered from directory litter. You
started out with 20 files called log_001.txt, log_002.txt

Page 258
x filverif,x}
x[t}].:{ e 30 [0] |
xillw —j——h-x[Z]
xi2]le def £{x)1 M“\ — 22 [3]
1f Xl Y
=3 xatuzn 1 —p % [5]
TRE algsr —
4] return 0
EANE
EALN

Figure 9-3.
Graphical representation of the behavior of the filter built-in

etc., and al you wanted was one summary file called log_sum.txt. In addition, you had awhole
bunch of log_001.tmp, log_001.tm2, etc. files that, while they were |abeled temporary, stuck
around. At least that's what we've seen happen in our own lives. To put order back into your
directories, use temporary filesin specific directories and clean them up afterwards.

To help in this temporary file-management problem, Python provides anice little module
caledt enpf i | e that publishestwo functions: nkt enp() and Tenpor aryFi | e() . The
former returns the name of afile not currently in use in adirectory on your computer reserved
for temporary files (such as/tmp on Unix or C:\TMP on Windows). The latter returns a new
file object directly. For example:

read input file
inputFile = open('input.txt', 'r")

i mport tenpfile
create tenporary file
tenpFile = tenpfile. TenporaryFil e() # we don't even need ti

first_process(input = inputFile, output tenpFil e) # know the fil enane...

create final output file
outputFile = open('output.txt', '"w)
second_process(input = tenpFile, output

out putFile)

Usngt enpfi |l e. Tenpor aryFi | e() workswell in cases where the intermediate steps
manipulate file objects. One of its nice features is that when it's deleted, it automatically
deletesthefileit created on disk, thus cleaning up after itself. One important use of temporary
files, however, isin conjunction with the os. syst e call, which means using a shell, hence
using filenames, not file objects. For example, let'slook at a program that creates form letters
and mailsthem to alist of email addresses (on Unix only):

Page 259
formetter

'""Dear %, \nl'mwiting to you to suggest that .""" # etc.

nyDat abase "Bill dinton', 'bill @hitehouse.gov.us'),

[(
("Bill Gates', '"bill @ crosoft.coni),
(' Bob', 'bob@ubgenius.org')]
for nanme, email in nyDatabase:

specificlLetter = formetter % nane

tenpfil ename = tenpfile. nktenp()

tenpfile = open(tenpfil enane, 'w)

tenpfile.wite(specificlLetter)

tenpfile.close()

os.system('/usr/bin/mail % (email)s -s "Ugent!" < %tenpfil ename)s’ %

os. renmove(tenpfil enane)

Thefirstlineinthef or loop returns a customized version of the form letter based on the name
it'sgiven. That text is then written to atemporary file that's emailed to the appropriate email
addressusing the os. syst ermr cal (which we'll cover later in this chapter). Finally, to clean
up, the temporary file is removed. If you forgot how the % bit works, go back to Chapter 2 and
review it; it'sworth knowing. Thevar s() functionisabuilt-in function that returns a
dictionary corresponding to the variables defined in the current local namespace. The keys of
the dictionary are the variable names, and the values of the dictionary are the variable values.
var s() comesin quite handy for exploring namespaces. It can aso be called with an object
as an argument (such asamodule, aclass, or an instance), and it will return the namespace of
that object. Two other built-ins, | ocal s() and gl obal s(), returnthelocal and global
namespaces, respectively. In al three cases, modifying the returned dictionaries doesn't
guarantee any effect on the namespace in question, so view these as read-only and you won't be
surprised. You can seethat thevar s() call createsadictionary that is used by the string
interpolation mechanism; it's thus important that the namesinside the % ..) s bitsin the string
match the variable names in the program.

More on Scanning Text Files

Suppose you've run a program that storesits output in atext file, which you need to load. The
program creates afile that's composed of a series of lines that each contain a value and a key
separated by whitespace:

val ue key
val ue key
val ue key
and so on..

A key can appear on more than one linein the file, and you'd probably like to collect all the
values that appear for each given key as you scan the file. Here's one way to solve this
problem:

#!/ usr/ bi n/ env pyt hon
i mport sys, string

Page 260

entries = {}
for line in open(sys.argv[1l], 'r').readlines():
left, right = string.split(line)

try:

entries[right].append(left) # extend Iist
except KeyError:

entries[right] = [left] # first time seen

for (right, lefts) in entries.itens():
print "904d '9%'\titenms => %" % (len(lefts), right, lefts)

Thisscript usesther eadl i nes method to scan the text file line by line, and calls the built-in
string.split functionto chopthelineinto alist of substrings—alist containing the vaue
and key strings separated by blanks or tabs in the file. To store al occurrences of akey, the
script uses adictionary calledent ri es. Thet r y statement in the loop tries to add new
valuesto an existing entry for akey; if no entry exists for the key, it creates one. Notice that the
t ry could bereplaced withan i f here:

if entries.has_key(right): #is it already in the dictionary?
entries[right].append(left) # add to the list of current values for ki

el se:
entries[right] = [left] # initialize key's values |ist

Testing whether a dictionary contains a key is sometimes faster than catching an exception with
thet r y technique; it depends on how many times the test is true. Here's an example of this
script in action. The input filename is passed in as a command-line argument
(sys.argv[1]):

% cat data.txt

1 one
2 one
3 t wo
7 three
8 t wo
10 one
14 three
19 three
20 three

30 t hree

% pyt hon col | ectorl. py data.txt

0003 ' one' itens P ['1', '2
0005 'three'
0002 't wo' items b ['3", '8']

, "10']
itens P ['7", "14", '19",

' 30"]

Y ou can make this code more useful by packaging the scanner logic in afunction that returns the
ent ri es dictionary as aresult and wrapping the printing loop logic at the bottominani f

test:

#!/ usr/ bi n/ env python
i mport sys, string

def collect(file):
entries = {}
for line in file.readlines()
left, right = string.split(line)
try:
entries[right].append(left)
except KeyError:
entries[right] = [left]
return entries

if _nanme__ --"_main__":
if len(sys.argv) == 1:
result = collect(sys.stdin)

el se:

result = collect(open(sys.argv[1],

for (right, lefts) in result.itens()

Page 261

extend |ist

first tinme seen

when run as a script

read fromstdin stream

"r')) # read from passed fil enam

print "904d '%'\titens P %" % (len(lefts), right, lefts)

Thisway, the program becomes abit moreflexible. By usingthei f _ _name__ ==
“ __main__" trick, you can still runit as atop-level script (and get adisplay of the
resul t s), orimport the function it defines and process the resulting dictionary explicitly:

run as a script file
% col | ector2. py < data.txt
result displayed here...

use in sone other conponent (or interactively)

fromcollector2 inport collect
result = collect(open("spamtxt", "r"))
process result here..

Sincethecol | ect function accepts an open file object, it also works on any object that
provides the methods (i.e., interface) built-in files do. For example, if you want to read text
from asimple string, wrap it in a class that implements the required interface and pass an

instance of theclasstothecol | ect function:

>>> fromcollector2 inport collect
>>> from Stringl O inmport StringlO
>>>

>>> str = Stringl ("1 one\n2 one\n3 two")
>>> result = collect(str) # scans the wapped string
>>> print result # {'one':['"21", '2'], "two':['3"]}

Thiscode usesthe St r i ngl C classin the standard Python library to wrap the string into an
instance that has al the methods file objects have; see the Library Reference for more details
on St ri ngl C. You could also write adifferent class or subclassfrom St r i ngl Cif you
need to modify its behavior. Regardless, thecol | ect function happily reads text from the
St ri ngl Cobject st r, which happens to be an in-memory object, not afile.

Page 262

The main reason all thisworksisthat thecol | ect function was designed to avoid making
assumptions about the type of object itsf i | e parameter references. Aslong as the object
exportsar eadl i nes method that returnsalist of strings, col | ect doesn't care what type
of object it processes. The interface isall that matters. This runtime binding* is an important
feature of Python's object system, and allows you to easily write component programs that
communicate with other components. For instance, consider a program that reads and writes
satellite telemetry data using the standard file interface. By plugging in an object with the right
sort of interface, you can redirect its streams to live sockets, GUI boxes, web interfaces, or
databases without changing the program itself or even recompiling it.

Manipulating Programs
Calling Other Programs

Python can be used like a shell scripting language, to steer other tools by calling them with
arguments the Python program determines at runtime. So, if you have to run a specific program
(call it anal yzeDat a) with various datafiles and various parameters specified on the
command line, you can usetheos. syst en() cal, which takes a string specifying a
command to run in asubshell. Specificaly:

for datafnane in ['data.001', 'data.002', 'data.003']:
for paraneterl in range(1, 10):
os. systen("anal yzeData -in %dataf nane)s -paranl % paraneterl)d" %vars

If anal yzeDat a isaPython program, you're better off doing it without invoking a subshell;
smply usethei nmpor t statement up front and a function call in the loop. Not every useful
program out there is a Python program, though.

In the preceding example, the output of anal yzeDat a ismost likely either afile or standard
out. If it's standard out, it would be nice to be able to capture its output. The popen()
function call isan aimost standard way to do this. Well show it off in areal-world task.

When we were writing this book, we were asked to avoid using tabs in sourcecode listings and
use spaces instead. Tabs can wreak havoc with typesetting, and since indentation mattersin
Python, incorrect typesetting has the potentia to break examples. But since old habits die hard
(at least one of us uses tabs to indent his own Python code), we wanted atool to find any tabs
that may have crept into our

* Runtime binding means that Python doesn't know which sort of object implements an interface until
the program is running. This behavior stems from the lack of type declarationsin Python and leads to
the notion of polymorphism; in Python, the meaning of a object operation (such asindexing, slicing,
etc.) depends on the object being operated on.

Page 263

code before it was shipped off for publication. The following script, findtabs.py, doesthe
trick:

#!/ usr/ bi n/ env python
find files, search for tabs

i mport string, os
cnmd = 'find . -nanme "*.py" -print' # find is a standard Uni x tool

for file in os.popen(cmd).readlines() : # run find comrand
num= 1
name = file[:-1] # strip '\n'
for line in open(nane).readlines() : # scan the file
pos = string.find(line, "\t")
if pos >= 0:
print nane, num pos # report tab found
print ‘..., line[:-1] # [:-1] strips final \n
print '..., ' '*pos + '*' ‘'\n'

num = num-l

This script uses two nested f or loops. The outer loop usesos. popen torunaf i nd shell
command, which returns alist of al the Python source filenames accessible in the current
directory and its subdirectories. The inner loop reads each line in the current file, using
string. findtolook for tabs. But the real magicin thisscript isin the built-in toolsit
employs:

0S. popen
Takes ashell command passed in as a string (called cmd in the example) and returns a
file-like object connected to the command's standard input or output streams. Output is the
default if you don't passan explicit “r” or “ w’ mode argument. By reading the file-like
object, you can intercept the command's output as we did here—the result of thef i nd. It
turns out that there's a module in the standard library called f i nd. py that provides a
function that does a very similar thing to our use of popen with thef i nd Unix command.
As an exercise, you could rewrite findtabs.py to use it instead.

string.find
Returns the index of the first occurrence of one string in another, searching from left to
right. In the script, we use it to look for atab, passed in as an (escaped) one-character
string (" \'t).

When atab is found, the script prints the matching line, along with a pointer to where the tab
occurs. Notice the use of string repetition: the expression * ’ * pos movesthe print cursor to
the right, up to the index of the first tab. Use double quotes inside a single-quoted string without
backslash escapesin cnd. Hereisthe script at work, catching illegal tabsin the unfortunately

named file happyfingers.py:

C.\ pyt hon\ book- exanpl es> pyt hon fi ndt abs. py
./ happyfingers.py 2 0

Page 264

for i in range(10):

./ happyfingers.py 3 0
- print "oops...

*

./ happyfingers.py 55
. ..print "bad style"

*

A note on portability: thef i nd shell command used in the findtabs script is a Unix command,
which may or may not be available on other platforms (it ran under Windowsin the listing
above because af i nd utility program wasinstalled). os. popen functionality is available as
W n32pi pe. popen inthew n32 extensions to Python for Windows.* If you want to write
code that catches shell command output portably, use something like the following code early
in your script:

i mport sys
if sys.platform== "w n32": # on a Wndows port
try:
i mport wi n32pi pe
popen = w n32pi pe. popen
except InportError:
raise InportError, "The w n32pi pe nodul e coul d not be found"

el se: # el se on PCSI X box
i mport os

popen = 0S. popen
...And use popen in blissful platformignorance

Thesys. pl at f or i attribute is aways preset to a string that identifies the underlying
platform (and hence the Python port you're using). Although the Python language isn't
platform-dependent, some of its libraries may be; checking sys. pl at f or i isthe standard
way to handle cases where they are. Notice the nested i npor t statements here; as we've seen,
i mport isjust an executable statement that assigns a variable name.

Internet-Related Activities

The Internet is atreasure trove of information, but its exponential growth can make it hard to
manage. Furthermore, most tools currently available for "surfing the Web" are not
programmable. Many web-related tasks can be automated quite ssimply with the toolsin the
standard Python distribution.

* Two important compatibility comments: thewi N32pi pe module also hasapopen?2 call,
whichislikethepopen?2 cal on Unix, except that it returns the read and write pipesin swapped

order (see the documentation for popen2 intheposi X module for details on itsinterface).
Thereisno equivalent of pOpen on Macs, since pipes don't exist on that operating system.

Page 265
Downloading a Web Page Programmatically

If you'reinterested in finding out what the westher in a given location is over a period of
months, it's much easier to set up an automated program to get the information and collect itina
file than to have to remember to do it by hand.

Hereis aprogram that finds the weather in a couple of cities and states using the pages of the
weather.com web site:

inmport urllib, urlparse, string, tine
def get_tenperature(country, state, city):
url = urlparse.urljoin('http://ww. weather.com weather/cities/',
string.lower(country)+ ' +\
string.lower(state) + ' ' +\
string.replace(string.lower(city), ' ',
Y)Y +'ohtmd")

data = urllib.urlopen(url).read()
start = string.index(data, 'current tenp: ') + len('current tenmp: ')
stop = string.index(data, '°F, start-1)
tenp = int(data[start:stop])
localtine = time.asctime(tine.localtinme(tinme.tine()))
print ("On %localtine)s, the tenperature in % (city)s, "+
"Ofstate)s % (country)s is %tenmp)s F.") %vars()
get _tenperature(' FR, ", 'Paris')
get _tenperature('US', 'RI', 'Providence')
get _tenperature('US', 'CA, 'San Francisco')

When run, it produces output like:

~/ book: > pyt hon get _t enperat ure. py
On Wd Nov 25 16:22:25 1998, the tenperature in Paris, FRis 39 F.
On Wd Nov 25 16:22:30 1998, the tenperature in Providence, Rl USis 39 F.

On Wd Nov 25 16:22:35 1998, the tenperature in San Francisco, CAUS is 58 |

The codein get_temperature.py suffers from one flaw, which is that the logic of the URL
creation and of the temperature extraction is dependent on the specific HTML produced by the
web site you use. The day the site's graphic designer decides that "current temp:" should be
spelled with capitalized words, this script won't work. Thisis aproblem with programmatic
parsing of web pages that will go away only when more structural formats (such as XML) are
used to produce web pages.*

* XML (eXtensible Markup Language) is alanguage for marking up structured text files that
emphasizes the structure of the document, not its graphical nature. XML processing is an entirely
different area of Python text processing, with much ongoing work. See Appendix A, Python
Resour ces, for some pointers to discussion groups and software.

Page 266

Checking the Validity of Links and Mirroring Web Sites. webchecker.py and
Friends

One of the big hassles of maintaining aweb siteisthat as the number of linksin the site
increases, so does the chance that some of the links will no longer be valid. Good web-site
maintenance therefore includes periodic checking for such stale links. The standard Python
distribution includes atool that does just this. It lives in the Tool s/'webchecker directory and is
called webchecker .py.

A companion program called websucker.py located in the same directory uses similar logic to
create alocal copy of aremote web site. Be careful when trying it out, because if you're not
careful, it will try to download the entire Web on your machine! The same directory includes
two programs called wsgui.py and webgui.py that are Tkinter-based frontends to websucker
and webchecker, respectively. We encourage you to ook at the source code for these programs
to see how one can build sophisticated web-managerrent systems with Python's standard

tool set.

In the Tools/Scripts directory, you'll find many other small to medium-sized scripts that might
be of interest, such as an equivaent of websucker.py for FTP servers called ftpmirror.py.

Checking Mall

Electronic malil is probably the most important medium on the Internet today; it's certainly the
protocol with which most information passes between individuals. Python includes several
libraries for processing mail. The one you'll need to use depends on the kind of mail server
you're using. Modules for interacting with POP3 servers (popl i b) and IMAP servers

(i mapl i b) areincluded. If you need to talk to a Microsoft Exchange server, you'll need some
of thetools in the win32 distribution (see Appendix B, Platform-Specific Topics, for pointers
to the win32 extensions web page).

Here'sasimple test of the popl i b module, which is used to talk to amail server running the
POP protocol:

>>> frompoplib inport *

>>> server = POP3(' mail server.spamorg')

>>> print server. getwel cone()

+OK QUALCOW Pop server derived fromUCB (version 2.1.4-R3) at spamstartin

>>> server.user('da')

'+OK Password required for da.'

>>> server. pass_('youl | neverguess')

'+(K da has 153 nessage(s) (458167 octets).'

>>> header, nsg, octets = server.retr(152) # let's get the | atest nsgs
>>> jnport string

>>> print string.join(nsg[:3], '\n'") # and |l ook at the first three |lines
Ret ur n- Pat h: <j i m@i gbad. con>

Page 267

Recei ved: from gator. bi gbad. com by mail server.spamorg (4.1/SM-4.1)
i d AA29605; Wed, 25 Nov 98 15:59:24 PST

In areal application, you'd use a specialized module such asr f c822 to parse the header
lines, and perhapsthe m et ool s and m m f y modulesto get the data out of the message
body (e.g., to process attached files).

Bigger Examples
Compounding Your Interest

Someday, most of us hope to put alittle money away in a savings account (assuming those
student loans ever go away). Banks hope you do too, so much so that they'll pay you for the
privilege of holding onto your money. In atypical savings account, your bank pays you interest
on your principal. Moreover, they keep adding the percentage they pay you back to your total,
so that your balance grows alittle bit each year. The upshot is that you need to project on a
year-by-year basisif you want to track the growth in your savings. This program, interest.py, is
an easy way to do it in Python:

trace = 1 # print each year?
def calc(principal, interest, years) :

for y in range(years) :
principal = principal * (1.00 + (interest / 100.0))
if trace: print y+1, 'b %2f' % princi pal

return principa

This function just loops through the number of years you pass in, accumulating the principal
(your initial deposit plus all the interest added so far) for each year. It assumes that you'll
avoid the temptation to withdraw money. Now, suppose we have $65,000 to invest in a’5.5%
interest yield account, and want to track how the principal will grow over 10 years. We import
and call our compounding function passing in a starting principal, an interest rate, and the
number of years we want to project:

% pyt hon

>>> frominterest inport calc
>>> cal ¢(65000, 5.5, 10)
b 68575.00

72346. 63

76325. 69

80523. 60

84952. 40

89624. 78

94554. 15

99754. 62

105241. 13

© 00 ~NOO UL~ WDNPRP
U UTUTUUUUUTU

Page 268

10 P 111029. 39
111029. 389793

and we wind up with $111,029. If we just want to see the final balance, we can set thet r ace
global (module-level) variableini nt er est to O before we call the cal ¢ function:

>>> jnport interest

>>> jnterest.trace = 0
>>> cal ¢(65000, 5.5, 10)
111029. 389793

Naturally, there are many ways to cal culate compound interest. For example, the variation of
the interest calculator function below adds to the principal explicitly, and prints both the
interest earned (ear ni ngs) and current balance (pr i nci pal) asit steps through the years:

def calc(principal, interest, years):
interest = interest / 100.0
for y in range(years):
earnings = principal * interest
princi pal = principal + earnings
if trace: print y+1, '(+%l)' %earnings, 'bP %2f' % principa
return principa

We get the same results with this version, but more information:

>>> jnterest.trace = 1
>>> cal ¢(65000, 5.5, 10)

1 (+3575) b 68575. 00
2 (+3771) b 72346.63
3 (+3979) b 76325. 69
4 (+4197) b 80523.60
5 (+4428) b 84952. 40
6 (+4672) b 89624.78
7 (+4929) b 94554. 15
8 (+5200) b 99754. 62
9 (+5486) b 105241.13

10 (+5788) b 111029. 39
111029. 389793

The last comment on this script is that it may not give you exactly the same numbers as your
bank. Bank programs tend to round everything off to the cent on aregular basis. Our program
rounds off the numbers to the cent when printing the results (that's what the % 2f does; see
Chapter 2 for details), but keeps the full precision afforded by the computer in its intermediate
computation (as shown in the last line).

An Automated Dial-Out Script

One upon atime, a certain book's coauthor worked at a company without an Internet feed. The
system support staff did, however, install a dial-out modem on

Page 269

site, so anyone with apersonal Internet account and allittle Unix savvy could connect to a shell
account and do al their Internet business at work. Dialing out meant using the Kermit file
transfer utility.

One drawback with the modem setup was that people wanting to dial out had to keep trying
each of 10 possible modems until one was free (dial on one; if it's busy, try another, and so on).
Since modems were addressable under Unix using the filename pattern /dev/modem*, and

modem locks via /var/spool/locks/L CK* modem*, a ssmple Python script was enough to check
for free modems automatically. The following program, dokermit, uses alist of integersto
keep track of which modems are locked, gl ob. gl ob to do filename expansion, and

0S. syst en to run akermit command when a free modem has been found:

#!/ usr/ bi n/ env pyt hon
find a free nopdemto dial out on

i mport glob, os, string
LOCKS = "/var/spool /| ocks/"

locked = [0] * 10

for | ockname in glob.glob(LOCKS + "LCK*nodent"): # find | ocked nodens
print "Found | ock:", |ocknane
| ocked [string.atoi (locknanme[-1])] =1 # 0..9 at end of nane

print 'free:’

for i in range (10): # report, dial-out
if not locked[i]: print i

print

for i in range(10):
if not |ocked [i]:
if rawinput ("Try %? " %i) == "y":
0s.system ("kermt -m hayes -1 /dev/noden?d -b 19200 -s" %i)

if rawinput ("Mre? ") !'="'"Y: break

By convention, modem lock files have the modem number at the end of their names; we use this
hook to build a modem device name in the Kermit command. Notice that this script keeps alist
of 10 integer flags to mark which modems are free (1 means locked). The program above
works only if there are 10 or fewer modems; if there are more, you'd need to use larger lists
and loops, and parse the lock filename, not just look at its last character.

An | nteractive Rolodex

While most of the preceding examples use lists as the primary data structures, dictionaries are
in many ways more powerful and fun to use. Their presence as a built-in data typeis part of
what makes Python high level, which basically means "easy to use for complex tasks."
Complementing this rich set of built-in datatypesisan

Page 270

extensive standard library. One powerful module in thislibrary isthe cnd module that
provides aclass cnd you can subclass to make smple command-line interpreter. The
following exampleisfairly large, but it's really not that complicated, and illustrates well the
power of dictionaries and of reuse of standard modules.

Thetask at hand isto keep track of names and phone numbers and allow the user to manipulate
thislist using an interactive interface, with error checking and user-friendly features such as
online help. The following example shows the kind of interaction our program allows:

% pyt hon rol o. py

Monty's Friends: help

Docunent ed commands (type hel p <topic>):

EOF add find list | oad
save

Undocunent ed conmands:

hel p

We can get help on specific commands:
Monty's Friends: help find # conpare with the hel p_find() netho
Find an entry (specify a nane)

We can manipulate the entries of the Rolodex easily enough:

Monty's Friends: add larry # we can add entries

Enter Phone Nunmber for larry: 555-1216

Monty's Friends: add # if the nane is not specified...
Enter Nanme: tom # .the programw || ask for it

Ent er Phone Nunber for tom 555-1000
Monty's Friends: |ist

larry : 555-1216
tom: 555-1000

Monty's Friends: find larry

The nunmber for larry is 555-1216.

Monty's Friends: save nyNanes # save our work
Monty's Friends: "D # quit the program ("~Z on W ndow

And the nice thing is, when we restart this program, we can recover the saved data:

% pyt hon rol o. py # restart
Monty's Friends: |ist # by default, there is no one listed
Monty's Friends: |oad nyNanes # it only takes this to reload the d

Monty's Friends: |ist

larry : 555-1216
tom: 555-1000

Page 271

Most of the interactive interpreter functionality is provided by the Cnd classin the cnd
module, which just needs customization to work. Specifically, you need to set the pr onpt
attribute and add some methods that start with do_ and hel p_. Thedo_ methods must take a
single argument, and the part after the do__ isthe name of the command. Once you call the

cndl oop() method, the Crrd class does the rest. Read the following code, rolo.py, one
method at atime and compare the methods with the previous output:

#!/ usr/ bi n/ env pyt hon
An interactive rol odex

i mport string, sys, pickle, cnd

cl ass Rol odex (cnd. Cnd):

def __init_ (self):

cmd. Crd. __init_ (self) # initialize the base cl ass
self.pronpt = "Monty's Friends: " # customi ze the pronpt
sel f.people = {} # at first, we know nobody

def hel p_add(self):
print "Adds an entry (specify a nane)"
def do_add(sel f, nane):

if name == "": name = raw_input("Enter Name: ")
phone = raw_i nput ("Enter Phone Nunmber for "+ nane+" : ")
sel f. peopl e[nane] = phone # add phone nunber for nane

def hel p_find(self):
print "Find an entry (specify a nane)"
def do_find(self, nane):
if name == "": name = raw_input("Enter Name: ")
i f self.people.has_key(nane):
print "The nunber for % is %." % (nanme, self.peopl e[nane])
el se:
print "W have no record for %. " % (nane,)

def help_list(self):
print "Prints the contents of the directory"

def do_list (self, line):
names = sel f. peopl e. keys() # the keys are the nanes
if names == []: return # if there are no nanes, exit
names. sort () # we want themin al phabetic orde
print '=" *41
for name in nanes:
print string.rjust(nanme, 20), ":", string.1ljust(self.people[nane
print '=" *41

def hel p_EOF(self):
print "Qits the prograni
def do_EOF(self, line):
sys.exit()

Page 272

def hel p_save(self):
print "save the current state of affairs"”
def do_save(self, filenane):
if filename == "": filename = raw_input("Enter filename: ")
saveFil e = open(filenane, 'W)
pi ckl e. dunp(sel f. peopl e, saveFile)

def hel p_l oad(sel f):
print "load a directory"
def do_| oad(self, filenane):
if filename == "": filename = raw_input("Enter filename: ")
saveFil e = open(filename, 'r')
sel f.peopl e = pickle.load(saveFile) # note that this will override

any existing people directory

if_name__ =="'__main__": # this way the nodul e can be
rol o = Rol odex() # inmported by other prograns as well

rol o. cmdl oop()

So, the peopl e instance variable is a simple mapping between names and phone numbers that
theadd and f i nd commands use. Commands are the methods which start with do__, and their
help is given by the corresponding hel p_ methods. Finally, thel oad and save commands
usethepi ckl e module, which is explained in more detail in Chapter 10, Frameworks and
Applications.

This example demonstrates the power of Python that comes from extending existing modules.
The cmd module takes care of the prompt, help facility, and parsing of the input. The pi ckl e
module does all the loading and saving that can be so difficult in lesser languages. All we had
to write were the parts specific to the task at hand. The generic aspect, namely an interactive
interpreter, came free.

Exercises

This chapter isfull of programs we encourage you to typein and play with. However, if you
really want exercises, here are afew more challenging ones:

1. Redirecting stdout. Modify the mygrep.py script to output to the last file specified on the
command line instead of to the console.

2. Writing a shell. Using the Cd class in the cmd module and the functions listed in Chapter 8
for manipulating files and directories, write alittle shell that accepts the standard Unix
commands (or DOS commands if you'd rather): | s(di r) for listing the current directory, cd
for changing directory, mv (or r en) for moving/renaming afile, and cp(copy) for copying a
file.

3. Understanding map, reduce, and filter. Themap, r educe, andf i | t er functionsare
somewhat difficult to understand if it's the first time you've encountered this type of function,
partly because they involve passing functions as arguments, and partly because they do alot
even with such small names. One good way to ensure you know how they work isto rewrite
them; in this exer-

Page 273

How Doesthe Cmd Class Work, Anyway?

To understand how the Cnd class works, read the cmd module in the standard Python library
you've aready installed on your computer.

The Cmd interpreter does most of the work we're interested initsonecnd() method, which is
called whenever alineis entered by the user. This method figures out the first word of the line
that corresponds to acommand (e.g., help, find, save, load, etc.). It then looksto seeif the
instance of the Cnrd subclass has an attribute with the right name (if the command was“ f i nd

t oni, it looksfor an attribute called do_f i nd). If it finds this attribute, it callsit with the
arguments to the command (in thiscase* t omi), and returns the result. Similar magic is done by
thedo_hel p() ! method, which isinvoked by this same mechanism, which iswhy it's called
do_hel p()! Thecodefor theonecnd() method once looked like this (the version you have
may have had features added):

onecnd nethod of Ond cl ass, see Lib/cnd. py

def onecnd(self, line) : # line is sonething like "find tonf
l[ine = string.strip(line) # get rid of extra whitespace
if not line: # if there is nothing left,
line = self.lastcnd # redo the |l ast comrand
el se:
self.lastcnd = line # save for next tine

i, n=0, len(line)
next line finds end of first word

while i <nand line[i] in self.identchars: i =i+1
split line into command + argunents
cmd, arg = line[:i], string.strip(line[i:])
if cmd == " # happens if line doesn't start with Az
return self.default(line)
el se: #cmd is 'find, line is 'ton
try:

func = getattr(self, '"do_' + cnd) # |ook for nethod
except AttributeError

return self.default(line)
return func(arg) # call method with the rest of the line

cise, write three functions (map2, reduce2, filter 2),that dothesamethingasmap,
filter,andreduce, respectively, at least as far as we've described how they work:

— map2 takestwo arguments. The first should be a function accepting two arguments, or
None. The second should be a sequence. If the first argument is afunction, that function is
called with each element of the sequence, and the resulting values are returned in aligt. If the
first argument isNone, the sequenceis converted to alist, and that list is returned.

Page 274

—r educe?2 takes two arguments. The first must be a function accepting two arguments, and
the second must be a sequence. The first two arguments of the sequence are used as arguments
to the function, and the result of that call is sent as the first argument to the function again, with
the third element to the sequence as the second argument, and so on, until all elements of the

seguence have been used as arguments to the function. The last returned value from the function
isthen the return value for ther educe?2 call.

—filter2 takestwo arguments. Thefirst can be None or afunction accepting two
arguments. The second must be a sequence. If the first argument isNone, fi | t er 2 returnsthe
subset of the elementsin the sequence that tests true. If the first argument is a function,
filter2iscaledwith every element in the sequencein turn, and only those elements for
which the return value of the function applied to themistrue arereturned by fi | t er 2.

Page 275

10—
Frameworks and Applications

In this chapter:
* An Automated Complaint System

* Interfacing with COM: Cheap Public
Relations

* A Tkinter-Based GUI Editor for
Managing Form Data

* Design Considerations

 JPython: The Felicitous Union of
Python and Java

» Other Frameworks and Applications

* Exercises

All the examplesin this book so far have been quite small, and they may seem toys compared
to real-world applications. This chapter shows some of the frameworks that are available to
Python programmers who wish to build such applications in some specific domains. A
framework can be thought of as a domain-specific set of classes and expected patterns of
interactions between these classes. We mention just three here: the COM framework for
interacting with Microsoft's Common Object Model, the Tkinter graphical user interface (GUI),
and the Swing Java GUI toolkit. Along the way we aso use afew of the web-related modules
in the standard library.

We illustrate the power of frameworks using a hypothetical, real-world scenario, that of a
small company's web site, and the need to collect, maintain, and respond to customer input
about the product through aweb form. We describe three programs in this scenario. The first
program is a web-based data entry form that asks the user to enter some information in their

web browser, and then saves that information on disk. The second program uses the same data
and automatically uses Microsoft Word to print out a customized form letter based on that
information. The final example is asimple browser for the saved data built with the Tkinter
module, which uses the Tk GUI, a powerful, portable toolkit for managing windows, buttons,
menus, etc. Hopefully, these examples will make you realize how these kinds of toolkits, when
combined with the rapid development power of Python, can truly let you build "real”
applications fast. Each program builds on the

Page 276

previous one, so we strongly recommend that you read through each program, even if you can't
(or don't wish to) get them up and running on your computer.

The last section of this chapter covers JPython, the Java port of Python. The chapter closes
with a medium-sized JPython program that allows users to manipulate mathematical functions
graphically using the Swing toolkit.

An Automated Complaint System

The scenario we use for this exampleisthat of a startup company, Joe's Toothpaste, Inc., which
sells the latest in 100% organic, cruelty-free tofu-based toothpaste. Since thereis only one
employee, and that employee is quite busy shopping for the best tofu he can find, the tube
doesn't say "For customer complaints or comments, call 1-800-TOFTOQOT," but instead, says
"If you have acomplaint or wish to make a comment, visit our web site at www.toftoot.com.”
The web site has al the usual glossy pictures and an area where the customer can enter a
complaint or comment. This page looks like that in Figure 10-1.

The key parts of the HTML that generated this page are displayed in the sidebar "Excerpt Fromr
the HTML File" Asthisisnot abook about CGI, HTML, or any of that,* we just assume that
you know enough about these technologies to follow this discussion. The important parts of the
HTML code in the sidebar are in bold: here's a brief description:

* The FORW line specifies what CGI program should be invoked when the form is submitted;
specificaly, the URL points to a script called feedback.py, which we'll cover in detail.

» Thel NPUT tags indicate the names of thefieldsin the form (nane, addr ess, emai | , and
t ext ,aswell ast ype). The values of those fields are whatever the user enters, except for
thecase of t ype, which takes either thevalue* comment’ or* conpl ai nt’ , depending
on which radio button the user checked.

* Findly, thel NPUT TYPE=SUBM T tag isfor the submission button, which actually callsthe
CGlI script.

We now get to the interesting part as far as Python is concerned: the processing of the request.
Here is the entire feedback.py program:

i mport cgi, o0s, sys, string

def gush(data) :

* |f you've never heard of these acronyms: CGI stands for the Common Gateway Interfaceandisa

protocol for having web browsers call programs on web servers; HTML stands for HyperText Markup
Language, which isthe format that encodes web pages.

def

EmoAdat s N

1
Joe's Toothpaste, Inc.
Makers af the only 100% organic tofu-hased toothpaste,
Welcome to our feedoack page. Please enter your name, email address, mading address,
and any camments o complaints régacding any af our products. Aemamber to also describa
i what ways Joe's Taathpaste has changed your ife -- we're still hoping it will chanrl:ir b

warld.

Thanks for visiting our wsbsite,
-,

Fezse M out the entire form

Mo I.] moe [o=

=mail adoress: |:| mnefdos.cam

Mabng Address: |'.|'.|: Hain 3¢, Anycown, TU 54351

Type of

Lo aft O edrmglas
Message: COMrEn Eamplanil

Enter the 1';“: N IMy bunny 4ust loves your toobhpaste:d 5|
[i]g oH

Thought you'd want o know.

2
Sand T fendlad | =
BT e s SR 5z

pri
pri
pri
pri
pri
pri
pri
pri

whi
pri
pri
pri
pri
pri
pri
pri

Figure 10-1.
What the customer finds at http://www.toftoot.com/comment.html

nt "Content-type: text/htm\n"

nt "<h3>Thanks, % nane)s!</h3>" % vars(data)

nt "Qur custoner's comments are always appreci ated.”
nt "They drive our business directions, as well as"

nt "help us with our karma."

nt "<p>Thanks again for the feedback!<p>"

nt "And feel free to enter nore comments if you w sh."
nt "<p>"+10*" "+"--Joe."

nper (dat a)

nt "Content-type: text/htm\n"

nt "<h3>Sorry, % nane)s!</h3>" % vars(data)

nt "We're very sorry to read that you had a conplaint"”
nt "regarding our product_ W'Ill|l read your conmments"
nt "carefully and will be in touch with you."

nt "<p>Nevert hel ess, thanks for the feedback.<p>"

nt "<p>"+10*" "+"--Joe."

Page 277

Page 278

Excerpt Fromthe HTML File
Thisisthe important part of the code that generates the web page shown in Figure 10-1:

<FORM METHOD=POST ACTION="http://toftoot.com/cgi-bin/feedback.py" >
<I>Pleasefill out the entire form:</I>
<CENTER><TABLE WIDTH="100%" >
<TR><TD ALIGN=RIGHT WIDTH="20%">Name:</TD>
<TD><INPUT TYPE=text NAME=name SIZE=50 VALUE=""></TD></TR>
<TR><TD ALIGN=RIGHT>Email Address.</TD>
<TD><INPUT TYPE=text NAME=email SIZE=50 VALUE=""></TD></TR>
<TR><TD ALIGN=RIGHT>Mailing Address.</TD>
<TD><INPUT TYPE=text NAM E=address SIZE=50 VALUE=""></TD></TR>
<TR><TD ALIGN=RIGHT>Type of Message:</TD>
<TD><INPUT TY PE=radio NAME=type CHECK ED VAL UE=comment>comment& nbsp;
<INPUT TYPE=radio NAM E=type VAL UE=complaint>complaint</TD></TR>
<TR><TD ALIGN=RIGHT VALIGN=TOP>Enter the text in here</TD>
<TD><TEXTAREA NAME=text ROWS=5, COL S=50 VALUE="">
</[TEXTAREA></TD></TR>
<TR><TD></TD>
<TD><INPUT type=submit name=send value=""Send the feedback!" ></TD></TR>
</TABLE></CENTER>

</[FORM>
def bail ():
print "<H3>Error filling out fornx/H3>"
print "Please fill in all the fields in the form <p>"

print ''
print 'G back to the fornx/a>
sys.exit()

cl ass For nDat a:
" Arepository for information gleaned froma Cd form"""
def __init_ (self, form:
for fieldnane in self.fiel dnanes:
if not formhas_key(fieldname) or fornifieldnane].value == ""

bai | ()
el se:
setattr(self, fieldnane, fornifieldnane]. val ue)

cl ass FeedbackDat a(For nDat a) :

" A FornData generated by the coment. htm form
fieldnames = ('name', 'address', 'enmil', 'type', 'text')
def __repr__(self):

return "%type)s from%name)s on %tine)s" % vars(self)

DI RECTORY = r' C:\conplaintdir'

if _nane__ =="'__main

Page 279

sys. stderr = sys. stdout
form= cgi.FieldStorage()
data = FeedbackDat a(form
if data.type == 'comment':
gush(dat a)
el se:
whi nper (dat a)

save the data to file

inmport tenpfile, pickle, tine

tenpfile.tenpdir = DI RECTORY

data.tinme = tine.asctine(tinme.localtinme(time.tine()))
pi ckl e. dunp(data, open(tenpfile.nktenp(), 'W))

The output of this script clearly depends on the input, but the output with the form filled out
with the parameters shown in Figure 10-1 is displayed in Figure 10-2.

il Mettcape

2 e e) L R

a2 3N e s s 2N
@ Back foied) Reload - Home Seaich : Guide . Pt Secumty . Sl

Thanks, Jane Dog!

Our customer's comments are always sppraciated. They drive our
business directions, as well as help us with our karma

Thanks again for the feedback!

And fesl fras ta enter more commants if you wish
-=]ga

Figure 10-2.
What the user sees after bitting the "send the feedback” button

How does the feedback.py script work? There are a few aspects of the script common to all
CGl programs, and those are highlighted in bold. To start, the first line of the program needs to
refer to the Python executable. Thisis arequirement of the web server we're using here, and it
might not apply in your case; even if it does, the specific location of your Python program is
likely to be different from this. The second lineincludesi nport cgi , which, appropriately
enough, loads amodule called cgi that deals with the hard part of CGI, such as parsing the
environment variables and handling escaped characters. (If you've never had to do these things
by hand, consider yourself lucky.) The documentation for the cgi module describes avery
straightforward and easy way to use it. For this example, however, mostly because we're going
to build on it, the script is somewhat more complicated than strictly necessary.

Page 280

Let'sjust go throughthecodeinthei f _ nanme_ ==‘_main__’ block one statement at
atime* Thefirst statement redirectsthesys. st der r stream to whatever standard out is.

Thisis done for debugging because the output of the st dout stream in a CGI program goes
back to the web browser, and the st der r stream goes to the server's error log, which can be
harder to read than ssimply looking at the web page. Thisway, if aruntime exception occurs,
we can see it on the web page, as opposed to having to guess what it was. The second lineis
crucial and does all of the hard CGI work: it returns a dictionary-like object (called a

Fi el dSt or age object) whose keys are the names of the variablesfilled out in the form, and
whose value can be obtained by asking for the val ue attribute of the entriesin the

Fi el dSt or age object. Sounds complicated, but al it meansisthat for our form, thef or m
object haskeys® nane’ ," type’ , email’,‘ address’ ,and‘text’ ,andthatto find
out what the user entered in the Name field of the web form, we need to look at
fornf‘nane’]. val ue.

Thethird lineinthei f block creates an instance of our user-defined class FeedbackDat a,
passing it the f or i object as an argument. If you now look at the definition of the
FeedbackDat a class, you'll seethat it'savery simple subclass of For nDat a, which is
also a user-defined class. All we've defined in the FeedbackDat a subclassisaclass
atributef i el dnames anda__repr __ function used by thepr i nt statement, among
others. Clearly, the i ni t __ method of the For nDat a class must do something with the
Fi el dSt or age argument. Indeed, it looks at each of the field names defined in the

fi el dnames classattribute of the instance (that'swhat sel f . fi el dnanes refersto), and
for each field name, checksto see that the Fi el dSt or age object has a corresponding
nonempty key. If it does, it sets an attribute with the same name as the field in the instance,
giving it as value the text entered by the user. If it doesn't, it callsthe bai | function.

WEIl get towhat bai | doesinaminute, but first, let's walk through the usua case, when the
user dutifully enters all of the required data. In those cases, Fi el dSt or age hasall of the
keys(‘ nane’ ,‘ type’, etc.) which the FeedbackDat a class saysit needs. The
FornDataclass__init__ method in turn sets attributes for each field name in the instance.
So, whenthedat a = FeedbackDat a(f or m) call returns, dat a is guaranteed to be an
instance of FeedbackDat a, which isa subclass of For nDat a, and dat a hasthe attributes
name,t ype, emai | , etc., with the corresponding values the user entered.

A similar effect could have been gotten with code like:

form= cgi.FieldStorage()
formok =1
if not formhas_key("nane") or forn{"nane"].value == ""

* You'll remember that thisi f statement istrue only when the program is run as a script, not when
it'simported. CGI programs qualify as scripts, so the codeinthei f block runswhen this program is
called by the web server. We useit later as an imported script, so keep your eyes peeled.

Page 281

formok =0

el se:
data _nanme = forn{"nane"].val ue

if not formhas_key("enuil") or forn{"enmil"].value == ""
formok =0

el se:

data email = forn{"email"].val ue

but it should be clear that this kind of programming can get very tedious, repetitive, and
error-prone (thanks to the curse of cut and paste). With our scheme, when Joe changes the set of
field namesin the web page, al we need to changeisthef i el dnamnes attribute of the
FeedbackDat a class. Also, we can use the same For nDat a classin any other CGI script,
and thus reuse code.

What if the user didn't enter al of the required fields? Either the Fi el dSt or age dictionary
will be missing akey, or itsvalue will bethe empty string. TheFornData. __init
method then callsthe bai | function, which displays a polite error message and exits the
script. Control never returns back to the main program, so there is no need to test the validity of
thedat a variable; if we got something back from FeedbackDat a() , it'savalid instance.

With the dat a instance, we check to seeif the feedback type was a comment, in which case
we thank the user for their input. If the feedback type was a complaint, we apol ogize profusely
and promise to get back in touch with them.

We now have abasic CGlI infrastructure in place. To save the datato file is remarkably easy.
First, we define the DI RECTORY variable outside thei f test because we'll use it from
another script that will import this one, so we wish it to be defined even if this script is not run
asaprogram.

Stepping through the last few lines of feedback.py:

o Importthet enpf il e, pi ckl e,andt i me modules. Thet enpf i | e module, aswe've
seen in previous chapters, comes up with filenames currently not in use; that way we don't need
to worry about "collisions' in any filename generation scheme. The pi ckl e module allows
the serialization, or saving, of any Python object. Thet i me module lets us find the current
time, which Joe judges to be an important aspect of the feedback.

* Thenext line setsthet enpdi r attribute of thet enpf i | e module to the value of the

DI RECTORY variable, which is where we want our data to be saved. Thisis an example of
customizing an existing module by directly modifying its namespace, just as we modified the
st derr attribute of thesys module earlier.

* The next line uses several functionsinthet i me module to provide a string representation of
the current data and time (something like* Sat Jul 04

Page 282

18: 09: 00 1998’ , which is precise enough for Joe's needs), and creates a new attribute
caledti ne inthedat a instance. It istherefore saved along with dat a.

* The last line does the actual saving; it opens the file with a name generated by the
t enpf i | e module in write mode and dumps the instance datainto it. That'sit! Now the
specified file contains a so-called "pickled” instance.

Interfacing with COM: Cheap Public Relations
We use the data to do two things. First, we'll write a program that's run periodically (say, at 2

am., every night*) and looks through the saved data, finds out which saved pickled files
correspond to complaints, and prints out a customized letter to the complainant. Sounds
sophisticated, but you'll be surprised at how simpleit is using the right tools. Joe's web siteis
on aWindows machine, so we'll assume that for this program, but other platformswork in
similar ways.

Before we talk about how to write this program, aword about the technology it uses, namely
Microsoft's Common Object Model (COM). COM is a standard for interaction between
programs (an Object Request Broker service, to be technical), which alows any
COM-compliant program to talk to, access the data in, and execute commands in other
COM-compliant programs. Grosdly, the program doing the calling is called a COM client, and
the program doing the executing is called a COM server. Now, as one might suspect given the
origin of COM, all magjor Microsoft products are COM-aware, and most can act as servers.
Microsoft Word Version 8 is one of those, and the one welll use here. Indeed, Microsoft Word
isjust fine for writing letters, which iswhat we're doing. Luckily for us, Python can be made
COM-aware as well, at least on Windows 95, Windows 98, and Windows NT. Mark
Hammond and Greg Stein have made available a set of extensionsto Python for Windows
called win32com that allow Python programs to do almost everything you can do with COM
from any other language. Y ou can write COM clients, servers, ActiveX scripting hosts,
debuggers, and more, al in Python. We only need to do the first of these, which is also the
simplest. Basically, our form letter program needs to do the following things:

* Setting up thiskind of automatic regularly scheduled program is easily done on most platforms,
using, for example, cron on Unix or the AT scheduler on Windows NT.

Page 283
1. Open dl of the pickled filesin the appropriate directory and unpickle them.

2. For each unpickled instance file, test if the feedback isacomplaint. If it is, find out the name
and address of the person who filled out the form and go on to Step 3. If not, skip it.

3. Open aWord document containing a template of the letter we want to send, and fill in the
appropriate pieces with the customized information.

4. Print the document and closeit.

It's almost as smple in Python with win32com. Here's a little program called formletter.py:

fromw n32comclient inport constants, D spatch
WORD = ‘ Word. Application. 8

Fal se, True = 0, -1

i mport string

cl ass Woird:

def __init__ (self) :
sel f.app = D spat ch(WORD)

def open(sel f, doc) :
sel f. app. Docunent s. Qpen(Fi | eNane=doc)

def replace(self, source, target) :
sel f. app. Sel ecti on. HoneKey(Uni t =const ant s. wdLi ne)
find = sel f.app. Sel ection. Fi nd

find. Text = “% +source+"%
sel f. app. Sel ecti on. Fi nd. Execut e()
sel f. app. Sel ecti on. TypeText (Text =t ar get)
def printdoc(self) :
sel f.app. Application. PrintQut()
def cl ose(self)
sel f. app. Acti veDocunent . d ose(SaveChanges=Fal se)

def print formetter(data) :
wor d. open(r “h: \ Davi d\ Book\ t of ut enpl at e. doc”)
wor d. repl ace(“nane”, data. nane)
wor d. repl ace(“address”, data. addr ess)
wor d. repl ace(“firstnanme”, string.split(data.nane) [0])
wor d. pri ntdoc()
wor d. cl ose()

if _nane__ == "'_main__’
i mport os, pickle
from feedback i nport DI RECTORY, FornData, FeedbackData
word = Word()
for filenane in os.listdir(D RECTORY) :
data = pi ckl e. | oad(open(os. pat h.joi n(DI RECTORY, filenane)))
if data.type == ‘conplaint’
print “Printing letter for %nane)s.” % vars(data)
print_form etter(data)
el se:
print “Got comment from % nanme)s, skipping printing.” % vars(data)

Page 284

Thefirst few lines of the main program show the power of awell-designed frame-work. The
first lineis a standard import statement, except that it's worth noting that win32comis a
package, not amodule. It is, in fact, a collection of subpackages, modules, and functions. We
need two things from the win32com package: the Di spat ch functioninthecl i ent module,
afunction that allows usto "dispatch” functions to other objects (in this case COM servers),
and theconst ant s submodule of the same module, which holds the constants defined by the
COM objects we want to talk to.

The second line simply defines a variable that contains the name of the COM server we're
interested in. It'scalled Wor d. Appl i cat i on. 8, asyou can find out from using a COM
browser or reading Word's API (see the sidebar "Finding Out About COM Interfaces").

Let'sfocusnowontheif _ name_ == *_main__" block, whichisthe next statement
after the class and function definitions.

Thefirst task isto read the data. We import the os and pi ckl e modulesfor fairly obvious
reasons, and then three references from the f eedback module we just wrote: the

DI RECTORY where the datais stored (thisway if we change it in feedback.py, this module
reflects the change the next time it's run), and the For nDat a and FeedbackDat a classes.
The next line creates an instance of the Wor d class; this opens a connection with the Word
COM server, starting the server if needed.

Thef or loop isasimpleiteration over the filesin the directory with all the saved files. It's

important that this directory contain only the pickled instances, since we're not doing any error
checking. As usua we should make the code more robust, but we've ignored stability for

simplicity.

Thefirst lineinthef or loop does the unpickling. It usesthel oad function from the pi ckl e
module, which takes a single argument, the file which is being unpickled. It returns as many

references as were stored in the file—in our case, just one. Now, the data that was stored was
just the instance of the FeedbackDat a class. The definition of the classitself isn't stored in

the pickled file, just the instance values and a reference to the class*

* There are very good reasons for this behavior: first, it reduces the total size of pickled objects, and

more importantly, it allows you to unpickle instances of previous versions of a class and

automatically upgrade them to the newer class definitions.

#

At unpickling time, unpickling instances automatically causes an import of
the module in which the class was defined. Why, then, did we need to
import the classes specifically? In Chapter 5, Modul es, we said the name

of the currently running moduleis__mai N__. In other words, the name
of the module in which the classis definedis__nmai n___ (eventhough
the name of the file isfeedback.py), and alas, importing__mai n__
when we're unpickling imports the currently running module (which livesin
formletter.py), which doesn't contain the definition of the classes of the
pickled instances. Thisiswhy we need to import the class definitions
explicitly from thef eedback module. If they weren't made available to
the code calling pi ckl e. unl oad (in either thelocal or global
namespaces), the unpickling would fail. Alternatively, we could save the
source of the classin afile and import it first before any of theinstances,
or, even more simply, place the class definitions in a separate module that's
imported explicitly by feedback.py and implicitly by the unpickling
process in the formletter.py. The latter isthe usual case, and asaresult, in
most circumstances, you don't need to explicitly import the class

definitions; unpickling the instance doesit al, "by magic."*

Page 285

Thei f statement inside the loop is straightforward. All that remainsisto explain isthe

print_form etter function, and, of course, the Wr d class.

Theprint _fornl etter function smply calls the various methods of thewor d instance of

the Wor d class with the data extracted from the dat a instance. Note that we use the

string. split function to extract the first name of the user, just to make the letter more

friendly, but this risks strange behavior for nonstandard names.

IntheWbr d class, the i nit __ method appears smple yet hides alot of work. It creates a
connection with the COM server and stores areference to that COM server in an instance
variable app. Now, there are two ways in which the subsequent code might use this server:
dynamic dispatch and nondynamic dispatch. In dynamic dispatch, Python doesn't "know" at

the time the program is running what the interface to the COM server (in this case Microsoft
Word) is. It doesn't matter, because COM alows Python to interrogate the server and
determine the protocal, for example, the number and kinds of arguments each function expects.
This approach can be slow, however. A way to speed it up is to run the makepy.py program,
which does this once for each specified COM server and stores this information on disk. When
aprogram using that specific server is executed, the dispatch routine uses the precomputed
information rather than doing the dynamic

* This point about pickling of top-level classesisasubtle one; it's much beyond the level of this
book. We mention it here because 1) we need to explain the code we used, and 2) thisis about as
complex as Python gets. In some ways this should be comforting—thereisreally no "magic" here.
The apparently special-case behavior of pi Ck| € isin fact anatura consequence of understanding
what the___mai n___ moduleis.

Page 286

dispatch. The program as written worksin both cases. If makepy.py was run on Word in the
past, the fast dispatch method is used; if not, the dynamic dispatch method is used. For more
information on these issues, see the information for the win32 extensions at

http: //www.python.or g/windows/win32all/.

To explain the Wor d class methods, let's start with a possible template document, so that we
can see what needs to be doneto it to customize it. It's shown in Figure 10-3.

JOE'S TOOTHPASTE, INC

February 18, 199%
Saramete
“oaddress®s

Drear Yofirstnameda,

Thank you for Gilling out the feedback form at our website (waw toftoot.com). We'ne
sorry e hear of your complaing, and we'll do cur best to remedy it in the future. As &
token of pur deepest apologies, please accept a coupon for a free whe of aur newest
toothpaste, the “Firm Tofu Plus Toothpaste”, enriched with Witamin A, B and 212,

Sincerely,

Joe Smith

1
= ¢REE COUPQp <
Coupon for 1 (one) free tube of Firm Tofu Plus Toothpaste (50z) |

qtz Available at all WackyStores™ <{K |
______________________ Explres: 12/98 Jl

SUITE 101, 22 MAIN ST - TOFUTOWN, CA « 04122
PHONE: 41 5-555-1212 « FAX: 415-553.1211

Figure 10-3.
Joe's template letter to complainants

Asyou can seg, it's a pretty average document, with the exception of some text in between %
signs. We've used this notation just to make it easy for a program to find the parts which need
customization, but any other technique could work as well. To use this template, we need to
open the document, customize it, print it, and close it. Opening it is done by the open method
of theWor d class. The printing and closing are done similarly. To customize, we replace the
Ymame¥, 9% i r st name%, and Yaddr ess% text with the appropriate strings. That's what the

Page 287

r epl ace method of the Wor d class does (we won't cover how we figured out what the exact
sequence of calls should be; see "Finding Out About COM Interfaces’ for details).

Finding Out About COM Interfaces

How can you find out what the various methods and attributes of COM objects are? In
general, COM objects are just like any other program; they should come with
documentation. In the case of COM objects, however, it's quite possible to have the
software without the documentation, smply because, as in the case of Word, it's
possible to use Word without needing to program it. There are three strategies
available to you if you want to explore a COM interface:

* Find or buy the documentation; some COM programs have their documentation
available on the Web, or availablein printed form.

» Use a COM browser to explore the objects. Pythonwin (part of the win32all
extensions to Python on Windows, see Appendix B, Platform-Specific Topics), for
example, comes with a COM browser tool that lets you explore the complex hierarchy
of COM objects. It's not much more than alisting of available objects and functions, but
sometimes that's al you need. Devel opment tools such as Microsoft's Visua Studio
also come with COM browsers.

» Use another tool to find what's available. For the example above, we simply used
Microsoft Word's "macro recorder” facility to produce aVBA (Visual Basic for
Applications) script, which isfairly straightforward to trandate to Python. Macros tend
to be fairly low-intelligence programs, meaning that the macro-recording facility can't
pick up on the fact that you might want to do something 10 times, and so just records the
same action multiple times. But they work fine for finding out that the equivalent of
selecting the Print item of the File menuisto "say"

Acti veDocunment. PrintQut ().

Putting al of this at work, the program, when run, outputs text like:

C. \ Progranms> python fornl etter. py

Printing letter for John Doe.

CGot comment from Your Mom skipping printing.
Printing letter for Susan B. Anthony.

and prints two customized |etters, ready to be sent in the mail. Note that the Word program
doesn't show up on the desktop; by default, COM servers are invisible, so Word just acts

behind the scenes. If Word is currently active on the desktop, each

Page 288

step isvisible to the user (one more reason why it's good to run these things after hours).

A Tkinter-Based GUI Editor for Managing Form Data

Let'srecap: we wrote a CGl program (feedback.py) that takes the input from aweb form and
stores the information on disk on our server. We then wrote a program (formletter.py) that
takes some of those files and generates apologies to those deserving them. The next task isto
construct a program to allow a human to look at the comments and complaints, using the Tkinter
toolkit to build a GUI browser for thesefiles.

The Tkinter toolkit is a Python-specific interface to a non-Python GUI library called Tk. Tk is
the de facto choice for most Python users because it provides professional-looking GUIs within
afairly easy-to-use system. The interfaces it generates don't ook exactly like Windows, the
Mac, or any Unix toolkit, but they look very close to each of them, and the same Python
program works on all those platforms, which is basically impossible with any
platform-specific toolkit. Another portable toolkit worth considering is wxPython
(http://www.alldunn.com/wxPython).

Tk, then, iswhat well use in this example. It's atoolkit developed by John Ousterhout,
originally as acompanion to Tcl, another scripting language. Since then, Tk has been adopted
by many other scripting languages including Python and Perl. For more information on Perl and
Tk, see O'Rellly's Learning Perl/Tk by Nancy Walsh.

The goals of this program are simple: to display in awindow alisting of all of the feedback
dataitems, allowing the user to select one to examine in greater detail (e.g., seeing the contents
of the text widget). Furthermore, Joe wants to be able to discard items that are dealt with, to
avoid having an dwaysincreasing list of items. A screenshot of the finished program in action
isshown in Figure 10-4.

WEe'll work through one possible way of coding it. Our entire program, called
feedbackeditor.py, is:

from FornEdi tor inport FornEditor

from f eedback i nport FeedbackData, FornData

from Tki nter inport nainl oop

FornEdi tor ("Feedback Editor", FeedbackData, r"c:\Conplaintdir")
mai nl oop()

Thisis cheating only if we don't tell you what's in FormEditor, but we will. The point of
breaking these four lines out into a separate file is that we've broken out all that is specific to
our form. Aswelll see, the FormEditor program is completely

Page 289

ik =1 =
Feedback Editor

complaint from S andia Day on Sat Jul 04 22:32230 1353
complaint romadohn Dios on Sat Jul 04 1728123 1938

(commrent fomn Jame: Smith on Sat Jul 04 2230:55 1998

name |Jana Smith

addrezz | 110 Tomato Dirve, Cucumbes, PA 53528 |

ems | janeEumith oig
type | comment

| rnaally enjoy the chive-lavored toothpaste.
Howeawer, tee bits of chive do tend Lo get
Read | steck in my Leath, whech iz somewhal anmoing.

F.eep up the good workl

Dilete Erfry Rskad

Figure 10-4.
A sample screen dump of the feedbackeditor.py program

independent of the specific CGI form. A further point made explicit by this micro-program is
that it shows how to interact with Tkinter; you create widgets and windows, and then call the
mainloop function, which sets the GUI running. Every change in the program that follows
happens as aresult of GUI actions. Asfor formletter.py, this program imports the class objects
fromthef eedback module, for the same reason (unpickling). Then, an instance of the

For nEdi t or classiscreated, passing to itsinitialization function the name of the editor, the
class of the objects being unpickled, and the location of the pickled instances.

The code for For mEdi t or isjust aclass definition, which we'll describe in parts, one
method at atime. First, the import statements and the initialization method:

from Tki nt er

import string, os, pickle

cl ass For nEdi
def __ini

sel f.

sel f.

sel f.

sel f.

sel f.
r oot .

root.

root.
root.

create

i mport *

tor:

t _(self, nanme, dataclass, storagedir):

storagedir = storagedir # stash away sone references
dat acl ass = dat acl ass

row = 0

current = None

root = root = Tk() # create wi ndow and size it
m nsi ze(300, 200)

rowconfigure(0, weight=1) # define how col ums and rows scal

col umconfigure(0, weight=1) # when the window is resized
col umconfigure(l, weight=2)

Page 290

the title Label

Label (root, text=nanme, font="bold').grid(columspan=2)

self.row = self.row + 1

create the main listbox and configure it

sel f.listbox = Listbox(root, selectnode=SI NGLE)

sel f.listbox.grid(columspan=2, sticky=E+WN+S)

sel f.listbox. bi nd(' <ButtonRel ease-1>', self.select)
self.row =self.row + 1

call self.add variable once per variable in the class's fieldnanes var
for fieldnane in dataclass.fiel dnanes:
setattr(self, fieldnane, self.add variable(root, fieldnane))

create a couple of buttons, wth assigned comrands
sel f.add_button(self.root, self.row, O, 'Delete Entry', self.delentry)

sel f.add_button(self.root, self.row, 1, 'Reload', self.l|oad_data)
sel f. |l oad_data()

We use the sometimes dangerousf r orr .. i nport * construct we warned you about earlier.
In Tkinter programs, it's usually fairly safe, because Tkinter only exports variables that are
fairly obviously GUI-related (Label , W dget , etc.), and they al start with uppercase | etters.

Understandingthe i nit _ method is best done by comparing the structure of the code to
the structure of the window screen dump. Asyou movedownthe i nit __ method lines,
you should be able to match many statements with their graphical consequences.

Thefirst few lines simply stash away afew things in instance variables and assign default
values to variables. The next set of lines access a so-called Topl evel widget (basically, a
window; the Tk () call returnsthe currently defined top-level widget), setsits minimum size,
and sets afew properties. The row and column configuration options alow the widgetsinside
the window to scaleif the user enlarges the window and determines the relative width of the
two columns of internal widgets.

The next call createsalabel widget, which isdefined in the Tki nt er module, and which,
asyou can seein the screen dump, isjust atext label. It spans both columns of widgets,
meaning that it extends from the leftmost edge of the window to the rightmost edge. Specifying
the locations of graphical elementsis responsible for the mgority of GUI calls, due to the wide
array of possible arrangements.

TheLi st box widget is created next; it'salist of text lines, which can be selected by the user
using arrow keys and the mouse button. This specific listbox alows only oneline to be
selected at atime (sel ect node=SI NGLE) and fills all the space availableto it (the

sti cky option).

Page 291

Thef or loop block isthe most interesting bit of code in the method; by iterating over the

fi el dnames attribute of thedat acl ass variable (in our example, thef i el dnanes
class of the FeedbackDat a class), it finds out which variables are in the instance data, and
for each, calstheadd_var i abl e method of the For nEdi t or class and takes the returned
value and stuffsit in an instance variable. Thisis equivalent in our case to:

sel f.nanme = self.add vari abl e(root, 'nane')
self.emai|l = self.add variable(root, '"email')

sel f.address = sel f.add vari abl e(root, 'address')
self.type = self.add variabl e(root, 'type')
self.text = self.add variable(root, 'text')

The version in the code sample, however, is better, because the list of field namesis already
available to the program and retyping anything is usualy an indicator of bad design.
Furthermore, there is nothing about For nDat a that is specific to our specific forms. It can be
used to browse any instance of aclass that definesavariablef i el dnanes. Making the
program generic like this makes it more likely to be reused in other contexts for other tasks.

Finishing off withthe i ni t __ method, we see that two buttons finish the graphical layout
of the window, each associated with a command that's executed when it's clicked. Oneisthe
del ent r y method, which deletes the current entry, and the other is a reloading function that
rereads the data in the storage directory.

Finaly, the datais|oaded by acall to thel oad_dat a method. We'll describe it as soon as
we're done with the calls that set up widgets, namely add_vari abl e andadd_but t on.

add_vari abl e createsalLabel widget, which displays the name of the field, and on the
same row, placesalabel widget, which will contain the value of the corresponding field in
the entry selected in the listbox:

def add_vari abl e(self, root, varnane) :
Label (root, text=varnane).grid(row=self.row, colum=0, sticky=E)
val ue = Label (root, text=", background='gray90',
relief =SUNKEN, anchor=W justify=LEFT)
val ue. grid(row=sel f.row, colum=1, sticky=E+W
self.row = self.row + 1
return val ue

add_but t on issmpler, asit needsto create only one widget:
def add_button(self, root, row, columm, text, conmmand) :
button = Button(root, text=text, conmand=conmand)
button. grid(row=row, colum=columm, sticky=E+tW padx=5, pady=5)

Thel oad_dat a function cleans up any contentsin the listbox (the graphical list of items) and
resetsthei t ens attribute (which isaPython list that will contain refer-

Page 292

ences to the actual datainstances). The loop is quite similar to that used for
printcomplaints.py, except that:

* The name of the filein which an instance is stored is attached as an attribute to that instance
(we'll see why shortly)

* Theinstance is added to the items instance attribute
* The string representation of the item (note the use of the backtick) is added to the listbox
* Finally, thefirst item in the listbox is selected:

def | oad data(self) :
sel f.listbox. del ete(0, END)
self.items =[]
for filenanme in os.listdir(self.storagedir) :
item = pickle.load(open(os. path.join(self.storagedir, filenanme)))

item filenane = fil enane
self.itens. append(iten
self.listbox.insert('end , '"item)
sel f.listbox. sel ect_set (0)
sel f. sel ect (None)

We now get tothesel ect method we mentioned previoudly. It's called in one of two
circumstances. Thefirst, as we just showed, is the last thing to happen when the data is loaded.
The second is a consequence of the binding operationinthe i ni t __ method, which we
reprint here:

sel f.listbox. bi nd(' <ButtonRel ease-1>', self.select)

This call binds the occurrence of a specific event (* <But t onRel ease- 1>’) in a specific
widget (sel f. | i st box)toanactioncalling sel f. sel ect . Inother words, whenever
you let go of the left mouse button on an item in the listbox, thesel ect method of your editor
iscaled. It's called with an argument of type Event , which can let us know such things as
when the button click occurred, but since we don't need to know anything about the event
except that it occurred, we'll ignore it. What must happen on selection? First, the instance
corresponding to the item being selected in the GUI eement must be identified, and then the
fields corresponding to the values of that instance must be updated. Thisis performed by
iterating over each field name (looking back to thef i el dnanes class variable again),
finding the value of the field in the selected instance, and configuring the appropriate label
widget to display the right text:*

def select(self, event) :
selection = self.listbox.cursel ection()
self.selection = self.itens[int(selection[0])]
for fieldnane in self.datacl ass.fiel dnanes:
| abel = getattr(self, fieldnane) # @QJ field

* Ther epl ace operation is needed because Tk treatsthe\ r \ n sequence that occurs on Windows
machines astwo carriage returnsinstead of one.

Page 293

| abel str = getattr(self.selection, fieldname) # instance attribute
| abel str = string.replace(labelstr, "\r', ")
| abel . confi g(text=labelstr)

The reload functionality we need is exactly that of thel oad_dat a method, which iswhy
that's what was passed as the command to be called when the reload button is clicked. The
deletion of an entry, however, isatad more difficult. As we mentioned, the first thing to do
when loading an instance from disk isto give it an attribute that corresponds to the filename
whence it came. We use this information to delete the file before asking for areload; the
listbox is automatically updated:

def delentry(self) :
os. renove(os. path.join(self.storagedir, self.selection. _filenane))
sel f. |l oad_dat a()

This program is probably the hardest to understand of any in this book, smply because it uses
the complex and powerful Tkinter library extensively. There is documentation for Tkinter, as
well asfor Tk itself (see "Tkinter Documentation").

Tkinter Documentation

The documentation for Tkinter isas elusive asit is needed; it's getting better all the
time, however. Tkinter was originally written by someone (Steen Lumholdt) who
needed a GUI for hiswork with Python. He didn't write much documertation, alas.
Tkinter has since been upgraded many times over, mostly by Guido van Rossum. The
documentation for Tkinter is still incomplete; however, there are afew pieces of
documentation currently available, and by the time you read this, much more may be
available.

* The most complete documentation is Fredrik Lundh's documentation, available on the
Web at http://www.pythonware.convlibrary/tkinter/
introduction/index.htmr.

* An older but still useful document called Matt Conway's life preserver is available
at http://www.python.or g/doc/life-preserver/index.html.

* Programming Python also has documentation on Tkinter, especially Chapters 11, 12,
and 16.

* Possibly more: see the Python.org web site section on Tkinter at ht t p: / /
www.python.or g/topics/tkinter/.

Page 294

Design Considerations

Think of the CGI script feedback.py and the GUI program FormEditor.py as two different
ways of manipulating a common dataset (the pickled instances on disk). When should you use a
web-based interface, and when should you use a GUI? The choice should be based on a couple
of factors:

* How easy isit to implement the needed functionality in a given framework?
» What software can you require the user to install in order to access or modify the data?

The web frontend is therefore well suited to cases where the complexity of the data
manipulation requirementsis low and where it's more important that users be able to "work the
program” than that the program be full-featured. Building a"real" program on top of a GUI
toolkit, on the other hand, alows maximum flexibility, at the cost of having to teach the user
how to use it and/or installing specific programs. One reason for Python's success among

experienced programmersis that Python allows them to design programs based on such
reasoned bases, as opposed to forcing them to use one type of programming framework just
because it's what the language designer had in mind. It's also possible to devel op full-featured
applications that happen to use web browsers astheir GUI. Zope is aframework for writing
such applications, and is available free from Digital Creations under an Open Source license.
If you're interested in developing full-fledged web-based applications, give Zope alook (see
Appendix A, Python Resour ces, for more details).

JPython: The Felicitous Union of Python and Java

JPython is arecently released version of Python written entirely in Java by Jm Hugunin.
JPython is avery exciting development for both the Python community and the Java community.
Python users are happy that their current Python knowledge can transfer to Java-based
development environments; Java programmers are happy that they can use the Python scripting
language as away to control their Java systems, test libraries, and learn about Java libraries
from an interpreted environment.

JPython is available from http://www.python.org/jpython, with license and distribution terms
similar to those of CPython (which iswhat the reference implementation of Python is called
when contrasted with JPython).

The JPython installation includes several parts:
* | pyt hon: The equivalent of the Python program used throughout the book.

Page 295

* | pyt honc: Takes a JPython program and compilesit to Java classfiles. The resulting Java
classfiles can be used as any Java class file can, for example as applets, as servlets, or as
beans.

* A set of modules that provide the JPython user with the vast majority of the modulesin the
standard Python library.

* A few programs demonstrating various aspects of JPython programming.
Using JPython is very similar to using Python:

~/ book> j pyt hon

JPython 1.0.3 on javal. 2bet a4

Copyright 1997-1998 Corporation for National Research Initiatives
>>> 2 + 3

5

In fact, JPython works almost identically to CPython. For an up-to-date listing of the
differences between the two, see http://www.python.org/jpython/differences.html . The most
important differences are:

 JPython is currently dower than CPython. How much slower depends on the test code used
and on the Java Virtua Machine JPython is using. JPython's author has, on the other hand,
explored very promising optimizations, which could make future versions of JPython asfast or
faster than CPython.

» Some of the built-ins or library modules aren't available for JPython. For example, the

os. systen() cal isnot implemented yet, as doing so is difficult given Javas interaction
with the underlying operating system. Also, some of the largest extension rodules such asthe
Tkinter GUI framework aren't available, because the underlying tools (the Tk/Tcl toolkit, in the
case of Tkinter) aren't available in Java.

JPython Gives Python Programmers Accessto Java Libraries

The most important difference between JPython and CPython, however, is that JPython offers
the Python programmer seamless access to Java libraries. Consider the following program,
jpythondemo.py, the output of which is shown in Figure 10-5.

|
| = J Python ==l E3 |

| This is a Swinging example!

Figure 10-5.
The output of jpythondemo.py

Page 296
from paw inport sw ng
i mport java
def exit(e): java.lang.Systemexit(0)
frame = swing.JFrane (' Swing Exanple', visible=1)
button = swing.JButton(' This is a Swinging button!', actionPerfornmed=exit)

f rame. cont ent Pane. add(but t on)
frame. pack()

This ssimple program demonstrates how easy it is to write a Python program that uses the Swing
Java GUI framework.* Thefirst line importsthe swi ng Java package (the pawt module
figures out the exact location of Swing, whichcanbeinj ava. awt . swi ng, in

com sun. j ava. sw ng, or maybeinj avax. sw ng). The second lineimportsthej ava
package that we need for thej ava. | ang. Syst emn. exi t () cal. Thefourth line createsa
JFr ane, setting its bean property vi si bl e to true. Thefifth line createsaJBut t on with a
label and specifies what function should be called when the button is clicked. Finaly, the last
two lines put the JBut t on inthe JFr ame and make them both visible.

Experienced Java programmers might be a bit surprised at some of the code in
jpythondemo.py, as it has some differences from the equivaent Java program. In order to make
using Java libraries as easy as possible for Python users, JPython performs alot of work
behind the scenes. For example, when JPython imports a Java package, it actively tracks dowr
the appropriate package, and then, using the Java Reflection API, finds the contents of
packages, and the signatures of classes and methods. JPython aso performs on-the-fly
conversion between Python types and Javatypes. In jpythondemo.py, for example, the text of
thebutton (" Thi s i s aSw ngi ng exanpl e!) isaPython string. Before the constructor
for JBut t on iscaled, JPython finds which variant of the constructor can be used (e.g., by

rejecting the version that acceptsan | con asafirst argument), and automatically converts the
Python string object to a Java string object. More sophisticated mechanisms allow the
convenient act i onPer f or mred=exi t keyword argument to the JBut t on constructor.
Thisidiom isn't possible in Java, since Java can't manipulate functions (or methods) as
first-class objects. JPython makes it unnecessary to createan Act i onLi st ener classwitha
singleact i onPer f or med method, athough you can use the more verbose form if you wish.

JPython as a Java Scripting Language

JPython is gaining in popularity because it alows programmers to explore the myriad Java
libraries that are becoming available in an interactive, rapid turn-

* Documentation for Swing and the Java Foundation Classesis available online at
http://java.sun.conV_products/jfc/index.html . Alternatively, Robert Eckstein, Marc Loy, and Dave
Wood have published a thorough review of the Swing toolkit for Java, Java Swing, published by
O'Reilly & Associates.

Page 297

around environment. It also is proving useful to embed Python as a scripting language in Java
frameworks, for customization, testing, and other programming tasks by end users (as opposed
to systems developers). For an example of a Python interpreter embedded in a Java program,
see the program in the demo/embed directory of the JPython distribution.

A Real JPython/Swing Application: grapher.py

The grapher.py program (output shown in Figure 10-6) alows users to graphically explore the
behavior of mathematical functions. It's also based on the Swing GUI toolkit. There are two
text-entry widgets in which Python code should be entered. Thefirst is an arbitrary Python
program that's invoked before the function is drawn; it imports the needed modules and defines
any functions that might be needed in computing the value of the function. The second text ares
(labeled Expr essi on:) should be a Python expression (asin si n(x)), not a statement. It's
called for each data point, with the value of the variable x set to the horizontal coordinate.

[S————
o squamwave(x ol
fatal = 0.0

tariin mrgel, orerd+«i, 2

total = fofal « sindeitt 0.0 eal (i)
retunn total

Figure 10-6.
Output of grapher.py

Page 298

The user can control whether to draw aline graph or afilled graph, the number of pointsto
plot, and what color to plot the graph in. Finaly, the user can save configurations to disk and
reload them later (using the pi ckl e module) Here is the grapher.py program:

frompaw inmport swing, awt, colors, GidBag

Rl GHT = swi ng. JLabel . RI GHT

APPROVE_OPTI ON = swi ng. JFi | eChooser . APPROVE_OPTI ON
import java.io

i nport pickle, os

default _setup = “““fromnath inport *
def squar ewave(x, order)

total = 0.0

for i in range(l, order*2+1, 2)

total = total + sin(x*i/10.0)/(float(i))
return total

def aul t _expression = “squarewave(x, order=3)"
cl ass Chart (awt . Canvas)
col or = col ors. darkt urquoi se

style = ‘“Filled

def getPreferredSi ze(self)
return awt. D nensi on(600, 300)

def paint(self, graphics)

clip = self.bounds
graphics.color = colors.white
graphics.fillRect(0, 0, clip.width, clip.height)

width = int(clip.width * .8)

height = int(clip.height * .8)

x_offset = int(clip.width * .1)

y_offset = clip.height - int(clip.height * .1)

N = len(self.data); xs = [0]*N, ys = [0]*N
xmn, xmax = 0, N1

ynmax = max(sel f. data)
ymn = mn(self.data)
zero_y =y offset - int(-ymn/(ymax-ym n)*height)
zero_x = x_offset + int(-xm n/(xmax-xm n)*w dt h)
for i in range(N

xs[i] = int(float(i) *width/N + x_offset

ys[i] =y offset - int((self.data[i]-ym n)/(ymax-ym n)*hei ght)
graphi cs. col or = self.color
if self.style == “Line”

gr aphi cs. drawPol yl i ne(xs, ys, len(xs))
el se:

Page 299

xs.insert(0, xs[0]); ys.insert(0, zero_y)
xs. append(xs[-1]; ys.append(zero_y)
graphics.fill Polygon(xs, ys, |len(xs))

draw axes

graphi cs. col or = col ors. bl ack

graphi cs. drawLi ne(x_of fset, zero y, x offset+width, zero_ y)
graphi cs. drawLi ne(zero_x, y_offset, zero_x, y_offset-height)

draw | abel s

| eadi ng = graphics.font.size

graphics.drawstring(“% 3f” % xnmn, x_offset, zero_y+l eading)
graphics.drawstring(“% 3f” % xnmax, x_of fset+w dth, zero_y+l eadi ng)
graphics.drawsString(“% 3f” %ymn, zero_x-50, y offset)
graphics.drawsString(“% 3f” % ymax, zero_x-50, y_ offset-hei ght+l eadi ng)

class QU
def __init_ (self)
sel f. nunel enents = 100
sel f.frame = sw ng. JFrame(w ndowd osi ng=sel f. do_quit)

build nenu bar

nenubar = sw ng. JMenuBar ()

file = swng.IJMenu(“File")
file.add(sw ng. JMenulten(“Load”, actionPerforned
file.add(sw ng. JMenulten(“Save”, actionPerforned
file.add(sw ng.JMenultem(“Quit”, actionPerforned
nenubar . add(fil e)

sel f. do | oad))
sel f. do_save))
self.do _quit))

sel f.franme. IMenuBar = nenubar

create widgets

sel f.chart = Chart(visible=1)

sel f.execentry = sw ng. JText Area(default_setup, 8, 60)

sel f.eval entry = sw ng. JText Fi el d(def aul t _expressi on
actionPerfornmed = sel f.update)

create options panel
optionsPanel = sw ng. JPanel (awt . Fl owLayout)
al i gnnent =awt . Fl owLayout . LEFT))

whether the plot is a line graph or a filled graph
self.filled = sw ng. JRadi oButton(“Fil | ed”
actionPerforned=sel f.set _filled)
optionsPanel . add(sel f.filled)
sel f.line = sw ng. JRadi oBut t on(“Li ne”
acti onPerforned=sel f.set_|ine)

opti onsPanel . add(sel f.line)

styl eG oup = swi ng. ButtonG oup()
styl eG oup. add(sel f.filled)

styl eG oup. add(sel f.line)

col or selection
opti onsPanel . add(swi ng. JLabel (“color:”, RIGHT))
colorlist =filter(lanbda x: x[0] !'="*_", dir(colors))

Page 300

sel f. col orname = swi ng. JConboBox(col orli st)
sel f. col ornane. i t entt at eChanged = sel f.set_col or
opti onsPanel . add(sel f. col or nane)

nunber of points

opti onsPanel . add(swi ng. JLabel (“Nunber of Points:”, RIGHI))

sel f.sizes =[50, 100, 200, 500]

sel f. nunpoi nts = swi ng. JConboBox(sel f. si zes)

sel f. nunpoi nts. sel ect edl ndex = sel f. sizes.index(sel f.nunel enents)
sel f. nunpoi nts. itenttateChanged = sel f.set_nunpoints

opti onsPanel . add(sel f. nunpoi nts)

do the rest of the layout in a GidBag
sel f. do_| ayout (opti onsPanel)

def do_Il ayout (sel f, optionsPanel)

bag = GidBag(sel f.frane. contentPane, fill="BOTH ,
wei ght x=1. 0, wei ghty=1.0)
bag. add(sw ng. JLabel (“Setup Code: ", RIGHT))
bag. addRow(swi ng. JScr ol | Pane(sel f. execentry), weighty=10.0)
bag. add(sw ng. JLabel (“Expression: ", R GHT))
bag. addRow(sel f. eval entry, wei ghty=2.0)
bag. add(sw ng. JLabel (“Qutput: ", R GHT))
bag. addRow(sel f. chart, wei ghty=20.0)
bag. add(sw ng. JLabel (“Options: ", R GHT))

bag. addRow opti onsPanel , wei ghty=2.0)

sel f. updat e(None)
self.frame.visible = 1
self.frame.size = self.frame. getPreferredSi ze()

sel f.chooser = sw ng. JFi | eChooser ()
sel f.chooser.currentDirectory = java.io.File(os.getcwd())

def do_save(sel f, event =None)
sel f. chooser.rescanCurrentDirectory
returnVal = self.chooser.showSaveD al og(sel f.frane)
if returnVal == APPROVE_OPTI ON:
obj ect = (self.execentry.text, self.evalentry.text,
self.chart.style
sel f.chart. col or. RGB
sel f. col ornane. sel ect edl ndex,
sel f. nunel enent s)
file = open(os. path.join(self.chooser.currentDi rectory. path
sel f.chooser. sel ectedFi |l e. nane), ‘w)
pi ckl e. dunp(object, file)
file.close()

def do_I| oad(sel f, event=None)
sel f. chooser.rescanCurrentDirectory()
returnVal = self.chooser.showQpenD al og(sel f.frane)
if returnVal == APPROVE_OPTI ON:

file = open(os. path.join(self.chooser.currentDi rectory. path

sel f. chooser. sel ect edFi | e. nane))
(setup, each, style, color,
col ornane, self.nunel enents) = pickle.load(file)

Page 301

file.close()

self.chart.color = java. awt. Col or(col or)

sel f. col ornane. sel ect edl ndex = col or nane

self.chart.style = style

sel f. execentry.text = setup

sel f. nunpoi nts. sel ect edl ndex = sel f. sizes.index(sel f.nunel enents)

self.evalentry.text = each
sel f. updat e(None)

def do_quit(self, event=None)

i mport sys
sys. exit(0)

def set _col or(self, event)
self.chart.color = getattr(colors, event.item
sel f.chart.repaint()

def set _nunpoi nts(self, event)
sel f. nunel enents = event.iten
sel f. updat e(None)

def set _filled(self, event)
self.chart.style = ‘“Filled

sel f.chart.repaint()

def set _line(self, event):
sel f.chart.style = ‘Line
sel f.chart.repaint()

def update(self, event):
context = {}
exec self.execentry.text in context
each = conpile(self.evalentry.text, ‘<input>, ‘eval’)
nunmbers = [0] *sel f. nurel enent s
for x in xrange(self.numel enents):
context[‘x'] = float(x)
nunmbers[x] = eval (each, context)
sel f.chart.data = nunbers
if self.chart.style == *Line
sel f.line.setSel ected(1)
el se:
self.filled.setSel ected(1)
sel f.chart.repaint()

aJ ()

The logic of this program isfairly straightforward, and the class and method names make it
easy to follow the flow of control. Most of this program could have been written in fairly
analogous (but quite a bit longer) Java code. The partsin bold, however, show the power of
having Python available: at the top of the module, default values for the Set up and

Expr essi on text widgets are defined. The former imports the functionsin the mat h module
and defines afunction called squar ewave. The latter specifies a call to thisfunction, with a
specific or der

Page 302

parameter (as that parameter grows, the resulting graph looks more and more like a square
wave, hence the name of the function). If you have Java, Swing, and JPython installed, fedl free
to play around with other possibilities for both the Set up and Expr essi on text widgets.

The key asset of using JPython instead of Javain thisexampleisintheupdat e method: it
simply callsthe standard Python exec statement with the Set up code as an argument, and
then callseval with the compiled version of the Expr essi on code for each coordinate.
The user isfree to use any part of Python in these text widgets!

JPython is still very much awork in progress; Jim Hugunin is constantly refining the interface
between Python and Java and optimizing it. JPython, by being the second implementation of
Python, is also forcing Guido van Rossum to decide what aspects of Python are core to the
language and what aspects are features of hisimplementation. Luckily, Jm and Guido seem to
be getting along and agreeing on most points.

Other Frameworks and Applications

With limited space, we could cover only afew of the most popular frameworks currently used
with Python. There are severa others, which are also deserving of mention and which might
very well be what you need. We briefly describe some here.

Python Imaging Library (PIL)

The Python Imaging Library is an extensive framework written by Fredrik Lundh for creating,
manipulating, converting, and saving bitmapped images in avariety of formats (such as GIF,
JPEG, and PNG). It has interfaces to Tk and Pythonwin, so that one can use either Tk widgets
or Pythonwin code to display PIL-generated images. Alternatively, the images can be saved to
disk in avariety of formats. The home for PIL isat http://www.pythonware.com.

Numeric Python (NumPy)

Numeric Python is a set of extensionsto Python designed to manipulate large arrays of numbers
quickly and elegantly. It was written by Jm Hugunin (JPython's author), with the support of the
subscribersto the Matrix-SIG (more on SIGsin Appendix A). Since Jim started work on
JPython, the responsibility for Numeric Python has been taken over by folks at the Lawrence
Livermore National Laboratory. NumPy is aremarkably powerful tool for scientists and
engineers, and as such is close to the heart of one of these authors. More information oniitis
avail-

Page 303

able at the main Python web site's topic guide for scientific computing
(http: //mwww.python.or g/topi cs/scicomp/).

Here's an example of typical NumPy code, numpytest.py, and one representation of the datain
generates:

from Nuneric inport *

coords = arange(-6, 6, .02) # create a range of coordinates

Xs = sin(coords) # take the sine of all of the x's
ys cos(coords) *exp(-coords*coords/ 18.0) # take a conplex function of the y's

ZX xs * ys[:, NewAxi s] # multiply the x rowwth the y col ul

If you remember your math, you might figure out that xs isan array of the sines of the numbers
between -6 and 6, and ys isan array of the cosines of those same numbers scaled by an
exponential function centered at 0. zs is Smply the outer product of those two arrays of
numbers. If you're curious as to what that might look like, you could convert the array zs into
an image (with the aforementioned PIL, for example) and obtain the image shown in Figure
10-7.

Figure 10-7.
Graphical representation of the array zs in numpytest.py

NumPy lets you manipulate very large arrays of numbers very efficiently. The preceding code
runs orders of magnitude faster than comparable code using large lists of numbers and uses a
fraction of the memory. Many Python users never have to ded with these kinds of issues, but
many scientists and engineers require such capabilities daily.

SWIG

Extension modules for Python can be written in C or C++. Such modules alow easy extension
of Python with functions and new types. The guidelines for writing such extension modules are
available as part of the standard Python library reference and described at some length in
Programming Python as well. One common use of extension modulesisto write interfaces
between Python and existing libraries, which can contain hundreds or thousands of single
functions. When thisisthe case, the use of automated tools is alifesaver. David Beazley's
SWIG, the Simple Wrapper Interface Generator, is the most popular such tool. It's available at
http://www.swig.org and is very well documented. With SWIG, you

Page 304

write smple interface definitions, which SWIG then uses to generate the C programs that
conform to the Python/C extension guidelines. One very nice feature of SWIG isthat when it's
used to wrap C++ class libraries, it automatically creates socalled shadow classes in Python
that let the user manipulate C++ classes asif they were Python classes. SWIG can also create
extensions for other languages, including Perl and Tcl.

Python MegaWidgets (Pmw)

Anyone doing serious GUI work with Tkinter should check out Pmw, a 100% Python
framework built on top of Tkinter, designed to allow the creation of megawidgets (compound
widgets). Pmw, written by Greg McFarlane, is the next step beyond Tkinter, and learning it can
pay off inthe long run. Pmw's home pageisat http://www.dscpl.com.au/pmw/.

ILU and Fnorb

If the notion of programs talking to programsis of interest to you, but you want a solution that
works on platforms with no COM support, there are many other packages with similar
functionality. Two favoritesare ILU and Fnorb.

ILU stands for Xerox PARC's Inter Language Unification project. It's free, well-supported,
stable, and efficient, and supports C, C++, Java, Common Lisp, Modula-3, and Perl 5, in
addition to Python. It's available at ftp://ftp.parc.xerox.com/pub/ilu/ilu.html.

Unlike ILU, Fnorb iswritten in Python and supports only Python. It's especialy helpful for
learning more about CORBA systems, since it's easy to set up and play with once you know
Python. Fnorb is available from http://www.dstc.edu.au/Fnorb/.

Exercises

Most of the topics of this chapter are not really good topics for exercises without first covering
the frameworks they cover. A couple of things can be done with the knowledge you already
have, however:

1. Faking the Web. Y ou may not have aweb server running, which makes using formletter.py
and FormEditor.py difficult, since they use data generated by the CGI script. As an exercise,
write a program that creates files with the same properties as those created by the CGI script.

2. Cleaning up. There's a serious problem with the formletter.py program: namely, if, aswe
mention, it's run nightly, any complaint is going to cause a

Page 305

letter to be printed. That will happen every night, since there is no mechanism for indicating
that aletter has been generated and that no more |etters need be generated regarding that
specific complaint. Fix this problem.

3. Adding parametric plotting to grapher.py. Modify grapher.py to alow the user to specify
expressions that return both x and y values, instead of the current "just y* solution. For
example, the user should be able to writein the Expr essi on widget: si n(x/ 3. 1),
cos(x/ 6. 15) (notethecomma: thisisatuple!) and get a picture like that shown in Figure
10-8.

T e——— T T}

-1.0C0

e T -1 {0 P

Figure 10-8.
Output of Exercise 3

Page 307

H—
APPENDIXES

Thislast part of the book consists of three appendixes that are mostly pointers to other sources
of information.

» Appendix A, Python Resources, presents general Python resources such as sources of
documation, advice, and software.

» Appendix B, Platform-Specific Topics, covers resources that are specific to certain
operating systems.

» Appendix C, Solutions to Exercises, lists the answersto all the exercises presented at the end
of chaptersin Parts| and 1.

Page 309

A—
Python Resour ces

This appendix is a selection of the most useful resources for the Python programmer, including
itemsthat aren't part of the standard distribution. These include software (both Python modules
and extension modules), documentation, discussion groups, and commercial sources of support.

The Python Language Web Site

The single most important source of information is http://www.python.org. Thisweb siteisthe
focal point of the Python community. All Python software, documentation, and other
information is available either on that web site directly or from locations listed on the web
site. We encourage you to spend afair bit of time exploring it, asit's quite large and
comprehensive. See Figure A-1 for a snapshot of the web site's home page.

Python Software
The Standard Python Distribution

The most essential piece of Python software is clearly the Python interpreter itself. It's
available in many formats for avariety of platforms. We defer discussion of the
platform-specific issues until Appendix B, Platform-Specific Topics. In generd, the most
reliable way to get an up-to-date distribution is to download it from the main Python web site
(http://www.python.org). The Python web site is maintained by volunteers from the Python
Software Association (see the next sidebar, "The Python Software Association (PSA) and the
Python Consortium™), a group dedicated to the long-term success of Python. If you'd rather get
Python binaries on a CD, Walnut Creek has a Python CD-ROM available that includes binaries
for al common plat-

Page 310

=' F‘:;thc-n L-m-_]ua-:;c Wt-t-lrlr'.: = Ht:linr.:-x-r:.

m Walcoma to the official wabsite for the Eython language. The |
BIewiouls CONEEOCES fallowing iterns zre zccessile from the tap of zach page an this E
Site map : site =

w = Homa - this paga: onentation, announcements, rews
Bython TO DO st + Help - if you're new here, or simply lost
mﬂﬂm_ﬂﬂﬁﬂ ; » Search - vanous Python search engicgs
Snfing bookstars *+ Community - the Python Software Activity
MME'_ = -] * Dowrload - Pythan runs on your favorite platfarm
Year 2000 compliancs” | + Slag - Specizl Interest Groups' mailing Fsts and archives
Mﬂlﬂlﬁi ras | * Documentation - copious, onling and downloadabla
| A] i + Modules - 3rd party software to download separatsly
|| I
| Pythen Starshig | Otheritems of interest:
+ Execubtive summsary - if you're wondering, “what on sarth is
Pykion®
+ Eag - Frequantly Asked Questions (see also the EAQ wizard)
* Topes Guides - link callectiong For specific areas of nlerest |
1
Buthonware | Special Announcements
Eﬂ{ﬂﬂ.ﬁ AT o . part of their Open Source Confersnces, O'Reily is

sponsorng 2 Python Conference, August 21-24, 18999 in Monteray,

m C:‘Illrdlﬂl'l SEE tr1E [!' "l‘ |'| irk "Ij:l_ltll."' NI:IIZE !l'lat [I"E' 5_||.'II"I'II'E‘I$'_'!I'I .Ej

B [Dacment Done

Figure A-1.
A screenshot of the python.org web site

forms (Windows, Macs, many versions of Unix, BeOS, and VMS). The URL for the last
distribution available at time of writing is http://www.cdrom.comvtitles/prog/ python.htm, but
check the Walnut Creek catalog for eventual newer releases. As described in Appendix B,
most Linux distributions include Python. Both Programming Python and Inter net
Programming with Python (see the section "Other Published Books") also come with CDs that
include Python distributions.

The standard distribution comes with hundreds of modules, both in C and Python. These
modules are al officialy supported by Guido and his crew (unless otherwise noted; when
replaced by newer tools, old modules are kept for afew yearsto give users time to upgrade
their software, and support for them decreases grad-

Page 311

ualy). The interpreter, the standard library, and the standard documentation constitute the
minimum set of tools a Python user has access to.

In addition to the standard distribution, there are hundreds of packages and modules available
on the Web, most of which are free. We'll mention afew specifically and where to get them.

The Python Software Association (PSA) and the Python Consortium

While Guido van Rossum is Python's primary creator, he has been getting some help in
recent years, especially when it comes to the various public-relations aspect of the
Python language. The Fython Software Association is an association of companies and
individuals who wish to help preserve Python's existence as afree, evolving,
well-supported language. PSA volunteers help run the python.org web site, organize the
Python conferences, and collect membership dues from PSA membersto help underwrite
the costs of the web site, conferences, and other Python-related events. If you or your
company are interested in joining the PSA, visit the PSA's web site at:

http: //www.python.or g/psa/.

One perk of a PSA membership isthat it entitles you to a free account on the " Starship
Python," aweb site run by a grateful Python user, Christian Tismer, as a public service
to the Python community. The starship's current URL is

http://starship. skyport. net, butitwill soon moveto
http://starship. pyt hon. net.

The Python Consortium is a recent development that holds promise for longterm support
of Python's development. CNRI (Guido van Rossum's current employer) is proposing to
host a consortium of companies that would support, through membership dues, the
development of the Python and JPython development environments. More information
about the Python Consortium is available at http: //www.python.org/consortiuny.

Gifts from Guido

Asif Python and its standard libraries weren't enough, Guido ships afew other programs as
part of the standard distribution. They are located in the Tools directory of the Python source
tree (or the Python installation directory on Windows and Mac).

In this set, as of Python 1.5.2, thereisafirst cut a an integrated devel opment environment for
Python, called idle. As Figure A-2 shows, it'sa GUI based on top of Tkinter, so it requires that
you have Tk/Tcl installed. idle is ill initsinfancy,

Page 312

but aready provides quite afew nice features that make it ideal for the Python novice usesto
friendly development environments:

* A Python shell, smarter than the standard one we've been using all along.

* A Python-aware editor, which does automatic "colorization" of Python code: statements are
drawn with one color, comments with another, etc. Thisis afeature of the Python mode for
Emacs aswell, and one that's easy to learn to love.

* A class browser that lets you explore a modul€e's classes and jump directly to the method
definitionsin the source code.

* An interactive debugger.

£d) i
£ EreaTE_ 1188 503, wT. w0, 3.
e
- pe.

Figure A-2.
Theidle IDE in action

Page 313

Offerings from Commercial Vendors

#

We mention afew commercia software companiesin this section. While
this might seem at odds with alanguage that's usually "free," thereisno
contradiction in the Python community to having Python-based projects
and "business models." Python's licenseis specifically crafted so that
software vendors can use Python with no restrictions. Most Python users
are glad to hear that companies are building successful companies based on
Python. There are quite afew Python-related success stories that
executives more or less freely disclose.* We mention only the companies
that distribute code specifically aimed at Python programmers, not
companies whose products include Python.

Scriptics Corporation's Tcl/Tk toolkits

The Tkinter GUI framework we've referred to throughout the text is built on top of the Tk GUI
toolkit, which itself uses the Tcl language. These are available in binary and source form from
the web site of the Scriptics Corporation: http://www.scriptics.comy. For information about
Tkinter-related resources, consult the Tkinter topic guide at

http: //www. python.or g/topics/tkinter/.

Digital Creation'sfreereleases

Digital Creation is a software company that has recently shifted from selling Python-based
software packages to distributing them for free under the Open Source license. They have made
severd significant contributions to the Python community, by contributing to the standard
distribution (they are responsible for thecPi ckl e and cSt r i ngl C modules, for example),
by helping the Python Software Association grow in many ways, and by distributing at no cost
two very powerful Python tools. These are:

ExtensionClass
A C extension module that alows the creation of extension types that can act as Python
classes. In addition, ExtensionClasses allow you to modify the way these new types work,
including support for Acquisition. Acquisition is a mechanism by which objects can get
attributes from the objects that they are a part of, much like instances can get attributes from
their class or from their class base classes.

* Guido van Rossum is sometimes frustrated to hear companies say, off the record, that they use
Python, but that they don't want it known publicly because they view their decision to use Python asa
"strategic advantage.”

Page 314

Zope
A framework publishing Python object hierarchies on the Web. With Zope, it's easy to set
up a powerful interface to a database of Python objects. There are several extensionsto
Zope that allow scaling of web-based applications, by providing support for templates,
interfaces to database engines, etc. If you're thinking about devel oping sophisticated web
applications (as opposed to simple forms processing as we showed in Chapter 10,
Frameworks and Applications you should serioudly investigate these tools.

Digital Creations web siteis at http://www.digicool.com; their free tools are available at
http://mwww.digicool.convsite/Free/, and Zope is available at http://www.zope.org

Pythonware

Pythonware is a swedish Python toolsmith company, with several projects currently in
development, including an Integrated Development Environment for Python, a lightweight
replacement for Tk for Windows platforms, and an image processing framework. The reason
we mention what is still "vaporware” isthat the folks at Pythonware have aready released
other tools for free that have shown themselves to be quite useful, suggesting that these
products will be worth the wait. Most important among their free releases is the Python
Imaging Library (PIL), which we mentioned in Chapter 10, and the most comprehensive
documentation for Tkinter anywhere. For PIL and other Pythonware tools, look at their web
site, http://www.pythonware.com

Other Modules and Packages

There are many other modules and packages available on the Web. These can be found in many
locations:

* The Contributed M odules section on the main Python web site
(http: //www. python.or g/downl oad/Contributed.html) lists hundreds of modules, in arange of
topics, including network tools, and graphic, database, and system interfaces.

» The PyModules FAQ is an always evolving list of modules, aso organized by category. It's
available at: http://starship.skyport.net/crew/aaron_watter s/faqwiz/contrib.cqi

* The crew of the Starship make many of their tools available. The Starship project isaweb
site at which any member of the Python Software Association can get an account for free,
including web pages. See the previous sidebar for details.

A few of the tools that can be found in these three directories deserve special mention, because
they have been found remarkably useful. These are:

Page 315

Gadfly
An SQL database engine written entirely in Python by Aaron Watters. Whileits speed is
not that of a high-performance commercial software vendor's database engine, its speed
compares well to Microsoft's Access. Gadfly isat http://www.chordate.con/gadfly.html

Medusa
A high-performance Internet server framework also written entirely in Python, this time by
Sam Rushing. By using a multiplexing 1/O single-process server, it offers high-performance
for HTTP, FTP, and other IP services. While only free for noncommercial use, commercial
licenses are quite inexpensive. Medusaiis at http://www.nightmare.com/medusa/.

If you're looking for tools to use to teach programming with Python, two tools to consider are:

turtle.py
A Python module written by Guido van Rossum, and part of the standard Python library as
of Python 1.5.2. This module provides simple "turtle graphics® in a Tk window. Turtle
graphics have been used extensively to teach programming to children using the Logo
language.

Alice
A program designed to allow nonexperts to explore interactive 3-D graphics. It was
developed originaly by agroup at the University of Virginia, but is now under the auspices
of the computer science department at Carnegie-Mellon University. See
http://alice.cs.cmu.edu/.

Emacs Support

Whilethisis not truly Python software, there is very good support for editing Python code from
within the Emacs editor (on all platforms for which Emacsis available). From within Emacs,
you can edit syntax-colored Python code, browse the functions, classes, and methods within a
buffer, and run a Python interpreter or the Pdb python debugger, al within one of the most
popular and powerful editors available. Information on Python support in Emacs can be found
at http://www.python.org/emacs/.

Python Documentation and Books

There are three kinds of sources of published information on Python: the standard Python
documentation set, published books, and online material.

Page 316
The Standard Python Documentation Set

The standard Python documentation set includes five separate documents. They are al
available in various formats (HTML, PDF, and PostScript, anong others) at
http: //www.python.org/doc/. They are:

The Tutorial
A fast-paced introduction to the language that most current Python programmers used to
learn Python. It assumes afair bit of previous programming knowledge, so novices tend to
find it overwhelming in places, and it doesn't give Python's object-oriented features their
due.

The Library Reference
The most important of the Python books. It lists all the built-in functions and what the
built-in type methods and semantics are, and describes amost al the modules that make up
the standard distribution. It's well worth keeping on your local hard disk and consulting
when in doubt about a specific function's interface or semantics, or when you can't
remember specific method names for the built-in objects.

The Language Reference
The most formal specification of the language itself. It gives the precise definition of
syntactic operations, precedence rules, etc. Most users happily ignoreit, but it does give
the final word on intricate details of the language.

Extending and Embedding
A document describing the precise rules of interaction between Python and C extensions
(and the simpler case of embedding, when Python is being called by an existing C or C++
program). If you wish to write an extension module for Python, this book defines just what
to do. The section on keeping track of referencesis especially important for tracking bugs
in such modules.

The Python/C API
A document describing the routines Python uses internally. Y ou can also use these routines
to manipulate Python objects from within C/C++ programs, usually in extension modules.

The FAQ

Like many other topics of interest on the Internet, Python has developed alist of Frequently
Asked Questions. It's available at http: //www.python.org/doc/FAQ.html, and covers
everything from general information about Python (its name, origins, design choices, €tc.) to
issues arising when compiling or installing Python, programming questions, and more. The
Python FAQ is maintained by the community at large. Any PSA member can log onto a
web-driven program (a CGI program,

Page 317

like the one we saw in Chapter 10) and update existing entries or add new entries. As aresult,
the FAQ is both quite large and very current.

Other Published Books

There are three books besides the one you're holding that are available in book-stores. These
are:

* Programming Python, by Mark Lutz, published by O'Rellly & Associates. This 860-page
book isthe logical next step after Learning Python. It coversin greater depth all the materia
covered here, and then some. Almost all aspects of Python are covered with progressively
more sophisticated examples. Programming Python a so discusses Python/C integration, and
advanced applications such as Tkinter GUIs and persistence.

* Internet Programming with Python, by Aaron Watters, Guido van Rossum, and James
Ahlstrom, published by M& T Books. Thisis a 477-page book that provides an introduction to
most of the Python, with special emphasis on writing programs to publish web pages.

* The Python Pocket Reference, by Mark Lutz, published by O'Reilly & Associates. Thisisa
short (75 pages) booklet listing the core aspect of the syntax, and the most commonly used
modules and their function signatures. It covers Python 1.5.1.

Other Sources of Documentation

The number of web pages describing Python modules, howto's, guides for novices, common
tasks, etc., makesit impossible to list them all here. Instead, we'll encourage you to browse the
Web, starting at the main Python web site. The PSA volunteers (Ken Manheimer, Andrew
Kuchling, Barry Warsaw, and Guido van Rossum, to be precise) spend considerable effort
making sure the web site is both comprehensive and well organized, so you shouldn't have a
problem finding what you need. Most significant packages and modules have associated web
pages and documentation for them.

Newsgroups, Discussion Groups, and Email Help

Python owes a great deal of its growth to a worldwide community of users who exchange
information about Python via the Internet. Most day-to-day exchanges about Python occur in
various electronic forums, which each have specific aims and scopes.

Page 318
comp.lang.python/python-list

The main "public space” for discussions of Python is the comp.lang.python Usenet newsgroup,
which is bidirectionally gatewayed as the mailing list python-list@cwi.nl (although there are
plans to move it to python-list@python.org). If you don't have access to a Usenet newsfeed
already, you can read comp.lang.python using the Dejanews service (Www.dejanews.com), or
read the equivalent python-list mailing list via the eGroups service

(http: //www.egroups.comVlist/python-list/). This mailing list/newsgroup is the appropriate

forum to ask questions, discuss specific Python problems, post announcements of Python jobs,
etc.

comp.lang.python.announce/python-list-announce

Recently, a new newsgroup was created, with the aim of being alow-traffic list just for
significant announcements of Python-related news. The comp.lang.python. announce
newsgroup (also gatewayed as python-list-announce@cwi.nl) is a moderated forum, so only
postings deemed appropriate are allowed through.

python-help@python.org

One of the characteristics of the main Usenet newsgroup/mailing list isthat it's automatically
broadcast to tens of thousands of readers around the world. While this allows for rapid
response time from someone almost always (no matter what time it is, sonmeone is reading the
Python newsgroup somewhere in the world), it also can be somewhat intimidating, especially
to novices. A more private place to ask questionsis the python-help address, which serves as
a helpline. Email to python-help@python.org is broadcast to a set of about a dozen volunteers,
who will try their best to promptly answer questions sent to python-help. When writing to this
list, it helpsto specify exactly what configuration you're using (Python version, operating
system, etc.) and to describe your problem or question precisely. This helps the volunteers
understand your problem, and hopefully help you solve it fast.

The SIGs

One more set of mailing lists should be mentioned here. The main Python newsgroup is
remarkable by its generality. However, periodically, groups of concerned individuals decide
to work together on as specific project, such as the development of a significant extension or
the formalization of a standard interface for atool or set of tools. These groups of volunteers
are called special interest groups, or SIGs. These groups have their own mailing lists, which
you should feel free to browse and join if you feel an affinity with the topic at hand. Successful
SIGs have included the Matrix-SIG, which helped Jm Hugunin devel op the Numeric Python
extensions, the String-SIG, which has worked on the regular expression engine

Page 319

among other topics; and the XML-SIG, which is developing tools for parsing and processing of
XML (eXtensible Markup Language). An up-to-date listing of the current SIGs (they die as
their task is done, and are born as a need arises) can be found at http://www.python.org/sigs/.
Each SIG hasits own mailing list, archive page, and description.

JPython-interest

Thereisamailing list for discussion of JPython-specific issues. It isworth reading if you're
interested in JPython, asit's aforum Jim Hugunin and Barry Warsaw use to spread information
about JPython and solicit feedback. Information on the list is available at

http: //Amww. python.or g/mail man/listinfo/j python-inter est.

Conferences

While most Python communications happen electronically, the PSA also organizes periodic

conferences. These conferences are the only forum where many folks get to meet their email
colleagues.* They're dso an important forum for presenting new work, learning about aspects
of Python by attending tutorials and talks, and a place for discussions on the future directions of
Python. Information about the conferencesis regularly posted on the newsgroup as well as
displayed on the main Python web site. Locations of past conferences have included
Washington, DC; San Jose and Livermore, CA; and Houston, TX.

Support Companies, Consultants, Training

The last group of resources for Python users consists of support companies, consultants and
trainers.

Python Professiona Services, Inc., isacompany that provides various types of technical
support for Python and related modules. Their URL is http: //www.pythonpros.com.

While thereis at present no online listing of Python consultants, several experienced Python
users are available for short- and long-term consulting work. Check www.python.org for
information, and feel free to post arequest for help on the Python newsgroup. If you want to
keep your inquiries more private, email python-help@python.org.

* So far, your two authors have only met in person at Python conferences!

Page 320

Finally, several training programs are available for companies who wish to have onsite classes
for their employees. No global listing is available at present, but might be available by the time
you read this. Again, check http://www.python.org, the newsgroup or

python-hel p@python.org.

Tim Peters

He's not paid to do it, but afellow by the name of Tim Petersis known to answer more
guestions about Python on the newsgroup than anyone in their right mind should. His comments
are not only wise and helpful but quite often hilarious as well. Rumor hasit that heisaliving
human being, athough we have never met him in person, so there's always the possibility that
he'sjust anicely crafted Python program. Come to think of it, only one person we have talked
to claimsto have met Tim in person, and that's Guido. Makes you wonder ...

Page 321

B—
Platform-Specific Topics

This appendix covers platform-specific topics—where to get distributions of Python for each
specific platform (i.e., combination of hardware and operating system), and any important
notes regarding compatibility or availability of tools specific to your platform.

Unix

Python's largest user base is most likely Unix users these days, athough the number of
Windows usersis growing steadily. There are severa distributions available for Unix. The
standard method of obtaining Python is to download the source distribution

(http: //www.python.or g/downl oad/download_source.html), and configure, build, and install
Python yourself. There was an effort awhile back to keep at the Python web site a set of
precompiled binaries of Python for most of the major Unix platforms, but this effort has mostly
been dropped, because there was no way to make it maintainable; there are too many different
versions of Unix and too many ways to configure Python for each one.

We haven't mentioned configurations of Python in this book; that's because we've mostly
covered the most standard part of the Python distribution. Someone who downloads the source
distribution, however, will soon notice areferencesto afile called Setup in the Modules
directory. Thisfile allows you to configure which modules are compiled, either for static or
for dynamic linking. The set of available optional modules changes with each release and can
be augmented by downloading third-party extensions.

There is an exception to the "no binary distributions’ rule, and that isfor Linux. Most versions
of Linux come with Python already installed, and some use it extensively in their configuration
management system. The version on the Linux distributions may

Page 322

not be the latest version available. Oliver Andrich maintains a set of RPMs (which are
packages in a standard format for Red Hat Linux) of the latest distributions of Python, including
the most popular extensions. These are available at

http: //www.python.or g/download/download_linux.html .

Unix-Specific Extensions
Several extensions are available on most if not all Unix versions. These include:
Standard distribution

There are interfaces to most well-established services on Unix. For example, thereisapwd
module for interacting with the password file, agr p module for manipulating the Unix group
database, as well as modules allowing one to interface to the crypt library functions (cr ypt),
the dom/ndbnvgdbm database libraries (dbrr and gdb), the tty 1/0 control calls (t er m 0s),
the file descriptor 1/0 interface (f cnt |), amodule for measuring and controlling system
resources (r esour ces) , amodule for interfacing with the system logging tools (sy sl 0g), a
wrapper module around the popen call that makes interfacing with shell commands easier
(commands), and finally amodule that gives accessto the stat system call for finding such
things as modification times of filesand the like (st at).

The standard library also includes modules that operate on specific Unix flavors, such as SGI
and SunOS/Solaris:

SGI -specific extensions

On Silicon Graphics systems, the standard distribution includes modules for interfacing with
the AL audio library (al and AL), the CD library (cd), the FORMS Library by Mark Overmas
(f1,f1 pandFL), the font manager (f), theold IRIX GL library (gl , G- and DEVI CE),*
andthei ngl i b imagefileformat (i mgfil e).

SunOS-specific extensions

On SunOS/Solaris, the standard distribution includes one module, sunaudi odev, that allows
an interface to the audio device.

Other Unix resour ces

Many modules have been published for support of various Unix tools or have been tested on
Unix. These include interfaces to audio subsystems, scanners, and

* The OpenGL interfaceis supported cross-platform by a set of modules currently maintained by one
of your authors (David Ascher), and is available at http: //star ship.python.net/~da/PyOpenGL/. It
currently works on SGI systems aswell as other Unix platforms and Windows, and can be linked with
either OpenGL or the compatible Mesa toolkit.

Page 323

cameras, the X Window System interface and its layered toolkits, and many others; search the
Python web siteif you're looking for a specific extension you think might have been interfaced
aready.

Windows-Specific Infor mation

The Windows platform (Windows 95, 98, and NT) is one of the most active areas of growth
for Python, both in terms of the number of users and in the number of extensions being built.
While the standard distribution from www.python.org works just fine on Windows, there are a
set of Windows-specific extensions that are available as part of the win32all package, from
Mark Hammond. Thewin32all package is available at

http: //www.python.or g/windows/win32all/ and includes severa powerful programs and
extensions.

The most visible is the Pythonwin program, which is an integrated development environment
for Python, providing an interactive interpreter interface (with keyboard shortcuts, font
coloring, etc.), an editor, and an object browser (see Figure B-1). Pythonwin is, in fact, using
severa large packages that allow Python to drive agreat deal of the libraries available as part
of Windows, such as the Microsoft Foundation Classes, the ODBC database interface,
NT-specific services such aslogging, performance monitoring, memory-mapped files, pipes,
timers, and, most importantly, al of COM, Microsoft's Common Object Moddl. This means
that, as we mentioned in Chapter 10, Frameworks and Applications, most modern software
written for Windows should be scriptable from Python if it supports any scripting at al. In
general, amost anything you can do in heavily marketed scripting languages such as Visual
Basic, you can do in Python with COM support. Python can aso be used as an ActiveX
scripting host in such programs as Internet Explorer.

M acintosh-Specific I nfor mation

The Macintosh platform a so supports Python fully, thanks mostly to the efforts of Jack Jansen.
There are afew Mac-specific features worth knowing about. First, you can make applets out of
scripts, so that dropping afile on the script is the same as running the script with the dropped
filesnamein sys.argv. Also, Just van Rossum (yes, Guido's brother) wrote an Integrated
Development Environment for Python on the Mac. It isincluded in the distribution, but the
latest version can aways be found at http: //www.python.or g/downl oad/download_mac.html.
A sample screenshot of Just's debugger in action is shown in Figure B-2.

Also, there are several modules that provide interfaces to Mac-specific services available as
part of the MacPython distribution. These include interfaces to Apple Events, the Component,
Control, Diaog, Event, Font, List, and Menu Managers,

Page 324

zll‘-;tTmm;
| EHE _ind__ (Function]

. S e i
Python'in 1.5.1 (#0, Agr 13 1808, 20:72:04) 51 [E Ghobals [Cict)
Copyright 1931-13995 Stichting Mathematsck)

i B 5] TetClass [Cless)
Portions Copyright 1834- 1988 Mark Ham ’n:url i F-E] __besling__ [Modu=|

*»¥ class TestClass- I - _dos_ = Maone
clagzsktrl = “spawml|’ | = T
def __dinit_ (=e=lf): | i i IH. I. s
s=alf insksttrz = 'Hil' H E — = e
ya T chern [Furschon)
»23 inst = Testla T3 cenos (L] .
B G denouliz [Maduls]

2] ! et of cises TestClan|
w1 {E pain [Modade|
1 {20 iegutl (Modul)
& s Module)
4 5 win32api Modde]
| 0 winFRui (Mocde|
- _modue = main_
C [clsattr] = spand’ =13

B Th
gt = W s

- e o] D
— Hmd.a-r upn-—t 51:11 ttst splittst

Custon Tmlha_rs and TunLL:.p: 'import toolbar:kol
{ “Progress Bar' "E‘:Shﬂ"']:rcl-g-"ﬂ:ha" du

Figure B-1.
The Pythonwin program in action

Untitled Script 4 T
]

e e r—
O] DR BU BN, ey =i}~

i.“.- tea): Srack L= al waristlneg Glezal variables
Ear) O] B0 45 Amplaval. <0

'R 7] 2] [P —bulloas — [«dicianury - Eaiftin_'s [a

| sunketied Serpr 40 fan = I P | elintitied SrpT 43

| st ban): quneiled searipe 45 bar —NAME_- | cUAtided Seript 4

Ll Bmaz | I+ bar {rfuncrion bar at sarbazas
FEinta o | b foe efuneticn faa at ggascaes

- 11 -

| fan(} | - -

T e D (D |) () (e
Bl Ve | L A T Tarzlivigionl mrar ineger divislon o madule
SauFcE; (estitled Sdripk 4o (lise 270

et ey
| war(}

et bar):
L] iz

]
prinTa S &

Figure B-2.
Screenshot of the Macintosh IDE's debugger in action

Page 325

QuickDraw, QuickTime, the Resource, Scrap and Sound managers, TextEdit, and the Window
Manager. Also covered (and documented in a supplement to the library reference available at
http: //www.python.or g/doc/mac/) are interfaces implementing the os and os. pat h modules,
interfaces to the Communications Tool Box, the domain name resolver, the FSSpec, Alias
Manager, finder aliases, and the Standard File package, Internet Config, MacT CP, the Speech
Manager, and more.

Java

Aswe described in Chapter 10, JPython is a complete implementation by Jm Hugunin of
Python for Java. It's the most different port mentioned in this appendix, since it shares none of
the C code base (but most of the Python code base) of the reference implementation of Python.
The home page for JPython is http://mwww.python.org/jpython/. The set of extensionsto
JPython isthe same as the set of Javalibrariesthat are available. In other words, it's a huge
list. A good place to look for Javainformation is at Sun's web site: http://java.sun.com

Other Platforms

Finally, many enterprising souls have ported Python more or less completely to a variety of
other platforms. Table B-1 lists each port we know about, each platform, the author or
maintainer of the port, and the URL from which more information can be gleaned.

Table B-1. Sources of Information

Platform Author/Maintainer ‘ URL
Amiga Irmen De Jong http: //www.geocities.com/ResearchTriangl e/Lab/3172/python.html
BeOS Chris Herborth http: //www.gnx.comv/~chrish/Be/softwar e/#programming

VVITIUUWS UE Dilldil L1UyuU HILLY. Z/7VVVVVWY.UITYITCOULL.COTTV =D AV EYUIUNICOE/ THIUEX. I

DOS/Windows 3.1 | HansNovak http: //www.cuci.nl/~hnowak/python/python.htm
QNX ChrisHerborth ftp://ftp.gnx.comusr/freel gnx4/ os/ | anguage/
python-1.5.tgz
Psion Series 5 Duncan Booth http://dales.rmpl c.co.uk/Duncan/PyPsion.htm
OpenVMS Uwe Zessin http://decus.decus.de/~zessin
VxWorks Jeff Stearns mai | t o: j ef f st ear ns@one. com
Page 326
C—

Solutions to Exercises

Chapter 1—
Getting Started

1. Interaction. Assuming your Python is configured properly, you should participate in an
interaction that looks something like this:

% pyt hon

copyright information |ines...

>>> "Hello World!"

"Hell o World!"

>>> # <Crl-Dor Crl-Zto exit>

2. Programs. Here's what your code (i.e., module) file and shell interactions should look like:

% cat nodul el. py
print 'Hello nmodul e world!'

% pyt hon nodul el. py
Hel | o nodul e worl d!

3. Modules. The following interaction listing illustrates running a module file by importing it.
Remember that you need to reload it to run again without stopping and restarting the interpreter.
The bit about moving the file to a different directory and inporting it again is atrick question:

if Python generates amodulel.pyc filein the original directory, it uses that when you import the
module, even if the source code file (.py) has been moved to adirectory not on Python's search
path. The .pyc file is written automatically if Python has access to the source file's directory
and contains the compiled bytecode version of amodule. We look at how this works in more
detail in Chapter 5, Modul es.

% pyt hon
>>> j nport nodul el

Page 327

Hel | o nodul e wor| d!
>>>

4. Scripts. Assuming your platform supportsthe # trick, your solution will 1ook like the
following (though your # line may need to list another path on your machine):

% cat nodul el. py
#!/usr/ 1 ocal / bi n/ pyt hon (or #!/usr/bin/env python)
print 'Hello nodul e world!'

% chrmod +x nodul el. py
% nodul el. py
Hel | o nodul e worl d!

5. Errors. Theinteraction below demonstrates the sort of error messages you get if you
complete this exercise. Really, you're triggering Python exceptions; the default exception
handling behavior terminates the running Python program and prints an error message and stack
trace on the screen. The stack trace shows where you were at in a program when the exception
occurred (it's not very interesting here, since the exceptions occur at the top level of the
interactive prompt; no function calls were in progress). In Chapter 7, Exceptions, you will see
you can catch exceptionsusing t r y statements and process them arbitrarily; you'll also see that
Python includes a full-blown source-code debugger for special error detection requirements.
For now, notice that Python gives meaningful messages when programming errors occur
(instead of crashing silently):

% pyt hon
>>> 1/ 0
Traceback (innernost |ast) :
File "<stdin>", line 1, in ?
ZerobDi vi sionError: integer division or nodul o
>>>
>>> X
Traceback (innernost |ast) :
File "<stdin>", line 1, in ?

NameError: X
6. Breaks. When you type this code:

L=11 2]
L. append(L)

you create a cyclic data-structure in Python. In Python releases before Version 1. 5.1, the
Python printer wasn't smart enough to detect cyclesin objects, and it would print an unending
sreemof [1, 2, [1, 2, [1, 2, [1, 2, and soon, until you hit the break key combination
on your machine (which, technically, raises a keyboard-interrupt exception that prints a default
message at the top level unless you intercept it in a program). Beginning with Python Version
1.5.1, the printer is clever enough to detect cyclesand prints[[..}] instead.

Page 328

The reason for the cycleis subtle and requires information you'll gain in Chapter 2, Types and
Operators. But in short, assignment in Python always generates references to objects (which

you can think of asimplicitly followed pointers). When you run the first assgnment above, the
name L becomes a named reference to atwo-item list object. Now, Python lists are really
arrays of object references, with an append method that changes the array in-place by tacking
on another object reference. Here, the append call adds areference to the front of L at the end
of L, which leadsto the cycleillustrated in Figure C-1. Believeit or not, cyclic data structures
can sometimes be useful (but not when printed!).

‘F
¥

-+

il

Chapter 2—
Types and Operators

Figure C-1.
A cycliclist

1. The basics. Here are the sort of results you should get, along with afew comments about

their meaning:

Nunber s

>>> 2 ** 16

65536

>> 2/ 5 2/ 5.0
(0, 0.4

Srings

>>> "gpant + "eggs"
' spanmeggs’

>>> S = "hant

>>> "eggs" + S

' eggs ham

>> S * 5

" harhamhamhamham
>>> [: 0]

>>> "green % and %"

'green eggs and hani
Tuples

>>> ("x",) [0]

2 raised to the power 16

integer / truncates, float / doesn't

concat enati on

repetition
an enpty slice at the front--[0:0]

% ("eggs", S) # formatting

Page 329

indexing a single-itemtuple

>>> ("x', '"y')[1] # indexing a 2-itemtuple

Ly
Lists
>>> L =11,2,3] +[4,5,6] # |list operations
>>> L, L[:], L[:0], L[-2], L[-2:]

([1, 2, 3, 4, 5 6], [1, 2, 3, 4, 5 6], []1, 5 [5 6])
>>> ([1,2,3]+[4,5,6]) [2:4]

[3, 4]
>>> [L[2], L[3]] # fetch fromoffsets, store in a list
[3. 4]
>>> L.reverse(); L # method: reverse list in-place
[6, 5 4, 3, 2, 1]
>>> L.sort(); L # method: sort list in-place
[1, 2, 3, 4, 5, 6]
>>> L. index(4) # nethod: offset of first 4 (search)
3
Dictionaries
>>> {'a':1, 'b':2} ['b"] # index a dictionary by key
2
>>> D= {'x":1, 'y':2, 'z':3}
>>>D'w] =0 # create a new entry
>>> O'x'] + D'w]
1
>>> D[(1,2,3)] =4 # a tuple used as a key (i mutable)
>>> D
{*w: 0, 'z': 3, 'y': 2, (1, 2, 3): 4, '"x': 1}
>>> D, keys(), D.values(), D. has_key((1,2,3)) # met hods
(['w, "z', 'y, (1, 2, 3), 'x'], [0, 3, 2, 4, 1], 1)
Empties
>>> [[11, ["",[1.(),{}, None] # lots of nothings

(et s 1. O, {3}, None])
2. Indexing and slicing.

a. Indexing out-of-bounds (e.g., L[4]) raises an error; Python always checks to make sure
that all offsets are within the bounds of a sequence (unlike C, where out-of-bound indexes
will happily crash your system).

b. On the other hand, dicing out of bounds (e.g., L[- 1000: 100]) works, because
Python scales out-of-bounds dices so that they alwaysfit (they're set to zero and the
sequence length, if required).

Page 330

c. Extracting a sequence in reverse—with the lower bound > the higher bound (e.g.,
L[3: 1])—doesn't really work. Y ou get back an empty dlice ([]), because Python scales
the dice limits to makes sure that the lower bound is aways less than or equal to the upper

bound (e.g., L[3: 1] isscaledto L[3: 3], the empty insertion point after offset 3).
Python dlices are always extracted from |eft to right, even if you use negative indexes (they
arefirst converted to positive indexes by adding the length).

>>> L =[1, 2, 3, 4]

>>> L[4]

Traceback (innernost |ast) :
File "<stdin>", line 1, in ?

IndexError: list index out of range

>>> L[-1000: 100]

[1, 2, 3, 4]

>>> L[3:1]

[]

>>> L

[1, 2, 3, 4]

>>> L [3:1] =['"?"]

>>> L

[1, 2, 3, '?", 4]

3. Indexing, slicing, and del. Y our interaction with the interpreter should look something like
that listed below. Note that assigning an empty list to an offset stores an empty list object there,
but assigning it to a dlice deletes the dice. Slice assignment expects another sequence, or you'll
get atype error.

>>> L = [1,2,3,4]
>>> 1[2] =[]
L

>>>
[1. 2, []. 4]
>>> L[2:3] =[]
>>> L

[1, 2, 4]

>>> del L[O]
>>> L

[2, 4]

>>> del L[1:]
>>> L

[2]
>>> 1[1:2] =1
Traceback (innernost |ast) :
File "<stdin>", line 1, in ?
TypeError: illegal argunent type for built-in operation

4. Tuple assignment. Thevaluesof X and Y are swapped. When tuples appear on the left and
right of an assignment operator (=), Python assigns objects on the right to targets on the | eft,
according to their positions. Thisis probably easiest to understand by noting that targets on the
left aren't areal tuple, even though they ook like one; they are smply a set of independent
assignment targets. The items on the right are atuple, which get unpacked during the

Page 331

assignment (the tuple provides the temporary assignment needed to achieve the swap effect).

>>> x = ' spani
>>> y = 'eggs'
>>> X, y = y, X
>>> X

' eggs'
>>> y

" spam

5. Dictionary keys. Any immutable object can be used as a dictionary key—integers, tuples,
strings, and so on. Thisredly isadictionary, even though some of its keys look like integer
offsets. Mixed type keys work fine too.

>>> D = {}

>>> D1] ="'a'

>>> D2] ='Db

>>> D(1, 2, 3)] ='c

>>> D

{1 "a', 22 'b", (1, 2, 3): 'c'}

6. Dictionary indexing. Indexing anonexistent key (D[* d’]) raises an error; assigning to a
nonexistentkey (D[* d’] = * spami) createsanew dictionary entry. On the other hand,
out-of-bounds indexing for lists raises an error too, but so do out-of-bounds assignments.
Variable names work like dictionary keys: they must have already been assigned when
referenced, but are created when first assigned. In fact, variable names can be processed as
dictionary keysif you wish (they're visible in module namespace or stack-frame dictionaries).

>>D={"a:1, 'b':2, 'c':3}
>>> O'a']

1

>>> O'd']

Traceback (innernost |ast) :

File "<stdin>", line 1, in ?
KeyError: d
>>> [D'd] =4
>>> D
{'b': 2, 'd: 4, "a: 1, 'c¢': 3}
>>>
>>> L = [0,1]
>>> L[2]

Traceback (innernost last) :

File "<stdin>", line 1, in ?
IndexError: list index out of range
>>> L[2] =3
Traceback (innernost last) :

File "<stdin>", line 1, in ?

I ndexError: |ist assignment index out of range

Page 332
7. Generic operations.
a. The + operator doesn't work on different/mixed types (e.g., string + list, list + tuple).

b. + doesn't work for dictionaries, because they aren't sequences.

c. Theappend method works only for lists, not strings, and keys works only on
dictionaries. append assumesitstarget is mutable, sinceit's an in-place extension;
strings are immutabl e.

d. Slicing and concatenation always return a new object of the same type as the objects

processed.

S>> "y o+ 1
Traceback (innernost |ast)

File "<stdin>", line 1, in ?
TypeError: illegal argunment type for built-in operation
>>>
>>> {} + {}

Traceback (innernost |ast)

File "<stdin>", line 1, in ?
TypeError: bad operand type(s) for +
>>>
>>> []. append(9)
>>> "" append('s')

Traceback (innernost |ast)

File "<stdin>", line 1, in ?
AttributeError: attribute-less object
>>>

>>> {}. keys()

[]
>>> []. keys()

Traceback (innernost |ast)
File "<stdin>", line 1, in ?

AttributeError: keys

>>>

>>>[] [:]
[]

>>> "]

8. Sring indexing. Since strings are collections of one-character strings, every time you index
astring, you get back a string, which can beindexed again. S[0] [0] [0] [O] [O] just keeps
indexing the first character over and over. This generally doesn't work for lists (lists can hold
arbitrary objects), unless the list contains strings.

>>> S = "spant

>>> S[0][0][0][0]]0]
g

>>> L =['s", 'p']
>>> L [0][0][0]

g

Page 333

9. Immutabl e types. Either of the solutions below work. Index assignment doesn't, because
strings are immutable.

>>> S
>>> S
>>> S
"sl am
>>> S = g§[0] +'1 + 9§[2] + 93]
>>> S

"sl am

"spant
s[0] + "1 + §[2:]

10. Nesting. Y our mileage will vary.

>>>me = {'nanme':('mark', 'e', 'lutz'), 'age':'?", 'job':'engineer'}
>>> me['job']

' engi neer’

>>> me[' nane'][2]

"lutz

11. Files.

% cat maker. py

file = open('nyfile.txt', "w)

fileewite("Hello file world!'\n")

file.close() # cl ose not al ways needed

% cat reader. py
file = open('nyfile.txt', "r'")
print file.read()

% pyt hon maker. py
% pyt hon reader. py
Hello file world!

%ls -1 nyfile.txt
-rwxrwxrwa 1 0 0 19 Apr 13 16:33 nyfile.txt

12. The dir function revisited: Here's what you get for lists; dictionaries do the same (but with
different method names).

>>> [].__methods__

['append', 'count', 'index', 'insert', 'renove', 'reverse', 'sort']

>>> dir([])

['append', 'count', 'index', 'insert', 'renove', 'reverse', 'sort']
Chapter 3—

Basic Statements

1. Coding basic loops. If you work through this exercise, you'll wind up with code that looks
like the following:

>>> S = ' spani
>>> for cin S
...print ord(c)

115
112

Page 334

97
109

>>> x = 0
>>> for ¢ inS x =x + ord(c)

S>> X
433

>>> x =[]
>>> for ¢ in S x.append(ord(c))

;>> X
[115, 112, 97, 109

>>> map(ord, S)
[115, 112, 97, 109]

2. Backslash characters. The example prints the bell character (\ a) 50 times; assuming your
machine can handle it, you'll get a series of beeps (or one long tone, if your machine is fast
enough). Hey—we warned you.

3. Sorting dictionaries. Here's one way to work through this exercise; see Chapter 2 if this
doesn't make sense:

>>D={a:1, 'b:2, 'c':3, 'd:4, 'e:5 'f':6, 'g:7}
>>> D

{*f': 6, 'c': 3, 'a': 1, 'g': 7, 'e: 5 'd: 4 'b: 2}
>>>

>>> keys = D. keys()

>>> keys. sort ()

>>> for key in keys:

print key, 'bP', D key]

- D0 QO O T QD :
T UTUUUUTU
~NOoO OohwWDNBRE

4. Program logic alternatives. Here's how we coded the solutions; your results may vary abit.

a

L=10[1, 2, 4, 8, 16, 32, 64]
X =5

i =0

while i < len(L)
if 2 ** X == L[i]
print '"at index', i
br eak

Page 335
i =i+l
el se:
print X, ‘'not found'

L=1_[1 2, 4, 8 16, 32, 64]

X =25

for pin L:
if (2 ** X) == p:
print (2 ** X), 'was found at', L.index(p)
br eak
el se:
print X, ‘'not found'

C.
L =1[1, 2, 4, 8, 16, 32, 64]
X =5
if (2 ** X) in L:
print (2 ** X), 'was found at', L.index(2 ** X
el se:
print X, ‘'not found'
d.
X =5
L =[]
for i inrange (7): L.append(2 ** i)
print L
if (2 ** X) in L:
print (2 ** X), 'was found at', L.index (2 ** X)
el se:
print X, ‘'not found'
e.
X =5
L = map(l ambda x: 2**x, range(7))
print L
if (2 ** X) in L:
print (2 ** X), 'was found at', L.index(2 ** X
el se:
print X, ‘'not found'
Chapter 4—
Functions
1. Basics.

% pyt hon
>>> def func(x): print x

>>> func("spam')

Page 336

span

>>> func(42)

42
>>> func([1, 2, 3])
[1, 2, 3]

>>> func({' food' : 'span})
{"'food : 'spani}

2. Arguments. Here's what one solution looks like. You haveto use pri nt to seeresultsin the
test calls, because afile isn't the same as code typed interactively; Python doesn't echo the

results of expression statements.

% cat nod. py
def adder(x, vy)
return x +y

print adder(2, 3)
print adder('spani, 'eggs')
print adder(['a', 'b'], ['c',

% pyt hon nod. py

5

spaneggs

[*a', 'b'", 'c', "d]

nd])

3. varargs. Two alternative adder functions are shown in the following code. The hard part
here isfiguring out how to initialize an accumulator to an empty value of whatever typeis
passed in. In the first solution, we use manual type testing to look for an integer and an empty
dice of the first argument (assumed to be a sequence) otherwise. In the second solution, we just
use the first argument to initialize and scan items 2 and beyond. The second solution is better
(and frankly, comes from students in a Python course, who were frustrated with trying to
understand the first solution). Both of these assume al arguments are the same type and neither
works on dictionaries; as we saw in Chapter 2, + doesn't work on mixed types or dictionaries.
We could add a type test and special code to add dictionaries too, but that's extra credit.

% cat adders. py

def adder 1(*args)
print 'adderl',

if type(args[0]) == type(0):

sum= 0
el se:

sum = args[0] [:0]
for arg in args:

sum = sum + arg
return sum

def adder2(*args)
print 'adder2',
sum = ar gs[0]

for next in args[1:]
sum = sum + next
return sum

integer?

#init to zero

#el se sequence:

#use enpty slice of argl

#init to argl

Page 337

add itens 2..N

for func in (adderl, adder?2) :
print func(2, 3, 4)
print func('spam, 'eggs', 'toast')
print func(['a', 'b'], ['c', "d], ['e, "f'])

% pyt hon adders. py

adder1 9

adder 1 spaneggst oas

adder1 ['a', 'b'", 'c', 'd'", 'e'", "f']
adder2 9

adder 2 spaneggst oas

adder2 ['a', 'b', 'c', 'd'", 'e'", '"f']

4. Keywords. Here is our solution to the first part of thisone. To iterate over keyword
arguments, usea* * ar gs for in the function header and use aloop like: f or x i n
args. keys() : useargs|[X

% cat nod. py
def adder (good=1, bad=2, ugly=3)
return good + bad + ugly

print adder()

print adder(5)

print adder(5, 6)

print adder(5, 6, 7)

print adder(ugl y=7, good=6, bad=5)

% pyt hon nod. py
6

10

14

18

18

5. and 6. Here are our solutions to Exercises 5 and 6, but Guido has already made them
superfluous; Python 1.5 includes new dictionary methods, to do things like copying and adding
(merging) dictionaries. See Python's library manual or the Python Pocket Reference for more
details. X[:] doesn't work for dictionaries, since they're not sequences (see Chapter 2).
Noticethat if weassign (e = d) rather than copy, we generate areference to a shared
dictionary object; changing d changese too.

% cat dict.py

def copyDi ct (ol d)
new = {}
for key in old. keys() :
new key] = ol d[key]
return new

Page 338

def addDict (dl1, d2)
new = {}
for key in dil.keys()

new key] = di[key]
for key in d2. keys() :

new key] = d2[key]
return new

% pyt hon

>>> fromdict inport *
>>>d = {1:1, 2:2}

>>> e = copyDict (d)

>>> d[2] ="'?

>>> d

{1:. 1, 2. '?'}

>>> e

{1. 1, 2. 2}

>>> x = {1:1}

>>> y = {2:2}

>>> z = addDict (x, YY)
>>> 7

{1. 1, 2. 2}

7. More argument matching examples. Hereis the sort of interaction you should get, along
with comments that explain the matching that goes on:

def fil(a, b): print a, b
def f2(a, *b): print a, b
f3(a, **b): print a, b

fd(a, *b, **c): print a, b,

f5(a, b=2, ¢=3): print a, b,
f6(a, b=2, *c): print a, b
% pyt hon

>>> f1(1, 2)

12

>>> f1(b=2, a=1)

12

>>> 2(1, 2, 3)
1 (2, 3)

>>> f3(1, x=2, y=3)
1{'x': 2, '"y': 3}

>>> f4(1, 2, 3, x=2, y=3)
1 (2, 3) {'x': 2, "y': 3}

>>> f5(1)
123
>>> f5(1, 4)

c

c

c

normal args

positional varargs
keyword varargs
m xed nodes
defaults

defaults + positional varargs

nmat ched by position (order matters)

nmat ched by nane (order doesn't natter)

extra positionals collected in a tuple

extra keywords collected in a dictionary

extra of both kinds

Page 339

both defaults kick in

only one default used

143

>>> f6(1) # one argunent: natches "a"
12()

>>> f6(1, 3, 4) # extra positional collected
13 (4,)

Chapter 5—
Modules

1. Basics, import. Thisoneis smpler than you may think. When you're done, your file and
interaction should look close to the following code; remember that Python can read awhole
fileinto astring or lineslist, and the |l en built-in returns the length of strings and lists:

% cat nynod. py

count Li nes(nane)
file = open(nane, 'r')
return len(file.readlines())

count Char s(nane)
return | en(open(nanme, 'r').read())

t est (nane) : # or pass file object
return countLines(nane), count Chars(nane) # or return a dictionary
% pyt hon

>>> jnport nynod
>>> nynod. t est (' nynod. py')
(10, 291)

On Unix, you can verify your output with awc command. Incidentally, to do the
"ambitious" part (passing in afile object, so you only open the file once), you'll probably
need to use the seek method of the built-in file object. We didn't cover it in the text, but it
worksjust like C'sf seek call (and callsit behind the scenes); seek resets the current
position in the file to an offset passed in. To rewind to the start of afile without closing
and reopening, call file.seek(0); the file read methods all pick up at the current position in
thefile, so you need to rewind to reread. Here's what this tweak would look like:

% cat nynod2. py

def countLines(file)
file.seek(0) # rewind to start of file
return len(file.readlines())

def count Chars(file)
file.seek(0) # ditto (rewind if needed)
return len(file.read())

Page 340

def test(nane):
file = open(nane, 'r') # pass file object
return countLines(file), countChars(file) # only open file once

>>> jnport nynod2
>>> mynod2. t est (" nynod2. py")
(11, 392)

2. from/from*. Here's the from* bit; replace * with count Char s to do the rest:

% pyt hon

>>> from nmynod i nport *
>>> count Char s(" nynod. py")
291

3. _main__. If you codeit properly, it works in either mode (program run or module import):

% cat nynod. py

def count Li nes(nane)
file = open(nane, 'r')
return len(file.readlines())

def count Char s(nane)
return | en(open(nane, 'r').read())

def test(nane) : # or pass file object
return countLines(nane), count Chars(nane) # or return a dictionary
if _nane__ =="'_main_

print test (' nymod. py')

% pyt hon nynod. py
(13, 346)

4. Nested imports. Our solution for this appears below:

% cat nyclient. py

from nynod i nport countLines

from nynod i nport count Chars

print countLines(' mynod. py'), countChars(' nmynod. py')

% pyt hon nyclient. py
13 346

Asfor the rest of thisone: mymod's functions are accessible (that is, importable) from the
top level of myclient, since from assigns just to namesin the importer (it'sasif mynod's
def sappeared in myclient). If myclient used import, you'd need to use a path to get to the
functionsin my mod from myclient (for instance, mycl i ent . nynod . count Li nes).
In fact, you can define collector modules that import all the names from other modules, so
they're available in a single convenience module. Using the following code, you wind up
with three different copies of name sonenane: nodl. sonenane, col | ect or.

Page 341
sonenane,and ___nmai n__. sonenane; al three share the same integer object
initialy.

% cat nodl. py
sonename = 42

% cat col |l ector. py

fromnodl inport * # collect lots of names here
fromnod2 inport * # fromassigns to ny nanes
fromnod3 inport *

>>> fromcol |l ector inport sonenane

5. Reload. Thisexercisejust asks you to experiment with changing the changer.py example
in the book, so there's not much for us to show here. If you had some fun with it, give yourself
extra points.

6. Circular imports. The short story isthat importing r ecur 2 first works, because the
recursive import then happensat thei nport inrecurl,notata fromin recur 2. The
long story goes likethis: importing r ecur 2 first works, because the recursive import from
recurl to recur2 fetches recur2 asawhole, instead of getting specific names.

r ecur 2 isincomplete when imported from r ecur 1, but because it usesi npor t instead of
f r o, you're safe: Python finds and returns the already created r ecur 2 module object and
continuesto run therest of r ecur 1 without aglitch. When the r ecur 2 import resumes, the
second fromfindsname Y in recur 1 (it'sbeen run completely), so no error is reported.
Running afile as a script is not the same asimporting it as a module; these cases are the same
asrunning thefirst i nport or from inthe script interactively. For instance, running
recur 1 asascript isthe sameasimporting r ecur 2 interactively, since r ecur 2 isthe
first module imported in r ecur 1. (E-I-E-1-O)

Chapter 6—
Classes

1. Thebasics. Here'sthe solution we coded up for this exercise, along with some interactive
tests. The _add__ overload hasto appear only once, in the superclass. Notice that you get an
error for expressions where a class instance appears on the right of a +; to fix this, use
__radd__ methods also (an advanced topic we skipped; see other Python books and/or
Python reference manuals for more details). Y ou could also write the add method to take just
two arguments, as shown in the chapter's examples.

% cat adder. py

cl ass Adder:
def add(self, x, y) :
print 'not inplemented! "’
def __init_ (self, start=[]) :

Page 342

self.data = start
def _ add_ (self, other) :
return self.add(sel f.data, other) # or in subclasses--return type?

cl ass Li st Adder (Adder)
def add(self, x, y) :
return x +vy

cl ass Di ct Adder (Adder)

def

add(sel f, x, vy)

new = {}

for k in x.keys() : new k]
for k iny.keys() : newKk]
return new

X[K]
y[K]

% pyt hon
from adder inport *

>>>
>>>
>>>
not

>>>
>>>
[1,

>>>
>>>
{1

>>>
>>>
not

>>>
>>>
>>>
[1,

>>>

X =

Adder ()

x.add(1, 2)
i mpl ement ed!

X =

Li st Adder ()

x.add([1], [2])

2]
X =

Di ct Adder ()

x.add({1: 1}, {2:2})
1, 2 2}

X =
X +

Adder ([1])
[2]

i mpl ement ed!

X =
X +
2]
[2]

Li st Adder ([1])
[2]

+ X

Traceback (innernost |ast):
File "<stdin>", line 1, in ?

TypeError:

_add___ nor __radd__ defined for these operands

2. Operator overloading. Here's what we came up with for thisone. It uses afew operator
overload methods we didn't say much about, but they should be straightforward to understand.
Copying the initial value in the constructor isimportant, because it may be mutable; you don't
want to change or have areference to an object that's possibly shared somewhere outside the
class. Theroutesmethod __getattr__ calsto thewrapped list:

% cat nylist. py

cl ass MyLi st

def

def

def

def

def

init (self, start)
#sel f . wrapped = start[:]

sel f.wapped = []

for x in start: self.wapped. append(x)
__add__ (self, other)

return MyList(sel f.wapped + other)
_mul__ (self, tine)

return MyList(sel f.wapped * tine)
__getitem (self, offset)

return sel f.w apped| of fset]
__len__(self)

copy start: no side effect:

make sure it's a list here

Page 343

return | en(self.w apped)
def _ getslice_(self, low, high) :
return MyList(sel f.w apped[! ow high])
def append(sel f, node)
sel f. w apped. append(node)
def _ getattr__ (self, nanme) : # ot her nenbers--sort/reverse/ et

return getattr(self.w apped, nane)
def __repr__ (self)
return 'self.w apped

if nane__ =="'_main_
X = MyList (' spam)
print x
print x[2]
print x[1:]
print x + ['eggs']
print x * 3
X. append('a')
x.sort ()
for c in x: print c,

% pyt hon nylist. py
["s", "p", '@, ']

, ta', ']
, 'p', tal, 'm, 'eggs']
'p', 'a', 'm, 'S', 'p', 'a', 'm, 'S', 'p', 'a', 'n1]

a
[
[
[
a

O 0w »woT

mp s
3. Subclassing. Our solution appears below. Y our solution should appear similar.
% cat nysub. py
fromnylist inport MyList

cl ass MyLi st Sub(MyLi st)
calls = 0 # shared by instances

def _init_ (self, start)
self.adds = 0 # varies in each instance

MyList. __init__(self, start)

def _ add_ (self, other)
MyLi st Sub.calls = M/ListSub.calls + 1 # cl ass-w de counter
self.adds = self.adds + 1 # per instance counts
return MyList. add_ (self, other)

def stats(self)
return self.calls, self.adds # all adds, ny adds

Page 344

X = MyLi st Sub(' spani)
y = MyLi st Sub(' foo')
print x[2]

print x[1:]

print x + ['eggs']
print x + ['toast']
print y + ['bar']
print x.stats()

% pyt hon nysub. py

a
['p. e, ']

['s", "p', "a, 'm, 'eggs']
['s', '"p', '@, 'm, "toast']
["f', "0, "0, 'bar']

(3, 2)

4. Metaclass methods. We worked through this exercise as follows. Notice that operators try
to fetch attributesthrough __get at t r ___ too; you need to return a value to make them work.

>>> cl ass Meta:
def _ getattr_ (self, nane): print 'get', nane
def setattr_ (self, nanme, value): print 'set', nane, value

>>> x = Meta()

>>> x. append

get append

>>> x.spam = "pork"

set spam pork

>>>

>>> X + 2

get _ coerce__

Traceback (innernost |ast)

File "<stdin>", line 1, in ?
TypeError: call of non-function
>>>
>>> x[1]

get _getitem _
Traceback (innernost |ast)

File "<stdin>", line 1, in ?
TypeError: call of non-function

>>> x[1: 5]

get _len__

Traceback (innernost |ast)
File "<stdin>", line 1, in ?

TypeError: call of non-function

5. Set objects. Here's the sort of interaction you should get; comments explain which methods
arecalled.

% pyt hon
>>> from set inport Set

Page 345

>>> x = Set([1,2,3,4]) #runs __init__

>>>y = Set([3,4,5])
>>> X &y
Set:[3, 4]
>>> x|y

Set:[1, 2, 3, 4, 5]

>>> z = Set("hello")
>>> z[0], z[-1]
(*“h, "0")

>>> for ¢ in z: print c,
H el o

>>> |len(z), z

(4, Set:['h", "e, "I', '0'])
“mel | 0"
Set:['h",

>>> 7z & "nello",

z |
(Set:['e', 'I', '0'],

and__, intersect, then _repr__
_or__, union, then __repr__
__init__ renoves duplicates

getitem _

getitem _

len_

_repr__

‘e, 1Y, o, 'm])

Our solution to the multiple-operand extension subclass looks like the class below. It needs
only to replace two methods in the original set. The class's documentation string explains how

it works:

fromset inport Set

class Miulti Set(Set):

TG

inherits all Set nanes,
that “self” is still
in the *args argunent now);
i nherited & and

here with 2 argunents,
2 requires a nethod call,

def intersect(self, *others):
res =[]
for x in self:
for other in others:
if x not in other
el se:
res. append(x)
return Set(res)
def union(*args):

res =[]
for seq in args:
for x in seq:
if not x inres:
res. append(x)
return Set(res)

but extends intersect
and union to support multiple operands;
the first argunment (stored
al so note that the
operators cal
but processing nore than
not an expression

not e

t he new net hods

scan first sequence
for all other args
itemin each one?

no: break out of |oop
yes: add itemto end

br eak

HHH R

self is args[O0]

al |
al |

for
for

ar gs
nodes

add new itens to result

Page 346

Assuming the new set is stored in amodule called multiset.py, your interaction with the

extension will be something along these lines; note that you can intersect by using & or
calingi nt ersect, but must call i nt er sect for three or more operands; & is abinary
(two-sided) operator:

>>> fromnmultiset inport *

>>> x = MultiSet([1,2,3,4])

>>>y = MiltiSet([3,4,5])

>>>z = MultiSet([0,1,2])

>>>x &Yy, X |y # 2 operands

(Set:[3, 4], Set:[1, 2, 3, 4, 5])

>>> x.intersect(y, 2) # 3 operands
Set:[]

>>> x. uni on(y, 2z)

Set:[1, 2, 3, 4, 5, 0]

>>> x.intersect([1,2,3], [2,3,4], [1,2,3]) # 4 operands
Set:[2, 3]
>>> X. uni on(range(10)) # non-Multi Sets work too

Set:[1, 2, 3, 4, 0, 5 6, 7, 8, 9]

6. Classtree links. Here's the way we extended the Li st er classand arerun of thetest to
show itsformat. To display class attributes too, you'd need to do something like what the
at t r names method currently does, but recursively, at each class reached by climbing
__bases__ links.

class Lister:
def _ repr__ (self):
return ("<lInstance of % (%), address %:\n%>" %

(self. class__._name__, # ny class's nane
sel f. supers(), # ny class's supers
id(self), # nmy address
self.attrnanmes())) # nanme=val ue | i st
def attrnanes(self)
Unchanged...
def supers(self
result =""
first =1
for super in self._ class__._ bases_ : # one level up fromcla

if not first:
result = result + ",
first =0
result = result + super.__nane
return result

C.\ pyt hon\ exanpl es> pyt hon testmn xin. py

<l nstance of Sub(Super, Lister), address 7841200:
name dat a3=42
name dat a2=eggs
name dat al=spam

Page 347

7. Composition. Our solution is below, with comments from the description mixed in with the
code. Thisisone case whereit's probably easier to express a problem in Python than itisin
English:

cl ass Lunch:
def __init__ (self)
make/ enbed Customer and Enpl oyee
sel f.cust = Custoner()
sel f.enpl = Enpl oyee()
def order(self, foodNane)
start a Customer order simulation
sel f. cust. pl aceO der (f oodNane, sel f.enpl)
def result(self)
ask the Customer what kind of Food it has
sel f. cust. print Food()

cl ass Custoner:
def __init__ (self)
initialize ny food to None
sel f.food = None
def placeOrder(self, foodNane, enpl oyee)
place order with an Enpl oyee
sel f.food = enpl oyee. t akeOr der (f oodNane)
def printFood(self)
print the name of ny food
print self.food. nane

cl ass Enpl oyee:
def takeOrder(self, foodNane)
return a Food, w th requested nane
return Food(foodNane)

cl ass Food:
def __init_ (self, nane)
store food nane
sel f.nane = nane

if nane_ =="'_main__
X = Lunch()
x.order('burritos')
x.result()
x.order (' pizza')
x.result()

% pyt hon | unch. py

burritos
pi zza

Chapter 7—
Exceptions

1. try/except. Our version of the oops function follows. Asfor the noncoding questions,

changing oops toraise KeyEr r or instead of | ndexEr r or means

Page 348

that the exception won't be caught by our try handler (it "percolates’ to the top level and
triggers Python's default error message). The names KeyEr r or and | ndexEr r or come
from the outermost built-in names scope. If you don't believe us, import __builtin__ and
passit as an argument to thedi r function to see for yourself.

% cat oops. py

def oops()
rai se | ndexError

def doonmed()
try:
oops()
except | ndexError:
print 'caught an index error!’
el se:
print 'no error caught...

if _name_ =="'_main__"': doomed()
% pyt hon oops. py
caught an index error!

2. Exception lists. Here's the way we extended this module for an exception of our own:

% cat oops. py
M/Error = 'hell o

def oops()
raise MyError, 'world'

def dooned()
try:
oops()
except | ndexError:
print 'caught an index error!’
except MyError, data:
print 'caught error:', MyError, data
el se:
print 'no error caught...

if nane_ =="'_main__
dooned()

% pyt hon oops. py
caught error: hello world

3. Error handling. Finally, here's one way to solve this one; we decided to do our testsin a
file, rather than interactively, but the results are about the same.

% cat safe2. py
i mport sys, traceback

Page 349

def safe(entry, *args)
try:
appl y(entry, args) # catch everything el se
except :
traceback. print _exc()
print 'Got', sys.exc_type, sys.exc_value

i mport oops
saf e(oops. oops)

% pyt hon saf e2. py
Traceback (innernost |ast)

File "safe2.py", line 5, in safe
apply(entry, args) # catch everything el se
File "oops.py", line 4, in oops

raise MyError, 'world
hello: world
Got hello world

Chapter 8—
Built-in Tools

1. Describing a directory. There are several solutions to this exercise, naturally. One simple
solution is:

i mport os, sys, stat

def describedir(start):
def describedir_hel per(arg, dirname, files):
Hel per function for describing directories """
print "Directory % has files:" %dirnane
for filein files:
find the full path to the file (directory + filenane)
full name = os.path.join(dirnane, file)
if os.path.isdir(fullnane)
#if it's a directory, say so; no need to find the size
print ' "+file + ' (subdir)
el se:
find out the size, and print the info.
size = os.stat(fullnane) [stat.ST_SI ZE]
print ' "+filet+ size=" + 'size'

Start the 'wal k'.
os. path.wal k(start, describedir_hel per, None)

which usesthewal k functionintheos. pat h module, and worksjust fine:

>>> jnport describedir
>>> describedir.describedir2('testdir')
Directory testdir has files:
descri bedir. py size=939
subdirl (subdir)
subdir2 (subdir)
Directory testdir\subdirl has files:

nmakezer os. py size=125

Page 350

subdir3 (subdir)
Directory testdir\subdirl\subdir3 has files:
Directory testdir\subdir2 has files:

Note that you could have found the size of thefilesby doing | en(open(f ul | nane,
‘rb’) .read()), butthisworksonly when you have read accessto al thefilesand is
quite inefficient. The st at call in the os module gives out all kinds of useful information
inatuple, and the st at module defines some names that make it unnecessary to remember
the order of the dlementsin that tuple. See the Library Reference for details.

2. Modifying the prompt. The key to this exercise is to remember that the ps1 and ps2
attributes of the sy s module can be anything, including aclassinstancewitha__repr __ or
__str_ method. For example:

i mport sys, o0s
cl ass MyPronpt:
def _init__ (self, subpronpt='>>>")
self.lineno =0
sel f. subpronpt = subpronpt
def __ repr__ (self)
self.lineno = self.lineno + 1
return os.getcwd()+' | %' % sel f.lineno)+sel f.subpronpt

sys. psl
SyS. ps2

MyPronpt ()
M/Pronmpt (" ...")

This code works as shown (use the - i option of the Python interpreter to make sure your
program starts right away):

:\ Davi d\ book> python -i nodifypronpt. py
:\ Davi d\ book| 1>>> x
:\ Davi d\ book| 2>>> y
:\ Davi d\ book| 3>>> de
:\ Davi d\ book| 3...x =

3
3
foo():

jun pien e B B o

W =™

the secondary pronpt is support

:\ Davi d\ book| 3...

:\ Davi d\ book| 4>>> i nport os

:\ Davi d\ book| 5>>> os.chdir('..")

:\ Davi d| 6>>> # note the pronpt changed!

jun pien pien pen

3. Avoiding regular expressions. This program islong and tedious, but not especially
complicated. See if you can understand how it works. Whether thisis easier for you than
regular expressions depends on many factors, such as your familiarity with regular expressions
and your comfort with the functionsin the st r i ng module. Use whichever type of
programming works for you.

i mport string

file = open(' pepper.txt")

text = file.read()

paragraphs = string.split(text, '"\n\n")

def find_indices for(big, small)
indices =[]
cum= 0
while 1:

Page 351

index = string.find(big, small)
if index == -1;

return indices
i ndi ces. append(i ndex+cum
big = big[index+l en(small) :]
cum = cum + index + len(small)

def fix_paragraphs_w th_word(paragraphs, word)
| enword = | en(word)
for par_no in range (Ilen(paragraphs))
p = paragraphs[par_no]
wor dposi tions = find_indices _for(p, word)
if wordpositions == [] : return
for start in wordpositions:
|1 ook for 'pepper' ahead
i ndexpepper = string.find(p, 'pepper')
i f indexpepper == -1: return -1
if string.strip(p[start:indexpepper]) !="
somet hi ng ot her than whitespace in between!
conti nue
where = i ndexpepper +l en(' pepper"')
i f p[where:where+len('corn')] == 'corn’
#it's imediately foll owed by 'corn'!
conti nue
if string.find(p, 'salad') < where:
#it's not followed by 'salad
conti nue
Finally! we get to do a change
p =p[:start] + "bell' + p[start+l enword:]
par agraphs [par_no] = p # change nut abl e argunent!

fi x_paragraphs_wi t h_wor d(paragraphs, 'red')
fix_paragraphs_w t h_word(paragraphs, 'green')

for paragraph in paragraphs:
print paragraph+ \n'

We won't repesat the output here; it's the same as that of the regular expression solution.

4. Wrapping a text file with a class. Thisoneis surprisingly easy, if you understand classes
andthespl i t functioninthest ri ng module. The following isaversion that has one little
twist over and beyond what we asked for:

i mport string

class FileStrings:
def __init__ (self, filename=None, data=None):
if data == None:
self.data = open(fil ename).read()

el se:

self.data = data
sel f.paragraphs = string.split(self.data, '\n\n")
self.lines = string.split (self.data, '\n")

Page 352

self.words = string.split(self.data)
def __repr__(self):
return self.data
def paragraph(self, index):
return FileStrings(data=sel f.paragraphs[index])
def line(self, index):
return FileStrings(data=self.lines[index])
def word(self, index):
return sel f.words[index]

This solution, when applied to the file pepper.txt, gives:

>>> fromFileStrings inport FileStrings

>>> bigtext = FileStrings(' pepper.txt')

>>> print bigtext. paragraph(0)

This is a paragraph that nentions bell peppers nultiple times. For

one, here is a red Pepper and dried tomato salad recipe. | don't like
to use green peppers in ny sal ads as nuch because they have a harsher
flavor.

>>> print bigtext.line(0)

This is a paragraph that nentions bell peppers nultiple times. For

>>> print bigtext.line(-4)

aren't peppers, they're chilies, but would you rather have a good cook
>>> print bigtext.word(-4)

bot ani st

How does it work? The constructor smply reads all the file into a big string (the instance
attribute dat a) and then splitsit according to the various criteria, keeping the results of
the splits in instance attributes that are lists of strings. When returning from one of the
accessor methods, the dataitself iswrapped inaFi | eSt ri ngs object. Thisisn't
required by the assignment, but it's nice because it means you can chain the operations, so
that to find out what the last word of the third line of the third paragraph is, you can just
write:

>>> print bigtext.paragraph(2).line(2).word(-1)
' cook’

Chapter 9—
Common Tasksin Python

1. Redirecting stdout. Thisissimple: all you have to do isto replace the first line with:

import fileinput, sys, string # no change here
sys. stdout = open(sys.argv[-1], 'wW) # open the output file
del sys.argv[-1] # we've dealt with this argunent

continue as before

2. Writing a

simple shell. Mostly, the following script, which implements the Unix set of

commands (well, some of them) should be self-explanatory. Note that we've only put a"help”
message for thel s command, but there should be one for all the other commands as well:

i mport

Page 353

cmd, os, string, sys, shuti

class Uni xShell (cnd. Ond)

def

def

def

def

def

def

def

def

do_EOF (self, line)
"""The do_ECF command is called when the user presses Crl-D (unix)

or Ctrl-zZ (PQO).

sys.exit()

hel p_I s(sel f)

print "ls <directory>: list the contents of the specified directory
print " (current directory used by default)"
do_Is(self, line)

#'ls'" by itself nmeans 'list current directory'

if line==" " dirs =J[os.curdir]

else: dirs = string.split(line)
for dirname in dirs:
print 'Listing of %:' %dirnane
print string.join(os.listdir(dirnane), '\n')

do_cd(sel f, dirnane)

'cd by itself nmeans 'go hone'

if dirnanme == " . dirnanme = os.environ[' HOFE]
os. chdi r (di r nane)

do_nkdir(sel f, dirname)
os. nkdi r (di r nane)

do_cp(self, line)
words = string.split(line)
sourcefiles,target = words[:-1], words[-1] # target could be a dir

for sourcefile in sourcefiles:
shutil.copy(sourcefile, target)

do_nv(self, line)
source, target = string.split(line)
0s. renanme(source, target)

do_rm(self, line)
nap(os.renove, string.split(line))

cl ass DirectoryPronpt:

def

__repr__(self)
return os.getcwd()+ >

crmd. PROVPT = DirectoryPronpt ()

shel | =
shell.c

Uni xShel I ()
ndl oop()

Note that we've reused the sametrick as in Exercise 2 of Chapter 8 to have a prompt that
adjusts with the current directory, combined with the trick of modifying the attribute
PROWVPT in the cnd moduleitsalf. Of course those

Page 354

weren't part of the assignment, but it's hard to just limit oneself to asimple thing when a
full-featured one will do. It works, too!

h: \ Davi d\ book> pyt hon -i shell. py
h: \ Davi d\ book> cd ../tnp
h:\Daviditnmp> |'s

Li sting of
api

ERREUR. DOC
ext

giant _~1.jpg
i cons

i ndex. ht n
lib

pyt hl p. hhc
pyt hl p. hhk
ref

t ut

h:\David\tnp> cd ..

h:\David> cd tnp

h:\ Davi d\t mp> cp index. htm backup. ht m
h: \ Davi d\t np> rm backup. ht n
h:\David\tmp> “Z

Of course, to be truly useful, this script needs alot of error checking and many more
features, al of which isleft, as math textbooks say, as an exercise for the reader.

3. Understanding map, reduce and filter. The following functions do as much of the job of
map, reduce, and filter as we've told you about; if you're curious about the differences, check
the reference manual.

def map2(function, sequence)
if function is None: return |ist(sequence)
retvals =[]
for elenment in sequence:
retval s. append(function(el enent))
return retvals

def reduce2(function, sequence)
argl = function(sequence[0])
for arg2 in sequence[1l:]
argl = function(argl, arg2?)
return argl

def filter2(function, sequence)
retvals =[]
for elenment in sequence:
if (function is None and el enment) or function(el ement)
retval s. append(el enent)

return retval s

Page 355

Chapter 10—
Framewor ks and Applications

1. Faking the Web. What you need to do isto create instances of a class that has the fieldnames
attribute and appropriate instance variables. One possible solution is:

cl ass FornDat a:
def _init_ (self, dict)
for k, vindict.itens()
setattr(self, k, v)
cl ass FeedbackDat a(For nDat a)

' A FornData generated by the coment.html form
fieldnames = (' nane', 'address', 'emmil', 'type', 'text')
def __repr__ (self)

return "%type)s from%name)s on %tine)s" % vars(self)

fake entries = |

{'name' : "John Doe",

"address' : '500 Main St., SF CA 94133',

"email' : 'john@f.org',

"type' : 'comment',

"text' : 'Geat toothpaste!'},
{'name' : "Suzy Doe",

"address' : '500 Main St., SF CA 94133',

"emai |' : 'suzy@f.org',

"type' : 'conplaint',

"text' : "It doesn't taste good when | kiss John!"},

]

DI RECTORY = r' C:\conplaintdir'
if nane__ =="'_main_'
inmport tenpfile, pickle, time
tenpfile.tenpdir = DI RECTORY
for fake_entry in fake_entries:
data = FeedbackDat a(fake_entry)
filename = tenpfile. nktenp()
data.tinme = tine.asctine(tinme.localtinme(tine.time()))
pi ckl e. dunp(data, open(filenane, 'wW))

Asyou can see, the only thing you really had to change was the way the constructor for
For mDat a works, since it hasto do the setting of attributes from a dictionary as opposed
toaFi el dSt or age object.

2. Cleaning up. There are many waysto deal with this problem. One easy one is to modify the
formletter.py program to keep alist of the filenamesthat it has already processed (in a pickled
file, of course!l). Thiscan be done by modifyingthei f __ main__ == *_nane_ ’ test
to read something like this (new lines are in bold):

if nane_ =="'_main_'
i mport os, pickle

Page 356

CACHEFI LE = ' C:\ cache. pi k'
from feedback i nport DI RECTORY#, FornData, FeedbackData
i f os.path. exi st s(CACHEFI LE)

processed files = pickle.load(open(CACHEFI LE))

el se:

for

processed files = []
filenane in os.listdir(D RECTORY)
if filename in processed_files: continue # skip this fil ename
processed fil es. append(fil enane)
data = pickl e. | oad(open(os. pat h.joi n(DI RECTORY, filenane)))
if data.type == 'conplaint'
print "Printing letter for %nane)s." % vars(data)
print_form etter(data)
el se:
print "Got conmment from % nane)s, skipping printing." %\
var s(dat a)

pi ckl e. dunp(processed file, open(CACHEFILE, 'w)

Asyou can tell, you smply load alist of the previous filenamesif it exists (and use an
empty list otherwise) and compare the filenames with entriesin the list to determine which
to skip. If you don't skip one, it needs to be added to the list. Finally, at program exit,
pickle the new list.

3. Adding parametric plotting to grapher.py. This exercise is quite simple, as al that's needed
isto change the drawing code in the Chart class. Specifically, the code between xm n, x max
=0,N-1andgraphics.fillPolygon(..) shouldbeplacedinani f test, sothat the
new code reads:

if not hasattr(self.data[0], '_len_"): # it's probably a nunber (1D

elif

xmn, xmax = 0, N1
code fromexisting program up

graphics.fillPolygon(xs, ys, |

len(self.data[0]) == 2: # we'll only deal with 2-D
xmn = reduce(nmin, map(lanbda d: d[0], self.data))
xmax = reduce(nmax, map(lanbda d: d[0], self.data))
ymn = reduce(mn, map(lanbda d: d[1], self.data))
ymax = reduce(max, map(lanbda d: d[1], self.data))
zeroy =y offset - int(-ymn/(ymax-ymnn)*height)
zero_x = x_offset + int(-xmn/(xmax-xm n)*w dth)

for i in range(N):
xs[i] = x_offset + int((self.data[i][0]-xm n)/(xmax-xm n)*w dt h)

ys[i] =y offset - int((self.data[i][1]-ym n)/(ynmax-ymni n)*height’

graphi cs. color = self.color
if self.style == "Line":

graphi cs. drawPol yl i ne(xs, ys, len(xs))
el se:

xs. append(xs[0]); ys.append(ys[O0])
graphics.fill Polygon(xs, ys, |len(xs))

Page 357

INDEX

Symbols

& (bitwise and) operator, 30

* (multiplication) operator, 31, 157
I= comparison operator, 30

{} (braces), 51

[] (brackets), 38-40, 45-48, 55

U (bitwise exclusive or) operator, 30
: (colon), 38-40, 45-48, 55, 80

== comparison operator, 30, 61

- (subtraction) operator, 31

- (unary negation) operator, 31

< comparison operator, 30

U comparison operator, 30

<< shift operator, 31

<> comparison operator, 30

% (remainder/format) operator, 31
... prompt, 92

+ (addition/concatenation) operator, 31, 157
+ (identity) operator, 31

" (Qquotation mark) for strings, 36

" (quotation mark) for strings, 36

> comparison operator, 30

>= comparison operator, 30

>> shift operator, 31

>>> (input prompt), 12
/ (division) operator, 31
~ (bitwise complement) operator, 31

| (bitwise or) operator, 30

A
abs function, 219
__add method, 157, 165
addition operator, 31
Alice, 315
Amiga Python distributions, 325
and operator, 30, 83
append method, 48, 52, 249
apply function, 112
argument passing, 105-110
arbitrary-argument set functions (example), 109
assignment, 105
keywords, defaults (example), 108
matching modes, 107
ordering rules, 110
return statement, 107
arguments, 99
argv attribute (sys module), 13, 39
assert statement, 206
assignment references versus copies, 63
assgnment statements, 71-74
forms, 72
implicit, 72
object references, 72

variable name rules, 73

automated dial-out script, 268

B
backslash, 81
BeOS Python distribution, 325

binary files, 237
binary Python distribution, 23
bitwise operations, 33
bitwise operators, 30
blank lines, 93
block delimiters, 80
books for further reading, 317
Boolean operators, 82
bound instance methods, 180
break statement, 85
built-in functions, 217-224
(see also functions)
built-in modules, 224
binary files, 237
cgi module, 235
debugging, 239
Internet data processing, 237
Internet protocols, 236
pickle (see pickle module)
profiling, 241
string constants, 226
string functions, 224
time module, 240

Tkinter (see Tkinter)

Page 358

urllib, 235

urlparse, 236
built-in object types, 28, 63
__builtins__ namespace, 217

bytecode, 6, 137

C
C++ language, 4, 6, 8
C source-code Python distribution, 23
case-independent sort, 246
case senditivity, names, 73
CGI module, 54
cgi module, 235
CGl scripts, 276-282
GUI programsyvs., 294
chr function, 219-220
class attributes, 152
class exceptions, 206-208
class gotchas
changing attributes, 183-184
class function attributes, 185
methods, classes, nested scopes, 187-189
multiple inheritance order, 185
class methods, using (example), 160
class statement, 158-160
class attributes, 152
default behavior, 152
classes
__add method, 157, 165
built-in objects, extending, 175

designing with OOP, 170
documentation strings, 181
generic object factories, 179
__getattr __ method, 167
__Qetitem___method, 166
inheritance, 154-179
__init__ constructor, 157, 160, 163
instance objects, 153
modules, versus, 182
__mul___method, 158
multiple instance objects, 152
name mangling, 181
namespace rules, 168
OOP (example), 153
operator overloading, 59, 156, 164-166
persistence, 174
reasons for, 151
__repr___method, 167
subclasses, 154
superclasses, 155

close function, 57

Cmd class, 270-272
how works, 273
interactive functionality, 271

cmp function, 219

code
C, Python and, 93
column 1, 93

modules, 127

reuse, 97
coding gotchas, 92
colons, compound statements, 92
COM framework, 275, 282
finding information on, 287
formletter.py, 283
command line arguments, 11-13, 39
comments, 80
comparing numbers, 218-219
comparison operators, 30
comparisons, 61
compile function, 222
complex function, 220

complex numbers, 29, 34

composition, 151, 172-174
compound statements pattern, 80
compounding interest, 267-268
concatenation, 35

concatenation (+) operator, 31, 157
concept hierarchy, 70
conferences, 319

constructor, class, 157, 160, 163
continue statement, 85
Contributed Modules, 314
control-flow statements, 79
control-flows, unusual, 195
conversions, 31, 37, 40-42, 218
copy function, 234

Page 359

copy module, 245
copying
copy module, 245
referencesvs.,, 48, 63, 72
counter loops, 84, 90-92
cPickle, 313
(see also pickle)
cshshell, 21
cString, 313
custom sort, 246

cyclic data, printing, 65

D

data hiding, 137

data structure manipulation, 243
copy module, 245
making copiesinline, 48, 63, 243
making new lists, dictionaries, 248
making new structures and, 247
sorting, 246
sorting, randomizing, 246
UserDict class, 248
UserList class, 248

databases, 9

dbm files, 54, 57

debugging, 198-199

debugging modules, 239

declared global, 102

def statement, 98-99

default arguments, 122

del statement, 46, 49, 52, 67
delattr function, 221
delegation (OOP), 174
__dict__ attribute, 129, 131, 141, 169
dictionaries

assigning indexes, 53

changing, 51

characteristics of, 49

common constants, operations, 50

copying, 244

interfaces, 54

keys, 53

namespace, 169

operations, 51

sequence operations, 53
Digital Creations, 313
dir function, 18-19, 216-217
directory file manipulation, 254
distributions, 309

binary and source forms, 23

Java, 325

Linux, 321

Macintosh, 323

other platforms, 325

Unix, 321

Windows, 323
division operator, 31
__doc__ attribute, 169

documentation, 316

COM, 287

Tkinter, 293
documentation strings, 181
DOS/Windows 3.1 Python distributions, 325
downloading Python distributions, 309
downloading web pages, 265
dynamic typing, 4-5, 100

E

elif clause, 78

else (loops), 78, 84-85, 88
€lse statement, 196
Emacs, 315

email processing, 266
embedding Pythonin C, 8
empty sequences, 61
empty strings, 36
encapsulation, 170
environment, 20

equality tests, 61, 209
errors (see exceptions)
escaping quotes, 42

eval function, 222

event notification, 195

exception gotchas, 208-211
catching too little, 210
catching too much, 209
matching, 209

exceptions, 194-212

Page 360

assert statement, 206
catching 1-of-N, 202
catching built-in (example), 199
class, 206-208
error messages (example), 198
finaly statement, 203
nest at runtime, 202
outer try, 200
passing extra data, 204
raising, 197
raw_input, 200
reasons for, 194
search routine, 200
try statement, 201
try/except/el se statement, 196
try/finally statement, 197
user-defined (example), 199
uses of, 195
using vs. not using, 205
exec statement, 222
execfile function, 222-223
expression operators, 30
list of, 30
mixed types, 31
overloading, 32
parentheses, 31
precedence rules, 31
expressions, 74

common, 75

functions, methods, 74

printing values, 75
Extending and Embedding, 316
extending Python with C, 6
ExtensionClass, 313

F
factories, 179
false objects, 61
FAQ list, 316
feedback.py program, 276-282
feedbackeditor.py program, 289
file manipulation, 249
each line, 250
fileinput module, 253
filenames, directories, 254

glob module, 255-257

open and close functions, 56-57

scanning text files, 259-262

set of files, command ling, 252

sys module, 250

temporary files, 258
file scanner loops, 91
fileinput module, 253
filename manipulation, 254
files

basics (example), 57

operations, 56

Python tools, 57
filter built-in function, 256

findly statement, 203

find shell command, 264

float, C, 218

float function, 220

floating-point numbers, 28

Fnorb, 304

for loop, 87
example, 88-90
format, 87

formatting strings, 40

FormEditor program, 288
add variable, 291
code, 289
feedback.py vs., 294
for loop block, 291
load_data function, 291, 293
select method, 292

formletter.py program, 283

forward references, 145

frameworks, 155, 275-305
COM, 282-288
design considerations, 294
Numeric Python (NumPy), 302
Python Imaging Library (PIL), 302
Python MegaWidgets (Pmw), 304
SWIG (Smple Wrapper Interface Generator), 303
Swing Java GUI, 296-302

freeware, 4

freezing Python, 138

from statement, 128-129, 132
for assgnments, 132

genera form, 134

Page 361

function gotchas, 117

defaults, mutable objects, 122

nesting, 118

reference defaults, 120

static name detection, 117-118
function results, 93
functions, 97-125

apply function, 112

argument passing, 105-110

attribute manipulations, 221

built-in, 217-224

call syntax, 93

code reuse, 97

comparisons, 218

design concepts, 115

example, 100

executing Python code, 222

general form of, 99

global statement, 98, 104

indirect calls, 116

inputs, outputs, 115

lambda expressions, 111

map function, 113

numbers, 218

object attribute manipulation, 221

G

Python procedures, 114
return statement, 98
scoperulesin, 101
sysmodule, 216

type constraints, 99

type conversions, 218-219

Gadfly, 315

garbage collection, 5, 57

__Qetattr__method, 167

getattr function, 221

__Qgetitem__method, 166

glob module, 255-257

global scope, 102

global statement, 98, 104

gotchas

built-in object types, 63
class, 183-189

coding, 92

exception, 208-211
function, 117-123
module, 143-148

(see a'so specific type)

grapher.py, 297, 301

GUI programming, 7

design considerations, 294
Tkinter test, 22
(see dso JPython; Tk; Tkinter)

Hammond, Mark, 282
has-arelation, 172-174
hasattr function, 221

hello world program, 76
hex function, 220
hexadecimal constants, 29
HTML, 8, 265, 276
Hugunin, Jim, 294, 302

I
identity tests, 61, 209
idle (integrated devel opment environment), 311
if statement, 77-78
ILU, 304
imaginary numbers, 34
immutable sequences, 35
immutable types, changing, 65
import statement, 128, 222
as assgnment, 132
general form, 134
importing modules, 128, 132
in operator, 30
indentation, 93
indexing, 36-38
dictionaries (see dictionaries)
__getitem__method, 166
lists, 47
inheritance, 151, 170
classes, 154-179

namespace tree construction, 161

specialization methods, 162-164
__init__constructor, 157, 160, 163
installation, binary, C-source code forms, 23
instance objects, classes, 153
int function, 218, 220
integers, 29, 34, 218
integration with C, 6, 8, 16, 23
integration with Java (see Java/JPython)

interactive command line, Python, 12

Page 362
interactive prompt >>>, 12
interactive rolodex, 269
interest calculations, 267-268
interest.py program, 267-268
I nternet
automeated dial-out, 268
cgi module, 235
data processing, 237
downloading web pages, 265
protocols, 236
urllib module, 235
urlparse module, 236
utility modules, 8
interpreter, defined, 10
is not operator, 30
is operator, 30, 61
is-arelation, 170
iteration, 37, 84-92, 114, 217

J

Jsuffix for imaginary numbers, 34
JavalJPython, 294
distribution, 325
installation, 294
Javalibraries, 295
Java scripting, 296
Java, versus, 302

swing application, grapher.py, 297

K
keyword arguments, 108, 111
ksh shell, 21

L
L for long integers, 34
lambda expressions, 111, 113
lambda operator, 30
Language Reference, The, 316
launching Python programs, 11
len function, 37
LGB rule, 102
Library Reference, The, 316
Linux Python distributions, 321
list function, 220
lists
basic operations of, 46
changing, in place, 47
common constants, operations, 45
copying, 243
indexing and dicing, 47

main properties of, 44

local scope, 102

logical operators, 30

long, C, 218

long function, 220

long integers, 34, 218

loop else, 85

loops, 84-92
example, 91

Lundh, Fredrik, 302

M
Macintosh Python distributions, 323
mail servers, 266
mailing lists, 319
makepy.py program, 285
manuals (see documentation)
map function, 113
mapping, 50
max function, 221
McFarlane, Greg, 304
Medusa, 315
membership test (see in operator)
metaprograms, 141
methods
bound, unbound, 180
names available, 165
Microsoft's Common Object Model (COM), 275, 282
min function, 220
mixed types, expression operators, 31

mixin classes, 177

module files, 13
names, 17
module gotchas, 143-148
from statement, 144
import, from statements, 143
recursive imports, 146
reload, 147
statement order, 145
modules, 26, 126-149
classes, versus, 182
compilation model, 137
creating, 127
data hiding convention, 137
defined, 128
design concepts, 141

Page 363
import, reload, 127
importing, 132
metaprograms, 141-143
__hame__and _main_, 138
namespaces, 129-131
packages, 140
PYTHONPATH variable and, 128
roles of, 126
search path, 139
shipping options, 138
using, 128
(see a'so reloading modules)

modulus operator, 31

__mul__method, 158
multiple inheritance
classes, 176-179
mixin, 177
order, 185
multiple-target assignments, 73
multiplication operator, 31

mutability, 35, 44, 65, 122

N
names
assignment, 72
conventions for, 231, 248
mangling, 181
modulefiles, 17
namespace, 18
qualification, 131
reference, 72
variable, rules, 73
namespaces, 101
built-in functions, 221
class statement (example), 159
dictionaries, 169
LGB rule, 102
modules, 127, 129-131
names, 18
qualified names, 168
tree construction, 161
unqualified names, 168

(see also scopes)

negation operator, 30
nested blocks, 79
nesting scopes, 118
newsgroups, 318
not operator, 30, 83
not in operator, 30
numbers, 218
numeric conversion (in expressions), 40
numeric objects
basic operations, 32
bitwise operations, 33
built-in tools, 35
built-in tools, extensions, 29
complex numbers, 34
long integers, 34
standard, 28
numeric precision, 29
numeric programming, 8
Numeric Python (NumPy), 302

NumPy numeric programming extension, 8

@)
object-oriented programming (see OOP)
object persistence, 174
object reference
creation, 72
functions, 99
Object Request Broker service, 282, 304

object type

conversions, 218
extending (classes), 175
numbers, 28

objects, 26
classification, 58
comparisons, 61
equality tests, 61
factories, 179
lists, 44
methods (bound, unbound), 180
shared references, 60
truth, 61

oct function, 220

octal constants, 29

OOP (object-oriented programming), 4
class objects, instance objects, 152
classes (example), 152-153
composition (has-a), 172-174
delegation, 174
designing with, 170
factories, 179
inheritance (is-a), 170

open function, 56-57

open pairsrule, 82

open source software, 4

Page 364
OpenVMS Python distributions, 325
operator overloading, 59, 164-166

classes, 156

methods sampling, 165
operator precedencerules, 31
or operator, 30, 83
ord function, 219-220
os module, 231-234, 284

attribute definition, 232

functions (frequently used), 231

string attributes, 232
os.environ dictionary, 232
os.error, 232
os.listdir function, 254
os.name, 232
os.path module, functions, 233
0s.popen, 263
os.rename function, 254
os.system(), 262
Ousterhout, John, 288
outer try, 200

P

packages, 140

parameters, 99

parentheses in expressions, 31
pass statement, 85

PATH variable, 20

Perl language, 10

persistence, 174

Peters, Tim, 320

pickle module, 9, 174, 281, 284

polymorphism, 170

portability, 7
portable ANSI C, 4
POSIX conventions, 231
precedence rules (operators), 31
print statement, 75
forms, 76
writing to sys.stdout, 77
private names, 138
procedures, Python functions, 114
profile module, 241
program manipulation
calling other programs, 262-264
0s.popen, 263
os.system(), 262
program structure, 26
Programming Python (Lutz), 317
prompts, input (...), 13
prompts, input (>>>), 12
prototyping, 8
Psion Series 5 Python distributions, 325
py files, 137
.pyc bytecode, 138
pycfiles, 137
PyModules FAQ, 314
Python Consortium, 311
Python distributions, 309
Python Imaging Library (PIL), 302
Python Language web site, 309
Python MegaWidgets (Pmw), 304

Python Pocket Reference (Lutz), 317
Python Software Association, 309
Python source tree, 311

Python/C API, 316

PYTHONPATH variable, 20, 128
PYTHONSTARTUP variable, 20
Pythonware, 314

Q
QNX Python distributions, 325

qualification, name, 131, 168
__getattr_ method, 167

R
raise statement, 197, 207
random module, 247
range function, 90-92
raw_input function, 200
raw strings, 43
re module, 227-230
read stdin, 252
readlines method (scanning text files), 260
re.compile() (strings), 229
recursive functions, 119
recursive imports, 146
redirecting input/output, 77
references, copying vs., 48, 63, 72
regular expressions (strings), 227-230
reloading modules, 17, 133
example, 135

genera form, 134

remainder operator, 31
repetition, one-level deep, 64
repetition operator, 31
__repr___method, 167

reserved words, 74

resources, 309-320

documentation (see documentation)

return statement, 98
argument passing, 107
function results, 93

running Python
embedded code, objects, 15
interactive command line, 12
interpreter, 11
module files, 13

Unix-style scripts, 14

S
scanning text files, 259-262

if _name_==" man_ "trick, 261

readlines method, 260

value key, 259
scopes, 102, 168

example, 103

illustration, 103

LGB rule, 102

nesting, 118

(see aso namespaces)

Scriptics Corporation, 313

Page 365

scripting, 8
scripting languages, 5
sequences, 35
setattr function, 221
shared object references, 60
shelve module, 174
shift operators, 31
shipping options, 138
short-circuit evaluation, 83
shutil module, 234
SIGs (special interest groups), 318
Size, object, 37
dicing, 35, 37, 39
lists, 47
sort method, 48, 246
source distributions (see distributions)
spaces in programs, 80
special interest groups (SIGs), 318
Starship Python, 311
startup script (example), 21
statements, 26
assgnment, 71-74
defined, 70
delimitersfor, 81
expressions, 74
summary, 71
syntax rules, 79
truth tests, 82
Stein, Greg, 282

str function, 220
string module, 41, 227
constants, 226
defining parts of, 228
functions, 224
regular expressions problem, 227
replacement operation, 229
string.find, 263
strings
changing, formatting, 40
common tools, 41
constant variations, 42
constants, operations, 36
defined, 35
documentation (classes), 181
formatting codes, 41
indexing, 37-38
operation basics, 36
raw, 43
dicing, 37, 39
struct module, 237-238
subclasses, 154
subtraction operator, 31
superclasses, 155
SWIG (Simple Wrapper Interface Generator), 303
Swing Java GUI toolkit, 275
syntax rules
backslash, 81
block delimiters, 80

block, statement boundaries, 79

compound statements, 80
execution sequence, 79
open pairs, 82
gpaces, comments, 80
statement delimiters, 81
statements, 79
variable names, 73
sys module, 216
sys.argv, 216
sys.modules, 216
sys.modules dictionary, 141
syspath, 139, 216

sys.platform, 216
sys.psl, 216
sys.ps2, 216
sys.stderr, 250
sys.stdin, 250
sys.stdout, 77, 250

T

tempfile module, 281

temporary files, 258

time module, 240, 281

Tk/Tkinter, 7, 275, 288-293
documentation, 293

environment setting, 21

GUI (graphical user interface), 275

testing, 22

Page 366

truth, 62
truth tests, 82
try statement, 201
try/except/el se statement, 196
try/finally statement, 197
tuple function, 220
tuples
assignment, 72
constants, operations, 54
copying, 243
defined, 53
properties of, 53
sorting contents of, 246
turtle.py, 315
Tutoria, The Python, 316
type collection tuples, 53
types
categories of, 43
converting, 31, 219
(see aso conversions)
files, 56
hierarchies, 63
mutable, 44

reasons for built-in, 27

U

unary operators, 31
unbound class methods, 180
Unix extensions, 322

Unix Python distributions, 321

Unix-like system scripts, 14
unpacking assignments, 72
urllib module, 235

urlparse module, 236
URLSs, urllib module, 235
UserDict class, 248
UserList class, 248
userslist, 9, 311, 317-319

V
van Rossum, Guido, 294, 302, 311
variable name rules, 73

VxWorks Python distributions, 325

W
web pages
cgi module, 235
checking links, 266
downloading programmatically, 265
email processing, 266
webchecker.py (management), 266
web site resources, xiii, 317
Alice, 315
Contributed Modules, 314
Emacs, 315
FAQ, 316
Gadfly, 315
Medusa, 315
PyModules FAQ, 314
Python distribution, 309
Python Language, 309

Scriptics Corporation, 313
Starship Python, 311
while loop, 84-86
whrandom module, 247
win32com, 282, 286
Dispatch function, 284
formletter.py program, 283
information resources, 286
Word.Application.8, 284
Windows CE Python distributions, 325
Windows Python distributions, 323
Word.Application.8, 284

X
XML, 5, 8, 265

Z
Zope, 294, 314

ABOUT THE AUTHORS

Mark Lutz is asoftware developer and a Python writer and trainer. He is the author of
Programming Python and Python Desktop Reference, both published by O'Rellly &

Page 367

Associates. Mark has programmed a variety of Python systems, teaches courses about Python,

and has been involved with the Python community since 1992.

David Ascher is ahybrid scientist/software engineer/trainer. By day, heisavision researcher.
By night, he spends afair bit of time learning about computer science. He also teaches Python

regularly.

COLOPHON

Our look isthe result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical

topics, breathing personality and life into potentialy dry subjects.

The animal on the cover of Learning Python isawood rat (Neotoma, family Muridae). The
wood rat livesin awide range of living conditions (mostly rocky, scrub, and desert areas)
over much of North and Central America, generaly at some distance from humans, though they
occasionally damage some crops. They are good climbers, nesting in trees or bushes up to six
meters off the ground; some species burrow underground or in rock crevices or inhabit other
species abandoned holes.

These greyish-beige, medium-sized rodents are the original pack rats: they carry anything and
everything into their homes, whether or not it's needed, and are especially attracted to shiny
objects such as tin cans, glass, and silverware.

Mary Anne Weeks Mayo was the production editor and copyeditor of Learning Python; Sheryl
Avruch was the production manager; Jane Ellin, Melanie Wang, and Clairemarie Fisher
O'Leary provided quality control. Robert Romano created the illustrations using Adobe
Photoshop 4 and Macromedia FreeHand 7. Mike Sierra provided FrameMaker technical
support. Ruth Rautenberg wrote the index, with input from Seth Maidin.

Edie Freedman designed the cover of this book, using a 19th-century engraving from the Dover
Pictoria Archive. The cover layout was produced with Quark XPress 3.32 using the ITC
Garamond font. Whenever possible, our books use RepKovera , adurable and flexible lay-flat
binding. If the page count exceeds RepKover's limit, perfect binding is used.

Page 368

The inside layout was designed by Alicia Cech and implemented in FrameMaker 5.5 by Mike
Sierra. Thetext and heading fonts are ITC Garamond Light and Garamond Book. This colophon
was written by Nancy Kotary.

	TABLE OF CONTENTS
	Preface
	I. The Core Language
	II. The Outer Layers
	III. Appendixes
	Index

	PREFACE
	About This Book
	This Book's Scope
	This Book's Style
	Prerequisites
	Book Updates

	Font Conventions
	About the Programs in This Book
	How to Contact Us
	Acknowledgments
	Mark Also Says:
	David Also Says:

	I THE CORE LANGUAGE
	1 Getting Started
	Why Python?
	An Executive Summary
	Python on the Job
	Python in Commercial Products
	Python Versus Similar Tools

	How to Run Python Programs
	The Interactive Command Line
	Running Module Files
	Running Unix- Style Scripts
	Embedded Code and Objects
	Platform- Specific Startup Methods
	What You Type and Where You Type It

	A First Look at Module Files
	A First Look at Namespace Inspection

	Python Configuration Details
	Environment Variables
	An Example Startup Script
	A GUI Test Session
	Installation Overview

	Summary
	Exercises

	2 Types and Operators
	Python Program Structure
	Why Use Built- in Types?
	Numbers
	Standard Numeric Types
	Built- in Tools and Extensions
	Python Expression Operators
	Numbers in Action

	Strings
	Strings in Action
	Generic Type Concepts

	Lists
	Lists in Action

	Dictionaries
	Dictionaries in Action
	Dictionary Usage Notes

	Tuples
	Why Lists and Tuples?

	Files
	Files in Action
	Related Python Tools

	General Object Properties
	Type Categories Revisited
	Generality
	Shared References
	Comparisons, Equality, and Truth
	Python's Type Hierarchies

	Built- in Type Gotchas
	Assignment Creates References, Not Copies
	Repetition Adds One- Level Deep
	Cyclic Data Structures Can't Be Printed
	Immutable Types Can't Be Changed in Place

	Summary
	Exercises

	3 Basic Statements
	Assignment
	Variable Name Rules

	Expressions
	Print
	The Python '' Hello World" Program

	if Tests
	General Format
	Examples
	Python Syntax Rules
	Truth Tests Revisited

	While Loops
	General Format
	Examples
	break, continue, pass, and the Loop else

	for Loops
	General Format
	Examples
	range and Counter Loops

	Common Coding Gotchas
	Summary
	Exercises

	4 Functions
	Why Use Functions?
	Function Basics
	General Form
	Definitions and Calls
	Example: Intersecting Sequences

	Scope Rules in Functions
	Name Resolution: The LGB Rule
	Example
	The global Statement

	Argument Passing
	More on return
	Special Argument- Matching Modes

	Odds and Ends
	lambda Expressions
	The apply Built- in
	The map Built- in
	Python '' Procedures"
	Function Design Concepts
	Functions Are Objects: Indirect Calls

	Function Gotchas
	Local Names Are Detected Statically
	Nested Functions Aren't Nested Scopes
	Using Defaults to Save References
	Defaults and Mutable Objects

	Summary
	Exercises

	5 Modules
	Why Use Modules?
	Module Basics
	Definition
	Usage

	Module Files Are Namespaces
	Name Qualification

	Import Model
	Imports Happen Only Once
	import and from Are Assignments

	Reloading Modules
	General Form
	Example

	Odds and Ends
	Module Compilation Model
	Data Hiding Is a Convention
	Mixed Modes: __ name__ and __ main__
	Changing the Module Search Path
	Module Packages (New in 1.5)
	Module Design Concepts
	Modules Are Objects: Metaprograms

	Module Gotchas
	Importing Modules by Name String
	from Copies Names but Doesn't Link
	Statement Order Matters in Top- Level Code
	Recursive " from" Imports May Not Work
	reload May Not Impact from Imports
	reload Isn't Applied Transitively

	Summary
	Exercises

	6 Classes
	Why Use Classes?
	Class Basics
	Classes Generate Multiple Instance Objects
	Classes Are Specialized by Inheritance
	Classes Can Intercept Python Operators

	Using the Class Statement
	General Form
	Example

	Using Class Methods
	Example

	Inheritance Searches Namespace Trees
	Attribute Tree Construction
	Specializing Inherited Methods

	Operator Overloading in Classes
	Common Operator Overloading Methods
	Examples

	Namespace Rules: The Whole Story
	Unqualified Names: Global Unless Assigned
	Qualified Names: Object Namespaces
	Namespace Dictionaries

	Designing with Classes
	Python and OOP
	OOP and Inheritance: '' is- a"
	OOP and Composition: " has- a"
	OOP and Delegation
	Extending Built- in Object Types
	Multiple Inheritance
	Classes Are Objects: Generic Object Factories
	Methods Are Objects: Bound or Unbound

	Odds and Ends
	Private Attributes (New in 1.5)
	Documentation Strings
	Classes Versus Modules

	Class Gotchas
	Changing Class Attributes Can Have Side Effects
	Multiple Inheritance: Order Matters
	Class Function Attributes Are Special
	Methods, Classes, and Nested Scopes

	Summary
	Exercises

	7 Exceptions
	Why Use Exceptions?
	Exception Basics
	try/ except/ else
	try/ finally
	raise
	First Examples

	Exception Idioms
	Exceptions Aren't Always a Bad Thing
	Searches Sometimes Signal Success by raise
	Outer try Statements Can Debug Code

	Exception Catching Modes
	try Statement Clauses
	Catching 1- of- N Exceptions
	Exceptions Nest at Runtime
	finally Clauses Run " On the Way Out"

	Odds and Ends
	Passing Optional Data
	The assert Statement
	Class Exceptions

	Exception Gotchas
	Exceptions Match by Identity, Not Equality
	Catching Too Much?
	Catching Too Little?

	Summary
	Exercises

	II THE OUTER LAYERS
	8 Built- in Tools
	Built- in Functions
	Conversions, Numbers, and Comparisons
	Attribute Manipulation
	Executing Programs

	Library Modules
	Basic String Operations: The string Module
	Advanced String Operations: The re Module
	Generic Operating- System Interfaces: The os Module
	Copying Files and Directories: The shutil Module
	Internet- Related Modules
	Dealing with Binary Data: The struct Module
	Debugging, Timing, Profiling

	Exercises

	9 Common Tasks in Python
	Data Structure Manipulations
	Making Copies Inline
	Making Copies: The copy Module
	Sorting and Randomizing
	Randomizing: The random Module
	Making New Data Structures
	Making New Lists and Dictionaries: The UserList and UserDict Modules

	Manipulating Files
	Doing Something to Each Line in a File
	Doing Something to a Set of Files Specified on the Command Line
	Processing Each Line of One or More Files: The fileinput Module
	Filenames and Directories
	Matching Sets of Files: The glob Module
	Using Temporary Files
	More on Scanning Text Files

	Manipulating Programs
	Calling Other Programs

	Internet- Related Activities
	Downloading a Web Page Programmatically
	Checking the Validity of Links and Mirroring Web Sites: webchecker. py and Friends
	Checking Mail

	Bigger Examples
	Compounding Your Interest
	An Automated Dial- Out Script
	An Interactive Rolodex

	Exercises

	10 Frameworks and Applications
	An Automated Complaint System
	Interfacing with COM: Cheap Public Relations
	A Tkinter- Based GUI Editor for Managing Form Data
	Design Considerations
	JPython: The Felicitous Union of Python and Java
	JPython Gives Python Programmers Access to Java Libraries
	JPython as a Java Scripting Language
	A Real JPython/ Swing Application: grapher. py

	Other Frameworks and Applications
	Python Imaging Library (PIL)
	Numeric Python (NumPy)

	SWIG
	Python MegaWidgets (Pmw)
	ILU and Fnorb

	Exercises

	III APPENDIXES
	A Python Resources
	The Python Language Web Site
	Python Software
	The Standard Python Distribution
	Gifts from Guido
	Offerings from Commercial Vendors
	Other Modules and Packages
	Emacs Support

	Python Documentation and Books
	The Standard Python Documentation Set
	The FAQ
	Other Published Books
	Other Sources of Documentation

	Newsgroups, Discussion Groups, and Email Help
	comp. lang. python/ python- list
	comp. lang. python. announce/ python- list- announce
	python- help@ python. org
	The SIGs
	JPython- interest

	Conferences
	Support Companies, Consultants, Training
	Tim Peters

	B
	Unix
	Unix- Specific Extensions

	Windows- Specific Information
	Macintosh- Specific Information
	Java
	Other Platforms

	C
	Chapter 1 Š Getting Started
	Chapter 2 Š Types and Operators
	Chapter 3 Š Basic Statements
	Chapter 4 Š Functions
	Chapter 5 Š Modules
	Chapter 6 Š Classes
	Chapter 7 Š Exceptions
	Chapter 8 Š Built- in Tools
	Chapter 9 Š Common Tasks in Python
	Chapter 10 Š Frameworks and Applications

	INDEX
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	ABOUT THE AUTHORS
	COLOPHON

