SEPTEMBER 27, 2000

Writing Enterprise Applications with
Javall 2 SDK, Enterprise Edition

by Monica Pawlan

SEPTEMBER 27, 2000

copyright[1 1995-99 Sun Microsystems, Inc.

As used in this document, the terms “JaVairtual machine” or “Java VM” mean a virtual machine for the Java
platform.

SEPTEMBER 27, 2000]

Preface

This tutorial introduces you to the APIs, tools, and services provided in thélJ&&anter-
prise Edition (J2EE) Software Developer Kit (SDK). You can get the free J2EE SDK
(http://java.sun.com/j2ee/download.html) to use for demonstrations, prototyping,
educational use, and verifying J2EE application portability.

To support these uses the J2EE SDK comes with J2EE development and deployment tools, a
Web server, Cloudscape database, Java Software application server, Extensible Markup Lan-
guage (XML) support, the J2EE APIs, and Java Plug-In. Java Plug-In lets you run Java 2
applets in browsers that support an earlier release of the Java Runtime Environment (JRE).

Note: This is a work in progress. Links to new lessons are turned on when they become
available. Submit comments and suggestions to jdcee@sun.com

PREFACE

PREFACE

SEPTEMBER 27, 2000

SEPTEMBER 27, 2000 \%

Contents

Preface. iii

Lesson 1
A Simple SessionBean. i 1
Example Thin-Client Multitiered Application 2
J2EE Software and Setup 3
Unix: 3
Windows: 3
Path and ClassPath Settings 3
Path Settings 3
Class Path Settings 4
J2EE Application Components 4
Create the HTML Page 5
HTML Code 6
Create the Servlet 6
Import Statements 7
init Method 7
doGet Method 7
Servlet Code 9
Create the Session Bean 10
CalcHome 11
Calc 12
CalcBean 12
Compile the Session Bean and Servlet 13
Compile the Session Bean 13
Compile the Servlet 13
Start the J2EE Application Server 14
Unix: 14
Windows: 14
Start the Deploy Tool 14
Unix: 14
Windows: 14
Deploy Tool 15
Assemble the J2EE Application 16
Create J2EE Application 16
Create Session Bean 16
Create Web Component 19
Specify JNDI Name and Root Context 22

CONTENTS

SEPTEMBER 27, 2000 \

Verify and Deploy the J2EE Application 23
Run the J2EE Application 25
Updating Component Code 26

Lesson 2

ASimple EntityBean 27
Create the Entity Bean 28
BonusHome 28
Bonus 29
BonusBean 30
Change the Servlet 32
Compile 34
Compile the Entity Bean 34
Compile the Servlet 35
Start the Platform and Tools 35
Unix 35
Windows 35
Assemble and Deploy 35
Update Application File 36
Create Entity Bean 36
Verify and Deploy the J2EE Application 42
Run the J2EE Application 43

Lesson 3

Cooperating EnterpriseBeans 45
Change the Session Bean 46
CalcHome 46
Calc 47
CalcBean 47
Change the Servlet 49
Compile 50
Compile the Session Bean 51
Compile the Servlet 51
Start the Platform and Tools 51
Unix 52
Windows 52
Assemble the Application 52
Create New J2EE Application 52
Create New Web Component 53
Bundle Session and Entity Beans in one JAR File 54
Verify and Deploy the J2EE Application 58
Run the J2EE Application 60

Lesson 4
JavaServer Pages Technology. 61

CONTENTS

SEPTEMBER 27, 2000 Vil

Create the JSP Page 62
Comments 64
Directives 64
Declarations 64
Scriptlets 65
Predefined Variables 65
Expressions 65
JSP-Specific Tags 66
Change bonus.html 66
Start the Platform and Tools 67
Unix 67
Windows 67
Remove the WAR File 67
Create New WAR Flle 67
Verify and Deploy the J2EE Application 68
Run the J2EE Application 70
More Information 71

Lesson 5

Adding JavaBeans Technology to the Mix 73
About the Example 74
Create bonus.jsp 76
Specify the JavaBean 78
Getthe Data 78
Pass the Data to the JavaBean 78
Retrieve Data from the JavaBean 78
Create the JavaBeans Class 79
Bean Properties 81
Constructor 81
Set Methods 81
Get Methods 82
Start the Platform and Tools 84
Unix 84
Windows 84
Remove the WAR File 85
Create New WAR Flle 85
Verify and Deploy the J2EE Application 86
Run the J2EE Application 87
More Information 87

Lesson 6

Extensible Markup Language (XML) 89
Marking and Handling Text 90

CONTENTS

Vil SEPTEMBER 27, 2000

Change the JavaBean Class 90
XML Prolog 91
Document Root 91
Child Nodes 91
Other XML Tags 91
JavaBean Code 92
The APIs 95
SAX and DOM 95
J2EE 95
Update and Run the Application 96
More Information 96

Lesson 7

JDBC Technology and Bean-Managed Persistence 97
Bean Lifecycle 98
Change the BonusBean Code 99
Import Statements 99
Instance Variables 100
Business Methods 100
LifeCycle Methods 100
Change the CalcBean and JBonusBean Code 106
Create the Database Table 107
createTable.sql 107
cloudTable.bat 108
cloudTable.sh 108
Remove the JAR File 109
Verify and Deploy the Application 111
Run the Application 112
More Information 113

CONTENTS

SEPTEMBER 27, 2000 1

Lesson 1
A Simple Session Bean

This lesson introduces you to J2EE applications programming, and the J2EE SDK by show-
ing you how to write a simple thin-client multitiered enterprise application that consists of
an HTML page, servlet, and session bean.

Browser/HTML

Servlet Session Bean
Page

< _/ >

The J2EE SDK is a non-commercial operational definition of the J2EE platform and specifi-
cation made freely available by Sun Microsystems for demonstrations, prototyping, and edu-
cational uses. It comes with the J2EE application server, Web server, database, J2EE APIs,
and a full-range of development and deployment tools. You will become acquainted with
many of these features and tools as you work through the lessons in this tutorial.

« Example Thin-Client Multitiered Application (page 2)
* J2EE Software and Setup (page 3)

» Path and ClassPath Settings (page 3)

« J2EE Application Components (page 4)

» Create the HTML Page (page 5)

» Create the Servlet (page 6)

» Create the Session Bean (page 10)

» Compile the Session Bean and Servlet (page 13)
» Start the J2EE Application Server (page 14)

» Start the Deploy Tool (page 14)

« Deploy Tool (page 15)

» Assemble the J2EE Application (page 16)

« Verify and Deploy the J2EE Application (page 23)
* Run the J2EE Application (page 25)

» Updating Component Code (page 26)

LESSON 1 A SIMPLE SESSION BEAN

2 SEPTEMBER 27, 2000

Example Thin-Client Multitiered Application

The example thin-client multitiered application for this lesson accepts user input through an
HTML form that invokes a servlet. The servlet uses Java Naming and Directory Intérface
(JNDI) APIs to look up a session bean to perform a calculation on its behalf. Upon receiving
the results of the calculation, the servlet returns the calculated value to the end user in an
HTML page.

This example is a thin-client application because the servlet does not execute any business
logic. The simple calculation is performed by a session bean executing on the J2EE applica-
tion server. So, the client is thin because it does not handle the processing; the session bean
does.

Multitiered applications can consist of 3 or 4 tiers. As shown in Figure 1, the multitiered
example for this tutorial has four tiers. Three-tiered architecture extends the standard two-
tier client and server model by placing a multithreaded application server between the non-
web-based client application and a backend database. Four-tiered architecture extends the
three-tier model by replacing the client application with a Web browser and HTML pages
powered by servlet/JavaServer Pagéschnology.

Web Browser Tier 1:
HTML Pages Client Tier
Network
Web Server .
(Thin-Client Tier 2.
Web Tier

Servlet)

Network

Enterprise Beans
Application

Tier 3:

Server Business Tier

Network

Database Tier 4:
Server EIS Tier

Figure 1 Multitiered Architecture

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 3

While this lesson uses only three of the four tiers, Lesson 2 expands this same example to
access the database server in the fourth tier. Later lessons adapt the example to use JavaSer-
ver] Pages and Extensible Markup Language (XML) technologies.

J2EE Software and Setup

To run the tutorial examples, you need to download and install the Java 2 SDK Enterprise
Edition (J2EE), Version 1.2.1 Releasetf://java.sun.com/j2ee/download.html), and

Java 2 SDK, Standard Edition (J2SE), Version 1.2 or latep:{java.sun.com/jdk/

index.html).

The instructions in this tutorial assume J2EE and J2SE are both installed in a J2EE directory
under monicap's home directory.

Note: Everywheramonicap is used in a path name, please change it to your own user
name.

Unix:

/home/monicap/J2EE/j2sdkeel.2.1
/home/monicap/J2EE/jdk1.2.2

Windows:

\home\monicap\J2EE\j2sdkeel.2.1
\home\monicap\J2EE\jdk1.2.2

Path and ClassPath Settings

The download has the J2EE application server, Cloudscape database, a Web server using
secure socket layer (SSL) also known as HTTP over HTTPS, development and deployment
tools, and the Java APIs for the Enterprise. To use these features, set your path and class path
environment variables as described here.

Path Settings

Path settings make the development and deployment tools accessible from anywhere on your
system. Make sure you place these path settings before any other paths you might have for
other older JDK installations.

Unix:
/home/monicap/J2EE/jdk1.2.2/bin
/home/monicap/J2EE/j2sdkeel.2.1/bin

LESSON 1 A SIMPLE SESSION BEAN

4 SEPTEMBER 27, 2000

Windows:

\home\monicap\J2EE\jdk1.2.2\bin
\home\monicap\J2EE\j2sdkeel.2.1\bin

Class Path Settings

Class path settings tell the Java 2 development and deployment tools where to find the vari-
ous class libraries they use.

Unix:
/home/monicap/J2EE/j2sdkeel.2.1/lib/j2ee.jar

Windows:
\home\monicap\J2EE\j2sdkeel.2.1\lib\j2ee.jar

J2EE Application Components

J2EE applications programmers write J2EE application components. A J2EE component is a
self-contained functional software unit that is assesmbled into a J2EE application and inter-
faces with other application components. The J2EE specification defines the following
application components:

» Application client components

» Enterprise JavaBeans components

» Servlets and JavaServer Pages components (also called Web components)
* Applets

In this lesson, you create a J2EE application and two J2EE components: a servlet and ses-
sion bean. The servlet is bundled with its HTML file into a Web Archive (WAR) file, and the
session bean interfaces and classes are bundled into a JAR file. The WAR and JAR files are
added to the J2EE application and bundled into an Enterprise Archive (EAR) file for verifi-
cation testing and deployment to the production environment.

While you do all of these steps for this lesson, you are actually performing several different
functions. Writing the servlet and session bean code is a developer function, while creating a
J2EE application and adding J2EE components to an application assembly function. In real-
ity, these functions would be performed by different people in different companies.

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000

Create the HTML Page

The HTML page for this lesson is calla@nus.ntml . It's HTML code is after Figure 2,

which shows how the HTML page looks when displayed to the user.béie.htmi file

has two data fields so the user can enter a social security number and a multiplier. When the
user clicks thesubmit button,BonusServiet retrieves the end user data, looks up the ses-

sion bean, and passes the user data to the session bean. The session bean calculates a bonus

and returns the bonus value to the servlet. The servlet then returns another HTML page with
the bonus value for the end user to view.

Bonus Calculation

Enter social security Number:

Enter Multiplier:

Submitl Resetl

Figure 2 HTML Page

Figure 3 shows how data flows between the browser and the session bean. The session bean
executes in the J2EE application server.

Component Component
| |
[|
HTML Form Servlet Session Bean
Browser (Web Server) (Application Server)
bonus.html BonusServlet.class CalcBean.class
Calc.class
CalcHome.class

Figure 3 Data Flow

LESSON 1 A SIMPLE SESSION BEAN

6 SEPTEMBER 27, 2000

HTML Code

The interesting thing about the HTML form code is the alias used to inBokeésServlet

When the user clicks the Submit button on the HTML fomBoenusServiet is invoked
because it is mapped to tBenusAlias during application assembly described in Assemble
the J2EE Application (page 16).

The example assumesnus.html IS in the/home/monicap/J2EE/ClientCode directory on
Unix. Here and hereafter, Windows users can reverse the slashes to get the correct directory
pathname for their platform.

<HTML>

<BODY BGCOLOR = "WHITE">

<BLOCKQUOTE>

<H3>Bonus Calculation</H3>

<FORM METHOD="GET"
ACTION="BonusAlias">

<pP>

Enter social security Number:

<P>

<INPUT TYPE="TEXT" NAME="SOCSEC"></INPUT>

<p>

Enter Multiplier:

<p>

<INPUT TYPE="TEXT" NAME="MULTIPLIER"></INPUT>

<P>

<INPUT TYPE="SUBMIT" VALUE="Submit">

<INPUT TYPE="RESET">

</FORM>

</BLOCKQUOTE>

</BODY>

</HTML>

Create the Servlet

The example assumes thenusServiet.java file is in the/home/monicap/J2EE/Client-
Code directory on Unix. At run time, the servlet code does the following:

* Retrieves the user data

* Looks up the session bean

» Passes the data to the session bean

* Upon receiving a value back from the session bean, creates an HTML page to display
the returned value to the user.

The next sections describe the different parts of the servlet code. The servlet code is shown
in its entirety in Servlet Code (page 9).

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 7

Import Statements
The servlet code begins with import statements for the following packages:

e javax.serviet , which contains generic (protocol-independent) servlet classes. The
HTTPServlet class uses theervietException class in this package to indicate a
servlet problem.

* javax.servlet.http , Which contains HTTP servlet classes. Th@Servlet class
is in this package.

e javaio for system input and output. ThatpServiet class uses theException
class in this package to signal that an input or output exception of some kind has
occurred.

e javax.naming for using the Java Naming and Directory Interface (JNPAPIs to
look up the session bean home interface.

» javaxrmi for looking up the session bean home interface and making its remote
server object ready for communications.

init Method

The BonusServlet.init method looks up the session bean home interface and creates its
instance. The method uses the JNDI name specified during component asserbly {0

get a reference to the home interface by its name. The next line passes the reference and the
home interface class to tiertableRemoteObject.narrow method to be sure the reference

can be cast to typealcHome.

InitialContext ctx = new InitialContext();

Object objref = ctx.lookup(“calcs");

homecalc = (CalcHome)PortableRemoteObject.narrow(obj
ref, CalcHome.class);

doGet Method

The parameter list for théoGet method takes a&quest andresponse object. The browser

sends a request to the servlet and the servlet sends a response back to the browser. The
method implementation accesses information inrtagest object to find out who made

the request, what form the request data is in, and which HTTP headers were sent, and uses
theresponse oObject to create an HTML page in response to the browser's request.

The doGet method throws amoException if there is an input or output problem when it
handles the request, andearvietException if the request could not be handled. To calcu-
late the bonus value, thiwGet method creates the home interface and callgait®onus
method.

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000

public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

String socsec = null;

int multiplier = 0;

double calc = 0.0;

PrintWriter out;

response.setContentType("text/html");

String title = "EJB Example”;

out = response.getWriter();

out.printin("<HTML><HEAD><TITLE>)

out.printin(title);

out.printin("</TITLE></HEAD><BODY>");

try{
//IRetrieve Bonus and Social Security Information

String strMult = request.getParameter(
"MULTIPLIER");

Integer integerMult = new Integer(strMult);

multiplier = integerMult.intValue();

socsec = request.getParameter("SOCSEC");

/ICalculate bonus
double bonus = 100.00;
theCalculation = homecalc.create();
calc = theCalculation.calcBonus(
multiplier, bonus);
}catch(Exception CreateException){
CreateException.printStackTrace();

}

/[Display Data
out.printin("<H1>Bonus Calculation</H1>");
out.printin("<P>Soc Sec : " + socsec + "<P>");
out.printin("<P>Multiplier: " +
multiplier + "<P>");
out.printin("<P>Bonus Amount : "+ calc + "<P>");
out.printin("</BODY></HTML>");
out.close();

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000

Servlet Code

Here is the full code.

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import javax.naming.*;

import javax.rmi.PortableRemoteObject;
import Beans.*;

public class BonusServlet extends HttpServlet {
CalcHome homecalc;

public void init(ServletConfig config)
throws ServletException{

/ILook up home interface
try{
InitialContext ctx = new InitialContext();
Object objref = ctx.lookup(“calcs");
homecalc =

(CalcHome)PortableRemoteObject.narrow(

objref,
CalcHome.class);
} catch (Exception NamingException) {
NamingException.printStackTrace();

}

}
public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {
String socsec = null;
int multiplier = 0;
double calc = 0.0;
PrintWriter out;
response.setContentType("text/html");
String title = "EJB Example";
out = response.getWriter();
out.printin("<HTML><HEAD><TITLE>");
out.printin(title);
out.printin("</TITLE></HEAD><BODY>");
try{
Calc theCalculation;
/IGet Multiplier and Social Security Information
String strMult =
request.getParameter("MULTIPLIER");
Integer integerMult = new Integer(strMult);
multiplier = integerMult.intValue();
socsec = request.getParameter("SOCSEC");
/[Calculate bonus

LESSON 1 A SIMPLE SESSION BEAN

10 SEPTEMBER 27, 2000

double bonus
theCalculation
calc =
theCalculation.calcBonus(multiplier, bonus);
} catch(Exception CreateException){
CreateException.printStackTrace();
}
/[Display Data
out.printin("<H1>Bonus Calculation</H1>");
out.printin("<P>Soc Sec : " + socsec + "<P>");
out.printin("<P>Multiplier: " +
multiplier + "<P>");
out.printin("<P>Bonus Amount : "+ calc + "<P>");
out.printin("</BODY></HTML>");
out.close();

100.00;
homecalc.create();

public void destroy() {
System.out.printin("Destroy");

}
}

Create the Session Bean

A session bean represents a transient conversation with a client. If the server or client
crashes, the session bean and its data are gone. In contrast, entity beans are persistent and
represent data in a database. If the server or client crashes, the underlying services ensure
the entity bean data is saved.

Because the enterprise bean performs a simple calculation at the regBesisSkrviet,
and the calculation can be reinitiated in the event of a crash, it makes sense to use a session
bean in this example.

Figure 4 shows how the servlet and session bean application components work as a complete
J2EE application once they are assembled and deployed. The container, shown in the shaded
box, is the interface between the session bean and the low-level platform-specific functional-
ity that supports the session bean. The container is created during deployment.

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 11

e

ome
nterface
PE didlians 3
HTML F Session
orm Servlet | Bean
Browser
< » Remote
N, Interfac
A i/ Container

\ Application Server/

Figure 4 Application Components

The next sections show the session bean code. The example assuroesew.java |,

Calcjava , andCalcHome.java files are placed in ththome/monicap/J2EE/Beans direc-

tory on Unix. Thepackage Beans statement at the top of th@icBean interface and class

files is the same name as the name of this directory. When these files are compiled, they are
compiled from the directory abovBeans and theBeans package (or directory) name is
prepended with a slash to the interface and class files being compiled. See Compile the Ses-
sion Bean (page 13).

Note: While this example shows how to write the example session bean, it is also pos-
sible to purchase enterprise beans from a provider and assemble them into a J2EE
application.

CalcHome

BonusServlet does not work directly with the session bean, but creates an instance of its
home interface. The home interface exteaasHomeand has areate method for creating

the session bean in its containereateException is thrown if the session bean cannot be
created, an@&emoteException is thrown if a communications-related exception occurs dur-
ing the execution of a remote method.

package Beans;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface CalcHome extends EJBHome {

Calc create() throws CreateException,
RemoteException;

LESSON 1 A SIMPLE SESSION BEAN

12 SEPTEMBER 27, 2000

Calc

When the home interface is created, the J2EE application server creates the remote interface
and session bean. The remote interface extedebject and declares thealcBonus

method for calculating the bonus value. This method is required to tfakawrmi.Remo-

teException , and is implemented by tl@aicBean class.

package Beans;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Calc extends EJBObject {
public double calcBonus(int multiplier,
double bonus)
throws RemoteException;

CalcBean

The session bean class implementsdéssionBean interface and provides behavior for the
calcBonus method. ThesetSessionContext and ejpCreate methods are called in that
order by the container afteonusServiet calls thecreate method in CalcHome.

The empty methods are from tlsessionBean interface. These methods are called by the
bean's container. You do not have to provide behavior for these methods unless you need
additional functionality when the bean is, for example, created or removed from its con-
tainer.

package Beans;

import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class CalcBean implements SessionBean {
public double calcBonus(int multiplier,
double bonus) {

double calc = (multiplier*bonus);
return calc;

}

/IThese methods are described in more

//detail in Lesson 2

public void ejbCreate() { }

public void setSessionContext(
SessionContext ctx) { }

public void ejbRemove() { }

public void ejbActivate() { }

public void ejbPassivate() { }

public void ejbLoad() { }

public void ejbStore() { }

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 13

Compile the Session Bean and Servlet

To save on typing, the easiest way to compile the session bean and servlet code is with a
script (on Unix) or a batch file (on Windows).

Compile the Session Bean

Unix

#!/bin/sh

cd /home/monicap/J2EE

J2EE_HOME=/home/monicap/J2EE/j2sdkeel.2.1

CPATH=.:$J2EE_HOME/lib/j2ee.jar

javac -d . -classpath "$CPATH" Beans/CalcBean.java
Beans/CalcHome.java Beans/Calc.java

Windows

cd \home\monicap\J2EE

set J2EE_HOME=\home\monicap\J2EE\j2sdkeel.2.1

set CPATH=.;%J2EE_HOME%\lib\j2ee.jar

javac -d . -classpath %CPATH% Beans/CalcBean.java
Beans/CalcHome.java Beans/Calc.java

Compile the Servlet

Unix

#!/bin/sh

cd /home/monicap/J2EE/ClientCode

J2EE_HOME=/home/monicap/J2EE/j2sdkeel.2.1

CPATH=.:$J2EE_HOME/lib/j2ee.jar:
/home/monicap/J2EE

javac -d . -classpath "$CPATH" BonusServlet.java

Windows

cd \home\monicap\J2EE\ClientCode

set J2EE_HOME=\home\monicap\J2EE\j2sdkeel.2

set CPATH=.;%J2EE_HOME%\lib\j2ee.jar;
\home\monicap\J2EE

javac -d . -classpath %CPATH% BonusServlet.java

LESSON 1 A SIMPLE SESSION BEAN

14 SEPTEMBER 27, 2000

Start the J2EE Application Server

You need to start the J2EE application server to deploy and run the example. The command
to start the server is in then directory under your J2EE installation. If you have your path

set to read thein directory, go to the2ee directory (so your live version matches what you

see in this text) and type:

j2ee -verbose
Note: Sometimes the J2EE server will not start if Outlook is running.

If that does not work, type the following from tbeEE directory:

Unix:

j2sdkeel.2.1/bin/j2ee -verbose

Windows:

j2sdkeel.2.1\bin\j2ee -verbose

Theverbose option prints informational messages to the command line as the server starts
up. When you Se@2EE server startup complete , You can start the depoloyer tool. For
now, you can ignore the other messages that scrolled by.

Start the Deploy Tool

To assemble and deploy the J2EE application, you have to start the deploy tool. If you have
your path set to read thén directory, go to the2ek directory (so your live version matches
what you see in this text) and type:

deploytool
If that does not work, do the following from theee directory:

Unix:
j2sdkeel.2.1/bin/deploytool

Windows:
j2sdkeel.2.1\bin\deploytool
Notes:If a memory access error is encountered when stadép@ytool , add an

environment variable callethvA_FONTsand set the path to &font directory>
For examplec:\winnt\fonts . Also, If a NullPointerException for BasicFi-

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 15

leChooserUl is encountered when startingploytool , be sure you are not starting
the tool from the root directory (i.e:\). If you run it somewhere else, such as bire
directory for youn2sdkee1.2 installation, you will not encounter the problem.

Deploy Tool

The Deploy tool shown in Figure 5 has four main windows. The Local Applications window
displays J2EE applications and their components. The Inspecting window displays informa-
tion on the selected application or components. The Servers window tells you the application
server is running on the local host. And the Server Applications window tells you which
applications have been installed. As you go through the steps to assemble the example J2EE
application, you will see the Local Applications, Inspecting, and Server Applications win-
dows display information.

e Application Deployment T ool a2 5]
File Edit Server Tools Help

e e Real@ aE @R &

Local Applicglinspecting:

Semers Semner Applications
localhos

Figure 5 Deploy Tool

Note: To the right of the Server Applications window is a grayethstall button.
After you deploy the application, you will see the application listed in the Server
Applications window. You can clicluninstall ~ to uninstall the application, make
changes, and redeploy it without having to stop and restart the application server.

LESSON 1 A SIMPLE SESSION BEAN

16 SEPTEMBER 27, 2000

Assemble the J2EE Application

Assembling a J2EE application involves creating a new application, and adding the applica-
tion components to it. Here is a summary of the assembly steps, which are discussed in more
detail below.

1. Create a new J2EE applicati@or{usApp.ear).

2. Create a new enterprise beasaldBean.jar).

3. Create a new web componesir{us.war).

4. Specify JNDI name for the enterprise bears).

5. Specify the Root Context for the J2EE applicatganusroot).

Create J2EE Application
J2EE components are assembled into J2EE application Enterprise Archive (EAR) files.
File menu SelectNew Application.
New Application dialog box,:

e TypeBonusApp.ear for theApplication File Name.

e Click the right mouse button in thépplication Display Name field. BonusApp
appears as the display name.

» Click theBrowsebutton to open the file chooser to select the location where you want
the applicatioreARfile to be saved.

New Application file chooser:

Locate the directory where you want to place the applicatieiile
* In this example, that directory fi®sme/monicap/J2EE

In theFile namefield, type BonusApp.ear.

» Click New Application.

» Click OK.

TheBonusApp display name is now listed in the Local Applications window, and the Inspec-

tor window to the right shows the display name, location, and contents information for
BonusApp . The meta information shown in the contents window describes the JAR file and
J2EE application, and provides runtime information about the application.

Create Session Bean
Enterprise beans (entity and session beans) are bundled into a Java Archive (JAR) file.

File menu: SelectNew Enterprise Bean The New Enterprise Bean Wizard starts and
displays anintroduction dialog box that summarizes the steps you are about to take. After
reading it over, clickiext .

EJB JAR dialog box: Specify the following information:

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 17

» Enterprise Bean will go in BonusApp
Display name:CalcJar
Description: A simple session bean that
calculates a bonus. It has one method

e Click Add. There are two Add buttons on this screen. Make sure you click the second
one down that is next to tl&ontents window.

Add Files to .JAR dialog box: go to the2ek directory. You can either type the path name or
use the browser to get there. Once atttee directory, double click omeans to display the
contents of theeans directory.

» Selectcalc.class

* Click Add.

e SelectcalcHome.class

» Click Add.

» SelectcalcBean.class

 Click Add.

Important Note:The Add Contents to .JAR dialog box should look like the one in

Figure 6. TheEnterprise Bean JAR classes must show tiBeans directory prefixed
to the class names.

LESSON 1 A SIMPLE SESSION BEAN

18 SEPTEMBER 27, 2000

—Add Contents to JAR — Select Enterprise Bea

Chonse the clagses for the Enterprise Bean being package.

Choose directony

fexporthomeimonicapid2EE Browwse. .

[ZEeansar
[2Beans.war
[y 2BRansClientjar

[C1 Eeans
[Calc.class

[calcjava

[CalcBean.class

[CalcBean java

[CalcHome.class

[CalcHome java
Enterprize Bean JAR classes

4

Add Remove

BeansfCalc.class
BeansiCalcBean.class
BeansCalcHome. class

Qs Cancel Help

Figure 6 Select Session Bean Class Files

» Click OK. You should now be back at tlt&)JB JAR dialog box.Beans/Calc.class
Beans/CalcHome.class , andBeans/CalcBean.class should appear in th€ontents
window.

» Click Next.

General dialog box: Make sure the following information is selected:

¢ classnameBeans.CalcBean
Home interface: Beans.CalcHome
Remote interface:Beans.Calc
Bean type:Session andsStateless

» Specify the display name (the name that appears when when the JAR file is added to
BonusApp in the Local Applications window), and provide a description of the JAR
file contents.

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 19

*Display Name:CalcBean
*Description: This JAR file contains the CalcBean session bean.
e Click Next .
Environment Entries dialog box: This example does not use properties (environment
entries) so you can:
* Click Finish
Verify the JAR file was indeed added to the J2EE application:

« Go to the Local Applications window
« Click the key graphic in front of tr&onusApp . You will see thecalcJar JAR file.
» Click the key graphic in front of the CalcJar to seedhieBean session bean.

Create Web Component

Web components (servlets, or JavaServer Hageshnology) are bundled into a Web
Archive (WAR) file.

File menu: SelectNew Web Component The New Web Component Wizardstarts and
displays a window that summarizes the steps you are about to take. After reading it over,
click Next .

WAR File General Properties dialog box Provide the following information:

* WAR file: BonusApp
Display name:Bonuswar
Description: This war file contains a servlet and an html page.

* Click Add.
Add Contents to WAR dialog box:
» Go to theclientCode directory by typingClientCode afterJ2ek in the Root Direc-
tory field.

e Selectbonus.html. Make sure thaNVAR contents shows the listing as bonus.html
without thecClientCode directory prefixed to the name.

* Click Add.

Note Make sure you adgbnus.html before you ad@onusServiet.class

LESSON 1 A SIMPLE SESSION BEAN

20 SEPTEMBER 27, 2000

Select lnadable classfiles

Add the classfilesthat vouwonld like to make available to the class loader.

Choose directony
[IexpumhnmefmunicapIJEEEICIientCnde Browse. .

[y BonusServletclass
[BonusServietjava
[bonus htemi

[compClient.sh

SWAR contents

Add Remove
BonusServletclass
Help Cancel = Haolk Mext = Rt
Figure 7 Add BonusServlet.class
* Click Next .
» Choose thelientCode directory again.
e SelectBonusServiet.class. Be sure the WAR contents shows the listing as
BonusServlet.class without tkn#entCode directory prefixed to the name.
* Click Add.

Add Contents to WAR dialog box: The display should look like Figure 8.

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000

21

Select content files

Chonose the content for the wab application.

|—Chuuse directony

fexportfhorme/monicapid2BEClientCode

Browse...

[y bonus htemi
[compClient.sh

[y BonusServlet class
[y BonusServiet java

SIWAR contents

Addd

Rermove

bonus html

Help

Cancel

= Back

i =

Finish

Figure 8 Add bonus.html

* Click Finish

WAR File General Propertiesdialog box:

* Click Next .

Choose Component Typealialog box:

» SelectServlet (if it is not already selected)

¢ Click Next .

Component General Propertiegdialog box:

* Make sure BonusServlet is selected for$leeviet Class

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000

e Enter a display name@dnusServiet) and description.

e You can ignore thetartup andload sequence settings here because this example
uses only one servlet.

Component Initialization Parametersdialog box:

e Click Next . BonusServlet does not use any initialization parameters.
Component Aliasesdialog box:

 Click Add.

e TypeBonusAlias and pres®eturn . Thisis the same alias name you put in g 10N
field of the HTML form embedded in thenus.html file.

» Click Finish
In the Content pane, you can see that the WAR file contains an XML file with structural and
attribute information on the web application, thenus.html file, and theBonusServiet
class file. The WAR file format is such that all servlet classes go in an entry starting with
Web-INF/classes . However, when the WAR file is deployed, tlBenusServiet class is
placed in a Context Root directory ungeblic_html . This placement is the convention for
Servlet 2.2 compliant web servers.

To change the display name or description:

* Put your cursor in the appropriate field in the window
« Change them as you wish.
» Press thereturn key for the edits to take effect.

Specify JINDI Name and Root Context

Before you can deploy th@onusApp application and its components, you have to specify the
JNDI nameBonusServiet uses to look up thealcBean session bean, and specify a context
root directory where the deployer will put the web components.

JNDI Name:
» Select theBonusApp file in the Local Applications window. The Inspecting window

displays tabs at the top, and one of those tabs is JINDI Names.

« Select INDI Names. The Inspecting window shows a three-column display with one
row. CalcBean is listed in the middle column.

« Inthe far right column under JNDI name, type calcs. This INDI name is the same JNDI
name passed to the BonusServlet.lookup method.

» Press the Return key.
Context Root:
e Click the web Context tab at the top of thenspecting window. You will see
BonusWar in the left column.
» TypeBonusRoot in the right column

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 23

¢ Press th&eturn key. During deployment thBonusRoot directory is created under
thepublic_html directory in youri2sdkee1.2 installation, and th@onus.html
file andBonusserviet class are copied into it as shown in Figure 9.

j2sdkeel.2

public_html

BonusRoot

WEB-INF bonus.html

classes

BonusServlet.class

Figure 9 Context Root Directory Structure

Aliases:

* In theLocalApp window, clickBonuswar and then clickBonusServiet

¢ Click the Aliases tab at the top of theénspecting ~ window. You should seeonu-
sAlias in the field.

* If BonusAlias is not there, type it in and pressurn .

Verify and Deploy the J2EE Application

Before you deploy the application, it is a good idea to run the verifier. The verifier will pick
up errors in the application components such as missing enterprise bean methods that the

compiler does not catch.
Verify:
» With BonusApp selected, choogeifier ~ from theTools menu.

* In the dialog that pops up, cliakk The window should tell you there were no failed
tests.

LESSON 1 A SIMPLE SESSION BEAN

24 SEPTEMBER 27, 2000

« Close the verifier window because you are now ready to deploy the application.

Note: In the Version 1.2 software you might get tasts app.WebURI error. This
means the deploy tool did not putvear extension on th&vaRfile duringwAKile cre-
ation. This is a minor bug and the J2EE application deploys just fine in spite of it.

Deploy:

e FromtheTools menu, choosbeploy Application . A Deploy BonusAppdialog box
pops up. Verify that the Target Server selection is either localhost or the name of the
host running the J2EE server.

Note: Do not check the Return Client Jar box. The only time you need to check this
box is when you deploy a stand-alone application for the client program. This example
uses a servlet and HTML page so this box should not be checked. Checking this box
creates a JAR file with the deployment information needed by a stand-alone applica-
tion.

» Click Next . Make sure the JNDI name showscs . If it does not, type it in yourself,
and press th&eturn key.

» Click Next . Make sure the Context Root name sh@wsusRoot . If it does not, type it
in yourself and press threturn key.

¢ Click Next .

» Click Finish to start the deployment. A dialog box pops up that displays the status of
the deployment operation.

* When it is complete, the three bars on the left will be completely shaded as shown in
Figure 10. When that happens, cliok

LESSON 1 A SIMPLE SESSION BEAN

25 SEPTEMBER 27, 2000

— Deployment Progress
Frogress

Contacted server.. =

wpplication Bonusapp transferred

BonusApp has 1 ejbs, 1 web components t

Deploying Ejhs...

Frocessing heans ...

Generating wrapper code for calcs

Compiling wrapper classes for calcs

Compiling RMEIOP classes for calcs

M aking client JARS.

haking server JARS.

contact the web server and ask it to run: fex
eh Components Deployed.

Deployrment of BonusfApp is complete.

Client code for the deploved application Bo

#14

4

Figure 10 Deploy Application

Run the J2EE Application

The web server runs on port 8000 by default. To openbbmes.html page point your
browser tohttp://localhost:8000/BonusRoot/bonus.html , which is where the Deploy
tool put the HTML file.

Note:If you need to use a different port because port 8000 is being used for something
else, edit theveb.properties file in the ~/J2EE/j2sdkeel.2/config directory and
restart the J2EE server.

« Fill in a social security number
e Fill in a multiplier

e Click the submit button.BonusServiet processes your data and returns an HTML
page with the bonus calculation on it.

LESSON 1 A SIMPLE SESSION BEAN

26 SEPTEMBER 27, 2000

Bonus Calculation

Soc Sec: 777777777
Multiplier: 25

Bonus Amount 2500.0

Updating Component Code

The Tools menu has two menu options of interest. theyUgpr@ate Application Files and

Update and Redeploy Application These options let you change code and redeploy your
application with ease. Simply make your code changes, recompile the code, and choose one
of these menu options.

« Update Application Files updates the application files with your new code. At this
point you can either verify the application again or deploy it.

« Update and Redeploy Applicationupdates the application files with your new code
and redeployes the application without running the verifier.

LESSON 1 A SIMPLE SESSION BEAN

SEPTEMBER 27, 2000 27

Lesson 2
A Simple Entity Bean

This lesson expands the Lesson 1 example to use an entitydaeasserviet calls on the

entity bean to save the social security number and bonus information to and retrieve it from a
database table. This database access functionality adds the fourth and final tier to the thin-
client, multitiered example started in Lesson 1.

The J2EE SDK comes with Cloudscape database, and you need no additional setup to your
environment for the entity bean to access it. In fact in this example, you do not write any
SQL or JDBQ1 code to create the database table or perform any database access operations.
The table is created and the SQL code generated with the Deploy tool during assembly and
deployment. Lesson 7 JDBC Technology and Bean-Managed Persistence (page 97) shows
you how to write the SQL code for an entity bean.

e Create the Entity Bean (page 28)

¢ Change the Servlet (page 32)

» Compile (page 34)

« Start the Platform and Tools (page 35)

* Assemble and Deploy (page 35)

* Run the J2EE Application (page 43)

LESSON 2 A SIMPLE ENTITY BEAN

28 SEPTEMBER 27, 2000

Create the Entity Bean

An entity bean represents persistent data stored in one row of a database table. When an
entity bean is created, the data is written to the appropriate database table row, and if the data
in an entity bean is updated, the data in the appropriate database table row is also updated.
The database table creation and row updates all occur without your writing any SQL or
JDBC code.

Entity bean data is persistent because it survives crashes.

« If a crash occurs while the data in an entity bean is being updated, the entity bean data
is automatically restored to the state of the last committed database transaction.

« |fthe crash occurs in the middle of a database transaction, the transaction is backed out
to prevent a partial commit from corrupting the data.

BonusHome

The main difference between th&icHome session bean code from Lesson 1 and the
BonusHome entity bean code for this lesson (below) is theiByPrimarykey ~ method. This

finder method takes the primary key as a paramete. In this example, the primary key is a
social security number, which is used to retrieve the table row with a primary key value that
corresponds to the social security number passed to this method.

The create method takes the bonus value and primary key as parameters. When
BonusServlet instantiates the home interface and callscitsate method, the container
creates @onusBean instance and calls it§bCreate method. TheBonusHome.create and
BonusBean.ejpCreate methods must have the same signatures, so the bonus and primary
key values can be passed from the home interface to the entity bean by way of the entity
bean's container. If a row for a given primary key (social security) number already exists, a
java.rmi.RemoteException is thrown that is handled in tiB@nusServiet client code.

package Beans;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import javax.ejb.EJBHome;

public interface BonusHome extends EJBHome {

public Bonus create(double bonus, String socsec)
throws CreateException, RemoteException;

public Bonus findByPrimaryKey(String socsec)
throws FinderException, RemoteException;

LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 29

Bonus

After the home interface is created, the container creates the remote interface and entity
bean. Thesonus interface declares thgtBonus andgetSocSec methods so the servlet can
retrieve data from the entity bean.

package Beans;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Bonus extends EJBObject {
public double getBonus() throws RemoteException;
public String getSocSec() throws RemoteException;

}
Component Component
| |
[|
Browser Servlet Session Bean
bonus.html BonusServlet.class CalcBean.class

Calc.class
CalcHome.class

<

Component
I

Entity Bean

BonusBean.class
Bonus.class
BonusHome.class

Database

LESSON 2 A SIMPLE ENTITY BEAN

30 SEPTEMBER 27, 2000

BonusBean

BonusBean iS a container-managed entity bean. This means the container handles data per-
sistence and transaction management without your writing code to transfer data between the
entity bean and the database or define transaction boundaries.

If for some reason you want the entity bean to manage its own persistence or transactions,
you would provide implementations for some of the empty methods shown BoitheBean

code below. The following references take you to documents that describe bean-managed
persistence and transactions.

» Chapter 3 of the Writing Advanced Applications tutorial.
developer.java.sun.com/developer/onlineTraining/Programming/JDCBook

e Chapter 4 of the Java 2 Enterprise Edition Developer's Guide.
java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/DevGuideTOC.html

WhenBonusServlet callsBonusHome.create , the container calls thBonusBean.setEnti-
tyContext ~method. TheentityContext instance passed to thetEntityContext method
has methods that let the bean return a reference to itself or get its primary key.

Next, the container calls thgbCreate method. ThesjbCreate method assigns data to the
bean's instance variables, and then the container writes that data to the databage. The
PostCreate method is called after thejoCreate method and performs any processing
needed after the bean is created. This simple example does no post-create processing.

The other empty methods are callback methods called by the container to notify the bean
that some event is about to occur. You would provide behavior for some of these methods if
you are using bean-managed persistence, and others if you need to provide bean-specific
cleanup or initialization operations. These cleanup and initialization operations take place at
specific times during the bean's lifecycle, and the container notifies the bean and calls the
applicable method at the appropriate time. Here is a brief description of the empty methods:

e TheejpPassivate andejbActivate ~ methods are called by the container before the
container swaps the bean in and out of storage. This process is similar to the virtual-
memory concept of swapping a memory page between memory and disk.

« The container calls thgbrRemove method if the home interface has a corresponding
remove method that gets called by the client.

* TheejbLoad andejpStore methods are called by the container before the container
synchronizes the bean's state with the underlying database.

The getBonus and getSocSec methods are called by clients to retrieve data stored in the
instance variables. This example hassag type > methods, but if it did, clients would call

them to change the data in the bean's instance variables. Any changes to the instance vari-
ables result in an update to the table row in the underlying database.

LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000

package Beans;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EntityBean;
import javax.ejb.EntityContext;

public class BonusBean implements EntityBean {

public double bonus;
public String socsec;
private EntityContext ctx;

public double getBonus() {
return this.bonus;

}

public String getSocSec() {
return this.socsec;

}

public String ejbCreate(double bonus,
String socsec)
throws CreateException{
/ICalled by container after setEntityContext
this.socsec=socsec;
this.bonus=bonus;
return null;

}

public void ejbPostCreate(double bonus,
String socsec) {
/ICalled by container after ejbCreate

}

/IThese next methods are callback methods that
/lare called by the container to notify the
/[Bean some event is about to occur

public void ejbActivate() {
/ICalled by container before Bean
/lswapped into memory

}

public void ejbPassivate() {
/ICalled by container before
//Bean swapped into storage

}

LESSON 2 A SIMPLE ENTITY BEAN

31

32 SEPTEMBER 27, 2000

public void ejbRemove() throws RemoteException {
/ICalled by container before
//data removed from database

}

public void ejbLoad() {
/ICalled by container to
llrefresh entity Bean's state

}

public void ejbStore() {
/ICalled by container to save
//Bean's state to database

}

public void setEntityContext(EntityContext ctx){
//Called by container to set Bean context

}

public void unsetEntityContext()}{

/ICalled by container to unset Bean context
}

}

Change the Servlet

The BonusServlet code for this lesson is very similar to the Lesson 1 version with changes in
theinit anddoGet methods. Thénit method for this lesson looks up both theicBean
session bean, and thenusBean entity bean.

public class BonusServlet extends HttpServlet {
CalcHome homecalc;
BonusHome homebonus;
Bonus theBonus, record;

public void init(ServletConfig config)
throws ServletException{
try {
InitialContext ctx = new InitialContext();
Object objref = ctx.lookup("bonus");
Object objref2 = ctx.lookup(“calcs");
homebonus=(
BonusHome)PortableRemoteObject.narrow(
objref, BonusHome.class);
homecalc=(CalcHome)
PortableRemoteObject.narrow(
objref2, CalcHome.class);

LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 33

} catch (Exception NamingException) {
NamingException.printStackTrace();
}
}

Thetry statement in th@oGet method creates thealcBean andBonusBean home inter-

faces. After callingcalcBonus to calculate the bonus, tf@nusHome.create method is

called to create an entity bean instance and a corresponding row in the underlying database
table. After creating the table, thBonusHome.findByPrimaryKey method is called to
retrieve the same record by its primary key (social security number). Next, an HTML page is
returned to the browser showing the data originally passed in, the calculated bonus, and the
data retrieved from the database table row.

Thecatch statement catches and handles duplicate primary key values (social security num-
bers). The underlying database table cannot have two rows with the same primary key, so if
you pass in the same social security number, the servlet catches and handles the error before
trying to create the entity bean. In the event of a duplicate key, the servlet returns an HTML
page with the original data passed in, the calculated bonus, and a duplicate key error mes-
sage.

try {
Calc theCalculation;

/IRetrieve Bonus and Social Security Information
String strMult = request.getParameter(
"MULTIPLIER");//Calculate bonus
Integer integerMult = new Integer(strMult);
multiplier = integerMult.intValue();
socsec = request.getParameter("SOCSEC");
/ICalculate bonus
double bonus = 100.00;
theCalculation = homecalc.create();
calc = theCalculation.calcBonus(
multiplier, bonus);
/ICreate row in table
theBonus = homebonus.create(calc, socsec);
record = homebonus.findByPrimaryKey(socsec);
/[Display data
out.printin("<H1>Bonus Calculation</H1>");
out.printin("<P>Soc Sec passed in: " +
theBonus.getSocSec() + "<P>");
out.printin("<P>Multiplier passed in: " +
multiplier + "<P>");
out.printin("<P>Bonus Amount calculated: " +
theBonus.getBonus() + "<P>");
out.printin("<P>Soc Sec retrieved: " +
record.getSocSec() + "<P>");
out.printin("<P>Bonus Amount retrieved: " +

LESSON 2 A SIMPLE ENTITY BEAN

34 SEPTEMBER 27, 2000

record.getBonus() + "<P>");
out.printin("</BODY></HTML>");
/ICatch duplicate key error
} catch (javax.ejb.DuplicateKeyException €) {
String message = e.getMessage();
/IDisplay data
out.printin("<H1>Bonus Calculation</H1>");
out.printin("<P>Soc Sec passed in: " +
socsec + "<P>");
out.printin("<P>Multiplier passed in: " +
multiplier + "<P>");
out.printin("<P>Bonus Amount calculated: " +
calc + "<P>");
out.printin("<P>" + message + "<P>");
out.printin("</BODY></HTML>");
} catch (Exception CreateException) {
CreateException.printStackTrace();
}
}

Compile

First, compile the entity bean and servlet. Refer to Lesson 1 for path and classpath settings,
and information on where to place the source files.

Compile the Entity Bean

Unix

#!/bin/sh

cd /home/monicap/J2EE
J2EE_HOME=/home/monicap/J2EE/j2sdkeel.2.1
CPATH=.:$J2EE_HOME/lib/j2ee.jar

javac -d . -classpath "$CPATH" Beans/BonusBean.java
Beans/BonusHome.java Beans/Bonus.java

Windows

cd \home\monicap\J2EE

set J2EE_HOME=\home\monicap\J2EE\j2sdkeel.2.1

set CPATH=.;%J2EE_HOME%\lib\j2ee.jar

javac -d . -classpath %CPATH% Beans/BonusBean.java
Beans/BonusHome.java Beans/Bonus.java

LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 35

Compile the Servlet

unix:

cd /home/monicap/J2EE/ClientCode
J2EE_HOME=/home/monicap/J2EE/j2sdkeel.2.1
CPATH=.:$J2EE_HOME/lib/j2ee.jar:/home/monicap/J2EE
javac -d . -classpath "$CPATH" BonusServlet.java

Windows:

cd \home\monicap\J2EE\ClientCode

set J2EE_HOME=\home\monicap\J2EE\j2sdkeel.2.1

set CPATH=.;%J2EE_HOME%\lib\j2ee jar;
\home\monicap\J2EE

javac -d . -classpath %CPATH% BonusServlet.java

Start the Platform and Tools

To run this example, you need to start the J2EE server, the Deploy tool, and Cloudscape
database. In different windows, type the following commands:

j2ee -verbose
deploytool
cloudscape -start

If that does not work, type this from theeg directory:

Unix

j2sdkeel.2.1/bin/j2ee -verbose
j2sdkeel.2.1/bin/deploytool
j2sdkeel.2.1/bin/cloudscape -start

Windows

j2sdkeel.2.1\bin\j2ee -verbose
j2sdkeel.2.1\bin\deploytool
j2sdkeel.2.1\bin\cloudscape -start

Assemble and Deploy

The steps in this section are:

LESSON 2 A SIMPLE ENTITY BEAN

36 SEPTEMBER 27, 2000

» Update Application File
» Create Entity Bean

Update Application File

The web archive (WAR) file containBonusServlet ~andbonus.html . Because you have
changedonusServiet , you have to update the J2EE application with the new servlet code.
» Local Applicatons Window: Highlight theBonusApp application.
» Tools Menu: SelectUpdate Application Files

Note: TheBonusApp application from the previous lesson is automatically uninstalled

Create Entity Bean

The steps to creating the EJB JAR for the entity bean are very similar to the steps for the ses-
sion bean covered in Lesson 1. There are a few differences, however, and those differences
are explained here.

Note: In this lesson, the entity bean goes in a separate JAR file from the session bean
to continue the example from Lesson 1 with the least number of changes. Because
these beans have related functionality, however, you could bundle and deploy them in
the same JAR file. You will see how to bundle related beans in the same JAR file in
Lesson 3.

File Menu:

» SelectNew Enterprise Bean
Introduction :

* Read and clicksext .
EJB JAR:

» Make sureBonusApp shows in thé&enterprise Bean will go in field
» SpecifyBonusJar as the display name.
* Click Add (the one next to th€ontentswindow).

Add Contents to JAR:

« Toggle the directory so the beans directory displays with its contents.
» SelectBonus.class
 Click Add.

LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000

e Se
Cli
¢ Se
Cli
Cli

lectBonusBean.class
ck Add.
lectBonusHome.class
ck Add.

ck ok

Add Contents to JAR — Select Enterprise Bea

Choose directony

Choose the classes for the Enterprize Bean being package.

Browse. ..

’719}{pnrﬁhnme!municapUEEEI

[

Beans

[Bonus.class

[Bonusjava

[y BonusBean.class
[BonusBean java
[} BonusHome.class
[y BonusHome java
[Caleclass

[calcjava

[CalrRean class

1]

~Enterprize Bean JAR claszes

Add R ermoy e

BeansiBonus.class
BeansiBonusBean.class
BeansiBonusHome.class

QI Cancel Help
Figure 11 Adding Classes to BonusJar
EJB JAR:
* Click Next .
General

LESSON 2 A SIMPLE ENTITY BEAN

37

38

SEPTEMBER 27, 2000
* Beans.BonusBean is the classname
* Beans.BonusHome is the Home interface
e Beans.Bonus is the Remote interface.
e EnterBonusBean as the display name.
» Click Entity.
e Click Next .
Entity Settings:

» SelectContainer-Managed persistence
* |n the bottom window, chedionus andsocsec .

» Specifyjava.lang.String for the primary key class. Note that the primary key has
to be a class type. Primitive types are not valid for primary keys.

» Specifysocsec for the primary key field name.
* Click Next .
Environment Entries:

» Click Next . This simple entity bean does not use properties (environment entries).
Enterprise Bean References:

» Click Next . This simple entity bean does not reference other enterprise beans.
Resource References:
¢ Click Next . This simple entity bean does not look up a database or JavdMagsion
object.
Security:

» Click Next . This simple entity bean does not use security roles.
Transaction Management

¢ Selectcontainer-managed transactions (if it is not already selected.

* In the list below makecreate , findByPrimaryKey , getBonus and getSocSec
required. This means the container starts a new transaction before running these meth-
ods. The transaction commits just before the methods end. There is more information
on these transaction settings in Enterprise JavaBeans Developer's Guide, Chapter 6
(java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/DevGuide TOC.html).

LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 39

Flease choose either bean-managed or cuntamer—managed transactionsz.
[fyou choose to have the container manage the transactions, you must define the
transaction attribute for each method.

EB. Transaction

CiBean-rmanaged ransacions,

Method Transaction Type
"'?’:5 rernovedjava.lang Object pararmetert) MotSupported
o [netEJBMetaDatal) MotSupported
. create(double parametert, java.lang.Stri.. | Reguired

4 getHandled MotSupported
rermov e MotSupported
rermovedjavax.ejb Handle parametert) MotSupported
findByPrirnany ey {java.lang.3tring para... |Required
getBonus) Reguired
netSocSech Feguired
etHomeHandle(MotSupported

Help Cancel = Back Mext = Finish |

Figure 12 Transaction Management

¢ Click Next .
* Click Finish

Local Applications

* SelectBonusApp.

* In the Inspecting window, selemDI names
» GiveBonusBean the JNDI name dfonus

« Press the Return key

Before the J2EE application can be deployed, you need to specify deployment settings for
the entity bean and generate the SQL. Here is how to do it:

LESSON 2 A SIMPLE ENTITY BEAN

40 SEPTEMBER 27, 2000

Local Applications window:

e SelectBonusBean .
Inspecting window:

» SelectEntity
* Click theDeployment Settings button to the lower right.
Deployment Settings:
e Specifyjdbc/Cloudscape (with a capitalC on Cloudscape) for the Database JNDI
name
* Press Return

* Make sure thecreate table on deploy andDelete table on Deploy boxes are
checked.

* Click Generate SQL now.

Note: If you get an error that the connection was refused, start the database as
described in Start the Platform and Tools (page 35).

LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 41

— Deployment Settings |

Database settings

Ok

Database JMDI Marme:
|jdb|:ICIDudscape |

Cancel

Iser narme: Passward: Help

Database table

[v] Create table on deploy
[w#] Delete table on undeploy

SCL for database access

Generate SAL now

EJBE method: S0l staternent:
ejbCreate SELECT "socsec" FROM "BonusBeanTahble" WHE
sjibRermoy e RE"socsec = ¢

ejbhStore

ejbLoad
findByPrirmary ey
Table Create
Table Delete

Figure 13 Generate SQL and Database Table

* When the SQL generation completes, selectitldaByPrimarykey ~ method in the EJB
method box. To the right a SQL statement appears. It shouldSBeEET “socsec”
FROM “BonusBeanTable” WHERE “socsec’=? . The question mark (?) represents the
parameter passed to theiByPrimarykey ~ method.

¢ Click ok

LESSON 2 A SIMPLE ENTITY BEAN

42 SEPTEMBER 27, 2000

Verify and Deploy the J2EE Application
Verify:
* With BonusApp selected, choogerifier ~ from theTools menu.

 In the dialog that pops up, clickk The window should tell you that no tests failed.
» Close the verifier window because you are now ready to deploy the application.

Note:In the Version 1.2 software you might getexsts app.WebURI error. The J2EE
application deploys in spite of it.

Deploy:

« Tools Menu: SelectTools.Deploy Application

Note: Do not check the Return Client Jar box. The only time you need to check this
box is when you use bean-managed persistence or deploy a stand-alone application for
the client program. This example uses a servlet and HTML page so this book should
not be checked. Checking this box creates a JAR file with deployment information
needed by a stand-alone application.

¢ Click Next . Make sure the JNDI names shaalcs for CalcBean andbonus for
BonusBean . Type any missing JNDI names in yourself, and presrdtuen key.

¢ Click Next . Make sure the Context Root name sh@wsusRoot . If it does not, type it
in yourself and press tiReturn key.

» Click Next .
e Click Finish to start the deployment.
* When deployment completes, cliok

LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000 43

Run the J2EE Application

The web server runs on port 8000 by default. To openbbmas.html page point your
browser tohttp:/localhost:8000/BonusRoot/bonus.html , which is where the Deploy
tool put the HTML file.

Fill in a social security number and multiplier, and click thémit button.BonusServiet
processes your data and returns an HTML page with the bonus calculation on it.

Bonus Calculation

Soc Sec passed in: 777777777
Multiplier passed in: 25

Bonus Amount calculated: 2500.0
Soc Sec retrieved: 7777777777
Bonus Amount retrieved: 2500.0

If you go back tobonus.html and change the multiplier to 2, but use the same social secu-
rity number, you see this:

Bonus Calculation

Soc Sec passed in: 777777777
Multiplier passed in: 2

Bonus Amount calculated: 200.0
Duplicate primary key.

LESSON 2 A SIMPLE ENTITY BEAN

44

LESSON 2 A SIMPLE ENTITY BEAN

SEPTEMBER 27, 2000

SEPTEMBER 27, 2000 45

Lesson 3

Cooperating Enterprise Beans

In Lesson 2 A Simple Entity Bean (page 27), the servlet looks up and creates a session bean

to perform a bonus calculation, and then looks up and creates an entity bean to store the

bonus value and related social security number. This lesson modifies the example so the ses-
sion bean looks up and creates the entity bean. Because the session and entity bean work
together, they are bundled into one JAR file for deployment.

Change the Session Bean (page 46)

Change the Servlet (page 49)

Compile (page 50)

Start the Platform and Tools (page 51)

Assemble the Application (page 52)

Verify and Deploy the J2EE Application (page 58)
Run the J2EE Application (page 60)

Note: Some people have trouble getting this lesson to work with 2 beans in one JAR
file. If this happens to you, delete the JAR file with the two beans and put each bean in
its own JAR file. You might need to stop and restart the server and tools before you can
generate SQI and deploy.

LESSON 3 COOPERATING ENTERPRISE BEANS

46 SEPTEMBER 27, 2000

Change the Session Bean

In this lesson and as shown in Figure 14, the entity bean is a client of the session bean. This
means the entity bean gets its data from the session bean instead @bfr@®Berviet as it

did in Lesson 2 A Simple Entity Bean (page 27). So, ¢heBonus method in the session

bean is modified to take the social security number as a parameter and create the entity bean.

HTML Form Servlet Session Bean
Browser (Web Server) (Application Server)
bonus.html BonusServlet.class calcBonus method

getRecord method

<

Entity|Bean

Database

Figure 14 Beans Working Together

CalcHome

The calcHome interface is unchanged. It has the sameate method that returns an
instance of the remote interface.

package Beans;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface CalcHome extends EJBHome {

public Calc create()
throws CreateException, RemoteException;

LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000 47

Calc

The calcBonus method in the Calc interface is changed to take the social security number as
a parameter. This is stalcBean can pass the bonus and social security number to the entity
bean after calculating the bonus value. A ngRecord method is added SBalcBean can

find an entity bean by its primary key (the social security number).

Also, thecalcBonus method signature throwsuplicateKeyException andCreateExcep-

tion . This is soBonusServlet can catch and handle either of these exception conditions.
DuplicateKeyException descends fronTreateException . If you design thecalcBonus
method to throwbuplicateKeyException , but catchCreateException , DuplicateKeyEx-

ception is not thrown. The way around this is to hawaicBonus throw both Dupli-
cateKeyException andCreateException

package Beans;

import javax.ejb.EJBObject;

import java.rmi.RemoteException;
import javax.ejb.DuplicateKeyException;
import javax.ejb.CreateException;

public interface Calc extends EJBObject {
public Bonus calcBonus(int multiplier,
double bonus,
String socsec)
throws RemoteException,
DuplicateKeyException,
CreateException;
public Bonus getRecord(String socsec)
throws RemoteException;

CalcBean

The code to create the entity bean is moved fBamusServiet to thecalcBonus method so

the bonus and social security number can be written to the entity bean after the bonus is cal-
culated. Thenomebonus variable is an instance variable so it can be used ircdle@onus

method to look up the entity bean and in §etRecord method to locate the entity bean cor-
responding to the social security number.

package Beans;
import java.rmi.RemoteException;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

LESSON 3 COOPERATING ENTERPRISE BEANS

48

import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import javax.ejb.DuplicateKeyException;
import javax.ejb.CreateException;

public class CalcBean implements SessionBean {
BonusHome homebonus;
/[Throw DuplicateKeyException and CreateException
/Iso BonusServlet can catch and handle these
/lexception conditions.
public Bonus calcBonus(int multiplier,
double bonus, String socsec)
throws DuplicateKeyException,
CreateException {
Bonus theBonus = null;
double calc = (multiplier*bonus);
try {
InitialContext ctx = new InitialContext();
Object objref = ctx.lookup("bonus");
homebonus = (BonusHome)
PortableRemoteObject.narrow(
objref, BonusHome.class);
} catch (Exception NamingException) {
NamingException.printStackTrace();

//Store data in entity bean

try {
theBonus = homebonus.create(calc, socsec);

} catch (java.rmi.RemoteException e) {
String message = e.getMessage();
e.printStackTrace();

}

return theBonus;

}

public Bonus getRecord(String socsec) {

Bonus record = null;

/lUse primary key to retrieve data from entity bean

try {
record = homebonus.findByPrimaryKey(socsec);

} catch (java.rmi.RemoteException e) {
String message = e.getMessage();

} catch (javax.ejb.FinderException e) {
e.printStackTrace();

}

return record;

}
public void ejbCreate() { }

LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000

SEPTEMBER 27, 2000 49

public void setSessionContext(
SessionContext context){

public void ejpRemove() { }
public void ejbActivate() { }
public void ejbPassivate() { }
public void ejbLoad() { }
public void ejbStore() { }

Change the Servlet

The BonusServlet program is very similar to the version in Lesson 2 A Simple Entity Bean
(page 27) with changes in thet anddoGet methods. Thenit method for this lesson
looks up thecalcBean session bean only.

public class BonusServlet extends HttpServlet {
CalcHome homecalc;
/INeed Bonus variables because CalcBean methods
/[called in the doGet method return instances
/lof type Bonus
Bonus theBonus, record;

public void init(ServletConfig config)
throws ServletException{

try {
InitialContext ctx = new InitialContext();

Object objref = ctx.lookup(“calcs");
homecalc = (CalcHome)
PortableRemoteObject.narrow(
objref, CalcHome.class);
} catch (Exception NamingException) {
NamingException.printStackTrace();

}
}

Thetry statement in thdoGet method calculates the bonus, creates the session bean home
interface, and calls thealcBonus and getRecord methods. If the methods successfully
complete, an HTML page is returned showing the data retrieved from the entity bean. If
DuplicateKeyException is thrown by thecalcBonus method, an HTML page is returned
showing the social security number and multiplier passed in, and the exception message,
Duplicate primary key

As before in Lesson 2 A Simple Entity Bean (page 27), dlveh statement catches and
handles duplicate primary key values (social security numbers).

LESSON 3 COOPERATING ENTERPRISE BEANS

50 SEPTEMBER 27, 2000

try {
Calc theCalculation;
//IRetrieve Bonus and Social Security Information
String strMult = request.getParameter(
"MULTIPLIER");//Calculate bonus
Integer integerMult = new Integer(strMult);
multiplier = integerMult.intValue();
socsec = request.getParameter("SOCSEC");
/ICalculate bonus
double bonus = 100.00;
theCalculation = homecalc.create();
/ICall session bean
//IPass 3 parameters:multiplier, bonus, and socsec
theBonus = theCalculation.calcBonus(
multiplier, bonus, socsec);
record = theCalculation.getRecord(socsec);
/IDisplay data returned by session bean
out.printin("<H1>Bonus Calculation</H1>");
out.printin("<P>Soc Sec retrieved: " +
record.getSocSec() + "<P>");
out.printin("<P>Bonus Amount retrieved: " +
record.getBonus() + "<P>");
out.printin("</BODY></HTML>");

} catch (javax.ejb.DuplicateKeyException e) {
String message = e.getMessage();
out.printin("<H1>Bonus Calculation</H1>");
out.printin("<P>Soc Sec passed in: " + socsec +

"<P>");
out.printin("<P>Multiplier passed in: " +

multiplier + "<P>");
out.printin("</BODY></HTML>");

} catch (Exception CreateException) {
CreateException.printStackTrace();

}
Compile

First, compile the session bean and servlet. Refer to Lesson 1 for path and classpath settings,
and information on where to place the source files.

LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000 51

Compile the Session Bean

Unix
#!/bin/sh
cd /home/monicap/J2EE
J2EE_HOME=/home/monicap/J2EE/j2sdkeel.2.1
CPATH=.:$J2EE_HOME/lib/j2ee. jar
javac -d . -classpath "$CPATH" Beans/CalcBean.java
Beans/CalcHome.java Beans/Calc.java

Windows

cd \home\monicap\J2EE

set J2EE_HOME=\home\monicap\J2EE\j2sdkeel.2.1

set CPATH=.;%J2EE_HOME%\lib\j2ee.jar

javac -d . -classpath %CPATH% Beans/CalcBean.java
Beans/CalcHome.java Beans/Calc.java

Compile the Servlet

unix:

cd /home/monicap/J2EE/ClientCode

J2EE_HOME=/home/monicap/J2EE/j2sdkeel.2

CPATH=.:$J2EE_HOME/lib/j2ee.jar:
/home/monicap/J2EE

javac -d . -classpath "$CPATH" BonusServlet.java

Windows:

cd \home\monicap\J2EE\ClientCode

set J2EE_HOME=\home\monicap\J2EE\j2sdkeel.2 set
CPATH=.;%J2EE_HOME%\lib\j2ee.jar:\home\monicap\J2EE
javac -d . -classpath %CPATH% BonusServlet.java

Start the Platform and Tools

To run this example, you need to start the J2EE server, the Deploy tool, and Cloudscape
database. In different windows, type the following commands:

j2ee -verbose
deploytool
cloudscape -start

If that does not work, type this from theeg directory:

LESSON 3 COOPERATING ENTERPRISE BEANS

52 SEPTEMBER 27, 2000

Unix

j2sdkeel.2.1/bin/j2ee -verbose
j2sdkeel.2.1/bin/deploytool
j2sdkeel.2.1/bin/cloudscape -start

Windows

j2sdkeel.2.1\bin\j2ee -verbose
j2sdkeel.2.1\bin\deploytool
j2sdkeel.2.1\bin\cloudscape -start

Assemble the Application

The steps for this section include the following:

* Create New J2EE Application
» Create New Web Component
* Bundle Session and Entity Beans in One JAR File

Create New J2EE Application

Rather than update the J2EE application from Lessons 1 and 2, these steps create a new
J2EE application.

DeleteBonusApp:

e Click BonusApp so it is highlighted
+ SelectDeletefrom theEdit menu
Create2BeansApp :

« From theFile menu, selediew Application.

* Click the right mouse button in thApplication Display Name field. 2BeansApp
appears as the display name.

« Click theBrowsebutton to open the file chooser to select the location where you want
the applicatioreARfile to be saved.

New Application file chooser:

» Locate the directory where you want to place the applicai@dile
« In this example, that directory fiscport/home/monicap/J2EE
« In theFile namefield, type2BeansApp.ear .

LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000 53

» Click New Application.
» Click OK.

Create New Web Component

Now, go through the steps to create the WAR file. These steps are outlined in Lesson 1 and
summarized below. With 2BeansApp selected,

File Menu:

¢ SelectNew Web Component .
Introduction :

* Read and Cliclext
War File General Properties

» Specify BonusWar for the display name.

» Click Add

¢ Go to theclientCode directory and addonus.html

* Click Next

» Go to theclientCode directory and addonusServiet.class
* Click Finish

War File General Properties

¢ Click Next .
Choose Component Type:

* Make sureDescribe a servlet is selected.
* Click Next .
Component General Properties

* MakeBonusServiet the servlet class
« Make the display han@onusServiet
* Click Next .

Component Initialization Parameters

* Click Next .
Component Aliases

* SpecifyBonusAlias
* Click Finish

LESSON 3 COOPERATING ENTERPRISE BEANS

54 SEPTEMBER 27, 2000

Inspecting window:

* Select Web Context
» SpecifyBonusRoot .

Bundle Session and Entity Beans in one JAR File

In this lesson, you will put both the session and entity beans in the same JAR file. To do this,
you first create the JAR file with only the session bean in it, and then add the entity bean to
that JAR file.

Create JAR with Session Bean
With 2BeansApp selected,

File Menu:

» SelectNew Enterprise Bean
Introduction :

* Read and clicksext .
EJB JAR:

» Make sureBeansApp shows in thénterprise Bean will go infield.

» Specify2BeansJar as the display name.

* Click Add (the one next to th€ontentswindow).

» Toggle the directory so the Beans directory displays with its contents.
» Selectcalc.class

» Click Add.
» SelectCalcBean.class
e Click Add.
e SelectcalcHome.class
» Click Add.
Enterprise Bean JAR classes
« Make sure YyOu Sseeeans/Calc.class , Beans/CalcHome.class , and Beans/Cal-
cBean.class in the display.
» Click ok
EJB JAR:
* Click Next .

LESSON 3 COOPERATING ENTERPRISE BEANS

55 SEPTEMBER 27, 2000

General
* CalcBean is the classnameeans.CalcHome is the Home interface, arikans.Calc
is the Remote interface.
* EntercalcBean as the display name.
¢ Click session and stateless.
e Click Next .
Environment Entries:

¢ Click Next . This simple session bean does not use properties (environment entries).
Enterprise Bean References:

« lick Next . The references are handled during deployment rather than here.
Resource References:
* Click Next . This simple session bean does not look up a database or Javadéasion
object.
Security:

» Click Next . This simple session bean does not use security roles.
Transaction Management

» SelectContainer-managed transactions (if it is not already selected).

¢ Inthe list below makealcBonus , andgetRecord required. This means the container
starts a new transaction before running these methods. The transaction commits just
before the methods end. You can find more information on these transaction settings
in Chapter 6 of the Enterprise JavaBeans Developer's Guide.

¢ Click Next.
Review Settings:

» Click Finish
Local Applications:

* Select2BeansApp .

 Inthe Inspecting window, sele@tiDl names, giveCalcBean the JNDI name ofalcs ,
and press the Return key.

Add the Entity Bean

With 2BeansApp selected,

File Menu:

LESSON 3 COOPERATING ENTERPRISE BEANS

56

SEPTEMBER 27, 2000

* Select New Enterprise Bean

Introduction :

* Read and clickiext .

EJB JAR:

¢ Make sureBeansJar shows in theEnterprise Bean will go in field. This setting will
add the new bean to the existing JAR file instead of putting the new bean in its own
JAR file.

¢ Click Add (the one next to th€ontentswindow).
« Toggle the directory so the Beans directory displays with its contents.
e SelectBonus.class

¢ Click Add.
» SelectBonusBean.class
e Click Add.
e SelectBonusHome.class
» Click Add.
Enterprise Bean JAR classes
« Make sure You Sse@eans/Bonus.class , Beans/BonusHome.class , and Beans/
BonusBean.class in the display.
» Click ok
EJB JAR:
e Click Next .

General

* Make sureBeans.BonusBean is the classnameaeans.BonusHome is the Home inter-
face, andeans.Bonus is the Remote interface.

* EnterBonusBean as the display name.
e Click Entity.
e Click Next .

Entity Settings:

» SelectContainer managed persistence

 n the window below, checkoonus and socsec . The primary key class is
java.lang.String , and the primary key field namesdscsec . Note that the primary
key has to be a class type. Primitive types are not valid for primary keys.

¢ Click Next .

LESSON 3 COOPERATING ENTERPRISE BEANS

57 SEPTEMBER 27, 2000

Environment Entries:

« Click Next . This simple entity bean does not use properties (environment entries).
Enterprise Bean References:

» Click Next . This simple entity bean does not reference other enterprise Beans.
Resource References:
» Click Next . This simple entity bean does not look up a database or JavaMagsion
object.
Security:

« Click Next . This simple entity bean does not use security roles.
Transaction Management

» SelectContainer-managed transactions (if it is not already selected).

¢ In the list below makecreate , findByPrimaryKey , getBonus and getSocSec
required. This means the container starts a new transaction before running these meth-
ods. The transaction commits just before the methods end. You can find more informa-
tion on these transaction settings in Chapter 6 of the Enterprise JavaBeans Developer's
Guide.

* Click Next .
Review Settings:

» Click Finish
Local Applications:

* Select2BeansApp .

 Inthe Inspecting window, selemtiDI names, giveBonusBean the JNDI hame offionus
andcalcBean the JNDI name ofalcs

» Press the Return key after each entry.
Before the J2EE application can be deployed, you need to specify deployment settings for
the entity bean and generate the SQL. Here is how to do it:
Local Applications window:

* SelectBonusBean .
Inspecting window:

» SelectEntity
* Click theDeployment Settings button to the lower right.
Deployment Settings window:

LESSON 3 COOPERATING ENTERPRISE BEANS

58 SEPTEMBER 27, 2000

» Specifyjdbc/Cloudscape (with a capitalC on Cloudscape) for the Database JNDI
name

¢ Press Return

* Make sure thecreate table on deploy andDelete table on Deploy boxes are
checked

* Click Generate SQL now.

Note: If you get an error that the connection was refused, start the database as
described in Start the Platform and Tools (page 51).

When the SQL generation completes,

» Select theaindByPrimarykey ~ method in the EJB method box.

« Totherighta SQL statement appears. It should BBAECT “socsec” FROM “Bonus-
BeanTable” WHERE *“socsec’=? . The question mark (?) represents the parameter
passed to théndByPrimarykey =~ method.

¢ Click ok

Verify and Deploy the J2EE Application

Before you deploy the application, it is a good idea to run the verifier. The verifier will pick
up errors in the application components such as missing enterprise bean methods that the
compiler does not catch.

Note If you get a Save error when you verify or deploy, shut everything down and
restart the server and tools.

Verify:
» With 2BeansApp selected, chooseerifier from theTools menu.

* In the dialog that pops up, clickk The window should tell you there were no failed
tests.

« Close the verifier window because you are now ready to deploy the application.
Note: In the Version 1.2.1 software you might gettests app.WebURI error. This
means the deploy tool did not putvear extension on th&vARile duringwARile cre-
ation. This is a minor bug and the J2EE application deploys just fine in spite of it.

Deploy:

LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000 59

From theTools menu, chooseeploy Application . A Deploy BonusAppdialog box

pops up.

Verify that the Target Server selection is either localhost or the name of the host run-
ning the J2EE server.

Note: Do not check the Return Client Jar box. The only time you need to check this
box is when you use bean-managed persistence or deploy a stand-alone application for
the client program. This example uses a servlet and HTML page so this book should
not be checked. Checking this box creates a JAR file with deployment information
needed by a stand-alone application.

Click Next .

Make sure the JNDI names show fafcs for CalcBean andbonus for BonusBean . If
they do not, type the JNDI names in yourself, and presscthe key.

Click Next . Make sure the Context Root name sh@wsusRoot . If it does not, type it
in yourself and press theturn key.

Click Next .

Click Finish to start the deployment. A dialog box pops up that displays the status of
the deployment operation.

When it is complete, the three bars on the left will be completely shaded as shown in
Figure 15. When that happens, cliok

LESSON 3 COOPERATING ENTERPRISE BEANS

60 SEPTEMBER 27, 2000

— Deployment Progress
Frogress

Contacted server.. =

wpplication Bonusapp transferred

BonusApp has 1 ejbs, 1 web components t

Deploying Ejhs...

Frocessing heans ...

Generating wrapper code for calcs

Compiling wrapper classes for calcs

Compiling RMEIOP classes for calcs

M aking client JARS.

haking server JARS.

contact the web server and ask it to run: fex
eh Components Deployed.

Deployrment of BonusfApp is complete.

Client code for the deploved application Bo

#14

4

Figure 15 Deploy Application

Run the J2EE Application

The web server runs on port 8000 by default. To openbbmes.html page point your
browser tohttp://localhost:8000/BonusRoot/bonus.html , which is where the Deploy
tool put the HTML file.

 Fill'in a social security number and multiplier.

» Click the submit button.BonusServiet — processes your data and returns an HTML
page with the bonus calculation on it.
Bonus Calculation

Soc Sec retrieved: 777777777
Bonus Amount Retrieved: 200.0

If you supply the same social security number twice, you will see something similar to this:
Bonus Calculation
Soc Sec passed in: 777777777

Multiplier passed in: 2
Duplicate primary key

LESSON 3 COOPERATING ENTERPRISE BEANS

SEPTEMBER 27, 2000

61

Lesson 4

JavaServer Pages Technology

JavaServer Pag@s(JSP) technology lets you put segments of servlet code directly into a
static HTML page. When the JSP Page is loaded by a browser, the servlet code executes and
the application server creates, compiles, loads, and runs a background servlet to execute the
servlet code segments and return an HTML page or print an XML report.

This lesson changes the WAR file from Lesson 3 Cooperating Enterprise Beans (page 45) to
use a JSP Page insteadofusServiet

Create the JSP Page (page 62)

Change bonus.html (page 66)

Start the Platform and Tools (page 67)

Remove the WAR File (page 67)

Create New WAR Flle (page 67)

Verify and Deploy the J2EE Application (page 68)
Run the J2EE Application (page 70)

More Information (page 71)

LESSON 4 JAVASERVER PAGES TECHNOLOGY

62 SEPTEMBER 27, 2000

Create the JSP Page

A JSP Page looks like an HTML page with servlet code segments embedded between vari-
ous forms of leading<¢9 and closing %> JSP tags. There are matpServiet methods

such asnit , doGet, Or doPost . Instead, the code that would normally be in these methods

is embedded directly in the JSP Page using JSP scriptlet tags.

The following JSP Pagaénus.jsp) is equivalent to BonusServlet from Lesson 3 Cooperat-

ing Enterprise Beans (page 45). A more detailed description of the JSP tags follows the code
listing. Note that JSP tags cannot be nested. For example, you cannot nest a JSP comment
tag within a JSP scriptlet tag.

<HTML>
<HEAD>
<TITLE>Bonus Calculation</TITLE>
</HEAD>
<%-- Comment
Scriptlet for import statements
<%@ indicates a jsp directive --%>
<%@ page import="javax.naming.*" %>
<%@ page import="javax.rmi.PortableRemoteObject" %>
<%@ page import="Beans.*" %>
<%-- Comment
Scriptlet to get the parameters,
convert string to Integer to int for bonus
calculation, and declaref/initialize bonus
variable. <% indicates a jsp scriptlet --%>
<%! String strMult, socsec; %>
<%! Integer integerMult; %>
<%! int multiplier; %>
<%! double bonus; %>
<%
strMult = request.getParameter("MULTIPLIER");
socsec = request.getParameter("SOCSEC");
integerMult = new Integer(strMult);
multiplier = integerMult.intValue();
bonus = 100.00;
%>
<%-- Comment
Scriptlet to look up session Bean --%>
<%
InitialContext ctx = new InitialContext();
Object objref = ctx.lookup(“calcs");
CalcHome homecalc = (CalcHome)
PortableRemoteObject.narrow(
objref, CalcHome.class);
%>

LESSON 4 JAVASERVER PAGES TECHNOLOGY

SEPTEMBER 27, 2000 63

<%-- Comment
Scriptlet to create session Bean,
call calcBonus method, and retrieve a database
record by the social security number
(primary key) --%>
<%
try {
Calc theCalculation = homecalc.create();
Bonus theBonus = theCalculation.calcBonus(
multiplier,
bonus,
SOCSec);
Bonus record = theCalculation.getRecord(socsec);
%>
<%-- Comment
HTML code to display retrieved data
on returned HTML page. --%>
<H1>Bonus Calculation</H1>
Social security number retrieved:
<%= record.getSocSec() %>
<p>
Bonus Amount retrieved: <%= record.getBonus() %>
<pP>
<%-- Comment
Scriptlet to catch DuplicateKeyException --%>
<%
} catch (javax.ejb.DuplicateKeyException e) {
String message = e.getMessage();
%>
<%-- Comment
HTML code to display original data passed to JSP
on returned HTML page --%>
Social security number passed in: <%= socsec %>
<pP>
Multiplier passed in: <%= strMult %>
<pP>
Error: <%= message %>
<%-- Comment
Scriptlet to close try and catch block --%>
<%
}
%>
<%-- Comment
HTML code to close HTML body and page --%>
</BODY>
</HTML>

LESSON 4 JAVASERVER PAGES TECHNOLOGY

64 SEPTEMBER 27, 2000

Comments

The first seven lines ddonus.jsp show straight HTML followed by a JSP comment. JSP
comments are similar to HTML comments except they start with- instead of<!-- |,

which is how they look in HTML. You can use either JSP or HTML comments in a JSP file.
HTML comments are sent to the client's web browser where they appear as part of the
HTML page, and JSP comments are stripped out and do not appear in the generated HTML.

Note: | found that putting a colon in a JSP comment ag%3- Comment: Scriptlet
for import statement s . . . created a runtime error that went away when | took
the colon out.

<HTML>
<HEAD>
<TITLE>Bonus Calculation</TITLE>
</HEAD>
<%-- Comment
Scriptlet for import statements
<%@ indicates a jsp directive --%>

Directives

JSP directives are instructions processed by the JSP engine when the JSP Page is translated
to a servlet. The directives used in this example tell the JSP engine to include certain pack-
ages and classes. Directives are enclosed byptlaendv>directive tags.

<%@ page import="javax.naming.*" %>

<%@ page import="javax.rmi.PortableRemoteObject" %>
<%@ page import="Beans.*" %>

Declarations

JSP declarations let you set up variables for later use in expressions or scriptlets. You can
also declare variables within expressions or scriptlets at the time you use them. The scope is
the entire JSP Page, so there is no concept of instance variables. That is, you do not have to
declare instance variables to be used in more than one expression or scriptlet. Declarations
are enclosed by thew! and %> declaration tags. You can have multiple declarations. For
example <%! double bonus; String text; %>

<%! String strMult, socsec; %>
<%! Integer integerMult; %>
<%! int multiplier; %>

<%! double bonus; %>

LESSON 4 JAVASERVER PAGES TECHNOLOGY

SEPTEMBER 27, 2000 65

Scriptlets

JSP scriptlets let you embed java code segments into the JSP page. The embedded code is
inserted directly into the generated servlet that executes when the page is requested. This

scriptlet uses the variables declared in the directives described above. Scriptlets are enclosed

by the<%and>scriptlet tags.

<%
strMult = request.getParameter("MULTIPLIER");
socsec = request.getParameter("SOCSEC");
integerMult = new Integer(strMult);
multiplier = integerMult.intValue();
bonus = 100.00;

%>

Predefined Variables

A scriptlet can use the following predefined variablgsssion |, request , response , out ,
andin . This example uses the request predefined variable, which ist@gervietRe-
quest oObject. Likewise,response iS an HttpServietResponse object, out is a Print-
Writer Object, andn is aBufferedReader object.

Predefined variables are used in scriptlets in the same way they are used in servlets, except
you do not declare them.

<%
strMult = request.getParameter("MULTIPLIER");
socsec = request.getParameter("SOCSEC");
integerMult = new Integer(strMult);
multiplier = integerMult.intValue();
bonus = 100.00;

%>

Expressions

JSP expressions let you dynamically retrieve or calculate values to be inserted directly into
the JSP Page. In this example, an expression retrieves the social security number from the
Bonus entity bean and puts it on the JSP page.

<H1>Bonus Calculation</H1>
Social security number retrieved:
<%= record.getSocSec() %>
<p>
Bonus Amount retrieved: <%= record.getBonus() %>
<P>

LESSON 4 JAVASERVER PAGES TECHNOLOGY

66 SEPTEMBER 27, 2000

JSP-Specific Tags

The JavaServer Pages 1.1 specification defines JSP-specific tags that let you extend the JSP
implementation with new features and hide a lot of complexity from visual designers who
need to look at the JSP page and modify it. The JSP example in this lesson does not use any
JSP-specific tags, but you will see an example of these tags in the next lesson. The JSP-spe-
cific tags defined in the 1.1 specification are the following:

jsp:forward andjsp:include to instruct the JSP engine to switch from the current page to
another JSP page.

jsp:useBean , jsp:setProperty , andjsp:getProperty let you embed and use JavaBeans
technology inside a JSP Page.

jsp:plugin - automatically downloads the appropriate Java Plug-In to the client to execute an
applet with the correct Java platform.

Change bonus.html

The only change you need to makebimus.html is to have theACTION parameter in the
HTML form invokeBonus.jsp instead oBonusServiet

<HTML>

<BODY BGCOLOR ="WHITE">
<BLOCKQUOTE>

<H3>Bonus Calculation</H3>

<FORM METHOD="GET" ACTION="Bonus.jsp">
<p>

Enter social security Number:

<P>

<INPUT TYPE="TEXT" NAME="SOCSEC"></INPUT>
<p>

Enter Multiplier:

<p>

<INPUT TYPE="TEXT" NAME="MULTIPLIER"></INPUT>
<P>

<INPUT TYPE="SUBMIT" VALUE="Submit">
<INPUT TYPE="RESET">

</FORM>

</[FORM>

</BLOCKQUOTE>

</BODY>

</HTML>

LESSON 4 JAVASERVER PAGES TECHNOLOGY

67 SEPTEMBER 27, 2000

Start the Platform and Tools

To run this example, you need to start the J2EE server, the Deploy tool, and Cloudscape
database. In different windows, type the following commands:

j2ee -verbose
deploytool
cloudscape -start

If that does not work, type this from theee directory:

Unix

j2sdkeel.2.1/bin/j2ee -verbose
j2sdkeel.2.1/bin/deploytool
j2sdkeel.2.1/bin/cloudscape -start

Windows

j2sdkeel.2.1\bin\j2ee -verbose
j2sdkeel.2.1\bin\deploytool
j2sdkeel.2.1\bin\cloudscape -start

Remove the WAR File

Because a JSP page is added to the Web component, you have to delete the WAR file from
the previous lesson and create a new one with the JSP page in it.

Local Applications:

» Click the2BeansApp icon so you can see its application components.
e SelectBonuswar so it is outlined and highlighted.
e Selectelete from theEdit menu.

Create New WAR Flle

File menu:

e SelectNew Web Component
Introduction :

* Read and Clichuext .

LESSON 4 JAVASERVER PAGES TECHNOLOGY

68 SEPTEMBER 27, 2000

War File General Properties

Note There appears to be a bug in the Deploy tool. Make sure yosadd.jsp first
followed by bonus.html . If you addbonus.html ~ first, Deploy tool put$onus.html
whereBonus.jsp should go, an@onus.jsp wherebonus.html should go. If this hap-
pens, you can manually fix the problem by copying them to their correct locations.
This is where they correctly belong after deployment:
~/j2sdkeel.2/public_html/JSPRoot/bonus.html
~/j2sdkeel.2/public_html/JSPRoot/WEB-INF/classes/Bonus.jsp

» SpecifyBonuswar for the display name.

» Click Add
* Go to theclientCode directory and addonus.jsp
e Click Next
* Go to thecClientCode directory and addonus.html
 Click Finish

War File General Properties

* Click Next .
Choose Component Type:

* Make suredescribe aJSP is selected. Click Next.
Component General Properties:

* MakeBonus.jsp the JSP filename
« Make the display ham@onusJSP.
» Click Finish
Inspecting window:
» Select Web Context
e SpecifyJsPRoot .

Verify and Deploy the J2EE Application

Before you deploy the application, it is a good idea to run the verifier. The verifier will pick
up errors in the application components such as missing enterprise Bean methods that the
compiler does not catch.

Verify:

LESSON 4 JAVASERVER PAGES TECHNOLOGY

69

SEPTEMBER 27, 2000

e With 2BeansApp selected, chooseerifier from theTools menu.

In the dialog that pops up, clickk The window should tell you no tests failed.
Close the verifier window because you are now ready to deploy the application.

Deploy:

From theTools menu, choosBeploy Application . A Deploy BonusAppdialog box

pops up.

Verify that the Target Server selection is either localhost or the name of the host run-
ning the J2EE server.

Note: Do not check the Return Client Jar box. The only time you need to check this
box is when you deploy a stand-alone application for the client program. This example
uses an HTML and JSP page so this book should not be checked. Checking this box
creates a JAR file with deployment information needed by a stand-alone application.

Click Next . Make sure the JNDI names shaalcs for CalcBean andbonus for
BonusBean . If they do not show these names, type them in yourself, and press the
Return Kkey.

Click Next . Make sure the Context Root name sha®BRoot . If it does not, type itin
yourself and press theeturn key.

Click Next .

Click Finish to start the deployment. A dialog box pops up that displays the status of
the deployment operation.

When it is complete, the three bars on the left will be completely shaded as shown in
Figure 16. When that happens, cliok

LESSON 4 JAVASERVER PAGES TECHNOLOGY

70 SEPTEMBER 27, 2000

— Deployment Progress
Progress

Contacted senver... -
Application BonusApp transferred e
BonusApp has 1 ejbs, 1 web componentst
Deploying Ejhs...

Frocessing beans ...

Generating wrapper code for calcs
Cormpiling wrapper classes for calcs
Cormpiling RMIIGP classes for calcs

M aking client JARS.

Making server JARS.

contact the web server and ask itto run: fex
eh Components Deployed.

Deployment of BonusApp is complete.
Client code for the deploved application Bo

‘| i I

514

Figure 16 Deploy Application

Run the J2EE Application

The web server runs on port 8000 by default. To openbdres.html page point your

browser tohttp://localhost:8000/JSPRoot/bonus.html , Which is where the Deploy
tool put the HTML file.

Note Deploy tool putsBonus.jsp under public_html/JSPRoot , and bonus.html
under public_html/JSPRoot/WEB-INF/classes , Which is opposite of where they
really belong. Manually copy them to their correct locations as foll@wsic_html/
JSPRoot/bonus.html andpublic_html/JSPRoot/WEB-INF/classes/Bonus.jsp.

* Fillin a social security number and multiplier

¢ Click thesubmit button.Bonus.jsp processes your data and returns an HTML page
with the bonus calculation on it.

LESSON 4 JAVASERVER PAGES TECHNOLOGY

71 SEPTEMBER 27, 2000

Bonus Calculation

Social Security number retrieved: 777777777
Bonus Amount Retrieved: 200.0

If you supply the same social security number twice, you will see something similar to this:
Bonus Calculation
Soc Sec passed in: 777777777

Multiplier passed in: 2
Error: Duplicate primary key

More Information

Another way to use JavaServer pages technology is in combination with JavaBeshs

nology where the JSP page presents a form to the user and calls on the JavaBean to process
the data entered on the form. You can see an example at the following kigi:
java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Client.fm.html#10649

This next URL takes you to an article with a great explanation of JavaServer pages and Java-
Beans technologie8uilding Your own JSP Components
http://developer.iplanet.com/viewsource/fields_jspcomp/fields_jspcomp.htm I

LESSON 4 JAVASERVER PAGES TECHNOLOGY

72

LESSON 4 JAVASERVER PAGES TECHNOLOGY

SEPTEMBER 27, 2000

SEPTEMBER 27, 2000 73

Lesson 5
Adding JavaBeans Technology
to the Mix

You can use JavaBedngechnology to put a JavaBean between the JSP pagestusan

session bean to get a better Model, View, Controller (MVC) separation. MVC is a design
pattern that consists of three kinds of objects. The Model provides the application business
logic, the View is its screen presentation, and the Controller is an object that manages what
happens when the user interacts with the View. A design pattern describes a recurring prob-
lem and its solution where the solution is never exactly the same for every recurrence.

Lesson 4 JavaServer Pages Technology (page 61) is set up so the HTML and JSP pages pro-
vide the screen presentation (View) and manage what happens when the user interacts with
the data (Controller). The entity and session b&anysBean andCalcBean) are the appli-

cation objects or Model.

This lesson uses a JSP page for the screen presentation (View), a JavaBean to manage what
happens when the user interacts with the View (Controller), and the entity and session beans
for the application objects (Model). Separating the Controller from the View like this lets the
JavaBean serve as a wrapper for the session bean and gives the example a much cleaner
MVC separation. An application that uses clear design patterns is easier to update, maintain,
and manage.

» About the Example (page 74)

« Create bonus.jsp (page 76)

» Create the JavaBeans Class (page 79)

« Bean Properties (page 81)

* Remove the WAR File (page 85)

* Create New WAR Flle (page 85)

« Verify and Deploy the J2EE Application (page 86)

* Run the J2EE Application (page 87)

* More Information (page 87)

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

74 SEPTEMBER 27, 2000

About the Example

In Lesson 4 JavaServer Pages Technology (page 61), the application user interface consisted
of an HTML page with an HTML form. The HTML form calls the JSP page when the user
clicks thesubmit button on the HTML page.

Another way to create the user interface is with one JSP page that includes the HTML form,
JSP scriptlets, and JSP-specific tags for interacting with the JavaBean. When the JSP page
loads, the HTML form is displayed and the scriptlet and JSP-specific tags for interacting
with the JavaBean are executed. Because no data has been supplied yet, the display looks
like Figure 17:

Bonus Calculation

Enter social security Mumber:

I

Enter Multiplier:

Submitl Reset|

Social security number retrieved:
Eonus Amount retrieved; 0.0

Error messages: None,

Figure 17 Whenbonus.jsp Loads

After the user enters some data and clicks3tenit button, the HTML form is redisplayed

and the scriptlet and JSP-specific tags for interacting with the JavaBean execute again with
the data supplied. The display looks something like Figure 18. This is becauseTtiza
parameter for the HTML form osonus.jsp recursively calls itself.

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

SEPTEMBER 27, 2000 75

Bonus Calculation

Enter social security Number:

I

Enter Multiplier:

| Submitl Resetl

Social security number retrieved 777777777
Eonus Amount retrieved: 200.0

Error messages:

Figure 18 After User Enters Data and Clicks Submit

If the user enters the same social security number, a duplicate key error is returned and dis-
played on the JSP page as shown in Figure 19.

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

76 SEPTEMBER 27, 2000

Bonus Calculation

Enter social security Number:

Enter Multiplier:

Submitl Resetl

social security number retrieved: 777777777

Eonus Amount retrieved: 0.0

Error messages: Duplicate primary key

Figure 19 Duplicate Key Error

Create bonus.jsp

The code fomonus.jsp s fairly straight forward because the code to look up the session
bean and calculate the bonus is now in the JavaBean. The first part of the file contains the
HTML code to create the form. The code to pass the HTML form data to the JavaBean is in
the second part of the file. The completewus.jsp file appears below. Look it over before
going on to the discussion of its scriptlet and JSP-specific tags for interacting with the Java-
Bean.

<HTML>

<BODY BGCOLOR = "WHITE">
<HEAD>

<TITLE>Bonus Calculation</TITLE>
</HEAD>

<BLOCKQUOTE>
<H3>Bonus Calculation</H3>

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

SEPTEMBER 27, 2000

<I--ACTION parameter calls this page-->
<FORM METHOD="GET" ACTION="bonus.jsp">

<P>

Enter social security Number:

<P>

<INPUT TYPE="TEXT" NAME="SOCSEC"></INPUT>
<p>

Enter Multiplier:
<p>
<INPUT TYPE="TEXT" NAME="MULTIPLIER"></INPUT>

<p>

<INPUT TYPE="SUBMIT" VALUE="Submit">
<INPUT TYPE="RESET">

</[FORM>

<!--Scriptlet and JavaBeans Tags start here -->
<jsp:useBean id = "jbonus" class = "JBonusBean"/>

<%! String sMult, ssec; %>

<%
sMult = request.getParameter("MULTIPLIER");
ssec = request.getParameter("SOCSEC");

%>

<jsp:setProperty name = "jbonus" property="strMult" value="<%=sMult%>"/>
<jsp:setProperty name = "jbonus" property="socsec" value="<%=ssec%>"/>

Social security number retrieved:
<jsp:getProperty name="jbonus" property="socsec"/>

<pP>
Bonus Amount retrieved:
<jsp:getProperty name="jbonus" property="bonusAmt"/>

<p>

Error messages:

<jsp:getProperty hame = "jbonus" property="message"/>
</BLOCKQUOTE>

</BODY>
</HTML>

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

77

78 SEPTEMBER 27, 2000

Specify the JavaBean

The following HTML tag specifies the JavaBean being used in this examplad Tharam-
eter defines an alias to use to reference the JavaBean, atlastheparameter specifies the
JavaBeans class. In this exampleithés jponus and theclass IS JBonusBean .

<jsp:useBean id = "jbonus"” class = "JBonusBean"/>

Get the Data

The following JSP scriptlets retrieve the user-supplied data from the HTML form input
fields. The multiplier is stored in th@vult String ~ variable, and the social security number
is stored in thasec String variable.

<%! String sMult, ssec; %>

<%
sMult = request.getParameter("MULTIPLIER");
ssec = request.getParameter("SOCSEC");

%>

Pass the Data to the JavaBean

The following HTML tags set two properties in the JavaBean. A property is a private field in
the JavaBean class. The first line usesjth&etProperty name tag to set th&rMult

field in the JBonusBean class (aliased by thgonus id) to the value stored in theMult
variable. The second line performs a similar operation forstlagec field in the JBonus-

Bean class.

<jsp:setProperty name = "jbonus" property="strMult" value="<%=sMult%>"/>
<jsp:setProperty name = "jbonus" property="socsec" value="<%=ssec%>"/>

The value="<%=ssec%>" expression sends the data contained in the ssec vari-
able to the socsec field in the JavaBean.

Retrieve Data from the JavaBean

Retrieving data from a JavaBean is similar to sending data to it. You ugspigeProp-

erty name tag and indicate the property (private field) whose data you want to get. The fol-
lowing getProperty name tag retrieves the data stored in ¢hesec private field of the
JBonusBean class (aliased by theonus id).

Social security number retrieved:
<jsp:getProperty nhame="jbonus" property="socsec"/>

The following tags perform similar operations for thehnusAmt andmessage fields in the
JBonusBean class.

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

79 SEPTEMBER 27, 2000

<pP>
Bonus Amount retrieved:
<jsp:getProperty name="jbonus" property="bonusAmt"/>

<p>
Error messages:
<jsp:getProperty name = "jbonus" property="message"/>

Create the JavaBeans Class

A JavaBeans class (or bean for short) looks just like any ordinary Jagaogramming lan-

guage class. But to be a bean, a JavaBeans class must follow a set of simple naming and

design conventions as outlined in the JavaBeans specification. Because beans follow the Jav-

aBeans specification, they can be accessed and managed by other programs and tools that
follow the same conventions.

In the Create bonus.jsp (page 76) section, HTML tags and JSP scriptlets are used to get and
set data in the private fields of thBonusBean class. This is possible because tisenus-
Bean class follows the JavaBeans naming and design conventions.

This section describes thBonusBean code and gives you a very simple introduction to Jav-
aBeans technology as it is used with JSP pages. Visit the JavaBeans home page at
java.sun.com/beans/index.html for further information on JavaBeans technology.

Here is thelBonusBean class in its entirety. A discussion of its pertinent parts follows.

import javax.naming.*;
import javax.rmi.PortableRemoteObiject;
import Beans.*;

public class JBonusBean {
private String strMult, socsec, message;
private double bonusAmt;
CalcHome homecalc;

public JBonusBean() {
try{
InitialContext ctx = new InitialContext();
Object objref = ctx.lookup(“calcs");
homecalc = (CalcHome)
PortableRemoteObject.narrow(
objref, CalcHome.class);
} catch (javax.naming.NamingException e) {
e.printStackTrace();
}
}

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

80

}

public double getBonusAmt() {
if(strMult != null){

Integer integerMult = new Integer(strMult);

int multiplier = integerMult.intValue();

try {
double bonus = 100.00;
Calc theCalculation = homecalc.create();
Bonus theBonus = theCalculation.calcBonus(

multiplier, bonus, socsec);
Bonus record = theCalculation.getRecord(
sSocsec);

bonusAmt = record.getBonus();
socsec = record.getSocSec();

} catch (javax.ejb.DuplicateKeyException e) {
message = e.getMessage();

} catch (javax.ejb.CreateException e) {
e.printStackTrace();

} catch (java.rmi.RemoteException €) {
e.printStackTrace();

}

return this.bonusAmt;

}else {

this.bonusAmt = 0O;

this.message = "None.";

return this.bonusAmt;

}
}

public String getMessage(){
return this.message;
}
public String getSocsec(){
return this.socsec;
}
public String getStrMult(){
return this.strMult;
}
public void setSocsec(String socsec) {
this.socsec = socsec;
}
public void setStrMult(String strMult) {
this.strMult = strMult;

}

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

SEPTEMBER 27, 2000

81 SEPTEMBER 27, 2000

Bean Properties

Properties define the data that a JavaBean makes accessible to other programs and tools
through get and set methods. The data might do things such as define the JavaBeans appeatr-
ance or behavior, or be used in or the result of a series of calculations and computations.
Properties are actually private class fields that should always be private and only accessible
through get and set methods.

The following code segment shows the private properties foriHeeusBean class. The
JBonusBean class has a correspondjeigproperty> method for each field and corre-
spondingset<property> methods for thetrMult andsocsec fields.

public class JBonusBean {
private String strMult, socsec, message;
private double bonusAmt;

Constructor
TheJBonusBean constructor looks up the session Bean.

public JBonusBean() {

try{
InitialContext ctx = new InitialContext();

Object objref = ctx.lookup(“calcs");
homecalc = (CalcHome)
PortableRemoteObject.narrow(
objref, CalcHome.class);
} catch (javax.naming.NamingException e) {
e.printStackTrace();

}
}

Set Methods

JBonusBean has two setter methods (methods prefixed with the werd. Setter methods
set properties (private fields) to specified values. The two setter methosissagec and
setStrMult for setting the socsec and strMult private fields (JavaBean prop-

erties)

In this example, the values used to set $hesec andstrmult properties come from the
setProperty name tags in the JSP page. The J2EE server uses the information supplied in
the following setProperty name tags to locate the corresponding set methods intoe
nusBean (aliased by th@bonusid):

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

82 SEPTEMBER 27, 2000

<jsp:setProperty name = "jbonus" property="strMult" value="<%=sMult%>"/>
<jsp:setProperty name = "jbonus" property="socsec" value="<%=ssec%>"/>

In the JBonusBean class, theset<property> methods follow naming conventions so the
J2EE server can map tketProperty name tags in the JSP file to the corregti<prop-
erty> methods to pass the data from the JSP page to the JavaBean.

With setter methods, the method name consists of the worénd the property name. The
property name is the name of one of tlenusBean private fields. While field names begin

with a lowercase letter by convention, the second word in a method name is always capital-
ized. So to set theocsec private field, the method name éstSocsec . The J2EE server
maps the uppercasecsec in the method name to the lowercasesec field. Setter meth-

ods have no return value and have one argument of the appropriate type.

public void setSocsec(String socsec) {
this.socsec = socsec;

}

public void setStrMult(String strMult) {
this.strMult = strMult;

}

Get Methods

JBonusBean has four getter methods (methods prefixed with the wgerd. Getter methods
get and return property values (private field values). The four getter methodstase
nusAmt, getMessage , getSocsec , andgetStrMult for returning data from th@onusAmt ,
message, socsec , andstrMult private fields (JavaBean properties).

In this example, the values used to setlibtusAmt andmessage fields come from theet-
BonusAmt method. The JSP page retrieves data fromJ#h@usBean properties using the
following getProperty name tags. The JSP page retrieves only the values it is interested in,
S0 you might notice that although there isBanusBean property for the multiplier (thetr-

Mult field), that value is not retrieved by the JSP page.

Social security number retrieved:

<jsp:getProperty name="jbonus" property="socsec"/>
<p>

Bonus Amount retrieved:

<jsp:getProperty name="jbonus" property="bonusAmt"/>

<p>

Error messages:
<jsp:getProperty name = "jbonus" property="message"/>

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

83

SEPTEMBER 27, 2000

Getter methods follow the same naming conventions as setter methods so the JSP page can
retrieve data from theBonusBean .Getter methods always have a return value and no argu-
ments. You might notice that although tbeBonusAmt method sets property values and

does not really need to return a value in this example, it rettaisonusAmt ~ to avoid a

runtime J2EE server error.

The getBonusAmt method uses aiftelse statement to handle the case wherestiault

value is supplied. When the JSP page is first loaded, the end user has not supplied any data,
but all tags and scriptlets on the page are executed anyway. In this event, the data value for
thestrMult property passed tiBonusBean is null , which results in a null multiplier and a

null bonusAmt value. A runtime server error occurs when the JSP page gets and tries to dis-
play thenull bonusAmt value. To prevent this runtime erregnusAmt is set to 0 in the event

anull strMult value is received from the JSP page.

public double getBonusAmt() {
if(strMult != null){
Integer integerMult = new Integer(strMult);
int multiplier = integerMult.intValue();
try {
double bonus = 100.00;
Calc theCalculation = homecalc.create();
Bonus theBonus = theCalculation.calcBonus(
multiplier, bonus, socsec);
Bonus record = theCalculation.getRecord(
sSocsec);
bonusAmt = record.getBonus();
socsec = record.getSocSec();
} catch (javax.ejb.DuplicateKeyException e) {
message = e.getMessage();
} catch (javax.ejb.CreateException e) {
e.printStackTrace();
} catch (java.rmi.RemoteException €) {
e.printStackTrace();
}
return this.bonusAmt;
}else {
this.bonusAmt = 0O;
this.message = "None.";
return this.bonusAmt;
}

}
public String getMessage(){

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

84 SEPTEMBER 27, 2000

return this.message;

}

public String getSocsec(){
return this.socsec;

}
public String getStrMult(){

return this.strMult;

}

public void setSocsec(String socsec) {
this.socsec = socsec;

}
public void setStrMult(String strMult) {

this.strMult = strMult;
}

Start the Platform and Tools
To run this example, you need to start the J2EE server, the Deploy tool, and Cloudscape
database. In different windows, type the following commands:

j2ee -verbose
deploytool
cloudscape -start

If that does not work, type this from theeg directory:

Unix

j2sdkeel.2.1/bin/j2ee -verbose
j2sdkeel.2.1/bin/deploytool
j2sdkeel.2.1/bin/cloudscape -start

Windows

j2sdkeel.2.1\bin\j2ee -verbose
j2sdkeel.2.1\bin\deploytool
j2sdkeel.2.1\bin\cloudscape -start

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

SEPTEMBER 27, 2000 85

Remove the WAR File

Because you are adding a completely new class to the application, you have to delete the
War file from the previous lesson and create a new one.

Local Applications:
» Click the2BeansApp icon so you can see its application components.

» SelectBonuswar so it is outlined and highlighted.
* SelectDelete from theEdit menu.

Create New WAR Flle

File menu:

* SelectNew Web Component .
Introduction :

* Read and Clichtext .
War File General Properties

« Specify BonusWar for the display name.

» Click Add.

¢ In the next window, go to th&lientCode directory, and addonus.jsp
¢ Click Next , go to theclientCode directory, addiBonusBean.class

* Click Finish

Note: Make sure you adgbnus.jsp before you addBonusBean.class

War File General Properties

» Click Next .
Choose Component Type:

* MakeBonus.jsp the JSP filename
« Make surebescribe a JSP is selected.
¢ Click Next.
Component General Properties:
* Make the display nam@onusJSP.
* Click Finish
Inspecting window:

* Select Web Context

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

86 SEPTEMBER 27, 2000

e SpecifyJSPRoot .

Verify and Deploy the J2EE Application

Before you deploy the application, it is a good idea to run the verifier. The verifier will pick
up errors in the application components such as missing enterprise bean methods that the
compiler does not catch.

Verify:
« With 2BeansApp selected, chooseerifier from theTools menu.
« In the dialog that pops up, cliokk The window should tell you there were no failed
tests. That is, if you used the session bean code provided for this lesson.
» Close the verifier window because you are now ready to deploy the application.

Note: In the Version 1.2.1 software you might gettests app.WebURI error. This
means the deploy tool did not putvear extension on th&vAaRfile duringwAKile cre-
ation. This is a minor bug and the J2EE application deploys just fine in spite of it.

Deploy:
e FromtheTools menu, choosBeploy Application . A Deploy BonusAppdialog box
pops up.
» Verify that the Target Server selection is either localhost or the name of the host run-
ning the J2EE server.

Note: Do not check the Return Client Jar box. The only time you need to check this
box is when you deploy a stand-alone application for the client program. This example
uses an HTML and JSP page so this book should not be checked. Checking this box
creates a JAR file with deployment information needed by a stand-alone application.

* Click Next . Make sure the JNDI names shaalcs for CalcBean andbonus for
BonusBean . If they do not show these names, type them in yourself, and press the
Return Kkey.

» Click Next . Make sure the Context Root name shaBRoot . If it does not, type it in
yourself and press threturn key.

* Click Next .

» Click Finish to start the deployment. A dialog box pops up that displays the status of
the deployment operation.

« When it is complete, the three bars on the left will be completely shaded as shown in
Figure 20. When that happens, cliok

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

SEPTEMBER 27, 2000 87

— Deployment Progress
Frogress

Contacted server... -

Anplication BonusApp transferred

EBonustpp has 1 ejbs, 1 web cormponentst

Deploying Ejhs...

Frocessing beans...

Generating wrapper code for calcs

Cormpiling wrapper classes for calcs

Cormpiling EMITIGP classes for calcs

mMaking client JARS.

mMaking server JARS.

contact the web server and ask itto run: fex
eh Components Deployed.

Deployment of BonusApp is complete.

Client code for the deployved application Bo

7]
QK

[4] B8

1 [

Figure 20 Deploy Application

Run the J2EE Application

The web server runs on port 8000 by default. To openddes.jsp page point your
browser tonttp://localhost:8000/JSPRoot/bonus.jsp , which is where the Deploy tool
put the JSP page.

e Fill in a social security number and multiplier

¢ Click thesubmit button.Bonus.jsp processes your data and returns an HTML page
with the bonus calculation on it.

See About the Example (page 74) for screen captures showing the application in action.

More Information

Visit the JavaBeans home pagehap:/java.sun.com/beans/index.htmi for further
information on JavaBeans technology.

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

88

LESSON 5 ADDING JAVABEANS TECHNOLOGY TO THE MIX

SEPTEMBER 27, 2000

SEPTEMBER 27, 2000 89

Lesson 6
Extensible Markup Language
(XML)

eXtensible Markup Language (XML) is a language for representing and describing text-
based data so the data can be read and handled by any program or tool that uses XML APIs.
Programs and tools can generate XML files that other programs and tools can read and han-
dle.

For example, a company might use XML to produce reports so different parties who receive
the reports can handle the data in a way that best suits their needs. One party might put the
XML data through a program to translate the XML to HTML so it can post the reports to the
web, another party might put the XML data through a tool to produce a stockholder booklet,
and yet another party might put the XML data through a tool to create a marketing presenta-
tion. Same data, different needs, and an array of platform-independent programs and tools to
use the same data in any number of different ways. These highly flexible and cost-effective
capabilities are available through XML tags, Document Type Definitions (DTDs) also
known as XML schemas, and XML APIs.

This lesson adapts the example from Lesson 5 Adding JavaBeans Technology to the Mix
(page 73) so the JavaBean class uses XML APIs to print a simple report where the data is
marked with XML tags.

« Marking and Handling Text (page 90)

» Change the JavaBean Class (page 90)

e The APIs (page 95)

« Update and Run the Application (page 96)

* More Information (page 96)

LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

90 SEPTEMBER 27, 2000

Marking and Handling Text

With XML you define markup tags to represent the different elements of data in a text file.
For example, if you have a text file that consists of a short article, you define XML tags to
represent the title, author, first level heads, second level heads, bullet lists, article text, and so
on. Once the data is represented by XML tags, you can create a Document Type Definition
(DTD) and/or eXtensible Style sheet Language (XSL) file to describe how you want the data
handled.

e XSL styles let you do things like map XML to HTML. For example, you can define an
XML title tag to represent the title of an article, and create an XSL file that maps the
XML title tag to the HTML H1 heading tag for display to the end user.

« ADTD (also known as an XML schema) contains specifications that allow other pro-
grams to validate the structure of an XML file to ensure the tagged data is in the correct
format. For example, a DTD for an article might allow one title tag, but zero or more
first and second level heads.

Any program capable of parsing XML can check for well-formed XML tags, and any pro-
gram capable of applying XSL styles or DTD specifications to XML data can handle the
tagged data intelligently. For example, if an article has two title tags, but the DTD allows
only one, the program returns an error. Checking an XML document against a DTD is what
is known as verification.

The nice thing about XML is the tagging is separate from the style sheet and DTD. This
means you can have one XML document and one to many style sheets or DTDs. Different
style sheets let you have a different presentation depending on how the document is used.
For example, an article on XML can have a style sheet for the different web sites where it is
to be published so it will blend with the look and feel of each site.

The current J2EE release does not have an eXtensible Style sheet Language Transformation
(XSLT) engine so it is not currently possible to use a style sheet to do things such as trans-
form an XML document into HTML for display.

Change the JavaBean Class

In this lesson, @enXML method is added to thiBonusBean class to generate the XML doc-
ument shown below. A description of the code to generate this file comes after the discussion
here of the XML document tags and structure.

<?xml version="1.0"?>
<report>

<bonusCalc sshum="777777777" bonusAmt="300.0" />
</report>

LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

SEPTEMBER 27, 2000 91

XML Prolog

The<?xml version="1.0"?> line is the XML prolog. An XML file should always start with

a prolog that identifies the document as an XML file. The prolog is not required and is read
only by humans, but it is good form to include it. Besides version information, the prolog
can also contain encoding and standalone information.

< Encoding information: indicates the character set used to encode the document data.
Uncompressed Unicode is shown<asml version="1.0" encoding="UTF-8"?>.
The Western European and English language character set is indicated by:
<?xml version="1.0" encoding="ISO-8859-1"?>.

» Standalone information: indicates if this document uses information in other files.
For example, an XML document might rely on a style sheet for information on how to
create the user interface in HTML, or a DTD for valid tag specifications.

Document Root

The <report> tag is the first XML tag in this file. It is the top-level XML tag and marks the
beginning of the document data. Another name for this level tag is root. XML tags have a
matching end tag, so the end of this document has the correspondisgt> tag to close

the pair.

You can give XML tags any name you want. This example usest because the XML

file is a bonus report. It could just as well be namesbt> or <begin> or whatever. The

name takes on meaning in the style sheet and DTD because that is where you assign specifi-
cations to tags by their names.

Child Nodes

The <bonusCalc> tag represents the bonus report. This tag is a child node that is added to
the root. It uses attributes to specify the social security number and bonus amount values
(ssnum andbonusAmt). You can define a DTD to check that thenusCalc tag has th@snum
attribute andoonusamt attributes, and have your program raise an error if an attribute is
missing or if attributes are present that should not be there.

<bonusCalc sshum="777777777" bonusAmt="300.0" />

Other XML Tags

There are a number of ways to tag data. This example uses empty tags, which are tags that
do not enclose data, use attributes to specify data, and are closed with a slash. The following
empty tag from this example, could be created so the data is enclosed by XML tags instead.
The XML parser checks that all data enclosed by data has what are called well-formed tags.
Well-formed tags consist of an opening tag and a closing tag as shown in the well-formed tag
example below.

LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

92 SEPTEMBER 27, 2000

Empty tag:
<bonusCalc sshum="777777777" bonusAmt="300.0" />

Well-formed tags:

<bonusCalc>
<ssnum>"777777777"</ssnum>
<bonusAmt>300.0</bonusAmt>

</bonusCalc>

XML comment tags look just like HTML comment tags.

<!-- Bonus Report -->
<bonusCalc sshum="777777777" bonusAmt="300.0" />

Processing Instructions give commands or information to an application that is processing
the XML data. Processing instructions have the foraratarget instructions?> where

target is the name of the application doing the processing,@mndctions embodies the
information or commands for the application to process. The prolog is an example of a pro-
cessing instruction, whesenl is the target andersion="1.0" embodies the instructions.
Note that the target namel is reserved for XML standards.

<?xml version="1.0"?>

You can also use processing instructions to do things like distinguish between different ver-
sions of a presentation such as the high-level executive version and the technical version.

JavaBean Code

The JBonusBean class for this lesson hasport statements for creating the XML docu-
ment, handling errors, and writing the document out to the terminal. This lesson writes the
XML output to the terminal to keep things simple. The XML output could just as well be
written to a file, but you would need to configure your browser to use Java Plug-In and
include a security policy file granting the JavaBean code permission to write to the file.

To generate the XML file for this lesson, you need to importefeementNode andxmiDocu-
ment classes. You also need tBeingWriter andIOException classes to write the XML
data to the terminal.

import javax.naming.*;

import javax.rmi.PortableRemoteObiject;
import Beans.*;

import java.io.StringWriter;

import java.io.lOException;

import com.sun.xml.tree.ElementNode;
import com.sun.xml.tree.XmIDocument;

This version of thelBonusBean class has one more instance variables. The session bean’s
remote interfacetheCalculation , heeds to be accessed from teBonusAmt andgenXML
methods. This is becaugenxML reads the database to generate XML for all records stored
in the database and has to be able to access the sessiongdramal method.

LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

SEPTEMBER 27, 2000 93

Calc theCalculation;

The JBonusBean .genXML method is called from thgetBonusAmt method after the process-

ing completes in the eventrMult is notnull . The first thing this method does is create an
XMLDocument object and the root node, and adds the root to the document. The root node
represents the top-level point in the document hierarchy (or tree) and is the point at which
processing begins.

private void genXML(){
Bonus records = null;
/ICreate XML document
XmiIDocument doc = new XmIDocument();
/ICreate node
ElementNode root = (ElementNode)
doc.createElement("report");
//Add node to XML document
doc.appendChild(root);

The try and catch block that comes next, gets the record out of the database, retrieves the
bonus amount and social security number from the record, converts the bonus amount to a
string, creates a child nodeofuscalc), and adds the social security number and bonus
amount to thebonusCalc child node as attributes. The child node represents the second
level in the document hierarchy or tree, and the attributes represent the third level.

try{
//Get database record
records = theCalculation.getRecord(socsec);
//IRetrieve the social security number from record
String ssRetrieved = records.getSocSec();
//Retrieve bonus amount from record
double bRetrieved = records.getBonus();
/IConvert double to string
Double bonusObj = new Double(bRetrieved);
String bString = bonusObj.toString();
/[Create child node
ElementNode bonusCalc = (ElementNode)
doc.createElement("bonusCalc");
/IAdd attributes to child node
bonusCalc.setAttribute("ssnum", ssRetrieved);
bonusCalc.setAttribute("bonusAmt”, bString);
//Add child node to root
root.appendChild(bonusCalc);
} catch (java.rmi.RemoteException e) {
e.printStackTrace();

}

The last part of thegenxML method creates atringWriter object, writes the document
hierarchy or tree to thstringwriter ~ object, and writes thstringwriter ~ object to the ter-
minal.

LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

94 SEPTEMBER 27, 2000

try{
StringWriter out = new StringWriter();
doc.write(out);
System.out.printin(out);

} catch (java.io.FileNotFoundException fe) {
System.out.printin("Cannot write XML");

} catch (IOException ioe) {
System.out.printin(“cannot write XML");

}

The hierarchy or tree structure for the XML document is called the Document Object Model
(DOM). Figure 21 shows a simplified representation of the DOM for this lesson’s example.
The API calls in thegenXML method create the DOM and you can make API calls to access
the DOM to do such things as add, delete, and edit child nodes, or validate the DOM against
a DTD. You can also create a DOM from an XML file.

Document Root
report
Child Node
bonusCalcs
Social Security Number Attribute Bonus Amount Attribute
ssnum bonusAmt

Figure 21 Document Object Model (DOM)

LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

SEPTEMBER 27, 2000 95

The APIs

Thejzeejar file that comes with your J2EE installation provides APIs for parsing and
manipulating XML data. The JAR file currently provides SAX, DOM, and J2EE XML APIs.
You can use whichever API best suits your needs because as shown in Figure 22, XML text
is independent of the platform and language of its creation..

Application written in XML Application written in
Java programming DOM SAX C++ running on
; — T~] ;
language running on Windows.
Unix. HTTP

Figure 22 Platform and Language Neutral Text

SAX and DOM

The SAX APl is an event-driven, serial-access mechanism that does element by element pro-
cessing.

The DOM API provides a relatively familiar tree structure of objects. You can use the DOM

API to manipulate the hierarchy of application objects it encapsulates. The DOM API is
ideal for interactive applications because the entire object model is present in memory,
where it can be accessed and manipulated by the user.

Constructing the DOM requires reading the entire XML structure and holding the object tree
in memory, so it is much more CPU and memory intensive. For that reason, the SAX API
will tend to be preferred for server-side applications and data filters that do not require an in-
memory representation of the data.

Note: You can find more information on the DOM and SAX APIs at this location:
http://java.sun.com/xml/docs/tutorial/overview/3_apis.html

J2EE

The platform-independent J2EE XML APIs use a DOM tree and provide a wealth of meth-
ods for manipulating the DOM hierarchy. The J2EE XML APIs are in the packaggun
and were used in this lesson’s example. Please note that these APIs are subject to change.

LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

96 SEPTEMBER 27, 2000

Update and Run the Application
Because all you have done in this lesson is change the JBonusBean class, you can simply
update and redeploy the application.

* Local Applicatons Window: Highlight the2BeansApp application.
« Tools Menu: Select Update and Redeploy Application.

Note: TheBonusApp application from the previous lesson is automatically uninstalled

The web server runs on port 8000 by default. To openddes.jsp page point your
browser tohttp://localhost:8000/JSPRoot/bonus.jsp , Which is where the Deploy tool
put the JSP page.

« Fillin a social security number and multiplier

e Click thesubmit button.Bonus.jsp processes your data and returns an HTML page
with the bonus calculation on it.

More Information

There is a lot of information about XML on the Web that you can access with a good search
engine. A very good web site v8vw.xml.com . Thejava.sun.com site has an XML tutorial
at http://java.sun.com/xml/docs/tutorial/index.html

LESSON 6 EXTENSIBLE MARKUP LANGUAGE (XML)

SEPTEMBER 27, 2000 97

Lesson 7
JDBC Technology and Bean-
Managed Persistence

Up to this point, the example J2EE application has written data to and read data from the
underlying Cloudscape database without your writing and SQL code. This is because the
container has been handling data storage and retrieval on behalf of the entity bean. Con-
tainer-managed persistence is the term used to describe the situation where the container
handles data storage and retrieval. This lesson shows you how to override the default con-
tainer-managed persistence and implement bean-managed persistence.

Bean-managed persistence is when you override container-managed persistence and imple-
ment entity or session bean methods to use the SQL commands you provide. Bean-managed
persistence can be useful if you need to improve performance or map data in multiple beans
to one row in a database table.

This lesson changes the entity bean in the example J2EE application to use bean-managed
persistence.

< Bean Lifecycle (page 98)

¢ Change the BonusBean Code (page 99)

* Change the CalcBean and JBonusBean Code (page 106)

< Create the Database Table (page 107)

¢ Remove the JAR File (page 109)

» Verify and Deploy the Application (page 111)

* Run the Application (page 112)

* More Information (page 113)

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

98 SEPTEMBER 27, 2000

Bean Lifecycle

The BonusBean (page 30) section in Lesson 3 shows the container-managed BonusBean
class. The only methods with implementations@onus to return the bonus valuget-

SocSec to return the social security number, agjieCreate to create an entity bean with the

bonus andsocsec Vvalues passed to it. The container takes care of such things as creating a
row in the database table for the data, and ensuring the data in memory is consistent with the
data in the table row. With bean-managed persistence, you have to implement all of this
behavior yourself, which means adding JOB@nd SQL code, and implementing the empty
methods in the container-managed example.

A session or an entity bean consists of business methods and lifecycle methods. In the exam-
ple,CalcBean has two business methodsicBean andgetRecord , andBonusBean has two
business methodgetBonus andgetSocsec . Both CalcBean andBonusBean have the fol-

lowing lifecycle methods. Business methods are called by clients and lifecycle methods are
called by the bean’s container.

* setEntityContext : The container calls this method first to pass an entity context
object to the entity bean. The entity context is dynamically updated by the container
so even if the entity bean is invoked by many clients over its lifetime, the context con-
tains current data for each invocation. A session bean has a correspeagisg
sionContext ~method that performs a similar function as tkeEntityContext
method.

* ejbCreate : The container calls this method when a client calls a create method in the
bean’s home interface. For each create method in the home interface, the bean has a
correspondingsjbCreate method with the same signature (parameters and return
value).

» ejbPostCreate: The container calls this method aftesjtloeeate method completes.
There is arejoPostCreate method for every ejbCreate method that takes the same
arguments as its corresponding create method. HowgwessiCreate has no return
value. UsesjbPostCreate to implement any special processing needed after the bean
is created, but before it becomes available to the client. Leave this method empty if no
special processing is needed.

* ejbRemove : The container calls this method when a client calls a remove method in the
bean’s home interface. The example J2EE application for this tutorial does not include
a remove method in the home interface.

* unsetEntityContext : The container calls this method after #jeRemove has been
called to remove the entity bean from existence. Only entity beans haveanbn-
tityContext ~ method. A session bean does not have a correspongsatpession-
Context method.

* ejbFindByPrimaryKey : The container calls this method when a client callsfithie
ByPrimarykey method in the bean’s home interface. For each find method in the home
interface, the bean has a correspondipgind< type > method with the same signa-
ture (parameters and return value).

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 99

* ejbLoad andejbStore : The container calls these methods to synchronize the bean’s
state with the underlying database. When a client sets or gets data in the bean such as
in the case of a get method, the container caistore to send the object data to the
database and callgbLoad to read it back in again. When a client calls a finder
method, the container cakl§bLoad to initialize the bean with data from the underly-
ing database.

* ejbActivate andejbPassivate : The container calls these methods to activate and
passivate the bean’s state. Activation and passivation refer to swapping a bean in and
out of temporary storage to free memory, which might occur if a given bean has not
been called by a client in a long time. Implementations dioPassivate might
include things like closing connections or files used by the bean, arfbferivate
might include things like reopening those same connections or files.

Change the BonusBean Code

This section walks through the bean-managed persist®sitgBean code. The first thing
you will notice is that there is a lot more code here than for the container-managed persis-
tence version.

Import Statements

ThelnitialContext , DataSource , andConnection interfaces are imported for establishing
a connection to the database. TheparedStatement interface is imported to be used as a
template to create a SQL request. HwultSet interface is imported to manage access to
data rows returned by a query. ThrnderException and SQLException classes are
imported to handle lookup and database access exceptions.

package Beans;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EntityBean;
import javax.ejb.EntityContext;
import javax.naming.InitialContext;
import javax.sql.DataSource;
import java.sqgl.Connection;

import java.sgl.PreparedStatement;
import java.sgl.ResultSet;

import javax.ejb.FinderException;
import java.sql.SQLEXxception;

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

100 SEPTEMBER 27, 2000

Instance Variables

The instance variables added to this lesson let you establish and close database connections.
The stringjava:comp/envijdbc/BonusDB indicates the resource reference name, which you

also specify when you add the entity bean to the J2EE application using the Deploy tool. In
this example, the resource reference is an alias to the Cloudscape datahafseapeDB)

where the table data is stored.

Later, you will create theoNugable in theCloudscapeDB , and during deployment, you will
mapjdbc/BonusDB t0 jdbc/CloudscapeDB

public class BonusBean implements EntityBean {
private EntityContext context;
private Connection con;
private String dbName =
"java:comp/env/jdbc/BonusDB";
private InitialContext ic = null;
private PreparedStatement ps = null;
private double bonus;
private String socsec;

Business Methods

The business methods have not changed for this lesson except for caligs-to
tem.out.printin , Which let you see the order in which business and lifecycle methods are
called at runtime.

public double getBonus() {
System.out.printin("getBonus");
return this.bonus;

}

public String getSocSec() {
System.out.printin("getSocSec");
return this.socsec;

}

LifeCycle Methods

These methods include calls 8ystem.out.printin S0 you can see the order in which
business and lifecycle methods are called at runtime.

ejbCreate

The ejbCreate method signature for this lesson thiRsisteException andSQLException

in addition toCreateException . SQLException is needed because thpcCreate method

for this lesson provides its own SQL code (it does not rely on the container to provide it),
andRemoteException is needed because this method performs remote access.

One thing to notice about this class is that it returssiag value which is the primary key,
but the declaration for this method in the home interface expects to recaimaua class

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 101

instance. The container uses the primary key returned by this method to creatibe
instance.

public String ejbCreate(double bonus, String socsec)
throws RemoteException,
CreateException,
SQLException {

this.socsec=socsec;

this.bonus=bonus;

System.out.printin("Create Method");
try {
//Establish database connection
ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup(dbName);
con = ds.getConnection();
/lUse PreparedStatement to form SQL INSERT statement
/Ito insert into BONUS table
ps = con.prepareStatement(
"INSERT INTO BONUS VALUES (?, ?)");
//Set 1st PreparedStatement value marked b y ? , with
/Isocsec and the 2nd value marked by ?) with bonus
ps.setString(1, socsec);
ps.setDouble(2, bonus);
ps.executeUpdate();
} catch (javax.naming.NamingException ex) {
ex.printStackTrace();
} finally {
/IClose database connection
ps.close();
con.close();
}
//IReturn primary key
return socsec;

}

ejbPostCreate

This method has the same signaturejasreate , but no implementation because this sim-
ple example performs no post create processing or initialization.

public void ejbPostCreate(double bonus,
String socsec)
throws RemoteException,
CreateException,
SQLException {
System.out.printin("Post Create");

}

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

102 SEPTEMBER 27, 2000

ejbFindByPrimaryKey

The container-managed version of BonusBean did not include an ejbFindByPrimaryKey
implementation because the container can locate database records by their primary keys if
you specify container-managed persistence and provide the primary key field during deploy-
ment. In this lessorBonusBean is deployed with bean-managed persistence so you must
provide an implementation for this method and throw @ Exception . The container-
managed version throvemoteException ~ andFinderException only.

If the find operation locates a record with the primary key passejptmdByPrimaryKey
the primary key value is returned so the container can cakjthead method to initialize
BonusBean With the retrievedionus andsocsec data.

One thing to notice about this class is that it returssiag value which is the primary key,
but the declaration for this method in the home interface expects to receimeua class

instance. The container uses the primary key returned by this method to creaibe
instance.

public String ejbFindByPrimaryKey(String primaryKey)
throws RemoteException,FinderException,
SQLException {
System.out.printin("Find by primary key");
try {
/[Establish database connection
ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup(dbName);
con = ds.getConnection();
/lUse PreparedStatement to form SQL SELECT statement
/Ito select from BONUS table
ps = con.prepareStatement(
"SELECT socsec FROM BONUS WHERE socsec = ? ");
ps.setString(1, primaryKey);
//Use ResultSet to capture SELECT statement results
ResultSet rs = ps.executeQuery();
/If ResultSet has a value, the find was successful,
/land so initialize and return key
if(rs.next()) {
key = primaryKey;
}else {
System.out.printin("Find Error");
}
} catch (javax.naming.NamingException ex) {
ex.printStackTrace();
} finally {
/IClose database connection
ps.close();
con.close();
}
/IReturn primary key
return key;

}

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 103

ejbLoad

This method is called after a successful calejgFindByPrimaryKey to load the retrieved
data and synchronize the bean data with the database data.

public void ejbLoad() {
System.out.printin("Load method");
try {
//Establish database connection
ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup(dbName);
con = ds.getConnection();
/lUse PreparedStatement to form SQL SELECT statement
/Ito select from BONUS table
ps = con.prepareStatement(
"SELECT * FROM BONUS WHERE SOCSEC = ?");
ps.setString(1, this.socsec);
//Use ResultSet to capture SELECT statement results
ResultSet rs = ps.executeQuery();
/I'f ResultSet has a value, the find was successful
if(rs.next()){
this.bonus = rs.getDouble(2);
}else {
System.out.printin("Load Error");

} catch (java.sql.SQLEXxception ex) {
ex.printStackTrace();

} catch (javax.naming.NamingException ex) {
ex.printStackTrace();

} finally {

try {
/IClose database connection

ps.close();
con.close();
} catch (java.sql.SQLException ex) {
ex.printStackTrace();
}
}
}

ejbStore

This method is called when a client sets or gets data in the bean to send the object data to the
database and keep the bean data synchronized with the database data.

public void ejbStore() {
System.out.printin("Store method");
try {
/I[Establish database connection
DataSource ds = (DataSource)ic.lookup(dbName);
con = ds.getConnection();
//lUse PreparedStatement to form SQL UPDATE statement

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

104 SEPTEMBER 27, 2000

/lto update BONUS table
ps = con.prepareStatement(
"UPDATE BONUS SET BOBUW= ? WHERE SOCSEC = ?");
//Set 1st PreparedStatement value marked by ? with
/lbonus and the 2nd value marked by ?) with socsec
ps.setDouble(1, bonus);
ps.setString(2, socsec);
int rowCount = ps.executeUpdate();
} catch (javax.naming.NamingException ex) {
ex.printStackTrace();
} catch (java.sql.SQLException ex) {
ex.printStackTrace();
} finally {
try {
/IClose database connection
ps.close();
con.close();
} catch (java.sql.SQLException ex) {
ex.printStackTrace();
}
}
}

ejpRemove

This method is called when a client callseanove method on the bean’s home interface. The
JavaBean client in this example does not providenmve method that a client can call to
removeBonusBean from its container. Nevertheless, the implementation foejaRemove
method is shown here. When the container aabBemove , ejpRemove gets the primary key

(socsec) from theocsec instance variable, removes the bean from its container, and deletes
the corresponding database row.

public void ejpRemove()
throws RemoteException {
System.out.printin("Remove method");
try {
DataSource ds = (DataSource)ic.lookup(dbName);
con = ds.getConnection();
ps = con.prepareStatement(
"DELETE FROM BONUS WHERE SOCSEC = ?");
ps.setString(1, socsec);
ps.executeUpdate();
} catch (java.sql.SQLException ex) {
ex.printStackTrace();
} catch (Exception ex) {
ex.printStackTrace();
try {
ps.close();
con.close();
} catch (java.sql.SQLException ex) {
ex.printStackTrace();
}

}

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 105

ejbActivate

When a bean has not been used in a long time, the container passivates it or moves it to tem-
porary storage where the container can readily reactivate the bean in the event a client calls
one of the bean’s business methods. This method callgethemarykey = method on the

entity context so the primary key is available to clients querying the bean. When a query is
made, the container uses the primary key to load the bean data.

public void ejbActivate() {
System.out.printin("Activate method");
socsec = (String)context.getPrimaryKey();

}

ejbPassivate

When a bean has not been used in a long time, the container passivates it or moves it to tem-
porary storage where the container can readily reactivate the bean in the event a client calls
one of the bean’s business methods. This method segsi tiheary key tonull to free mem-

ory while the bean is in the passive state.

public void ejbPassivate() {
System.out.printin("Passivate method");
socsec = null;

}

setEntityContext

This method is called by the container to initialize the beanigext instance variable.
This is needed because theActivate method calls theetPrimarykey method on the
context instance variable to move a passive bean to its active state.

public void setEntityContext(
javax.ejb.EntityContext ctx){
System.out.printin("setEntityContext method");
this.context = ctx;

}
unsetEntityContext

This method is called by the container to set¢betext instance variable teull after the

ejpRemove method has been called to remove the entity bean from existence. Only entity
beans have aimsetEntityContext method.

public void unsetEntityContext(){
System.out.printin("unsetEntityContext method");
ctx = null;
}

}

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

106 SEPTEMBER 27, 2000

Change the CalcBean and JBonusBean Code

BecauseBonusBean provides its own SQL code, th&alcBean.calchonus method, which
createsBonusBean instances, has to be changed to thiaws.sqgl. SQLException . Here is
one way to do make that change:

public class CalcBean implements SessionBean {
BonusHome homebonus;

public Bonus calcBonus(int multiplier,
double bonus, String socsec)
throws RemoteException,
SQLException,
CreateException {

Bonus theBonus = null;
double calc = (multiplier*bonus);

try {
InitialContext ctx = new InitialContext();
Object objref = ctx.lookup("bonus");
homebonus = (BonusHome)
PortableRemoteObject.narrow(
objref, BonusHome.class);
} catch (Exception NamingException) {
NamingException.printStackTrace();

}

//Store data in entity Bean
theBonus=homebonus.create(calc, socsec);
return theBonus;

}
The JBonusBean class has to be changed to catcbditmexception thrown bycCalcBean .
DuplicateKeyExcpetion is a sublcass otreateException , so it will be caught by the
catch (javax.ejb.CreateException e) statement.

public double getBonusAmt() {
if(strMult != null){
Integer integerMult = new Integer(strMult);
int multiplier = integerMult.intValue();
try {
double bonus = 100.00;
theCalculation = homecalc.create();
Bonus theBonus = theCalculation.calcBonus(
multiplier, bonus, socsec);
Bonus record = theCalculation.getRecord(
S0OCSec);
bonusAmt = record.getBonus();
socsec = record.getSocSec();
} catch (java.sgl.SQLException e) {
this.bonusAmt = 0.0;

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 107

this.socsec = "000";
this.message = e.getMessage();
} catch (javax.ejb.CreateException e) {
this.bonusAmt = 0.0;
this.socsec = "000";
this.message = e.getMessage();
} catch (java.rmi.RemoteException €) {
this.bonusAmt = 0.0;
this.socsec = "000";
this.message = e.getMessage();

}
genXML();

return this.bonusAmt;
}else {

this.bonusAmt = 0;

this.message = "None.";

return this.bonusAmt;

}
}

Create the Database Table

Because this example uses bean-managed persistence, you have to ceate/tatabase
table in theCloudscapeDB database. With container-managed persistence, the table is cre-
ated for you.

To make things easy, the database table is created with two serizieTable.sql and
cloudTable.sh (Unix) or cloudTable.bat (Windows/NT). For this example, there-
ateTable.sq| script goes in your/J2EE/Beans directory, and theloudTable.sh (Unix)
or cloudTable.bat (Windows/NT) script goes in youJ2EE directory.

To execute the scripts, go to theans directory and type the following:
Unix:
.IcloudTable.sh

Windows/NT:

..\cloudTable.bat

createTable.sql

This file is provided in the code download for this lesson.

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

108 SEPTEMBER 27, 2000

drop table bonus;

create table bonus
(socsec varchar(9) constraint pk_bonus primary key,
bonus decimal(10,2));

exit;

cloudTable.bat

This file is provided in the code download for this lesson.

rem cloudTable.bat

rem Creates BONUS table in CloudscapeDB.
rem

rem Place this script in ~\J2EE

rem To run: cd ~\J2EE\cloudTable.sh

rem

rem Change this next line to point to *your*

rem j2sdkeel.2.1 installation

rem

set J2EE_HOME=\home\monicap\J2EE\j2sdkeel.2.1
rem

rem Everything below goes on one line

java -Dij.connection.CloudscapeDB=
jdbc:rmi://localhost:1099/jdbc:cloudscape:
CloudscapeDB\;create=true -Dcloudscape.system.home=
%J2EE_HOME%\cloudscape -classpath
%J2EE_HOME%Iib\cloudscape\client.jar;
%J2EE_HOME%Iib\cloudscape\ tools.jar;
%J2EE_HOME%Iib\cloudscape\cloudscape.jar;
%J2EE_HOME%Iib\cloudscape\RmiJdbc jar;
%J2EE_HOME%lib\cloudscapelicense.jar;
%CLASSPATH% -ms16m -mx32m
COM.cloudscape.tools.ij createTable.sql

cloudTable.sh

This file is provided in the code download for this lesson.

#!/bin/sh

#

cloudTable.sh

Creates BONUS table in CloudscapeDB.
#

Place this script in ~\J2EE

To run: cd ~\J2EE\cloudTable.sh

#

Change this next line to point to *your*

j2sdkeel.2.1 installation

#
J2EE_HOME=/home/monicap/J2EE/j2sdkeel.2

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 109

#

Everything below goes on one line

java -Dij.connection.CloudscapeDB=jdbc:rmi:
INocalhost:1099/jdbc:cloudscape:CloudscapeDB\;
create=true -Dcloudscape.system.home=
$J2EE_HOME/cloudscape -classpath
$J2EE_HOME/lib/cloudscape/client.jar:
$J2EE_HOME/lib/cloudscape/tools.jar:
$J2EE_HOME/lib/cloudscape/cloudscape.jar:
$J2EE_HOME/lib/cloudscape/RmiJdbc.jar:
$J2EE_HOME/lib/cloudscapel/license.jar:
${CLASSPATH} -ms16m -mx32m
COM.cloudscape.tools.ij createTable.sql

Remove the JAR File

You have to update the bean JAR file with the new entity bean code. If you have both beans
in one JAR file, you have to delete tBBeansJarand create a new one. The steps to adding
CalcBean are the same as in Create JAR with Session Bean (page 54). The steps to adding
BonusBean are slightly different and described here.

If you have the beans in separate JAR files, you have to delete the JAR fileanitkBean
and create a new one as described here.

These instructions pick up at the point where you addsdmesBean interfaces and classes
to the JAR file.

EJB JAR:

* Click Add (the one next to th€ontentswindow).
» Toggle the directory so the Beans directory displays with its contents.
» SelectBonus.class

¢ Click Add.
» SelectBonusBean.class
¢ Click Add.
e SelectBonusHome.class
* Click Add.
Enterprise Bean JAR classes
+ Make sure you Sse@eans/Bonus.class , Beans/BonusHome.class , and Beans/
BonusBean.class in the display.
* Click ok
EJB JAR:
* Click Next .

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

110 SEPTEMBER 27, 2000

General
* Make sureBeans.BonusBean is the classname@&eans.BonusHome is the Home inter-
face, andeans.Bonus is the Remote interface.
* EnterBonusBean as the display name.
e Click Entity.
¢ Click Next .
Entity Settings:
» SelectBean-managed persistence

e The primary key class igva.lang.String , Note that the primary key has to be a
class type. Primitive types are not valid for primary keys.

* Click Next .
Environment Entries:

» Click Next . This simple entity bean does not use properties (environment entries).
Enterprise Bean References:

* Click Next .
Resource References:

* Click Add

* type jdbc/BonusDB in the first column undeCoded Name Make sureType is
javax.sgl.DataSource , andAuthentication is Container

* Click Next .
Security:

¢ Click Next . This simple entity bean does not use security roles.
Transaction Management

» Selectcontainer-managed transactions (if it is not already selected).

* In the list below makecreate , findByPrimaryKey , getBonus and getSocSec
required. This means the container starts a new transaction before running these meth-
ods. The transaction commits just before the methods end. You can find more informa-
tion on these transaction settings in Chapter 6 of the Enterprise JavaBeans Developer's
Guide.

* Click Next .
Review Settings:
* Click Finish
Inspecting window:
» With 2BeansApp selected, clicKNDI names

e Assigncalcs to CalcBean , bonus tO BonusBean, and jdoc/Cloudscape to jdbc/
BonusDB.

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 111

Verify and Deploy the Application

Before you deploy the application, it is a good idea to run the verifier. The verifier will pick
up errors in the application components such as missing enterprise bean methods that the
compiler does not catch.

Note If you get a Save error when you verify or deploy, shut everything down and
restart the server and tools.

Verify:
* With 2BeansApp selected, choosgerifier from theTools menu.

 In the dialog that pops up, cliockk The window should tell you there were no failed
tests.

« Close the verifier window because you are now ready to deploy the application.

Note: In the Version 1.2.1 software you might gettests app.WebURI error. This
means the deploy tool did not putvaar extension on th&vARile duringwAKile cre-
ation. This is a minor bug and the J2EE application deploys just fine in spite of it.

Deploy:
¢ From theToolsmenu, choosPeploy Application . A Deploy BonusAppdialog box
pops up.
» \Verify that the Target Server selection is either localhost or the name of the host run-
ning the J2EE server.

¢ Check theReturn Client Jar box. Checking this box creates a JAR file with deploy-
ment information needed by the entity bean.

¢ Click Next .

« Make sure the JNDI names show farcs for CalcBean, bonus for BonusBean , and
jdbc/Cloudscape for BonusDB. If they do not, type the JNDI names in yourself, and
press theeturn key.

¢ Click Next . Make sure the Context Root name shagBRoot . If it does not, type it in
yourself and press threturn key.

¢ Click Next .

e Click Finish to start the deployment. A dialog box pops up that displays the status of
the deployment operation.

* When it is complete, clickk

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

112 SEPTEMBER 27, 2000

Run the Application

The web server runs on port 8000 by default. To opentdies.jsp page point your
browser tohttp://localhost:8000/JSPRoot/bonus.jsp , Which is where the Deploy tool
put the JSP page.

* Fill'in a social security number and multiplier

» Click thesubmit button.Bonus.jsp processes your data and returns an HTML page
with the bonus calculation on it.

The J2EE server output might show the following message each time database access is

attempted. The message means no user name and password were supplied to access the data-
base. You can ignore this message because a user name and password are not required to
access the Cloudscape database, and this example works just fine regardless of the message.

Cannot find principal mapping information for data source with JNDI name
jdbc/Cloudscape

Here is a cleaned up version of the J2EE server output (the above message was edited out).

setEntityContext method
Create Method
Post Create

setEntityContext method
Find by primary key
Load method

getBonus
Store method
Load method

getSocSec

Store method

Find by primary key
Load method

getSocSec
Store method
Load method

getBonus
Store method

<?xml version="1.0"?>
<report>

<bonusCalc sshum="777777777" bonusAmt="300.0" />
</report>

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000 113

More Information

You can get more information on entity Beans and bean-managed persistence here:
http://java.sun.com/j2ee/j2sdkee/techdocs/guides/ejb/html/Entity.fm.html

You can get more information on making database connections here:
http://java.sun.com/j2eel/j2sdkee/techdocs/guides/ejb/html/Database.fm.html

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

114 SEPTEMBER 27, 2000

LESSON 7 JDBC TECHNOLOGY AND BEAN-MANAGED PERSISTENCE

SEPTEMBER 27, 2000

A

application assembly 16

application components
editing information 22
working together 10

application deployment 24, 58, 69, 86, 111

application verification 23, 58, 68, 86
avax.rmi.RemoteException 12
B

bonus.html file 6
BonusServlet code 6

C

Cloudscape database 27
container managed
persistence 30
transaction management 30
Content pane 22
context root
calling a servlet in an HTML form 6
specify 22
create method 12, 28
CreateException class 11

D

deploy application 24, 58, 69, 86, 111
deploy tool
assemble application 16

deploy application 24, 58, 69, 86, 111

described 15
editing information 22
verify application 23, 58, 68, 86
view application components 19
deploytool command 14
doGet method 7

Index

E

editing information 22
ejbCreate method 12, 28
EJBObject class 12
entity Bean
container managed 30
defined 28

F

findByPrimaryKey method 28
G

getBonus method 29
getSocSec method 29
H

home interface
looking up 7
role of 11
HTTP headers 7
HttpServlet class 7
I

IOException class 7
J

J2EE application components
defined 4
j2ee -verbose command 14
java.io 7
javax.naming 7
javax.rmi 7
javax.servlet 7
javax.servlet.http 7
JNDI name
how used 7
specify 22

INDEX

L

looking up the home interface 7
M

meta information 16

method signatures 28

Multitier architecture
defined 2

multitier architecture
example 3

P

persistent data 28
PortableRemoteObject class 7
primary key 28

duplicate 28
R

remote interface 12

request object 7

response object 7

run application 25, 60, 70, 87

S

ServletException class 7
session Bean

defined 10
SessionBean interface 12
setSessionContext method 12
signatures, methods 28

T

thin-client application defined 2
transaction management 30
transaction rollback 28

U

Uninstall button 15
V

verify application 23, 58, 68, 86

INDEX

SEPTEMBER 27, 2000

W
Web Archive (WAR) file 19

	Writing Enterprise Applications with Java‰ 2 SDK, Enterprise Edition
	by Monica Pawlan
	Preface
	Contents
	Lesson 1 A Simple Session Bean
	Example Thin-Client Multitiered Application
	Figure 1 Multitiered Architecture

	J2EE Software and Setup
	Unix:
	Windows:

	Path and ClassPath Settings
	Path Settings
	Unix:
	Windows:

	Class Path Settings
	Unix:
	Windows:

	J2EE Application Components
	Create the HTML Page
	Figure 2 HTML Page
	Figure 3 Data Flow
	HTML Code

	Create the Servlet
	Import Statements
	init Method
	doGet Method

	Servlet Code
	Create the Session Bean
	Figure 4 Application Components
	CalcHome
	Calc
	CalcBean

	Compile the Session Bean and Servlet
	Compile the Session Bean
	Unix
	Windows

	Compile the Servlet
	Unix
	Windows

	Start the J2EE Application Server
	Unix:
	Windows:

	Start the Deploy Tool
	Unix:
	Windows:

	Deploy Tool
	Figure 5 Deploy Tool

	Assemble the J2EE Application
	1. Create a new J2EE application (BonusApp.ear).
	2. Create a new enterprise bean (CalcBean.jar).
	3. Create a new web component (Bonus.war).
	4. Specify JNDI name for the enterprise bean (calcs).
	5. Specify the Root Context for the J2EE application (BonusRoot).
	Create J2EE Application
	Create Session Bean
	Figure 6 Select Session Bean Class Files

	Create Web Component
	Figure 7 Add BonusServlet.class
	Figure 8 Add bonus.html

	Specify JNDI Name and Root Context
	Figure 9 Context Root Directory Structure

	Verify and Deploy the J2EE Application
	Figure 10 Deploy Application

	Run the J2EE Application
	Updating Component Code

	Lesson 2 A Simple Entity Bean
	Create the Entity Bean
	BonusHome
	Bonus
	BonusBean

	Change the Servlet
	Compile
	Compile the Entity Bean
	Unix
	Windows

	Compile the Servlet
	Unix:
	Windows:

	Start the Platform and Tools
	Unix
	Windows

	Assemble and Deploy
	Update Application File
	Create Entity Bean
	Figure 11 Adding Classes to BonusJar
	Figure 12 Transaction Management
	Figure 13 Generate SQL and Database Table

	Verify and Deploy the J2EE Application

	Run the J2EE Application

	Lesson 3 Cooperating Enterprise Beans
	Change the Session Bean
	Figure 14 Beans Working Together
	CalcHome
	Calc
	CalcBean

	Change the Servlet
	Compile
	Compile the Session Bean
	Unix
	Windows

	Compile the Servlet
	Unix:
	Windows:

	Start the Platform and Tools
	Unix
	Windows

	Assemble the Application
	Create New J2EE Application
	Create New Web Component
	Bundle Session and Entity Beans in one JAR File
	Create JAR with Session Bean
	Add the Entity Bean

	Verify and Deploy the J2EE Application
	Figure 15 Deploy Application

	Run the J2EE Application

	Lesson 4 JavaServer Pages Technology
	Create the JSP Page
	Comments
	Directives
	Declarations
	Scriptlets
	Predefined Variables
	Expressions
	JSP-Specific Tags

	Change bonus.html
	Start the Platform and Tools
	Unix
	Windows

	Remove the WAR File
	Create New WAR FIle
	Verify and Deploy the J2EE Application
	Figure 16 Deploy Application

	Run the J2EE Application
	More Information

	Lesson 5 Adding JavaBeans Technology to the Mix
	About the Example
	Figure 17 When bonus.jsp Loads
	Figure 18 After User Enters Data and Clicks Submit
	Figure 19 Duplicate Key Error

	Create bonus.jsp
	Specify the JavaBean
	Get the Data
	Pass the Data to the JavaBean
	Retrieve Data from the JavaBean

	Create the JavaBeans Class
	Bean Properties
	Constructor
	Set Methods
	Get Methods

	Start the Platform and Tools
	Unix
	Windows

	Remove the WAR File
	Create New WAR FIle
	Verify and Deploy the J2EE Application
	Figure 20 Deploy Application

	Run the J2EE Application
	More Information

	Lesson 6 Extensible Markup Language (XML)
	Marking and Handling Text
	Change the JavaBean Class
	XML Prolog
	Document Root
	Child Nodes
	Other XML Tags
	JavaBean Code
	Figure 21 Document Object Model (DOM)

	The APIs
	Figure 22 Platform and Language Neutral Text
	SAX and DOM
	J2EE

	Update and Run the Application
	More Information

	Lesson 7 JDBC Technology and Bean- Managed Persistence
	Bean Lifecycle
	Change the BonusBean Code
	Import Statements
	Instance Variables
	Business Methods
	LifeCycle Methods
	ejbCreate
	ejbPostCreate
	ejbFindByPrimaryKey
	ejbLoad
	ejbStore
	ejbRemove
	ejbActivate
	ejbPassivate
	setEntityContext
	unsetEntityContext

	Change the CalcBean and JBonusBean Code
	Create the Database Table
	createTable.sql
	cloudTable.bat
	cloudTable.sh

	Remove the JAR File
	Verify and Deploy the Application
	Run the Application
	More Information
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	P
	R
	S
	T
	U
	V
	W

	Index

