Martin Bond
Dan Haywood
Debbie Law
Andy Longshaw
Peter Roxburgh

sAMs
Teach Yourself

J2LE
in 2] Days

SAMS

201 West 103rd St., Indianapolis, Indiana, 46290 USA

Sams Teach Yourself J2EE in 21 Days
Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the publish-
er. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32384-2
Library of Congress Catalog Card Number: 2001098579
Printed in the United States of America

First Printing: April, 2002

03 02 01 00 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “‘as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

ExecuTive EDITOR
Michael Stephens

MANAGING EDITOR
Matt Purcell

AcquisiTions EDITOR
Todd Green

DEVELOPMENT EDITOR
Michael Watson

PrOJECT EDITOR
Christina Smith

Cory EDITOR
Pat Kinyon

INDEXERS

Tom Dinse
Erika Millen

PROOFREADER
Melissa Lynch

TECHNICAL EDITOR

Harold Finz, Steve Heckler,

Farooq Karim, and Ari
Krupnikov

TeaM COORDINATOR
Pamalee Nelson

INTERIOR DESIGNER
Gary Adair
CoVER DESIGNER

Aren Howell

PRODUCTION

Cheryl Lynch
Michelle Mitchell

Contents at a Glance

Introduction

WEeek 1 Introducing J2EE and EJBs

Day 1
2

~N N W

The Challenge of N-Tier Development
The J2EE Platform and Roles

Naming and Directory Services
Introduction to EJBs

Session EJBs

Entity EJBs

CMP and EJB QL

WEeek 2 Developing J2EE Applications

Day 8
9
10
11
12
13
14

Transactions and Persistence
Java Message Service
Message-Driven Beans
JavaMail

Servlets

JavaServer Pages

JSP Tag Libraries

WEeek 3 Integrating J2EE into the Enterprise

Day 15 Security
16 Integrating XML with J2EE
17 Transforming XML Documents
18 Patterns
19 Integrating with External Resources
20 Using RPC-Style Web Services with J2EE
21 Web Service Registries and Message-Style Web Services
Appendixes
Appendix A An Introduction to UML
B SQL Reference
C An Overview of XML
D The Java Community Process

Glossary
Index

27
81
125
165
211
271

333
335
395
429
461
501
555
603

651
653
701
741
787
827
869
923

965
977
987
999
1003
1025

Contents

Introduction 1

WEeek 1 Introducing J2EE and EJBs 7
DAy 1 The Challenge of N-Tier Development 9
Monolithic DeVEIOPMENLcoueruiriiriiriiiiieieieieieetenest ettt 10

Consequences of Monolithic Applicationsccceeceereerienienenenenenenene 10

DAy 2

The Move into the Second Tierc..ccccecveueeee.
Consequences of the 2-Tier Design

Complexity Simplified by Modularity
Component TEChNOIOZYccuevuieuieieiiieieieseere e
Benefits of MOAUIATILYc.coeviririiiiiiiieieeeet e

Benefits of the 3-Tier SCENArioccceeveeierierieriiriietieieeiee e

A Model for Enterprise COMPULING ..ccueeuveierierieniinienienieeiieeeienesie e
LIECYCLE ettt sttt
Persistence
Naming
Transaction

Java 2 Enterprise Edition (J2EE)cocovviiiiiiiiiiiinininneteeeeeseeeeee
Components and CONLAINETSc.eeveureierierierierieniereeeeeeeeeeseestesse st eaeeaeens
J2EE Standard SEIVICESccoceveririiiiieienienteeieeteetteie ettt
J2EE BIUGPIINES ..cviiieiieieiesienieeicettei ettt ettt st
J2EE Compatibility TeSt SUIEeeoeeuieieriiiiiriiniiniieiieiieiieeetesie e

The Future of J2EE

The J2EE Platform and Roles 27

Revisiting the J2EE Platformccccociiiiiiiinininiicccceccnceeeee
Using Sun Microsystems’ J2EE SDK
Installing J2EE SDK 1.3 oot

Starting the J2EE Reference Implementation (RI)c.ccceoveiinininincnnnnne. 32
Troubleshooting J2EE and CloudScapec.coceeeieieieienieneniencneneneenens 34
Closing Down J2EE RI and CloudScapec.ccoceveveeievenienienineneneneenne 37
Optional Software Used in this BOOKccccoccviniiiniiiiniiiiiiincce 37
Understanding Tiers and COMPONENLSc..ccuerviruinrieieieiereieienieneneneseeeeeeneens 38
The Business TIierccccoiiiiiiiiiiiiiiiiiici e

The Presentation Tier

DAy 3

Components: Web-CentriCccereriererenenirteieiertentesreereeteeie ettt 45
The CHENt TIET ..ccveeviieieeieeieeee ettt et te et et e et e e e st e seesaeesseeseenseenaessseenes 49
Standalone CHENEc.eccverierieriierieeieerie et e ete et e see e e e e esseeseeaesnaessaesseenseas 52
Understanding CONLAIMNETScoeeeeierierierierieneneeieetieteteteste st siesie s et eeesaeseeneens 55
Understanding the Services Containers Supply to COmponentsc..ceceeeeueee 56
Hypertext Transfer Protocol (HTTP)coccoveeiiiiiiinininininieieeeeieieiee
HTTP over Secure Sockets Layer (HTTPS) ...
Java Database Connectivity (JDBC)ccccoverieiieiiiiiiiinencneneeeeececeeneeene
Java Transaction APL (JTA) oot
Java Authentication and Authorization Service (JAAS) ..oooovieeeiiiciieeiieeen. 58
Java API for XML Parsing (JAXP) ..ccooeririnieieieceeneneseseeeeeeeeneeeene
Java Naming and Directory Interface (JNDI)
JavaBeans Activation Framework (JAF)ocooeiiiiiiiieeeeeeecee e
B 11 U SRR
Java Message Service (JIMS) ...oooooiiririniniiineeieteteeseseeeseee e
Java Interface Definition Language (Java IDL)
Remote Method Invocation over Internet Inter-Orb Protocol (RMI-IIOP)61

Connector ATChItECTULEc.coueiiiiieiricieieieeecee e 62
Introducing Platform ROIESccccoveviiiinininiiinieieiecccreseeeeeteee e 62
J2EE Product Providercccocoeiiiiiiiiiiiiicenceeereeeeeee e 63
Application Component Providerc..cocceoeeeeienienienenininineneeieieieeniee 63
Application ASSEMDIETcccoevieiiriiriiriereneeteteteee ettt 63

Application Deployer
Systems Administrator

TOOL PrOVIAET ...t
Future of J2EE t0OIScccoiiiiiiiiieicieeeeeceeeee e
Packaging and Deploying J2EE Applicationsccccccceeeverenenenenienienienennens 66

J2EE appliCatiONS ...ccvevverieriiriiiiieieieniestesteeteet ettt sttt 67
Breaking Modules down into COMPONENLSccoueruervervenvenrenenenieieienieneenne 68
SUMIMATY .ottt ettt et sttt ettt b e s b s b bt ebeeaeeneae e
QEA ettt
Exercises—Case Study ...
The JOD AZENCY .eoiiiiiieiieiieeeeteeere ettt
Using the Agency Case StUAYcocooeverereniniiienieeeseseeeee et 73
Practice Makes Perfect ... 75
The Case Study Directory on the CD-ROMc.ccceiiininininininieicicieniee 76
Installing the Case Study Databasec..cocceceevievieieninininineneeieeeieniee 76
Naming and Directory Services 81
Naming and Directory SEIVICEScccceeruirrieriierierienienteneenieene et sre s seees 82
Why Use @ Naming SETVICE?ccceviirieiriiriiinienieniienitesieenieesie et see st seee e 82

What is INDI? ..o 83

Vi

Sams Teach Yourself J2EE in 21 Days

Common Naming SEIVICEScceeeeierierieriiniiniieiieiieiiete ettt sttt ae e 83
NamMing CONVENTIONS ..c.ververiirtiriiriieiieteientertesteet ettt ettt ste s sbe st essesenaenaens 84
USING JNDI oottt sttt 85
Using Sun Microsystems’ J2EE Reference Implementationcccce..e.e. 85
Obtaining an Initial CONEXE ...c.eveiiirierierieriirieieeeeee e 86
Initial Context Naming EXCEPHONSccevuerueririirieieieieiesienieneseeie e 86
Defining the JNDI Service
JINDI Properties FIlesccooioiiiiriinirinieninieieeeeesesese et

ApPPlication ProPertiesccecevierererereneniieieteietesteste ettt
ADPPLEt PATameters c.coeeuieieieieieiereriesieeeetete e
Hard-Coded Propertiesececuerererierenenieieieieiesiesiesieeie et
Binding JNDI ODJECES ...cvevieriiriiiiieiiiieieiesiesiest ettt
Binding ODBJECES ...everuiriiriieiieiieiieieietestesie sttt
Binding Problems
Name Persistence
Rebinding Objects
Unbinding Objects
Renaming Objects

JNDI Name LOOKUPeeuiiiiiiiiriieiieeeeeeeee et
Changing CONLEXLS ..c.eeverreereruieiieieieienierte st sttt et et ettt be bt e e esenee
Narrowing RMI-IIOP ODBJECEScoveviiriiriirieiiieiieieieiesiesiesieeieeee e 95

COMLEXES .ttt ettt sttt ettt 96
Listing Contextsc.cceceevvevververuennenne. ...96
Creating and Destroying CONLEXLSc.ccverererieierierienienreneeteeeeeererenaenienee 98

More on JNDI NAMEScoccoiiiiiiiiiiiiieeieiceeeeeee e 100
Special CRAraCterScoceevierieriiririirieeeteeeet ettt 100
Composite and Compound NAMEScc.eeceeieierierieneneneneneeieeeeseenenes 100
URLS ettt ettt ettt 101

AMITDULES ..ottt 102
Overview of LDAP X.500 NaMeSccceieiririiiiiiiiiciiceceeeeeeeceee 102
Obtaining an LDAP SEIVErcccceiimiriiriiiiiiicnienencnieseeeeeee e
Using OpenLDAPccccceeeee.

Configuring JNDI to use LDAP

Testing the LDAP SEIVETccooviiiiiiiiiriiiieiecceeesee s
Obtaining a DIirectory CONLEXE ...c.ecerererieieieieienienienieeieeieeieeee e
Reading ALDULES ..c.eoveeviriieieieieeeeeeeee s
Searching for ODJECESc.eeiirieriiririirieiieiee ettt
Manipulating AtIDULEScocvevierierinienieeeeeet et

More 0n ObJECES ..cvevvenverreriieiieieieierieniee
Loading Classes from a Code Basec..ccceveevierenininenenieicccceeen 114
Defining @ Code Basecccueiiieriiniinininieietccteeeee e 114

RETEICNCES oottt ettt 117

Contents vii

What Else Can INDI DO?c.ooooiiiiiiiiiieeeeeeeeeeeeee et 120

DAY 4 Introduction to EJBs 125
What Is an EIB? ..ottt 126
Beans, Clients, Containers, and SETVETSc.ccoeverererereeeeienienienrenennennes 126
The EJB LandsSCapeccccceeveviinininininiiteicicntcnentcseeeeeeeeeeevenesne e 127
Discovering EJBScc.ooiiiiiiiiiiiinennentttccce e 127
TYPes Of BJB .ottt s 128
Common Uses Of EIBScocooviiiiiiinininiiintctcccneneeeteeecrcre e 128
Why Use EIBs?ccceceeuee ...129
Hiding COmMPIEXILY ...c.eoeeuieiiiiiiienieninieeeetetetetesese ettt 130
Separation of Business Logic from UI and Data Accessc.ccceeevevvenenennene 130
CONLAINET SEIVICES ..evievieuieiiiiiienienienenieee ettt sttt ettt rere b 131
What’'s in an EJB? ..ottt 132
The Business INterfaceccccocoeviriiniriiiiiiiiinienininceecceeeeeereeene 132
The Business LOZIC ..cceeeeieiiniiriiiiniiicectctcctcntesteseeeteeeee e 134
Factory Informationcccccceeevenininininieicicncncnccecceeeecree e 140
Bean Metadataccccoeeieieiiiiiniineneeeetetecc s 141
How Do I Create an EJB?142
The Creation MeChaniSmccccoceeerveririeiieniinienienenncececeeeerereere e 142
Caveats 0n Code Creation cccceeeverereeieienienieneneneeeeeeeeeesresresresrennes 143
Create the Deployable COMPONENtc..coceeeeienienienininiiieceeierereereenenes 143
How Do I Deploy an EJB?cccooiiiiiiiiiiiciciectcrcceeeeeeeeercrese e 147
Plugging into the CONtaiNercoccevereririeienienieneniinteeeeeeeeeereere e 147
Performing the Deploymentcocceeeivieniiniininininineecceeeereeeeene 148
How Do I Use an EJIB?148
DISCOVEIY ottt 148
Retrieval and USEccccoceevieiiiiinininininictcecctcses sttt 149
Disposing of the EJBcccocoiiiiiiininiiiicicccctceeeceveee e 150
Running the CHENTccccoceviiiiiiiniiniiiininectetectcesce ettt 150
Deploying and Using an EJB in the J2EE Reference Implementation 151
Opening the Case Study EAR Fileccccocieviininininininiccccee, 152
Examining the Case Study Applicationcccceevevivinereeeenienenenennenne 154
Deploying the Case Study AppliCationc.ccoeveverenerereeeenienierenrennene 156
Testing the Case Study Application158

Troubleshooting the Case Study Applicationcc.coceeveveeeenieniencnrcnennenne. 160

viii

Sams Teach Yourself J2EE in 21 Days

DAy 5

DAy 6

Session EJBs 165
OVEIVIEW ettt ettt b bbbttt sae s sae i et 165
The javax.ejb Package for Session Beansccccccceeeininininiiiiiicncnnicnenne 167
Stateless Session Bean Lifecycle
Specifying a Stateless Session Bean
Implementing a Stateless Session Beanc..cccccevevinininiiniiniinincncncncnene 175
Implementing javax.ejb.SesSionBEANcccccoeriminininereeieieierereenenes 175
Implementing the Home Interface Methodsccccoceviviiiiiiiiininincnene. 175
Implementing the Remote Interface Methodsc..ccccocvvivviiiinininincnnnne. 177
EXCEPLIONS vttt 179
Configuring and Deploying a Stateless Session Bean ...180
USING AEPLOYTOOL ntiuiiiiiieiieiieietenteeteeie ettt ettt ettt 181
Structural EIEMENtscccccueviirininininieieieicccseseneeeeeeeeeeesre e 182
Presentational EISMENtScccceviviririiiiiiiiiicnicncneeeeeeeeccrcere e 183
SesS10N EICMENE ..c..evviiiiiiiiiiiiiiiiiiiececee ettt 184
Deploying the Enterprise Applicationc.cccceeveneninininieienienieereneeenes 193
Stateful Session Bean Lifecyclecccocvieiiiiiiininininniccccececeee, 193
Specifying a Stateful Session Beanc.cccoceceiirininininniniiiicccceee, 196
Implementing a Stateful Session Beanc.cccooevevininiiniininiiiiicncncncnee 198
Passivation ...
TIMEOULS <.viiiiniiiitiieeteet ettt bttt
Chaining SAE ..c.evvirviiiieieiieieteeeeeee ettt 200
Configuring and Deploying a Stateful Session Beanc..cccecevvivciicicncncnene 200
CHENES VIBW ittt 201
Patterns and IdIOMScocoviiiiiiiiiiiiiinnccccee e 202
Business INterfacecoceevveiiiiiiinininiiiciccccc e 203
Adaptercoceeennene
Coarse-Grained
GOLCRAS .
SUMMATY ettt b e
QELA s
EXETCISES .uviuieuieiieiieieeteeteeie ettt ettt st

Entity EJBs
OVEIVIEW .ottt
The N-tier Architecture Revisited
Comparison with RDBMS Technologyccccccevereneneneninieieneieseeene 213
1dentifying ENtIEScceeieieiiirieiieniieieeieeieeteeese e 214

Contents

ix

DAy 7

The javax.ejb Package for Entity Beansc.cccoocevevinininiininiienienienenenene 216

Entity Bean Typesc.cccecevceeneene.

Remote Versus Local Interfaces

BMP Entity Bean LifecyClecccooeviiinininiiieieeeiceeeeeee e

Specifying a BMP Entity Bean
Local-Home INterfacecceeererenirinieieieiesieseseeeecee e
L0Cal INEEITACE ..ouvieiiiiieiieiieieeeee ettt

Implementing a BMP Entity Beancccocooiiiiiiiiiiininiinieeceenenenee
Implementing the Local-Home Interface Methods
Implementing the Local Interface Methodsc.ccoceveveriiieniencncnincnene.
Generating IDS ..c.oouevuiiiiiiieieeeee e

Granularity Revisitedc..coccoririnininiiieieteeeseeeeee e
Beware Those Finder Methods!cocooieiiiiiniinininineeecceeee 245
EJB Container Performance Tuningccccccevereneneneneenienienieneneseenene 247
Configuring and Deploying a BMP Entity Beanc..ccccecevieviiiiiniencncnenene 248
Entity EICMENt ..c.oiuiiuiiiieiiiieieieeseeeeeeeetet ettt
CLENE'S VIBW ..ottt ettt sttt ettt bbb bt bt ettt st st b ene
Session Beans Revisited

Patterns and IdIOMScoeeiriiiiiiiiiieee et
Interfaces, Fagades, and Statecc.coceeveiienienieneninineneeceeeeeseeee 258
Use Local Interfaces for Entity Beansccccoocevenininininieiencnccecee, 258
Dependent Value CIaSSesc.ccevuerieuerieirienieinieieenieeeieeeeseeseeseeeneseeneenens 259
Self-Encapsulate Fieldsc.ccccoveriririniiiieieiecseeseneeeeteee e 261
Don’t Use Enumeration for FINdersc..cccceoeveneninincncniieeeceee 262

Acquire Late, Release Early
Business Interface Revisited
GOLCRAS .ttt ettt ettt et e et a e e et e e ereeetaeeenneas

SUMIMATY .ttt sttt ettt st ettt et et e b b eaes
QEA bbbkttt
EXEICISES .uvtuiuieiieieiesteet ettt ettt ettt ettt et b e bbbttt esbe st st st et
CMP and EJB QL 271
Overview of Container-Managed Persistencecccocceveeveeenerieecvecvenenenenne 271
N-tier Architecture (Revisited Again) and CMP Fieldsccccceveerininnnne. 273
A Quick Word about the Case Study Databasec..ccccecevveevevieninenennenne. 276
CMP Entity Bean LifecyCleccooevininininiiiiiiiiiiiiineeeececceseneneneene 271
Container-Managed Relationshipsc..cocceceeveeienienieniininenininieecienenenenene 279
Relationship TYPES ..ccveeveeiriiiiiiieieneneeeeteteetesest ettt 280
NAVIZADIIILY c.eeviiitieiieiieeeeceeeecee ettt 282
CMP-FLiELAS evveverererereneeieeneene282

Manipulating Relationshipsccccoceeveririeiieiieninininnecceccceeeee 286

Sams Teach Yourself J2EE in 21 Days

ETB QL ettt 291
Select MEthOdScoueviiriiiieieiiiiieieree e 291
Syntax and EXamplescccoeririnininininieccceesee e 293
FUIhEr NOES ..ottt 300

Specifying a CMP Entity Beancc.ccccocviriiiiiiiininininnceccececeee 301
The Local-Home INterfacecccoceeeririeienicncnieninincecceccecceeeee 301
The Local Interface301

Implementing a CMP Entity Beanc..ccccocoviiiiiiiiiiiinininicincceenenenee 302
Implementing javax.ejb.ENtityBeanccccevereriininieneninieieieeeerennenes 302
Implementing the Local-Home Interface Methodsc..ccccecveeeiiiininncnne. 305
Finder Methodscc.coueeieieieiiiiieieeeeeeeeeese e 308
Implementing the Local Interface Methodsc.ccoceveveriiiinieninincninne, 312

Configuring a CMP Entity Beancoccoovviiiiiiiiiiniiiiiineeccceneneniee 313
The entity EIEMENtccoooiviiiiiiiiieeeeeeee e 313
The relationships Elementccccccooiiiiiiiiiiiiiiiiicieeecee e 317

Deploying a CMP Entity Bean .

Patterns and IdIOMScc.coeriiriiiiiiiiiie e
Normalize/Denormalize Data in ejbLoad()/ejbStore()cccceevveeevuveenen. 323
Don’t EXpOSe Cmp-FLi8LlaS ..occievierierieniniiniieiieieietententesee ettt 324
Don’t EXpOSe CMr-FLi8ladS ..eccvevierieneniniinieeiieieietestesteseesse ettt 325
Enforce Referential Integrity Through the Bean’s Interfacecccc....... 326
Use Select Methods to Implement Home Methodsc.ccocevvvieieiinicnnenne. 327

Gotchas

Summary

QEA ettt

Exercises

WEeek 2 Developing J2EE Applications 333
DAy 8 Transactions and Persistence 335

Overview of TransSactionsc..ccccereriririnieieieieieeeeee e 336

Container-Managed Transaction Demarcationc..cocceceeveeievevienencnienienenne 338

Bean Managed Transaction Demarcationc.cccceeeeeeininieieienicnenienenenne 345
Motivation and ReStriCtionscoceevererieieienienienininceeeeeeereereere e

Using the Java Transaction API
Deploying a BMTD Bean
Client-Demarcated Transactions

Exceptions ReVISItedcccoiieriieiiiiieieeieeeee e
Extended Stateful Session Bean Lifecyclecccccovieviinieniiiinienienieneeneee 352
Transactions: Behind the Scenes ..o 354

Transaction Managers, Resource Managers, and 2PCccccoeeinenne. 354

The JTA AP .o 356

Contents Xi
What If It GOES WIONZ?cuoiiiiiiiiieiiiiiieieteeee ettt 359
JTA Versus JTS ..o361
Overview of Persistence TechnolOZiesccccevevererinininiieieieene e 363
TDBC ittt bbbttt 365
SQLL vttt etttk b ettt b ettt 367
SQL PAIt 0 .ottt ettt 368
SQL PaIt 1 oottt ettt ettt 373
SQL PAIt 2 .ottt ettt 378
IDO ..ccevie383
TDO CONCEPLS .nvenvinviiiiieiieiieieiesie sttt ettt ettt et sttt sbe et ettt e be b e b b eaes 384
javax.jdo Classes and INterfacescccccovvieeiiiiiiiieiieeiie e 387
QUETIES .evintenieieteeteet et ettt ettt ettt ettt b e bt bt et et e b et e besbeebeenes 389
Other FEAUIES ooveriiiiiiiieieieieieeeeee ettt 391
GOLCRAS ettt ettt et b e bbbt et et e sttt sbe et 392
SUMIMATY ottt ettt st saene 393
QEA btttk 393
EXEICISES .uvtuieuieiieieieetee ettt ettt sttt ettt b e bbbt et ettt sbe b ene 394
DAy 9 Java Message Service 395
MESSAZINZ ..eveeureiienieientenieeieeitet ettt sttt ettt b e bbbt nesaesaesae b ene 395
Message PaSSING .c..coveeveeuiiiiiiiiienenereeteteeee s 396
Java Message Service APcccociiiiiiiiniiiiiicceeceee e 397
IMS and J2EE ccooiiiiiiieeieecctreeete ettt e
JMS API Architecture
Message Domains
Developing JMS Applications Using JBOSSTcccccevivinininiiniiiiiniencncncnene 402
JMS Implementation in JBOSScccceveririiiinieniniininincececcccreeeee e 402
Programming a JMS Application Using J2EE RIccccoiiiiiinnnns 404
J2EE RI Connection Factories ..o 404
Adding Destinations in J2EE RIccccociiiiiiiinininininccccrccee 404
Creating a Queue in J2EERI
Point-to-Point Messaging Example
TMS MESSAZES ..cuvinvivierieiieiieiieieteste sttt ettt sttt ettt et sb e b s
Creating @ MESSAZE ...cc.eeueeieiiiiienienienieetetetetest sttt
Sending @ MESSAZEcc.eeueeiiriiriiniiniiniieiteieteteteteete sttt
Closing the CONNECHON c.eocviviirierieririeiteiteteenteneste ettt sre e
Send IMS Text Message EXamplecccocevvevieniniiniininiennieicnieneneneneeneas
COonSUMING MESSAZEScovveureuririniinieniinieeiteitetetente sttt ettt sresre b eaes

Simple Synchronous Receiver Example
Receive IMS Text Message Example ...

ASynchronous MeSSagingcccceceeverererieienienienieneneneeeeceeeeesresresre e enes
The Publish/Subscribe Message Domaincc.ccceeeverrenenerinienienenenienenene 415

Xii

Sams Teach Yourself J2EE in 21 Days

DAy 10

Point-to-Point Messaging EXamplecccoceeeiienienieienininieieeeeesieseseee 416
Bulletin Board Publisher
Bulletin Board Subscriber

Creating Durable SubSCriptionsccccecvevierienereninenieeeeeeeeeeeee 420
Additional JMS Featurescccccceeeeiririeieieieniesiesiesieeieeitee e 422
Introduction t0 XIMLcciiiiiiiiieieiereseee ettt e 425
What Is XML and Why Would You Use It? ccccooiiiiniiniieieeienieee 425

Message-Driven Beans 429
What Are Message-Driven Beans?ccccocevevievienininininininicicicnicnenenee 430
The Message Producer’s VIEWc..ccccocevieieiieniinininincneeeeeiercreeeee e

Similarities and Differences with Other EJBs
Programming Interfaces in a Message-Driven Bean

Life Cycle of a Message-Driven Beanc.cccccovevinininiinininiiiiicncncncnee
The Message-Driven Bean CONteXtccceeveverenininineneeienienienrenenneenes
Creating a Message-Driven Beanc.cccocoveviiiiiiininininininiiiccncnenenee
Method-Ready Poolcccooiiiiiiiiiiiiiciccccccteecce e
The Demise of the Bean ..o
COoNSUMING MESSAZESevvureuiiniiiinienienieeieetet ettt sttt ettt sneere e
Handling EXCEPLIONS ccuveuiiiiiiiiiiiiniiiietceetctcscnt et
Container- and Bean-Managed Transactions
Message AcKknOwledgmentcccceveveiiiieniinicneninineneeceeeecee e
JMS MeSSaZE SELECIOTS ...ouvuieiiiiiiiiiiriieieetet ettt
Writing a Simple Message-Driven Bean ...
Implementing the Interfacesc.cocooivviiiiiiininnnncce
Running the EXamplecccociiiiiiiiiiiiiniccceeeeeeene e
Creating the QUEUEccceeieuiiiiiriiniiniiieeeieeet ettt
Deploying the Message-Driven Bean
Create a Sender Client to Create a MeSSagec.ccoeveveveeeevenienrenrenennene
Developing the Agency Case Study Exampleccccoceeinininiiiiincncnincnene
Step 1—Sender Helper Classooceieieiiiiniiniinininenececrceccesesieea
Step 2—Agency and Register Session Beanc..ccccoceveeeviciicncnincnnenncns
Step 3—The Message-Driven Beanccccoceeeviininininicnicncnincncnee
Step 4—Create the JMS QUEUEcceeuieuiriiiiiiiiiineneeecececeeccscseaea
Step S—Deploy the EJBS ..o
Step 6—Testing the ApplicantMatch Beancccocevviviiiiiiinininnncnns
Using Other Architectures ...

Contents Xiii
DAy 11 JavaMail 461
Understanding E-Mailc..ccccociiiiiiininininiiiiiicicicceeeeeecerese e 462
SMTP ..o, ...463
Post Office Protocol 3 (POP3)ccviiiiiiiiiiceceeeeeeee e 463
Internet Message Access Protocol (IMAP)ccccoevivininiiniieiininicinceee, 464
Other ProtOCOIScouiviiiiieiiiiiiiicenerieeeeteteet ettt 464
Multipurpose Internet Mail Extensions (MIME)ccccocevieviiniininincnenne. 464
Introducing the JavaMail APLc.cooiiiiiiiieeeeee e 465
Setting up Your Development Environmentccoccecevevivereenvenicnicncnenene. 465
Sending a First E-mailcocooieniiniininins
Creating a First E-mail
Creating Multi-Media E-mailscccooceviiiiiiniiniiieeeeeecceeesee e 472
Creating the Message: Approach #1cooceevieviiiiiinenieeeeeeee e 472
Creating the Message: Approach #2ccccoecvvvievienieeneeneeeeeee e 476
Sending E-mails with Attachmentsceceveenieiiniiniinieseeeeeee e 482
Exploring the JavaMail APIcooiiiiiiiiiiinieieteceeee et 485
REtrieVINg MESSAZESvevuveruieiieriieieeieeieete et site sttt et seteseesaeeas 485
Deleting MESSAZES ...ecuvevieruieriieniienieeieeieeteetestesitestee st et eeesbeeaesntesaeeseeeas 489
Getting Attachmentsc.ccoeceeveenne490
Authenticating Users and SECUTILYccceoerrveriierienienieneeneeeeie e 494
SUMIMATY ittt ettt ettt et et sate st e suee bt e naeebeensesaneennes 497
Q&A ettt 497
EXETCISES .eviuiiuieiiiieietecieeieetet ettt et 499
DAY 12 Servlets 501
The Purpose and Use Of SEIVIELSccocevererieiienieierieieneeeeeeeeeeese e 502
Tailored for Web APPlICAtioNS coeeveruerieieieienienientereeeecee e 502
Server and Platform Independencecccoooevenieninieniinienienieneneneseene 503
Efficient and Scalablec.cceeieiiiiiieiieieeecie e 503
Servlets Integration with the SErverccccoccevevenienieniniinieieeeneseseee 503
Introduction to0 HTTP ..cooiiiiiiiiiee et
HTTP Structure
Other HTTP Methods
SEIVer RESPONSES ...couerveiuiiiiiiiieiirieeieet ettt ettt
Introduction to0 HTML ...cc.coiiiiiiiiiiiiieeeteteeeeeee e
The Servlet Environment
ServIet CONLAINETS ..eccveeevieieeiieieeieeteseesseesteesseesseesseeseeseesessesssesssesssessenns
The Servlet Class Hierarchycccocviverieniiiiiiniiierieiceseeeeeeceeeeesie e
Simple Serviet EXampleccoooiirininininiiieeeeneese s

Passing Parameter Data to a Servlet
How to Access Parameters

Servlet Example with Parameters

Xiv

Sams Teach Yourself J2EE in 21 Days

Day 13

USINg @ POST REQUESEeeuieiiiiiieieeieeieeieeteteete et 522

The Servlet Lifecycle

The Servlet Context
WeED APPLICALIONSeiiiiiinieiiiiteiteete ettt

Web Application Files and Directory Structurec..ccceceeceevvevenerienenenne 525
The Web Application Deployment Descriptorcccceceeeeeerienienieniennennenne. 526
Handling EITOTScc.oouiiiiiiiiiiiieteeeeeee ettt 528
HTTP EITOIS oeiiiiiiiiiicieceee ettt 528

Servlet Exception Handling
Retaining Client and State Informationcc.cccevererenininiinierieienenenenene 530
USING SeSSION ODJECLS ..c.vviuieuiiiiiiieeiieieeieet ettt
Hidden Form Fieldsoccooiiiiiiiiiiiiciecececceeecce e
COOKIES ...ttt
Creating @ COOKIE ..ooueiuieuieiieieieieeteeeeteeeee et
URL REWIIHNG ..euvititiitieiieiieieieiesteetesie ettt sttt

Serviet FIItEIINGooeiiiieieieieeeteeeeee et
Programming Filterscccooeiirinininiiieieeeeeseee e
Example Auditing Filter
Deploying FIlterscoeeieieiiriiiienieeiieieeeeteteee et

EVENt LISTENMING ...veieiitieiietieiieiiet ettt ettt nbe et
Deploying the LIStENETcccevereriririnieieieiesiesiesiesie et

Serviet TRIEAdSccoveiiiiiiiicieceece et

Security and the Servlet SandbOXcccceveriiiiiiiirinineeeee 546

AZENCY CaSE STUAY .uviviiiriiiiieiieieer ettt ettt

AgencyTable Servlet Code

JavaServer Pages 555

WHat 18 @ JSP? oo 556
Separating ROIESc..coeiiiiiiiiniiniiiiieeeccee e
Translation and EXECUIONcccoeviriririniiiiiicicnccceceeccrcre e

JSP Syntax and SIIUCLUIEcccveiiriiriirinininteieietcteteeteee et
JSP EIBMENTS ..ot

First JSP eXample ...c..cocooiiiiiiiiiiicicneteeeeee et
JSP Problemsccccooiiiiiiiiiiiiiii i

JSP LIECYCIE ettt
Detecting and Correcting JSP Errors
JSP Lifecycle Methodsccccoivinininiiiiiiiiicncnneseeeeeeeceeeee e

Contents

XV

DAy 14

JSP DIFECLIVES ..eiiiiiiiieierieieieste ettt sttt
The include Directive
The page DIFECHIVEooocviiiciiieciieeeee ettt ettt e et eaa s

Accessing HTTP Servlet Variablescocecevienieneninininininieieieseneseniene 575

Using HTTP Request Parametersccoceeceeeevienienienienienieneeeeeeeeiesie e 576

Simplifying JSP pages with JavaBeanscccccoceverenenenenenceienieceseenee 577
What Is @ JavaBean?cccoeoiiiniiiniiiiincneeeneeeeee e 578
Defining a JavaBeanc.ccoverininininiiteteeseeeee s

Getting Bean Properties
Setting Bean Properties

Initializing BEANSc.coeeiiieiiiieieeeeeeieeeeteteee et
Using a Bean with the Agency Case Studyccccovveveverenienienienenenenenen 581
Adding a Web Interface to the Agency Case Studyccceceeveecievienienenienienenne 585
Structure and NaVIZationccccccevereeieieiieiieieiesestesesie ettt 585
Look and FEelccooiiiiiriiiiiiicieerceeeeeeeee ettt 588
Error Page Definitionccccoeciiiiiiinieiiniienicececceeeeee e 595
Deploying the Case Study JSPSc.ccooeoiiiiiiinieiieceececeeceee 597
Comparing JSP with Servlets
SUMIMATY .ottt ettt ettt st st be ettt e et e b b eaes
QEA bbbttt
EXEICISE ..oviuiiiiiieteriee ettt sttt

JSP Tag Libraries

The Role of Tag Libraries
Developing a Simple Custom Tag

Using @ SIMPIe TaZ c..ooveeiiiiiiiieieenereeetetectee et
The Tag Library Descriptor (TLD) .c..cocoocieiiiiiininiinininiceeeecciceceee
CUStom Java TaZS .c..eoveevieieiiiiieeeserereetetee et s
The doStartTag() Methodooooveuiiiiieiee e
The "Hello World" Custom Tag ..o
Deploying a Tag Library Web Application
Defining the TLD LOCAtionccccoerireririeiinienieniniinteeeeeeeeereneereene e
USINg SIMPLE TAZS ..eveevieiieiieiiiiieencreeeetete ettt
Tags With AUITDULESccevviruiiiiiiiiiciener ettt
Tags that Define Script Variablescocvevveeiieiinienininininiercecrenenenenene
TEETative TAZS ..cueeiiiiiiiiiereeeete ettt st
CO-0perating Tags ...cccoveeuiririiieieierenerer ettt st
Using Shared Scripting Variablesc..ccccoceveneneninininnieienenereeeeene
Hierarchical Tag Structures
Defining Tag Extra Info Objects ...
Validating AtITDULESc.coveiiiiiiiiinieiireeeetere ettt
Defining Scripting Variablesc.coccocevieiiiniinininninniceeeceeeeee

XVi

Sams Teach Yourself J2EE in 21 Days

Processing Tag BOIescceeieieiiiieriinienierieeieee ettt
JavaServer Pages Standard Tag Library (JSPTL)
Using the JSPTL with the J2EE RIcccoccoiiiiiiiiiiiniieeeece
Using the JSPTL forEach Tag .cccocceeeeirieieieeeeeeeecee e
Other JSPTL Tags .ooveeuieiieieieieiesteeteeieee ettt

WEeek 3 Integrating J2EE into the Enterprise 651
DAy 15 Security 653
SECUTILY OVETVIBW ..cuviniiiiiieiieiieiieteteete sttt ettt ettt 654
Security TerminoloZyccccoerirerininieieieieetetese ettt 654
Common Security TechnOolOZYccccoceviriririiiiiiiieeeeeeeeeese e 656
Symmetric ENCTYPONcccoivirininiiieieieicceeesenese et 656
Asymmetric ENCIYPtONccooiviriririniiieiecenen s 658
SSL and HTTPS ..ottt 659
Checksums and DIZEStSccuevuerieriririnieieicetenes et 660
Digital Certificates
Security i J2EE ..o s
J2EE Security Terminologycccocceveririeieiienienienineneececeeeeeeieere e 661
Working with J2EE RI S€CUTityccccoviriiiiiiiiniinininccccceccceeee 663
Security and EIBS ..c.oouiiiiiiiiiecceeee s
Defining EJB SECUTILY ...c.eoviiiiiiiiriiriiriieeetcteetene e
Defining ROIES ..c..ooviiiiiiiiiiieiciceecee s

Defining the Security Identity
Defining Method Permissions
Mapping Principals to Roles
Using Roles as the Security Identitycccccoccoenenininicnineieicceeeeene
Security in Web Applications and COMPONENtSc.ccceverereeeeeeuenvenrenrenene
Web AUthentiCatiON c.ccuiiiiiiiiiiiiiciec e
Configuring J2EE RI Basic Authenticationc.ccocceceverereenieniencnrenenene.
Declarative Web Authorizationcccccooeiiiiiiiiiiiiiciiiiccececcce
Programmatic Web Authorizationc.cceeeveneneninenenieecceceeeee
Adding Programmatic Web Security to the Case Study
Using Secure Web Authentication Schemesc..coccocevvevervienincncncnenenne.
Security and JNDI ..oooiiiiiiiceee s
Simple LDAP AuthentiCationcccceceeveeveienienieneneneneeeeeeieneeneeseseeenens
SASL Authenticationcccccoueiiiiiiiiiiiiiiieecee s

Contents

Xvii

DAy 16 Integrating XML with J2EE 701
The Drive to Platform-Independent Data Exchangeccccocecevvivcvevicncncnene 702
Benefits and Characteristics of XMLcccccccoenininininininieicicnereeeeenes 703
Origins of XMLccccovenininenne
Structure and Syntax of XML
HTML and XMLcoooiiiiiiiiciinecteceeeeveeee et e
Structure of an XML DOCUMENT ccueevieuieiiiiiiiinieneneneeectceeeneeseeseeeneen 705
DEClarationsccccooiiiiiiiiiiiiiiic e 706
EIEMENLSooviiiiiiiiiiicicc e 706
Well-Formed XML DOCUMENLScc.eeverueririeieiinienieniieeteeeeeeeeerereereene e 708
Attributes
Comments
Creating Valid XML ..c..ccccoiiiiiiiiiiiitcecteccrcrcee et 710
Document Type Definitionscocceceevervieiienienieneninininceceeiecreereenenes 710
NAMESPACES .evvenviririetieiieiieteteteete sttt ettt sttt ettt b b b 714
Enforcing Document Structure with an XML Schemaccccoceeiiins 715
How XML Is Used in J2EEcc.cccooiiiniiiiiiiiicnicnienetccceetecrcreene e 718
Parsing XMLccoooiiiiiriiiniiiectcccr ettt st 718
The JAXP PacKagescccceeririiieiiieninertetetetectctcre ettt 720
Parsing XML using SAXccccoceveveveeeenene .. 720
Document Object Model (DOM) Parser —.......cccccceeevveeeeeneneeienienienenenenene 725
Modifying @ DOM TIEcoceeieiiriiniininiirieieteteeteteeteete ettt 731
Java Architecture for XML Bindingc..ccccocceveviniiniinininiiniiniiicicncncncnene 732
Differences Between JAXP and JAXBccooiviininininniicicccccee, 733
Extending the Agency Case Studycccocevverievienienieniiniininenenreeereeneneniene 734
Step 1—Change Session Beanscc.ccccecvevieiiiviniininiinienicicicncnencnenees 735
Step 2—Amend the MessageSender Helper Class736
Step 3—Amend the ApplicantMatch Message-Driven Bean 737
SUIMIMATY c.eeiieiiiieiete ettt b ettt et b e b s 739
QEA et 739
EXEICISES ..ot 740
DAY 17 Transforming XML Documents 741
Presenting XML t0 CHENESccveieriirierienienieeiteteieieteieet ettt 742
Presenting XML to Browsersc.cceuc...743
Extensible Stylesheet Language (XSL) ...cccccevevenenenenenieieieieeeceieeee 744

XSL-FO XSL Formatting ObjJECtScccceceeierierierienienienienieeteeeneeneesiesresneenes 744

xviii Sams Teach Yourself J2EE in 21 Days

Extensible Stylesheet Transformations (XSLT)cccooevirinininieieieieeneniee
Applying Stylesheetsccccooevevenencnenenene
Storing Transformed Documents on the Server
Presenting XML Documents and Stylesheets to the Clientccccceueee. 747
Transforming the XML Document on the Serverccccceeevevievieniennenne. 747
Using XALAN With J2EEcooiiiiiiiiiiiieeeeeteeeee e 748
Transforming XML Documents with XALAN ..o 749
Using XALAN from the Command Linecccceovenininininniinencncnce, 750
Using XSLT in Java Applications
XSLT SEYIESNEELSeeuviutiiiriieiieiieieterie ettt ettt
Template RUIEScc.eiuiiiiiiiieieieeeeeee e
Text Representation of XML Elementscccccocevevenerenienienienencneeee 761
Using XPath With XSLTccooiiiiiiiiiiniriiieteeeeeeese s 762
Default Stylesheet RUIESccoveriiiiiiieieieeeeee e 764
Processing AUITDULES c.eeieierierienieniiniieieeiei ettt 765
Using Stylesheet EIBMENES c..ccuevierieriireniiieieieieieteeteeieeeet e 767
Processing Whitespace and TEXtcccceeveeierienienieninenenieceeeeeeeeeees 767
Adding Comments .
AUITDULE VAIUES ..ot
Creating and Copying EIEMentscccceceevierienienienenenenieieieieeieeieeeees 771
Attributes and Atribute Setscccccovcoiririiiineieeeecee e 774

DAy 18 Patterns 787
J2EE PAtteINS ..veiuiiiiieiiieiiesieeieeie ettt sttt et eenee s e saeenneenneenne 788
What Are PatternS?cccveeiiiieiieieeieeieete ettt eae e 788
Why Use Patterns?790
Types Of PatternNscc.coeeiiiiiiiiiiieiinteectetc et 790
J2EE PAtteINS .veeeieiieiieiieeiiesiteeieet ettt sttt et et et s e e nnnaas 791
Pattern Catalog@s ...c..coeeieieiiiiiiienieeiene ettt 792
Applying J2EE-Specific Patternsc.cccocevieieniiniinininininicrcccnicnenenee 792
Applying Patterns in @ CONEXtc..ceveverieierienieniininineeeeeeeeeerereere e 793
GeNETiC PAttEINS ...ooiiiiiiiieiiesieeieeee ettt 794
J2EE Presentation-Tier Patternscccceveeriievienienienierceseeeeie e 795
J2EE Business-Tier Patternscccooveveerierieeiieeiesieseescee e

J2EE Integration-Tier Patterns
Patterns Within J2EE ...

Contents

XiX

DAy 19

DAy 20

Patterns in CONTEXTccoviiiiiiiiiiiiiic e
Analysing the Case StUAYccccoveveriririiniiiieiceeeeeeeeere e
Session Facades and Entity EJBs
Data Exchange and Value Objects
Data Access Without Entity EJBs
Messages and Asynchronous ACtivationc..coeeevevereeeevenienienenenennes 811

Composing an ENGLY ...oocveviiiiinieeeiceeee e
Composing @ JSP .o
JSPs and Separation of Concerns

Client-Side Proxies and Delegates

LOCAtING SEIVICES .uviviruieiiiiiiiiiiienienenieet ettt ettt
ANy Other BUSINESSovieriiiiiiieiieieeieete ettt
Refactoring the Case Studyccccoceviviiiieiiiiiiniininccccccce e
Directions for J2EE Patternsccccccooiviiiiniiiniiiiiiicccccee
SUMIMATY ittt ettt ettt et st e satesaeesbeesteebeentesaneenees
Q & A s
EXEICISES ..ot
Integrating with External Resources 827
Reviewing External Resources and Legacy SyStemsccccececeeveevienenenenenne 828
Introducing Connector ArChiteCtUIEcoceeceevierierierienieniinieeieteeee e 829
Overview Of the ATChItECtUIecccoeveririeiieiiinieneneese e 829
Roles and ReSPONSIDIIIEScc.coeruereriririeieierieniesecreeecetee e 830
Using the Common Client INterfacecoccoceevevieneieninineninieieieneneneniene 834
Interacting with an EIS
Installing a Resource Adapter
Creating a First CCI APPlICAtioncccceceeeeienienienienieneneececeeeeieereeae e 836
Managing Transactions and Exploring Recordsccccocevvieviiniencncnennene. 843
Introducing Other Connectivity Technologiesccccceeeereririeiienenenencnene 848
Introducing CORBA ..ot 849
Introducing Java IDLcc.ccocoeiiiiiiiiiiineneeeeetete ettt 851
Using RMI over IOP cooiiiiiiiiieeetee et 851
RMI over JRMP EXamPIeccoovuiririniiniiieieieiesiesieseseecete s 852
RMI over IIOP Example
Introducing JNT ..ottt
Evaluation of Integration TechnolOgiesccccevuevierienininininieieienienerenene 865
SUMIMATY .ttt ettt ettt st st be ettt bbb eaes 865
QEA etttk 866
EXEICISES .ottt sttt 867
Using RPC-Style Web Services with J2EE 869
Web Service OVEIVIEWcoccciiiiiiiiiiiiiiiiiiiiicic e 870
What Is @ Web Service? ... 870

Why Use WeD SeIrvIiCes?ooviirieriieiieieeieeieste sttt 872

XX Sams Teach Yourself J2EE in 21 Days

Web Service Technologies and Protocolsccceeeiriirinieiienenencnenene 873
Web Service Architecture
Web Services for J2EE cciiiiiiiiieeeeeteeeeet et
J2EE Web Service ArChiteCtureccccceevievierienienenienenieeieieieesieeneeieaes 875
Tools and TeChNOIOZIESccueveriiriiriiriieieieeeeee s 876
Integrating Web Services with Existing J2EE Componentscccc...... 878
Using an RPC-style SOAP-Based Web Servicec.ccccoocvniineincincncncnns 879
RPC-Oriented Web SEIrVICESccccoviriririeieieienienieniesieeieetee e

Setting up Axis under Tomcat 4.0
Service Description Information
Anatomy of a WSDL Document

Creating a Java Proxy from WSDLcccooiiiiiinininneeeeeee 885
Calling the Web Service Through SOAPccccoviiiiiiiiniiciccce 889
A Half-Way HOUSEccoouiiiiiiiiiiiicceeceee et 891
Debugging a SOAP INteractionccceeveeiricinenieinicineneceeeeeeeeeenens 892
Implementing an RPC-Style SOAP-Based Web Serviceccccoocecevecinennne 894
Wrapping up a Java class as @ Web Servicecccocccvvenevencnnencnncneee. 894
A Client for Your Web Service
Starting from WSDL c.ooiiiiiiiii e
USING AXIS JWS FIlES .eeviiiiiiiiiieieeeeeeeee s
Session Context and Web Servicesc.cccoveveineiininieincinceeneeenenes 905

DAy 21 Web Service Registries and Message-Style Web Services 923
Registries for Web SEIVICEScccoeririririnieiiieicenteeeee et 924
What is a Web Service Registry?cccoceevieieriinienininininieeeeiccrceeeene 924
Why Do I Need ONE7ccooiiiiiiiiniiniiiiiieteteetcstestesee ettt 924
How D0 They WOTK?oouiiiiiiiiiiieietctccces et 925
TYPes Of REZISITY .oveovieiieiieiieiiieieeeeeeeeete et s 925
ebXML Registry and RepoSItOIYccceceevieieniininininiiiiieieicicrceeeee 926
UDDI OVETVIEW ...ttt 928
Accessing Information in @ UDDI ReZiStIycccevveviininininiiniiicicnicncncniee 929
Manipulating Service Information using UDDI4J929
Manipulating Service Information Using the IBM WSTK Client API 932

Retrieving and Using Service Informationc.cocevevivvivviiiininininennne. 933

Contents XXi
Using JAXR for RegiStry ACCESS ...couecuruerieuinieieiinicieieieiesieee et 934
A Generic APProachc.ccceceeevereeineneinenieeneeeeeeeen ...934
Using JAXR to Store and Retrieve Service Informationcccoeeeeenens 936
Using a Message-Based SOAP Interfaceccccoeevienieincninieneincnencneennne 937
Message-Style Versus RPC-stylec.ccccoeveineiienieineinencieceeeeeenne 937
Creating @ CHENLc.ooviiriiieeieieeeereeee ettt 938
Creating @ SEIVICEcccceviieirieinieieereetetese ettt 939
Sending and Receiving SOAP Messages with JAXMcccocoveinecincnncnnne. 939
JAXM and J2EEcccoeeininiiiinnccenneicceneceenee
Configuring JAXM
Sending Basic SOAP MESSAZESccvevueruieuieienienienienienienieeieeteteneeseesiesieeneas
Running the Simple CHENtcccooeriririiieieienieeeeeeecee e
Populating the MeSSagecceveriererininiiieteiertesiesese ettt
Headers and AttaChmentsc.coccceeireinenieieneineeeseeeeeeeeeeeeeeenae
Receiving a SOAP Message Using JAXM coovevininenenieieieeiceeenee
USINg @ JAXM Profileoooeeiiiiiiiieninieeeteteeeses ettt
Sending a Message Using a JAXM Profileccccoceverveneniienienenenenenennens
Receiving a Message Using a JAXM Profile
SUMIMATY .ttt ettt ettt ettt s be et et e b e be b sbeenes
QEA et bbbttt
EXEICISES ..euvviiiieieriee ettt sttt sttt
Appendix A An Introduction to UML 965
Introducing the UML
Use Case DIaZramscccceceeieieienienienininietetetetetesteere et sae e s saeene
Class DIAZIAMScc.eoueriiriiririeieicicenereet ettt sae s s sre e
ASSOCIALIONS ...t
AUITDULES .
OPEIALIONS ...ttt sttt ettt ettt sb e st ettt a bbb sues
GeneraliZationcccceiuiiiiiiiiiiiiii i
Constraints

Appendix B

Sequence Diagrams

SQL Reference 977

Commonly Used SQL Statements (SQLI9)ccccoueviiiinininininieieieseneneniene 978
ALTER TABLE .iiuitiiiiiieeiteeeiite ettt ettt e et e et eestbeesateesateeesabeesabeasnseesnseeenabeesnseeannes 978
CREATE TABLE ..eiiutteeitteetie ettt eetteeite e sttt eebeeeteeesabeesnseeesbeesabeesnseaensseesssaeenseees 979
CREATE VIEW .eiiiiiiieetieetteeniteeeiteeieeestbeaenteeessbeesaseesnseeesseesabaesnssaensseesnsaesnsnens 979
DELETE
DROP TABLE ..iiiiiiiieeitieeiie ettt e e tte et e e ettt e e bt e et e e sabeesnteeesbeesabaeenseaesnbeesasaasnsneas 980

DROP VIEW .euutiiieieiiiieeeeeitreeeeeeiureeeeeesseeeeeassaeeeeassseseaesssasseesassseessasssseesansssseesnnes 980
INSERT utttieeeeittteeeeeteeeeeettaeeeeearaeeeeabaaeeeeesssaeeeasasaaeeeasssaeeeaasssseeeasssaeeeannraeeann 980

Appendix C An Overview of XML 987

WHhat IS XIML? ..ttt 988
EIEMENTS ...eiiiiiiiiiiiiiieteeteeee et
DecClarations ...c..coevveeuieiieieieicteieeeee s
COMIMEILS ..evtenteniititieteett ettt ettt sttt et ettt r e st ea e eb et ettt nesbe b eaes
Special Characters
INAMESPACES .evvinviritietieiieitet ettt ettt ettt ettt b e

Enforcing XML Document StrUCUIEcccceceeieieniiniiniinrininierererenienienieneene 991
Document Type Definition (DTD) ...ccccocovviiiiiininininininicicciccceee 992
XML SCREMA ..ttt 995

Where to Find More Informationc..cccoceveevieieniineninininiereicicneneneniene 997

Appendix D The Java Community Process 999

Introducing the JCP
Getting INVOIVEA ouveiiiiiiieeie e
JCP MEMIDEIS ...ttt
EXPEIt GIOUPS ...eutintenteiietieteeteeit ettt ettt ettt bbb eaeene
The PUDIIC ..eiiiieiieee e
Process Management Office (PMO)cccoocevinininiiieiceeneeseseeeene 1001
EXecutive COMMITIEES ..e.evveeuiriieiieieieienientesieetcet ettt
Understanding the JSR Process
Taking the NEXt SIED ..evevveririririieieieeee et

Glossary

Index 1025

About the Authors

The authors of this book work for Content Master Ltd., a technical authoring company in
the United Kingdom specializing in the production of training and educational materials.
For more information on Content Master, please see its Web site at
www.contentmaster.com.

Martin Bond, B.Sc. M.Sc. C.Eng, M.B.C.S., was born near Manchester England in
1958. Martin left a budding academic career to develop parallel processing compilers for
Inmos. Martin has designed and developed systems using C++, Java, and JavaScript and
has developed training courses on Unix programming, Solaris security, Java program-
ming, and XML. Martin has an honors degree and a masters degree in computer science
from Aberystwyth, Wales, and is a European chartered engineer. Martin currently works
as an IT trainer and consultant based in Cornwall, England.

Dan Haywood has been working on large and small software development projects for
more than 12 years. These days, he fills his days with consulting, training and technical
writing, specializing in OO design, Java and J2EE, Sybase technical consulting, and data
modeling. Previously, Dan worked at Sybase Professional Services, performing a variety
of roles, mostly in the financial industry, including architect, performance specialist, and
project manager. Dan started his IT career at (what was then) Andersen Consulting,
working as a developer on large-scale projects in government and in utilities. Dan is mar-
ried and has a baby daughter.

Debbie Law B.Sc., was born in Romsey, England in 1959. Debbie started on compiler
development for parallel processing systems, later working on the design and develop-
ment of client server applications. As a technical manager for Siemens, she was one of a
small group of select staff on an intensive learning program studying worldwide business
practices, including several weeks at MIT and Harvard. Debbie has an honors degree in
computer science from Southampton, England and currently works as an IT consultant
based in Cornwall, England.

Andy Longshaw is a consultant, writer, and educator specializing in J2EE, XML, and
Web-based technologies and components, particularly the design and architecture deci-
sions required to use these technologies successfully. Andy has been explaining technolo-
gy for most of the last decade as a trainer and in conference sessions. A wild rumor sug-
gests that some people have managed to stay awake in these sessions. Despite being well
educated and otherwise fairly normal, Andy still subjects himself and his family to “trial
by unpredictability” by watching Manchester City FC far more often than is healthy.

Peter Roxburgh graduated with a first class degree with honors in business, and has
since followed a diverse career path. From his home in the medieval walled town of
Conwy, North Wales, he authors a wide-variety of training courses, and books including
Building .NET Applications for Mobile Devices (Microsoft Press, 2002). He has also
written and contributed to a number of journals and Web sites on cutting-edge technolo-
gies.

Peter spends his spare time playing guitar and bouldering on nearby sea cliffs and moun-
tain crags. When he is not strumming or risking life and limb, he enjoys spending relax-
ing and quality time with his daughter, Chloe.

Dedication

To Sarah, for encouragement, advice, and regular supplies of flapjacks; and to Adam and Josh, for pro-
viding me with a life that doesn’t revolve around computers. —AL

To Sue: Thank you for all these happy years. —Love, Dan.

Acknowledgments

The authors would like to thank the various project managers and editors involved in this
book, without whom it would never have seen the light of day. Special thanks go to
Suzanne Carlino at Content Master and Todd Green, Michael Watson, Christy Franklin,
and the editing team at SAMS. We would also like to acknowledge the work of Alex
Ferris and John Sharp in the initial phases of this project.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can fax,
e-mail, or write me directly to let me know what you did or didn’t like about this book—
as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-581-4770
E-mail: feedback@samspublishing.com
Mail: Michael Stephens

Executive Editor

Sams Publishing

201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction

The world has come a long way since Duke first started tumbling in early versions of
Netscape Navigator. Java has outgrown its humble origins as a cool way of providing
interactivity on Web pages and has found a new role as a major, server-side development
platform. The actual Java language has changed little in the intervening years, but an
enterprise-quality infrastructure has risen up around it. This infrastructure, Java 2
Enterprise Edition or J2EE for short, allows Java developers to create sophisticated and
powerful enterprise applications that provide mission-critical functionality for many
thousands of users.

Unlike competing platforms, such as Microsoft .NET, J2EE is a specification rather than
a product. The capabilities and functionality of each release of J2EE is agreed on through
the Java Community Process (JCP). The platform is then implemented by application
server vendors and producers, such as BEA, IBM, iPlanet, ATG, SilverStream, and
JBOSS. This means that J2EE developers have a choice of product vendors from whom
to select, based on quality, support, or ease of use. The ability to submit technologies
through the JCP, and the two-way flow that exists between the main Java vendors and the
open-source community, ensures that a constant stream of new ideas helps to move J2EE
forward.

This book intends to take you on a journey through the J2EE landscape, from the sim-
plest components through design considerations and on to the latest Web Services. There
is a lot to learn in three weeks—but this should provide the essential grounding you need
to use the J2EE platform effectively. If you need to create robust enterprise applications
and Java is your tool of choice, read on.

How This Book is Organized

Sams Teach Yourself J2EE in 21 Days covers version 1.3 of the J2EE platform. It is orga-
nized as three separate weeks that guide you through the different functionality provided
by J2EE.

The first week gives you a broad grounding in J2EE before moving on to investigate
Enterprise JavaBeans (EJBs) in detail:

e Day 1, “The Challenge of N-Tier Development,” defines the landscape in which
J2EE applications operate and provides the architectural concepts with which you
need to become familiar to create J2EE applications.

Sams Teach Yourself J2EE in 21 Days

Day 2, “The J2EE Platform and Roles,” takes you on a whistle-stop tour of the
J2EE platform, the major technologies, the types of component from which J2EE
applications are assembled, and the container with which they interact. You also
install the J2EE platform and start to look at the case study used throughout the
book.

On Day 3, “Naming and Directory Services,” you start using your first J2EE API,
the Java Naming and Directory Interface (JNDI), to store, retrieve, and manipulate
information that can be accessed by all J2EE components.

Day 4, “Introduction to EJBs,” introduces Enterprise JavaBeans (EJB)—the core
technology of the J2EE platform. You will examine the role of EJBs and how they
work. You will then deploy an example EJB and create a simple client application
for it.

On Day 5, “Session EJBs,” you will explore Session EJBs in more depth. This
includes the creation of both stateful and stateless Session EJBs.

Day 6, “Entity EJBs,” moves on to Entity EJBs and examines their role and lifecy-
cle. Particular attention is paid to how state is stored and retrieved using Bean-
Managed Persistence (BMP).

On Day 7, “CMP and EJB QL,” the discussion of Entity EJBs expands to cover
entities that use Container-Managed Persistence (CMP) to store and retrieve their
state. This includes an exploration of the EJB Query Language and Container-
Managed Relationships that were introduced in J2EE 1.3.

The second week moves beyond EJBs to look at asynchronous interaction and the devel-
opment of Web-based components:

On Day 8, “Transactions and Persistence,” you will delve deeper into the use of
transactions in the J2EE platform—what they can achieve and how your compo-
nents can take advantage of them. Some alternative persistence mechanisms are
also explored.

Day 9, “Java Message Service,” looks at asynchronous messaging with the Java
Message Service (JMS) using message queues and topics. You will apply JMS to
implement a producer and consumer of asynchronous messages.

Day 10, “Message-Driven Beans,” builds on the coverage of JMS to associate mes-
sage queues with Message-driven EJBs. You will create an EJB whose functionali-
ty is triggered on receipt of an asynchronous message.

On Day 11, “JavaMail,” another asynchronous communication mechanism is
examined—namely e-mail. You will learn how to send and retrieve e-mail under
J2EE and how this can be applied to transport data in a J2EE application.

Introduction

e Day 12, “Servlets,” is the first of three Web-oriented days that explore the creation
of Web-oriented J2EE applications. This starts by creating servlets to take advan-
tage of the EJB-based services you built earlier. You will look at the servlet lifecy-
cle and central issues, such as session tracking and state management.

e Day 13, “JavaServer Pages,” looks at how JavaServer Pages (JSP) can help to inte-
grate Java and J2EE functionality with HTML content. It examines the role of JSPs
and how JavaBeans can be used to encapsulate Java functionality in JSPs.

e On Day 14, “JSP Tag Libraries,” you will use custom JSP tag libraries to encapsu-
late Java functionality to improve the maintainability of the JSP pages.

The third week explores essential aspects of enterprise applications, such as security and
integration, before moving on to application design and ending with a look at the Web
Service functionality that will form the future of J2EE:

e Day 15, “Security,” begins week 3 by applying security to your J2EE application.
You will weigh up the benefits of declarative and programmatic security and how
they can be applied within your application.

e On Day 16, “Integrating XML with J2EE,” you will examine the role of XML in
J2EE applications. You will create J2EE components that produce and consume
XML documents and process data using the Java APIs for XML Processing
(JAXP).

e Day 17, “Transforming XML Documents,” focuses on the transformation of XML
documents into other formats, including other dialects of XML, primarily using the
XSLT transformation language. Again, JAXP allows you to do this programmati-
cally from within J2EE components.

* On Day 18, “Patterns,” you will take some time to consider the bigger picture and
examine design issues for J2EE applications. The specific focus will be on com-
mon patterns that have been found as people have applied J2EE technologies in
live applications. You will use this knowledge to improve parts of the case study
design.

* Day 19, “Integrating with External Resources,” explores the various technologies
that can be used to integrate J2EE applications with non-J2EE components and ser-
vices. These mechanisms include the Java Connector Architecture, CORBA, RMI-
IIOP, and the Java Native Interface.

e Day 20, “Using RPC-Style Web Services with J2EE,” looks ahead to the use of
J2EE components as Web Services. You will use common Web Service technolo-
gies (such as SOAP and WSDL) to expose Java functionality as Web Services, and
look at how the Java API for XML-Based RPC (JAX-RPC) addresses this.

Sams Teach Yourself J2EE in 21 Days

e Day 21, “Web Service Registries and Message-Style Web Services,” concludes the
examination of J2EE-based Web Services by examining the role of XML-based
registries and how the Java API for XML Registries (JAXR) enables access to this
information. You will also create a message-oriented producer and consumer of
Web Services using the Java API for XML Messaging (JAXM).

About This Book

This book is a practical, down-to-earth guide for intermediate Java developers. It is not
intended to be a reference book, with lists of API calls or extensive discussion of the
inner workings of the technologies. Rather, it provides you with a grounding in applying
the essential J2EE technologies and leads you through the essential steps required to get
a program or component written, packaged, and deployed on the J2EE platform. By the
time you finish Sams Teach Yourself J2EE in 21 Days, you should have the confidence to
create or maintain code that uses any of the major J2EE APIs.

Who Should Read This Book?

This book in intended for experienced Java developers who have been involved with Java
development for at least 3—6 months. You should be confident writing Java code and
familiar with the commonly used Java 2 Standard Edition APIs, such as string handling,
JDBC, collections, iterators, and so on.

In addition to a firm grasp of Java, the following knowledge will speed your progress
through the book:

e An understanding of how the Web operates, such as the use of a Web browser to
retrieve pages of HTML from Web Servers.

* Familiarity with XML syntax to the level of reading small extracts of XML con-
taining elements, attributes, and namespaces.

e An understanding of relational databases and how data is structured in tables. A
familiarity with basic SQL to the level of understanding simple queries, inserts,
updates, and joins.

e Familiarity with distributed systems, such as n-tier development, client-server pro-
gramming, and remote procedure calls.

If you are not familiar with one or more of these topics, don’t panic! There are appendixes
on the CD-ROM that provide introductory material on XML and SQL. The essential con-

cepts of distributed systems and Web-based development are covered in the main body of

the book as required.

Introduction 5 |

How This Book is Structured

This book is intended to be read and absorbed over the course of three weeks. During
each week, you read seven chapters that present concepts related to J2EE and the cre-
ation of enterprise applications in Java. Care has been taken to try to ensure that concepts
and technologies are introduced in an appropriate order, so it is best to read the chapters
sequentially if possible.

At the end of each lesson are a set of questions asked about the subject covered that day.
Answers to these questions are provided by the authors. There are also exercises for you
to test your newly found skills by creating some related application or service.

The exercises in the book are largely based around a case study that is described in detail
at the end of Day 2. The files for the case study and worked solutions to the exercises
can be found on the CD-ROM that accompanies this book. The idea of the case study is
that it will help you apply J2EE technologies and techniques in a consistent context and
as part of a working application. This should provide you with a deeper understanding of
the technology involved and how to apply it than is possible working with standalone
examples.

Typographic Conventions

N t A Note presents interesting, sometimes technical, pieces of information
ote e
related to the surrounding discussion.

A Tip offers advice or suggests an easier way of doing something.

[:a“ti““ A Caution advises you of potential problems and helps you avoid causing
serious damage.

1) =

Text that you type, text that should appear on your screen, and the names of Java classes
or methods are presented in monospace type.

WEEK 1

Introducing J2EE
and EJBs

1

N oo o1 WN

The Challenge of N-Tier
Development

J2EE Platform and Roles
Naming and Directory Services
Introduction to EJBs

Session EJBs

Entity EJBs

CMP and EJB QL

WEEK 1

DAY 1

The Challenge of N-Tier
Development

The current trend in enterprise program development is to provide n-tier frame-
works aimed at delivering applications that are secure, scalable, and available.
To this end, Sun Microsystems introduced Java 2 Enterprise Edition (J2EE),
and Microsoft Corporation ventured the .NET framework to help developers
build applications that are Web-friendly and frequently used to deliver
e-commerce solutions. There are a myriad of application servers available to
house enterprise applications, and many service providers are writing modular
tools to plug in and extend the rich functionality. The clients that are taking
advantage of this distributed architecture can be as simple as a Web browser (a
so-called thin client).

This is the overarching vision and the state of the art. But, how did we get
here?

To understand this landscape, this chapter investigates the principles of multiple
tiers, component environments, and standards that underlie the frameworks.
One of the objectives will be to give you a clear understanding of concepts and

|1O

Day 1

terminology used when discussing such frameworks. Such terminology can frequently be
confusing and inconsistently used. As a start along this road, please note that for the pur-
poses of the following discussions, a tier refers to a physical separation (a different
machine), and a layer refers to a logical layer in software terms, such that multiple layers
can be on the same machine.

Monolithic Development

In the days of the mainframe or the standalone personal computer, when an application
was housed on a single machine, it was common to find monolithic applications contain-
ing all the functionality of the application in one large, frequently unmaintainable piece
of software (sometimes referred to as spaghetti code). All user input, verification, busi-
ness logic, and data access could be found together. This suited the world of the main-
frame and corporate data center because everything was controlled and the systems
themselves tended to evolve slowly. However, as the world has speeded up over the last
two decades, the high levels of maintenance required to keep up with changing business
needs using such an application would mean that recompilation would be almost a daily
event.

N“tﬂ Even today, if you need a very simple application where, for example, the
client application accesses and updates information on a database, locally
you need only one tier. However, as you will see, you will still probably want
to use components and or layers to control its complexity.

Figure 1.1 shows how this application may look running on a single machine.

FIGURE 1.1 Monolithic Code

Monolithic code
scenario. Presentation Business Data

Logic Logic Access Logic
A

Y

Consequences of Monolithic Applications

If you are writing a simple utility that does not use network connectivity, the previous sce-
nario might suffice. However, any changes required to any part of the functionality may

The Challenge of N-Tier Development

potentially affect other parts. Because the Presentation, Business, and Data Access logic
are located within the same piece of application code, recompilation of many parts of the
code may be necessary, increasing the overhead of adding or changing functionality.
Worse still, changes in part of the code may introduce unintentional bugs in other, seem-
ingly unrelated, parts.

Of course, updating the application involves only one machine, but the rollout of new
versions of the software gets more complicated as more users install and use the applica-
tion.

The Move into the Second Tier

The move towards 2-tier systems was born from the desire to share data between multi-
ple applications installed on different machines. To do this, a separate database server
machine was required. Figure 1.2 shows how this is achieved. The application now con-
sists of presentation and business logic. Data is accessed by connecting to a database on
another machine. Any changes to the Data Access logic should not affect the
Presentation or Business logic in the application.

As indicated by Figure 1.2, splitting out Data Access Logic into a second tier keeps the
data access independent and can deliver a certain amount of scalability and flexibility
within the system.

FIGURE 1.2

2-tier scenario.
Presentation Business ;l Data
Logic Logic <€ Access Logic

A

Y

The advantage of having the Data Access Logic split into a separate physical environ-
ment means that not only can data be shared, but any changes to the data access logic are
localized in that second tier. In fact, the whole of the second tier could be replaced with a
different database and different code as long as the interface between the two tiers
remained the same.

This provides an alternative way of looking at the program logic. Each part of the logic
from the monolithic system could be regarded as a separate layer.

|12

Day 1

The logical division into layers of functionality can be based on the different responsibil-
ities of parts of the code, namely,

» Presentation Logic—This dictates how the user interacts with the application and
how information is presented.

e Business Logic—This houses the core of the application, namely the rules govern-
ing the business process (or any other functionality) embedded in the application.

e Data Access Logic—This governs the connection to any datasources used by the
application (typically databases) and the provision of data from those datasources
to the business logic.

So, we have two tiers in Figure 1.2 with two logical layers. The Presentation and
Business Logic layers are still lumped together as one piece of potentially monolithic
code.

Consequences of the 2-Tier Design

One of the central problems faced by application developers using the type of architec-
ture shown in Figure 1.2 was that the client is still full of business code and it still needs
to know details about the location of its data sources. Because there is such a concentra-
tion of functionality on the client, this type of client is generally termed a thick client.
Thick clients usually need to be updated whenever the application changes.

Because the users of a thick client application have much of the application code
installed on their local systems, there is a need to install fresh copies of the updated
application when changes are made. This presents a serious manageability issue in terms
of roll out and version control. Also, it is not always practical to use a thick client,
because the application user may not want to install code on his or her machine to use a
particular application. Similarly, the application provider may not want to provide code
containing its business logic to relatively unknown third parties, even if it is pre-
compiled.

Another issue with the use of thick clients relates to data access. The need to provide
access to the back-end data for all clients of the application severely limits the reach and
scalability of the application.

In addition to these inherent problems, many applications written with tools aimed at the
two-tier environment still had all of their code in a single executable module. This
increased maintenance headaches because there was a need to update the program design
and implementation if any changes are required to any part of the system. With the
advent of the Internet, there was a movement to separate Business logic from the user
interface. Internet users, or more precisely Web users, need to access applications

The Challenge of N-Tier Development 13 |

without installing new code on their machines. In fact, they want to be able to use the
same client application—a Web browser—to access all of the different applications they
encounter on the Web. Because the application logic associated with a thick client is no
longer resident on the user’s machine, this type of client is known as a thin client. The
implication is that all of the “bulk” of the application has been moved into another tier.
When a Web browser is used as a thin client, the application code will be run on the Web
servers with which the browser communicates (or on other machines with which the Web
servers communicate). The presentation tier logic for such an application must generate
Hypertext Markup Language (HTML) rather than manipulate graphical elements on a
GUI screen.

All of this has a serious implication for 2-tier systems. If a 2-tier system is to be adapted
for use on the Internet, the thick client part that contains the business logic and the pre-
sentation logic must be re-written to run on a Web server. This will then mean that there
are two copies of the business logic—one housed in the original thick client and the
other housed in the Web-based version of the application. This is a nightmare in mainte-
nance terms because any changes or updates must be made in both places. More decou-
pling is required to improve the manageability and maintainability of the application.

The decoupling of application logic by introducing additional tiers, as started with the
two-tier system shown in Figure 1.2, can be continued with the separation of the
Business and Presentation Logic. By housing the separated Business Logic in another
tier, the thick client suddenly becomes thinner, as Figure 1.3 shows.

FIGURE 1.3

3-tier scenario.

Presentationl rl Business | ;lf Data
Logic < {_ logic < { Access Logic

A
Y

The Presentation Logic is now separated into its own layer in its own tier. This means
that different types of Presentation Logic, such as HTML-based and GUI-based user
interface code, can all access the same Business Logic on the middle tier.

This 3-tier model has become the de-facto architecture for Web-based business systems.
The separation into layers makes systems more flexible so that parts can be changed
independently. An example of this would be creating a presentation layer specifically

|14

Day 1

FIGURE 1.4 Component |

Modularity.
Package | Package |
Class | Class |
State State
Behaviour Behaviour
Class | Class |
State State
Behaviour Behaviour
Class |
State
Behaviour

targeted at mobile devices. Given the separation of business and presentation functionali-
ty, this should not require any changes to the business of Data Access logic. The separa-
tion into separate physical tiers provides the opportunity to inject enhanced scalability
and availability by replicating machines and software at the different tiers.

With the logic now separated into layers, it is far easier to write code that is tailored to
its particular task. For example, because the Presentation logic is now housed in its own
physical and logical layer, such code can be written by a developer who is skilled in this
particular area. Developers who are skilled in the use of Java Web components, such as
servlets (see Day 12, “Servlets”) and Java Server Pages (JSPs) (see Day 13, “JavaServer
Pages”) can write the code for this layer. These developers do not need to know about the
technologies used in the business or data access code.

Complexity Simplified by Modularity

When designing a system, certain concepts will naturally sit together. By placing these
into shared modules, a certain amount of separation can be achieved that is independent
of the layering discussed so far. Functionality can be split into classes, and these classes
can be grouped in packages or components. By reducing the dependencies between the
classes and packages, this functionality can be used by different parts of the application.
By defining and maintaining interfaces between classes and packages, the actual imple-
mentation of a class can be replaced without requiring a change to other classes that
depend on it. The Unified Modeling Language (UML) diagram in Figure 1.4 shows this
type of decomposition.

The Challenge of N-Tier Development

15|

Object-oriented (OO) modeling promotes modularity to a large extent. Objects encapsu-
late their data or state and offer functionality through their interfaces. If designed correct-
ly, the dependencies between different objects can be minimized. This reduction in
dependency means that the objects are loosely coupled. Loosely coupled systems tend to
be easier to maintain and evolve.

Object-oriented programming tried to improve maintainability with encapsulation and to
aid system design with a definition of specific classes for specific roles, providing coher-
ent groups of functionality. This significantly improved the previously poorly designed
monolithic code and made things more maintainable and flexible. However, it was lan-
guage-specific (Java, C++, and Smalltalk) and so did not make deployment or integration
easier.

Although it is not the whole solution, you have some useful tools for modularizing your
applications in Java:

* A Java class is a way of adding modularity by housing all state and behavior
belonging to an entity into one part of the design.

* A Java package is another way of using modularity to house all classes and inter-
faces that belong together to perform a specific set of functions.

What you then need is a way of going beyond simple objects to provide more coarse-
grained packages of functionality that can be glued together to create custom applica-
tions. To be correctly glued, these packages must conform to certain rules that are
defined by a framework. This leads us to components.

Component Technology

A component is a unit of functionality that can be used within a particular framework.
Component frameworks have evolved to provide support for simplified application devel-
opment. When using a component framework, a container provides the components with
certain standard services, such as communication and persistence. Because standard
mechanisms are used for component definition and inter-component communication, it
becomes possible to write tools that examine components and display their information
to an application writer. A developer can then use the tool to drag and drop these compo-
nents into his or her application. This can be seen in the typical GUI interface builder
environments, such as Visual Basic, or the Java equivalents, such as Borland’s JBuilder
and IBM’s Visual Age for Java.

The component principle applies to non-visual components also. Whole distributed appli-
cations can be created from components. One of the benefits of distributed component
frameworks is that they can provide language independence. Using CORBA, for exam-
ple, components written in C can communicate with those written in OO languages such
as Java and Smalltalk.

|16 Day 1

In Java, there are several component frameworks from which to choose. The J2EE plat-
form uses components extensively to provide modularity within the layers of an applica-
tion. As such

e A Java component is yet another way of using modularity to house all packages
required to perform a specific task. In the 3-tier environment, for example, the
functionality of the Data Access Logic layer would be split into multiple compo-
nents.

e A component will publish its interface defining the functionality it offers. This
functionality can then be used by the application itself or by other components.

Benefits of Modularity

If separate parts of the design can be identified, the most appropriate developers can be
tasked with the implementation simultaneously. Some components can also be purchased
from third parties and integrated quite easily because all components will conform to the
framework. This brings down the time to market and is, therefore, a significant cost ben-
efit.

The system is more maintainable if identifiable parts are capable of being upgraded and
re-implemented without hindering the existing running of the system. With modularity
comes the possibility of loose coupling, which means the system itself is extendable
without introducing dependencies. If a module has loose coupling, its maintenance is
simpler.

Using components within layers allows you to further modularize the functionality in
those layers.

Benefits of the 3-Tier Scenario

A modern n-tier application architecture, such as that provided by J2EE, involves the
separation of functionality both by using layers and tiers and also the use of components
within those layers (and objects within those components).

Now, presentational developers need not know anything of the business rules in the sys-
tem, and any changes to any of the layers should not impact the effectiveness of any of
the others. This aids in maintenance of the system and promotes scalability and extensi-
bility. The separation into components helps with the division of tasks even further.

With the advent of the Internet, enabling more businesses to deliver goods and services
online, it is easier to deliver functionality to customers and business users. There may be
issues with particular versions of browsers, but compared to the situation where thick

The Challenge of N-Tier Development 17 |

client applications would need to be distributed and installed on each client machine, the
relative merit of distributing functionality using the Internet remains overwhelming con-
sidering the potential user base companies are striving to reach.

It is this emphasis on the Internet that many enterprise service vendors are seeking to
exploit. Most organizations have some form of Web presence and many are trying to use
this to offer services to their customers. Since such services interact directly with the
customer, their levels of reliability and usability must be high. Such Web-based applica-
tions are now common currency, and the world is evolving further. Web services are
being discussed as the next generation of n-tier development, allowing applications to be
created from components distributed across the Internet. As this model evolves, the dis-
tributed Internet becomes the computer.

Enterprise applications can be Web centric, but need not be. To cover Web-centric pro-
gramming, this book shows how to integrate Servlets (see Day 12, “Servlets”) and Java
Server Pages (JSPs) (see Day 13, “JavaServer Pages”) into Enterprise applications.
Within an organization, or even when creating business-to-business (B2B) links, enter-
prise applications need not use Servlets or JSPs. In this case, clients may connect directly
to business components, in the shape of Enterprise JavaBeans (see Day 4, “Introduction
to EJBs”), over RMI or CORBA.

As the provision of functionality over the Internet gains importance, most companies will
expose the functionality of their internal applications as part of a Web-based application.
As functionality is exposed, it becomes important to maintain the integrity of the data in
the corporate systems. Transactions provide a common mechanism for doing this.
Transactions are covered in detail in Day 8, “Transactions and Persistence.”

A Model for Enterprise Computing

So, an n-tier, component-based, Web-friendly environment is needed, but what about the
detail—what specific functionality is needed to support such applications? When consid-
ering what is needed for a distributed environment, we can turn to an organization that
has been involved in this area for a long time. Since its inauguration in 1989, the OMG
has been working with key industry players (such as 3Com Corporation, American
Airlines, Canon, Inc., Data General, Hewlett-Packard, Philips Telecommunications N.V.,
Sun Microsystems, and Unisys Corporation) to produce a component-based software
market by hastening the introduction of standardized object software. Many of the
OMG’’s specifications have become a standard part of the Distributed Object Computing
landscape, such as the Common Object Request Broker Architecture (CORBA), the
Internet Inter-Orb Protocol (IIOP), and the Unified Modeling Language (UML).

|18

Day 1

By examining some of the key requirements outlined in the OMG’s Enterprise
Computing Model, it is possible to explore what is required from a modern distributed
computing environment.

Lifecycle

There must be a safe mechanism for creating, copying, moving, and deleting distributed
objects. A distributed component environment must provide containers to manage the
lifetime of components and assist in their deployment. There are also other lifecycle
issues that must be addressed in a distributed environment. For example, distributed
garbage collection (getting rid of unused objects) can be handled in different ways
according to the operating environment. With Java’s Remote Method Invocation (RMI), a
distributed leasing mechanism is used. With CORBA, there are lifecycle management
services. Microsoft’s Distributed COM (DCOM), on the other hand, relies on objects
controlling their own lifetimes.

Persistence

In an enterprise application, you need to be able to store data permanently for later
retrieval. Object Database Management Systems (ODBMS) and Relational Database
Management Systems (RDBMS) commonly support this requirement. A distributed
application environment must provide a way of accessing and updating persistent data in
a simple yet flexible way. It is also important to support different types of data persis-
tence (different databases, legacy systems, and so on) and different ways of accessing
this data (locally or across a network). Any help that can be given to the developer for
data persistence is generally very welcome.

Naming

Distributed applications will be formed from components that reside on different
machines. The parts of the application that use components on other machines must be
able to locate and invoke such components. What is needed is a directory service in
which components or services can register themselves. Any part of the application that
wants to use such a service can look up the location of the service and retrieve informa-
tion about how to contact it.

Common directory services and protocols include the following:

* CORBA Common Object Services (COS) Naming Service—This allows you to
store object references in a namespace. The COS naming service is widely used in
Java-based distributed environments as a way of storing information about the
location of remote objects. Further information on COS Naming can be found
online at http://www.omg.org.

The Challenge of N-Tier Development

19|

* X.500—This defines an information model for storing hierarchical information and
an access protocol called the Directory Access Protocol (DAP). Further informa-
tion about X.500 can be found online at http://java.sun.com/products/
jndi/tutorial/ldap/models/x500.html.

e Lightweight Directory Access Protocol (LDAP)—This is a lightweight version of
the X.500 protocol that runs over TCP/IP. Further information on LDAP can be
found online at http://www.openldap.org.

* Domain Name System—This is an Internet protocol that allows translation between
host names and Internet addresses. DNS is used by all Internet clients, such as Web
browsers. More information on DNS can be found at
http://www.dns.net/dnsrd/rfc/.

* Microsoft Active Directory—The Active Directory service allows organizations to
store central information on data and services within an enterprise. Further infor-
mation on Active Directory can be found online at http://www.microsoft.com/
windows2000/technologies/directory/default.asp.

Transaction

In a distributed enterprise application, certain business processes will involve multiple
steps. For example, a typical exchange of goods or services for payment will need to take
payment details, verify those payment details, allocate the goods to be shipped, arrange
the shipping, and take the payment. At any stage, the customer might be interrupted or
the server could crash, not completing the entire transaction. If that happens, the enter-
prise application must be able to retrieve the previous state to continue with the transac-
tion at a later time or to roll back the transaction so that the system is restored to its orig-
inal state.

Transaction services provide a way of grouping updates to data so that either all of the
updates are performed or none of them are performed. A transaction coordinator will be
responsible for ensuring this. Transaction information is persisted so that the state of a
transaction can survive a system crash. Transactions can be propagated across distributed
method calls and even across message-based systems.

Security
A secure enterprise application environment will provide the following:

* Authentication—Are you who you say you are?
* Authorization—Are you permitted to do things you are requesting to do?
In addition to this, many enterprise application environments will support both program-

matic and declarative security. Programmatic security is enforced within the enterprise
application itself, while declarative security is enforced by the enterprise application

|20

Day 1

environment within which the application runs. The enterprise application environment
will consult configuration information to decide which security restrictions to enforce for
a particular application. Changes to this information would not necessitate recompilation
of the application itself.

Java 2 Enterprise Edition (J2EE)

J2EE is an on-going standard for producing secure, scalable, and highly-available enter-
prise applications. The standard defines which services should be provided by servers
that support J2EE. These servers will provide J2EE containers in which J2EE compo-
nents will run. The containers will provide a defined set of services to the components.
The J2EE specification provides a definition from which enterprise vendors can produce
J2EE application servers on which J2EE-compliant applications can be deployed. An
impressive list of expert group members produced the latest version of the associated
Java Specification Request (JSR 58 which contains the standard definition for J2EE ver-
sion 1.3), which can be found online at http://java.sun.com/j2ee/sdk 1.3/
index.html.

Although the J2EE specification defines a set of services and component types, it does
not contain information on how to arrange the logical architecture into physical
machines, environments, or address spaces.

The J2EE platform provides a common environment for building secure, scalable, and
platform-independent enterprise applications. Many businesses are now delivering goods
and services to customers via the Internet by using such J2EE-based servers. The
requirements of such an environment demand open standards on which to build applica-
tions, for example,

e Java 2 Platform, Standard Edition (J2SE), a platform independent language

e Components that deliver Web-based user interfaces

» Components to encapsulate business processes

* Access to data in corporate data stores

e Connectivity to other data sources and legacy systems

e Support for XML, the language of B2B e-commerce

Components and Containers

J2EE specifies that a compliant J2EE application server must provide a defined set of
containers to house J2EE components. Containers supply a runtime environment for the
components. As such, Java 2 Platform, Standard Edition (J2SE) is available in each con-
tainer. Application Programming Interfaces (APIs) in J2EE are also made available to

The Challenge of N-Tier Development

21|

provide communication between components, persistence, service discovery, and so on.
Containers are implemented by J2EE application server vendors and there should be a
container available for each type of J2EE component:

* Applet Container

* Application Client Container

¢ Web Container

¢ EJB Container

There are two types of components deployed, managed, and executed on a J2EE Server:

* Web components—A Web component interacts with a Web-based client, such as a
Web browser. There are two kinds of Web components in J2EE—Servlet
Component and Java Server Pages (JSP) Component. Both types handle the pre-
sentation of data to the user. Please see Days 12 and 13 for further details.

* EJB components—There are three kinds of Enterprise JavaBean components—

Session beans, Entity beans, and Message-Driven Beans. Please see Day 4, Day 5,

“Session EJBs,” Day 6, “Entity EJBs,” and Day 10, respectively, for further infor-

mation.

Figure 1.5 shows the overall relationships between the different containers and compo-
nents in the J2EE environment.

FIGURE 1.5

J2EE logical architec-
ture.

J2EE Standard Services

J2EE Server

Browser |«

Web Container

!

Y

Servlet JSP Page

v

rAppIication Client)

EJB Container
Container
Application |l 131 | Enterprise | | Enterprise
Client Bean Bean
\ J/

Containers must provide each type of component with a defined set of services that are
covered in detail as you progress through the book. Briefly these services consist of

|22

Day 1

e Connectivity—Containers must support connectivity to other components and to
application clients. One form of required connectivity is to distributed objects
through both Java Remote Method Invocation (RMI) and CORBA (as implemented
by the Java IDL package and RMI over IIOP). Internet connectivity must be pro-
vided both through the Hypertext Transport Protocol (HTTP) and its secure form
(HTTPS).

e Directory services—I2EE servers are required to provide naming services in which
components can be registered and discovered. The Java Naming and Directory
Interfaces (JNDI) provide a way of accessing these services.

e Data access and persistence—Data access is provided through the Java Database
Connection API (JDBC). This API works both at the application level to interface
with databases and also service providers who build drivers for specific databases.

e Legacy connectivity—The Java Connector Architecture (JCA or Connectors) pro-
vides J2EE support in integrating Enterprise Information Servers and legacy sys-
tems, such as mainframe transaction processing and Enterprise Resource Planning
(ERP) systems. This support extends to J2EE service providers who are writing
adapters to connect other systems to the J2EE enterprise architecture.

e Security—Security is built into the J2EE model. APIs, such as the Java
Authentication and Authorization Service (JAAS), assist the J2EE enterprise appli-
cation in imposing authentication and authorization security checks on users.

* XML Support—The JAXP API supports the parsing of XML documents using
Document Object Model (DOM), SimpleAPI for XML documents (SAX), and the
eXtensible Stylesheet Language Transformations (XSLT).

e Transactions—A J2EE server must provide transaction services for its components.
The boundaries of transactions need to be specified by the container or the applica-
tion. The container will usually take responsibility for transaction demarcation,
although the Java Transaction API (JTA) allows the component to control its own
transactions if required.

e Messaging and e-mail—The Java Message Service (JMS) allows components to
send and receive asynchronous messages, typically within an organizational bound-
ary. The JavaMail API enables Internet mail to be sent by components and also
provides functionality to retrieve e-mail from mailstores. JavaMail uses the
JavaBeans Activation Framework (JAF) to support various MIME types.

Figure 1.6 shows the J2EE architecture updated with the services available to its contain-
ers. All of these services are discussed in more detail tomorrow.

Every J2EE-compliant server must support the services defined in this section. To pro-
vide a concrete example of how services should work, the team working on the J2EE

The Challenge of N-Tier Development 23 |

JSR is responsible for providing a Reference Implementation (RI) of the J2EE APIs. This
RI is freely available from Sun and provides a convenient platform for prototyping appli-
cations and testing technologies.

4 N\
FIGURE 1.6 J2EE Server
4 N\
T}.le J2EE. P latform Applet Web Container
with services avail- Container
able. Applet L/HTTP[[Servlet] [JSP Page]
Client D 4
[}
a » =
IR R EEEE:
3 2S5 S55 72 &
J2SE 3 8

A

»| Database
Y L

HTTP

Ve \
Applet EJB Container 1
Container ¢
— Enterprise | | Enterprise
Application | > [BeSn] [Bezn]
Client B - i
= c
o 0 O S pa oo £
22358 EES YRS
2S5 S 5) z <ﬁ(<ﬁ(Q 22 g
)
J2sE \ =
_ J/

J2EE Blueprints

The J2EE Blueprints are a set of best practices that show how best to implement J2EE
applications. The Blueprints provide a concrete implementation of Sun’s vision for 3-tier,
J2EE-based systems. There is a download available from the Sun Web site called Java
Pet Store Sample Application that shows these best practices. This can be found online at
http://java.sun.com/j2ee/blueprints.

The Java Pet Store is a typical online e-commerce application. The best practices cover
application design and, in particular, the promotion of the following:

* Code reuse

* Logical functional partitioning

* The separation of areas of high maintenance

» Extensibility

* Modularity

* Security

» Simple and consistent user interface

|24

Day 1

« Efficient network usage

* Data integrity

The J2EE Blueprints will show you step-by-step how to design multi-tier enterprise
applications. There are explorations on the following topic areas:

e The Client Tier

e The Web Tier

* The Enterprise JavaBeans Tier

e The Enterprise Information Systems Tier

e Design Patterns

In addition, there are discussions on how to package and deploy your enterprise applica-
tions.

J2EE Compatibility Test Suite

Enterprise service providers will sell more if their enterprise servers meet with the J2EE
specification requirements. To enable them to test their products against the specification,
Sun Microsystems Inc. offers a testing environment. Servers that pass all of the tests can
be certified as J2EE compliant. Further details of the compatibility suite can be found
online at http://java.sun.com/j2ee/compatibility.html.

The following are some examples of application vendors and their servers that have been
certified by Sun Microsystems as being compatible with the J2EE specification (some of
these may not yet have attained J2EE 1.3 certification, so please check on the Sun Web
site).

¢ Allaire (www.macromedia.com/software/coldfusion)—ColdFusion 5 comes with
its own markup language (ColdFusion Markup Language) that integrates with all
popular Web languages and technologies. ColdFusion works with multi-tier archi-
tectures through COM, CORBA, and EJB integration.

e BEA Systems (www.bea.com)—BEA Weblogic Server includes support for Web
Services, J2EE Connector Architecture, and updated J2EE services, with EJB 2.0,
Servlet 2.3, and JSP 1.2.

e IBM (www.ibm.com)—Websphere Commerce Business Edition supports EJB, JSP,
XML, HTTP, and wireless markup language technologies.

e iPlanet (www.iplanet.com)—iPlanet Application Server Enterprise Edition sup-
ports the J2EE platform and is integrated with transaction monitor, iPlanet Web
Server, and iPlanet Directory Server. It supports XML, wireless application proto-
cols, Simple Network Management Protocol (SNMP), LDAP, CORBA, and JDBC.

The Challenge of N-Tier Development 25 |

* JBoss (www. jboss.org)—JBoss is a freeware server that houses an implementation
of the EJB 1.1 (and parts of 2.0) specification. It is similar to Sun’s J2EE
Reference Implementation, but the JBoss core server provides only an EJB server.
JBoss does not include a Web container, but JBoss is available to download with a
freeware Web server.

» Persistence (www.persistence.com)—PowerTier Release 7 for J2EE supports Java,
EJB deployment, and Rational Rose integration.

The Future of J2EE

Probably the major area for the future of J2EE is that of Web Services. There are a num-
ber of JSRs active at the time of this writing on the following topic areas:

* JSR 67 Java APIs for XML Messaging (JAXM) 1.0—Message-based communica-
tion between Web Services and Web Service clients. Please refer to Day 21, “Web
Service Registries and Message-style Web Services,” for further details.

* JSR 93 Java APIs for XML Registries 1.0 (JAXR)—Registry and naming service
access for Web Services. Please refer to Day 21 for further details.

* JSR 101 Java APIs for XML-RPC (JAX-RPC)—RPC-style interaction with Web
Services. Please refer to Day 20, “Using RPC-Style Web Services with J2EE,” for
further details.

e JSR 109 Implementing Enterprise Web Services—A model of how Web Services
should work within J2EE.

These JSRs can be found through the Java Community Process (JCP) Web site at
http://www.jcp.org.

Summary

Enterprise application development has helped businesses provide Web-enabled, scalable,
secure applications quickly. It has also enabled vendors to produce pluggable tools and
services to augment the J2EE standard defined through the Java Community Process.
This chapter describes the journey towards the n-tier environment that underpins the
architecture of enterprise application programming. You have investigated the basic ser-
vices that should be available to an n-tier enterprise application, and examined a few of
the enterprise application servers on the market.

Q&A

Q I have a monolithic program that I would like transition into an n-tier appli-
cation. How do I do this?

|26

Day 1

A First you need to identify what sort of target architecture is required. If your appli-

cation is to be Web-enabled, you will need to provide Web-oriented functionality in
the presentation layer. If you are working with persistent data, you will need data
access through a data access layer. You should map out your target architecture
based on the services available under the J2EE platform.

Next, you will need to sift through the monolithic code separating out the code
belonging to the logical layers. This code might need to be rewritten in such a way
as to make it maintainable and extensible. Introduce modularity by adopting
object-oriented programming and design classes. Package these classes and design
components to have maximum cohesion and loose coupling wherever possible.

To implement and deploy your J2EE application, read the rest of the book and fol-
low the examples.

What is the difference between Microsoft’s NET framework and J2EE?

You can build enterprise applications with both platforms. Both J2EE and .NET
framework applications can provide good levels of scalability, availability and so
forth. The essential difference is largely one of choice. J2EE lets you use any oper-
ating system, such as Windows, UNIX, or a mainframe. J2EE’s development envi-
ronment can be chosen to suit developers from a variety of Integrated Development
Environment (IDE) and J2EE application server vendors. The .NET framework is
essentially limited to the Windows family of operating systems. This allows it to be
more cleanly integrated with the operating system, but reduces the choice of target
platform.

Exercises

To extend your knowledge of n-tier development, try the following exercises:

1.

Write a design for a monolithic application to provide a shopkeeper with data con-
cerning stock information.

. Redesign the application based on the contents of this chapter, so as to make it

accessible over the Internet.

Visit http://java.sun.com/j2ee for further details of the J2EE programming
tools and utilities.

Visit http://www.microsoft.com for further details of the NET framework.
Compare and contrast this with the facilities available under J2EE.

WEEK 1

DAY 2

The J2EE Platform and
Roles

Yesterday, you learned about enterprise computing and some of the problems
facing developers of enterprise solutions. The day also introduced J2EE, a tech-
nology that can help you develop secure, scalable, and platform-independent
solutions that meet the needs of today’s business.

Today, you will explore the J2EE platform and see what it can offer you to help
solve your business problems. J2EE is a large framework that boasts of a wide-
range of components, services, and roles. It is these that you explore today, so
that you’ll be eager and prepared to start writing code tomorrow. The following
are the major topics today covers:

* Understanding how J2EE delivers solutions for today’s business

¢ Introducing the available Web-centric components

* Introducing the use of Enterprise JavaBeans

* Assessing platform roles

» Exploring the packaging and deployment of enterprise applications

| 28 Day 2

Revisiting the J2EE Platform

You learned a lot about enterprise computing yesterday. You learned specifically about
how business needs force the evolution of application architectures; today, most applica-
tions are distributed across multiple machines. This approach, the n-tier model, gives
rise to different ways of writing and structuring applications. Units of functionality—
components—provide modularity that allow multiple developers to work more easily on
different parts of the application. Use of a component framework also allows developers
to apply third-party components to speed development. These loosely-coupled compo-
nents may run as an application on a desktop client, within a Web server, or even on a
server that connects to a legacy system. In addition, data has undergone a revolution.
Data sources now go beyond simple, relational databases containing tables to encompass
databases that contain serialized objects or plain text files containing XML. Alternatively,
data may take the form of user information in an LDAP directory or information in an
Enterprise Resource Planning (ERP) system.

Applications written in traditional programming languages that do not have supporting
frameworks simply cannot perform the operations required by today’s environment.
Instead, you must employ component-aware programming languages together with
frameworks dedicated to enterprise computing. As you have already seen, J2EE is such a
framework. Although the environment within which J2EE operates might sound daunt-
ing, J2EE isn’t. When you write J2EE applications, you still write Java code, and you
still get to use the J2SE classes with which you are familiar.

To successfully use J2EE, you must

e Install and configure your J2EE environment
e Understand J2EE roles
* Appreciate the purpose of containers
* Understand how you can use J2EE components
e Understand the services that containers supply to components
e Learn or explore a new set of APIs
Yesterday’s lesson introduced the first four points in the list. You will explore them in

more depth today. After you understand these, you will be ready for tomorrow, when you
will start to apply the new APIs and to code real applications against them.

Using Sun Microsystems’ J2EE SDK

Before you can start coding real J2EE applications, you need a J2EE implementation and
a Java development environment, such as Sun Microsystems JDK or a Java Integrated

The J2EE Platform and Roles 29|

Development Environment (IDE). This book uses the Sun Microsystems’ J2EE SDK,
which is a complete reference implementation of J2EE. It includes all the classes, con-
tainers, and tools you need to learn J2EE.

To run the example code provided on the CD-ROM accompanying this book, you will
also need to install a sample database. Installing the sample database is described in the
Exercise at the end of this day’s lesson. But now, to give you some hands-on work
before you study the theory behind J2EE, you will install the J2EE SDK 1.3 on your

workstation.
Nﬂtﬂ The J2EE SDK is free to download, use for learning J2EE, and use as a devel-
opment tool. The Sun Microsystems license for this product states that you
may not use it in a production environment. Be warned!

Installing J2EE SDK 1.3
Before you download the SDK, ensure that you have J2SE 1.3.1_01 (also known as JDK
1.3.1) or later correctly installed and are using one of the following supported platforms:
* Windows NT4 or 2000
* Solaris SPARC 7 or 8
* Linux Redhat v 6.0 or 6.1

You can use a Java IDE that supports J2SE 1.3 (or later) in preference to the Sun
Microsystem’s J2SE JDK 1.3.1.

Before installing J2EE SDK 1.3, you must uninstall any previous versions of the J2EE
SDK.

Finally, you must ensure that you have a JAVA_HOME environment variable that points to
the location of the directory where you installed J2SE SDK (or your preferred Java IDE).
This should have been defined when you (or your administrator) installed the J2SE SDK
(JDK). If the JAVA_HOME variable is not defined, you must define it now as follows.

If you are using Windows NT or 2000 (remember J2EE SDK is not supported on other
Windows’ platforms) you should set the JAVA_HOME variable in your system environment
so that it is defined for all of the programs you run. Do this using the Control Panel as
follows:

1. Within the Control Panel, select System.

2. The System Properties dialog appears, select the Advanced tab.

3. Click Environment Variables.

|3O

Day 2

4. The Environment Variables dialog appears, click New.

5. The New System Variable dialog appears, enter the name and value of the variable.
Assuming that you installed the J2EE SDK 1.3 on the C: drive using the default
directory name, you will set the JAVA_HOME variable to
C:\j2sdkeel.3

6. Click OK to clear each of the dialogs.

You must have administrator privileges to edit or change system environment vari-
ables. If you do not have administrator privilege, you can still use the JDK, but
you’ll have to define the variables in your user environment. Any other users of
your workstation will also have to define the same variables in their environment.

If you are using Linux or Unix and the JAVA_HOME environment variable does not exist,
you can set it with the following command(you must be using the Bourne, Korn, Bash or
compatible shell):

JAVA_HOME=/usr/local/jdk1.3.1
export JAVA HOME

This example assumes you have installed the Sun Microsystems’ JDK 1.3.1 in
/usr/local.

Typically, you will add these variable definitions to your login environment by adding
the same two lines to the.profile file in your home directory.

Finally, you should ensure that the JDK bin directory is in your search path (again this
should already be configured on your workstation).

For Windows users, if your search path does not contain the JDK bin directory, add the
following directory to your PATH via the Control Panel:

%JAVA_HOMES\bin

For Linux/Unix users, if your search path does not contain the JDK bin directory, add
the following line to your .profile file:

PATH=$PATH: $JAVA_HOME/bin

Now download the J2EE SDK in the format appropriate to your system from
http://java.sun.com/j2ee/sdk_1.3/index.html. You should download the J2EE SDK
to a temporary directory because the installation process will ask you where to install the
SDK.

The installation of the SDK is quite straightforward; just follow the instructions for your
platform:

The J2EE Platform and Roles 31 |

* Windows—Double-click the icon of the j2sdkee-1_3_01-win.exe file and follow
the onscreen instructions.

 Solaris—Issue the following commands to make the download bundle executable
and run the installation::

chmod a+x ./j2sdkee-1_3_ 01-solsparc.sh
./j2sdkee-1_3__01-solsparc.sh

* Linux—Change directories to the required parent directory for the J2EE SDK (for
example, /usr/local) and extract the download bundle using the following com-
mand:
tar - xzvf <download directory>/j2sdkee-1_3_01-linux.tar.gz

Now you must:

1. Define the J2EE_HOME variable.
2. Add the J2EE SDK bin directory to your search path.
3. Add the J2EE classes to your CLASSPATH.

You have already been shown how to define variables and change your path for your
environment (Windows users use the Control Panel and Linux/Unix users add variable
definition lines to .profile), so making these changes will be straightforward.

Windows users must (assuming the J2EE SDK was installed on the C: drive)

1. Define the following environment variable
J2EE_HOME=c:\j2eesdk1.3
2. Add the following directory to the end of the PATH variable:
%J2EE_HOMESs\bin
3. Add the J2EE JAR files to the CLASSPATH variable:
%J2EE_HOME%\1ib\j2ee.jar;%J2EE_HOME%\1lib\locale
If your CLASSPATH variable is not currently defined, you must ensure that it
includes the current directory so the full setting will be
. ;%J2EE_HOMES\1ib\j2ee. jar;%J2EE_HOMES\1ib\locale
Linux/Unix users must add the following to their .profile (assuming the J2EE SDK
was installed in /usr/local/j2eesdk1.3):
1. Define the following environment variable:
J2EE_HOME=/usr/local/j2eesdk1.3
2. Update the PATH variable for J2EE SDK:
PATH=$PATH:$J2EE_HOME/bin

|32

Day 2

3. Add the J2EE JAR files to the CLASSPATH variable:
CLASSPATH=$CLASSPATH:$J2EE_HOME/1ib/j2ee.jar:$J2EE_HOME/1lib/locale

If your CLASSPATH variable is not currently defined, you must ensure that it
includes the current directory so the full setting will be:

CLASSPATH=. : $J2EE_HOME/1ib/j2ee.jar:$J2EE_HOME/1lib/locale
That is it! You are now ready to start using the J2EE SDK.

N“tﬂ All the documentation for the J2EE utility programs and class files is con-
tained in the J2EE SDK download bundle. You will find the documentation

in the docs sub-directory of the J2EE installation directory.

Starting the J2EE Reference Implementation (RI)
The J2EE SDK includes a Reference Implementation of J2EE. This Reference
Implementation (RI) contains the following software programs:

* A J2EE server

* A relational database called Cloudscape

¢ An HTTP (Web) server

* A JNDI service implementation

* A JMS service implementation

* Class files for the J2EE APIs

* Various administration and support utilities
The server software components of the RI (database, INDI, Web server, and J2EE server)
are purely for development and are not designed for commercial use. The J2EE RI has

been used for the code shown in this book because it is free of charge and conforms to
the J2EE 1.3 specification.

To develop J2EE applications and run the example code presented in this book, you will
need to start the J2EE server and the Cloudscape database server. Starting the J2EE
server will also start the JNDI, JMS, and HTTP servers provided with the J2EE RI.

There are no graphic tools for managing the J2EE and Cloudscape servers, so you will
have to start them from the command line. Each server should be started in a separate
command window or Telnet window if you are not using a graphical console. It does not
matter in which order you start the J2EE and Cloudscape servers.

The J2EE Platform and Roles 33 |

In the following examples, you must have configured your search path (the PATH environ-
ment variable) to include the J2EE SDK bin directory as shown previously.

To start the J2EE RI server, create a new window with access to a command-line prompt
(command window for Windows NT/2000 or a terminal or shell window for Linux/Unix
users). Enter the following command at the prompt:

j2ee -verbose

This will start the J2EE server in the current window with diagnostic messages displayed
in the window. If (or when) you have problems deploying your J2EE applications to the
server, it is this window you should examine for error messages. If you put simple diag-
nostic messages in your EJBs that write to System.out or System.err, these messages
will also appear in this window.

Listing 2.1 shows the diagnostic messages issued as the J2EE RI and associated servers
startup.

LisTING 2.1 Successful J2EE Reference Implementation Startup Diagnostics

1: > j2ee -verbose

2: J2EE server listen port: 1050

3: Naming service started:1050

4: Binding DataSource, name = jdbc/DB2,
wurl = jdbc:cloudscape:rmi:CloudscapeDB;create=true

5: Binding DataSource, name = jdbc/DB1,
wurl = jdbc:cloudscape:rmi:CloudscapeDB;create=true

6: Binding DataSource, name = jdbc/InventoryDB,
wurl = jdbc:cloudscape:rmi:CloudscapeDB;create=true

7: Binding DataSource, name = jdbc/Cloudscape,
wurl = jdbc:cloudscape:rmi:CloudscapeDB;create=true

8: Binding DataSource, name = jdbc/EstoreDB,
wurl = jdbc:cloudscape:rmi:CloudscapeDB;create=true

9: Binding DataSource, name = jdbc/XACloudscape, url = jdbc/XACloudscape__xa

10: Binding DataSource, name = jdbc/XACloudscape__xa, dataSource = COM.cloud-
scape.core.RemoteXaDataSource@653220

11: Starting JMS service...

12: Initialization complete - waiting for client requests

13: Binding: < JMS Destination : jms/Queue , javax.jms.Queue >

14: Binding: < JMS Destination : jms/firstQueue , javax.jms.Queue >

15: Binding: < JMS Destination : jms/Topic , javax.jms.Topic >

16: Binding: < JMS Cnx Factory :
wQueueConnectionFactory , Queue , No properties >

17: Binding: < JMS Cnx Factory :
= jms/QueueConnectionFactory , Queue , No properties >

18: Binding: < JMS Cnx Factory :
=TopicConnectionFactory , Topic , No properties >

19: Binding: < JMS Cnx Factory :

| 34 Day 2

LisTING 2.1 Continued

= jms/TopicConnectionFactory , Topic , No properties >
20: Starting web service at port: 8000
21: Starting secure web service at port: 7000
22: J2EE SDK/1.3
23: Starting web service at port: 9191
24: J2EE SDK/1.3
25: J2EE server startup complete.

If you start the J2EE server without the -verbose option, all the diagnostic messages will
be written to log files in the logs sub-directory of the J2EE SDK installation directory.
You will find additional logging information is also written to these log files even with
the -verbose option specified.

The J2EE log files are stored in a sub-directory named after your workstation in the logs
sub-directory of the J2EE SDK installation directory. Further sub-directories are used to
separate the log files for the J2EE, IMS, and HTTP servers.

To start up the Cloudscape database server, you must open a new window and enter the
following command:

cloudscape -start

Again, some simple diagnostic messages will be displayed as the server starts up, as
shown in Listing 2.2.

LisTING 2.2 Successful Cloudscape Startup Diagnostics

> cloudscape -start

Thu Jan 10 10:52:18 GMT+00:00 2002:

= [RmiJdbc] Starting Cloudscape Rmiddbc Server

Version 1.7.2 ...

Thu Jan 10 10:52:25 GMT+00:00 2002:

= [RmiJdbc] COM.cloudscape.core.JDBCDriver registered in DriverManager
Thu Jan 10 10:52:25 GMT+00:00 2002: [RmiJdbc] Binding RmiddbcServer
Thu Jan 10 10:52:25 GMT+00:00 2002:

= [RmidJdbc] No installation of RMI Security Manager

Thu Jan 10 10:52:26 GMT+00:00 2002:

= [Rmiddbc] RmiddbcServer bound in rmi registry

Troubleshooting J2EE and Cloudscape

You should have no problems starting up either server. If you do have problems, check
the error messages displayed in the relevant window. The most likely problems are dis-
cussed in the rest of this section.

The J2EE Platform and Roles 35|

Read Only Installation Directory

You will not be able to run J2EE RI and Cloudscape unless you have installed the J2EE
SDK in a writeable directory. If you have installed the J2EE SDK as a privileged user
(Administrator, root, or whomever), make sure that you grant your normal login account
read and write permission to the installation directory and all contained files and directo-
ries.

Server Port Conflicts

Although the J2EE SDK software uses TCP port numbers that are not normally used by
other software, there is always a possibility that there will be a port number conflict.

If a port is used by another software server, a J2EE component will fail to start up and
you will see an error message stating that the server “Could not connect to a required
port.” The error will normally include a stack trace.

The most likely cause of a port conflict is where you (or another developer) have already
started the J2EE server. Listing 2.3 shows the error message for this situation.

LisTING 2.3 Error Message Caused by Running the J2EE Server Twice

> j2ee -verbose
J2EE server listen port: 1050
org.omg.CORBA.INTERNAL: minor code: 1398079697 completed: No
at com.sun.corba.ee.internal.iiop.
wGIOPImpl.createListener(GIOPImpl.java:256)
at com.sun.corba.ee.internal.iiop.
wGIOPImpl.getEndpoint (GIOPImpl. java:205)
at com.sun.corba.ee.internal.iiop.
wGIOPImpl.initEndpoints(GIOPImpl.java:140)
at com.sun.corba.ee.internal.POA.POAORB.
wgetServereEndpoint (POAORB. java:488)
at com.sun.corba.ee.internal.POA.POAImpl.
wpre_initialize(POAImpl.java:154)
at com.sun.corba.ee.internal.POA.POAImpl.<init>(POAImpl.java:112)
at com.sun.corba.ee.internal.POA.POAORB.makeRootPOA(POAORB. java:110)
at com.sun.corba.ee.internal.POA.POAORBS$1.evaluate (POAORB. java:128)
at com.sun.corba.ee.internal.core.Future.evaluate(Future.java:21)
at com.sun.corba.ee.internal.corba.ORB.
wresolveInitialReference (ORB.java:2421)
at com.sun.corba.ee.internal.corba.ORB.
wresolve_initial_references(ORB.java:2356)
at com.sun.enterprise.server.J2EEServer.run(J2EEServer.java:193)
at com.sun.enterprise.server.J2EEServer.main(J2EEServer.java:913)

java.lang.RuntimeException: Unable to create ORB.
= Possible causes include TCP/IP ports in use by another process

| 36 Day 2

LisTING 2.3 Continued

at com.sun.enterprise.server.J2EEServer.run(J2EEServer.java:203)
at com.sun.enterprise.server.J2EEServer.main(J2EEServer.java:913)
java.lang.RuntimeException: Unable to create ORB.
=wPossible causes include TCP/IP ports in use by another process
at com.sun.enterprise.server.J2EEServer.run(J2EEServer.java:203)
at com.sun.enterprise.server.J2EEServer.main(J2EEServer.java:913)

java.lang.RuntimeException: Unable to create ORB.
=Possible causes include TCP/IP ports in use by another process
at com.sun.enterprise.server.J2EEServer.run(J2EEServer.java:350)
at com.sun.enterprise.server.J2EEServer.main(J2EEServer.java:913)
J2EE server reported the following error: Unable to create ORB.
=wPossible causes include TCP/IP ports in use by another process
Error executing J2EE server ...

You cannot run more than one J2EE RI server on the same workstation.

If your port conflict is with another piece of software, try to disable this software when
running J2EE RI and Cloudscape. If this is not possible, you can change the port num-
bers used by each J2EE server by editing the file called server.xml in the conf sub-
directory of the J2EE SDK installation directory. The definitions of the default server
port numbers are obvious if you are used to reading and editing XML files. Changing the
J2EE RI port numbers is something you should avoid if at all possible.

Applications Failing with a “Connection Refused: no further
information” Exception

A common error when working with the J2EE Rl is to forget to start up the Cloudscape
database server in a separate window. If you fail to start the database and use a J2EE
component, such as an EJB, that accesses the database, you will get the following error:
java.sql.SQLException: Connection refused to host:

=<hostname>; nested exception is:
java.net.ConnectException: Connection Refused: no further information

To solve this problem, start up the Cloudscape server as described previously and stick a
note to your monitor to remind you to start the database as well as J2EE. If you are con-
fident with batch or shell scripts, you can write your own scripts to start both servers in
separate windows.

The following simple scripts will work for the indicated platforms:

On Windows NT/2000, use

start "J2EE" j2ee -verbose
start "Cloudscape" cloudscape -start

The J2EE Platform and Roles 37 |

On Solaris, use

dtterm -name j2ee -e "j2ee -verbose" &
dtterm -name cloudscape -e "cloudscape -start" &

On Linux, use

xterm -title j2ee -e "j2ee -verbose" &
xterm -title cloudscape -e "cloudscape -start" &

Closing Down J2EE RI and Cloudscape

To close down J2EE RI and Cloudscape, you should use the following commands:
j2ee -stop

cloudscape -stop

These commands can be run from any command window. Remember that the J2EE and
Cloudscape server windows are busy and cannot accept additional commands while the
servers are running.

Although Sun Microsystems do not recommend this approach, typing ~C (Ctrl+C) in the
server window or simply closing the window will also shut down the servers.

Optional Software Used in this Book
A Java IDE (JDK) and a J2EE implementation (J2EE SDK) are all you require to learn

how to develop J2EE applications. However, areas of this book look at using J2EE appli-
cations in a wider context and make use of additional (freely available) software.

So that you are aware of this software, Table 2.1 lists the optional software used in this
book. Full instructions for downloading and configuring this software (should you want
to do so) are included in the relevant day’s instructions. You do not need to download this
software at the present time.

TaBLE 2.1 Optional Software Used in Daily Lessons

Day Software Resource URL

3 OpenLDAP and a Unix http://www.openldap.org/
system to run the Open software/download/
LDAP server.

14 JSPTL Java Standard Tag http://jakarta.apache.
libraries from the org/taglibs/index.html

Apache Jakarta project.

17 XALAN from the Apache http://xml.apache.org/
project. xalan-j/index.html

| 38 Day 2

TaBLE 2.1 Continued

Day Software Resource URL

20 Apache Axis alpha2. http://xml.apache.org/
axis/index.html

Apache Tomcat 4.0.1. http://jakarta.apache.org/
tomcat/index.html
JAXM 1.0 reference http://java.sun.com/xml

implementation (part of
the “JAX Pack Fall 017).

Understanding Tiers and Components

The 3-tier model splits an application down so that business logic resides in the middle
of the 3 tiers. This is often called the middle tier, business tier, or EJB tier. Throughout
this section, this tier will be referred to as the business tier. The first tier has the role of
providing the interface between the user and the application. Depending on your specific
architecture, this can be known as the client tier or presentation tier. Throughout this sec-
tion, the term presentation tier will be used to define this client-centric tier.

Most of the code written by J2EE application developers resides in the presentation and
business tiers. The next two sections explore these tiers. You will see that different types
of components are used in each tier to deliver particular application functionality. The
components in different tiers should be loosely coupled. In other words, a component
should not have dependencies on the client or other components. For example, imagine a
business component that processes credit card payments. If the component is self con-
tained, almost any application can pass it payment information and it, in turn, can return
an appropriate response. Figure 2.1 shows such a business component communicating
with a variety of clients:

As you can see, because this business component encapsulates all the payment process
functionality, it is not tied to any component in the presentation tier, so it can serve mul-
tiple client types. Code that supports more than one type of client is only one advantage
of component architecture; you will learn about some of the other advantages later in this
chapter.

The J2EE Platform and Roles 39|

FIGURE 2.1
. . Wireless J2EE Server
Multiple clients Client
accessing the services \ JSP Container
. Presentation
of a business compo- B\ P |_— Tier
nent. Web ‘_/__) JSP
Browser /
A
Desktop y
Application EJB Container
Enterprise
Bean Ay
Containing \ Business
Payment Tier
Process
Functionality

The Business Tier

As you have just seen, business components sit in the business tier of a J2EE application.
These business components encapsulate business logic and are used by components in
the presentation tier that deliver this functionality to users of the application.

Benefits of Business Components

Previously, you saw a simple credit card processing component that provided that service
for a number of different clients. This demonstrated just one benefit of component archi-
tecture but, in fact, components offer many advantages over a composite architecture:

* Increased efficiency—The division of labor helps a business to roll out applications
quickly. The use of components allows presentation developers to develop GUIs,
process programmers to focus on business logic, and data access experts to focus
on data access.

* Extensibility—You can simply add or remove components to an application so that
it can offer further functionality, for example, if you want to expose application
functionality through a Web Service. The component architecture allows you to
simply add the additional units of functionality the system requires. By the way, if
you don’t know about Web Services, don’t worry. Day 20, “Using RPC-Style Web
Services with J2EE,” and Day 21, “Web Service Registries and Message-Style Web
Services,” show you how to apply a J2EE application as a Web Service.

* Language independence—A modularized system allows you to write code in one
language that communicates with code written in another. For example, you can

|4O

Day 2

access the functionality of a J2EE application from a CORBA client by using RMI-
IIOP, or from a Microsoft COM client by using the Client Access Services COM
Bridge.

o System upgrade—Inevitably, an organization’s business processes change, and so
too must the application logic. The use of components allows you to change one
component without affecting the other components in the system.

This list is not an exhaustive survey of the benefits of components. But it should make it
clear that components offer both developers and business an ideal way of providing
application functionality.

J2EE defines how various types of components perform specific roles in different tiers.
In the presentation tier, different types of components will be applied to provide func-
tionality for different types of client (application components, applet components, servlet
components, and JavaServer Page components). The business tier houses different types
of business components. In J2EE terms, business components are embodied as Enterprise
JavaBeans. The following sections focus on how such components are applied for the
most common application architecture currently—namely, a business system with a Web-
based user interface.

Components: Enterprise JavaBeans

In a typical business application built on the J2EE platform, business logic will be encap-
sulated in Enterprise JavaBeans (EJBs). It is possible to use other types of component or
plain Java objects to implement business logic, but EJBs provide a convenient way of
encapsulating and sharing common business logic, as well as benefiting from the ser-
vices provided by the EJB container.

Suppose you were tasked with designing and implementing a typical Web-based,
e-commerce application. Although the precise analysis of the business problem would be
specific to your own environment, you would probably end up with the following flow
through your application:

Display your products to the customer.

Allow the customer to select one or more products.

Confirm the order and take shipping details.

Take payment for the items.

Deliver the order to your warehousing and distribution systems.

AU S

[optional] Authenticate the user to access previously stored personal information or
preferences.

The J2EE Platform and Roles

41|

7. [optional] Generate a report from the items purchased by a particular customer or
on a particular day.

All of these steps involve a certain amount of business logic and data manipulation. For
example, in step 1, your application will need to send pages of HTML to the customer’s
browser containing product descriptions and pricing information. To do this, you will
need to retrieve this product and pricing information from somewhere. The obvious
choice is a database that stores your product catalog information together with pricing
information.

As you will see, it would be quite possible to deliver the catalog functionality you
require simply by using database access code from a Web component such as a
JavaServer Page. However, what if gathering this catalog information was not quite so
straightforward?

* The product and pricing information may be spread across multiple databases.
Even worse, it may be that some of the information must be extracted from (or
delivered to, in the case of submitting an order) a legacy system. This means that
the user-interface component would have to know details about data access.

¢ There may be extra business processes that need to be applied during the creation
of the catalog. These could range from custom pricing for a specific group or indi-
vidual through cross-selling of related products and on to the suggested substitu-
tion of alternative products for any that are not in stock. This means that the user
interface component must have knowledge of multiple business processes.

* If a customer is to be identified and their preferences reflected, authentication is
required. Also, some information about them and their preferences must be main-
tained against a database somewhere. This means that the user interface component
must know about authentication and mapping user identity to stored information.

As you can see, the user interface component rapidly becomes its own version of the
monolithic applications you saw yesterday. The business logic associated with all of this
processing should be devolved to EJBs in order that the user interface component can
concentrate on what it does best, namely generating a compelling user interface and
guiding the user through a particular interaction.

What is needed then is for the business logic in the EJB to be made available to other
components that may want to use it. The mechanisms involved must be commonly avail-
able to the potential clients to impose minimal overhead on those clients. Hence, the EJB
model makes use of two mechanisms found in J2SE—namely Remote Method
Invocation (RMI) and the Java Naming and Directory Interface (JNDI)—to facilitate
interaction between the EJB and its client. When an EJB is written, the functionality it

|42

Day 2

offers to clients is defined as an RMI remote interface. When an EJB is deployed, its
location is registered in the naming service.

A client will then use JNDI to look up the location of the EJB. It will interact with a fac-
tory object, called the EJB’s home, to obtain an instance of the EJB. This is equivalent of
using new to create an instance of a local object. When the client has a reference to the
EJB, it can use the business functionality offered by the EJB. This sequence is shown in
Figure 2.2.

FIGURE 2.2

A client uses JNDI and
RMI to access an EJB. Client Container EJB Container

Client Component

Call business

methods o Enterprise
'\ avil” Bean
m

(1) Look up EJB Ea—
y

\

There is a more detailed look at how to use EJBs on Day 4, “Introduction to EJBs.”

Within the required business logic, certain components will be primarily concerned with
data and the manipulation of that data, whereas others will focus on the sequencing of
business logic and the associated workflow. Equally, components will interact in differ-
ent ways, depending on the needs of the application. Some interactions will be synchro-
nous in nature; there is no point in performing the next stage of the process until the cur-
rent one has finished. Other interactions can be handled asynchronously; an appropriate
message can be sent to another component and then the originator of the message can
carry on to the next stage of the process. This means that clients using asynchronous
interactions complete faster, but they may not be suitable for all applications if there
must be a guarantee that an operation has completed or if return values are required. This
difference between synchronous and asynchronous interactions is shown in Figure 2.3.

The J2EE Platform and Roles

43|

FIGURE 2.3

Synchronous interac-
tions will result in the
caller waiting for the

Synchronous interaction

Asynchronous interaction

function to complete, | Client | |BusmessObJect| | Client | |BusmessOb]ect1 |
whereas asynchronous ; ; ; ; BusinessObject?
interactions allow) : :

Call function ! Send message |

callers to proceed
without waiting.

>

Send message

Return value

e
'
'
'
'
'
'
'

Because different business components are called on to behave in different ways, there
are multiple types of EJB defined that can be used to encapsulate different parts of an
application’s business logic.

Components: Session Beans

Session EJBs, often just called session beans, are the simplest and probably most com-
mon type of EJB. A session bean is primarily intended to encapsulate a set of common
business functions. When capturing the outputs of business analysis using the Unified
Modeling Language (UML), Use Cases are identified. A Use Case documents a particu-
lar interaction sequence between a user and a system (a common example is withdrawing
money from an ATM). Such an interaction typically involves multiple, but related, steps.
The business logic associated with the steps from such a Use Case can typically be
housed in a session bean. There are various analogies for and examples of session beans
on Day 4 and Day 5, “Session EJBs.”

Session beans offer a synchronous interface through which the client can use the busi-
ness logic. Session beans are not intended to hold essential business data. The session
bean will either hold no data on an ongoing basis, or the data it does hold will tend to be
temporary (only relevant to the current user session) rather than persistent. If a session
bean wants to obtain data from a database, it can use JDBC calls. Such a bean may pro-
vide part of solution when providing an e-commerce catalog as described earlier.
Alternatively, application data can be obtained through entity EJBs.

Components: Entity Beans

An entity EJB, again often just called an entity bean, is a representation of some business
data. During analysis, various business concepts will be discovered, such as “customer”
or “account.” These business “objects,” sometimes called “entities,” represent the core
data manipulated during the business processes. If such a business object contains

|44

Day 2

dynamic data, has associated functionality, and can be shared between multiple clients at
any one time, this business object would probably map to an entity bean.

Entity beans offer a synchronous interface through which the client can access its data and
functionality. Entity beans will access underlying data sources (frequently, a database or
possibly an ERP system) to collect all the business information they represent. The entity
bean will then act as the dynamic representation of this business data—providing methods
to update and retrieve it in various ways. As you will see later, entity beans are frequently
used together with session beans to provide the business functionality of a system. Entity
beans are discussed further on Day 6, “Entity EJBs.”

A message-driven EJB, or just message-driven bean, fulfills a similar purpose to a ses-
sion bean, but is asynchronous in nature. There are times when it is inefficient to interact
synchronously with a component. One example would be if you wanted to log the details
of a particular transaction to an underlying data store. In many cases, it is not important
that the logging is done immediately, just as long as it is done reliably. This type of oper-
ation can quickly become a performance bottleneck if performed synchronously. The
same is true of “undoable” operations, such as credit card processing.

Components: Message Beans

Message-driven beans offer an asynchronous interface through which clients can interact
with them. The bean is associated with a particular message queue, and any messages
arriving on that queue will be delivered to an instance of the message-driven bean. As
with session beans, message-driven beans are intended to house business logic rather
than data, so they will access any data required through JDBC or entity beans. To use the
services of a message-driven bean, a client will send a message to its associated message
queue. If a response is required, another message queue will typically be used. Message-
driven beans and the Java Message Service with which they interact are discussed further
on Day 9, “Java Message Service,” and Day 10, “Message-Driven Beans.”

The Presentation Tier

Given some business logic implemented as EJBs, you must provide clients with access to
this functionality. What is needed is some presentation logic coupled with a way of dis-
playing information to the user. The presentation logic will govern which screens are dis-
played to the user in which order and how the presentation logic will interact with the
business logic in the business tier to work through the appropriate business process.

The way in which user input is received and information is displayed will depend on
the type of client. The client can range from a WAP phone through to a standalone
Java application with Swing interface. Each type of client will require different

The J2EE Platform and Roles 45|

presentation tier functionality to exchange and display information. The most common
type of client for a J2EE application is a Web client, in the shape of a Web browser. In
this case, the presentation tier will present a Web-based interface that produces HTML
and consumes HTML form-based input.

Components: Web-Centric

To create a Web-based user interface, you need to apply Web-centric components. J2EE
provides two types of Web-centric components—JavaServer Pages (JSP) and Java
servlets. These components are applied in the presentation tier and provide services to
clients that use HTTP as a means of communication. For example, Web-centric compo-
nents can interact with clients such as the following:

» Standard HTML-oriented browsers, such as Microsoft Internet Explorer and
Netscape Navigator

¢ Java 2 Micro Edition (J2ME) enabled devices, connecting across a wireless net-
work

» Desktop clients using raw HTTP or sockets functionality
* Wireless Markup Language (WML) browsers, such as those found on WAP-

enabled mobile phones

Figure 2.4 shows how you would typically use these components.

FIGURE 2.4 HTTP
Typical use of Web- Weg—lg;‘r:tric Request J2EE Server
centric.components. -
\\ Web Container / Presentation
HTTP ISP e Tier
Response or
\ Servlet

Y
EJB Container

Enterprise -«
e \ Business

Tier

Figure 2.4 shows a Web-centric client making a request to either a servlet or JSP. The

server-side component parses the client’s request and then calls the EJB. The EJB con-
tains the application’s business logic. When the servlet or JSP receives a response from
the EJB, it is responsible for presenting the data it receives. After the servlet or JSP has

|46

Day 2

prepared the response, it passes it back to the client, completing the request-response
cycle.

The previous illustration demonstrated a model where the Web-centric component was
responsible for presenting data supplied by an EJB. The EJB was responsible for the
execution of the business logic. However, you do not have to use EJBs as part of a Web-
centric solution. A simpler application can consist of pages of markup—for example,
HTMIL—and servlets, or JSPs, or a combination of JSPs and servlets.

The next section of today’s lesson shows you the relationship between JSPs and servlets,
so that you are in a position to choose which of these technologies best suit your needs.

JavaServer Pages (JSP)

JSPs allow you to dynamically create pages of markup, such as HTML, in response to a
client’s request. If you are familiar with other Internet technologies, you can liken JSP to
Active Server Pages (ASP) or ColdFusion. But be aware that these technologies are simi-
lar to JSP—mnot the same.

A JSP consists of a combination of JSP tags and scriplets, which contain the executable
code, and static markup, such as HTML or XML. The code contained in the JSP is iden-
tified and executed by the server, and the resulting page is delivered to the client. This
means that the embedded code can generate additional markup dynamically that is deliv-
ered to the client alongside the original static markup. The client sees none of this pro-
cessing, just the result.

The JSP tags delimit sections of executable code and form the basis of any JSP page.
Scriplets are delimited sections of script that allow a JSP further processing power.
Typically, you can write this script using the Java programming language, but different
JSP implementations may support additional languages.

Day 13, “JavaServer Pages,” shows you in detail how to write JSPs and how JSPs inter-
act with other J2EE components. To whet your appetite today will introduce you to how
JSPs work and interact with other J2EE components. Figure 2.5 shows a scenario that
depicts the typical interactions of client, JSP, and J2EE components.

Figure 2.5 shows a client making a HTTP request for a JSP. The first time a user makes a
request the JSP container handles it by converting the JSP into a Java source file and
compiling it. In most implementations, this file is a servlet. The servlet forwards the
request to a business logic component, such as another servlet, a JavaBean, or an
Enterprise JavaBean. The component performs some action, such as accesses a database
or processes the client’s input, and returns a response to the servlet. The servlet passes
this response to a JSP that generates the markup language that the client will display.
Finally, the JSP container and the Web Server return the markup to the client.

The J2EE Platform and Roles

47|

FIGURE 2.5

- i Request
The interactions Weg”c;enr][tnc J2EE Server
between a client, JSP,
JSP Container

and J2EE component.

HTTP

I:N
Response

JSP

s

Y
EJB Container

Y

Enterprise
Bean Database

A

As you can see, JSPs provide a very powerful method for dynamically creating pages of
markup. They also allow Web clients to indirectly access the application logic that other
J2EE components contain. Importantly, you have seen the relationship between a JSP
and a servlet.

Java Servlets

Servlets add processing power to servers that employ a response-request model. Perhaps
the most common of such servers is the Web server. In this instance in the past, CGI
scripts would provide this kind of functionality; now you can use servlets. Although
servlets are similar to CGI scripts, they are superior in many ways:

Speed—You deploy servlets as Java class files. The class file consists of Java byte
codes, which means that they execute faster than interpreted scripting languages,
such as Perl.

Platform Independence—Servlets are platform-independent classes, so they can be
run under different servers on different operating systems.

Consistency—Servlets use a standard API (the Servlet API), so they enjoy the sup-
port of many Web servers.

Power—Servlets can access any of the Java APIs. For example, a servlet can use
JDBC to access a data store, or access remote objects such as EJBs over RML.

Support—The Servlet API exposes a number of classes that greatly simplify many
of the tasks a server-side programmer must perform. For example, the Servlet API
provides direct access to response and request information (you do not have to
explicitly parse request data), and it provides support for state management through
a Session object and classes to manipulate cookies.

|48

Day 2

One of the greatest facets of the servlet is its ability to interact with other J2EE compo-
nents. Servlets can interact with other servlets or EJBs in just the same way as a JSP.
For example, Figure 2.6 shows a client calling a servlet and then that servlet accessing

an EJB.
FIGURE 2.6
. . Web Browser J2EE Server
The interactions
between a client, Servlet Container
HTTP
servlet, and EJB. POST
HTML Form >
Servlet
A
Y
HTTP EJB Container
Response
HTML Page Enterprise
Bean

Figure 2.6 shows a user completing an HTML form and then initiating a HTTP POST to a
servlet on a Web server. The Servlet Container on the Web Server invokes the servlet and
passes it an object that represents the client’s request. The servlet calls on the services of
the EJB to perform the applications logic. Finally, the servlet generates an HTML
response, which it returns to the client via a response object. In this instance, the servlet
used an EJB, but it could also perform the processing itself or call another servlet or
JavaBean.

Evaluation of Web-Centric Components

Now that you’ve been introduced to JSPs and servlets, you may wonder which compo-
nent best suits a given scenario. In many instances, you can use JSPs and servlets inter-
changeably—remember that a servlet underlies a JSP. Both components dynamically cre-
ate markup, operate on a request-response model, and can interact with other J2EE com-
ponents.

However, Sun Microsystems provide guidance to help you develop applications using
Web-centric components. This guidance takes the form of BluePrints that offer guide-
lines on the best practice and recommended use of J2EE technologies. The following
guidelines derive from these BluePrints.

Generally, the presentation tier should use JSP pages that are presentation-centric, mak-
ing them ideally suited to the generation of markup. In addition, JSP pages consist of

The J2EE Platform and Roles 49|

XML tags, which are familiar to Web content providers. This familiarity allows content
providers to easily maintain a site’s content without altering code. Conversely, you
should consider servlets as a programmatic tool that you don’t modify frequently. There
are two main instances when you should use servlet in preference to JSPs:

* Generating Binary Data—You should use servlets to output binary data, such as
images.

» Extending Web Server Functionality—For example, you could use a servlet to do
the filtering of mail for a mail service.

As a guide, you should use JSPs in preference to servlets unless you require one of the
previously mentioned items of servlet functionality.

The Client Tier

J2EE supports a wide range of clients. These clients range from thin clients, such as a
Web browser, to intelligent clients, such as mobile devices that run J2ME Midlets. Both
of these clients communicate through HTTP, but other clients may use SOAP, sockets, or
even CORBA. The factors that unite these disparate clients are that they all call and sub-
sequently receive a response from J2EE middle tier components. This part of the day
looks at a range of J2EE clients and focuses on which components interact with them.

HTTP Clients

Java technologies have a long history of providing a wide range of services to clients that
communicate via HTTP. For example, is it possible that someone has never heard of
applets? J2EE provides services to Web-based clients by using two components—IJSPs
and servlets. These technologies may not be as familiar to you as the applet. Previously,
this chapter explained what these components are; now, it explains how they integrate
with HTTP clients.

Static HTML Client

It’s hard to imagine a Web application that relies on static HTML pages, but, believe it or
not, some do. Typically, sites that use static pages are small and require very little func-
tionality. The type of functionality they do require includes the processing of user
response forms, basic e-commerce capabilities, and automated navigation. In a non-
enterprise environment, a developer can use a CGI script to provide this functionality.
With J2EE, you can use a servlet. For example, consider a customer feedback form writ-
ten in HTML.

Figure 2.7 shows that the user completes the HTML Form and then initiates a HTTP
POST to the servlet. The servlet parses the POST data; at this point, it could pass the

| 50 Day 2

data to another component. However, in this instance, it simply uses classes in the
JavaMail API (see Day 11, “JavaMail”) to send the customer an e-mail response.

FIGURE 2.7
. Web Browser J2EE Server
Using a servlet to HTTP
process an HTML HTML (POST) »| JSP Container
orm. orm equest
Fi R
HTTP JsP
HTML | Response
Page |
Y
E-mail
E-mail Client [« me JavaMail
Message

Dynamic HTML Client

Many Web applications use HTML pages, which they generate when they receive a
client request. These dynamic pages typically contain information that is context sensi-
tive. For example, the page may contain a simple time stamp, a banner advertisement, or
information retrieved from a database. With J2EE, you can use a JSP to create dynamic
HTML pages. Figure 2.8 shows how JSPs relate to a Web client.

FIGURE 2.8 HTTP
)) Request
A Web-client interact- for
ing with a JSP. Web Browser indexjsp J2EE Server
\ JSP Container
HTTP
Response JSP
HTML N
Page
A
Y
EJB Container
Enterprise
Bean

The J2EE Platform and Roles

51|

The client makes a HTTP request for the page index. jsp. The JSP engine (on the serv-
er) interprets the tags within the JSP, calls the EJB, the EJB returns a response, and then
the engine returns a page of HTML to the client. The functionality in this model is
encapsulated in the EJB.

Java Applet Client

In case you do not know, an applet is a small GUI-based program that typically executes
within the context of a Web browser. In the sphere of the Internet, a client requests an
HTML page that references a server-side Java class file (the applet). The Web server
responds to the client by returning this file. The applet then executes within the Java
Virtual Machine (JVM) the client browser supplies.

In some respects, applets are an ideal way of providing remote access to J2EE applica-
tions. They are highly portable, run in an environment with strict security controls (the
Java 1.0 Sandbox as a minimum), enjoy wide industry support (for example, Netscape
and Internet Explorer browsers), and offer a rich GUI. However, browsers do not keep
pace with changing specifications; so many browsers only support the deprecated Java
1.0 event model. This may cause you a number of problems, especially when working
with AWT, which underwent a major change in its event model between Java 1.0 and
Java 1.1. One of the best ways you can control the presentation tier is to deploy applets
within a controlled network, such as a corporate intranet. In this instance, you can write
code to work to the limitations of known browsers rather than working to the lowest
common denominator.

Other HTTP Clients

The three previous clients are very desktop browser centric, but there are many other
types of clients that communicate by using HTTP. These clients include mobile devices,
such as cellular phones, smart phones, and PDAs. For example, Figure 2.9 shows a WAP
device calling a JSP. The component-based architecture means that the only change is to
the JSP because WAP devices don’t display HTML. All of the logic in business tier
remains unaffected.

You can also write an application that uses HTTP to communicate and still communicate
with the Web-centric J2EE components.

| 52 Day 2

FIGURE 2.9 |_|
A WAP device with a
WML browser interact- HTTP
ing with a JSP. Request
WAP Device J2EE Server
with
WML Browser
\ JSP Container
- Presentation
HTTP JSP Tier
Response \
WML
Page A
Y
EJB Container
Enterprise < B.u siness
Bean Tier

Standalone Client

The HTTP clients all used a model that in essence was client—presentation tier—
business tier—integration tier. However, there are other clients that may assume the
responsibilities inherent in some of these tiers. For example, an application can connect
to an EJB via its container, rather than route through a JSP in the presentation tier. Figure

2.10 shows such an example.

FIGURE 2.10
A standalone client e Sorver
directly interacting Stanc_ialone
with an EJB. Client
Enterprise
\ Bean

EJB Container

Figure 2.10 shows a standalone client accessing an EJB via its container. In this example,
the client would typically be another EJB. Because the client accesses the business tier, it
becomes responsible for the provision of the presentation tier. Consequently, in this
example, the client EJB can pass the data to a servlet, which will then generate the
appropriate response to its client.

The J2EE Platform and Roles

53|

Figure 2.11 shows another scenario where the standalone client bypasses both the pre-
sentation tier and business tier to access enterprise information system resources directly.
Typically, the client uses JDBC to access the resources.

FIGURE 2.11
A standalone client Application

interacting directly
with an EIS resource.

In this scenario, the client takes responsibility for the presentation tier and business tier.
Interestingly, the client may not be another J2EE client: it might be a single application
that encapsulates all presentation and business logic. If this is the case, the client will not
gain the benefits of enterprise computing, especially scalability, because it is effectively
working on the 2-tier client-server model.

Business to Business

The previous clients and scenarios worked on the premise of connecting to a component
in a different tier—with the exception of the EJB to EJB example. However, many com-
ponents do connect to components within the same level tier as themselves. For example,
consider a small garage where mechanics order parts from a local catalogue via a hand-
held device. Figure 2.12 shows the architecture for the system. As you can see, a JSP
handles their orders by accessing a catalogue via JDBC. With each order for a part, the
JSP decrements the count for that part. When the part count reaches zero (Just-in-Time
stock management), the JSP connects to a JSP at the parts wholesaler and places an
order for more parts.

The previous example showed two JSPs communicating, but this could just as easily be
two servlets or two EJBs. Another interesting development in peer-to-peer communica-
tions such as these is the use of messaging. For instance, the previous example requires
both JSPs to be available at the same time to complete an order. However, using the mes-
saging facilities JMS provides, you may create a system where both JSPs can asynchro-
nously send and receive orders. You can learn a little more about JMS later today and a
lot more on Day 9, “Java Message Service.”

| 54 Day 2

FIGURE 2.12
. . Mechanic’s J2EE Server J2EE Server
JSP to JSP interaction. Handheld \
Device \ JSP Container > JSP Container
AN Jsp Jsp
A A
Y
EJB Container
Enterprise
Bean
A
Y Y
Catalogue Database

Non-Java Clients

It is possible to use non-Java clients to access J2EE applications and application compo-
nents. One obvious solution is that non-Java clients can use HTTP to access the services
offered by a servlet or JSP. This is particularly attractive when the servlet or JSP pro-
duces and consumes data-oriented information in XML rather than HTML. This could be
done in the context of exposing the component as a Web Service, which is discussed in
the next section of today’s lesson.

In the case of an EJB, things are a little trickier. However, the RMI-IIOP protocol used to
communicate with EJBs allows them to interoperate with clients written using the
Common Object Request Broker (CORBA) standard. Hence, it is possible to expose an
EJB as a CORBA server that can be used by CORBA clients written in C++ or even
COBOL.

Another alternative is that EJBs can be accessed from a Microsoft COM client using the
J2EE Client Access Services (CAS) COM Bridge or Table Bridge.

Web Services

Web Services are XML-based middleware components that applications access over
HTTP and SOAP. They enjoy industry-wide support and are not a proprietary solution. In
fact, because Web Services use XML and open communication standards, any client that

The J2EE Platform and Roles 55|

can understand SOAP messages can consume Web Services. J2EE provides a rich frame-
work that facilitates the building, deployment, and consumption of Web Services. You
can learn more about J2EE and Web Services on Days 20 and 21.

Understanding Containers

When you previously installed J2EE, you also installed Sun Microsystems’ reference
implementation of J2EE, which is a J2EE Product. All J2EE products must provide con-
tainers to house J2EE components. The role of the container is to provide a component
with the resources it needs to operate and a runtime within which to execute; yet still
provide a degree of protection (security) to the application host.

Containers provide a number of services for a component. These services include lifecy-
cle management, threading, security, deployment, and communication with other compo-
nents. In addition to these services, a container must provide components with Java com-
patible runtime that conforms to J2SE 1.3.

Different components perform different tasks, so it may come as no surprise that they
require different containers. A Product Provider can supply any of the following contain-
ers:

e Applet container

* Application client container

* JSP container

* Servlet container

* Web container

* EJB container
It was mentioned previously that all containers must supply a J2SE 1.3-compatible run-
time environment. Interestingly, many applet hosts (typically Web browsers) do not sup-

port such a high runtime version. To compensate for this, the J2EE specification states
that an applet container can use a Java plug-in to provide an appropriate environment.

All of these containers must provide the components they house with certain services and
communications protocols. You will learn more about these service and protocols later in
this chapter in the “Understanding the Service Supply to their Components” section.
These containers must all also provide access to certain J2EE APIs; Table 2.2 shows
these APIs.

| 56 Day 2

TABLE 2.2 J2EE Required Standard Extension APIs

API Applet Application Client Web EJB
JDBC 2.0 Extension N Y Y Y
JTA 1.0 N N Y Y
JNDI 1.2 N Y Y Y
Servlet 2.2 N N Y N
JSP 1.1 N N Y N
EJB 1.1 N Y Y Y
RMI-IIOP 1.0 N Y Y Y
JIMS 1.0 N Y Y Y
JavaMail 1.1 N N Y Y
JAF 1.0 N N Y Y

For the sake of simplicity, Table 2.2 does not distinguish between servlet, JSP, and Web
containers. You can consider these three containers as a stack where each builds on the
functionality of the other. At the bottom of the stack is the servlet container, which must
support HTTP; optionally, it might support other protocols. Above this is the JSP con-
tainer, which provides the same functions as the servlet container and an engine to build
servlets from JSP pages. Finally, the Web container provides all the services of the JSP
container and access to J2EE service and communications APIs, which today’s lesson
details next.

Understanding the Services Containers
Supply to Components

Previously, you learned that there are a variety of J2EE containers, and that these con-
tainers house J2EE components and provide methods and protocols that allow compo-
nents to communicate with each other and with platform services. You also learned that a
J2EE server underlies the container. This server is often known as the J2EE Product;
there are other possible J2EE products that you will learn about later today in the “J2EE
Product Provider” section of today’s lesson.

J2EE products must provide components with certain standard services. Yesterday you
were introduced to some of these services; today you will explore them in a little more
detail and see how they work in conjunction with J2EE components.

The J2EE Platform and Roles 57 |

Hypertext Transfer Protocol (HTTP)

A W3C specification defines HTTP 1.0, which is a protocol that allows the exchange of
data of various formats in a widely distributed network. Both JSPs and servlets allow
clients to access a J2EE application through the use of HTTP 1.0. Clients that have a
Java runtime communicate with J2EE applications by using the java.net package,
which is part of J2SE.

Nlllﬂ The J2EE Specification states that containers need only provide support for
HTTP 1.0. However, in practice, the majority of containers, including those in

the RI, support HTTP 1.1.

HTTP over Secure Sockets Layer (HTTPS)

A Netscape specification defines SSL 3.0, which is a protocol that manages the secure
transfer of data over a network. HTTPS uses SSL 3.0 as a sub-layer to HTTP to provide
secure data transfer over the Internet. In common with HTTP, the JSP and Java Servlet
APIs define the server-side API, and java.net defines the client-side.

Java Database Connectivity (JDBC)

JDBC is an API that allows you to access any tabular data source including relational
databases, spreadsheets, and text files. The API allows you to connect to a database via a
driver and then execute Structured Query Language (SQL) statements against that data-
base. Appendix B, “SQL Reference,” provides an SQL reference. The API consists of
two packages—java.sql (ships with J2SE) and javax.sql (ships with J2EE). The
javax.sql package provides many of the features an enterprise application requires,
such as transaction support and connection pooling.

Day 8, “Transactions and Persistence,” describes JDBC, so today’s lesson provides only
a quick overview of JDBC architecture. Typically, an EJB uses the API, but any other
component can use it, for example a servlet. To connect to a given database, you must
load a JDBC driver for that database. However, in the case of an Open Database
Connectivity (ODBC) data source, you may optionally use a JDBC-ODBC bridge where
no driver exists. After the appropriate driver loads, you can make a connection to the
database and then create and execute SQL statements. If the statement is a query, a
ResultSet is returned, which contains the results of the query. You can then manipulate
these query results.

|58

Day 2

Java Transaction API (JTA)

A transaction is an atomic group of operations. For example, a banking application may
debit one account and credit another. The transaction is considered complete when both

the debit and credit are complete. If one operation fails, the other must roll back. A dis-

tributed system makes transaction management complex. In such a system, a transaction
manager must coordinate transactions across the system.

The JTA API allows you to work with transactions independently of the transaction
manager. You work directly with the methods JTA exposes via an instance of
UserTransaction. In a simple scenario, you can use the begin(), commit() and
rollback() methods—which might be familiar SQL commands if you are a database
programmer—to manage the transaction. Day 8 explores JTA and its use with JDBC.

Java Authentication and Authorization Service (JAAS)

Anyone who has an interest in security knows that Java technologies have a rich history
of providing a strong security framework. JAAS is a new supplement to this existing
security framework. It provides both authorization and authentication services that the
Pluggable Authentication Module (PAM) provides. In common with the Java 2 security
framework, JAAS provides access control based on code location and code signers. In
addition, JAAS provides access control to a specific user or group of users.

JAAS allows you to simply swap at runtime between encryption algorithms when
authenticating users. This is because you interact with JAAS through a login context, so
you effectively work with an abstraction of the authentication mechanisms.

Nﬂtﬂ Because JAAS does not actually contain classes that encrypt data, it is not
subject to U.S. export control restrictions. This means that developers out-

side of the U.S. are free to download JAAS.

JAAS is an optional package to J2SE 1.3.x, and it ships with sample authentication mod-
ules that use JNDI, Solaris, and Windows NT. You can download the current version of
JAAS from http://java.sun.com/products/jaas/. You can learn more about using
JAAS with JNDI and J2EE components on Day 15, “Security.”

Java API for XML Parsing (JAXP)

XML is a text-based markup language that describes data. It provides a platform-
independent and language-independent method for exchanging data between applications.

The J2EE Platform and Roles

Because XML consists of plain text, it is human-readable. However, you very rarely read
XML: you use an application that implements an XML API to read the data.

The JAXP API allows you to parse XML documents using the Document Object Model
(DOM) or the Simple API for XML (SAX). One very useful feature of JAXP is that you
can swap between XML parsers without making changes to your code. For example, if
speed suddenly becomes very important, you can use the SAX parser because it reads a
very large document in a fraction of the time of the DOM parser. Another useful feature
of JAXP is that it provides support for Extensible Stylesheet Language Transformations
(XSLT). For example, the J2EE Reference Implementation (RI) provides a transforma-
tion engine that supports XSLT. This allows you to dynamically transform an XML doc-
ument into either another XML document, HTML, or plain text.

There are many ways that you might use XML within a J2EE application. For example,
you can store content in XML and then transform the XML using XSLT so that a JSP
can render content to devices that support different markup languages. Another typical
use of XML is in the arena of business-to-business applications, where organizations can
exchange data independently of their system architectures. Finally, one very important
use of XML is within Web Services, which you will learn about on Days 20 and 21.

Java Naming and Directory Interface (JNDI)

JNDI provides an API for working with naming and directory services. A naming service
simply associates names with objects, for example, the Domain Name System (DNS). A

directory service also associates names with objects, but it also provides additional infor-
mation through attributes, for example, a Lightweight Directory Access Protocol (LDAP)
directory.

Although JNDI provides access to a wide array of naming and directory services, each
service must provide a Service Provider. This is similar to JDBC and drivers, but in this
instance, it is a naming or directory service and a Service Provider. For example, an
LDAP directory must provide an LDAP Service Provider, which JNDI hides from you as
a developer.

Whenever you need to access naming or directory services, you can use JNDI. More
specifically, you use JNDI in J2EE in three main instances—to access or register EJBs or
objects in an RMI registry or to access the CORBA Common Object Services (COS)
naming service. You can learn more about JNDI in Day 4.

JavaBeans Activation Framework (JAF)

Typically, you use JAF in the context of JavaBeans (that’s JavaBeans, not Enterprise
JavaBeans!). However, a J2EE product must provide JAF for the JavaMail API to use

|60

Day 2

MIME types. JAF allows you to send e-mails that are not simply plain text. Instead, you
can use different MIME types or send attachments. You can learn more about the use of
JAF in the context of JavaMail on Day 11.

JavaMail

The JavaMail API provides classes that allow you to work with e-mail. Specifically, it
allows you to send and receive e-mails by using a wide variety of protocols, including
POP, SMTP, and IMAP. You can create e-mails that conform to a large number of MIME
types, because the API uses JAF to provide support for a number of MIME types. For
example, you can create HTML messages that contain embedded graphics and even have
attachments.

Most Internet applications require the ability to send e-mail messages. You can use this
API together with JAF to send e-mails from a JSP, a servlet, or an EJB. You can learn
more about the API on Day 11.

Java Message Service (JMS)

Messaging is the process of communication between applications or components; it does
not include application to human communications, such as e-mail. The JMS API allows
you to create, read, and store messages.

JMS support two messaging models—point-to-point and publish-subscribe. Point-to-
point messaging is where an application sends a message to a queue (a prearranged desti-
nation for messages), and then a client application collects that message. For example,
leaving a voicemail message is a real-world example of this model. The publish-
subscribe model requires client applications to subscribe to a topic with a message bro-
ker that again acts as a prearranged message destination. When an application sends a
message to the message broker, the message broker immediately forwards the message to
all current subscribers.

You can send and receive JMS messages by using both session and entity beans.
However, you can only do this synchronously; the sender must suspend execution until
the receiver receives the message. Alternatively, you can use a message-driven bean to
send messages asynchronously. You can learn more about message-driven beans on Day
10 and JSM on Day 9.

Java Interface Definition Language (Java IDL)

Java IDL provides a way for you to access and deploy remote objects that comply with
the Common Object Request Broker Architecture (CORBA) defined by the Object
Management Group (OMG). CORBA Interface Definition Language (IDL) provides a

The J2EE Platform and Roles 61 |

language-independent means of defining object interfaces. OMG provides mappings
between various languages and IDL. A client written in any language that has an IDL
binding can access objects you export by using CORBA. For example, a Java client
can consume objects written in other languages, such as C++, C, Smalltalk, COBOL,
and Ada.

In terms of J2EE applications, you can look up CORBA remote objects in the COS nam-
ing service through JNDI. The main reason you would want to use Java IDL, as a Java
developer, is to allow your J2EE application to access legacy systems. For example, you
might have a legacy Integration tier where a COBOL application manages data access.
Java IDL allows an EJB in the business tier to communicate with the COBOL object,
thus negating the need to rewrite the entire backend legacy code.

Remote Method Invocation over Internet Inter-Orb
Protocol (RMI-IIOP)

RMI is a distributed object system that allows Java objects to interact with other Java
objects running in a different virtual machine (usually on a remote host). In practice, you
can access these remote objects almost as if they were local; you simply get a reference
to the remote object and invoke its methods as if it were running in the same virtual
machine. The seamless nature of this access is due, in part, to the fact that RMI is a Java-
only distributed object system that relies on a proprietary transport protocol, namely,
Java Remote Method Protocol (JRMP), to exchange information between client and serv-
er. However, this means that you can only use it to access other Java objects—not non-
Java objects.

The actual process of performing a remote method invocation is similar to that of
CORBA, namely, RMI utilizes client-side stubs and server-side skeletons. A client
invokes a remote method by making a request on the stub, and this forwards to the server
where the skeleton converts the request into an actual method call on the remote object.
Any arguments for the remote method are marshaled by the stub into a serialized form
before they are forwarded to the skeleton, which, in turn, unmarshalls the arguments.
This marshalling allows objects to transport across a network.

Unfortunately, this protocol is not suitable for the type of enterprise-level interactions
required by EJBs, where transaction and security context must be propagated across
remote method calls. To this end, Sun Microsystems created a new implementation of
RMI called RMI-IIOP. This keeps the same semantics as RMI (remote interfaces, passing
serialized objects, and so on) but uses the CORBA Internet Inter-ORB Protocol (IIOP) as
its transport mechanism. IIOP already contains all of the necessary hooks to propagate
security and transaction context, so this new protocol can act as the core transport for
EJBs in the J2EE architecture.

|62

Day 2

RMI-IIOP is used by default as the transport mechanism when generating stubs and
skeletons for EJBs. You can also explicitly create RMI-IIOP clients and servers for your
own applications by using flags on the RMI compiler (rmic) to create RMI-IIOP stubs
and skeletons rather than the default JRMP stubs and skeletons.

You can also use RMI-IIOP as a mechanism for exposing your EJB components to
CORBA clients without having to learn IDL. You can specify a flag to the RMI compiler
that gets it to generate CORBA IDL on your behalf. After you have the CORBA IDL,
this can be used together with an alternative language binding to create a client for the
EJB that is written in another language.

Connector Architecture

The J2EE Connector Architecture allows your J2EE application to interact with
Enterprise Information Systems (EIS), such as mainframe transaction processing,
Enterprise Resource Planning (ERP) systems, and legacy non-Java applications. It does
this by allowing EIS vendors to produce a resource adapter that product providers can
plug into their application servers. The J2EE developer can then obtain connections to
these EIS resources in a similar way to obtaining a JDBC connection.

The J2EE Connector Architecture defines a set of contracts that govern the relationship
between the EIS and the application server. These contracts determine the interaction
between server and EIS in terms of the management of connections, transactions, and
security. You can learn more about Connector Architecture on Day 19, “Integrating with
External Resources.”

Introducing Platform Roles

To create, package, and deploy any J2EE application—other than the simplest
application—requires the effort of more than one person or organization. For example, in
the development arena, a team of developers will write the J2EE components and some-
one else will assemble the finished application. In the production environment, someone
will configure the J2EE environment and deploy the application, and yet another person
will monitor the running application and its physical environment. In smaller organiza-
tions, there may be no physical distinction between these roles, but they will still be logi-
cally separate. Based on this premise, it is no surprise that Sun Microsystems suggest a
named team whose responsibility it is to perform these tasks.

This team, together with Product Providers and Tool Providers constitute the J2EE plat-
form roles. It is these roles that this section explores.

The J2EE Platform and Roles

63|

J2EE Product Provider

A J2EE product must include the component containers and J2EE APIs the J2EE specifi-
cation states; today’s lesson has introduced all of these containers and APIs. Examples of
J2EE products include operating systems, database systems, application servers, and Web
servers. An organization that supplies a J2EE product is known as the J2EE Product
Provider.

The J2EE Product Provider is also responsible for mapping application components to
the network protocols the J2EE specification defines. In addition, the Product Provider
must provide deployment tools for the Deployer and management tools for the System
Administrator. The end of this section provides an explanation of these tools.

The Product Provider is free to provide implementation-specific interfaces that the J2EE
specification does not define. Hence, you will occasionally see a warning in a lesson that
highlights a vendor-specific piece of functionality.

Application Component Provider

As you have already seen, a J2EE application consists of components, but it also may
consist of other resources, such as HTML files or XML files. The Application
Component Provider creates both these resources and components. Almost all organiza-
tions will use several component providers. They may exist in-house, or the organization
may outsource component creation or buy in components. Whichever is the case, special-
ists in the different tiers (presentation, business, and data access) will write the compo-
nents that relate to that tier. For example, a business tier specialist will write EJBs,
whereas a presentation tier expert may write JSPs. Regardless of the Application
Component Provider’s specialist area, the Tools Provider will supply them with tools to
write components.

Application Assembler

After the Application Component Providers write an application, the Application
Assembler assembles the application into a J2EE application. The Application Assembler
packages the application into an EAR file that must conform to the J2EE specification.
Other than assembly, the Application Assembler is responsible for providing instructions
that state the external dependencies of the application. Typically, the Application
Assembler uses tools the Tools Provider or Product Provider provides to perform these
tasks.

|64

Day 2

FIGURE 2.13
J2EE roles.

Application Deployer

The Application Deployer is the first person who requires knowledge of the production
environment. This is because he or she must deploy the application into that environ-
ment. Specifically, the Application Deployer must install, configure, and start the execu-
tion of the application. Typically, the Product Provider provides tools that help perform
these tasks.

The installation process is where the Application Deployer moves the application to

the server and installs any classes the container requires to perform its duties. During the
configuration process, the Application Deployer satisfies any external dependencies the
Application Assembler stipulates and configures any local security settings, for example,
modifies a policy file. The final stage, starting execution, is where the Application
Deployer starts the application in readiness to service clients.

Systems Administrator

The Systems Administrator configures and maintains the enterprise network, and moni-
tors and maintains the application the Application Deployer deployed. The Product
Provider supplies tools that assist the Systems Administrator in the monitoring and main-
tenance of the application.

This concludes the list of platform roles that specifically work with the application; only
the Tool Provider remains. Figure 2.13 shows the interactions between each of these
roles and their interactions with the J2EE application.

Product Provider
Y Y Y Y
Development Environment Production Environment
Application Application Application System
Component [—>>] pp Hr| APP > ys
. Assembler Deployer Administrator
Provider
A A A A

Tools Provider

The J2EE Platform and Roles 65|

Tool Provider

As you have seen, many of the platform roles use tools the Tool Provider supplies. These
tools assist people with the creation, packaging, deployment, and maintenance of J2EE
applications. Currently, the J2EE specification only defines that the Product Provider
must supply deployment and maintenance tools; it does not stipulate what these tools
should be. Future releases of the specification are likely to provide further guidelines, so
that Tool Providers can supply platform-independent standardized tools sets.

To offer you a typical overview of the tools that Tools Providers and Product Providers
supply, this section concludes with a brief survey of the tools that ship with the J2EE ref-
erence implementation. For use guidance, please refer to the J2EE documentation.

* J2EE Administration Tool—Enables the addition and removal of resources, such as
JDBC drivers and data sources.

* Cleanup Tool—Removes all J2EE applications from the server.

* Cloudscape Server—Starts and stops the Cloudscape relational database.

* Deployment Tool—Enables you to package and deploy J2EE applications.

* J2EE Server—Launches and stops the J2EE server.

* Key Tool—Enables you to generate public and private keys and X.509 certificates.

* Packager—Allows you to package J2EE applications if you are not packaging
them using the deployment tool (see above). You can create EJB JAR, Web WAR,
Application Client JAR, J2EE EAR, and Resource Adapter RAR files.

* Realm Tool—Allows the administration of J2EE users and also the import certifi-
cates.

* Runclient script—Enables you to run a J2EE application client.
o Verifier—Verifies the integrity of EAR, WAR, and JAR files.

Future of J2EE tools

There are 3 Java Specification Requests underway that will affect the future of J2EE
tools:

¢ JSR 77—A new management model for tools that will provide a single manage-
ment tool to configure the J2EE platform. You can read more about the JSR at
http://www.jcp.org/jsr/detail/@77.jsp.

* JSR 88—A description of the APIs that enable the deployment tool. You can read
more about the JSR at http://www.jcp.org/jsr/detail/@88.jsp.

| 66 Day 2

e JSR 127—This defines the architecture that simplifies the creation and mainte-
nance of Java Server application graphical user interfaces. You can read more about
the JSR at http://www.jcp.org/jsr/detail/127.jsp.

Packaging and Deploying J2EE Applications
The installation of a typical desktop application, such as a word processor, is usually a
straightforward affair. The installation program will ask you a few questions about the
functionality you require and where it should install its files. It will also examine parts of
your desktop machine (such as the Windows registry) to discover whether any compo-
nents that it relies on are already installed. Normally, such an installation takes in the
order of a few minutes—half an hour at most.

The installation of a distributed enterprise application is unlike that of a packaged desk-
top application. The installation of a desktop application is reasonably straightforward
because

* The concept of word processing is well understood by most people, so they can
make an appropriate judgment on whether they need particular parts of the package
or not. There is little in the way of personal tailoring involved.

* All of the installation takes place on a single machine. The installation program
knows where to find existing configuration information and where it should install
the different parts of the application.

Compared with this, a distributed enterprise application will require a lot more informa-
tion about the environment in which it is to be installed. This includes, but is not limited
to, the following:

e The location of the servers on which the server-side components will be deployed.
The Web and business components for an application could be distributed across
multiple servers.

» The appropriate level of security must be enforced for the application. The applica-
tion must carry with it information about the security roles it expects and the
access each role has to the functionality of the application. These security roles
must be mapped onto the underlying security principals used in the distributed
environment.

e Components that access data and other resources must be configured to use appro-
priate local data sources.

The J2EE Platform and Roles

67|

* The names of components and resources must be checked and potentially changed
to avoid clashes with existing applications or to conform to a company-wide nam-
ing standard.

* Web-components must be configured so that they integrate with any existing Web
sites of which they will form a part.

As you can see, this is currently a far more specialist task, requiring knowledge about the
application and the environment in which it is being deployed. The application must
carry with it information about the requirements it has of the environment. The applica-
tion assembler defines these requirements when the application is created. The applica-
tion Deployer must examine these requirements and map them onto the underlying envi-
ronment.

J2EE applications

A J2EE application will consist of the following:

* Zero or more Web components packaged as Web Archives (WAR files)
e Zero or more EJB components packaged as EJB-JAR files
* Zero or more client components packaged as JAR files

» Zero or more connectors packaged as Resource Archives (RAR files)

Naturally, there must be at least one component for there to be an application! The com-
ponents that constitute an application must be packaged together so that they can be
transported and then deployed. To this end, all of the components in a J2EE application
are stored in a particular type of JAR file called an Enterprise Application Archive or
EAR.

Given the previous scenario, it should be clear that a J2EE application needs to carry
with it information about how its different parts interrelate and its requirements of the
environment in which it will be deployed. This information is carried in a series of XML
documents called deployment descriptors. There is an overall application deployment
descriptor that defines application-level requirements. This application deployment
descriptor is also stored in the EAR file.

Each individual component will have its own deployment descriptor that defines its own
configuration and requirements. These component deployment descriptors are carried in
the individual component archives described in the “Breaking Modules Down into
Components” section of today’s lesson. Figure 2.14 shows the structure of an EAR file
and how the application deployment descriptor, the component archives, and the compo-
nent deployment descriptors fit within this structure.

|68

Day 2

FIGURE 2.14

Structure of an
Enterprise Archive
(EAR).

)
EAR

Application DD I

ER Container DD I

@
/

~| EJB
E\ Modules
WAR
|] -
i odules
JAR
I —1 Client
\\ Modules
—
RAR - | Resource
U I | Modules
\J
—
———

The application deployment descriptor contains application-wide deployment informa-
tion and can potentially supersede information in individual component deployment
descriptors.

N“tﬂ The EAR file can also contain a container-specific deployment descriptor that
holds information that is useful to the container but falls outside the scope
of the J2EE application deployment descriptor.

The application is split into modules, each of which represents a component. If neces-
sary, a module can contain an additional deployment descriptor to override some or all
settings in the deployment descriptor provided in the component archive file.

Breaking Modules down into Components

As you can see from Figure 2.14, components are represented in an EAR file by compo-
nent archive files. Each module will point to its associated component archive file. Each
type of component archive file is a JAR-format file that contains the component’s classes
and resources together with a component-specific deployment descriptor.

The J2EE Platform and Roles 69|

The two most common types of component archive are EJB-JAR files and WAR files.

EJB Component

An EJB-JAR file contains all of the classes that make up an EJB. It also contains any
resource files required by the EJB. The properties of the component are described in its
associated deployment descriptor, called ejb-jar.xml, which is also included in the
EJB-JAR file.

The deployment descriptor described the main class files contained in the EJB-JAR file.
The deployment descriptor specifies which external resources are required by the compo-
nent. It also contains extra information about the security and transaction settings. This
resource and extra information is often referred to as metadata. Figure 2.15 shows a sub-
set of the contents of an EJB deployment descriptor.

_

FIGURE 2.15

An EJB deployment
descriptor indicates
the main classes in the

AgencyHome.class

Deployment
Descriptor (XML)
Agency.class
specifies

AgencyBean.class

7

EJB-JAR file together
with the component’s
metadata.

Home interface
Remote interface
EJB implementation —

<security-role>
<role-name>admin</role-name>
</security-role>

Security requirements —4——>

Transaction requirements)
N

N\

<container-transaction>

<trans-attribute>Required</trans-attribute>
</container-transaction>

All of the component’s metadata can be altered or replaced by the application assembler
as they bind the component into the application. The application Deployer can also cus-
tomize some of the metadata.

An EJB-JAR file can contain more than one EJB.

Note

EJB-JAR files and their deployment descriptors are discussed in more detail on Days 4
and 5. Other aspects of EJB deployment information, such as security and transactions,
are covered later.

|7O

Day 2

Web Component

Servlets and JSPs can also be packaged together into a component archive file. The
archive file is a JAR-format file that contains the class files, JSP files, and resources
required by the Web component. In this case, the resources can include static HTML files
that form part of the application. This Web Archive (WAR) file also contains a deploy-
ment descriptor that indicates the Web components contained in the WAR.

Just as with the EJB deployment descriptor, the WAR deployment descriptor indicates
the main classes in the WAR file and the resources required by the components.
However, the WAR deployment descriptor also contains Web-specific information, such
as the URLs onto which servlets and JSPs should be mapped, and which is the front page
of the application.

WAR files and their deployment descriptors are discussed in more detail on Day 12,
“Servlets,” and Day 13. Other aspects of WAR deployment information, such as security,
are covered later.

Summary

Today, you looked in more detail at J2EE and the facilities that it provides. You saw how
the different J2EE technologies fit into the 3-tier model, and how it provides component
frameworks for different types of functionality.

You have seen that the EJBs provide a robust, scalable home for business logic and that
servlets (and JSPs) provide a flexible way of delivering application functionality to
clients. There are many different types of client, ranging from simple, markup-based
clients that work over HTTP to sophisticated and powerful clients that use GUIs and
RPC.

You have seen that the creation and deployment of an enterprise application requires
many different roles. You have also seen that an enterprise application is assembled from
many different parts, and that it must carry with it information about how all of those
parts fit together.

Q&A

Q Can a J2EE application be written without using any Enterprise JavaBeans?

A Certainly. You can write a client application that connects to a servlet in a Web
container and have that servlet connect directly to a back-end database. You don’t

The J2EE Platform and Roles 71 |

need to add an EJB. An EJB can add value by providing persistent conversational
state if that is required. It can also provide transactional security and roll back to a
previous state should there be an interruption in the flow of data for any reason.
Therefore, you can use servlets and JSPs on their own if a database is simply read,
but any updates or new records to be added will more safely be done using
Enterprise JavaBeans.

Q What type of EJB should I typically use to encapsulate business logic? And
which type would I use to contain data and its associated operations?

A For pure business logic, you would typically use a session bean (or a message-
driven bean). If the EJB is to represent underlying application data, you would
probably use an entity bean.

Why are JSPs generally faster than other server-side scripting environments?

> QO

When a JSP is accessed, it is compiled into Java bytecodes. Every subsequent
access will use the bytecodes rather than processing the page again. This means
that JSPs will run as fast as standard Java classes such as servlets.

Q What are the consequences of producing a J2EE application with vendor spe-
cific APIs?

A The application you produce will become specific to a particular container, server,
or vendor. You will not be able to easily move the application from platform to
platform.

Q How do you package an EJB? What should be in the package?

A An EJB is packaged in an EJB-JAR file. The EJB-JAR file contains the classes for
the EJB, any other resources, and a deployment descriptor that contains EJB meta-
data and describes the external resource requirements of the EJB.

Q What is an EAR file?

A This is an Enterprise Application Resource file that houses the application’s JAR,
WAR, and XML files. The Assembler takes on the responsibility of packaging the
EAR file, while the Deployer authenticates that the file conforms to the J2EE spec-
ification, adds the file to the J2EE server, and deploys the application.

Exercises—Case Study

To help understand the role of each of the technologies in the J2EE specification, a single
case study will be followed throughout the daily exercises. As you work through the 21
days, a functional implementation of a simple enterprise application will be developed.

|72

Day 2

The Job Agency

The chosen case study is a simple Job Agency. Jobs are categorized by Location and
Skills required for the job. Customers advertise jobs, and Applicants register their loca-
tion and skills so they can be matched to jobs. Customers and applicants will be notified

of job matches by e-mail.

To illustrate the relationships between the different components in the data model for the

Agency, a traditional database ERD diagram is shown in Figure 2.16.

FIGURE 2.16
Case Study ERD.

Applicant
login: VARCHAR(16) - PK
name: VARCHAR(64)
email: VARCHAR(64)
location: FK-Location
summary: VARCHAR(512)
/\
ApplicantSkill
Location
applicant: FK-Applicant \PK |]
skill: FK-Skill / name: VARCHAR(16) - PK
—| description: VARCHAR(64)
/\
Skill
name: VARCHAR(16) - PK
description: VARCHAR(64)
/
/N Matched
JobSkill applicant: ~ FK-Applicant \
job: FK-Job \ customer: FK-Customer >PK
customer: FK-Customer >PK job: FK-Job /
skill: FK-Skill / exact: boolean
\4 \V4
Job
ref: VARCHAR(16) \PK N,
customer: FK-Customer / [
description: VARCHAR(512)
location: FK-Location
\\4
Customer
login: VARCHAR(16) - PK
name: VARCHAR(64)
email: VARCHAR(64)
address1: VARCHAR(64)
address2: VARCHAR(64)

The J2EE Platform and Roles 73 |

Today’s exercise, which is described later, will be to create the database and register it as
a javax.sql.DataSource to the J2EE RI.

The case study has a front office part with the following components:

* Maintaining the location and job lookup tables
* Adding customers and advertising jobs
* Registering job applications

The back office part consists of the following:

* Matching a new job against existing applicants

* Matching a new applicant against existing jobs

* Generating e-mails

Using the Agency Case Study

The example code shown in each day’s lesson will use the Customer functionality (jobs
and invoices) from the case study. At the end of each day’s work, you will be asked to
enhance the case study by adding the Applicant functionality (registering jobs) to the
system. A fully-worked solution for the exercises is provided on the CD-ROM included
with this book, so that you will have a working case study if you choose to omit any
day’s exercise.

N t Material for many days exercises, particularly JNDI, JavaMail, JMS and Java
ote I .

Connectors, will primarily use examples and exercises not related to the case
study. The last two days’ work discuss J2EE in the context of the wider con-
text of Web applications and do not refer to the Agency case study.

Table 2.3 shows roughly what will be covered on each day. Don’t worry if some of the
terminology is new to you; all will become clear as you work your way through the
book.

TaBLE 2.3 Daily Workout

Day Lesson Exercise

1 Introduce multi-tiered application architectures No exercise

2 Introduce the J2EE platform, technologies and roles Install J2EE RI and case study
database.

3 Using JNDI naming and directory services Write a JNDI namespace

browser.

|74

Day 2

TABLE 2.3 Continued

Day

Lesson

Exercise

4

10

11

12

13

14

15

16

17

Using data sources, environment entries,
and EJB references

Using Session EJBs to implement business logic

Using Entity EJBs to encapsulate access
to persistent data

Using Container Managed Persistence (CMP)
and Container Manage Relationships (CMR) with
entity EJBs

Adding transaction management to Session and
Entity EJBs

Using JMS topics and queues

Using Message-driven beans to implement back
office functionality

Adding e-mail capabilities to back office
functionality

Developing Web-based applications using servlets

Developing Web-based applications using Java
Server Pages

Using custom Tag Libraries with JSPs

Adding security to restrict access to J2EE
application functionality and data

Understanding XML and writing simple XML
documents

Using XSL to transform XML documents into
different data formats

Build and deploy a simple EJB
and client application with J2EE
RIL

Add a Session bean to register
job applicants.

Add Entity beans for the appli
cant data and refactor the register
Session bean.

Refactor the applicant Entity
bean to use CMP.

Add transaction management to
the Applicant processing.

Develop a simple chat room ser-
vice.

Use Message-driven beans to
match new or changed applicants
to advertised jobs.

Use e-mail to send matched jobs
to applicants.

Develop a servlet front end to
create a new applicant for the
Agency case study.

Use JSPs to register job
applicants.

Refactor the register job JSP to
use Tag Libraries.

Add security to control access to
the job skills data.

Refactor the messages sent to the
back office job/applicant match-
ing functionality to use XML.

Transforming an XLD document
into HTML for viewing in a Web
browser.

The J2EE Platform and Roles 75|

TaBLE 2.3 Continued

Day Lesson Exercise

18 Understanding design patterns and recognizing Identify which design patterns
patterns present (and absent) from the case study can be applied to the case study
to improve maintainability.

19 Working with legacy systems using the Identify how the case study could
Connector architecture be linked into a legacy invoicing
system.
20 Exposing J2EE components as Web Services Create a simple Java stock quote

class and expose it as a Web
Service. Create a client to
retrieve the stock quote informa-
tion from the server.

21 Using XML-based registries and asynchronous Create a Web Service JobPortal
Web Services that will take a SOAP message
containing new agency customer
information and return a generat-
ed customer login ID.

By the end of the course, you will have a simple, but working, job agency enterprise
application. The agency will have both a GUI-based front end and a Web-based interface
and will have given you a good grounding in the relative strengths of each J2EE tech-
nologies and how to apply them.

Practice Makes Perfect

Developing J2EE architectures requires two disciplines:

* Good analysis and design skills

 Practical hands-on experience with the J2EE technologies

The first comes with time and experience, but the last few days lessons will help point
you in the right direction to becoming a J2EE designer.

The second discipline comes with practice. If you read this book and attempt all the
exercises, you will learn a lot more than if you just read the book and simply study the
example code shown.

The case study exercises are not complex. They have been designed to take between 30
minutes and 2 hours to complete. The exercises only use information presented and your
existing knowledge: you will need to know something about JDBC, Swing, and HTML,

|76

Day 2

but you certainly don’t need to be an expert in these technologies. The book “Teach
Yourself Java in 21 Days” from SAMS Publishing is a good source for improving your
knowledge of JDBC and Swing should you require a little refresher course. More impor-
tantly, the exercises will give you hands-on coding experience using J2EE.

The Case Study Directory on the CD-ROM

On the CD-ROM included with this book, you will find all the Java software required to
develop all of the code shown in this book.

The CD-ROM contains a directory called CaseStudy. All the example code solutions to
the exercises are included in this directory.

There are 21 sub-directories corresponding to each days work. Each day will have one or
more of the following directories:

e Agency The complete Agency case study so far. This includes code from the
examples in the book and the completed exercise if this is based on the case study.

e Examples The code for all the example programs show in the book where these
examples are not part of the case study.

* Exercise Any existing code to be used as a starting point for the exercise.
Typically, this will be the Agency case study, including all the example code in the
book but excluding the code the reader needs to provide as part of the exercise.

e Solution A solution to the set problem if the exercise does not enhance the
Agency case study.

Installing the Case Study Database

The Job Agency case study requires a small database for storing information about cus-
tomers, jobs, applicants, and invoices. A Java program to create the database has been
provided in the Day 2 exercises on the accompanying CD-ROM. The program uses the
Cloudscape database provided with the J2EE RI and can easily be adapted to work with
any JDBC compatible database.

Find the directory on the CD called CaseStudy\Day@2\Exercise.
Inside this directory is a Java source file, class file, and two script files:

* CreateAgency.java A source file for a program to create the Agency database
under J2EE RI Cloudscape database.

* CreateAgency.class The compiled Java class file for CreateAgency.java

The J2EE Platform and Roles

77|

* CreateAgency.bat A Windows NT/2000 batch file to run the application to cre-
ate the database

* CreateAgency.sh Unix/Linux Bourne shell script to run the application to create
the database

To create the Agency database, you will need write permission to the J2EE installation
directory.

Follow the instructions shown earlier in today’s lesson for stopping the Cloudscape and
J2EE, servers and stop these servers if they are currently running. If you have installed
J2EE as suggested, you simply have to enter the following commands from a command
(or shell) window:

j2ee -stop

cloudscape -stop

The Java CreateAgency program provided in the Day 2 exercises will create the neces-
sary database files in a sub-directory called Agency. To create and install the database,
you will need to do the following:

1. Copy all the files from the Day 2 exercises directory CD-ROM to the cloudscape
sub-directory of the J2EE SDK installation directory.

2. Change directories to the cloudscape sub-directory of the J2EE SDK home direc-
tory and then run the appropriate script program as follows:

Under Windows, type

cd %J2EE_HOMES\cloudscape
CreateAgency

Under Linux/Unix, type

cd $J2EE_HOME/cloudscape
./CreateAgency.sh

A new sub-directory called Agency will be created under the current cloudscape
directory.

3. Having created the database, you must now add a data source called Agency to
J2EE (data sources are discussed on Day 4, “Introduction to EJBs”’). Run the fol-
lowing command to add the data source (the same command is used for both win-
dows and Linux/Unix):

j2eeadmin -addJdbcDatasource jdbc/Agency
= jdbc:cloudscape:rmi:Agency;create=true

If you have not included the J2EE bin directory in your program search path, you
will have to run the command as shown below:

|78

Day 2

Under Windows, enter the following command:

%J2EE_HOME%\bin\j2eeadmin -addJdbcDatasource
= jdbc/Agency jdbc:cloudscape:rmi:Agency;create=true

Under Linux/Unix, enter the following command:

$J2EE_HOME/bin/j2eeadmin -addJdbcDatasource
= jdbc/Agency jdbc:cloudscape:rmi:Agency;create=true

Finally, restart the Cloudscape and J2EE servers as described in the earlier section,
“Starting the J2EE Reference Implementation (RI).” Normally, you would start the J2EE
server and Cloudscape database server in separate windows by using the following com-
mands:

j2ee -verbose

cloudscape -start

If you start the J2EE server as shown with the -verbose option, you will see the diag-

nostic output shown in Listing 2.4 (the line showing the Agency data source configura-
tion is highlighted in bold).

LisTING 2.4 The J2EE Reference Implementation Startup Diagnostics

1: > j2ee -verbose

2: J2EE server listen port: 1050

3: Naming service started:1050

4: Binding DataSource, name = jdbc/DB2, url =
= jdbc:cloudscape:rmi:CloudscapeDB;create=true

5: Binding DataSource, name = jdbc/DB1, url =
= jdbc:cloudscape:rmi:CloudscapeDB;create=true

6: Binding DataSource, name = jdbc/Agency, url =
=jdbc:cloudscape:rmi:Agency;create=true

7: Binding DataSource, name = jdbc/InventoryDB, url =
= jdbc:cloudscape:rmi:CloudscapeDB;create=true

8: Binding DataSource, name = jdbc/Cloudscape, url =
= jdbc:cloudscape:rmi:CloudscapeDB;create=true

9: Binding DataSource, name = jdbc/EstoreDB, url =
= jdbc:cloudscape:rmi:CloudscapeDB;create=true

10: Binding DataSource, name = jdbc/XACloudscape, url = jdbc/XACloudscape__xa

11: Binding DataSource, name = jdbc/XACloudscape__xa,
=dataSource = COM.cloudscape.core.RemoteXaDataSource@653220

12: Starting JMS service...

13: Initialization complete - waiting for client requests

14: Binding: < JMS Destination : jms/Queue , javax.jms.Queue >

15: Binding: < JMS Destination : jms/firstQueue , javax.jms.Queue >

16: Binding: < JMS Destination : jms/Topic , javax.jms.Topic >

17: Binding: < JMS Cnx Factory :
=QueueConnectionFactory , Queue , No properties >

18: Binding: < JMS Cnx Factory :
= jms/QueueConnectionFactory , Queue , No properties >

The J2EE Platform and Roles

79|

LisTING 2.4 Continued

19:

Binding: < JMS Cnx Factory :

wTopicConnectionFactory , Topic , No properties >

20:

Binding: < JMS Cnx Factory :

= jms/TopicConnectionFactory , Topic , No properties >

21:
22:
23:
24
25:
26:

Starting web service at port: 8000
Starting secure web service at port: 7000
J2EE SDK/1.3

Starting web service at port: 9191

J2EE SDK/1.3

J2EE server startup complete.

You will test the Agency database configuration on Day 4 when you learn how to create
and deploy a simple EJB.

Congratulations, you have installed J2EE successfully and completed today’s exercise to
configure the Agency database for use with the other exercises in this book.

WEEK 1

DAY 3

Naming and Directory
Services

The previous days have discussed the background to enterprise computing con-
cepts and introduced J2EE technologies such as EJBs and Servlets. This chap-
ter will show how the Java Naming and Directory Interface (JNDI) supports the
use of many of the J2EE components.

In its simplest form, JNDI is used to find resources (such as EJBs) you have
registered via the J2EE server. Advanced use of JNDI supports sophisticated
storage and retrieval of Java objects and other information.

This day’s work will include

Using Naming and Directory Services
JNDI and X.500 names

Obtaining a JNDI Initial Context
Binding and looking up names

Name attributes

Objects and References

JNDI events and security

| 82 Day 3

Naming and Directory Services

A Naming Service provides a mechanism for giving names to objects so that you can
retrieve and use those objects without knowing the location of the object. Objects can be
located on any machine accessible from your network, not necessarily the local workstation.

A real-world example is a phone directory. It stores telephone numbers against names
and addresses. To find someone’s phone number is simply a matter of using his or her
name (and possibly address) to identify the entry in the phone book and obtain the stored
phone number. There are a few complications, such as finding the right phone book to
look in, but it is essentially fairly simple.

Incidentally, naming services have a similar problem to that of finding the right phone
book. This is known as obtaining a context. A name can only be found if you examine
the right context (phone book).

A Directory Service also associates names with objects but provides additional informa-
tion by associating attributes with the objects.

The yellow pages phone directory is a simple form of a directory service. Here, business-
es often include advertisements with additional information such as a list of products
sold, professional qualifications, affiliated organizations, and even location maps for their
premises. These attributes add value to the name entry. A directory service will normally
provide the ability to find entries that have particular attributes or values for attributes.
This is similar to searching the yellow pages phone book for all plumbers running a 24-
hour emergency service within a certain area.

Yellow page style phone books also store names under different categories—for example,
plumbers or lawyers. Categorizing entries can simplify searching for a particular type of

entry. These categorized entries are a form of sub-context within the directory context of

the local phone book.

Why Use a Naming Service?

Naming Services provide an indispensable mechanism for de-coupling the provider of a
service from the consumer of the service. Naming services allow a supplier of a service
to register their service against a name. Users, or clients, of the service need only know
the name of the service to use it.

Think of the phone book once more, and how difficult it would be to find someone’s
phone number without the phone book. Obtaining your friend’s phone number means
going to their home and asking, or waiting until you meet up with them again—which
may be difficult to organize because you can’t phone them to arrange the meeting.

Naming and Directory Services

83|

FIGURE 3.1
JNDI Architecture.

The phone book is a directory service. In fact, a phone book is often referred to as a
phone directory. The phone directory service lets you look up a person or company’s
phone book using their name as a key.

At the end of the day, it is very difficult to imagine a world without naming services.

What is JNDI?

JNDI is a Java API that defines an interface to Naming and Directory Services for Java
programs. JNDI is just an API and not, in itself, a Naming and Directory Service. To use
JNDI, an implementation of a Naming and Directory service must be available. JNDI
provides a service-independent interface to the underlying Service Provider implementa-
tion.

Figure 3.1 shows how the JNDI layer interfaces between the Java program and the under-
lying naming services. Additional naming services can be plugged into the JNDI layer by
implementing the Service Provider Interface (SPI) for INDI.

Java Program

JNDI Application programming Interface (API)

Naming Manager

JNDI Service Provider Interface (SPI)
gl I I I I I 1
LDAP | DNS | NDS |CORBA| RMI NIS &

Figure 3.1 shows that INDI supports several well-known naming services, including the
following:

Common Naming Services

* Domain Name System (DNS) is the Internet naming service for identifying
machines on a network.

* Novell Directory Services (NDS) from Novell provides information about network
services, such as files and printers. NDS is found primarily in environments where
the main networking software is Novell.

* Network Information Service (NIS) from Sun Microsystems provides system-wide
information about machines, files, users, printers, and networks. NIS is primarily
found on Solaris systems, but Linux and some other Unix platforms support it.

|84

Day 3

* Lightweight Directory Access Protocol (LDAP) is the approved standard for an
Internet naming service. LDAP is a true directory service and supports attributes as
well as names for objects. LDAP is fast becoming the de-facto directory service for
the enterprise.

JNDI also supports some more specialized naming systems. For example, CORBA for
distributed component programming and RMI for distributed Java programming.

Although there is no named service provider for Windows Active Directory, it is support-
ed. Windows Active Directory supports an LDAP interface, and you can access it via the
JNDI LDAP Service Provider Interface.

Naming Conventions

Each naming service has its own mechanism for supplying a name. Perhaps the most
familiar naming convention is that of DNS, where every machine connected to the
Internet has a unique name and address. Most readers should recognize the following as
a host name used by DNS:

www. samspublishing.com

In contrast, LDAP names are based on the X.500 standard and use distinguished names
that look like the following fictitious example:

cn=Martin Bond, ou=Authors, 0=SAMS, c=us

This format will also be familiar to users of Microsoft’s Active Directory service, whose
naming system is also based on X.500 but uses a forward slash to separate the various
name components:

cn=Martin Bond/ou=Authors/o=SAMS/c=us

These last two naming conventions have similarities in that they are both hierarchically
structured with the most specific name occurring first and the most general name (or
context) occurring last.

JNDI provides classes that support creating and manipulating structured names; but most
programmers will use simple strings that JNDI passes on to the underlying service with
minimal interpretation.

Some JNDI Service Providers may use names that are case sensitive, and some service
providers may not, it all depends on the underlying technology and environment. To
maintain portability of your applications, it is always best to avoid names that differ only
by letter case and also ensure that names are always spelled in a consistent manner.

Naming and Directory Services 85|

Using JNDI

JNDI is a standard component of JDK 1.3 and is, therefore, also part of J2EE 1.3. JINDI
is also included in J2EE 1.2 and is available as a standard Java extension for JDK 1.2
and earlier.

While developing code, the program’s CLASSPATH must include the location of the JNDI
class libraries. As long as the JAVA_HOME environment variable has been set up, the JNDI
classes will be available to the Java compiler.

Running a JNDI-aware program requires a JNDI service to be running and the classes for
that service to be available to the program. Typically, this requires the CLASSPATH to
include one or more JAR files provided by the JNDI provider or a J2EE server vendor.
For implementation-specific details, see the vendor’s documentation.

By default, running a J2EE server starts a naming service on the same machine. If the
default behavior isn’t required, you must change the J2EE server configuration to use an
existing JNDI server.

Using Sun Microsystems’ J2EE Reference
Implementation

Using JNDI with Sun Microsystems’ J2EE Reference Implementation (RI) is straightfor-
ward. Ensure that

e The J2EE_HOME variable exists

* The CLASSPATH variable includes the j2ee. jar file from the 1ib directory of the
J2EE home directory

Examples of how to do this both for Windows and for Unix are shown in this section.

J2EE RI for Windows

Under systems running Microsoft Windows NT or 2000, you can set the class path inter-
actively with the following:

Set CLASSPATH=SJ2EE_HOME%\1ib\j2ee.jar;%CLASSPATHS%

Typically, it is better to set the class path as a system-wide environment variable (via the
My Computer properties dialog). A suitable value is as follows:

. ;%J2EE_HOME%\1ib\j2ee.jar

The class path can also include additional JAR files and directories for other Java compo-
nents.

|86

Day 3

It is important to define the current directory (.) in the class path; otherwise, the Java
compiler and runtime systems will not find the classes for the program being developed.

J2EE RI for Linux and Unix
Under Linux and Unix, set the class path with the following:
CLASSPATH=$J2EE_HOME/1ib/j2ee.jar:$CLASSPATH

Starting the JNDI Server

Startup the J2EE RI server, as Day 2, “The J2EE Platform and Roles,” described, and the
JNDI server will start at the same time. You start the J2EE server by entering the follow-
ing command from a command-line window:

j2ee -verbose

The J2EE server will run in that window until you close the window down or enter the
following shutdown command from another command-line window:

j2ee -stop

Obtaining an Initial Context

The first step in using the JNDI name service is to get a context in which to add or find
names. The context that represents the entire namespace is called the Initial Context and
is represented by a class called javax.naming.InitialContext and is a sub-class of the
javax.naming.Context class.

A Context object represents a context that you can use to look up objects or add new
objects to the namespace. You can also interrogate the context to get a list of objects
bound to that context.

The javax.naming package contains all the simple JNDI classes. Sub-packages within
the javax.naming package provide additional JNDI functionality, such as directory-
based features like attributes.

The following code creates an initial context using the default JNDI service information:
Context ctx = new InitialContext();

If something goes wrong when creating the initial context, a NamingException is thrown.

Initial Context Naming Exceptions

The runtime system reports errors in using JNDI as a subclass of NamingException. The
exceptions most likely to occur for accessing the initial context are as follows:

Naming and Directory Services

87|

javax.naming.CommunicationException: Can't find SerialContextProvider

This exception usually means the JNDI Server is not running, or possibly the JNDI prop-
erties for the server are incorrect (see the next section, “Defining the JNDI Service”).
javax.naming.NoInitialContextException:

=wNeed to specify class name in environment or system property, or as an applet
wparameter, or in an application resource file: java.naming.factory.initial

This exception occurs when the IntialContext class does not have default properties for
the JNDI Service Provider, and the JNDI server properties have not be configured explic-
itly (see the next section, “Defining the JNDI Service”).

javax.naming.NoInitialContextException: Cannot instantiate class: XXX
[Root exception is java.lang.ClassNotFoundException: XXX]

This exception occurs when the class path defined for the JNDI program does not
include the JNDI server classes (see the next section, “Defining the JNDI Service”).

javax.naming.ServiceUnavailableException:

w=Connection refused: no further information
[Root exception is java.net.ConnectException:
wConnection refused: no further information]

This exception occurs when the JNDI properties for the program fail to match the JNDI
Service Provider currently in use (see the next section, “Defining the JNDI Service”).

Defining the JNDI Service

During program development, it is reasonable to use a JNDI service running on the local
machine that uses the default service provider supplied with the J2EE server. When you
deploy the program, you must make use of the enterprise-wide naming service for your
site. You will need to configure the program to use a specific naming server and not the
default one provided with your test J2EE server.

The parameters that you usually need to define for the JNDI service are as follows:

e JNDI service classname
e Server’s DNS host name
» Socket port number

A particular server vendor’s implementation may require additional parameters.

There are several ways of defining the JNDI service properties for a program, but you
only need to use one of them. You can either

* Add the properties to the JNDI properties file in the Java runtime home directory

* Provide an application resource file for the program

| 88 Day 3

e Specify command-line parameters to be passed to an application
» Specify parameters to be passed into an applet

* Hard-code the parameters into the program

The last option is the weakest approach, because it restricts the program to working with
one type of JNDI service provider on one specific host.

The first two options are the most suited to production environments. They both require
that you distribute simple text configuration files with the program.

JNDI Properties Files

An application resource file called jndi.properties defines the JNDI service. The
JNDI system automatically reads the application resource files from all components in
the program’s CLASSPATH and from 1ib/jndi.properties in the Java runtime home
directory (this is the jre sub-directory of the Java JDK home directory).

The following example from Sun Microsystems’ J2EE RI shows a typical jndi.proper-
ties file:
java.naming.factory.initial=com.sun.enterprise.naming.SerialInitContextFactory

java.naming.provider.url=localhost:1099
java.naming.factory.url.pkgs=com.sun.enterprise.naming

Each entry in the property file defines a name value pair. The InitialContext object
uses these properties to determine the JNDI service provider.

The J2EE server vendor usually supplies a sample jndi.properties file defining the
properties that need to be configured with their server. You can find the J2EE RI
jndi.properties file in the 1ib/classes directory in the J2EE RI installation directory.

Normally, any given JNDI service will require the following named properties:
java.naming.provider.url

This defines the DNS host name of the machine running the JNDI service and the service
port number. This is the only property that the network administrator needs to customize.
The property value is a machine name with an optional colon and port number. By
default, JNDI uses port 1099, and most sites do not change this value. The default server
is usually localhost.

Consider a host called nameserver in the Sams Publishing domain
(samspublishing.com), the full URL including port number for a default JNDI server on
this host would be as follows:

nameserver.samspublishing.com: 1099

java.naming.factory.initial

Naming and Directory Services 89|

You set this property to the classname (including the package) of the Initial Context
Factory for the JNDI Service Provider. This value effectively determines which JNDI
Service Provider you use. To use the default Naming Service supplied with the J2EE RI,
you would specify this property as follows:

java.naming.factory.initial=com.sun.enterprise.naming.SerialInitContextFactory
java.naming.factory.url.pkgs

This property defines prefix package names the InitialContext class uses for finding
other classes JNDI requires. The J2EE RI uses the following value for this property:

java.naming.factory.url.pkgs=com.sun.enterprise.naming

More information on these and other JNDI properties can be found in the API documen-
tation for the Context class and in the JNDI Tutorial from Sun Microsystems.

The simplest way to define the JNDI Service Provider is to configure every client’s Java
home directory to include the necessary JNDI properties. This approach suits an intranet
where all machines are centrally managed.

Another approach is to include a suitable JNDI properties file with the client program
and distribute everything as a JAR file (program class files and the jndi.properties
file). This suits Web-based intranets or extranets, where applets are used or where you
can distribute the client JAR file to users.

Application Properties

Using the -D option, you can supply the JNDI properties on the java command line of an
application. This has the disadvantage of requiring long command lines that are hard to
remember and easy to mistype. A way around this problem is for you to provide script
files to run the application on the target platforms; typically, you will supply batch files
for Windows and shell scripts for Linux and Unix.

The following is an example of a command line that defines the JNDI factory classes and
server:
java
--D
java.naming.factory.initial=com.sun.enterprise.naming.SerialInitContextFactory
w_-D java.naming.provider.url=localhost:1099 MyClass

Providing a jndi.properties file in the application JAR file is a cleaner solution than
providing command-line parameters. However, using command-line parameters makes
the JNDI properties more apparent when customizing the application for a local site. It is
easy to overlook a jndi.properties file in a JAR file.

|9O

Day 3

Applet Parameters

An applet can accept the JNDI properties as parameters, for example

<applet code="MyApplet.class" width="640" height="480">
<param name="java.naming.factory.initial"
value= "com.sun.enterprise.naming.SerialInitContextFactory" >
<param name="java.naming.provider.url"
"value= localhost:1099">
</applet>

Using parameters with the applet HTML file makes the JNDI properties more apparent
when customizing the applet for a local site. A jndi.properties file in the jar file is
easily overlooked.

Hard-Coded Properties

The least desirable way to specify the JNDI properties is via hard-coded values in the
program. Hard coding the properties means including the JNDI classnames and the serv-
er name in the source code. This is undesirable because it means that should the network
architecture change, you must edit, recompile, and redistribute the program. Obviously,
you want to avoid this maintenance overhead if you can. The network architecture may
change if the INDI service moves to a different server or you install a new JNDI Service
Provider.

The mechanism for defining the service in code is via a hash table of properties passed

into the InitialContext constructor:

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.enterprise.naming.SerialInitContextFactory");

env.put(Context. PROVIDER_URL,

"localhost:1099");
Context ctx = new InitialContext(env);

Notice how the code uses symbolic constants from the Context class rather than using
strings representing the properties (such as "java.naming.factory.initial"). This
approach makes the code more portable should the property names change in future ver-
sions of Java or JNDIL.

Binding JNDI Objects

After the initial JNDI context has been obtained, a program can look up existing objects
and bind new objects to the context.

When working with EJBs, the main JNDI activity is to look up existing bound objects;
the J2EE server does most of the binding of the objects automatically.

Naming and Directory Services 91 |

Because this section discusses the binding of objects, you can skip it if your primary pur-
pose for using JNDI is to obtain EJB and other references within a J2EE application.

Binding Objects
Binding an object means adding a name to the JNDI service and associating that name

with a Java object. The name and object are bound to a context. Listing 3.1 shows how a
text message can be bound to the name sams/book.

Listing 3.1 Full Text of UNDIBind.java

1: import javax.naming.*;

2: public class JNDIBind

3: {

4: private final static String JNDI = "sams/book";
5:

6: public static void main(String[] args) {

7: try {

8: Context ic = new InitialContext();

9: ic.bind(JNDI, "Teach Yourself J2EE in 21 Days");
10: System.out.println("Bound "+JNDI);

11: }

12: catch (NamingException ex) {

13: System.err.println(ex);

14: System.exit(1);

15: }

16: }

17: }

The object to be bound must implement the Serializable interface so that the name
server can store a copy of the object.

The Context.bind() method will fail with a NameAlreadyBoundException (which
extends NamingException) if an object is already bound to that name. Another subclass
of NamingException is thrown if there is some other form of error, such as an invalid
name. Remember that different Service Providers may have different naming conven-
tions.

Binding Problems

A Service Provider may not support binding of all types of objects. If the service cannot
bind a particular object, it will throw an exception.

Using the default naming service for J2EE RI that uses a transient CORBA naming ser-
vice, the class of the object must be in the CLASSPATH used by the J2EE RI JNDI server.

For now, this means using standard J2SE and J2EE classes or configuring the J2EE RI
services to include your class files. The recommended approach is to edit the user

|92

Day 3

configuration file (userconfig.sh or userconfig.bat) in the bin directory of the J2EE
RI home directory, and add the required class directories or JAR files to the J2EE_CLASS -
PATH variable defined in the configuration file.

An alternative is to use a Web Service to dynamically upload the required class files.
Dynamic uploading of class files is dicussed in the “Loading Classes from a Code Base”
section, later in this chapter.

Some Naming Services (such as LDAP) may use security features to ensure that only
authorized programs can bind new objects. The bind () method can also fail if it violates
any security features of the underlying naming service. The “Security” section of today’s
lesson covers this in more detail.

Name Persistence

A bound object normally remains in the namespace until it is unbound. If the bound
name remains across server restarts, it is said to be persistent. Commercial servers, such
as NDS, Active Directory, and LDAP, are persistent name servers and store the bound
names and ancilliary information on disk (typically in a database).

The default naming service for Sun Microsystems’ J2EE RI is a transient service; it
reloads bound objects from configuration files in the SDK home directory whenever it is
restarted. This naming service will not retain objects bound with the Context.bind()
method across server restarts.

Rebinding Objects

You can use the rebind() method to solve the problem of bind() failing if a name is
already bound. For example,

ic.rebind("sams/book","Teach Yourself J2EE in 21 Days");

The code unbinds any existing object bound to that name and binds the new object in its
place.

Using rebind() is a good design technique when a programmer is sure the name will not
be in use by another component. The alternative is to explicitly unbind the old name first
if it is in use as discussed in the next section on “Unbinding Objects.”

Unbinding Objects

You can remove an object from a namespace by using the Context.unbind() method. A
program uses this method when it is closing down and needs to remove its advertised
service because a bound name is not automatically unbound when the program shuts
down.

Naming and Directory Services 93 |

Another common use for unbind() is to test if a name is already in use and unbind the
old object before binding a new object. The advantage of using unbind() in preference
to rebind() is that you can verify that the object to be unbound is at least of the same
type as the new object to be bound.

String JNDI = "sams/book";

try {
Object o = ic.lookup(JNDI);
if (o instanceof String)
ic.unbind (JNDI);

}
catch (NameNotFoundException ex) {}
ic.bind(JNDI, "Teach Yourself J2EE in 21 Days");

This example rebinds a string bound to the name sams/book, but will fail with a
NameAlreadyBoundException if the name is bound to another class of object. This is a
better design approach than that of using the rebind () method.

Renaming Objects

You can rename objects using Context.rename() by specifying the old name and then
the new name as parameters. The new name must specify a name in the same context as
the old name. An object must be bound to the old name, and the new name must not
have a bound object; otherwise, a NamingException is thrown.

ic.rename("sams/book","sams/teachyourself");

JNDI Name Lookup

The most common use of JNDI is to look up objects that have been bound to a name. To
do this, you require two items of information:

e The JNDI name
* The class of the bound object

With this information in hand, object lookup is the simple matter of using the
Context.lookup () method to find the object and then to cast that object to the required
class.

Listing 3.2 shows a simple program to look up the name sams/book that was bound by
the program in Listing 3.1.

LisTING 3.2 Full Text of UNDILookup.java

1: import javax.naming.*;
2: public class JNDILookup

| 94 Day 3

LisTING 3.2 Continued

3: {

4 private final static String JNDI = "sams/book";
5 public static void main(String[] args) {

6: try {

7: Context ic = new InitialContext();

8: String name = (String)ic.lookup(JNDI);
9: System.out.println(JNDI+"="+name);

10: }

11: catch (NamingException ex) {

12: System.err.println(ex);

13: System.exit(1);

14: }

15: catch (ClassCastException ex) {

16: System.err.println(ex);

17: System.exit(1);

18: }

19: }

20: }

You can run the JNDIBind program in Listing 3.1 and then run this JNDILookup program
to print out the value of the string bound against sams/book.

Nﬂtﬂ When casting an object that the 1ookup () method returns, that object’s
class must be in the client program’s class path. If this is not the case, the
program throws an exception.

Changing Contexts

The example name sams/book used in Listings 3.1 and 3.2 is an example of a Composite
Name. If you need to look up many names in the same context of a composite name
(names of the form sams/...), it is better to change to sub-context and look up the sim-
ple name within that context.

With this information in hand, the sub-context is a name entry just like any other name,
and you look it up in just the same way. The retrieved object is another Context object.
Listing 3.3 shows code that retrieves a name from a sub-context.

ListinG 3.3 Full Text of JNDILookupSAMS. java

1: import javax.naming.*;
2: public class JNDILookupSAMS
3: {

Naming and Directory Services 95|

LisTiNG 3.3 Continued

4 public static void main(String[] args) {

5 try {

6: Context ic = new InitialContext();

7: Context ctx = (Context)ic.lookup("sams");
8: String name = (String)ctx.lookup("book");
9: System.out.println(name);

10: }

11: catch (NamingException ex) {

12: System.err.println(ex);

13: System.exit(1);

14: }

15: catch (ClassCastException ex) {

16: System.err.println(ex);

17: System.exit(1);

18: }

19: }

20: }

Narrowing RMI-IIOP Objects

There is only one additional twist to the lookup tale, and that is when dealing with RMI
over IIOP objects.

The implementation of J2EE requires the use of RMI-IIOP to implement the remote
interfaces to EJB components. Consequently, when a lookup is for an EJB name (more
on this on Day 4, “Introduction to EJIBs”), you cannot cast the returned object to the
required class; instead, you must narrow it.

RMI-IIOP uses a portable remote object to encapsulate information about the real remote
object. A portable remote object contains information about the real bound object in a
portable format that can be interogated by the recipient to find the real remote object.
The process of obtaining the real object from the portable remote object is called nar-
rowing.

You use the PortableRemoteObject.narrow() method in the javax.rmi package to nar-
row a protable remote object to obtain the actual remote object. The narrow() method
takes two parameters:

* The object to narrow

* A java.lang.Class object defining the real remote object’s class

Listing 3.4 previews the discussion on Day 4 about EJB objects, but also serves to illus-
trate the use of the narrow() method.

| 96 Day 3

LisTING 3.4 Narrowing an EJB Home Object

1: InitialContext ic = new InitialContext();

2: Object lookup = ic.lookup("java:comp/env/ejb/Agency");

3: AgencyHome home = (AgencyHome)
=PortableRemoteObject.narrow(lookup, AgencyHome.class);

If your primary purpose for understanding JNDI is to enable the lookup and use of EJBs
and other J2EE technologies (such as JDBC data sources and Message queues), you can
skip the rest of this day’s material and return to it at a later date.

Contexts

Contexts provide a hierarchical structure to JNDI names, and composite names group
together related names. The initial context provides a top-level view of the namespace
and any sub-contexts reflect the hierarchical composite name structure.

Listing Contexts

The namespace represents contexts as names, and you can look these up just like any
other name. You can obtain a listing of the names in a context by using Context.list().
This method provides a list of name and class bindings as a
javax.naming.NamingEnumeration, where each element in the enumeration is a
javax.naming.NameClassPair object. Listing 3.5 shows a simple program to list the
names and classes for the example sams sub context.

LisTING 3.5 Full Text of JNDIListSAMS. java

1: import javax.naming.*;

2: public class JNDIListSAMS

3: {

4 public static void main(String[] args)

5: {

6: try {

7 Context ctx = new InitialContext();

8: NamingEnumeration list = ctx.list("sams");
9: while (list.hasMore()) {
10: NameClassPair item = (NameClassPair)list.next();
11: String cl = item.getClassName();
12: String name = item.getName();
13: System.out.println(cl+" - "+name);
14: }
15: }
16: catch (NamingException ex) {
17: System.out.println (ex);

18: System.exit(1);

Naming and Directory Services 97 |

LisTiNG 3.5 Continued

19: }
20: }
21: }

You must run the JNDIBind program from Listing 3.1 before running this program; oth-
erwise, the “sams” sub context will not exist. Running the program in Listing 3.5 will
produce a single line of output:

java.lang.String - book

The parameter to the 1ist () method defines the name of the context to list. If this is the
empty string, the method lists the current context.

If the initial context of the J2EE RI namespace is listed, you must have the J2EE RI
classes in your search path; otherwise, you will get an org.omg.CORBA.BAD_PARAM excep-
tion caused by another CORBA exception:

org.omg.CORBA.MARSHAL: Unable to read value from underlying bridge :
w Serializable readObject method failed internally

w minor code: 1398079699 completed: Maybe

Don’t believe the completed: Maybe tagged on to the end of the error message. It didn’t
complete.

The easiest solution to this problem is to run the setenv script in the bin directory of
J2EE RI. This script creates a variable CPATH that you can use as the CLASSPATH for run-
ning J2EE RI client programs.

Under Windows use

%J2EE_HOME%\bin\setenv
java -classpath .;%CPATH% JNDIList

Under Linux and Unix use

$J2EE_HOME/bin/setenv
java -classpath .:$CPATH JNDIList

The CD-ROM accompanying this book includes the JNDIList program, which is the
same as the program in Listing 3.5 but without the parameter to the 1ist () method.

The 1ist () method returns the name and the bound object’s classname, but not the
object itself. It is a lightweight interface designed for browsing the namespace.

A second method, called Context.listBindings(), retrieves the object itself. The
listBindings () method returns a NamingEnumeration, where each element is of type

| 98 Day 3

javax.naming.Binding. Access methods in the Binding class support retrieval of the
information of the bound object. Listing 3.6 shows a simple recursive tree-walking pro-
gram that is a useful diagnostic tool for examining JNDI namespaces.

LisTiNnG 3.6 Full Text of UNDITree.java

1: import javax.naming.*;

2: public class JNDITree

3: {

4 public static void main(String[] args) {

5: context ctx=null;

6 try {

7 ctx = new InitialContext();

8: listContext (ctx,"");

9: }

10: catch (NamingException ex) {

11: System.err.println (ex);

12: System.exit(1);

13: }

14: }

15:

16: private static void listContext (Context ctx, String indent) {
17: try {

18: NamingEnumeration list = ctx.listBindings("");
19: while (list.hasMore()) {
20: Binding item = (Binding)list.next();
21: String className = item.getClassName();
22: String name = item.getName();
23: System.out.println(indent+className+" "+name);
24: Object o = item.getObject();
25: if (o instanceof javax.naming.Context)
26: listContext ((Context)o,indent+" ");
27: }
28: }
29: catch (NamingException ex) {
30: System.err.println ("List error: "+ex);
31: }
32: }
33: }

Creating and Destroying Contexts

Binding a composite name will automatically create any intermediate sub-contexts
required to bind the name. Binding the name com/sams/publishing/book/j2ee in 21
days creates the following sub-contexts if they don’t already exist:

com

com/sams

com/sams/publishing
com/sams/publishing/book

Naming and Directory Services 99|

You can explicitly create contexts with the Context.createSubcontext () method. The
single method parameter is the name of the context. If this is a composite name, all inter-
mediate contexts must already exist. The createSubContext () method will throw a
NameAlreadyBoundException if the name already exists.

N“tﬂ Contrary to the APl documentation, the J2EE Rl naming service will auto-
matically create any intermediate contexts.

Listing 3.7 shows a simple program for creating arbitrary contexts.

LisTiNnG 3.7 Full Text of UNDICreate.java

1: import javax.naming.*;
2: public class JNDICreate
3: {

4 public static void main(String[] args) {
5: try {
6-

7

8

if (args.length != 1) {

System.out.println ("Usage: JNDICreate context");
: System.exit(1);
9: }

10: Context ic = new InitialContext();
11: ic.createSubcontext(args[0]);

12: }

13: catch (NamingException ex) {

14: System.err.println(ex);

15: System.exit(1);

16: }

17: }

18: }

The Context.destroySubcontext() method can destroy contexts. Again, the single
method parameter is the name of the context. The context does not have to be empty,
because the method will remove from the namespace any bound names and sub-contexts
with the destroyed context.

Listing 3.8 shows a simple program for deleting arbitrary contexts.

Use this program with caution, because destroying the wrong context will render your
J2EE server unusable. If you are using the J2EE RI, restarting the J2EE server can recti-
fy a mistake; this might not be the case with other servers.

|100 Day 3

LisTING 3.8 Full Text of UNDIDestroy.java

1: import javax.naming.*;

2: public class JNDIDestroy

3: {

4 public static void main(String[] args) {

5: try {

6: if (args.length != 1) {

7 System.out.println ("Usage: JNDIDestroy context");
8: System.exit(1);
9: }

10: Context ic = new InitialContext();
11: ic.destroySubcontext(args[Q]);

12: }

13: catch (NamingException ex) {

14: System.err.println(ex);

15: System.exit(1);

16: }

17: }

18: }

The destroyContext () method can throw a NameNotFoundException if the name
doesn’t exist and a NotContextException if the bound name is not a context.

More on JNDI Names

JNDI has to support different naming conventions for different Service Providers in the
most transparent manner possible. Generally, programmers will specify JNDI names as
strings, but a little understanding of how JNDI interprets bound names will help circum-
vent many simple problems that can occur when using names.

Special Characters

JNDI applies minimal interpretation to names specified as String objects. JNDI uses the
forward slash character (/) as a name separator to provide a simple name hierarchy
called a Composite Name. It is conventional for these composite names to be used to
group related names (such as plumbers in the phone book). As an example, JDBC data
sources take names of jdbc/XXX and EJBs the form ejb/XXX. While this is only a con-
vention, it does help separate different sorts of named objects within the JNDI name
space.

Composite and Compound Names

Composite names can span different naming systems. An LDAP name can combine with
a file system name to get a composite name:

cn=Martin Bond, ou=Authors, 0=SAMS, c=us/agency/agency.ldif

Naming and Directory Services 101 |

Here a filename (agency/agency.1dif) is appended to an LDAP name. How JNDI inter-
prets this is up to the individual Service Provider.

Incidentally, JNDI calls structured names like the DNS and LDAP compound names.
JNDI does not interpret compound names, but simply passes them through to the Service
Provider.

Besides forward slash (/), JNDI also treats backslash (\), single quote ('), and double
quote (") characters as special. If a compound name or a component of a name contains
any of these characters, they must be escaped using the backslash character (\).

If the underlying Service Provider uses the forward slash as a name separator (for exam-
ple, the CORBA name service), there appears to be a conflict between JNDI and the
Service Provider. In practice, there is unlikely to be a problem because JNDI recognizes
two sorts of name separation—weak and strong. JNDI always passes the entire name to
the Service provider. A strong name separation implementation (such as LDAP or DNS)
simply processes the first part of the composite name and returns the remainder to the
JNDI Naming Manager to pass on to other name services. A weak name separation
implementation will simply process the entire composite name.The COSNaming server
used in the J2EE RI uses weak separation, as does the RMIRegistry naming service.

For those programmers who need to do more that use names to look up and bind objects,
JNDI provides several classes for manipulating and parsing composite and compound
names. The JNDI name support classes in the javax.naming package are Name,
CompositeName, and CompoundName.

URLs

In certain contexts, JNDI recognizes a URL (Uniform Resource Locator). The primary
use of URLs is to identify the JNDI server usually through the
java.naming.provider.url property, as shown in the following:

java.naming.provider.url=1ldap://localhost:389

You can also specify a URL as a parameter to the lookup () and bind() methods in the
Context class. For example,

Context ic = new InitialContext();
Object obj ic.lookup("ldap://localhost:389/cn=Winston,dc=my-domain,dc=com");

This overrides the default context and forces JNDI to perform the lookup against the
specified server. You need to take care with this approach, because the class path must
contain the necessary Service Provider classes, and these must be able to process the
request bind or lookup operation. In practice, this means that the URL must use the same
Service Provider classes as the initial context.

| 102 Day 3

Attributes

Attributes are a feature of a Directory service and are not available with simple name
servers. Typically, you use attributes with an LDAP server. The J2EE RI JNDI server is a
CORBA name server, and it does not support attributes.

An attribute is additional information stored with a name. Storing full name, address,
phone number, and e-mail with a person’s name is a common use of a directory service.
NDS uses attributes to control access to shared network drives and to configure a user’s
login environment.

A directory service stores attributes as values against a keyword (LDAP calls them IDs).
Directory services usually support searching for names (objects) that have certain attrib-
utes defined (or not defined). Searching often supports looking for names with certain
attributes that have a specific value (often wildcard pattern matching is supported). A
simple search of a personnel database under an LDAP server might be to find all names
whose surname is Washington.

LDAP uses a schema system to control which attributes an object must define and those
that it may define. Any attributes that you add or delete must not break the schema’s
requirements. LDAP servers may be able to disable schema checking, but this is usually
a bad idea because the schema was created for a purpose.

If you want to see the capabilities of attributes, you must have access to a directory serv-
er. The rest of this section is based on using an LDAP Directory Server.

Overview of LDAP X.500 Names

LDAP names conform to the X.500 standard that requires a hierarchical namespace. A
Distinguished Name (DN) unambiguously identifies each entry in the directory. The DN
consists of the concatenation of the names from the root of the directory tree down to the
specific entry.

X.500 focuses on the interoperability of different directory services rather than specify-
ing how a directory service should define the DN. Consequently, different implementa-
tions of X.500 can each use a different syntax for representing object names (as shown
earlier when we compared LDAP and Microsoft Active Directory names).

The official specification for the X.500 Directory Service is available from the
International Telecommunications Union (ITU) Web site at
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-
X.500-199708-S.

LDAP uses a comma-separated list of names with the names specified from the lowest
entry up the tree to the higher entries.

Naming and Directory Services

103|

Names consist of name and value pairs with the names typically being those in the fol-
lowing list. Each name has a short code and a full name; it is usual to only use the short
code because the Distinguished Names are fairly long.

e ¢ (countryName)—ISO two letter code for county such as us, uk, and so forth.
* o (organizationName)—Organization or company name, such as samspublishing

* ou (organizationUnitName)—Organizational unit, typically a division or depart-
ment within an organization

* 1 (localityName)—Typically defines a location within an organizational unit

* cn (commonName)—Common name (sometimes called personal name), usually the
name of the user or client

* dc (domainComponent)—A component part of a domain name (such as DNS
names)

e uid (userid)—Typically represents a login name
An example LDAP DN looks like the following:
cn=Martin Bond, ou=Authors, 0=SAMS, c=us

This will be a familiar structure if you work with digital certificates whose names con-
form to the X.509 standard.

Obtaining an LDAP Server

Using an LDAP Directory Service requires the JNDI properties to specify the JINDI
Service provider from Sun Microsystems and to have an LDAP server running.

The J2EE RI does not include an LDAP server, so you will have to obtain one from else-
where. Only certain operating systems provide LDAP servers. Windows NT, 2000, and
XP users will have to purchase the enterprise (or server) editions of the operating system,
which are typically significantly more expense than the usual desktop or professional
editions. Sun Microsystems’ Solaris 8 Operating Environment includes an LDAP server.

Linux and Unix users can download and install the OpenLDAP implementation, which is
an open source server available free of charge for personal use. The Open LDAP server
can be downloaded from http://www.openldap.org/software/download/.

Users of Microsoft Windows will have to make other arrangements as OpenLDAP is not
available for the platform. If an Active Directory server is accessible on the network or
you use the Enterprise (or Server) edition of the Operating System, this is a simple solu-
tion. Otherwise, Windows users are well advised to find a spare PC and install Linux on
that and use OpenLDAP.

| 104 Day 3
N t Interestingly, with today’s low cost of hardware, it may be cheaper for the
ote :
home user to purchase a second system to run Linux rather then purchase

the additional license required to run the Enterprise (or Server) versions of
Windows NT/2000/XP.

Using OpenLDAP

Given that many users experimenting with LDAP will probably use OpenLDAP on a
Linux server, a brief digression on configuring Linux/LDAP for the programs in the rest
of this section is useful. Other users must adapt the configuration for their own LDAP
servers.

Nﬂtﬂ You only need to install Open LDAP if you want to evaluate the directory
service features of JNDI and do not have access to a suitable directory ser-

vice on your network. The following discussion of LDAP is not necessary for
your understanding and use of J2EE.

The rest of this sub-section assumes that you have some knowledge of Linux and
OpenLDAP (at the very least, that you have successfully installed OpenLDAP on a Unix
server). The following OpenLDAP dicussion assumes that you have installed OpenLDAP
in the default location of /usr/local (for example OpenLDAP v2.0.15 will be in the
directory /usr/local/openldap- 2.0.15).

If you build and install OpenLDAP according to the supplied instructions, the process
results in an empty LDAP directory namespace. The following steps will populate that
namespace with a few sample entries. Make sure the slapd (LDAP) server is not running
before making the following changes (if you have just installed OpenLDAP then slapd
will not be running).

If you install OpenLDAP 2.0 with the recommended Berkeley database, it creates a
default empty database with the DN suffix of dc=my-domain,dc=com.

To create a new DN suffix of o=Agency, c=US, you must add the following lines to the
end of the slapd configuration file (/usr/local/etc/openldap/slapd.conf):

database 1dbm

suffix "o=Agency,c=US"

directory /usr/local/var/openldap-1ldbm
rootdn "cn=Manager,o=Agency,c=US"
rootpw secret

index objectclass eq

index cn,sn pres,eq,sub,subany

Naming and Directory Services 105|

Having defined the DN, you must add some sample data to the database. Listing 3.9
shows a configuration file for populating the database with sample data for use with the
example programs shown in this section.

LisTING 3.9 Full Text of agency.1ldif

dn: o=Agency,c=us
objectclass: top
objectclass: organization
0: Agency

description: Job Agency

dn: ou=Customers,o=Agency,c=us
objectclass: top

9: objectclass: organizationalUnit
10: ou: Customers

0N O WN =

12: dn: cn=All Customers,ou=Customers,o=Agency,Cc=us
13: objectclass: top

14: objectclass: groupofnames

15: member: cn=Winston,ou=Customers,o=Agency,c=us
16: member: cn=George,ou=Customers,o=Agency,c=us
17: cn: Customers

19: dn: cn=Manager,o=Agency,c=us
20: objectclass: top

21: objectclass: person

22: cn: Manager

23: sn: Manager

25: dn: cn=George,ou=Customers,o=Agency,c=us
26: objectclass: top

27: objectclass: person

28: cn: George

29: cn: George Washington

30: description: President

31: sn: Washington

33: dn: cn=Abraham,ou=Customers,o=Agency,c=us
34: objectclass: top

35: objectclass: person

36: cn: Abraham

37: cn: Abraham Lincoln

38: description: President

39: sn: Lincoln

41: dn: cn=Winston,ou=Customers,o0=Agency,c=us
42: objectclass: top
43: objectclass: person

| 106 Day 3

LisTING 3.9 Continued

44: cn: Winston

45: cn: Winston Churchill

46: description: Prime Minister
47: sn: Churchill

Copy this file to the Linux server and call it agency.1dif. Ensure that the slapd LDAP
server is not running and, using the following slapdadd commandto install the sample
names in the OpenLDAP configuration:

slapadd -b "o=Agency,c=US" -1 agency.ldif
You can check the database configuration by using the slapcat command as follows:
slapcat | more

If you make a mistake or want to change the database configuration, you must delete the
existing entries (slapadd will not replace an entry that already exists in the database).
You can delete the existing OpenLDAP database by removing all of the files in the data-
base directory specified in the slapd.conf configuration file. The following command
will delete the default 1dbm database used by slapd:

rm /usr/local/var/openldap-1ldbm/*

You can now use slapadd to create the new database as shown previously.
You can start the slapd (OpenLDAP) server using the following command:
/usr/local/openldap-2.0.15/services/slapd/slapd -d 1

This will run the server in debug mode with diagnostic messages being displayed to the
screen.

In the next section, you will test your LDAP server setup. You will find that the
OpenLDAP database now has three entries for the Customer Organizational Unit:
cn=Abraham,ou=Customers,o=Agency,c=us

cn=George,ou=Customers,o=Agency,c=us

cn=Winston,ou=Customers,o=Agency,c=us

You must leave the slapd server running while you evaluate the examples shown in the
rest of this section. When you want to stop the server, simply use Ctrl+C to interrupt the
server or use the kill command to send the server a terminate signal.

Configuring JNDI to use LDAP

After an LDAP server is available for use, you must configure JNDI to use that server.
This requires that you to obtain a JNDI Service Provider for LDAP (this isn’t part of the
LDAP server) and configure the INDI properties accordingly.

Naming and Directory Services 107 |

JDK1.3 and J2EE RI 1.3 include an LDAP Service Provider from Sun Microsystems and
all you have to do to use LDAP is to configure the JNDI properties to use the LDAP ser-
vice. The simplest way to do this is to create an empty text file in the current directory
called jndi.properties and add the following lines to this file.

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=1ldap://localhost:389

If the LDAP server is not running on the current machine, replace the name localhost
with the name or IP address of the actual LDAP server. Port number 389 is the default

LDAP port number, and you can omit it if LDAP is running on the default port (or
replace it by the actual port number if a non-standard port is being used).

Testing the LDAP Server

Before looking at attributes, it is worth checking that the LDAP server is up and running
with the sample data. Verify that you can look up one of these sample names by using
the simple JNDILoopAny script shown in Listing 3.10. The code reads the JNDI name
from the command-line arguments.

Listing 3.10 Full Text of JNDILookupAny.java

1: import javax.naming.*;

2: public class JNDILookupAny

3: {

4:

5: public static void main(String[] args) {
6: if (args.length != 1) {

7 System.err.println ("Usage: JNDILookupAny JNDIname");
8: System.exit(1);

9: }

10: try {

11: Context ic = new InitialContext();
12: Object o = ic.lookup(args[0]);

13: System.out.println(args[0]+"="+0);
14: }

15: catch (NamingException ex) {

16: System.err.println(ex);

17: System.exit(1);

18: }

19: catch (ClassCastException ex) {

20: System.err.println(ex);

21: System.exit(1);

22: }

23: }

24: }

|108

Day 3

Run the following command to check access to the LDAP server.
java JNDILookupAny "cn=Manager, o=Agency,c=us "

This will display an entry similar to the following:
ou=Customers,0=Agency, c=US=com.sun.jndi.ldap.LdapCtx@42719c

If the test doesn’t work, you must check your local LDAP configuration. The most likely
problem will relate to security. You may need to provide security credentials to the
LDAP server. The “Security” section at the end of today’s lesson briefly covers this.

Obtaining a Directory Context

Attributes are only supported by Directory Services and cannot be accessed through the
ordinary Context object. Instead, you must use a javax.naming.directory.DirContext
class. The DirContext is a sub-class of Context, and you can use it in place of a
Context when dealing with a Directory Service where you require directory functionality
(such as attributes). For example,

DirContext ic = new InitialDirContext();

The javax.naming.directory package contains the other attribute classes discussed
next.

Reading Attributes

Attributes are read from the context just like a name is looked up from the context. The
DirContext.getAttributes() method returns a NamingEnumeration that contains a col-
lection of Attribute objects. Each Attribute has an ID (or key) and a list of values (an
attribute can have more than one value for the same key). Listing 3.11 shows how all the
attributes for an object can be listed.

Listing 3.11 Full Text of UNDIAttributes.java

1: import javax.naming.*;

2: import javax.naming.directory.*;

3: public class JNDIAttributes

4: {

5: public static void main(String[] args) {

6: if (args.length != 1) {

7 System.err.println ("Usage: JNDIAttributes JNDIname");
8: System.exit(1);

9: }

10: try {

11: DirContext ctx = new InitialDirContext();

12: Attributes attrs = ctx.getAttributes(args[0]);

Naming and Directory Services 109|

LisTiING 3.11 Continued

13: NamingEnumeration ae = attrs.getAll();

14: while (ae.hasMore()) {

15: Attribute attr = (Attribute)ae.next();

16: System.out.println(" attribute: " + attr.getID());
17: NamingEnumeration e = attr.getAll();

18: while (e.hasMore())

19: System.out.println(" value: " + e.next());
20: }

21: System.out.println("END of attributes for "+args[0Q]);
22: }

23: catch (NamingException ex) {

24: System.out.println (ex);

25: System.exit(1);

26: }

27: }

28: }

Running this program against the sample data produces the following result:

> java JNDIAttributes "cn=George,ou=Customers,o=Agency,c=us"
attribute: description
value: President
attribute: objectClass
value: person
attribute: sn
value: Washington
attribute: cn
value: George
value: George Washington
END of attributes for cn=George,ou=Customers,o=Agency,c=us

A second form of the getAttributes() method allows you to provide an array of
attribute names, and it only returns the values for those attributes. It is not an error to
query an attribute that isn’t defined; it simply doesn’t return a value for that attribute.
The following fragment shows how to find the cn and sn attributes for a name:

String[] IDs = {"sn", "cn"};
Attributes attrs = ctx.getAttributes("cn=George,ou=Customers,o=Agency,c=us",IDs);

Searching for Objects

A powerful and useful feature of attributes is the ability for you to search for names that
have specific attributes or names that have attributes of a particular value.

You use the Context.search() method to search for names. There are several over-
loaded forms of this method, all of which require a DN to define the context in the name

|110

Day 3

tree where the search should begin. The simplest form of search() takes a second para-
meter that is an Attributes object that contains a list of attributes to find. Each attribute
can be just the name or the name and a value for that attribute.

Listing 3.12 shows a simple program to find all names that have a surname (sn) defined
and a description of President.

LisTING 3.12 Full Text of JNDISearch.java

1: import javax.naming.*;

2: import javax.naming.directory.*;

3: public class JNDISearch

4: {

5: private final static String JNDI = "ou=Customers,o=Agency,c=us";
6:

7: public static void main(String[] args) {

8: try {

9: DirContext ctx = new InitialDirContext();

10: /| create case insensitive search attributes

11: Attributes match = new BasicAttributes(true);

12: match.put(new BasicAttribute("sn"));

13: match.put(new BasicAttribute("description","president"));
14: NamingEnumeration enum = ctx.search(JNDI, match);
15: while (enum.hasMore()) {

16: SearchResult res = (SearchResult)enum.next();
17: System.out.println(res.getName()+","+JNDI);
18: }

19: }

20: catch (NamingException ex) {

21: System.out.println (ex);

22: System.exit(1);

23: }

24: }

25: }

The search () method returns a NamingEnumeration containing objects of class
SearchResult (a sub-class of NameClassPair discussed earlier). The SearchResult
encapsulates information about the names found. The example program simply prints out
the names (the names in the SearchResult object are relative to the context that was
searched).

Running the program in Listing 3.12 will return the following values from the sample data:
cn=George,ou=Customers,o0=Agency,c=us

cn=Abraham,ou=Customers,o=Agency,c=us

The SearchResult class also has a getAttributes() method that returns the attributes
for the found name. The simple search shown in Listing 3.12 returns all of the name’s
attributes.

Naming and Directory Services 111 |

A second form of the search() method takes a third parameter that is an array of String
objects specifying the attributes for the method to return. The following code fragment
shows how to search and return just the surname and common name attributes:

NamingEnumeration enum = ctx.search(JNDI, match, new String[]{"sn","cn"});

Another form of the search() method takes a String parameter specifying a search filter.
The filter uses a simple prefix notation for combining attributes and values. The JNDI
API documentation and the JNDI Tutorial from Sun Microsystems provides full details
of the search filter syntax. Listing 3.13 shows a search for names with a description or
President or Prime Minister.

Listing 3.13 Full Text of UNDIFilter.java

1: import javax.naming.*;
2: import javax.naming.directory.*
3: public class JNDIFilter
4: {
5: private final static String JNDI = "ou=Customers,o=Agency,c=us";
6:
7: public static void main(String[] args) {
8: try {
9: DirContext ctx = new InitialDirContext();
10: SearchControls sc = new SearchControls();
11: String filter =
=" (| (description=President) (description=Prime Minister))"
12: NamingEnumeration enum = ctx. search(JNDI filter, sc);
13: while (enum.hasMore()) {
14: SearchResult res = (SearchResult)enum.next();
15: System.out.println(res.getName()+","+JNDI);
16: }
17: }
18: catch (NamingException ex) {
19: System.out.println (ex);
20: System.exit(1);
21: }
22: }
23: }

You can use the javax.naming.directory.SearchControls argument required by
search() to

» Specify which attributes the method returns (the default is all attributes)

* Define the scope of the search, such as the depth of tree to search down to

e Limit the results to a maximum number of names

¢ Limit the amount of time for the search

|112

Day 3

Running the program in Listing 3.13 with the sample data produces the following output:

cn=George,ou=Customers,o=Agency,c=us
cn=abraham,ou=Customers,o=Agency,c=us
cn=Winston,ou=Customers,o=Agency,c=us

Manipulating Attributes

The DirContext. ModifyAttributes() method supports the addition, modification, and
deletion of attributes for a name. To manipulate an attribute, the program must have write
permission to entries in the LDAP name server. On a live system, the program must sup-
ply valid user credentials when obtaining the initial context (see the “Security” section
later in this lesson). If you attempt to modify a name’s attributes without the requisite
permissions, a javax.naming.NoPermissionException is thrown.

If you are using the OpenLDAP server purely for evaluating JNDI, you can easily change
the permissions so that all users have write permission. Find the slapd configuration file
(by default, this is /usr/local/etc/openladap/slapd.conf) and replace the following
line:

access to * by * read

with

access to * by * write

Stop and restart the slapd server for this change to take effect.

You can manipulate attributes in one of two ways. The first, and most functional, is to
create an array of javax.naming.directory.ModificationItem objects. Each entry in
the array specifies an attribute ID and an operation (one of
DirContext.REPLACE_ATTRIBUTE, DirContext.ADD_ATTRIBUTE, and
DirContext.REMOVE_ATTRIBUTE). To modify or add a new attribute, the
ModifyAttributes () method requires an additional parameter for the value of the
attribute.

Listing 3.14 shows how the entry for Abraham can update the description attribute and
add a new seeAlso attribute.

Listing 3.14 Full Text of UNDIModify. java

import javax.naming.*;

import javax.naming.directory.*;
public class JNDIModify

{

g~ wWwND =

private final static String JNDI =
= "cn=Abraham,ou=Customers,o=Agency,c=us";

Naming and Directory Services 113 |

LisTING 3.14 Continued

6:
7: public static void main(String[] args) {
8: try {
9: DirContext ctx = new InitialDirContext();
10: SearchControls sc = new SearchControls();
11: ModificationItem[] mods = new ModificationItem[2];
12: mods[@] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE,
13: new BasicAttribute("description", "Assasinated
President"));
14: mods[1] = new ModificationItem(DirContext.ADD_ATTRIBUTE,
15: new BasicAttribute("seeAlso",
= "cn=George,ou=Customers,o=Agency,c=us"));
16: ctx.modifyAttributes(JNDI, mods);
17: }
18: catch (NamingException ex) {
19: System.out.println (ex);
20: System.exit(1);
21: }
22: }
23: }

After running this program, you can view the changes by using the JNDIAttributes pro-
gram shown in listing 3.11.

> java JNDIAttributes "cn=abraham,ou=Customers,o=Agency,c=us"
attribute: seeAlso
value: cn=George,ou=Customers,o=Agency,c=us
attribute: description
value: Assasinated President
attribute: objectClass
value: top
value: person
attribute: sn
value: Lincoln
attribute: cn
value: Abraham
value: Abraham Lincoln
END of attributes for cn=abraham,ou=Customers,o=Agency,c=us

The second method for manipulating attributes is to define the operation and an
Attributes list of Attribute objects to be manipulated (with values if appropriate). The
next code fragment shows how to delete the seeAlso entry just added (which probably
should have referred to John F. Kennedy and not George Washington).

Attributes attrs = new BasicAttributes("seeAlso",null);
ctx.modifyAttributes(JNDI, DirContext.REMOVE_ATTRIBUTE, attrs);

|114 Day 3

The next example shows how to change the description back to President.

Attributes attrs = new BasicAttributes("description","President");
ctx.modifyAttributes(JNDI, DirContext.REPLACE_ATTRIBUTE, attrs);

More on Objects

The early part of today’s lesson covered binding objects into a JNDI namespace. To
recap, a bound object must implement the Serializable interface, and the object’s class
file must be available to the JNDI server.

The obvious means of making an object’s class file available to the JNDI server is to set
the server’s class path to include the necessary directory or JAR file. However, this isn’t
always convenient, and the JNDI specification recognizes this situation and supports
dynamic loading of classes when using a directory service.

Loading Classes from a Code Base

Provided the JNDI Service Provider is a Directory Service and that service supports
Internet RFC 2713, the JNDI server can obtain necessary class files dynamically from
any HTTP server.

RFC2713 defines an interoperable way of storing Java objects in an LDAP server. By
defining how Java objects are stored and retrieved, the JNDI Naming Manager in Sun
Microsystems’ LDAP Service Provider can retrieve Java objects from the directory server
and recreate them on the client’s system.

You must configure the LDAP server to support the Java Schema defined in RFC2713. If
you are using the OpenLDAP server, as previously configured in the “Attributes” section,
supporting the Java Schema is a relatively simple change to the configuration:

1. Stop the OpenLDAP slapd daemon.

2. Edit the slapd configuration file (/usr/local/etc/openldap/slad.conf). After
the existing line starting with include, add the following line:

include /usr/local/etc/openldap/schema/java.schema

3. Save the file and restart the OpenLDAP server.

Defining a Code Base

From a programming point of view, Java class files must be made available via a Web
server. A javaCodebase attribute supplies the details of the Web server location when
binding the object into the JNDI directory namespace.

The following example uses the Sun Microsystems’ LDAP Service Provider and an
LDAP server, as discussed in the “Attributes” section earlier in today’s lesson.

Naming and Directory Services 115|

This example also requires an HTTP server to be running. Starting up the J2EE RI server
will also start an HTTP server on port 8000. The J2EE RI stores its HTTP pages in the
public_html directory in the J2EE RI home directory.

Listing 3.15 shows a simple class representing a book.

ListiNng 3.15 Full Text of Book. java

1: import java.io.*;

2: public class Book implements Serializable
3: {

4: String title;

5: public Book(String title) {
6: this. title = title;

7 }

8 public String toString() {
9 return title;
10: }
11: }

A Web server must make the book.class file available for download for the Sun
Microsystems’ LDAP Service provider to bind and look up Book objects. It is conven-
tional to store downloadable class files in a separate sub-directory under the HTTP
server’s home directory. You normally call this sub-directory classes.

Use the following commands to copy the book.class file to the J2EE RI Web server. In
both cases, you require appropriate permission to write to the J2EE RI home directory.
Under Windows

mkdir %J2EE_HOMES%\public_html\classes
copy Book.class %J2EE_HOME%\public_html\classes

Under Linux and Unix

mkdir $J2EE_HOME/public_html/classes
cp Book.class $J2EE_HOME/public_html/classes

With the class files in place, a Book object can be bound to the LDAP namespace as
Listing 3.16 shows. The code uses the javaCodebase attribute to specify the URL of the
directory containing the Java class files and not the class file itself.

LisTING 3.16 Full Text of UNDICodebase. java

import javax.naming.*;

import javax.naming.directory.*;
public class JNDICodebase

{

B ON =

| 116 Day 3
LisTING 3.16 Continued
5: private final static String JNDI = "cn=book,o0=Agency,c=us";
6: private final static String codeURL =
= "http://localhost:8000/classes";
7:
8: public static void main(String[] args) {
9: try {
10: DirContext ic = new InitialDirContext();
11: Book book = new Book("Teach Yourself J2EE in 21 Days");
12: Attributes attrs = new BasicAttributes();
13: attrs.put("javaCodebase", codeURL);
14: attrs.put("cn", "book");
15: ic.rebind(JNDI, book, attrs);
16: System.out.println("Bound "+JNDI);
17: }
18: catch (NamingException ex) {
19: System.err.println(ex);
20: System.exit(1);
21: }
22: }
23: }

Note that the example uses the code base URL of localhost:8000, which is required
because the J2EE web server uses a non-standard HTTP port (the standard HTTP port

is 80).

Note

The http.port entry in the web.properties file in the J2EE Rl config directory
defines the default port for the Web server.

With the name registered and the HTTP server running, the client can look up the bound
object without having the Book class file in the search path. The Sun Microsystems’
LDAP Service Provider automatically loads the class file. Listing 3.17 shows a simple

client program.

LisTING 3.17 Full Text of UNDILookupBook. java

1: import javax.naming.*;

2: public class JNDILookupBook

3: {

4: private final static String JNDI = "cn=book, o=Agency,c=us ";
5.

6 public static void main(String[] args) {

7 try {

Naming and Directory Services 117 |

LisTING 3.17 Continued

8: Context ic = new InitialContext();
9: Book book = (Book)ic.lookup(JNDI);
10: System.out.println(JNDI+"="+book);
11: }
12: catch (NamingException ex) {
13: System.err.println(ex);
14: System.exit(1);
15:
16: catch (ClassCastException ex) {
17: System.err.println(ex);
18: System.exit(1);
19: }
20: }
21: }
References

Sometimes, storing a serialized copy of an object in the Directory Service is inappropri-
ate. Perhaps the object is too large or you must instantiate it dynamically because its con-
struction depends on information that can vary from one client to another.

JNDI references provide a mechanism for storing an object by reference rather than by
value. This mechanism only works if the underlying JINDI Service Provider supports
Referenceable objects. The LDAP Service Provider from Sun Microsystems supports
Referenceable objects.

Without going into too much detail, a reference to an object requires that a Factory class
is available to build the object from the information the reference stores. From a design
perspective, this requires two related classes:

* The Object class that must implement the javax.naming.Referenceable interface
* A Factory class that can create the required objects
The Referenceable interface requires an object to implement the getReference()
method, which returns a Reference object. The Reference object defines the name of

the class referred to and a Factory class that can be used to build the referenced object.
Listing 3.18 shows a simple Book reference class.

LisTING 3.18 Full Text of BookRef. java

import java.io.*;
import javax.naming.*;
public class BookRef implements Referenceable

{

A OO =

|118 Day 3

LisTING 3.18 Continued

5: String title;

6: public BookRef(String title) ({
7: this.title = title;

8

: }
9: public String toString() {
10: return title;
11:
12: public Reference getReference() throws NamingException {
13: return new Reference(
14: BookRef.class.getName(),
15: new StringRefAddr("book", title),
16: BookFactory.class.getName(),
17: null);
18: }
19: }

The second parameter to the Reference constructor uniquely defines the object. This
requires a key to define the address type of the object (in this case, a String set to the
value book) and a value for this specific object (in this case, the book’s title). When the
object is reconstructed, this address type and value will pass to the Factory object.

The Factory class must implement either javax.naming.spi.ObjectFactory or
javax.naming.spi.DirObjectFactory, depending whether you use a Name Service
or a Directory Service. Both classes require the Factory class to implement a
getObjectInstance() method for creating reference objects. Listing 3.19 shows the
BookFactory class used in the BookRef class shown in Listing 3.16.

ListinGg 3.19 Full Text of BookFactory.java

1: import javax.naming.*;

2: import javax.naming.spi.*;

3: import java.util.Hashtable;

4: public class BookFactory implements ObjectFactory {

5: public Object getObjectInstance(Object obj, Name name,

6: Context ctx, Hashtable env) throws Exception {

7: if (obj instanceof Reference) {

8: Reference ref = (Reference)obj;

9: if (ref.getClassName().equals(BookRef.class.getName())) {
10: RefAddr addr = ref.get("book");
11: if (addr != null) {
12: return new BookRef ((String)addr.getContent());
13: }
14: }
15: }
16: return null;
17: }

18: }

Naming and Directory Services 119|

The factory getObjectInstance () method checks that it is passed a Reference object
and then checks that the class of the reference is a BookRef. If both of these conditions
are true, the factory uses the address type book to look up the value of the object and
then uses this to create a new BookRef object.

As far as name binding and object lookup are concerned, the client is unaware of the use
of references. Listings 3.20 and 3.21 show how your code can use the BookRef class.

LisTINnG 3.20 Full Text of UNDIBindBookRef.java

1: import javax.naming.*;

2: import javax.naming.directory.*;

3: public class JNDIBindBookRef

4: {

5: private final static String JNDI = " book";

6:

7: public static void main(String[] args) {

8: try {

9: DirContext ic = new InitialDirContext();
10: BookRef book = new BookRef("Teach Yourself J2EE in 21 Days");
11: Attributes attrs = new BasicAttributes();
12: attrs.put("cn", "book");

13: ic.rebind(JNDI,book,attrs);

14: System.out.println("Bound BookRef "+JNDI);
15: }

16: catch (NamingException ex) {

17: System.err.println(ex);

18: System.exit(1);

19: }

20: }

21: }

LisTING 3.21 Full Text of JNDILookupBookRef.java

1: import javax.naming.*;

2: import javax.naming.directory.*;

3: public class JNDILookupBookRef

4: {

5: private final static String JNDI = "book";

6:

7: public static void main(String[] args) {

8: try {

9: DirContext ic = new InitialDirContext();
10: BookRef name = (BookRef)ic.lookup(JNDI);
11: System.out.println(JNDI+"="+name);

12: }

13: catch (NamingException ex) {

14: System.err.println(ex);

|120

Day 3

LisTING 3.21 Continued

15: System.exit(1);

16: }

17: catch (ClassCastException ex) {
18: System.err.println(ex);
19: System.exit(1);

20: }

21: }

22: }

What Else Can JNDI Do?

JNDI is a large subject, and some of the previous discussion has been quite brief (there is
a lot more to attributes, searching, and references than has been shown). Today, the addi-
tional features, such as naming events and security, have been presented in a very super-
ficial manner.

JNDI Events

JNDI supports an event model similar to the event listeners in the Java AWT and Swing
classes. However, the underlying JNDI Service Provider must also provide support for
the event model for a client to register event handlers.

The javax.naming.event package supports two types of INDI event listener (both are
sub-classes of NamingListener):

* NamespaceChangelListener reports on changes to the namespace objects that are
added, removed, or renamed.

* ObjectChangelListener reports on changes to an object when its binding is
replaced or attributes are added, removed, or replaced.

Both interfaces define appropriate methods that are called when changes occur in the
JNDI namespace. A javax.naming.event.NamingEvent object is passed to the listener
method to define:

* The type of event (for example, name added or object changed)

e The name binding before the event occurred

e The name binding after the event occurred
You use the EventContext.addNamingListener () method to register a NamingListener
object against a context. Adding and removing a listener requires the context to imple-
ment the EventContext (or EventDirContext for Directory Services). The code to look

up and register a NamingListener is similar to that shown in Listing 3.22 (please use the
API documentation for further details):

Naming and Directory Services 121 |

LisTING 3.22 Sample Code to Add a NamingListener

Context ic = new InitialContext();
EventContext ctx = (EventContext) ic.lookup("sams");

NamingListener listener = new MyNamingListener();

OO WD =

ctx.addNamingListener("book", EventContext.ONELEVEL_SCOPE, listener);

Listing 3.22 registers a listener against the sams context and listens for events on the
book name. Depending on the underlying Service Provider, the book name need not exist
when you register the listener.

You can register a NamingListener to listen for several objects either by listening on a
context (rather than an object) or by using attribute filters to specify the required objects.

JNDI event handling provides an effective means for monitoring changes to a namespace
to maintain up-to-date information about the registered objects.

Security

JNDI security depends on the underlying Service Provider. Simple services, such as RMI
and the CORBA name service (both of which the J2EE RI implementation supplies), do
not support security. These services allow any client to perform any operation.

In a production environment, security is paramount to ensuring the integrity of the data
in the JNDI server. Most live J2EE implementations will make use of LDAP to provide a
naming service that supports security.

LDAP security is based on three categories:

* Anonymous—No security information is provided.
» Simple—The client provides a clear text name and password.

» Simple Authentication and Security Layer (SASL)—The client and server negotiate
an authentication system based on a challenge and response protocol that conforms
to RFC2222.

If the client does not supply any security information (as in all the examples shown
today), the client is treated as an anonymous client.

The following JNDI properties provide security information:

* java.naming.security.authentication is set to a String to define the authenti-
cation mechanism used (one of none, simple, or the name of an SASL authentica-
tion system supported by the LDAP server).

* java.naming.security.principal is set to the fully qualified domain name of the
client to authenticate.

|122

Day 3

* java.naming.security.credentials is a password or encrypted data (such as a
digital certificate) that the implementation uses to authenticate the client.

If you do not define any of these properties, the implementation uses anonymous
(java.naming.security.authentication=none) authentication.

You can use a JNDI properties file to supply client authentication information, but more
usually you code the information within the client program. Usually, your application
must obtain the client authentication dynamically.

If you use strong (not simple or anonymous) authentication, the java.naming.securi-
ty.authentication value can consist of a space-separated list of authentication mecha-
nisms. Depending on the LDAP service provider, JNDI can support the following
authentication schemes:

o External—Allows JNDI to use any authentication system. The client must define a
callback mechanism for JNDI to hook into the client’s authentication mechanism.
* GSSAPI (Kerberos v5)—A well-known, token-based security mechanism.

* Digest MD5—Uses the Java Cryptography Extension (JCE) to support client
authentication using the MDS5 encryption algorithm, which has no known decryp-
tion technique.

Day 15, “Security,” discuses the whole topic of J2EE and JNDI security.

Summary

JNDI provides a uniform API to an underlying naming or driectory service. A Naming
Service provides a means of storing simple information against a name so the informa-
tion can be retrieved using the name as a key. A Directory Service stores additional
attribute information, as well as values against a name. Directory Services use attributes
to categorize names so that powerful searching of the directory tree structure can be sup-
ported.

JNDI supports any naming service provided a Service Provider implementation is avail-
able for the service. Standard services supported by JNDI include the following:

» Lightweight Directory Access Protocol (LDAP)

* Novel Directory Services (NDS)

* CORBA

* Active Directory is supported via its LDAP interface

Naming and Directory Services

123|

Using JNDI from within a Java program is a simple matter of creating a context and
looking up names within that context. The Context class supports naming services, and
the DirContext class supports directory services.

After a context has been defined, the lookup () method is used to retrieve the object
stored against a name. The bind() and rebind() methods are used to add or changes
bound objects, and the unbind () method is used to remove a bound object.

Within J2EE, JNDI is used to advertise components such as the following:

¢ EJBs
¢ Data sources (databases)

* JMS message queues and topics

Q&A

Q Why is a Name Service so important?

A Without JNDI, it would be a lot harder to provide services such as those imple-
mented using J2EE objects like data sources, message queues, and EJBs. Each ven-
dor would choose its own mechanism for defining how a client program should
gain access to the J2EE objects. Some might do this by distributing configuration
files, others by using TCP/IP broadcast network packets. Using a Name Service
provides a consistent means of providing network services in a portable and
platform-independent manner. Not only that, you can move an implementation of a
service from one machine to another. In this instance, the server simply updates the
Name Service entry to reflect its new location, and the whole process is transparent
to the client.

Q Why is JNDI so large? Surely all I need to do is map a name onto a Java
object?

A If all you want to do is support J2EE objects, JNDI could be as simple as a name
to object mapping service. But Sun Microsystems designed JNDI to interoperate
with established Directory Services, such as NDS, LDAP (Active Directory), and
DNS. By providing Java programming support for these services, the designers of
JNDI have ensured it will not be used as a proprietary product with J2EE servers,
but as a general interface to fully -functional directory services. This design philos-
ophy also provides programmers with a mechanism for developing interfaces to
NDS and LDAP in Java rather than some other language, such as C++ or C#.

|124 Day 3

Exercise

You have been shown a simple program to display a JNDI namespace as a command line
program (JNDITree.java in Listing 3.6). Today’s exercise is to write a GUI version of
this program using the Swing JTree class.If you already know Swing, you can use
JNDITree.java as a guide for your program and go ahead and write your own JNDI
browser.

If you do not know Swing, the exercise directory for Day 3 on the accompanying CD-
ROM includes a template program called JNDIBrowser.java for you to enhance. The
JNDIBrowser program handles all of the Swing initialization, all you have to do is get a
list of the names in the JNDI namespace and create a new
javax.swing.tree.DefaultMutableTreeNode representing the name and add this to the
JTree. When you add a name that is also a context, you need to add all the names in this
sub-context.

Comments have been added to the JNDIBrowser. java file to show you where to add
your code.

Don’t worry if this sounds complex—it isn’t. You only have to write about 12 lines of
code (most of which you can adapt from JNDITree. java).

Before you rush off and write your first piece of Java code for this book, remember that
you need to set up your CLASSPATH to include the J2EE Reference Implementation classes
using the setenv script, as discussed in today’s lesson. You can run the supplied solution
using the following commands.

Under Windows, use

%J2EE_HOMES\bin\setenv
java -classpath .;%CPATH% JNDIBrowser

Under Linux and Unix, use

$J2EE_HOME/bin/setenv
java -classpath .:$CPATH JNDIBrowser

If you complete this exercise or simply run the provided solution, you will see that the
JNDI names are listed in the order they were added to the context. As a second exercise,
change your program to display the names in alphabetical order. The solution called
JNDIBrowserSort.java program shows how this can be achieved using the
java.util.TreeMap class.

You will find these programs useful for browsing the JNDI namespace when you are
developing J2EE applications.

WEEK 1

DAY 4

Introduction to EJBs

J2EE provides different types of components for different purposes. Today, you
will start to look at one of the principal types of component in J2EE—
Enterprise JavaBeans (EJBs).

The study of EJBs is continued on Day 5, “Session EJBs,”, Day 6, “Entity
EJBs”, Day 7, “CMP and EJB QL”, Day 8, “Transactions and Persistence”, and
Day 10, “Message-Driven Beans”. As you can see, there is a lot to learn about
EJBs, so today serves as a first step on the road to all of this EJB knowledge.

Today, you will

First,

Examine the different types of EJB available
Take a look at how EJBs are applied

Explore the structure of one of the EJBs that forms part of the case study
to see how the different parts fit together

Deploy and use some of the EJBs from the case study

Write a simple client for an EJB

you need to understand why you would use EJBs.

|126 Day 4

What Is an EJB?

In a typical J2EE application, Enterprise JavaBeans (EJBs) contain the application’s busi-
ness logic and live business data. Although it is possible to use standard Java objects to
contain your business logic and business data, using EJBs addresses many of the issues
you would find by using simple Java objects, such as scalability, lifecycle management,
and state management.

Beans, Clients, Containers, and Servers

An EJB is essentially a managed component that is created, controlled, and destroyed by
the J2EE container in which it lives. This control allows the container to control the
number of EJBs currently in existence and the resources they are using, such as memory
and database connections. Each container will maintain a pool of EJB instances that are
ready to be assigned to a client. When a client no longer needs an EJB, the EJB instance
will be returned to the pool and all of its resources will be released. At times of heavy
load, even EJB instances that are still in use by clients will be returned to the pool so
they can service other clients. When the original client makes another request of its EJB,
the container will reconstitute the original EJB instance to service the request. This pool-
ing and recycling of EJB instances means that a few EJB instances, and the resources
they use, can be shared between many clients. This maximizes the scalability of the EJB-
based application. The EJB lifecycle is discussed further on Days 5 and 6.

The client that uses the EJB instance does not need to know about all of this work by the
container. As far as the client is concerned, it is talking to a remote component that sup-
ports defined business methods. How those methods are implemented and any magic per-
formed by the container, such as just-in-time instantiation of that specific component
instance, are entirely transparent to the client part of the application.

The EJB benefits from certain services provided by the container, such as automatic
security, automatic transactions, lifecycle management, and so on. To do this, the EJB
must conform to certain rules and implement an appropriate interface that allows the
container to manage the component. The EJB is packaged with configuration information
that indicates the component’s requirements, such as transaction and security require-
ments. The container will then use this information to perform authentication and control
transactions on behalf of the component—the component does not have to contain code
to perform such tasks.

The primary purpose of the container is to control and provide services for the EJBs it
contains. When it needs to use some underlying functionality, such as creating a transac-
tion on behalf of a bean, it uses the facilities of the underlying EJB server. The EJB
server is the base set of services on top of which the container runs. Different types of

Introduction to EJBs 127 |

EJB will run in different containers, but many different EJB containers can run on a sin-

gle EJB server. EJB servers are generally delivered as part of a J2EE-compliant applica-

tion server (examples include BEA WebLogic and IBM WebSphere). You will install and
run the application server, which will provide the underlying services required of an EJB
server and will host EJB containers.

The EJB Landscape

As you have seen, the J2EE Blueprints (http://java.sun.com/blueprints/enter-
prise/index.html) define a target architecture for a typical J2EE-based application. In
this architecture, EJBs live in the middle tier and are used by other application compo-
nents that live in the presentation tier. Although it is possible that both of these logical
tiers will reside on the same computer, it is most likely that they will reside on different
machines. This means that an EJB will usually have to be made available to remote
clients.

To offer services to remote clients, EJBs will export their services as RMI remote
interfaces. RMI allows you to define distributed interfaces in Java. There are certain
caveats on doing this, not only at the implementation level (such as declaring that
RemoteExceptions may be thrown when calling a method on an EJB) but also at the
design level. Designing remote interfaces is a skill in itself, which will be explored as
you progress through topics in this book, such as EJBs and J2EE Patterns.

Because they must use an RMI-based interface to access the functionality of the EJB, the
clients of an EJB must have some programming functionality. This means that they are
typically either “thick™ clients that provide a GUI interface or Web-server components
that deliver HTML interfaces to “thin” clients. The different types of client are explored
in more detail shortly.

In the other direction, EJBs themselves will make use of data sources, such as databases
and mainframe systems, to perform the required business logic. Access to such data and
services can be through a JDBC database connection, a J2EE Connector, another EJB, or
a dedicated server or class of some form.

Discovering EJBs

While it is quite easy to draw pictures of a 3-tier system containing boxes labelled
“EJB,” it is important to identify what application functionality should go into an EJB.

At the start of application development, regardless of the precise development process
used (Rational Unified Process (RUP), eXtreme Programming (XP), and so on), there is
generally some analysis that delivers a Unified Modelling Language (UML) domain
model (this identifies the main elements of the business problem to be solved). This can

|128

Day 4

then form the basis of a solution model where the business concepts are mapped into
appropriate design-level artefacts, such as components. This is where EJBs come into the
design.

The UML model will consist of a set of classes and packages that represent single or
grouped business concepts. A class or package can be implemented as an EJB. Generally,
only larger individual classes will become EJBs in themselves, because EJBs are intend-
ed to be fairly coarse-grained components that incorporate a reasonably large amount of
functionality and/or data.

There are generally two types of functionality discovered during analysis—data manipu-
lation and business process flow. The application model will usually contain data-based
classes such as Customer or Product. These classes will be manipulated by other classes
or roles that represent business processes, such as Purchaser or CustomerManager. There
are different types of EJB that can be applied to these different requirements.

Types of EJB

There are three different types of EJB that are suited to different purposes:

e Session EJB—A Session EJB is useful for mapping business process flow (or
equivalent application concepts). There are two sub-types of Session EJB —
stateless and stateful— that are discussed in more detail on Day 5. Session EJBs
commonly represent “pure” functionality that is created as it is needed.

e Entity EJB—An Entity EJB maps a combination of data (or equivalent application
concept) and associated functionality. Entity EJBs are usually based on an underly-
ing data store and will be created based on that data within it.

* Message-driven EJB—A Message-driven EJB is very similar in concept to a
Session EJB, but is only activated when an asynchronous message arrives.

As an application designer, you should choose the most appropriate type of EJB based
on the task to be accomplished.

Common Uses of EJBs

So, given all of this, where would you commonly encounter EJBs and in what roles?
Well, the following are some examples:

* In a Web-centric application, the EJBs will provide the business logic that sits
behind the Web-oriented components, such as servlets and JSPs. If a Web-oriented
application requires a high level of scalability or maintainability, use of EJBs can
help to deliver this.

Introduction to EJBs 129 |

» Thick client applications, such as Swing applications, will use EJBs in a similar
way to Web-centric applications. To share business logic in a natural way between
different types of client applications, EJBs can be used to house that business logic.

* Business-to-business (B2B) e-commerce applications can also take advantage of
EJBs. Because B2B e-commerce frequently revolves around the integration of
business processes, EJBs provide an ideal place to house the business process
logic. They can also provide a link between the Web technologies frequently used
to deliver B2B and the business systems behind.

» Enterprise Application Integration (EAI) applications can incorporate EJBs to
house processing and mapping between different applications. Again, this is an
encapsulation of the business logic that is needed when transferring data between
applications (in this case, in-house applications).

These are all high-level views on how EJBs are applied. There are various other EJB-
specific patterns and idioms that can be applied when implementing EJB-based solutions.
These are discussed more on Day 18, “Patterns.”

Given this context, common types of EJB client include the following:

* A servlet or JSP that provides an HTML-based interface for a browser client

* Another EJB that can delegate certain of its own tasks or can work in combination
with other EJBs to achieve its own goals

* A Java/Swing application that provides a front-end for the business processes
encapsulated in the EJB

* A CORBA application that takes advantage of the EJB’s business logic

* An applet that takes advantage of the business logic in a remote EJB so that this
business logic does not need to be downloaded to the client

These are common ways that EJBs are applied. What benefits does the use of EJBs give
to you as a developer?

Why Use EJBs?

Despite the recommendations of the J2EE Blueprints, the use of EJBs is not mandatory.
You can build very successful applications using servlets, JSPs or standalone Java appli-
cations.

As a general rule of thumb, if an application is small in scope and is not required to be
highly scalable, you can use J2EE components, such as servlets, together with direct
JDBC connectivity to build it. However, as the application complexity grows or the num-
ber of concurrent users increases, the use of EJBs makes it much easier to partition and
scale the application. In this case, using EJBs gives you some significant advantages.

|130

Day 4

Hiding Complexity

Early middleware environments, such as “raw” CORBA, require the application develop-
er to write a lot of code that interacts with the CORBA environment and facilitates the
connectivity and registration process. Such code can be likened to the plumbing that
pipes water around a house. It needs to be there but, as the user of a sink or shower, you
do not want to be intimately involved with it. In J2EE application terms, business devel-
opers want to write business code, not “plumbing” code. The EJB model tries to reduce
such interaction to a minimum by using the following mechanisms:

* Each bean conforms to a defined lifecycle and set of rules. This provides a distinct
boundary between system code and application code.

» Declarative attributes allow a developer to specify, say, the transactional behavior
of the component without having to write code to control such functionality.

e The deployment information provided with the deployable J2EE application pro-
vides information about the relationships between multiple EJBs and also defines
the resources required by an EJB.

Separation of Business Logic from Ul and Data Access

One of the key facets of applying EJBs is that they allow business functionality to be
developed and then deployed independently of the presentational layer. You might, for
example, create an application with a user interface built using Java’s Swing API. This
application might then provide access to some business functionality for the employees
working on the company’s internal network. If the underlying business functionality is
implemented using EJBs, a different user interface could take its place without having to
redevelop the entire application. A Web-based interface that used servlets would make
the application available from the Internet without having to change a single line of code
in the business functionality. Figure 4.1 is a UML component diagram that shows this.
(More information on UML can be found in Appendix A, “An Introduction to UML,” on
the accompanying CD-ROM.)

It can sometimes be difficult to distinguish between the functionality that an application
provides and the user interface that is used to invoke that functionality. This is not unex-
pected because many common applications—such as a word-processor—are single-tier;
the presentational logic and the business functionality are a single entity. On the other
hand, consider programming a video recorder. Most modern video recorders can be pro-
grammed either directly on the console or through a remote control unit. Either user
interface will accomplish the task of recording your favorite TV show, but there is only a
single “application.”

Introduction to EJBs

131|

FIGURE 4.1

An application imple-
mented using EJBs can
have more than one
user interface.

«swing»
user interface

-————-—

- >

«session EJB»
business functionality

->

«database»
persistence layer

«servlet»
user interface

)
9

Consider another example. In most supermarkets, a cashier is responsible for scanning
the items in your shopping cart and then requesting a payment for the total. However,
some supermarkets also offer a trust system, whereby the customer scans the items with
a mobile scanner as they place the item into the shopping cart. To pay for the goods in
the shopping cart, the customer simply swipes his or her own card, and then leaves with
the goods. Again, there is a single application (to purchase shopping items) but two dif-
ferent interfaces—the cashier’s till and the customer’s mobile scanner.

To implement a distributed application using EJBs, make sure you have distinguished
between the user interface and the underlying business function. The EJB itself is con-
cerned only with the latter of these.

Container Services

The container provides various services for the EJB to relieve the developer from having
to implement such services, namely

* Distribution via proxies—The container will generate a client-side stub and server-
side skeleton for the EJB. The stub and skeleton will use RMI over IIOP to com-
municate.

* Lifecycle management—Bean initialization, state management, and destruction is
driven by the container, all the developer must do is implement the appropriate
methods.

* Naming and registration—The EJB container and server will provide the EJB with
access to naming services. These services are used by local and remote clients to
look up the EJB and by the EJB itself to look up resources it may need.

» Transaction management—Declarative transactions provide a means for the devel-
oper to easily delegate the creation and control of transactions to the container.

* Security and access control—Again, declarative security provides a means for the
developer to easily delegate the enforcement of security to the container.

|132

Day 4

o Persistence (if you want)—Using the Entity EJB’s container-managed persistence
mechanism, state can be saved and restored without having to write a single line of
code.

All of these container services are covered in more detail as the book progresses.

Now that you know why you would want to use an EJB and how to apply it, you can
examine the inner workings of an EJB to understand how all the parts fit together.

What's in an EJB?

So far, you have been presented with a “black box” view of an EJB; it provides business
functionality via an RMI remote interface, and it cooperates with its container to perform
its duties. To understand, use, and ultimately write EJBs, you will need to know more in
concrete terms about the Java programming artefacts that make up an EJB. In other
words, what’s in one?

The Business Interface

The primary purpose of an EJB is to deliver business or application logic. To this end,
the bean developer will define or derive the business operations required of the bean and
will formalize them in an RMI remote interface. This is referred to as the bean’s business
or remote interface as opposed to the home interface you will look at in a moment.

Nﬂtﬂ You may see references to local EJB interfaces and wonder how these relate
to the current discussion. Don't worry about local interfaces for the
moment; they are covered on Day 6 when you examine entity EJBs.

The actual methods defined on the remote interface will depend on the purpose of the
bean, but there are certain general rules concerning the interface:

* As with any RMI-based interface, each method must be declared as throwing
java.rmi.RemoteException in addition to any business-oriented exceptions. This
allows the RMI subsystem to signal network-related errors to the client.

e RMI rules also apply to parameters and return values, so any types used must
either be primitive, Serializable, or Remote.

¢ The interface must declare that it extends the javax.ejb.EJBObject interface. This
provides a handful of basic methods that you will encounter as you progress.

Introduction to EJBs 133 |

ﬂﬂlltil]ll Failure to conform to the rules about extending javax.ejb.EJBObject
and throwing RemoteException will cause the interface to be rejected by
) tools that manipulate EJBs. Additionally, if you use parameter or return
types that do not conform to the rules, your bean will compile and even
deploy, but will fail with runtime errors.

The issue regarding object parameters and return values is worth considering for a
moment. When you pass a parameter into a local method call, a reference to the original
object is provided to be used within the method. Any changes to the state of the object
are seen by all users of that object because they are sharing the same object. Also, there
is no need to create a copy of the object—only a reference is passed.

On the other hand, when using RMI remote methods, objects that are serializable (imple-
ment the Serializable interface) are passed by value, whereas objects that are remote
(that is, EJBs) are passed by reference. Pass by value means that a copy of the object is
sent. This has several implications. First, users of a serializable object passed across a
remote interface will no longer share the same object. Also, there may now be some per-
formance costs associated with invoking a method through a bean’s remote interface. Not
only is there the cost of the network call, but also there is the cost of making a copy of
the object so that it can be sent across the network. Most of the time, it will be serializ-
able objects that are passed.

You can see an example of an EJB remote interface in Listing 4.1—in this case, the one
for the Agency EJB used in the case study.

LisTING 4.1 Remote Interface for the Agency EJB

package agency;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;

public interface Agency extends EJBObject
{

String getAgencyName() throws RemoteException;

Collection findAllApplicants()
throws RemoteException;
void createApplicant(String login, String name, String email)
throws RemoteException, DuplicateException, CreateException;
void deleteApplicant (String login)

|134 Day 4

LisTING 4.1 Continued

throws RemoteException, NotFoundException;

Collection findAllCustomers() throws RemoteException;
void createCustomer(String login, String name, String email)
throws RemoteException, DuplicateException, CreateException;
void deleteCustomer (String login)
throws RemoteException, NotFoundException;

Collection getLocations()

throws RemoteException;
void addLocation(String name)

throws RemoteException, DuplicateException;
void removelLocation(String code)

throws RemoteException, NotFoundException;

Collection getSkills()

throws RemoteException;
void addSkill(String name)

throws RemoteException, DuplicateException;
void removeSkill(String name)

throws RemoteException, NotFoundException;

List select(String table)
throws RemoteException;

The interface lives in a package called agency, which will be common to all the classes
that comprise the EJB. The definition imports java.rmi.* and javax.ejb.* for
RemoteException and EJBObject, respectively. The rest of the interface is much as you
would expect from any remote Java interface—in this case, passing Strings and return-
ing serializable Collections.

Notice that all the methods must be declared as throwing RemoteException. This means
that the client will have to handle potential exceptions that may arise from the underlying
distribution mechanism. However, your application will probably want to employ excep-
tions itself to indicate application-level errors. These exceptions should be declared as
part of the remote interface, as shown by the use of NotFoundException and
DuplicateException in the Agency interface.

The Business Logic

After an interface is defined, there is the none-too-trivial task of implementing the busi-
ness logic behind it. The business logic for an EJB will live in a class referred to as the
bean. The bean consists of two parts:

Introduction to EJBs 135 |

* The business logic itself, including implementations of the methods defined in the
remote interface

* A set of methods that allow the container to manage the bean’s lifecycle.

Nﬂtﬂ Although the bean itself must contain these elements, note that it is possi-
ble, indeed common, for non-trivial beans to delegate some or all of their

business functionality to other, helper, classes.

Drilling down into these areas reveals more about the structure of an EJB.

Implementing the Business Interface

The first thing to note is that the bean itself does not implement the remote interface pre-
viously defined. This may seem slightly bizarre at first sight, because the equivalent RMI
server would have to implement the associated remote interface. However, there is a very
good reason for this.

As you will see later, it is possible to ask the container to apply services, such as access
control, on behalf of the EJB simply by setting attributes in the EJB configuration infor-
mation. To do this, the container must have some way of intercepting the method call
from the client. When it receives such a method call, the container can then decide if any
extra services need to be applied before forwarding the method call on to the bean itself.
Sticking with the security example, the container would examine security information
configured for the EJB before deciding whether to forward the method call to the bean or
to reject it. The details about access control are covered on Day 15, “Security,” but you
can see that it is necessary to interpose between the client and the bean to “automagical-
ly” deliver such services.

The interception is performed by a server-side object called the EJBObject (not to be
confused with the interface of the same name). The EJBObject acts as a server-side
proxy for the bean itself, and it is the EJBObject that actually implements the EJB’s
remote interface. Figure 4.2 shows the relationship between the client, the bean, and the
EJBObject.

As shown in Figure 4.2, the client calls the business methods on the EJBObject imple-
mentation. The EJBObject applies the required extra services and then forwards the
method calls on to the bean itself. The EJBObject is separate from the RMI stub and
skeleton that provide the remote procedure call capability.

|136 Day 4

FIGURE 4.2 Location Security and

. transparency transactions
The EJBObject acts as 1 1
. 1
a server-side proxy for -

1 '
j Home Home
the bean itself. RMI RMI | | EiJB Ho:ntg
Stub Skeleton . mplementation
Bean Bean
o A {2 | o | o | B
Stub! Skeleton L |

Classes marked with ' implement
the EJB’s remote interface

Client

~

So, your bean must implement the business methods defined in the remote interface. The
container uses the method signatures defined in the interface, together with the Java
reflection API, to find the appropriate methods on the bean, so you must ensure that you
use the correct method signatures. Despite this, the bean should not implement the
remote interface itself (the reasons for this are discussed later). However, if you are using
a developer tool that supports the creation of EJBs, it will generally generate empty
methods for you to populate. Listing 4.2 contains the outlines of the business methods in
the example AgencyBean.

LisTING 4.2 Business Method Implementation Signatures for the AgencyBean

package agency;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
// Remaining imports removed for clarity

public class AgencyBean implements SessionBean
{
public String getAgencyName() {
// Code removed for clarity

}

public Collection findAllApplicants() {
// Code removed for clarity

}

public void createApplicant(String login, String name, String email)
throws DuplicateException, CreateException {
// Code removed for clarity

}

Introduction to EJBs 137 |

LisTING 4.2 Continued

public void deleteApplicant (String login)
throws NotFoundException {
/] Code removed for clarity

}

public Collection findAllCustomers() {
// Code removed for clarity

}

public void createCustomer(String login, String name, String email)
throws DuplicateException, CreateException {
/] Code removed for clarity

}

public void deleteCustomer (String login) throws NotFoundException {
// Code removed for clarity

}

public Collection getLocations() {
/] Code removed for clarity
}

public void addLocation(String name) throws DuplicateException {
/] Code removed for clarity

}

public void removelLocation(String code) throws NotFoundException {
// Code removed for clarity

}

public Collection getSkills() {
/] Code removed for clarity
}

public void addSkill (String name) throws DuplicateException {
/] Code removed for clarity

}

public void removeSkill (String name) throws NotFoundException {
// Code removed for clarity

}

public List select(String table) {
/] Code removed for clarity
}

/! Remaining methods removed for clarity

|138

Day 4

The detail of the method implementations have been removed for clarity, because the
main area of interest here is how the method signatures match up with those on the
remote interface. The contents of the methods are largely the creation and dispatch of
JDBC statements and handling the results from the queries.

Note that the bean does not implement the Agency interface. You can also see that vari-
ous of the methods, such as addSkill(), declare that they throw an application-specific
exception—in this case, DuplicateException.

N t Note that your bean methods will only throw business exceptions or stan-
ole . . : :
dard Java exceptions. They should not throw java.rmi.RemoteException,

because such exceptions should only be generated by the RMI subsystem.

Providing Lifecycle Hooks

Remember that the intention of the EJB environment is that you will spend most of your
time writing business logic rather than network and database “plumbing.” Beyond writ-
ing the business logic, the only additional thing the bean writer needs to do is to provide
lifecycle “hooks” that allow the container to manage the bean.

Each of the different types of EJB discussed earlier has a slightly different lifecycle, but
the common parts are as follows:

* Bean creation and initialization

* Bean destruction and removal

» The saving and restoring of the bean’s internal state (if applicable)

The details associated with each type of bean lifecycle will be discussed as they are cov-
ered. For now, all you need to know is that

¢ An EJB will implement one or more lifecycle interfaces depending on its type. The
interfaces (SessionBean, EntityBean, MessageDrivenBean, and
SessionSynchronization) are defined in the javax.ejb package.

* The lifecycle methods will generally begin with ejb so that they can be easily dis-
tinguished from the business methods around them, for example, ejbCreate().

Listing 4.3 contains the lifecycle methods in the example AgencyBean.

Introduction to EJBs 139 |

LisTING 4.3 Lifecycle Methods on the AgencyBean

package agency;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
// Remaining imports removed for clarity

public class AgencyBean implements SessionBean
{

private DataSource dataSource;

private String name = "";

private void error (String msg, Exception ex) {
String s = "AgencyBean: " + msg + "\n" + ex;
System.out.println(s);
throw new EJBException(s);

}

public void ejbCreate () throws CreateException {

try {
InitialContext ic = new InitialContext();
dataSource = (DataSource)ic.lookup("java:comp/env/jdbc/Agency");
name = (String)ic.lookup("java:comp/env/AgencyName");

}

catch (NamingException ex) {
error("Error connecting to java:comp/env/Agency:", ex);

}

}

public void ejbActivate() {
}

public void ejbPassivate() {

}

public void ejbRemove() {
dataSource = null;
}

private SessionContext ctx;

public void setSessionContext(SessionContext ctx) {
this.ctx = ctx;
}

// Remaining methods removed for clarity

|140

Day 4

As you can see, the example AgencyBean implements the SessionBean interface. This
means that it must implement the ejbCreate(), ejbRemove(), ejbActivate(),
ejbPassivate(), and setSessionContext () methods. The ejbCreate () method takes
on the role of constructor in that most of the bean initialization will take place in there.
The context passed in setSessionContext () provides a way for the bean to communi-
cate with the container.

This concludes the examination of the bean internals for the time being. You will discov-
er more as you learn about the specific types of EJB later.

Factory Information

For an EJB to be used by a client, the client must create a new instance or discover an
existing one. Finding and gaining access to the services of a traditional remote server is
relatively simple. Such a server will tend to start when the machine boots, reside in a
well-know location, and carry on running until the machine shuts down. However, EJBs
are far more dynamic than that. It is the ability to dynamically create and reuse beans
that provides the scalability inherent in the EJB model.

To facilitate the creation and discovery of EJBs, each type of EJB provides a home inter-
face. The bean developer will provide an EJB home interface that acts as a factory for
that particular EJB. A home interface will extend the javax.ejb.EJBHome interface and
will contain the necessary methods identified by the bean developer that allow a client to
create, find, or remove EJBs.

There are two ways for a client to get hold of the EJB itself, depending on the type of
EJB (Session, Entity, or Message-driven) and the way it is intended to be used. The EJB
Home interface can contain one or more create () methods to create a new instance of
an EJB. So, for example, you will create a new instance of a Session bean before using
it. On the other hand, when you interact with Entity EJBs, you will frequently find exist-
ing EJBs using one or more findXXX () methods. The home interface may or may not
allow you to remove the bean, depending on bean type and usage.

Listing 4.4 shows the home interface for the example Agency EJB.

LisTING 4.4 Home Interface for the Agency Bean

package agency;

import java.rmi.*;
import javax.ejb.*;

public interface AgencyHome extends EJBHome

{

Introduction to EJBs 141 |

LisTING 4.4 Continued

Agency create () throws RemoteException, CreateException;

Because the Agency EJB is just a simple wrapper around some JDBC-based functionality
and does not maintain any business state, all that is required is a simple creation
method—create (). This maps onto the ejbCreate() seen in Listing 4.3. The client will
call create() to create an instance of the Agency bean.

The code underlying the home interface will work with the container to create, populate,
and destroy EJBs as requested by the client. The effects of the method calls will vary
depending on the type of EJB being manipulated. As a result, a request to remove a
Session EJB will just result in the EJB being thrown away, while the same request on an
Entity EJB may cause underlying data to be removed. The types and effects of different
home interface methods are discussed in more detail on subsequent days.

Bean Metadata

The final piece of the EJB jigsaw lies in the provision of configuration information, or
metadata, for the EJB. This provides a way of communicating the EJB’s requirements
and structure to the container. If an EJB is to be successfully deployed, the container will
have to be provided with extra information, including

* An identifier or name for the EJB that can be used to look it up.
* The bean type (Session, Entity, or Message-driven).

* Which class is the EJB’s remote interface. This interface will typically just be
named according to the EJB’s functionality, for example, Agency or BankTeller.

¢ Which class is the EJB’s home interface. The name for an EJB’s home interface
will typically be derived from its remote interface name. So, for example, the
Agency EJB has a home interface called AgencyHome. However, because this is a
convention rather than being mandatory, the metadata explicitly indicates the name
of the home interface.

* Which class is the bean itself. Again, the name for the bean will typically be
derived from the associated remote interface name. So, for example, the Agency
bean is called AgencyBean. However, because this is a convention rather than being
mandatory, the metadata explicitly indicates the name of the bean.

* Any name/value pairs to be provided as part of the bean’s environment.

* Information about any external resources required by the EJB, such as database
connections or other EJBs.

|142

Day 4

All of this essential information is bundled into a deployment descriptor that accompa-
nies the EJB classes. As you might expect, given its recent rise as the most ubiquitous
way to define data, the deployment descriptor is defined as an XML document. The
deployment descriptor is discussed in more detail soon when examining the packaging of
an EJB.

In addition to the essential information, the deployment descriptor can also carry other
metadata that you will encounter as you progress:

¢ Declarative attributes for security and transactions

e Structural information bean relationships and dependencies

* Persistence mapping (if applicable)
You are now nearing the conclusion of this whistle-stop tour of the structure of an EJB.

After you have examined how an EJB is created and packaged, you will be ready to
deploy and use one.

How Do | Create an EJB?

You will create specific types of EJB as you progress through the book. However, the
creation of EJBs follows the same steps and principals for all types of EJB.

The Creation Mechanism

As you may have gathered from the previous discussion on EJB contents, the EJB devel-
oper must go through the following cycle:

1. Design and define the business interface. This may involve mapping from a UML
model of the solution into Java.

2. Decide on a bean type appropriate to the task in hand. Entity, Session, and
Message-driven beans all have their own pros and cons. If you choose to use a
Session bean, another question is whether to use a stateful Session bean or a state-
less Session bean. Choice of the appropriate type is discussed in more detail on
Days 5, 6, 7, and 10.

3. Decide which home interface methods are appropriate for the bean type and define
the home interface for the EJB.

4. Create (or generate) a “boilerplate” bean with correct lifecycle methods.
5. Create your business logic by filling out the business methods.

6. Fill out lifecycle methods to control creation, destruction and to manage state (if
applicable).

Introduction to EJBs 143 |

If your EJB classes are written correctly, all that remains is to wrap them up as a deploy-
able unit. However, there are certain caveats you should bear in mind while creating your
bean.

Caveats on Code Creation
Due to the managed nature of the bean lifecycle, the EJB container imposes certain
restrictions on the bean including:

* EJBs cannot perform file I/O. If you need to log messages or access files, you must

find an alternative mechanism.

* EJBs are not allowed to start threads. All threading is controlled by the container.

¢ EJBs cannot call native methods.

» EJBs cannot use static member variables.

* There is no GUI available to an EJB, so it must not attempt to use AWT or JFC
components.

* An EJB cannot act as a network server, listening for inbound connections.

* An EJB should not attempt to create classloaders or change factories for artifacts,
such as sockets.

* An EJB should not return this from a method. Although not strictly a restriction
(the container will not prevent you from doing it), it is identified as being a very
bad practice. This relates to the earlier discussion that a bean should not implement
its associated remote interface. This would potentially give a client a direct remote
reference to the bean rather than the EJBObject. Instead, the bean should query its
EJB context for a reference to its associated EJBObject and return that to the caller.

For a full list of restrictions, see section 24.1.2 of the EJB 2.0 specification (available
online at http://java.sun.com/products/ejb/docs.html).

Create the Deployable Component
One alternative definition of a component is “a unit of deployment.” Following this
theme, a component should
* Contain all the information required to deploy it, above and beyond the classes.
This is the metadata discussed earlier.
e Be bound up in such a way that it can easily be transported and deployed without

losing any parts along the way.

Consequently, after the classes and interfaces for an EJB have been created, the follow-
ing steps must be performed:

|144

Day 4

. Capture the EJB’s metadata in a universally understood format. This takes the form
of an XML-based deployment descriptor (DD).

Bundle the classes and deployment descriptor up in a deployable format, namely a
JAR file.

The Deployment Descriptor

The EJB specification defines a standard format of an XML deployment descriptor docu-
ment that can house EJB metadata. The exact format of a deployment descriptor is usual-
ly hidden behind tools that manipulate them on your behalf. However, it is worth exam-
ining some of the contents of a deployment descriptor to see how the EJB fits together
and how extra information and metadata is provided.

Listing 4.5 shows the deployment descriptor for the example Agency EJB.

LisTING 4.5 Agency Bean EJB Deployment Descriptor

1:
2:
3:

-

-

0N ON

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC
-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
"http://java.sun.com/dtd/ejb-jar_2 0.dtd'>

<ejb-jar>
<display-name>Simple</display-name>
<enterprise-beans>

<session>
<display-name>Agency</display-name>
<ejb-name>Agency</ejb-name>
<home>agency.AgencyHome</home>
<remote>agency.Agency</remote>
<ejb-class>agency.AgencyBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>
<env-entry>
<env-entry-name>AgencyName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>J2EE in 21 Days Job Agency</env-entry-value>
</env-entry>
<security-identity>
<description></description>
<use-caller-identity></use-caller-identity>
</security-identity>
<resource-ref>
<res-ref-name>jdbc/Agency</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

Introduction to EJBs

145|

LisTING 4.5 Continued

30:
31:
32:

</resource-ref>
</session>
</enterprise-beans>

33: </ejb-jar>

The essential parts of the deployment descriptor in Listing 4.5 are

* The <session> tag delimits the definition of the Agency EJB and indicates that it is

a Session EJB (lines 8 and 31).
The <ejb-name> tag defines the name of the EJB, in this case Agency (line 10).

The home and remote interface types (as defined by their fully-qualified class file-
names) are specified by the <home> and <remote> tags, respectively (lines 11-12).
The type of the bean itself is defined by the <ejb-class> tag (line 13).

In addition, two other parts are of particular note at this point in time:

Note

An environment entry is defined between lines 16 and 20 by using the <env -
entry> tag. This indicates that a String property called AgencyName should be
made available to the bean. The value of the property is J2EE in 21 Days Job
Agency. The environment defined in the deployment descriptor is made available
through JNDI under the name java:comp/env. In this case, the agency name can
be retrieved by looking up the name java:comp/env/AgencyName. This lookup can
be seen in the ejbCreate() method of Listing 4.3.

An external resource is defined in lines 25-30 using the <resource-ref> tag. This
defines that a DataSource should be made available to this EJB under the name
jdbc/Agency. As with the environment entry for the agency name, this resource is
made available through JNDI under java:comp/env, so the EJB can retrieve the
DataSource by looking up the name java:comp/env/jdbc/Agency. Again, this
lookup can be seen in the ejbCreate () method of Listing 4.3.

It is important to realize that the name used for a <resource-ref>is only a
logical name. In other words, it is just a text string used by a component to
reference an external resource. In theory, the resource name used by the EJB
to refer to the data source could be anything (foo, for example) as long as it
ties in with the information in the deployment descriptor. However, by con-
vention, such names are kept in line with the name you would expect to use
under JNDI. As a result, in this example, the data source resource is referred
to by the bean as jdbc/Agency and will be registered under JNDI with the
same name.

|146

Day 4

All of the EJB classes and the deployment descriptor should then be bundled up in a JAR
file. The deployment descriptor should be named ejb-jar.xml. If there are multiple
EJBs packaged in the same JAR file, the deployment descriptor will have multiple EJB
definitions in it. This JAR file is then termed an EJB-JAR file to denote its payload. The
JAR file itself can be called anything (within reason) and has a . jar file extension.

The EJB-JAR file can also contain any extra resources required by the EJB, such as
application-specific configuration information that does not fit in a deployment descrip-
tor environment entry.

Enterprise Applications

Although the EJB-JAR file is now complete, it must form part of an application to serve
a useful purpose. J2EE defines that enterprise applications can be built from components
(Web, EJB, and application components). The key is how to define the relationships
between the different parts of the application—there must be some way of plugging
things together.

The answer is that there must be a description of the application itself, which compo-
nents it uses, how those components relate to each other, and which specific resources
they use. This is the information provided by the Application Assembler and Deployer
roles.

To provide this information to the target J2EE platform, another level of deployment
descriptor is used —the J2EE deployment descriptor. The J2EE deployment descriptor
provides the following:

e A list of the components in the application
 Security role information

e Web root information for Web components

This information is stored in an XML file called application.xml. All of the constituent
component JAR files (such as EJB-JARs) and the J2EE deployment descriptor are then
bundled up in another JAR file, this time called an Enterprise Archive (EAR) file, which
has a .ear extension. The contents of the J2EE deployment descriptor will be covered in
more detail as you examine the different parts of the example enterprise application.

Is the application now ready to deploy? Unfortunately, the answer is “Not quite yet.” The
J2EE deployment descriptor does not cover information about how to map the applica-
tion onto a specific J2EE application server, specifically

Introduction to EJBs 147 |

e The JNDI name under which the application server will make the EJB available. In
the case of the Agency bean, this would mean that an entry was required to map the
bean name of Agency to the JNDI name under which the EJB is registered, for
example, ejb/Agency.

* Information about how the security roles defined map to underlying security princi-
pals (this is covered on Day 15).

So, yet another XML-based deployment descriptor is required to contain this informa-
tion, this time an application server-specific one. This file contains extra mapping infor-
mation, as previously described, and also any other container-specific information
required for a smooth deployment in that environment. This extra deployment descriptor
is also stored in the EAR file, ready to be accessed when the application is deployed.

N“tﬂ The specific deployment descriptor for the J2EE Reference Implementation
(RI) server is called sun-j2ee-ri.xml.

How Do | Deploy an EJB?

After an EJB is packaged, it can be deployed in an appropriate J2EE server. There is no
limit to the number of times an EJB can be deployed as a part of different applications.

Remember that J2EE defines a separate role for the application deployer. It may be that
for particular installations, databases, or other resource names need to be changed to
match the local environment. When configuring the application, the deployer can alter
this EJB or enterprise application metadata.

Plugging into the Container

When an EJB is deployed into a particular EJB container, the EJB must be plugged into
that container. To do this, an EJBObject must be generated based on the EJB’s remote
interface. This EJBObject will be specific to that EJB container and will contain code
that allows it to interface with that container to access security and transaction informa-
tion. The container will examine the metadata supplied with the EJB to determine what
type of security and transaction code is required in the EJBObject.

The container will also generate the home interface implementation so that calls to cre-
ate, find, and destroy EJB instances are delegated to container-defined methods.

The container will examine the EJB and enterprise application metadata and hook up
resource references. It will also provide an environment for the application components.

|148

Day 4

Finally, the container will register the home interface of the EJB with JNDI. This allows
other application components to create and find EJBs of this type.

Performing the Deployment

As mentioned previously, when deploying an EJB or enterprise application, the applica-
tion developer taking on the J2EE role of deployer can choose to alter certain of the
metadata relating to the configuration of the application. Although this can be done man-
ually, it is usually done through a GUI tool to make things easier and to keep things con-
sistent.

After the EJB has been deployed, any subsequent changes to its functionality will mean
that the EJB must be re-deployed. If the enterprise application or EJB is no longer need-
ed, it should be undeployed from the container.

How Do | Use an EJB?

Given that EJBs are middle-tier business components, they are of little use without a
client to drive them. As mentioned earlier, those clients can be Web components, stand-
alone Java clients, or other EJBs.

Regardless of the type of client, using an EJB requires the same set of steps—namely,
discovery, retrieval, use, and disposal. These steps are covered in the next three sections.

Discovery

To create or find an EJB, the client must call the appropriate method on the EJB’s home
interface. Consequently, the first step for the client is to get hold of a remote reference to
the home interface. On Day 3, you looked at naming services and how these can be used
to register information in a distributed environment. In a J2EE environment, such a nam-
ing service is accessible through JNDI and can be used to store references to EJB home

interfaces.

The EJB container will have registered the home interface using the JNDI name specified
during deployment (as part of the deployment descriptor). This is the name that the client
should use to look up the home interface. Recall from the EJB deployment descriptor
shown in Listing 4.5 that the EJB name specified was Agency. When deploying the EJB,
the deployer has a chance to set the JNDI name by which clients will find this EJB. In
this case, you would expect the deployer to simply set a JNDI name of ejb/Agency so
that the client could find the home interface by looking up java:comp/env/ejb/Agency.
The following code shows the initial lookup required:

Introduction to EJBs 149 |

try
{

InitialContext ic = new InitialContext();
Object lookup = ic.lookup("java:comp/env/ejb/Agency");
AgencyHome home =
(AgencyHome)PortableRemoteObject.narrow(lookup, AgencyHome.class);

}

catch (NamingException ex) { /* Handle it */ }
catch (ClassCastException ex) { /* Handle it */ }

As you can see, because the reference returned from JNDI is just an object, you must
narrow it to the home interface type you expect—in this case, AgencyHome. If there are
any problems with the JNDI access or if the wrong object type is returned, a
NamingException or ClassCastException will be thrown.

There is no magic here. The object returned by the JNDI is simply an RMI remote object
stub. This stub represents the home interface remote object created by the container when
the EJB was deployed. This can be seen in Figure 4.2.

Now that you have a reference to the home interface, you can create the EJB you want to
use.

Retrieval and Use

You can now call the create () method you saw defined on the AgencyHome interface in
Listing 4.4 as follows:

try
{

Agency agency = home.create();
System.out.println("Welcome to: " + agency.getAgencyName());

}
catch (RemoteException ex) { /* Handle it */ }
catch (CreateException ex) { /* Handle it */ }

The create () method returns a remote reference to the newly-created EJB. If there are
any problems with the EJB creation or the remote connection, a CreateException or
RemoteException will be thrown. CreateException is defined in the javax.ejb pack-
age, and RemoteException is defined in the java.rmi package, so remember to import
these packages at the top of your client class.

Now that you have a reference to an EJB, you can call its methods. The previous code
sample shows the getAgencyName () method being called on the returned Agency refer-
ence. Again, whenever you call a remote method that is defined in an EJB remote inter-
face, you must be prepared to handle RemoteExceptions.

|150

Day 4

Nﬂtﬂ You will see later that some types of EJB are found rather than created. In
this case, all steps are the same except that the create() method is replaced

by the appropriate finder method and find-related exceptions must be han-
dled. You still end up with a remote reference to an EJB. All of this is cov-
ered later when Entity EJBs are discussed on Day 6.

Disposing of the EJB

You have now created and used an EJB. What happens now? Well, if you no longer need
the EJB, you can get rid of it in exactly the same way that you would get rid of a local
Java object or a remote Java object defined using RMI—by setting its reference to null
as follows:

/1 No longer need the agency EJB instance

agency = null;
When the local RMI runtime detects that the remote object no longer has any local refer-
ences, it will trigger remote garbage collection for that object, which means that its
remote reference will time out. This will result in the object being de-referenced at the
server-side. In the case of the simple Agency bean (a stateless Session bean), this will
cause the bean to be destroyed.

Although it is possible to use the remove () method to get rid of the EJB, you would not
normally use this for such a simple bean. Use of this method is discussed in more detail
on Days 5 and 6.

Running the Client
You are now in a position to write a simple application client for the Agency EJB. After

you have written it, you will want to compile and run it.

Before compiling your client, you should ensure that you have j2ee. jar on your class-
path. This JAR file lives in the 1ib directory under J2EE_HOME. If you are using an enter-
prise IDE, you may find that all the relevant classes are already in your classpath.

To compile and run the client, you will need the following:

e The J2EE classes. These must be accessible through the classpath.
e Access to the EJB’s home and remote interface class files via the classpath.

¢ RMI stubs for the home and remote interfaces. These can either be installed on the
local classpath or downloaded dynamically from the EJB server.

Introduction to EJBs 151 |

* If the client does not have the JNDI name of the EJB compiled in, you may want
to provide this on the command line or through a system property.

When you deploy the EJB, you should be able to ask the container for a client JAR file.
This client JAR file will contain all of the classes and interfaces needed to compile the
client (as defined in the previous bulleted list). You should add this client JAR file to
your classpath when compiling your client.

In theory, this should be it. However, you will find that any form of security definition on
the server will require you to authenticate yourself before you can run the application. In
this case, you must explicitly use the client container to provide the required security
mechanism.

N[]tﬂ The client container is called runclient under the J2EE RI.

Deploying and Using an EJB in the J2EE
Reference Implementation

You should now be in a position to write and test an EJB client. However, before you can
do that, you must deploy an EJB that it can use. In this section, you will look at how to
deploy an EJB in the J2EE Reference Implementation (RI) and how to then use it from a
simple client.

The J2EE on which your EJB is deployed will provide a complete server-side environ-
ment. It houses any EJBs, runs a Web Server for JSP/servlets, runs a naming server for
storing component location information, and provides database access. All J2EE-
compliant application servers will do this—even a non-commercial version, such as the
J2EE RI. The RI also provides you with a ready-to-use database so you do not have to
concern yourself with hooking up to an existing database or installing a separate one.

To deploy and test your EJBs (and servlets/JSPs later), you only need a single machine.
Both the J2EE client and the J2EE server (and its EJBs, servlets and JSPs) can run on the
same machine. No connection to the Internet is required. The J2EE RI is available on
multiple platforms (Win32, Solaris, and Linux) and should be consistent across these
platforms, so that J2EE applications created on one platform can be deployed on another.

If you encounter problems at any stage, try referring to the troubleshooting section just
before today’s Summary.

|152 Day 4

Nﬂtﬂ Before running any of the tools described in this section, you will need to
set the J2EE_HOME environment variable to the location on your hard drive
where you deployed the J2EE reference implementation. You should also
add the bin directory below J2EE_HOME to your executable search path

(%PATH% under Windows or $path under Unix/Linux) so that you can run J2EE
tools and batch files from the command line.

Opening the Case Study EAR File

To deploy and manipulate EJBs under the RI, you will use a graphic tool called deploy -
tool. Before you start using this, you will need to do two things:

1. Ensure that you have created and configured your database environment as
described on Day 2.

2. Start the J2EE RI runtime environment and the associated Cloudscape database. To
do this, run the cloudscape and j2ee scripts/batch files found in the bin directory
under J2EE_HOME as follows:

cloudscape -start
j2ee -verbose

The use of the -verbose flag for J2EE is not strictly necessary, but you may find it
useful to help you understand what the J2EE server does when it starts up.

Now you are ready to run the deploytool. Again, this is a script/batch file found in the
bin directory under J2EE_HOME. When you run it, the GUI screen will appear as shown in
Figure 4.3.

You should now be able to open the initial agency enterprise archive provided in the JAR
subdirectory of the Day 4 exercise code on the CD-ROM (agency.ear). Do this through
the menus by selecting File, Open and then browsing for the file in the subsequent Open
Object dialog box. Select the EAR file and click the Open Object button. The agency
application will now be displayed in the list of applications, as shown in Figure 4.4.

All of the code for the Agency EJB that is contained in the Agency application can be
found in the agency subdirectory of the src directory under the Day 4 Exercise part of
the CD-ROM.

Now that the enterprise application is loaded in deploytool, you can examine its set-
tings.

Introduction to EJBs

153|

FIGURE 4_3 @nppliatinn Deployment Tool
The initial screen @ @|®‘ @ @@@ @@ Iﬂ@jﬂ @ @
shown by deploytool. EF\IES nspecting:
Servers -
. :
FIGURE 4.4

F2% Application Deployment Took: agency

[_[=]x]
File Edit Tools Help

The sgency applicaiion | [(6] eli@l EIEIEIE (<l (910 &) &

has now been loaded @ [Files Inspecting: Files.Applications.agency

by deploytool. e .

SimpleClient npplu:atr o
o Simple }sUIEEm 21 DaysiCaseStudy! 3iCaseStudy\Day04\Exerciselagency ear,
9 [8 servers Application Display Name:
localhost agency
-Contents:

ejb-jar-ic.jar
app-client-ic.jar
META-INFIMANIFEST.MF
META-INFiapplication.xml
META-INFisun-j2ee-rixml

Add Library JAR...

Remove Library JAR...

2 Description... | |

Icons...

|154

Day 4

FIGURE 4 5 [E3 Application Deployment Tool: agency
. = -
septoyeoot displavs | SIS el el [BIBIM @) [(#1918 @I
the JNDI information @ CaFiles Tinspecting: Files Applications. agency
. 1 Applicat ? 5
from the Agency appli- 5 o O EEE Iﬁzﬂﬂ:ﬂ'mﬂmfwﬂhﬂnmﬁfsml
i SimpleClient Hikiz iy
cation deployment L @ Simple Component Type \ Component | JNDI Name
j ¢ [senvers BB Adency T leibiAgency |

descriptor. uE

rReferences—
Ref. Type Referenced By Reference Name JNDI Name

Resource Agency jdbcisgency \idbeifgency
EJB Ref SimpleClient sjbiAgency \ejbiAgency

Examining the Case Study Application

You can use deploytool to examine and alter deployment descriptor information for the
application and, if necessary, for individual components, such as EJBs.

If you select the JNDI Names tab for the agency application, you will see information
about the resources that the application exports and consumes. This is largely based on
information defined in the application deployment descriptor and the container-specific
deployment descriptor described earlier in the “Enterprise Applications” section.

In Figure 4.5, you can see in the Application box that there is a single EJB in this initial
form of the application. That EJB can be referenced through JNDI using the name
ejb/Agency.

In the References box, you can see that two of the components in the application use
external resources. First, you can see that the component named Agency (the EJB) uses a
resource called jdbc/Agency that is registered under JNDI as jdbc/Agency.

The References box also indicates that the application client, SimpleClient, references
the Agency EJB by using the name ejb/Agency that appears under JNDI as ejb/Agency.

Introduction to EJBs

You can also examine the settings of the EJB through deploytool. Click the icon next to
the Simple JAR file symbol to show the EJBs contained in the Simple EJB-JAR file.
There is a single EJB in the JAR file called Agency. If you select the Agency EJB, you
will see the properties defined in the deployment descriptor for that EJB. Select the
Resource Refs tab to see what external resources this EJB uses, as shown in Figure 4.6.

=% Application Deployment Tool: agency
Edit Tools Help

FIGURE 4.6

You can examine the

g 2le ¢ B

deployment descriptor © CIFiles [Inspecting: Files.Applications.agency.Simple.Agen
. . . @ [Applicatl Resource Refs |
information for a sin- v
SimpleClient
gle EJB’ SuCh as the [} Simple Factories in Code
external resources it @ Agency Coded Name Tupe Authem\catlun Sharable ‘%J
] @ Semers lidbeiAgency ljavax.sol.Data... [Container [v] |
expecits. localhost

Add

Deplayment Settings

JNDI Name:

I

|

User Name: Password:
: T

|

Figure 4.6 shows that the Agency EJB expects one resource called jdbc/Agency that is of
type javax.sql.Datasource. This is the EJB deployment descriptor information you
saw in Listing 4.5.

Figure 4.7 shows the environment entries for the Agency EJB. If you want to alter the
AgencyName defined there, you can just double-click the Value field and type in an alter-
native name. If you make any changes to the configuration of the application or any of its
components, the suffix (changed) will be added to the application name in the title bar.

|156

Day 4

FIGURE 4.7

Environment entries

[E3 Application Deployment Taol: agency (changed)

Tools Help

A

can be viewed or edit-
ed through 5 S
deploytool.

RS EEE O

Files [[Inspecting: Files.Applications.agency.Simple.Agency
% T Applications

Env. Entries

SimpleClient

? Simple

@ Agency Coded Entry Type | Value [
AgencyName String \J2EE in 21 Days Joh...|

Environment Ents

erenced in Code —

] @ Servers
localhost

Add

Deploying the Case Study Application

You can deploy the server-side components of the agency application (in this case, a sin-
gle EJB) using deploytool. To deploy them, select the agency application item (indicat-
ed by a blue diamond under the Applications folder in the explorer area on the left
side), and select Tools, Deploy from the deploytool menu. This will display the initial
deployment screen shown in Figure 4.8.

As you can see from Figure 4.8, the default target host is localhost. This is fine, pre-
suming that your copy of the J2EE RI is running on the local machine. If not, you should
Cancel and add the appropriate server name through the File, Add Server menu item
before proceeding.

The other point to note for this screen is that it allows you to obtain a client JAR file.
Recall that this client JAR file will contain all of the classes required by a client of the
application being deployed. A pre-prepared client JAR file is provided in the jar subdi-
rectory of the Day 4 exercise code on the CD-ROM (agencyClient.jar), but you will
need to obtain a client JAR file for any new applications or components you deploy. If
you check the Return Client Jar box, you can browse and select an appropriate location
to store the returned JAR file.

Introduction to EJBs 157 |

FIGURE 4.8 [=3application Deployment Tool: agency

e Edit Tools Help

You can select a server @@|@‘@ B AR E]] @ @
on which to deploy an @ ClFiles T =r— —— -
enterprise applzcatton. oo agency
@ E:g : i ency.ear
o [Sarvers Please select the object to be deployed and the server to which it

should be deployed:

OB O RO e R R R R b h b bbb ph b b ph b)

[apency -]

Target Server:

~ [locaiost -]

- The server can send back a client JAR file. It contains the extra
- RMI/IIOP stub classes that client applications written to access this
application will need at runtime.

[Z1 Return Client Jar
Client JAR File Naime:

EE:\ProJectsUzEE in 21 Days\CaseStudy1.3iCaseStudyiDay041Exe

[v] Save object before deploying

‘ Help... | ‘ Cancel |§

ﬂalltillll If you are deploying the agency application on an other machine (not
localhost), you should not use the pre-provided agencyClient.jar file.
Instead, select the option to return the client JAR file and add this JAR to
the classpath when you run the client later.

Click Next to move on to the JNDI Names screen. This gives the deployer another chance
to provide server-specific deployment information. Note that this is the same information
you saw earlier when examining the application’s JNDI information. For now, just click
the Next button. At the last screen, click Finish to deploy the application to the selected
server.

The progress of the deployment is shown in a separate window, as seen in Figure 4.9.
The blue and green bars are progress bars that will increase as the deployment proceeds.
Click OK when the deployment is complete.

When you are done, the agency enterprise application should have been deployed, as
shown in Figure 4.10. To view the applications deployed on a server, expand the Servers
folder in the explorer area on the left side and then expand the particular server, such as
localhost.

|158

Day 4

FIGURE 4.9

deploytool will show
you the progress of the
deployment.

FiGure 4.10

You can list the appli-
cations deployed on a
server.

[E3Application Deployment Tool: agency

Edit Tools Help

oo [¢Dle @[

é IFiles

ing: Files.. ications.agency
@ Elappications
¢ GEL B ¢ Progress
Simp — i
o B simp Contacted Server... |
o[Servers Application agency transferred

BEOEIELE

agency has 1 ejbs, 0web components to deploy
Deploying Ejbs.

Processing beans ...

Compiling wrapper code

Caompiling RMIIOP code ...

Making client JARs

Making server JARS ...

Deployment of agency is complete

Library JAR...

=]

| Description...

‘ ‘ Icons...

23 Application Deployment Tool

File Edit Tools Help

@ CJFiles
@ [Applications
9 < agency
SimpleClient
(-4 Simple
@ & servers
(] localhost

< agency

ing: Servers.

| General
Undeploy

nnnnnn

Testing the Case Study Application

After you have successfully deployed the server-side components of the application
under the J2EE RI, you can run the test client to check that everything is okay.

Introduction to EJBs 159 |

The test client, client.SimpleClient, is provided pre-compiled in the classes subdi-
rectory. To run this, use the script/batch file runSimple that can be found in the run sub-
directory. When you run the client, you will need to provide a username and password.
Use the username guest with a password of guest123. Your interaction with the client
should look something like the following:

Initiating login ...

Username = null

Enter Username:guest

Enter Password:guest123

Binding name: java:comp/env/ejb/Agency’

Welcome to: J2EE in 21 Days Job Agency

Customer list: J2EE in 21 Days Job Agency

abraham

alfred

george

winston

Unbinding name: java:comp/env/ejb/Agency’

If you are not able to run this test, refer to the “Troubleshooting the Case Study
Application,” section next.

As you can see, this has used the Agency EJB to list all of the customers in the job
agency database. The code for the client is provided in the client sub-directory of the
src directory. If you examine it, you will see that it is identical to the code shown earlier,
but with some extra code to invoke the customer listing methods on the EJB and display
the results.

If you examine the runSimple script/batch file, you will see that it uses the runclient
utility provided by the J2EE RI as follows:

runclient -client agency.ear -name SimpleClient -textauth

Nﬂtﬂ The precise command line used will differ between platforms to define the
location of the agency EAR file using the correct direction of slashes (back-
slash or forwardslash). However, this makes no difference in how the com-
mand works.

This runs the client application directly from the EAR file without having to unpack it.
The command line specifies that the client is called SimpleClient and that it lives in the
agency.ear archive. It also specifies that simple, text-based authentication should be
used between the client and the server.

|160

Day 4

The other thing to note in the script/batch file is that the environment variable APPCPATH
is set before runclient is called. The runclient utility uses this environment variable to
find the client JAR file for the application (in this case, it points to agencyClient. jar).
This information will be needed at runtime, not only because the EJB’s interface class
files are needed, but also because it also contains RMI stubs that are targeted at the cor-
rect server and deployment information that is used to map resource names to the target
server’s JNDI names.

Should you need to re-compile the client, or to compile your own client, you will need to
add this client JAR file to your classpath.

Initial Naming Context for the Client

When creating a JNDI InitialContext, the client runtime must get hold of information
regarding the content of this initial context. In the case of runclient, it will find map-
pings in the deployment descriptors contained in the client JAR file. These mappings will
be used to set up the initial context for the client. Consequently, when the client gets a
new initial context and looks up java:comp/env/ejb/Agency, for example, the local nam-
ing service runtime will be able to use the pre-provided mapping information to match
this text string to the appropriate JNDI name.

Other application servers may use different mechanisms to set up this initial context, such
as passing a Properties object to the naming runtime containing the appropriate infor-
mation.

Troubleshooting the Case Study Application

If you have problems running the case study application, check out the following possi-
ble issues:

* Have you started the J2EE RI (j2ee -verbose)? Make sure by locating its console
window or looking for it in the list of processes or applications on your machine.

» Have you started the cloudscape database (cloudscape -start)? Try running the
initial database test at the end of Day 2 to ensure that the data is present and that
the database server is running.

* Have you deployed the EJBs? By opening the EAR file, you are simply loading the
enterprise application into the deploytool environment. You must explicitly deploy
the application to the server you are using through the Tools, Deploy menu.

* Have you set the classpath correctly for your client? The client will need access
to the J2EE libraries in order to run.

Introduction to EJBs 161 |

* Try re-creating the client JAR file when you deploy the J2EE application to your
server. Make sure that this client JAR file is on the classpath when you compile
and run the client application.

* Check the J2EE RI console window to see if exceptions or errors are shown there.

* Check the J2EE log files under the logs directory in J2EE_HOME. There is a directo-
ry below logs that is named after the machine on which the server is running.
Below this, there are two nested j2ee directories. In the lower of these, you will
find various log files that you can examine for errors.

If you still have problems and you suspect that there is a problem with the configuration
of your J2EE RI, you can either re-install the RI or you could try deleting the server-
specific repository directory and then re-starting your server. You will lose all of your
deployed J2EE applications, but you may find this easier than re-installing. Under the
J2EE_HOME directory, you will find a directory called repository, and below this there
will be a directory named after the server on which you are running this instance of

the RI (for example, if your hostname is “fred”, there will be a fred directory below
repository). Stop the J2EE RI, remove the directory that is named after your server, and
then start the J2EE RI again.

Summary

Today, you have seen common ways that EJBs are used in applications and why you
would want to use them. You have seen that an EJB will have a home interface, a busi-
ness or remote interface, and an implementation. You have seen how the EJB container
will provide much of the underlying code to support the EJB, and that it relies on
detailed deployment information that defines the EJB’s requirements.

You have also seen that a J2EE application consists of components and deployment
information and how the server-side part of such an application can be deployed. You
have seen a client that is able to use such server-side components and the code required
to write such a client.

Q&A

Q How many Java classes and interfaces must I write to create an EJB?

A The EJB writer must define a remote (or business) interface, a home interface, and
the bean implementation itself.

|162

Day 4

Q Why does an EJB run inside a container?

A The container provides many services to the EJB, including distribution, lifecycle,
naming/registration, transaction management, security/authentication, and persis-
tence. If the container did not exist, you would have to write all the code to interact
with these services yourself.

Q What issues surround passing an object as part of a remote method call?

A To be passed as an argument or return type, an object must be either serializable or
remote. If it is neither of these, an error will occur at runtime. If an object is
defined as serializable, a new copy will be created and passed/returned. This can
add to the overhead of making the method call, but it is a very useful tool when
trying to cut down the amount of network traffic between clients and EJBs (as you
will see later on Day 18).

Q Most of the deployment descriptor information is straightforward, but what is
the difference between a <resource-ref> and an <env-entry>, and what sort
of information is contained in each type of entry?

A A <resource-ref> is part of a deployment descriptor that defines an external
resource used by a J2EE component. The <resource-ref> will define a name and
type for a resource together with other information for the container. The informa-
tion in a <resource-ref> is really for the container rather than for the EJB itself.
To access a resource defined in a <resource-ref>, you would use JNDI to look up
its name java:comp/env/jdbc/Agency.

On the other hand, an <env-entry> contains information that is intended for the
EJB itself rather than the container. It will define a name, a class type and a value.
The contents of <env-entry> elements are usually strings. Again, you would use
JNDI to look up its name, java:comp/env/AgencyName.

Exercises

The intention of this day is for you to familiarise yourself with the EJB environment and
the use of EJBs. To ensure that you are comfortable with these areas, you should attempt
the following tasks.

1. If you have not already done so, follow the steps to deploy the example Agency
EJB from the Day 4 Exercise directory on the CD-ROM.

2. Examine the information displayed by deploytool and make sure that you can
identify where the resource reference for the Agency JDBC connection is set,
where the environment reference for the agency name is set, and where the JNDI
name of the Agency EJB itself is set.

Introduction to EJBs 163 |

3. Use the runSimple script/batch file provided under the Day 4 Exercise directory
on the CD-ROM to run the test client. Make sure that this client runs without
errors and successfully lists all the customers in the agency database.

4. Without referring to the example client (but referring to the material you have cov-
ered today), create your own simple test client for the Agency EJB from scratch.
This should just consist of a command-line client that creates an instance of an
Agency EJB and asks it for its name.

5. Try changing the name under which the EJB is registered in JNDI using deploy -

tool. Change the JNDI name used by your client to find the Agency EJB and make
sure that it still works.

WEEK 1

DAY 5

Session EJBs

On Day 4, “Introduction to EJBs,” you learned that business functionality can
be implemented using Session beans, and you deployed a simple Session bean
into the EJB container. Today, you will learn

¢ The uses of Session beans in more detail

» The different Session bean types and how to specify, implement, and
deploy both stateless and stateful Session beans

* About common practices and idioms when using Session beans

Overview

Session beans are a key technology within the J2EE platform because they
allow business functionality to be developed and then deployed independently
of the presentational layer.

For example, you might create an application with a user interface built using
Java’s Swing API. This application might then provide access to some business
functionality for the employees working on the company’s internal network.

|166

Day 5

If the underlying business functionality is implemented as Session beans, a different user
interface could take its place without having to redevelop the entire application. A Web-
based interface would make the application available from the Internet at a single stroke.

There are two types of Session beans, and a couple of analogies help explain the differ-
ences between them. You almost certainly will have used the so-called wizards—helpers
to guide you through some task—in any modern word-processing program or IDE. A
wizard encapsulates a conversation between you the user and the application running on
the computer. The steps in that conversation are dictated by the Next and the Back but-
tons. The wizard remembers the answers from one page, and these sometimes dictate the
choices for the next. When you are done, you select the Finish button and the wizard
goes away and does its stuff.

The wizard is analogous to a stateful Session bean. The wizard remembers the answers
from each page, or put another way, it remembers the state of the conversation. It also
provides some service, as characterized by the Finish button. This is precisely what a
stateful session bean does.

Here is another analogy, this time with databases. You may well have had cause to write
stored procedures. These are named routines (methods and functions) that are written in
a database vendor’s version of the SQL language (for example, PL/SQL for Oracle and
Transact-SQL for Microsoft SQL Server) and stored in the database. They provide a way
to implement business rules on the database.

To invoke a stored procedure, a client-side application needs to know just the name of
the stored procedure and the parameters it requires. No knowledge of the underlying
database schema is needed, so to call a stored procedure called find_jobs_by_
advertiser written in Transact-SQL, the client would use the following:

exec find_jobs_by advertiser "winston"

Behind the scenes, this would probably run a query against the Job table, but the impor-
tant thing is that the client does not need to know this detail.

A stored procedure is analogous to a stateless Session bean. The stored procedure just
provides a service and can be invoked by any client. You may be wondering why have
Session beans at all if stored procedures—which are a tried-and-trusted technology—
already solve the problem. But Session beans do have a number of advantages.
Implementing stateful conversations is cumbersome using stored procedures, but trivial
with Session beans. Also, stored procedures are written in some database vendor’s pro-
prietary dialect of SQL, so they are not portable across RDBMS. Session beans are, of
course, written in Java, so they will be portable across any compliant EJB container.

Session beans provide a service to a client application. In other words, Session beans are
an extension of a client’s business functionality into the middle tier.

Session EJBs 167 |

N t The Unified Modeling Language offers a number of useful diagrams to help

oie . o o : .
specify an application, one of which is the use case diagram (see Appendix

) A, “An Introduction to UML,” found on the CD-ROM accompanying this

book, for further details).

Each use case represents an item of business functionality that is required to
fulfill an end-user’s goal. However, while use case diagrams indicate the sys-
tem boundary of the application being developed, the use cases themselves
typically say nothing about the actual look-and-feel of the system. In other
words, the presentational layer or user interface is not directly specified.

It is quite possible to directly relate UML use cases to Session beans. A given
use case specifies an item of business functionality, while the Session bean
implements that functionality. Neither are concerned with the detail of how
that functionality is presented to the user.

This direct correspondence of the logical design (as characterized here in
UML use cases) to the physical implementation (in this case, Session beans) is
one of the reasons that the J2EE platform is so appealing, quickly allowing
designs to be realized into working code.

The javax.ejb Package for Session Beans

Now it is time to add a little more detail. EJBs are written by implementing various inter-
faces of the javax.ejb package. Some of these are implemented by the bean itself. In
other words, this is the code that you, the developer must write. Others are implemented
either directly by the EJB container or are implemented by classes generated by the tools
provided by your EJB container vendor, such as the J2EE RI.

Figure 5.1 shows a UML class diagram of the interfaces in javax.ejb that support
Session beans.

Central to the EJB architecture are the javax.ejb.EJBHome and javax.ejb.EJBObject
interfaces, common to both Session beans and Entity beans. These both extend the
java.rmi.Remote interface, meaning that the classes that implement them (not shown)
are available through RMI stubs across the network.

The javax.ejb.EJBLocalHome and javax.ejb.EJBLocalObject interfaces are local
equivalents, and the classes that implement these are accessible only locally (that is, by
clients that reside within the same EJB container itself). Because local interfaces are
most often used with Entity beans, and also because there’s plenty for you to learn about
today already, there’s no major discussion of them until tomorrow.

|168

Day 5

FIGURE 5.1

The javax.ejb pack-
age defines remote and
local interfaces, as
well as an interface for
the Session bean itself
to implement.

interface interface
EJBMetaData HomeHandle
getEJBHome getEJBHome
getHomelnterfaceClass T A
getRemotelnterfaceClass \;, [} interface
getPrimaryKeyClass ! interface EJBContext
isSession <~ | interface EJBLocalHome |<<]
isStatelessSession |- =1 EJBHome getEJBHome
remove getEJBLocalHome
remove A getEnvironment
remove [} getCallerldentity
getEJBMetaData << - - P getCallerPrincipal
getHomeHandle : isCallerinRole
T A | isCallerinRole
[}) | getUserTransaction
| ' | setRollbackOnly
V 1 [} getRollbackOnly
interface interface | :
java.rmi.Remote | | Handle : |
| |
] getEJBObject | | :
])
| 4‘ ! :
|
Al N 1 interface
interface ! SessionContext
- < R
E/Bbject < L tEJBLocalObject
iEJBHome interface | SHEIBObect
ge PrimaryKey EJBLocalObject y
;Zggavﬁdle getEJBLocalHome (R
isldentical getPrimaryKey
remove
isldentical

interface
EnterpriseBean

‘f

interface
SessionBean

setSessionContext
ejbRemove
gjbActivate
gjbPassivate

The javax.ejb.EJBContext interface provides access to the home interfaces and, as you
can see from its method list, also provides security and transaction control. The
javax.ejb.SessionContext subclass is used only by Session beans and provides a refer-
ence to the bean’s EJBObject, that is, its interface for remote clients. Every EJB must
have a remote interface (or a local interface, discussed on Day 6, “Entity EJBs”).

The javax.ejb.HomeHandle and javax.ejb.Handle interfaces provide a mechanism to
serialize a reference to either a home or a remote interface for use later. This capability is
not often used, so isn’t discussed further.

The Session bean itself implements the javax.ejb.SessionBean interface that defines
the bean’s lifecycle methods and has an implementation for all of the methods defined in
the remote or the home interface.

Stateless Session Bean Lifecycle

You already know that there are two different types of bean—stateful and stateless.
You’ll be learning about both types today, first, the simpler stateless bean. The Agency
bean from the case study will be used for the example code.

Session EJBs

Stateless beans hold no state for any particular client, but they do have a lifecycle—and
thus different states—imposed on them by the EJB architecture. Specifically, these are
the interactions between the bean and the container in which it has been deployed.

This is a recurrent theme throughout the EJB architecture, so it is important to fully
understand it. The methods you define in your bean will be invoked either by its client or
by the EJB container itself. Specifically, the methods invoked by the client will be those
defined in the remote interface, whereas the methods invoked by the container are those
defined by the javax.ejb.SessionBean interface. The bean must also provide methods
that correspond to the create method of the bean’s home interface.

Figure 5.2 shows the SessionBean interface and its super-interfaces.

FIGURE 5.2 interface

The javax.ejb java.io.Serializable

SessionBean interface
defines certain lifecy- 4

cle methods that must
be implemented by
Session beans.

interface
EnterpriseBean

}

interface
SessionBean

+setSessionContext(sessioncontext:SessionContext):void
+ejbRemove():void

+ejbActivate():void

+ejbPassivate():void

In the case study, the AgencyBean class indicates that it is a Session bean implementation
by implementing this interface:

package agency;

import javax.ejb.*;
// some import statements omitted

public class AgencyBean implements SessionBean
{

}

// code omitted

Day 5

The lifecycle for Session beans, as perceived by the Session bean and as likely to be
enacted by the EJB container, is as shown in the UML state chart diagram in Figure 5.3.

[pool too small)/
setSessionContext

FIGURE 5.3

Stateless Session beans

()
Context Set

———>

have a lifecycle man-
aged by the EJB con-

\{

tainer.

[context set]/ejbCreate

remove”ejbobject.finalize() create’ejbobject.new()

Pooled

[surplus]/ejpRemove

[business method invoked]

[method completes]

Bound to cIient‘

business method

The lifecycle is as follows:

If the EJB container requires an instance of the stateless Session bean (for exam-
ple, because the pool of instances is too small), it instantiates the bean and then
calls the lifecycle method setSessionContext (). This provides the bean with a
reference to a SessionContext object, providing access to its security and transac-
tion context.

Immediately after the context has been set, the container will call ejbCreate().
This means that the bean is now ready to have methods invoked. Note that the
ejbCreate () method is not part of the SessionBean interface, but nevertheless
must be declared in the bean.

When a client invokes a business method, it is delegated by the bean’s EJBObject
proxy to the bean itself. During this time, the bean is temporarily bound to the
client. When the method completes, the bean is available to be called again.

The binding of the bean to the client lasts only as long as the method takes to execute, so
it will typically be just a few milliseconds. The EJB specification specifies this approach
so that the bean developer does not need to worry about making the bean thread-safe.

Session EJBs 171 |

To support the case where two (or more) clients need to invoke the service of some state-
less Session bean at the same time, most EJB containers hold a pool of Session beans. In
general, the pool will never be larger than the maximum number of concurrent clients. If
a container decides that the pool is too large or that some Session bean instances are sur-
plus, it will call the bean’s ejbRemove () method.

Nl]tﬂ As you will see on Day 12, “Servlets,” servlets have similarities with stateless
Session beans. However, in the servlet specification, they are defined to
work in precisely the opposite way; by default, a servlet must be thread-
safe, and there is only one instance of it.

If the client calls create() or remove (), the bean itself is not necessarily affected.
However, the client’s reference to the bean will be initialized (or destroyed). The client is
not aware of the complexities of this lifecycle, so the client’s perception of a stateless
bean is somewhat simpler, as shown in Figure 5.4.

FIGURE 5.4 ®

The client’s perception deploy/setSessionContext

of the bean’s lifecycle
A —\
is simple. Context Set

create/ejbCreate

Ready

remove/ejpRemove

business method

From the client’s perspective, the bean is simply instantiated when the client calls
create () on the bean’s home interface, and is removed when the bean calls remove () on
the bean itself.

|172

Day 5

Nﬂtﬂ The EJB specification does not attempt to prescribe too closely the imple-

mentation of EJB containers, and correctly focuses instead on their specifica-
tion. Unfortunately, it does not always identify the only realistic implemen-
tation.

For example, the EJB specification suggests that the EJB container is at liber-
ty to adopt any appropriate pooling policy for Session beans. In Figure 5.3,
you saw the state chart for a container using an eager instantiation policy,
pre-instantiating beans before they are necessarily used. However, the fact
that beans can throw CreateException exceptions from their ejbCreate ()
method seems to imply that only a lazy instantiation policy—instantiating
beans only as they are required—could be used.

In fact, it is the case that some EJB containers do not maintain a pool of
Session bean references and, instead, simply instantiate beans as required. In
other words, the actual lifecycle for the bean matches that perceived by the
client. While this might seem a wasteful approach, in fact it is not; modern
JVMs are becoming so efficient that maintaining a pool of beans is more
expensive than simply instantiating beans as needed.

Figures 5.3 and 5.4 show how the methods of the SessionBean interface are invoked
through the bean’s lifecycle. You will have noticed that the ejbActivate () and
ejbPassivate () methods are not mentioned; this is because these methods are only
called for stateful Session beans, a topic covered later today. However, given that these
methods are in the SessionBean interface, they do require an implementation. For state-
less Session beans, this implementation will be empty.

The implementation of the lifecycle methods is covered later today in the “Implementing
a Stateless Session Bean” section.

Specifying a Stateless Session Bean

As you will by now have gathered, the responsibilities of Session beans (and indeed,
Entity beans) are specified through its remote and home interfaces. These are what the
EJB container makes available to the remote clients.

To define a home interface for a stateless Session bean, extend javax.ejb.EJBHome. To
define a remote interface, extend javax.ejb.EJBObject. Because both EJBHome and
EJBObject extend the java.rmi.Remote interface, the rules for remote objects (in the
Java sense of the word) must be followed.

The following is the home interface for the Agency session bean. If it looks familiar, it
should be—you saw this for the first time just yesterday.

Session EJBs 173 |

package agency;

import java.rmi.*;
import javax.ejb.*;
public interface AgencyHome extends EJBHome

{

Agency create() throws RemoteException, CreateException;

}

The AgencyHome interface defines a single no-arg method called create (). This method
returns an Agency, which is the remote interface for the Agency bean. Because this
remote interface is remote (that is, extends java.rmi.Remote), what the client that calls
this interface will receive is a reference to the remote Agency object. In other words, the
client will obtain an RMI stub to the Agency.

The EJB specification requires that stateless Session beans must define this single no-arg
version of the create () method. The bean can perform any initialization it requires
there. The create () method throws java.rmi.RemoteException, as required for remote
objects, and also throws javax.ejb.CreateException. This is an exception that the bean
can throw to indicate that it was unable to initialize itself correctly.

The create () method in the home interface implies a corresponding ejbCreate ()
method in the bean class itself. This delegation to a method with an ejb prefix is preva-
lent throughout the EJB specification, so you will become quite familiar with it over the
next few days. The corresponding code in the AgencyBean class is as follows:

package agency;
// some import statements omitted
import java.rmi.*;

import java.util.*;
import javax.ejb.*;

public class AgencyBean implements SessionBean

{
public void ejbCreate() throws CreateException {
// implementation omitted
}
/| code omitted
}

Note that the ejbCreate () method also takes no arguments because the argument list
must match. The throws clause includes javax.ejb.CreateException, because that was
defined in the home interface, but does not include java.rmi.RemoteException. This is
because the bean itself is not remote; it is the code generated by the vendor’s deploy-
ments tools that is remote. The EJB specification requires also that ejbCreate () method
returns void.

|174

Day 5

Listing 5.1 shows the remote interface for the Agency session bean. Again, you saw this

yesterday:

LisTING 5.1

Remote Interface for the Stateless Agency Bean

ONOO O WD =

{

15:
16:
17:
18:
19:

20:
21:
22:

23:
24:
25:
26:
27:
28:

29:
30: }

package agency;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;

public interface Agency extends EJBObject

String getAgencyName() throws RemoteException;

Collection findAllApplicants() throws RemoteException;
void createApplicant(String login, String name, String email)
throws RemoteException, DuplicateException, CreateException;
void deleteApplicant (String login)
=throws RemoteException, NotFoundException;

Collection findAllCustomers() throws RemoteException;
void createCustomer(String login, String name, String email)
throws RemoteException, DuplicateException, CreateException;
void deleteCustomer(String login)
=throws RemoteException, NotFoundException;

Collection getLocations() throws RemoteException;
void addLocation(String name)

=throws RemoteException, DuplicateException;
void removelLocation(String code)

=throws RemoteException, NotFoundException;

Collection getSkills() throws RemoteException;
void addSkill(String name)

=throws RemoteException, DuplicateException;
void removeSkill(String name)

=throws RemoteException, NotFoundException;

List select(String table) throws RemoteException;

You can see that the Agency Session bean provides a number of sets of functionality, man-
aging applicants, customers, locations, and skills. These services manipulate data within
the database, but there is no underlying state for the bean itself. In each case, the methods
throw java.rmi.RemoteException as required and also throw various other exceptions.
The DuplicateException and NotFoundException are user-defined exception classes that
simply extend java.lang.Exception. You encountered these classes yesterday.

Session EJBs 175|

For each of these methods in the remote interface, there is a corresponding method in
the Session bean. As was noted before, this is not because the bean has implemented the
remote interface (it hasn’t) but because the EJB specification requires it so that the
EJBObject proxy (the vendor-generated implementation of the remote interface) can del-
egate to the bean. The business methods for the AgencyBean have the same signature as
those in the remote interface, with the exception that they do not throw
java.rmi.RemoteException. Those are the steps to specifying a stateless Session bean’s
interface. Indeed, as you will see later today and tomorrow, specifying the interface of
stateful Session beans and of Entity beans follows along very similar lines. In the next
section, “Implementing a Stateless Session Bean,” you will see the implementation of
some of these methods.

Implementing a Stateless Session Bean

Implementing a Session bean involves providing an implementation for the methods of
the javax.ejb.SessionBean, corresponding methods for each method in the home inter-
face, and a method for each method in the remote interface.

Implementing javax.ejb.SessionBean

The implementation of the methods of the SessionBean interface is often boilerplate. The
setSessionContext() method usually just saves the supplied SessionContext object:
private SessionContext ctx;

public void setSessionContext(SessionContext ctx) {
this.ctx = ctx;

}

Although ejbRemove () method is part of the SessionBean interface, you’ll learn about
its implementation in the next section. As already noted, for a stateless Session bean, the
ejbActivate() and ejbPassivate () methods should have a null implementation:

public void ejbActivate() { }
public void ejbPassivate() { }

Implementing the Home Interface Methods

The home interface has a single method create (). The ejbCreate () method in the bean
corresponds to this method. It makes sense to look up JNDI references in the
ejbCreate () method and store them in instance variables. This is shown in Listing 5.2.

LISTING 5.2 AgencyBean.ejbCreate() Method

1: private DataSource dataSource;
2: private String name = "";
3: public void ejbCreate () throws CreateException {

|176

Day 5

LisTING 5.2 Continued

InitialContext ic = null;
try {
ic = new InitialContext();
dataSource = (DataSource)ic.lookup("java:comp/env/jdbc/Agency");
I3
catch (NamingException ex) {
error("Error connecting to java:comp/env/jdbc/Agency:",ex);

return;
}
try {

name = (String)ic.lookup("java:comp/env/AgencyName");
}

catch (NamingException ex) {
error("Error looking up java:comp/env/AgencyName:",ex);

On Day 18, “Patterns,” you will learn about a design pattern that simplifies
JNDI lookups. It can also speed up your beans; some EJB containers are not
particularly efficient at obtaining references from within JNDI.

In this case, the ejbCreate () method makes two lookups from JNDI; the first is to
obtain a DataSource (you will see how this is used shortly) and the other is to obtain
environment configuration information—that is, the name of the agency—from the

deployment descriptor. You will learn about the deployment descriptor in the following

section.

Incidentally, this is a good place to note that stateless Session bean does not mean that
the bean has no state; just that it has no state that is specific to any given client. In the
case of the Agency bean, it caches a DataSource and its name in instance variables.

The home interface inherits a remove (Object o) from EJBHome. This corresponds to the
ejbRemove () method of the bean. The implementation is pretty simple; it should just

reset state:

public void ejbRemove(){
dataSource = null;

}

Session EJBs 177 |

Nﬂtﬂ The ejbRemove () method is mandated by the EJB specification in three dif-
ferent ways! It appears in the SessionBean interface, and it is required as
) the method corresponding to the home method of remove (Object) (inherit-
ed from javax.ejb.EJBHome) and is also required as the method correspond-
ing to the remote method of remove () (inherited from
javax.ejb.EJBObject). It is covered here because it fits best along side the
coverage of ejbCreate().

Implementing the Remote Interface Methods

The remaining methods correspond to the business methods defined in the remote inter-
face. The Agency session bean manipulates the data in the Applicant, Customer,
Location, and Skill tables, providing methods to return all the data in a table, to insert
a new item, or to delete an existing item. When deleting rows, rows in dependent tables
are also removed.

The methods that manipulate the database all require a java.sql.Connection to submit
SQL to the database. In regular “fat client” applications, the idiom is to create a database
connection at application startup and to close the connection only when the user quits the
application. This idiom exists because making database connections is expensive in per-
formance terms. When writing EJBs, however, the idiom is the precise opposite. You
should obtain the database connection just before it is needed, and close it as soon as
your processing is complete. In other words, “acquire late, release early.” This is because
the EJB container has already made the database connections and holds them in a pool.
When your bean obtains its connection, it is simply being “leased” one from the pool for
a period of time. When the connection is “closed,” in reality it is simply returned back to
the pool to be used again.

The getLocations() method shows this principle clearly, as shown in Listing 5.3.

LisTING 5.3 AgencyBean.getLocations() Method

1: public Collection getLocations() {

2: Connection con = null;

3 PreparedStatement stmt = null;

4: ResultSet rs = null;

5: try {

6: con = dataSource.getConnection();

7 stmt = con.prepareStatement("SELECT name FROM Location");
8 rs = stmt.executeQuery();

9

|178 Day 5

LisTING 5.3 Continued

10: Collection col = new TreeSet();
11: while (rs.next()) {

12: col.add(rs.getString(1));
13: }

14:

15: return col;

16: }

17: catch (SQLException e) {

18: error("Error getting Location list",e);
19: }

20: finally {

21: closeConnection(con, stmt, rs);
22: }

23: return null;

24: }

25: private void closeConnection (Connection con,
26: PreparedStatement stmt, ResultSet rslt) {
27: if (rslt != null) {

28: try {

29: rslt.close();

30: }

31: catch (SQLException e) {}

32: }

33: if (stmt != null) {

34: try {

35: stmt.close();

36: }

37: catch (SQLException e) {}

38: }

39: if (con != null) {

40: try {

41: con.close();

42: }

43: catch (SQLException e) {}

44: }

45: }

In this method, you can see the DataSource object obtained in the ejbCreate () method
in use. The Connection object is obtained from this DataSource object. Another advan-
tage of this approach is that the user and password information does not need to be
embedded within the code; rather, it is set up by the deployer who configures the
DataSource using vendor-specific tools. As you remember from Day 2, “The J2EE
Platform and Roles,” in the J2EE RI, the DataSource object is configured by editing the
resource.properties file in the SJ2EE_HOME%\config directory.

The other business methods all access the database in a similar manner.

Session EJBs

179|

Exceptions

Your bean needs to be able to indicate when it hits an exception. The EJB specification
lays out certain rules as to the types of exceptions your bean can throw, because the
client does not call your bean directly. For remote clients, there is also the possibility of
network problems.

The EJB specification categorizes exceptions as either application exceptions or system
exceptions. These correspond quite closely to the regular Java categories of checked
exceptions and runtime exceptions.

Figure 5.5 shows the exceptions in the javax.ejb package, indicating which are applica-
tion and which are system exceptions.

NoSuchObjectLocalException I

0.1
FIGURE 5.5 java.lang.Exception |
. . caused by -

Exceptlons are either System

SyStemexceptlonsor Exceptlons ‘IIIIIIIIIIIIIIIIIIIIIIIIIII.‘

application exceptions. Kl Eelelalellel ettt S .

L} | |

[] I java.lang.RuntimeException !I : [L]
u n® n
[] ¢ ‘snfmmmEEnEnm []
™ ammmpesEmEw, ¢ =
] B - " a " []
] EJBException I|ava.rm|.RemoteExcept|on gl m® .
] . : v " []
- -causeException:Exception eummEmE® ® -
: +EJBException() : »* snnns’ CreateException u
- +EJBException(message:String) ™ ™ :
L +EJBException(ex:Exception) u u L]
: +EJBException(message:String,ex:Exception) : : DuplicateKeyException :
[] +getCausedByException():Exception L] [[]
o | +getMessage():string . o - - .
m | +printStackTrace(ps:PrintStream):void n . [bl + I [I -
: +printStackTrace():void : : /\ u
- +printStackTrace(pw:PrintWriter):void ™ = - - :
- n - ObjectNotFoundException -
: A : ’.IIIIIIIIIIIIIIIIIIIII’
n [1 u Application
- " " " " - .
. tity] | [Access ption | = Exceptions
n n
L} L}
n n
L} L}
. v

AEEEEEEEEEEEEEEEEEEEEEEEERS

So, what do these categorizations mean? If a bean throws an application exception, the
EJB container will propagate this back to the application client. As you shall see on Day
8, “Transactions and Persistence,” any ongoing transaction is not terminated by an appli-
cation exception. In other words, the semantics of an application exception are pretty
similar to a checked exception; generally, the client can recover if desired.

However, if a bean throws a system exception, that indicates a severe problem that will
not be recoverable by the client. For example, if the bean has been incorrectly deployed
such that the database connection fails, there is very little that the client can do about it.

|180

Day 5

In such a case, the EJB container will take steps to terminate any ongoing transaction
because it is unlikely to complete. Moreover, the EJB container will discard the bean
instance that threw the exception. In other words, there is no need to code any clean up
logic in your bean after having thrown a system exception.

Although all runtime exceptions are classified as EJB system exceptions, the
javax.ejb.EJBException is a RuntimeException provided for your use. This class
allows the underlying cause to be wrapped through one of its constructors. The error()
helper method in AgencyBean does precisely this:
private void error (String msg, Exception ex) {

String s = "AgencyBean: "+msg + "\n" + ex;

System.out.println(s);

throw new EJBException(s,ex);

}

In Figure 5.5, you can see that there is one checked exception, namely
java.rmi.RemoteException, that is classified as an EJB system exception rather than as
an EJB application exception. Your bean code should never throw this exception; instead,
it is reserved for the EJB container itself to throw. If your bean has hit a system excep-
tion, it should throw an EJBException rather than RemoteException.

Configuring and Deploying a Stateless
Session Bean

With the code compiled, the next step is to deploy the bean onto the EJB container.

As you learned yesterday, EJBs are designed to be portable across EJB containers, and
the configuration information that defines the bean’s name, interfaces, class(es), charac-
teristics, dependencies, and so on is stored in an XML document called a deployment
descriptor. This is provided along with the bean code itself.

As you appreciate from Day 2, there are several EJB roles involved in building the
deployment descriptor. The bean provider specifies the information about a given bean
(“intra-bean” configuration information, if you like), and the application assembler speci-
fies the information about all the beans in an application (“inter-bean” configuration
information). When both the bean deployer and application assembler have specified
their information, the deployment descriptor is complete.

However, that’s not the end of the story, because the deployment descriptor does not
define every piece of configuration information necessary to deploy a bean. In effect, the
deployment descriptor defines only the logical relationships and dependencies between
the beans. There will also be additional configuration information that maps the logical

Session EJBs

181|

dependencies of the deployment descriptor to the physical environment. Performing this
mapping is the role of the deployer.

EJB container vendors are free to capture this additional mapping in any way they want,
although most use auxiliary deployment descriptors, again usually XML documents. In
the case of the J2EE RI, the auxiliary deployment descriptors are indeed XML docu-
ments. The EJB specification explicitly disallows vendors from storing their auxiliary
mapping information in the standard deployment descriptor itself.

Thus, to port an EJB from one EJB container to another, all that should be required is to
recreate an auxiliary deployment descriptor. In other words, the deployer has to redeploy
the application, but the bean provider and the application assembler should not have to
get involved.

Because manipulating XML documents can be somewhat error prone, most EJB contain-
er vendors provide graphical tools to do the work. As you saw yesterday, this is the
deploytool GUI in the case of the J2EE RI. Unfortunately, many such tools do not dis-
tinguish between information that is being saved in the standard deployment descriptor
and that which is being saved in the vendor’s own auxiliary deployment descriptors.
Also, many tools do not explicitly support the EJB architecture’s concept of roles, mak-
ing it possible for a bean provider to start specifying information that might more cor-
rectly be decided only by the application assembler or even the deployer. The J2EE RI
deploytool is guilty on both counts.

Because you may not be using J2EE RI in your own projects, this section presents the
task of deployment by looking at both the J2EE RI deploytool and also the underlying
XML deployment descriptor. Having a firm understanding as to how these relate should
make it much easier for you to deploy if you aim to deploy to some other EJB container.
It also has to be said that understanding the XML deployment descriptor makes the
deploytool GUI easier to comprehend.

Using deploytool
This section shows how to deploy the Day 5 version of the case study application to the J2EE
RI It’s best if you follow along (but if you’re on a train, just read the text and make do).

As usual, start up the Cloudscape RDBMS and J2EE RI using two console windows.
Then, start up a third console window and start deploytool.

By choosing File, Open, load up the day@5\Examples\agency.ear enterprise application
archive. This defines two groups of Session beans—Agency and Advertise. Their con-
tents have already been configured to contain the appropriate code. Click either of these
in the explorer on the left side of the deploytool GUI and their contents will be shown
on the right side. Note that for both of these beans, some supporting classes (application
exception classes) also constitute part of the bean.

|182

Day 5

To deploy the Session beans, select the Examples item (under the Applications folder in

the explorer area on the left side) and choose the Tools, Deploy menu option. Click Next
twice and then click Finish.

As you saw yesterday, the deployment descriptor holds configuration information. This is
accessible within deploytool as follows. Select the Agency element from the explorer,
and then choose Tools, Descriptor Viewer from the menu. This will display the XML

deployment descriptor for all of the beans in that EJB JAR file (in this case, just the one
Agency bean). Figure 5.6 shows this screen.

FlGURE 5_6 [E3Deployment Descriptor Viewer e
=7xm| version="1.0" encoding="UTF-8"7= -

The deploytool lets

. [h d l =IDOCTYPE ejb-jar PUBLIC “#fSun Microsystems, Inc./DTD Enterpri:
you view tne unaerty-
. =gjb-jar=
mng deplOymem‘ <display-name=Agency=<idisplay-name=
descriptor =enterprise-beans=

<session=
=display-name=AgencyBean=/display-name=
<gjb-name=AgencyBean</ejb-name=
=home=agency.AgencyHome=/home=
<remote=agency.Agency=iremote=

b- gency.AgencyBean=/ejb-c|
<session-type=Stateless</session-type=
=transaction-type=Container=ftransaction-type=
<env-entry=

=gnv-entry-name=AgencyNames=/env-entry-name=
<env-entry-type=java.lang. String</env-entry-tyne=

=env-entry-value=J2EE in 21 Days Job Agency=/env-entry-value
<fenv-entry=

=security-identity=
=description=</description=
ller-identity=< I
<fsecurity-identity=
=resource-ref=
f

jdbeiAgenc f
=res-type=javax.sgl.DataSource=/res-type=
<res-auth=Container<ires-auth=
=res-sharing-scope=Shareable=/res-sharing-scope=

‘ Save As... | | @ ‘ ‘ Help... |

[41

In the following sections, you’ll see how this information is structured and built up.

Structural Elements

XML documents provide a mechanism to store data in a hierarchical format, and are
similar in style to HTML documents. You shouldn’t have too much trouble following the
coming discussion, but if you want to do some additional background reading, skip for-

ward to Day 16, “Integrating XML with J2EE,” which covers XML documents in more
detail.

The format of the EJB deployment descriptor is defined by a document type definition
(DTD) file called ejb-jar_2_0.dtd in the %J2EE_HOME%\1ib\dtds\ directory. The root
of an EJB deployment descriptor is the ejb-jar element, whose definition is as follows:

Session EJBs 183 |

<!ELEMENT ejb-jar (description?, display-name?, small-icon?, large-icon?,
enterprise-beans, relationships?, assembly-descriptor?, ejb-client-jar?)>
This indicates that an ejb-jar element may (the ? sign suffix) contain one each of a
description, display-name, small-icon, large-icon, relationships, assembly-
descriptor and ejb-client-jar elements, and must (no suffix) contain one
enterprise-beans element.

The enterprise-beans element’s definition is as follows:
<!ELEMENT enterprise-beans (session | entity | message-driven)+>

This states that an enterprise-beans element consists of one or many (the + sign suffix)
elements that are either session, entity, or message-driven elements. In other words,
the enterprise-beans element contains one or more session, entity, or message -
driven elements. You will learn about the session element shortly.

In Figure 5.6, you can see this structure in the deployment descriptor, and you can also
see the same hierarchy in deploytool’s explorer pane on the left side of the explorer.
The Advertise ejb-jar element consists of two beans.

Presentational Elements

In many of the definitions within the DTD, you will see the display -name,
description, small-icon, and large-icon elements defined. These are used by vendor
deployment tools when managing your beans, so you will certainly want to define a
display-name to distinguish the beans in the tool’s GUI. Whether you choose to provide
the remaining elements is up to you. Their presence is primarily so that third- party com-
panies can develop EJBs to sell as “off-the-shelf” business logic components.

In Figure 5.6, you can see that the display-name element for the two groups of EJB
JARSs have been set to Advertise and Agency. This is shown in the explorer on the left
side of deploytool GUI. It is also presented as the (read-only) JAR Display Name on
the right side when the Advertise node is selected. There doesn’t appear to be any good
reason why this is read-only in deploytool, that’s just the way the tool works.

If you wanted to add another EJB to the enterprise application, (using the File, New,
Enterprise Bean menu option) it would either be in an existing ejb-jar or a new ejb-
jar could be defined. When choosing the second option, the display-name for your new
collection of EJBs can be specified. This is shown in Figure 5.7.

|184

Day 5

FIGURE 5.7 [EiNew Enterprise Bean Wizard - EIB JAR S il x|
A JAR file is required to contain this enterprise bean. You can create a new JAR file within an existing application or
The deploytool allows use an existing JAR file. Afteryou have selected a JAR file, add the EJB classes and any other desired files to it's
contents.
EJBs to be deﬁned m Optionally, you can also provide a description, editthe manifest classpath, and choose icons far the JAR file.
either their own ejb- JAR File Location:
jar (Wlth attendant (@ Create New JAR File in Application
. ‘@ examples -
deployment descriptor)
. .. . JAR Display Name:
or in an existing ejb- Eib1
jar.) Add o Existing JAR File
) =
R
@] META-INF
Edit...
O Description... | | Manifest Classpat... ‘ ‘ Icons... | | Deployment Settin... ‘
Help... | Cancel ‘ | < Back H Next > | | Finish ‘

For your own custom applications, it really is up to you whether you choose to use one
ejb-jar or several. In the case study example, the latter has been used. Certainly, if you
wanted to use some off-the-shelf component EJBs bought from a third-party vendor, the
EJBs will already have been bundled into an EJB JAR file. To add these to your enter-
prise application, you would use File, Add to Application, EJB JAR menu option. When
the selected JAR file is read, the display-name element from the associated XML
deployment descriptor would then be used.

Session Element

The configuration information for Session beans is defined—not surprisingly—in the
session element of the DTD. Its definition is as follows:

<!ELEMENT session (description?, display-name?, small-icon?, large-icon?,
ejb-name, home?, remote?, local-home?, local?, ejb-class,

session-type, transaction-type,

env-entry*,

ejb-ref*, ejb-local-ref*,

security-role-ref*, security-identity?,

resource-ref*,

resource-env-ref*)>

This indicates that a session element may contain the presentational elements just dis-
cussed, and also will consist of a number of other mandatory and optional elements. The
mandatory elements are as follows:

Session EJBs 185 |

* The ejb-name element is the mandatory logical name for the EJB. This must be
unique within all the EJBs defined within the ejb- jar element.

¢ The home, remote, local-home, and local elements define the remote and local
interfaces for the bean. They are all marked as being optional, although the specifi-
cation also requires that either the home and remote and/or the local-home and
local elements are defined. As was noted previously, you’ll be learning about local
interfaces in detail tomorrow.

* The ejb-class element defines the class that has the bean’s actual implementation.
e The session-type element indicates whether the bean is stateless or stateful.

* The transaction-type element indicates how the EJB container should manage
transactions. You will be learning about this in detail on Day 8, so until then, just
specifying that transactions are Required will be sufficient.

This information is available graphically in deploytool. Select the Agency Session bean
in the explorer pane (under Agency ejb-jar). You should see something similar to that
shown in Figure 5.8.

FIGURE 5.8 [application Deployment Tool: agency.
' File Edit Tools Help
The aopoytoot rpre: | QIS ol B (SIS @ [(G101 @
sents the underlylng @ CFlles |Inspecting: Files.Applications.agency.Agency.AgencyBean
: 9 CApplicat
deployment descriptor o .“”Zﬂi;s Tk
graphically. AdvatssClent
Tanleciant GRS
RegisterClient O Entity
AdminClient O Message-Driven
9 B Agency <
@ RegisterBean ® Session
@ AdvertiseB
@ Auﬁmiiﬁﬁgean ® Stateless
@) Stateful
ise Bean Class: rLocal Interfaces:

Local Home Interface:
ise Bean Name: Local
| AgencyBean ‘ [

}-agen[:y.ngen[:yﬂmn

Enterprise Bean Display Name:

rRemote
Remote Home Interface:
Eagen:y.ngencyﬂnme
Remote Interface:
lgagen[:y.ngen[:y

‘ [Description...

‘ Icons...

You should be able to see a pretty close resemblance between the information portrayed
in deploytool and the mandatory information required by the underlying deployment
descriptor. The only mandatory item not shown is transaction-type; that is on the
Transactions tab of the GUIL

|186

Day 5

The (fragment of the) underlying deployment descriptor for the Agency bean that is rep-

resented in Figure 5.8 is as follows:

<session>
<display-name>AgencyBean</display-name>
<ejb-name>AgencyBean</ejb-name>
<home>agency.AgencyHome</home>
<remote>agency.Agency</remote>
<ejb-class>agency.AgencyBean</ejb-class>
<session-type>Stateless</session-type>

.. lines omitted ..

</session>

This should tie in with the code that was presented earlier today.

Thus far, you have only seen the EJB standard deployment descriptor, but there is also
the vendor-specific deployment descriptor for J2EE. The structure of this auxiliary
deployment descriptor is defined by %J2EE_HOME%\1ib\dtds\sun-j2ee-ri_1_3.dtd, but
it is not so necessary to learn its structure in detail because it all vendor specific, and
deploytool allows it to be configured through its GUI.

The auxiliary information in this descriptor maps the logical names to the physical run-
time environment. For the Session bean itself, a mapping is required from its logical
ejb-name to its JNDI name. The following fragment from the auxiliary deployment
descriptor shows this:
<j2ee-ri-specific-information>
// lines omitted
<enterprise-beans>
/| code omitted
<ejb>
<ejb-name>AgencyBean</ejb-name>
<jndi-name>ejb/Agency</jndi-name>

Figure 5.9 shows how deploytool portrays this information. Figure 5.9 also shows the
JNDI mappings for references; you will learn about these shortly.

The remaining optional items of the EJB deployment descriptor (env-entry, resource -
ref, and so on) also correspond to the different tabs of the deploytool window shown in
Figure 5.8. These each indicate different types of dependencies that the bean may have
with its runtime environment. The following sections discuss each in turn.

Session EJBs

FIGURE 5.9

Behind the scenes,
deploytool stores the
JNDI mappings to an
auxiliary vendor-
specific deployment
descriptor.

=3 Application Deployment Taol: agency
File Edit Tools Help

© [Applications
@ < agency

AdvertiseClient

AllClients

TableClient

RegisterClient

AdminClient
? B Agency

Files.Applications.agency

cle @ FaMa =0 ¢RlE ¢E

Component Type. Component JNDI Name.
|ejbiAgency

| ejbiAdvertisedob
ejbiAdvertise

|ejbiRegister

@ ReqisterBean

@ AdvertiseBean
@ AdvertiselobBean
@ AgencyBean

Environment Entries

Environment entries allow general configuration information—as might be found in a
.ini file or in the Windows Registry—to be made available to the bean. Such entries
are represented by the env-entry element in the deployment description and—not
surprisingly—are configured on the Env. Entries tab within deploytool.

The Agency bean uses an environment entry to look up its name. The relevant code is in
the ejbCreate () method:
InitialContext ic = new InitialContext();

/] code omitted
name = (String)ic.lookup("java:comp/env/AgencyName");

The EJB specification requires that the EJB container makes the environment entries
available under the well-defined context of java:comp/env. Therefore, this is needed in
the JNDI lookup. However, this prefix is not required in the deployment descriptor itself.

The DTD defines the env-entry element as follows:

<!ELEMENT env-entry (description?, env-entry-name, env-entry-type, env-entry-
value?)>

|188

Day 5

FIGURE 5.10

The type of the environment entry (String, Integer, and so on) is indicated through the
env-entry-type element. The actual value (env-entry-value) is optional, meaning that
the bean provider/application assembler does not need to define it. If the actual value
isn’t specified by these roles, the deployer will need to define the value.

Figure 5.10 shows this information being configured within deploytool.

=4 Application Deployment Tool: agency (changed)
Edit Tools Help

Environment entries

@5

ez RERa =0 eoa

can be managed @ DFiles

graphically by deploy- ° Eg”!;?ﬂ:s
AdvertiseClient

tool. AllClients

TableClient

0B Agencv
@ ReqisterBean
@ AdvertiseBean
@ AdvertiselobBean
@ AgencyBean

Add

In the underlying deployment descriptor for the Agency bean, this corresponds to

<env-entry>
<env-entry-name>AgencyName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>J2EE in 21 Days Job Agency</env-entry-value>
</env-entry>

To re-emphasize, note that the entry name is AgencyName, not
java:comp/env/AgencyName.

EJB References

Declaring EJB references for an EJB indicates that the bean being deployed depends on
other EJBs. Generally speaking, when there are inter-bean dependencies, both the depen-
dent and dependee will have been written by the same bean provider. However, there will
be cases when this isn’t so. The issue then arises that the dependent EJB may not know
the deployed name of the EJB upon which it depends.

Session EJBs 189 |

For example, a vendor might provide some sort of business-oriented bean (perhaps an
Invoice EJB) that can optionally perform logging through a Logging EJB. The same
vendor might well provide an implementation of a Logging EJB, but would also allow
for application assemblers to use some other EJB that implements the appropriate home
and remote interfaces. In this way, the application assembler could ensure that all logging
from beans within its application was consistent.

Now the Invoice EJB will have a reference to a Logging EJB in its JNDI lookup. This
might be something like the following:

InitialContext ic = new InitialContext();

Object lookup = ic.lookup("ejb/Logger");

LoggerHome home = (AgencyHome)PortableRemoteObject.narrow(lookup,

LoggerHome.class);
Logger logger = home.create();

The "ejb/Logger" string is hard-coded into the Invoice EJB source code and cannot be
changed by the application assembler or by the deployer. This is what is sometimes
referred to as the coded name or coded entry. However, the deployment descriptor allows
this logical name to be associated with an actual physical name through the ejb-ref ele-
ments.

The following is the ejb-ref element, as defined by the DTD:

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home, remote, ejb-
link?)>

The ejb-ref-name element is the coded name—ejb/Logger in the previous example.
The names of the home and remote interfaces must be specified. Finally, the ejb-1ink
element specifies the actual ejb-name of the EJB that implements these interfaces. This
is a way for the application assembler to constrain the reference in the dependent EJB to
a particular EJB within the enterprise application.

In the Day 5 version of the case study, there are no EJB references between EJBs (you
will see some such references between EJBs tomorrow), but there are EJB references
from the clients and the EJBs. These are shown in Figure 5.11.

When EJB references are defined, they must also be mapped to the physical environment.
Figure 5.9 showed the mapping of EJBs and of references to JNDI names. These are shown
in the bottom half of the window of Figure 5.9. As an experiment, try temporarily creating
a EJB (remote) reference between the beans themselves, and then return to the JNDI tab in
deploytool (as shown in Figure 5.9). Here, the deployer should indicate the JNDI name
for the EJB that implements the remote interfaces. As required by the EJB specification,
deploytool validates that the JNDI name that is mapped by the deployer to the EJB refer-
ence is compatible with any ejb-1link that may have been specified by the application
assembler. When you have finished experimenting, you should delete these EJB references.

|190 Day 5

=3 Application Deployment Taol: agency (changed)
ile Edit Tools Help

eEel@s B ffff 50 |&PlE @ T f

FIGURE 5.11
There are EJB refer-

ences from the clients @ CFiles
© [Applications
to the EJBs. ? & agency
5 TTart rEJB’s Referenced in Code
NICI\ems Coded Name Type |Interfac..| Home Interface [Local/Remote In..) &
TableClient ejb/Advertise Session |Remote |agencyiAdvertis... |agency/Advertise 151
[RegisterClient cjb/Advertisedob |Session |Remole [agencyAdverts... [apency.Advertis... | [|
[& AdminClient ejbiAgency Sesslon |Remole [agency.AgencyH..|agency.Agency | [|
? B Agency
@ ReqisterBean
@ AdvertiseBean
@ AdvertiseJobBean Add
@ AgencyBean

) JHDI Hame:

Resource References

Yesterday, you learned that the EJB container allows DataSources to be obtained via
JNDI. Within the deployment descriptor, a resource reference is used to define that
dependency of the EJB. The term resource reference is used instead of database refer-
ence because an EJB can depend on data resources other than databases. It could also
depend on an e-mail session (Day 11, “JavaMail”), on a URL, on a message topic or
queue factory (Day 10, “Message-Driven Beans”), or on a general resource as defined by
the Connector architecture (Day 19, “Integrating with External Resources”).

The Agency bean has a dependency on a DataSource reference that it refers to as
jdbc/Agency. This can be seen in the ejbCreate () method of the AgencyBean code. As
with the environment entries, note that resource reference has been bound by the EJB
container under the context java:comp/env:

InitialContext ic = new InitialContext();
dataSource = (DataSource)ic.lookup("java:comp/env/jdbc/Agency");

Resource references are defined in the DTD as follows:

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-auth, res-
sharing-scope?)>

Going through these in turn

¢ The res-ref-name element is the coded name of the referenced resource.

* The res-type element is the fully-qualified interface or class name of the resource.

Session EJBs 191 |

* The res-auth element indicates whether the container will provide the authentica-
tion information (username and password) or the application itself. In other words,
it indicates which overloaded version of DataSource.getConnection() will be
called—the one where username and password are supplied (Application authenti-
cation) or where they are not (Container authentication).

e The res-sharing-scope element indicates whether this resource can be shared
among beans (the default) or whether a separate resource will be set up for this
bean’s exclusive use.

So, in the deployment descriptor for the Agency bean, you will see the following:

<resource-ref>
<res-ref-name>jdbc/Agency</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

This information is also shown in deploytool, as shown in Figure 5.12.

[E3 Application Deployment Taol: agency (changed)
e Edit Tools Help

eEel@s B ffff 55 & @|@ & f

FIGURE 5.12

Resource references
can be managed @ DFiles
© [Applications

graphically by deploy - Y e
[@] AdvertissClient
tool. Allclients
TableClient Sharable
ReaisterClient i L5(] e
[@] AdminClient javax.sql.DataSource
@ B Agency liavax.mail.Session
@ ReqisterBean liava.net URL.
@ AdvertiseBean)
javaxjms.QueuaConnei

[javax.jms.TopicConnectid Add

[javax.resource.cci.Conng
Delete...

@ AdvertiselobBean
@ AgencyBean

Deple nt setting for

JNDI Name:
‘]nncmgenty |

User Name: Password:

Again, resource references must be mapped to physical resources. You defined the physical
resources for the case study on Day 2, when you edited the resource.properties file
within %J2EE_HOMES\config. The entries that are relevant to this discussion are as follows:

jdbcDataSource.5.name=jdbc/Agency
jdbcDataSource.5.url=jdbc:cloudscape:rmi:Agency

|192

Day 5

This instructs J2EE RI to create a DataSource using a URL of
jdbc:cloudscape:rmi:Agency and bind it into JNDI with a name of jdbc/Agency.

From the deployment descriptor, you can see that the declared resource reference in the
AgencyBean Session bean code is jdbc/Agency and is also mapped to a JNDI name of
jdbc/Agency. The fact that the logical and physical names are the same string strings can
be a source of confusion; the point is that both are needed. Moreover, the logical
resource reference could have been anything at all, so long as it is the same string that
appears in the code, in the standard ejb-jar.xml deployment descriptor and the vendor-
specific auxiliary deployment descriptor.

The mapping between these two names is performed on the JNDI tab of deploytool, as
shown in Figure 5.9. You should be able to see there that, for example, the resource refer-
ence in the Agency bean called jdbc/Agency maps onto the JNDI name of jdbc/Agency.
The auxiliary deployment descriptor has the following entries:
<j2ee-ri-specific-information>
// lines omitted
<enterprise-beans>
// lines omitted
<ejb>
<ejb-name>AgencyBean</ejb-name>
/] lines omitted
<resource-ref>
<res-ref-name>jdbc/Agency</res-ref-name>
<jndi-name>jdbc/Agency</jndi-name>
</resource-ref>
</ejb>
// remaining lines omitted

Resource Environment References

Resource environment reference entries allow access to so-called “administered objects.”
In J2EE RI, this means JMS queues or JMS topics. In future versions of J2EE, other
administered objects may well be specified.

Resource references and resource environment references sound very similar, and,
indeed, they are related. However, a resource reference is access to some sort of factory
object, used to manufacture (variously) database connections, URLs, JMS sessions, and
so on. On the other hand, an administered object must be defined up-front by an adminis-
trator and is persistent. The EJB specification doesn’t define RDBMS tables as adminis-
tered objects, but it might well have. If it had, a resource reference would be to a data-
base connection, and a resource environment reference might be to a table on the data-
base to which you have connected.

The DTD defines resource environment references as follows:

<!ELEMENT resource-env-ref (
description?, resource-env-ref-name, resource-env-ref-type)>

Session EJBs 193 |

The resource-env-ref-name is the name of the reference in the code, less the
java:comp/env prefix, and the resource-env-ref-type is either javax.jms.Queue or
javax.jms.Topic.

The Agency session bean does not have any dependencies on resource environment refer-
ences, so there is no screen shot of the deploytool. However, you will be using resource
environment references on Day 10 when you work with the Java Messaging Service and
Message-driven beans. But (again) as an experiment, try adding an resource environment
reference on the Resource Env. Refs tab. On the JNDI tab (as shown in Figure 5.9), you
should be able to indicate the JNDI name for the administered object. When you have
finished experimenting, delete the resource environment reference.

Deploying the Enterprise Application

The enterprise application can be deployed from deploytool by using the Tools, Deploy
menu option. This causes the bean’s code components to be compiled and the proxy and

home interfaces to be generated and then packaged up into an ejb-jar using information
from the underlying deployment descriptor and auxiliary deployment descriptor. Finally,

the package is deployed across the network to the J2EE RI.

Once deployed, you can run your application. To do this, use
day@5\agency\run\runAll.

Stateful Session Bean Lifecycle

Now that you have learned how to specify, implement, and deploy stateless Session
beans, it is time to look at stateful Session beans. As you shall see, there are many simi-
larities (especially with regard to the deployment), but the lifecycle is different and war-
rants close attention.

The client’s view of the lifecycle of a stateful Session bean is identical to that of a state-
less Session bean and, in truth, more closely matches the actual lifecycle as managed by
the container. Figure 5.13 shows this lifecycle.

From the client’s perspective, the bean is simply instantiated when the client calls
create() on the bean’s home interface, and it’s removed when the bean calls remove ()
on the bean itself.

The bean’s viewpoint of its lifecycle is as shown in Figure 5.14.

The principle difference between stateful and stateless Session beans is the duration of
the time that the bean is bound to the client. With a stateless Session bean, the duration
was only as long as the time needed to execute the business method. With a stateful
Session bean, however, the bean stays bound until the client releases it. In this way, there
is a quite close correspondence between the client’s and the bean’s perspectives.

|194

Day 5

FIGURE 5.13 ®

The client’s view of the deploy/setSessionContext

lifecycle of stateful

beans is identical to Context Set
that of stateless ‘

Session beans.

create/ejbCreate

—\
Ready ®
remove/ejpRemove

business method

FIGURE 5.14

A stateful Session

bean’s view of its life-
cycle includes passiva- Pooled
tion and timeouts. [timeout] [surplus]

pool too small/setSessionContext

®

create/ejbCreate

remove/ejpRemove

Bound to client

[too many active]

| Passivated /ejbPassivate | Ready

[business method or remove business method
invoked]/ejbActivate

When the client calls create() on the home interface, a Session bean instance is
obtained. Most EJB containers maintain a pool of unbound Session bean instances, so
any unused instance will be chosen. This is then bound to the client. The client can call
business methods on the bean, and because the bean will remain bound, these can legiti-
mately save to instance variables the state pertaining to the client. When the client is
done with the bean, it calls remove () which releases the bean back to the pool of
unbound instances.

Session EJBs

195|

The EJB specification uses the analogy of a shopping cart, and it is easy to see that
this is a natural fit. In such a case, the client would obtain a shopping cart bean using
create(), call methods such as addItem(), removelItem(), and checkout(), and then
release the bean using remove().

If there are many concurrent clients, the amount of memory to manage all of the clients’
state can become significant. Moreover, there is nothing to prevent a client from acquir-
ing a bean, and then not using it—an abandoned shopping cart in the aisles, if you like.
The EJB specification addresses these issues by defining the notions of passivation and
of timeouts. Passivation allows the EJB container to release the memory used by a bean,
first writing out its internal state to some secondary storage. This is transparent to the
bean’s client; when the bean is next used, the EJB container first activates the bean. How
the EJB container actually implements passivation is not specified, but the specification
does require that the Session bean is serializable, so many implementations will take this
route and serialize the bean to a file. If a bean is not used for longer than its timeout, it
can be timed out and its memory released.

N“tﬂ Perhaps surprisingly, the EJB specification does not define how the timeout
for a Session bean reference is specified. Section 7.6.3 of the specification
indicates clearly that its definition is specific to the EJB container. Usually,
the information will be captured in a vendor deployment tool and stored in
an auxiliary deployment descriptor.

Equally, the EJB specification does not indicate how the EJB container should
decide when to passivate beans (though it does suggest that a “least recent-
ly used” strategy can be employed, see section 7.6).

Figure 5.14 showed the bean’s viewpoint of its lifecycle, but the actual lifecycle as man-
aged by the EJB container is likely to be different again. After all, the whole point of
passivation is to reduce the number of bean instances; if the bean was merely “put to
sleep,” that wouldn’t have been accomplished, so Figure 5.15 shows the actual lifecycle
used by many EJB container implementations.

When the EJB container passivates a bean, its state is written out to secondary storage.
The bean instance is then destroyed. If a client whose bean instance has been passivated
invokes a method, the EJB container first re-instantiates the bean by deserializing it from
secondary storage. The business method is then invoked.

|196

Day 5

The actual lifecycle of
stateful Session beans

as managed by the Pooled
EJB container is some- ‘

FIGURE 5.15 [pool too small]

[surplus] /setSessionContext

what more complex. create/ejbCreate .
[state written] [business method
\ invoked && !
(Passivating timed out]
Ldo/'write out state to secondary storage' [timeout]
. . 3\
(Activating
Ldo/'restore state from secondary storage'
removg/ejpRemove

Bound to client‘

[too many active]
/ejbPassivate

[state restored]/ejbActivate

business method

Specifying a Stateful Session Bean

Specifying a stateful Session bean is similar to specifying a stateless Session bean. The
remote interface defines access to the bean by remote clients, and every method of the
remote interface must throw an RemoteException. The primary difference (from a speci-
fication viewpoint) is that there can be multiple create () methods in the home interface.

You will recall that a stateless Session bean allows only for a single create() method in
the home interface, and this corresponds to the ejbCreate () method of the bean itself.
For a stateful Session bean, the create () method can be overloaded, so that the stateful
bean can be given some initial state. From the client’s viewpoint, this is somewhat analo-
gous to invoking a constructor on the bean.

For example, the Advertise bean in the case study is stateful. It represents an advertiser
of job positions. The home interface for this bean is as follows:

package agency;

import java.rmi.*;
import javax.ejb.*;

public interface AdvertiseHome extends EJBHome

Session EJBs 197 |

{
}

Obviously, the create() method has a corresponding ejbCreate () method in the
AdvertiseBean class itself. This ejbCreate () method must instantiate the bean with any
appropriate state, as shown in listing 5.4.

Advertise create (String login) throws RemoteException, CreateException;

LISTING 5.4 AdvertiseBean.ejbCreate() Method

1: package agency;

2: // imports omitted

3:

4: public class AdvertiseBean implements SessionBean

5: {

6: private String login;

7: private String name;

8: private String email;

9: private String[] address;

10: private Collection jobs = new TreeSet();
11:

12: public void ejbCreate (String login) throws CreateException {
13: this.login = login;

14:

15: /| database detail not shown
16: name = ..;

17: email = ..;

18: address[0] = ..;

19: address[1] = ..;

20: jobs = new TreeSet();

21: while(..) {

22: jobs.add(..);

23: }

24: }

25: }

Alternatively, the EJB specification allows for methods named createXxX() to be
defined in the home interface, with corresponding methods ejbCreatexXXx (). These
methods can take parameters if required. Whether you choose to use this facility or just
use regular overloaded versions of create()/ejbCreate() is up to you.

Other than this one change of being able to pass in state in the create () method, there
really is little difference in the specification of a stateful bean compared to that of a state-
less Session bean. The remote interface of the stateful Advertise Session bean is shown
in Listing 5.5.

|198 Day 5

LiIsTING 5.5 The Remote Interface for the Stateful Advertise Bean

1: package agency;

2

3: import java.rmi.*;

4: import javax.ejb.*;

5:

6: public interface Advertise extends EJBObject

7: {

8 void updateDetails (String name, String email, String[] Address)
=throws RemoteException;

9: String getName() throws RemoteException;

10: String getEmail() throws RemoteException;

11: String[] getAddress() throws RemoteException;

12: String[] getJobs() throws RemoteException;

13:

14: void createdJob (String ref) throws RemoteException,
=DuplicateException, CreateException;

15: void deletedob (String ref) throws RemoteException, NotFoundException;

16: }

The ejbCreate () method from the home interface supplies the information to the bean
so that it can retrieve the data about the advertiser from the database. The remote inter-
face allows this information to be accessed and be updated.

Implementing a Stateful Session Bean

When implementing a stateful Session bean, there are a number of issues that you must
keep in mind. They are discussed in this section.

Passivation

Unlike stateless Session beans, stateful Session beans are at liberty to store client-
specific state information in instance variables. However, because your bean may be pas-
sivated, any instance variables you define must be either primitives, references to serial-
izable objects, or—failing that—be transient.

Of course, any transient variables will be reset to null if the bean is passivated and
then re-activated, so your implementation will need to deal with this. Classes that are not
serializable often depend in some way on the environment, such as an open
java.net.Socket, so that your bean can act as a network client to some service. The
general approach to dealing with this is to store other data that is serializable in instance
variables during the ejbPassivate() method. Then, the non-serializable reference can
be re-instantiated in the ejbActivate () method using this other data.

Session EJBs

199|

For example, in the case of a Socket, your bean could hold a String and an int repre-
senting the hostname and the port number of the socket. The instance variables and
ejbActivate () method could would be something like the following:

import java.net.*;
/] code omitted.

private transient Socket clientSocket;
private String socketHost;
private int socketPort;
public void ejbActivate() {
this.clientSocket = new Socket(socketHost, socketPort);

}

Although your Session bean must itself be serializable, it is not necessary to explicitly
implement the java.io.Serializable interface. This is because the
javax.ejb.SessionBean interface extends from Serializable (by way of its super-
interface, javax.ejb.EnterpriseBean).

“I] Given that passivation causes quite a few implementation headaches, some
commentators have asked why the EJB specification goes to such lengths to

define a passivation mechanism. After all, operating systems are very good

at paging memory to disk, and this is all that the “secondary storage” is

really accomplishing.

These are good questions, with no ready answers. But if you would rather

have the operating system do the work and keep your beans simple, just
configure your beans with a very high passivation threshold.

You may be wondering how to handle passivation in a stateful Session bean that has a
reference to a home or remote interface of another EJB, a javax.sql.DataSource or
some other resource connection factory. After all, none of these references may be serial-
izable. Luckily, though, the EJB specification puts the onus for worrying about these ref-
erences on the EJB container (section 7.4.1). In other words, your bean is at liberty to
hold references to any of these types of objects, and you don’t need to care whether they
are serializable. Of course, most EJB container vendors are likely to comply with this
part of the specification by making sure that these objects are serializable.

Timeouts

Another difference between stateful and stateless Session beans is that stateful Session
beans may timeout. If a bean is timed out, the client’s reference is no longer valid, and any
further invocations on that reference will result in a java.rmi.NoSuchObjectException for
remote clients.

| 200 Day 5

You should note from Figure 5.14 that if a bean times out, its ejbRemove () method will
not be called. This means that you shouldn’t adopt a convention of acquiring external
resources in ejbCreate() with a view to releasing them in ejbRemove (). Even releasing
the resources in ejbPassivate () is not enough, because a bean can be timed out even
from its ready state.

ﬂalllillll Don’t confuse passivation and timeout. An EJB container might implement
passivation using an LRU strategy and allow a bean timeout to be specified
in seconds. If the EJB container is not busy, a bean will not be passivated
according to the LRU strategy, but it may hit its timeout nevertheless.

Chaining State

It is generally a bad idea to have more than one stateful Session bean involved in any
conversation, because no matter which way you cut it, there’s always the chance that one
of them will time out, preventing the other from completing.

To see this, suppose the client calls stateful Session A, which, in turn, uses the services
of stateful Session B. There are two cases—the timeout of A is larger than that of B, or
the timeout is less than that of B. Taking each in turn

* Suppose that the timeout of Session bean A is 30 minutes and that of Session bean
B is 20 minutes. The client makes a call on A at time t{=0, which then calls B. If
the client calls A at time ty = t{ + 25 minutes, A’s call to B will fail because B will
have timed out.

» Suppose now that the timeout of Session bean A is 20 minutes, and that of Session
bean B is 30 minutes. The client makes a call on A at time ty=0, which then calls
B. The client then calls A again at time ty = t{ + 19 minutes, although for this call,
A does not need to call B to service the request. If the client calls A again at time
t3=ty + 19 minutes = t1 + 38 minutes, A’s call to B will fail because B was last
invoked more than 30 minutes ago and will have timed out.

A similar problem can occur with session beans and servlets; this is discussed on Day 12.

Configuring and Deploying a Stateful
Session Bean

Configuring and deploying a stateful Session bean is just the same as deploying a state-
less Session bean. The only difference is that the session-type element in the deploy-
ment descriptor will be set to Stateful.

Session EJBs 201 |

Client’s View

Yesterday, you saw how to use JNDI to obtain a reference to a Session bean home and
how to obtain a Session bean by calling the appropriate create () method. Now that you
have a full understanding of how Session beans work, there are a few other points that
are worth appreciating.

First, if your client has a reference to a stateless Session bean, although it should call
remove () when it is finished with the EJB, this method call doesn’t actually do particu-
larly much. In particular, it won’t release any bean resources itself, as shown clearly by
the state chart diagrams in Figure 5.3. What this will do is allow the EJB container to
remove the EJBObject proxy for the bean.

Conversely, calling create () for a stateless Session bean doesn’t necessarily cause
ejbCreate () to be called on the underlying bean, although the client will have a refer-
ence to an EJBObject after making this call.

One benefit of stateless beans over stateful is that they are more resilient. That is, if the
client invokes a method on a stateless bean and it throws an exception, the client can still
use their reference to try again. The client does not need to discard the reference and
obtain a new one from the home interface. This is because, behind the scene, the EJB
container will have discarded the bean that threw the exception, but can simply select
another bean from the pool to service the client’s retry attempt. This is safe to do because
the stateless Session beans have no state. Of course, it is possible that the retry attempt
might fail; it would depend on the underlying cause of the exception.

In contrast, if a stateful Session bean throws an exception, the client must obtain a new
Session bean reference and start its conversation over again. This is because the EJB con-
tainer will have discarded the Session bean that threw the exception, discarding all the
client’s conversational state in the process.

Sometimes, a client may end up having two references to a Session bean. It may have
obtained them both from other method calls, for example. More precisely, the client will
have two RMI stubs to Session beans. If the client wants to determine whether these two
stubs refer to the same Session bean, it should not call the equals () method. This almost
certainly will not return true. Instead, the client should call isIdentical(EJBObject) on
the reference. This indicates whether both stubs refer to the same Session bean. Note that
two references to the same stateless Session bean will always return true, because—at
least conceptually—there is only a single instance (see EJB specification, section 7.5.6).

Earlier today, you saw the different types of exceptions that a bean can throw. If a bean
throws an application exception, the EJB container will propagate it back to the client. If
the bean throws an EJBException (representing a system exception), the EJB container
will throw a java.rmi.RemoteException in turn.

| 202 Day 5

For the client, any RemoteException represents a severe problem. It doesn’t really matter
to the client if the RemoteException has arisen because of a network problem or because
of a problem with a bean. Either way, it will be unable to recover the problem.

Table 5.1 lists the system exceptions shown in Figure 5.5 and indicates how each is
raised and thrown. As you will see, the majority are raised when the EJB container itself
has detected a problem with either transactions or security. You will learn more about
transactions on Day 8, and more about security a week later on Day 15, “Security.”

TaBLE 5.1 System Exceptions Are Thrown in a Variety of Situations

What Event Client Receives
Any bean Throws javax.ejb.EJBException java.rmi.
(or any subclass) RemoteException
BMP Entity bean Throws NoSuchEntityException java.rmi.NoSuchObject
Exception
Container When client invokes method on a java.rmi.NoSuchObject
reference to a Session bean that no Exception

longer exists

When client calls a method without javax.transaction.

a transaction context TransactionRequired
Exception

When client has insufficient security access java.rmi.
AccessException

‘When transaction needs to be rolled back javax.transaction.

TransactionRolledBack

Exception

If you are wondering what BMP Entity beans are, the phrase is an abbreviation of “bean-
managed persistence Entity beans.” You’ll be learning about those tomorrow.

Patterns and Idioms

You now know all the important theory behind writing Session beans, but it’s always
helpful to have one or two real-world insights into how to write them in practice.
Patterns (or more fully, “design patterns”) are documented pearls of wisdom. Idioms are
much the same thing, although they tend to be more lower-level and code-oriented.

On Day 18, many of the design patterns discussed piecemeal throughout the book will be
brought together to see how they apply to all aspects to the J2EE environment. Some of

Session EJBs 203 |

those given here will be presented more fully. But for now, there are patterns and idioms
specific to writing session EJBs. Reading this section might save you some time.

Business Interface

One of the peculiarities of the EJB architecture is that there is no direct link between the
defined remote interface and the bean that provides the implementation. For example, the
remote interface Advertise is not implemented by AdvertiseBean. However, no link is
needed because the EJB specification declares that it is the vendor’s deployment tools
that are responsible for ensuring that every method defined in the remote interface has a
corresponding method in the bean, and that the required methods for the home interfaces
also exist.

However, this means that any mismatches between the interface and the bean’s imple-
mentation will be picked up not during compilation, but during deployment. From a
practical point of view, this can make debugging the problem harder. After all, you are
probably accomplished at reading compile errors and figuring out what the cause of the
problem is. But you won’t (at least initially) be familiar with the errors that the vendor’s
deployment tool throws up when it announces that your bean does not comply with the
EJB specification.

One idiom that solves this is to create an additional interface that defines just the busi-
ness methods. This interface is sometimes called the business interface. Then, the bean
implements the business interface, while the remote interface for the bean extends that
business interface.

This hasn’t been done in the case study, so as not to complicate and confuse. However, it
would be simple enough to introduce a business interface. Figure 5.16 shows a UML
class diagram that illustrates this for the Advertise bean.

With this idiom, if there is a mismatch between the interface and the bean, it will be
picked up during compile time.

There is just one subtlety of which you must be aware. When applying this technique to
the remote interface of a bean, the methods in the business interface must all throw
java.rmi.RemoteException. This is because the vendor-generated EJBObject for the
remote interface must follow the rules of remote objects, so that every one of its public
methods throws the RemoteException. This applies also to the inherited methods of the
business interface. The AdvertiseBus interface is shown in Listing 5.6.

| 204

Day 5

FlGURE 5.1 6 interface
. . AdvertiseBus
Defining a business nterface

interface means that java.rmi.Remote Zg:ﬁﬁnoeeraf/s
the bean can imple- getEmail
ment that interface.

getAddress
getJobs
interface interface createJob interface
EJBHome [~~~ ~~""7777777 EJBObject deleteJob SessionBean
P50 4
lecca-
1]

interface interface com.mycompany.agency.AdvertiseBean
com. agency.A iseHom e com.my agency.Advertise com.mycompany.agency.Advertise
com. agency. iseHome
= dataSource
login

name
email
address
jobs

ctx

create

loadJobList

error
closeConnection
ejbPassivate
ejbActivate
ejbRemove
setSessionContext

ejbCreate

updateDetails
getlLogin
getName
getEmail
getAddress
getJobs
createJob
deleteJob

LISTING 5.6 AdvertiseBus Interface

package agency;
import javax.ejb.*;
import java.rmi.RemoteException;

public interface AdvertiseBus {
void updateDetails (String name, String email, String[] address)
= throws RemoteException;
String getName() throws RemoteException;
String getEmail() throws RemoteException;
String[] getAddress() throws RemoteException;
String[] getJobs() throws RemoteException;
void createdob (String ref) throws RemoteException,
= DuplicateException, CreateException;
12: void deletedJob (String ref)
=throws java.rmi.RemoteException, NotFoundException;

o0 N =

—_
- © © 0 N

Adapter

As you write your EJBs, you will quickly find yourself writing reams of “boilerplate”
code. For example, the setSessionContext () method almost always just saves the

Session EJBs 205 |

session context to an instance variable. The ejbActivate () and ejbPassivate() meth-
ods often do nothing at all.

If you have written any GUI applications using AWT or Swing, you almost certainly will
have used the various Adapter classes in the java.awt.event package. For example, the
java.awt.event.WindowAdapter class provides empty implementations of the seven
methods in the java.awt.event.WindowListener interface.

Adapter classes can also provide common default functionality. For example, the
AbstractList class acts as an adapter to the List interface in the java.util package,
providing the majority of the implementation required. Although the List interface
defines 25 methods in total, the AbstractList class implements all but two of them.

Creating an adapter for your Session beans can save you time in the long run. You can
provide default implementations for many of the lifecycle methods, and can also provide
additional methods. For example, you might decide to provide a 1og() method that will
forward any log messages to some remote URL or to a logging database.

Coarse-Grained

Remote Session beans should offer coarse-grained services. In other words, the services
offered by a remote Session bean should do large(-ish) chunks of work. The overhead of
the network to use these beans then becomes much less significant.

There are a number of approaches for arranging this. One approach is to create value
object classes. These are serializable objects that encapsulate enough information for the
Session bean to provide some service. The client populates these value objects and then
sends them across the wire as part of the remote method call. The Session bean then
interrogates its copy of the value object to accomplish its work. You will learn about the
value object pattern and some related patterns more fully on Day 18.

The value object idea as described is to encapsulate enough data in an object such that
the Session bean can do a reasonable chunk of work, but the responsibility for figuring
out what that chunk of work is still resides with the Session bean. A natural extension to
this concept is to place that responsibility into the value object itself. In effect, the value
object represents the action or command to be invoked. Indeed, the name of this design
pattern is the Command design pattern.

Gotchas

As you start to implement your own Session beans, there’s bound to be a couple of
aspects that will trip you up. The following quick checklist of such “gotchas” should
keep you on the straight-and-narrow:

| 206

Day 5

e When you look up resources from JNDI, you should use a string of the form
java:comp/env/xxx. However, in the deployment descriptor, only the XXX is need-
ed; the java:comp/env prefix is implicit.

e Perhaps obvious, but don’t use ejb as a prefix for naming your business methods.
Names of that format are reserved for the EJB architecture callback methods.

e Don’t implement the remote interface in your bean! If you do so, your bean could
inadvertently return itself (Java keyword this) as a return type. If a client starts
invoking methods on this reference, it will bypass all of the EJB container’s trans-
action and security control that is managed within the EJBObject proxy to the
bean. Instead, use the business interface idiom mentioned earlier today.

e The EJBObject interface defines a getPrimaryKey () method; the EJBHome inter-
face defines a remove (Object primaryKey) method. Attempting to call either of
these for a Session bean will immediately throw a RemoteException, so don’t do
it. They are there only for Entity beans, discussed tomorrow.

e You’ll learn more about transactions on Day 8, but for now, remember that you
should not perform work that updates a database in the ejbCreate or ejbRemove
method, or indeed the other ejbxxx () lifecycle methods. This is because the trans-
action context is undefined. See section 7.5.7 of the EJB specification for more
details.

e Don’t try to have a Session bean call itself through its own EJBObject; it won’t
work. This is prevented so that the bean developer does not need to worry about
multiple threads. In other words, Session beans are non-reentrant. Of course, your
bean can call methods on itself directly through its implicit this reference.

* An ejbCreate() is required for stateless Session beans. It isn’t in the
javax.ejb.SessionBean interface because stateful Session beans won’t necessari-
ly have a no-arg create() method.

Summary

You’ve covered a lot of ground today. You’ve learned that there are stateless and stateful
Session beans, and each has their own lifecycle. You’ve seen in detail how to specify a
Session bean by defining its home and remote interfaces and how to implement a bean
by providing corresponding implementations for the methods in the home and remote
interfaces, as well as how to implement the lifecycle methods as defined in the
javax.ejb.SessionBean interface.

You’ve also learned in detail how the deployment descriptor provides configuration
information describing the bean’s characteristics and dependencies to the EJB container.

Session EJBs

207 |

Additionally, you’ve seen that those dependencies are logical dependencies that must be
mapped by the EJB deployer role to the physical resources defined through vendor-
specific auxiliary deployment descriptor.

Finally, you’ve learned about some common techniques, design patterns, and idioms that
can simplify your coding and that represent best practice.

Q&A

Q What sort of state can stateless Session beans have?

A Somewhat surprisingly, stateless Session beans can store state, but it must be inde-
pendent of the client.

Q What is the prefix that will appear in all JNDI lookups?

A The java:comp/env context is guaranteed to exist in an J2EE environment.

Q How are EJB system exceptions different from regular Java exceptions?

A RemoteExceptions can be caused by network problems, which, in the context of
distributed J2EE enterprise applications, represent a system-level rather than
application-level exception.

Q How is the timeout for a stateful Session bean defined?

A Surprisingly, the mechanism for specifying the timeout interval for a stateful
Session bean is not mandated in the EJB specification.

Exercises

The exercise starts with a version of Day 5’s job agency case study that already provides
a number of beans:

There is a stateless Agency bean that returns lists of all applications, customers,
locations and skills in the database.

There is a stateful Advertise bean that allows advertisers (of jobs) to update their
name, e-mail, and address, and to manage the jobs they have posted to the job
agency.

There is a stateful Advertisedob bean that represents an advertised job. This
allows the description, location, and required skills to be maintained.

However, it does not define any bean for the potential job applicants at this point. What
is required is a Register bean that allows applicants to register themselves with the job
agency. The exercise is to implement the RegisterBean, define this new bean within the
supplied agency.ear enterprise application, configure the bean, deploy your bean to the
J2EE RI, and finally test with either RegisterClient or A11Clients (supplied).

| 208 Day 5

Under the day@5\exercise directory, you will find a number of subdirectories, including
the following:

e src The source code for the EJBs and clients.
e classes Directory to hold the compiled classes; empty.

e build Batch scripts (for Windows and Unix) to compile the source into the class-
es directory. The scripts are named compileXXX.

e jar Holds agency.ear—the agency enterprise application. Also holds
agencyClient.jar, the client-side JAR file optionally generated when deploying
EAR. This directory also holds some intermediary JAR files that are used only to
create the previous two JAR files.

e run Batch scripts (for Windows and Unix) to run the JARs. Use the files in the
jar directory.

The Register and RegisterHome interfaces have been provided for you, under the src
directory. For example, the Register interface is as follows:

package agency;

import java.rmi.*;
import javax.ejb.*;

public interface Register extends EJBObject
{
void updateDetails (String name, String email,
- String location, String summary, String[] skills)
- throws RemoteException;
String getLogin() throws RemoteException;
String getName() throws RemoteException;
String getEmail() throws RemoteException;
String getLocation() throws RemoteException;
String getSummary() throws RemoteException;
String[] getSkills() throws RemoteException;
}

Today’s exercise is to implement the RegisterBean, configure an appropriate deploy-
ment descriptor, deploy your bean to the J2EE RI, and then test with the
RegisterClient. The bean will need to be stateful.

If you need some pointers as to how to go about this, read on.

1. Create a RegisterBean.java file and place this in day@5\exercise\src\agency.

2. Implement RegisterBean to support the Register and RegisterHome interfaces
supplied. Base your implementation on that of AdvertiseBean, if you want.

Session EJBs

209 |

3. Compile the RegisterBean code and the other interfaces, using the
build\compileAgencySessionEjbs script. Note that this expects the JAVA_HOME
and J2EE_HOME environment variables to be set.

4. In deploytool, open up the existing enterprise application
(day@5\exercise\jar\agency.ear). Then, add the your Register bean to the
existing Agency ejb-jar by using File, New, Enterprise Bean. Specify the contents
to include all the required class files.

5. Configure the deployment descriptor for the RegisterBean appropriately. The bean
will need to be stateful. You will need to specify resource references and JNDI
names for the RegisterBean; bind the bean to a name of ejb/Register.

6. For the RegisterClient application client, configure the EJB reference appropri-
ately. This has a coded name of java:comp/env/ejb/Register to refer to the
RegisterBean.

7. Deploy your bean by selecting it and using Tools, Deploy. As you do this, you will
need to define the appropriate JNDI mappings (mapping the logical EJB references
to the physical runtime environment). Request a client JAR file to be created,
called agencyClient.jar, to reside in the JAR directory.

8. To test out your bean, compile A11Clients using the
build\buildAllClientsClient script. Then run the client using run\runAll.

You may also have noticed that in the build directory there are several other scripts apart
from those to compile the source. In fact, these can be used to recreate the agency.ear
file using the deployment descriptors held in the dd directory. You will be learning more
about this approach tomorrow. For now, all that you need to know is that the agency.ear
file can be created automatically by running the bat\buildall script. It requires that the
RegisterBean class exist to run successfully. You can then use deploytool to manually
define and configure the RegisterBean within the EAR.

The solution to the exercise is under day@5\agency.

WEEK 1

DAY 6

Entity EJBs

Yesterday, you learned about Session beans, and how they provide a service to
a specific client.

The major topics that you will be covering today are
* How Entity beans represent domain objects, providing services that can
be used by all clients

* Two types of Entity beans—bean-managed persistence (BMP) and
container-managed persistence (CMP)

* How EJBs can provide a local interface in addition to their remote inter-
face

» Specifying, implementing, configuring, and deploying BMP Entity beans

¢ Configuring and deploying EJBs from the command line rather than
using a GUI

Overview

When building IT systems, the functionality required of the application must
be specified and the business objects within the domain must be identified.

|212

Day 6

In “traditional” client/server systems, the application’s functionality can be implemented
in the front-end application or perhaps using database stored procedures, and the domain
objects are usually tables within an RDBMS. In building an EJB-based system, the appli-
cation’s functionality corresponds to Session beans, and the domain objects correspond
to Entity beans.

You learned yesterday that Session beans take on the responsibility of implementing the
application’s business functionality. There will still be a presentation layer to display the
state of those Session beans, but its detail is unimportant in the larger scheme of things.

In the same way, Entity beans take on the responsibility of representing the domain data.
There will still a persistent data store to manage the data, almost certainly an RDBMS,
but the Entity beans abstract out and hide the detail of the persistence mechanism.

The N-tier Architecture Revisited

On the very first day, you were introduced to n-tier architectures, with the business logic
residing in its own tier. With an EJB-based system, both Session and Entity beans are
objects, so the business logic could be reside in either of them. In practice, the business
logic will be split over both, but to make the correct decision, it is worthwhile analyzing
what is meant by that phrase “business logic.”

Business logic refers to the collection of rules, constraints, procedures and practices put
in place by the business users to conduct their business. Some of the rules and con-
straints cannot be changed by the business, due to the domain in which the business is
performed. For example, there could be legal constraints and obligations. The procedures
and practices represent the (one particular) way in which business users have chosen to
conduct business.

Rules and constraints generally apply across all applications. In other words, it doesn’t
matter what the business is trying to accomplish, they will still need to comply with such
rules and constraints. This sort of business logic is best implemented through Entity
beans, because Entity beans are domain objects that can be reused in many different
applications.

In the business world, procedures and practices are usually the expression of some sort of
application, so Session beans are the best vehicle to implement this type of business
logic. Indeed, introducing computerized systems often changes these procedures and
practices (hopefully for the better, sometimes for the worse) because computers make
available new ways of accomplishing tasks.

 Session beans should have the business logic of a specific application—in other
words, application logic. The functionality provided should allow the user to
accomplish some goal.

Entity EJBs

213|

FIGURE 6.1

EJBs separate out
business logic into
application and
domain logic.

* Entity beans represent domain objects and should have business logic that is
applicable for all applications—in other words, domain logic. Usually, this logic
will be expressed in terms of rules and constraints.

If there is any doubt as to where the functionality should be placed, it is safer to place it
with the Session bean. It can always be moved later if it is found to be truly re-usable
across applications.

Figure 6.1 shows a UML component diagram to illustrate that there are at least four logi-
cal layers in an EJB-based system. Normally, at least some of these layers will be on the
same physical tier.

«swing»
user interface

«session EJB»
-= application logic -

«serviet»

user interface - « «entity EJB» «database»

L> domain logic > persistence layer

->

-————-

«servlet» «session EJB»
user interface - application logic

[SR

Comparison with RDBMS Technology

It’s natural to compare Entity beans with relational databases, because there is a signifi-
cant overlap in the objectives of both technologies.

If you like to think in client/server terms, you could think of Session beans as being an
extension of the “client”, and Entity beans as being an extension of the “server”. It’s
important to realize that many clients can share a given Entity bean instance at the same
time, just as many database clients can read some row from a database table at the same
time.

You can also think of Entity beans as a high-performance data cache. Most RDBMS’
store data pages or blocks in a cache so that the most commonly used rows in tables can
be read directly from memory rather than from disk. Although the EJB specification does
not require it, many EJB containers adopt a strategy such that Entity beans are also
cached, so the data that they represent can also be read directly from memory. The
advantage of the Entity bean cache over an RDBMS’ data cache is that the Entity beans
already have semantic meaning and can be used directly. In contrast, data read from an
RDBMS’ data cache needs to be reconstituted in some way before it can be used.

|214

Day 6

Identifying Entities
At their simplest, Entity beans can correspond to nothing more complex than a row in a

database; any data that might reasonably be expected to exist in a relational database
table is a candidate. This makes examples of Entity beans easy to come by:

e A customer Entity bean would correspond to a row in a customer table keyed by
customer_num. The list of contact phone numbers for that Customer (in a
customer_phone_number detail table keyed on (customer_num, phone_num) would
also be part of the Customer Entity bean.

* An Invoice Entity bean might correspond to data in the order and order_detail
tables.

* An Employee Entity bean could be persisted in an employee table. The employee’s
salary history might also be part of the Entity bean.

Identifying entities can be made easier if a proper discipline is adopted with relational
modeling of the database. Of course, many databases just evolve over time as developers
add tables to support new requirements. Ideally, though, there should be a logical data-
base model and a physical database model. The former is usually captured as an Entity
relationship diagram (ERD) with entities, attributes, and relationships. Relational data-
base theory defines a process called normalization and different normal forms that aim to
eliminate data redundancy. It is this stage at which the normalization rules are applied, to
get to third normal form (at least).

“I] This isn't a book on relational database design, but here’s a cute phrase that

you can use to get you to third normal form: “every non-key attribute
depends upon the key, the whole key, and nothing but the key (so help me
Codd!).” If you are wondering who Codd is, that’s Dr. Codd who in the early
1970s laid down the mathematical foundations for relational theory.

Converting a logical database model to a physical model is in many ways mechanical.
Every entity becomes a table, every attribute becomes a column, and every relationship is
expressed through a foreign key column in the “child” table.

These entities identified in logical data modeling are the very same concepts that should
be expressed as Entity beans. Moreover, one of the key “deliverables” from performing
relational analysis is the selection of the primary key—the attribute or attributes that
uniquely identify an instance. Entity beans also require a primary key to be defined,

and this is manifested either as an existing class (such as java.lang.String or
java.lang.Integer) or a custom-written class for those cases where the key is composite.

Entity EJBs

215|

The name often given to such primary key classes is something like BeanPK, although it can
be anything. You can think of the primary key as some object that identifies the bean.

N“tﬂ The requirement of a primary key class to identify Entity beans has led to
criticism —in particular, by vendors of object-oriented DBMS—that the tech-
nology is not particularly object-oriented. In an OODBMS, the object does
not need a primary key identifier; it is identified simply by its reference.

Nevertheless, there are some differences between relational entities and Entity beans.
Whereas relational modeling requires that the data is normalized, object modeling places
no such constraints. Indeed, not even first normal form (where every attribute is scalar)
needs to be honored. For example, a Customer Entity bean might have a vector attribute
called phoneNumbers, with a corresponding accessor method getPhoneNumbers () that
returns a java.util.List. In a physical data model, there would need to be a separate
table to hold these phone numbers.

Even with a solid logical data model to guide you, selecting Entity beans is not necessar-
ily straightforward. In particular, choosing the granularity of the entities can be problem-
atic. With the customer example given earlier, the customer_phone table doesn’t really
seem significant enough to be an Entity. It’s just the way in which vector attributes have
to be modeled in relational databases. But what of the invoices? After all, invoices are
sent to customers, and any given invoice relates only to the orders placed by a single cus-
tomer. So perhaps invoices should be considered as just vector attributes of customers,
with a getInvoices() accessor method? On the other hand, many modelers would argue
that the concept of Invoice is significant enough in itself—with its own state, behavior,
and lifecycle—to warrant being represented as its own Entity bean.

Specifying the interfaces should help you decide which is the correct approach. If the
invoice entity really is significant, you will find that the customer’s interface will be bloated
with lots of invoice-related methods. At this point, you can tease the two entity objects apart.

ﬂalltil]ll If you read old text books on EJB design, you will find that the traditional
(pre EJB 2.0) advice for Entity beans is that they should be coarse-grained—
in other words, that data from several tables correspond to a single entity.
This advice arose because of a combination of factors relating to pre EJB 2.0
Entity beans, one in particular being that Entity beans had to be remote
(implement the java.rmi.Remote interface).

These factors are no longer true, so the advice is out of date. Fine-grained
Entity beans are perfectly feasible for an EJB container that supports the EJB
2.0 specification.

|216

Day 6

The javax.ejb Package for Entity Beans

Yesterday, you saw the interfaces and classes in the javax.ejb package that related to
Session beans. Figure 6.2 shows the interfaces and classes relevant to Entity beans.

FIGURE 6'2 interface interface
. L. EJBMetaData HomeHandle
The javax.ejb inter-
_ getEJBHome getEJBHome
f aces and classes per getHomelnterfaceClass T A
taining to Entity beans. getRemotelnterfaceClass \IV 1 - interface
getPrimaryKeyClass ! interface EJBContext
isSession <~ | interface EJBLocalHome |<< —|
isStatelessSession |- = EJBHome getEJBHome
remove getEJBLocalHome
remove A getEnvironment
remove | getCallerldentity
getEJBMetaData j<< - — P, getCallerPrincipal
getHomeHandle : isCallerinRole
T /\ | isCallerinRole
] | N getUserTransaction
\IV N 1 setRollbackOnly
| | getRollbackOnly
interface interface | :
java.rmi.Remote ey | Handle : H
| ! -
I getEJBObject | | interface
1 A | | EnterpriseBean
|
| |
Vit ' -
" | interface ?
interface ! EntityContext
. RN N,
EJBObject [<< " :
interface » ge:ggg%qa/?blect interface
getEJBHome P -1 9¢ ject EntityBean
getPrimaryKey EJBLocalObject getPrimaryKey
rergj ved/ getEJBLocalHome A setEntityContext
getHandle ; D, unsetEntityContext
isldentical getPrimaryKey ejbRemove
remove jorien
isldentical ejbActivate
ejbPassivate
ejbLoad
ejbStore

As you can see, many of the supporting classes are common, which is good news
because that means there’s less to learn. The principle differences are as follows:

* The Entity bean implements javax.ejb.EntityBean rather than

javax.ejb.SessionBean, so there is a different lifecycle.

* The Entity bean is initialized with an EntityContext rather than a
SessionContext. An EntityContext exposes a primary key to the Entity bean, a
concept not applicable to Session beans.

Other details of the javax.ejb interfaces are the same as for Session beans. Briefly,
the home and remote interfaces for the Entity bean are defined by extending EJBHome
and EJBObject, respectively, and the local-home and local interfaces by extending
EJBLocalHome and EJBLocalObject. You will be learning more about local inter-
faces later today, because they are highly relevant to implementing Entity beans.

Entity EJBs 217 |

The EJBMetaData class provides access to the constituent parts of the Entity bean com-
ponent, and the Handle and HomeHandle interfaces provide the ability to serialize a refer-
ence to a remote bean or home and then to re-instantiate this instance by deserializing
the handle. None of these interfaces is discussed further.

Entity Bean Types

Entity beans represent shared persistent data stored in an RDBMS or other persistent
data store. If the data store is relational, the responsibility for actually performing the
JDBC can be placed either with the bean itself or with the EJB container.

The term for the former is bean-managed persistence (BMP), and for the latter it is
container-managed persistence (CMP).

N t The EJB specification is very much oriented around relational data stores.
ole : . .

Certainly, container-managed persistence can only be performed through
JDBC javax.sql.DataSource objects, and JDBC is based around ANSI SQL 92.

If using bean-managed persistence, any API can be used to save the bean'’s
state to a persistent data store, but even then, the methods that the bean is
required to provide, such as findByPrimaryKey (), still have a relational
nature to them.

Container-managed persistence was part of the EJB 1.1 specification (the predecessor to
the current EJB 2.0), but attracted much criticism in that release. However, it has been
radically overhauled in EJB 2.0, and now works in a fundamentally different way. This is
so much so that the deployment descriptor even has the cmp-version element to indicate
whether the Entity bean has been written under the 1.1 or 2.0 contract. Tomorrow, you
will learn more about CMP 2.0. For the rest of today, however, you will be focusing on
BMP. That way, you’ll have a pleasant surprise when you realize how much of the cod-
ing can be automated using CMP.

Remote Versus Local Interfaces

One of the most significant improvements in the EJB 2.0 specification over previous ver-
sions is the inclusion of local interfaces as well as remote interfaces.

All beans that you have seen on previous days have provided only a remote interface.
That is, both their home and remote interfaces have extended from javax.ejb.EJBHome
and javax.ejbEJBObject, both of which, in turn, extend the java.rmi.Remote interface.

|218

Day 6

This ability to invoke methods on a bean without regard for its location is crucial for
Session beans, but for Entity beans it is less useful, even positively harmful. Very often, a
client must deal with many Entity beans to transact some piece of work, and if each of
those Entity beans is remote, this will incur substantial network traffic. There is also the
cost of cloning any serializable objects to enforce the required “pass-by-value” semantics.

Even more frustratingly, the client of the Entity bean may well be a Session bean.
Indeed, it is generally considered bad practice to use anything other than a Session bean
to interact with Entity beans. More often than not, this Session bean will be co-located
(running in the same JVM) as the Entity beans that it is using. The EJB container is
obligated to make all Session-to-Entity bean calls via the network and to clone all serial-
izable objects, just because the Entity beans are remote.

By now, you probably have guessed what local interfaces are. They are alternative non-
remote interfaces that the Entity bean can specify. Again, the home and proxy idea is
used, with the home interface being extended from javax.ejb.EJBLocalHome and the
proxy for the bean extending from javax.ejb.EJBLocalObject. Otherwise though, these
are regular Java interfaces, and the normal “pass by reference” semantics for objects
passed across these interfaces apply.

Nﬂtﬂ "Pass by reference” is a simpler way of saying “object references are passed
by value.”

An Entity bean can provide a regular home/remote interface, or it can provide a local-
home/local interface. Indeed, there is nothing to prevent an Entity bean from offering
both interfaces, although any clients using the remote interface would incur the perfor-
mance costs already noted. Local interfaces are not specific to Entity beans either;
Session beans can also provide local interfaces. For Session beans (especially stateless
Session beans), there might well be reason to offer both a remote and a local interface. In
general, it would be expected for the two interfaces to offer the same sorts of capabilities,
although there is nothing in the EJB specification that enforces this.

Figure 6.3 shows the two sets of interfaces that a bean can provide.

In both cases, the EJB home/local-home and proxy objects take responsibility for securi-
ty (Day 15, “Security”) and transactions (Day 8, “Transactions and Persistence”), while
home/remote interfaces also make the physical location of the bean transparent to the
remote client.

Local interfaces are more than just a performance boost for EJBs though, they are the
cornerstone on which container-managed persistence and also container-managed rela-
tionships (CMR) are founded. You will learn about these in detail tomorrow.

Entity EJBs 219|

FIGURE 6.3 (-)
0
EJBs can have local ay| home | [
and remote interfaces. ; stub
! ’ remote |\ m
stub JJ|=
remote -
~s{ stub
*

E 4
n
. 4 J [] "
location = security and "
transparency = transactions @
|
- local J]
: H home
o e
Io_cal =) H
client Jya} i
% =
local [fkzzzzzzziz.l
bl
.
\ *a Y,

In the case study and examples for today and tomorrow, you will see that the Entity
beans define only a local interface.

BMP Entity Bean Lifecycle

The lifecycle of both BMP and CMP Entity beans is dictated by the EntityBean inter-
face that the bean must implement. This is shown in Figure 6.4.

FIGURE 6.4 interface
The java.io.Serializable
javax.ejb.Entity- ,
Bean interface defines .
certain lifecycle meth- 4
ods that must be imple-
, interface
mented by Entity EnterpriseBean
beans.
interface
EntityBean
+setEntityContext(entitycontext:EntityContext):void
+unsetEntityContext():void
+ejbRemove():void
+ejbActivate():void
+ejbPassivate():void
+ejbLoad():void
+ejbStore():void

| 220

Day 6

However, although the method names are the same, the obligations of BMP versus CMP
Entity beans for each of those methods are different. This section discusses just those
lifecycle methods for BMP Entity beans. The Job Entity bean from the case study will be
predominantly be used for example code.

To start with, the Entity bean must implement the javax.ejb.EntityBean interface, as
demonstrated with the JobBean class:

package data;

// imports omitted
import javax.ejb.*;

public class JobBean implements EntityBean

{
}

// implementation omitted

The lifecycle as perceived by the Entity bean and as managed by the container is as
shown in Figure 6.5.

FIGURE 6.5 [pool too small] [pool too large]
/setEntityContext /unsetEntityContext

The

javax.ejb.EntityBean

lifecycle allows Entity (Pooled

beans to be pooled. /ejbFindAll

. . \ /ejbFindByPrimaryKey
/ejbActivate |

/ejbCreate

(Creating
L exit/*ejbLocalObject.new()

/ejbPostCreate

/ejbPassivate

Cached

- ejbLoad
feibRemove /'business method'
ejbStore

The lifecycle is as follows:

* If the EJB container requires an instance of an Entity bean (for example, if the pool
is too small), it will instantiate the bean instance and call its setEntityContext ()
method.

Entity EJBs 221 |

Note

Pooled instances can service finder methods to locate data within the persistent
data store that represents existing beans. More on these finder methods shortly.

A bean can be associated with an EJBLocalObject proxy (or EJBObject proxy if
the remote interface is in use) in one of two ways.

First, it can be activated by the container via ejbActivate(). The proxy for the
bean exists but has no associated bean. This could occur if the bean had previously
been passivated and a business method has now been invoked on the proxy. It
could also occur if the bean’s proxy was just returned as the result of a finder
method.

Alternatively, the client may be requesting to create an Entity bean via
ejbCreate() and then ejbPostCreate(). This usually means that the correspond-
ing data has been inserted into the persistent data store.

When the bean has been associated with its proxy, business methods can be
invoked on it. Before the business method is delegated by the proxy to the bean,
the ejbLoad () lifecycle method will be called, indicating that the bean should re-
load its state from the persistent data store. Inmediately after the business method
has completed, the ejbStore () method is called, indicating that the bean should
update the persistent data store with any change in its state.

Beans can return to the pooled state in one of two ways.

First, they can be passivated via ejbPassivate(). There is usually little to be done
in the lifecycle, because the bean’s state will already have been saved to the persis-
tent data store during the earlier ejbStore() method. So passivation simply means
that the link from the EJBLocalObject proxy to the bean has been severed.

Alternatively, the client may be requesting to remove the create bean via
ejbRemove (). This usually means that the corresponding data in the persistent data
store has been deleted.

Finally, if the EJB container wants, it can reduce the size of its pool by first calling
unsetEntityContext().

Most commercial EJB containers provide mechanisms to suppress unneces-
sary ejbLoad() and ejbStore() calls. None of these mechanisms are in the
EJB specification, however.

Unlike Session beans, there is no binding of the Entity beans to a specific client; the
bean can be shared by all clients.

| 222 Day 6

As Figure 6.5 indicated, there are two methods called during the creation of a bean. The
ejbCreate () method is called prior to the EJBLocalObject proxy being made available,
the ejbPostCreate () method is called after the proxy is available. This is shown in the

sequence diagram in Figure 6.6.

FIGURE 6.6
JobHome jobBean s
Both the ejbCreate() localClient JobHomelmpl JobBean EntityContext

and ejbPostCreate() T
1: create(ref, customer):JobLocal

llféCyClé methods ai"e 1.1: pk:=ejbCreate(ref, customer):JobPk .
called when an Entity ’LE]
bean is created. [€m===--=mmmmmmmmmmmmmm-

jobProxy
Joblmpl

& 1.2.1: set primary key

'
! '
] ' .
‘ ‘ g
1.4: ejpPostCreate(ref, customer):void « i

' i 1.4.1:[if required] getEJBLocal@bject():EJBLocalObject

1.2: proxy:=<constructor>(pk)

1.3: set local object

Under BMP, the bean has several tasks to perform when its ejbCreate () method is
called. It should:
* Calculate the value of its primary key (if not passed in as an argument).

* Persist itself to a data store. For a RDBMS, this will most likely be in the form of
an SQL INSERT statement or statements.

» Save the supplied arguments and its primary key to fields.
* Return the primary key.

As Figure 6.6 shows, the returned primary key is passed to the bean’s proxy, and the
proxy continues to hold that primary key, even if the bean is subsequently passivated.
The proxy for the bean is also associated with the context object of the bean.

[:auti““ You can see that the EJBLocalObject proxy holds onto the primary key for
the bean. This allows the bean to be transparently re-loaded if it is passivat-
ed. However, because the EJB container is using primary keys for lookups, it

also means the EJB does not allow primary keys to be modified by the appli-
cation; they must be immutable.

Entity EJBs

223 |

The ejbRemove () method is the opposite of the ejbCreate () method; it removes a
bean’s data from the persistent data store. The implementation of ejbCreate() and
ejbRemove () is given in the “Implementing javax.ejb.EntityBean” section later today.

That takes care of creating and removing beans, but what about when a bean is queried
or updated? The most significant of the Entity bean lifecycle methods are the ejbLoad ()
and ejbStore () methods. Together, these methods ensure that the Entity bean is kept in
sync with the persistent data store. The ejbLoad () method is called immediately prior to
any business method (so that a query access the most up-to-date data). The ejbStore()
is called after the business method completes (so that if the method updated the bean’s
state, this is reflected in the persistent data store). Figure 6.7 shows this as a UML

sequence diagram.

FIGURE 6.7

The ejbLoad() and
ejbStore() methods
keep the bean in sync
with the persistent data
store.

Again, the actual implementation for these methods is given in the “Implementing

localClient

EjbContainer|

jobProxy

Joblmpl

Driver

JobBean

i
1: businessMetfod

-

‘
21[if required] ejbPassivate():void

1.2: ejbLoad():void 1

T
'
'

'
1.1:[if passivated] ejbActivate():void

1.4: ejbStore():void 1

D‘

javax.ejb.EntityBean” section later today.

As you will recall, Session beans have ejbActivate() and ejbPassivate() methods,
and so do Entity beans. If the EJB container wants to reduce the number of bean
instances, it can passivate the bean. This is only ever done after an ejbStore(), so the
data represented by the bean is not lost. Also, the proxy for the bean continues to hold
the bean’s primary key, meaning that if the client interacts with the bean (through the
proxy) in the future, the appropriate data can be loaded from the persistent data store.
Generally, then, there is little or nothing to be done when an Entity bean is passivated or

activated.

3L
>

a

T
'
'
'
'
'
'
'
'
'

'
'
'
'
;
'

—>D 1.4.1: update ... where PK = ...
:
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

1.2.1: select ... where PKi= ...

1.3: businessMethod D‘

| 224

Day 6

These lifecycle methods allow new beans (and data in the persistent data store) to be cre-
ated or removed and updating existing beans, but what about actually finding beans that
already exist? In other words, in JDBC terms, you have seen the lifecycle methods that
correspond to SQL INSERT, DELETE, and UPDATE statements, but what of an SQL SELECT
statement? Well, this is accomplished by the finder methods. The EJB specification
requires at least one finder method, whose name must be ejbFindByPrimaryKey (), and
allows other finder methods, whose names must begin ejbFind. These methods have cor-
responding methods in the local-home interface, so you’ll be learning about them shortly
as part of specifying and implementing the bean.

One obvious question arises, “When the client invokes the finder method on the home
interface, which bean actually performs the ejbFindXxx () method?” The answer is perhaps
a little unexpected; any unused (that is, pooled) bean will be used by the EJB container.

Learning all these lifecycle methods for both Entity and Session beans can be somewhat
overwhelming at first, made all the more complicated because some method names
appear for both bean types but imply different responsibilities. To clarify matters, Table
6.1 compares the two sets of lifecycle methods and identifies those responsibilities.

TaBLE 6.1 Responsibilities of Session and Entity Beans Sit in Different Lifecycle Methods

Lifecycle Method Session Bean Entity Bean

setXxxContext () Set context Set context

unsetXxxContext () N/A Unset context
ejbFindByPrimaryKey() N/A Acquire reference to proxy
ejbCreate() Acquire reference to proxy a) Insert data to persistent data store

b) Acquire reference to proxy

ejbPostCreate() N/A Access proxy if necessary
ejbActivate() a) Loaded from (temporary) Obtain environmental resources
data store

b) Obtain environmental
resources

ejbPassivate() a) Saved to (temporary) Release environmental resources
data store;
b) Release environmental

resources
ejblLoad() N/A Load from (persistent) data store
ejbStore() N/A Save to (persistent) data store
ejbRemove () Release reference to proxy a) Delete data from persistent data

store
b) Release reference to proxy

Entity EJBs 225 |

Specifying a BMP Entity Bean
Following the pattern of Session beans, specifying an Entity bean involves defining the
local-home and the local interface:

L]

The local-home interface extends javax.ejb.EJBLocalHome.

The local interface extends javax.ejb.EJBLocalObject.

A discussion on each of these interfaces follows.

Local-Home Interface

Listing 6.1 shows the complete JobLocalHome interface as an example.

LISTING 6.1 JobLocalHome Interface

0N OB WN =

package data;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;

public interface JobLocalHome extends EJBLocalHome

{
JobLocal create (String ref, String customer) throws CreateException;
JobLocal findByPrimaryKey(JobPK key) throws FinderException;
Collection findByCustomer(String customer) throws FinderException;
Collection findByLocation(String location) throws FinderException;
void deleteByCustomer(String customer);

}

Each of these methods has a corresponding method in the bean class itself. Taking the
JobBean code as an example:

L]

The create(String ref, String customer) method in JobBean corresponds to
ejbCreate(String ref, String customer) in the JobLocalHome interface.

The ejbFindByPrimaryKey (String name) method in JobBean corresponds to
findByPrimaryKey (String name) in the JobLocalHome interface.

The ejbFindByCustomer(String customer) method in JobBean corresponds to
findbyCustomer (String customer) in the JobLocalHome interface.

The ejbHomeDeleteByCustomer (String customer) in JobBean corresponds to
deleteByCustomer(String customer) in the JobLocalHome interface.

| 226

Day 6

N t Note that for home methods discussed shortly, the convention is to append
ote ejbHome, not just ejb, to the bean’s method name.

This seems straight-forward enough, but note that the return types for the bean’s
ejbCreate() and ejbFindXxx () methods are different from the return types of the meth-
ods in the local-home interface. Specifically, while the bean returns (to the EJB contain-
er) either primary key objects or Collections of primary key objects, the local-home
interface methods return (to the client) either local proxies (that is, instances of objects
that implement the JobLocal interface, for the example) or Collections of such.

Create and Remove Methods

The list of exceptions thrown by the local-home methods and the bean’s corresponding
methods should match in each case. For the createxxX () method, the list should be the
union of the exceptions thrown by both ejbCreatexXX() and ejbPostCreateXxx(). If a
home and a remote interface are being provided for the Entity bean, the
java.rmi.RemoteException must be declared for the methods of the home interface.

As well as the create () method, the local-home interface inherits a remove (Object o)
method from javax.ejb.EJBLocalHome. This corresponds to the ejbRemove () lifecycle
method of the bean itself.

Finder Methods

Finder methods in the bean return either a single primary key (if a single bean matches
the underlying query) or a java.util.Collection of primary keys (if there is more than
one matching bean). The ejbFindByPrimaryKey () method is always required to be one
of the bean’s methods, although it is not part of the EntityBean interface. This is
because the argument type and return type will depend upon the bean.

N“tﬂ It is also possible for finder methods to return java.util.Enumerations. This
dates from EJB 1.0 before the Java Collections APl was introduced in J2SE

1.2 and should not be used.

Obviously, to specify the findByPrimaryKey () method, the primary key of the Entity
bean must have been identified. As was noted earlier today, if persisting to an RDBMS,
identifying the primary key is probably quite easy, because the primary key will corre-
spond to the columns of the primary key of the underlying RDBMS table. A custom-
developed primary key class is needed when two or more fields identify the bean; other-
wise, the type of the single field of the bean that represents the key is used.

Entity EJBs 227 |

Note

If a single field of the bean is used as the primary key, that field must not be
a primitive type (such as an int or long). Primary key fields must be actual
classes, such as a java.lang.String. Furthermore, the EJB specification does
not allow primary keys to change once assigned, so it is best if the class cho-
sen is immutable.

Custom Primary Key Classes

As noted earlier, the primary key can be either a field of the bean (in which case, the pri-
mary key class is just the class of that field) or can be a custom-developed class. The lat-
ter is required if more than one field is needed to identify the bean (and can be used even
for single field keys).

For the JobBean, the primary key is a combination of the customer and the job reference
(the customer and ref fields, respectively). Because the primary key is composite, a cus-
tom primary key class is needed; this is the JobPK class.

Custom primary key classes are required to follow a number of rules. Specifically

The class must implement java.io.Serializable or java.io.Externalizable.

The values of the class must all be primitives or be references to objects that, in
turn, are serializable.

The equals () method and the hashCode () methods must be implemented.

There must be a no-arg constructor (there can also be other constructors that take
arguments, but they would only be provided for convenience).

In other words, the class must be what is sometimes referred to as a value type.

Note

Listing 6.2 shows the JobPK primary key class.

At least conceptually, value types are immutable (there should be no setter
methods; they cannot be changed). The requirement for a no-arg construc-
tor does prevent this from actually being the case.

LISTING 6.2 JobPK Class Identifies a Job

1
2:
3:
4
5

: package data;

import java.io.*;

1 import javax.ejb.*;

| 228 Day 6

LisTING 6.2 Continued

6: public class JobPK implements Serializable {

7: public String ref;

8: public String customer;

9:

10: public JobPK() {

11: }

12: public JobPK(String ref, String customer) {

13: this.ref = ref;

14: this.customer = customer;

15: }

16:

17: public String getRef() {

18: return ref;

19: }

20: public String getCustomer() {

21: return customer;

22: }

23:

24: public boolean equals(Object obj) {

25: if (obj instanceof JobPK) {

26: JobPK pk = (JobPK)obj;

27: return (pk.ref.equals(ref) && pk.customer.equals(customer));
28: }

29: return false;

30: }

31: public int hashCode() {

32: return (ref.hashCode() ~ customer.hashCode());
33: }

34: public String toString() {

35: return "JobPK: ref=\"" + ref + "\", customer=\"" +

= customer + "\"";

36: }
37: }

Note that the ref and customer fields have public visibility. This is a requirement of the
EJB specification. Each field must correspond—in name and type—to one of the fields
of the bean itself. This might seem like a strange requirement, but is needed by the EJB
container to manage CMP beans.

To implement the equals() method, test that all fields of the object have the same value
as the fields in the provided object. For primitive values, the regular == operator should
be used, but for object references, the equals() method must be called.

To implement the hashCode () method, generate an int value that is based entirely and
deterministically on the value of the fields, such that

if A.equals(B) then A.hashCode() == B.hashCode().

Entity EJBs

229 |

There are a couple of ways to accomplish this. A quick way to do this is to convert all
the values of the primary key class’ fields to Strings, concatenate them to a single
String, and then invoke the hashCode () on this resultant string. Alternatively, the
hashCode () values for all of the fields could be or’d together using the ~ operator. At
runtime, this will execute more quickly than the concatenation approach, but it does
mean that the distribution of hashcodes may be less good for primary keys with many
fields. This is the approach used in Listing 6.2.

“I] Creating these primary key classes can be somewhat tedious. But remember
that if there is a single (non-primitive) field in the bean that identifies that
bean, this can be used instead.

Failing that, a single primary key class can be used for multiple beans. For
example, you could create a IntPK class that just encapsulates an int primi-
tive value.

Home Methods

In addition to finder, create, and remove methods, it is also possible to define home
methods within the local-home interface. These are arbitrary methods that are expected
to perform some business-type functionality related to the set of beans. In other words,
they are an EJB equivalent of Java class methods (defined with the static keyword).

Some common uses for home methods include defining a batch operation to be per-
formed on all bean instances (such as decreasing the price of all catalogue items for a
sale), or various utility methods, such as formatting a bean’s state for a toString()
method.

ﬂﬂlltil]ll One question that sometimes arises is whether all database updates should
be performed through Entity bean methods. One example given for a home
method of a bean would be to decrease the price of all catalogue items for
a sale. Iterating over perhaps 10,000 catalogue items and invoking
setPrice(getPrice() * 0.9) is clearly going to cause massive amounts of
SQL hitting the back-end RDBMS (or equivalent persistent data store).

In J2SE programs, a simple update, such as
UPDATE catalogue
set price = price * 0.9

is clearly the way to go. The ejbLoad() lifecycle method will ensure that any
catalog item Entity bean will re-sync its state with the RDBMS.

| 230

Day 6

Local Interface

Just as for Session beans with their remote interfaces, the local interface defines the
capabilities of the Entity bean. Because first and foremost an Entity bean represents data,
it is entirely to be expected that many of the methods exposed through the local interface
will be simple getter and setter methods. Listing 6.3 shows the local interface for the Job
bean.

LISTING 6.3 JobLocal Interface

1: package data;
2:
3: import java.rmi.*;
4: import javax.ejb.*;
5:
6: public interface JoblLocal extends EJBLocalObject
7: {
8: String getRef();
9: String getCustomer();
10: CustomerLocal getCustomerObj(); // derived
11:
12: void setDescription(String description);
13: String getDescription();
14:
15: void setlLocation(LocationLocal location);
16: LocationLocal getLocation();
17:
18: Collection getSkills();
19: void setSkills(Collection skills);
20: }

Note that the setLocation() method accepts a LocationLocal reference rather than,
say, a String containing the name of a location. In other words, the Job bean is defining
its relationships to other beans, in this case the Location bean directly, effectively
enforcing referential integrity. The client of the Job Entity bean is thus required to supply
a valid location or none at all.

This is not to say that Entity beans cannot provide further processing. An example often
quoted might be for a SavingsAccountBean. This might provide withdraw() and
deposit () methods. The withdraw() method might well ensure that the balance can
never go below zero. The bean might also provide an applyInterest() method, but it
almost certainly would not provide a setBalance () method (if only!).

Each of these methods has a corresponding method in the bean itself, and the exceptions
list matches exactly. The implementation is shown in the “Implementing the Local-
Interface Methods” section later today.

Entity EJBs 231 |

Nﬂtﬂ Actually, such an SavingsAccountBean might well provide a setBalance()
method, but would restrict access to administrators. You will learn more
) about security on Day 15, “Security.”

Implementing a BMP Entity Bean

Implementing an Entity bean involves providing an implementation for the methods of
the javax.ejb.EntityBean, corresponding methods for each method in the local-home
interface, and a method for each method in the local interface.

Implementing javax.ejb.EntityBean

The setEntityContext () method is a good place to perform JNDI lookups, for example
to acquire a JDBC DataSource reference. Listing 6.4 shows how this is done for the
JobBean code.

LisTING 6.4 JobBean.setEntityContext() Method

1: package data;

2:

3: import javax.ejb.*;

4: import javax.naming.*;

5: import javax.sql.*;

6: // imports omitted

7:

8: public class JobBean implements EntityBean

9: {

10: public void setEntityContext(EntityContext ctx) {

11: this.ctx = ctx;

12: InitialContext ic = null;

13: try {

14: ic = new InitialContext();

15: dataSource = (DataSource)
w=ic.lookup("java:comp/env/jdbc/Agency");

16: skillHome = (SkillLocalHome)
wic.lookup("java:comp/env/ejb/SkillLocal");

17: locationHome = (LocationLocalHome)
wic.lookup("java:comp/env/ejb/LocationLocal");

18: customerHome = (CustomerLocalHome)
wic.lookup("java:comp/env/ejb/CustomerLocal");

19: }

20: catch (NamingException ex) {

21: error("Error looking up depended EJB or resource",ex);

22: return;

23: }

24: }

25:

| 232

Day 6

LisTING 6.4 Continued

26:
27:
28:
29:
30:

private Context ctx;
private DataSource dataSource

// code omitted

}

The unsetEntityContext () method (not shown) usually just sets these fields to null.

The ejbLoad() and ejbStore() methods are responsible for synchronizing the bean’s
state with the persistent data store. Listing 6.5 shows these methods for JobBean.

LiSTING 6.5

JobBean's ejbLoad () and ejbStore() Methods

17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:

29:

0N OB~ WD =

package data;

import javax.ejb.*;
import java.sql.*;
// imports omitted

public class JobBean implements EntityBean
{
public void ejbLoad(){

JobPK key = (JobPK)ctx.getPrimaryKey();

Connection con = null;

PreparedStatement stmt = null;

ResultSet rs = null;

try {
con = dataSource.getConnection();
stmt = con.prepareStatement(
= "SELECT description,location
= FROM Job
= WHERE ref = ? AND customer = ?");
stmt.setString(1, key.getRef());
stmt.setString(2, key.getCustomer());
rs = stmt.executeQuery();
if (!rs.next()) {

error("No data found in ejbLoad for " + key, null);

}
this.ref = key.getRef();
this.customer = key.getCustomer();
this.customerObj =
wcustomerHome.findByPrimaryKey (this.customer); // derived
this.description = rs.getString(1);
String locationName = rs.getString(2);
this.location = (locationName != null) ?
=]locationHome.findByPrimaryKey(locationName) : null;
// load skills

Entity EJBs 233 |

LisTING 6.5 Continued

30: stmt = con.prepareStatement(
= "SELECT job, customer, skill
= FROM JobSkill
= WHERE job = ? AND customer = ?
= ORDER BY skill");

31: stmt.setString(1, ref);

32: stmt.setString(2, customerObj.getLogin());

33: rs = stmt.executeQuery();

34: List skillNameList = new ArrayList();

35: while (rs.next()) {

36: skillNameList.add(rs.getString(3));

37: }

38: this.skills = skillHome.lookup(skillNamelList);

39: }

40: catch (SQLException e) {

41: error("Error in ejbLoad for " + key, e);

42: }

43: catch (FinderException e) {

44: error("Error in ejbLoad (invalid customer or location) for "
=+ key, e);

45: }

46: finally {

47: closeConnection(con, stmt, rs);

48: }

49: }

50:

51: public void ejbStore(){

52: Connection con = null;

53: PreparedStatement stmt = null;

54: try {

55: con = dataSource.getConnection();

56: stmt = con.prepareStatement (

= "UPDATE Job
= SET description = ?, location = ?
= WHERE ref = ? AND customer = ?");

57: stmt.setString(1, description);

58: if (location != null) {

59: stmt.setString(2, location.getName());
60: } else {

61: stmt.setNull(2, java.sql.Types.VARCHAR);
62: }

63: stmt.setString(3, ref);

64: stmt.setString(4, customerObj.getLogin());
65: stmt.executeUpdate();

66: // delete all skills

67: stmt = con.prepareStatement(

= "DELETE FROM JobSkill
= WHERE job = ? and customer = ?");

| 234 Day 6

LisTING 6.5 Continued

68: stmt.setString(1, ref);

69: stmt.setString(2, customerObj.getLogin());

70: stmt.executeUpdate();

71: // add back in all skills

72: for (Iterator iter = getSkills().iterator(); iter.hasNext();){
73: SkilllLocal skill = (SkilllLocal)iter.next();

74: stmt = con.prepareStatement(

= "INSERT INTO JobSkill (job,customer,skill)
= VALUES (?,?7,7)");

75: stmt.setString(1, ref);

76: stmt.setString(2, customerObj.getlLogin());
77: stmt.setString(3, skill.getName());

78: stmt.executeUpdate();

79: }

80: }

81: catch (SQLException e) {

82: error("Error in ejbStore for " + ref + "," + customer, e);
83: }

84: finally {

85: closeConnection(con, stmt, null);

86: }

87: }

88: // code omitted

89: }

In the ejbLoad () method, the JobBean must load its state from both the Job and
JobSkill tables, using the data in the JobSkill table to populate the skills field. In the
ejbStore () method, the equivalent updates to the Job and JobSkill tables occur.

Of course, there is the chance that when the bean comes to save itself, the data could have
been removed. This would happen if some user manually deleted the data; there is nothing
in the EJB specification to require that an Entity bean “locks” the underlying data. In such
a case, the bean should throw a javax.ejb.NoSuchEntityException; in turn, this will be
returned to the client as some type of java.rmi.RemoteException. This was mentioned
briefly yesterday, so look back to refresh your memory if needed. And remember, you will
be learning more about exception handling and transactions on Day 8.

Nl]lﬂ To keep the case study as small and understandable as possible, the error
handling in JobBean is slightly simplified. In Listing 6.5, the code will throw
an EJBException (rather than NoSuchEntityException) from

ejbLoad () if the data has been removed. In ejbStore(), it doesn’t actual-
ly check to see if any rows were updated, so no exception would be thrown.

Entity EJBs 235 |

More complex beans can perform other processing within the ejbLoad() and

ejbStore () methods. For example, the data might be stored in some denormalized form
in a relational database, perhaps for performance reasons. The ejbStore () method
would store the data in this de-normalized form, while the ejbLoad () methods would
effectively be able to re-normalize the data on-the-fly. The client need not be aware of
these persistence issues.

Another idea: these methods could be used to handle text more effectively. The EJB
specification suggests compressing and decompressing text, but they could also perhaps
do searches for keywords within the text, and then redundantly store these keywords sep-
arately, or the data might be converted into XML format.

As noted earlier today, there is usually very little or nothing to be done when an Entity
bean is passivated or activated. Listing 6.6 shows this.

LISTING 6.6 JobBean’s ejbActivate() and ejbPassivate() Methods

1: package data;
2:
3: import javax.ejb.*;
4: // imports omitted
5:
6: public class JobBean implements EntityBean
7: {
8: public void ejbPassivate(){
9: ref = null;
10: customer = null;
11: customerObj = null;
12: description = null;
13: location = null;
14: }
15:
16: public void ejbActivate(){
17: }
18:
19: // code omitted
20: }

Implementing the Local-Home Interface Methods

The implementation of ejbCreate() and ejbPostCreate() for the JobBean is shown in
Listing 6.7.

LISTING 6.7 JobBean’s ejbCreate() and ejbPostCreate() Methods

1: package data;
2:

| 236 Day 6

LisTING 6.7 Continued

3: import javax.ejb.*;
4: import javax.sql.*;
5: // imports omitted
6:
7: public class JobBean implements EntityBean
8: {
9: private String ref;
10: private String customer;
11: private String description;
12: private LocationLocal location;
13: private CustomerLocal customerObj; // derived
14: private List skills; // vector field; list of SkilllLocal ref's.
15:
16: public String ejbCreate (String ref, String customer)
=throws CreateException {

17: // validate customer login is valid.
18: try {
19: customerObj = customerHome.findByPrimaryKey (customer);
20: } catch (FinderException ex) {
21: error("Invalid customer.", ex);
22: }
23: JObPK key = new JobPK(ref, customer);
24: try {
25: ejbFindByPrimaryKey (key);
26: throw new CreateException("Duplicate job name: " + key);
27: }
28: catch (FinderException ex) { }
29: Connection con = null;
30: PreparedStatement stmt = null;
31: try {
32: con = dataSource.getConnection();
33: stmt = con.prepareStatement(

= "INSERT INTO Job (ref,customer)

= VALUES (?,?)");
34: stmt.setString(1, ref);
35: stmt.setString(2, customerObj.getLogin());
36: stmt.executeUpdate();
37: }
38: catch (SQLException e) {
39: error("Error creating job " + key, e);
40: }
41: finally {
42: closeConnection(con, stmt, null);
43: }
44 this.ref = ref;
45: this.customer = customer;
46: this.description = description;
47: this.location = null;

48: this.skills = new ArraylList();

Entity EJBs 237 |

LisTING 6.7 Continued

49: return key;

50: }

51:

52: public void ejbPostCreate (String name, String description) {}
53: }

This particular implementation validates that the customer exists (jobs are identified by
customer and by a unique reference), and it also makes sure that the full primary key
does not already exist in the database. If it does, the BMP bean throws a
CreateException. If it doesn’t (represented by the e jbFindByPrimaryKey () call throw-
ing a FinderException), the method continues.

An alternative implementation would have been to place a unique index on the Job table
within the RDBMS and then to catch the SQLException that might be thrown if a dupli-
cate is attempted to be inserted.

ﬂﬂlltil]ll There is a race condition here. It's possible that another user could insert a
record between the check for duplicates and the actual SQL INSERT. The
ejbCreate () method is called within a transaction; changing the RDBMS
isolation level (in a manner specified by the EJB container) would eliminate
this risk, although deadlocks could then occur.

Note that the skills field is set to an empty ArrayList. This holds a list of SkilllLocal
references, this being the local interface to the Skill bean. Of course, for a newly creat-
ed Job bean, this list is empty. The decision for the skills field to hold references to
Skilllocal objects rather than, say, just Strings holding the skill names, was taken
advisedly. If the skill name is used (that is, the primary key of a skill), finding informa-
tion about the skill would require extra steps. Perhaps more compellingly, this is also the
approach taken for CMP beans and container-managed relationships, discussed in detail
tomorrow.

Also noteworthy is the customerobj field. The Job, when created, is passed just a
String containing the customer’s name. In other words, this is a primary key to a cus-
tomer. The customerobj field contains a reference to the parent customer bean itself by
way of its CustomerLocal reference.

Both the skills and the customerObj fields illustrate (for want of a better phrase) bean-
managed relationships. For the skills field, this is a many-to-many relationship, from
Job to Skill. For the customerobj field, this is a many-to-one relationship from Job to
Customer.

| 238

Day 6

As for the stateful Session beans that you learned about yesterday, the ejbCreate () and
ejbPostCreate () methods both correspond to a single method called create () in the
bean’s local-home interface. The list of arguments must correspond. Again, as for
Session beans, it is possible for there to be more than one create method with different
sets of arguments, or indeed the createxXx () method naming convention can be used
instead of overloading the method name of create().

The ejbRemove () method is the opposite of the ejbCreate () method; it removes a
bean’s data from the persistent data store. Its implementation for JobBean is shown in
Listing 6.8.

LisTING 6.8

JobBean's ejbRemove () Method

17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

ONOO O~ WD =

package data;

import javax.ejb.*;
import javax.naming.*;
// imports omitted

public class JobBean implements EntityBean
{
public void ejbRemove(){

JObPK key = (JobPK)ctx.getPrimaryKey();

Connection con = null;

PreparedStatement stmti = null;

PreparedStatement stmt2 = null;

try {
con = dataSource.getConnection();
stmt1 = con.prepareStatement(
= "DELETE FROM JobSkill
= WHERE job = ? and customer = ?");
stmt1.setString(1, ref);
stmt1.setString(2, customerObj.getLogin());
stmt2 = con.prepareStatement(
= "DELETE FROM Job
w WHERE ref = ? and customer = ?");
stmt2.setString(1, ref);
stmt2.setString(2, customerObj.getLogin());
stmt1.executeUpdate();
stmt2.executeUpdate();

catch (SQLException e) {
error("Error removing job " + key, e);
}
finally {
closeConnection(con, stmtil, null);
closeConnection(con, stmt2, null);

ref = null;

Entity EJBs 239 |

LisTING 6.8 Continued

33: customer = null;
34: customerObj = null;
35: description = null;
36: location = null;
37: }

38: // code omitted

39: }

Each of the finder methods of the local-home interface must have a corresponding
method in the bean. By way of example, Listing 6.9 shows two of the (three) finder
methods for the JobBean.

LISTING 6.9 JobBean’s Finder Methods

1: package data;
2:
3: import javax.ejb.*;
4: import java.sql.*;
5: import java.util.*;
6: // imports omitted
7:
8: public class JobBean implements EntityBean
9:
10: public JobPK ejbFindByPrimaryKey(JobPK key) throws FinderException {
11: Connection con = null;
12: PreparedStatement stmt = null;
13: ResultSet rs = null;
14: try {
15: con = dataSource.getConnection();
16: stmt = con.prepareStatement (
= "SELECT ref
= FROM Job
= WHERE ref = ? AND customer = ?");
17: stmt.setString(1, key.getRef());
18: stmt.setString(2, key.getCustomer());
19: rs = stmt.executeQuery();
20: if (!rs.next()) {
21: throw new FinderException("Unknown job: " + key);
22: }
23: return key;
24: }
25: catch (SQLException e) {
26: error("Error in findByPrimaryKey for " + key, e);
27: }
28: finally {
29: closeConnection(con, stmt, rs);
30: }

31: return null;

| 240 Day 6

LisTING 6.9 Continued

32: }
33:
34: public Collection ejbFindByCustomer(String customer)
=throws FinderkException {
35: Connection con = null;
36: PreparedStatement stmt = null;
37: ResultSet rs = null;
38: try {
39: con = dataSource.getConnection();
40: stmt = con.prepareStatement(
= "SELECT ref, customer
= FROM Job
= WHERE customer = ?
= ORDER BY ref");
41: stmt.setString(1, customer);
42: rs = stmt.executeQuery();
43: Collection col = new ArraylList();
44: while (rs.next()) {
45: String nextRef = rs.getString(1);
46: String nextCustomer = rs.getString(2);
47: /| validate customer exists
48: CustomerLocal nextCustomerObj =
=customerHome.findByPrimaryKey (nextCustomer);
49: col.add(new JobPK(nextRef, nextCustomerObj.getLogin()));
50: }
51: return col;
52: }
53: catch (SQLException e) {
54: error("Error in findByCustomer: " + customer, e);
55: }
56: catch (FinderException e) {
57: error("Error in findByCustomer, invalid customer: " +
=customer, e);
58: }
59: finally {
60: closeConnection(con, stmt, rs);
61: }
62: return null;
63: }
64:
65: // code omitted
66: }

The implementation of the ejbFindByPrimaryKey () method might seem somewhat
unusual; it receives a primary key, and then returns it. Of course, what it has done as well
is to have validated that an entity exists for the given primary key; if there were none, a
javax.ejb.ObjectNotFoundException would be thrown. The implementation of
ejbFindByCustomer () is straightforward enough.

Entity EJBs 241 |

The Job bean defines a home method, namely deleteByCustomer(), and the
corresponding method in the JobBean class is ejbHomeDeleteByCustomer(), as shown
in Listing 6.10.

LisTING 6.10 JobBean.ejbHomeDeleteByCustomer() Home Method

1: package data;

2:

3: import javax.ejb.*;

4: import java.sql.*;

5: import java.util.*;

6: // imports omitted

7:

8: public class JobBean implements EntityBean

9:

10: public void ejbHomeDeleteByCustomer(String customer) {
11: Connection con = null;

12: PreparedStatement stmt2 = null;

13: PreparedStatement stmt1 = null;

14: try {

15: con = dataSource.getConnection();
16: stmt1 = con.prepareStatement(

= "DELETE FROM JobSkill
= WHERE customer = ?");
17: stmt2 = con.prepareStatement(
= "DELETE FROM Job
= WHERE customer = ?");

18: stmt1.setString(1, customer);

19: stmt2.setString(1, customer);

20: stmt1.executeUpdate();

21: stmt2.executeUpdate();

22: }

23: catch (SQLException e) {

24: error("Error removing all jobs for " + customer, e);
25: }

26: finally {

27: closeConnection(con, stmti, null);
28: closeConnection(con, stmt2, null);
29: }

30: }

31: /] code omitted

32: }

Implementing the Local Interface Methods

Each of the methods in the local interface has a corresponding method in the bean itself.
The corresponding methods for JobBean are shown in Listing 6.11.

| 242 Day 6

LisTING 6.11 Business Methods of JobBean Correspond to the Methods of the Local

Interface

1: package data;

2:

3: import java.rmi.*;

4: import javax.ejb.*;

5: // imports omitted

6:

7: public class JobBean implements EntityBean

8: {

9: public String getRef() {

10: return ref;

11: }

12: public String getCustomer() {

13: return customer;

14: }

15: public CustomerLocal getCustomerObj() {

16: return customeroObj;

17: }

18: public String getDescription() {

19: return description;

20: }

21: public void setDescription(String description) {

22: this.description = description;

23: }

24: public LocationLocal getlLocation() {

25: return location;

26:

27: public void setLocation(LocationLocal location) {

28: this.location = location;

29: }

30: /** returns (copy of) skills */

31: public Collection getSkills() {

32: return new ArraylList(skills);

33: }

34: public void setSkills(Collection skills) {

35: // just validate that the collection holds references to
wSkilllocal's

36: for (Iterator iter = getSkills().iterator(); iter.hasNext();) {

37: SkilllLocal skill = (SkillLocal)iter.next();

38: }

39: /1 replace the list of skills with that defined.

40: this.skills = new ArrayList(skills);

41: }

42: /] code omitted

43: }

The getSkills() and setSkills() methods bear closer inspection. The getSkills()
method returns a copy of the local skills field because, otherwise, the client could

Entity EJBs

243 |

change the contents of the skills field without the JobBean knowing. This isn’t an issue
that would have arisen if the interface to JobBean was remote, because a copy would
automatically have been created. Turning to the setSkills () method, this checks to
make sure that the new collection of skills supplied is a list of SkilllLocal references.
This is analogous to the setLocation() method that was discussed; the Job Entity bean
is enforcing referential integrity with the Skill Entity bean.

Generating IDs

Sometimes an Entity bean already has a field (or fields) that represent the primary key,
but at other times, the set of fields required may just be too large. Alternatively, the obvi-
ous primary key may not be stable in the sense that its value could change over the life-
time of an entity—something prohibited by the EJB specification. For example, choosing
a (lastname, firstname) as a means of identifying an employee may fail if a female
employee gets married and chooses to adopt her husband’s surname.

In these cases, it is common to introduce an artificial key, sometimes known as a surro-
gate key. You will be familiar with these if you have ever been allocated a customer num-
ber when shopping online. Your social security number, library card number, driver’s
license, and so on may well be just a pretty meaningless jumble of numbers and letters,
but they are guaranteed to be unique and stable. These are all surrogate keys.

With BMP Entity beans, the responsibility for generating these ID values is yours, the
bean provider. Whether numbers and letters or just numbers are used is up to you,
although just numbers are often used in an ascending sequence (that is, 1, 2, 3, and so
on). If you adopt this strategy, you could calculate the values by calling a stateless
Session bean—a number fountain, if you will. A home method could perhaps encapsu-
late the lookup of this NumberFountainBean.

The implementation of such a NumberFountainBean can take many forms. There will
need to be some persistent record of the maximum allocated number in the series, so a
method such as getNextNumber ("MyBean") could return a value by performing an appro-
priate piece of SQL against a table held in an RDBMS:

begin tran
update number_fountain

set max_value = max_value + 1
where bean_name = "MyBean"

select max_value
from number_fountain
where bean_name = "MyBean"

commit

| 244

Day 6

One disadvantage with this approach is that the NumberFountainBean—or rather, the
underlying database table—can become a bottleneck. A number of strategies have been
developed to reduce this. One is to make the getNextNumber () method occur in a differ-
ent transaction from the rest of the work. You will learn more about transactions on Day
8; for now, it is just necessary to know that while this will increase throughput, there is
the risk of gaps occurring in the sequence.

If non-contiguous sequences are acceptable, even better throughput can be achieved by
implementing a stateless Session bean that caches values in memory. Thus, rather than
incrementing the maximum value by 1, it can increment by a larger number, perhaps by
100. Only every 100t call actually performs an SQL update, and the other 99 times, the
number is allocated from memory. Of course, if the system crashes or power fails, there
could be quite a large gap.

A final enhancement that improves scalability further and also improves resilience is to
arrange for there to be a number of beans, each with a range of values. For example,
these might be allocated using a high-order byte/low-order bytes arrangement.

N“tﬂ Countries that allocate car license plates by state or by district are effectively
using this approach.

One advantage of implementing a Session bean, such as NumberFountainBean, is that it
isolates the dependency on the persistent data store that is holding the maximum value.
Also, the SQL to determine the next available number is easily ported across RDBMS.
On the other hand, many organizations use only a single RDBMS, so such portability is
not needed. In these cases, the RDBMS may have built-in support for allocating monoto-
nically increasing numeric values, and this can be used directly. For example, SEQUENCES
can be used in Oracle, while both Microsoft SQL Server and Sybase provide so-called
identity columns and the @@identity global variable. So, for BMP Entity beans, another
way to obtain the next value is to perform the SQL INSERT, obtaining the value from the
back-end RDBMS. Note that most of these tools have the same scalability issues as the
home-grown NumberFountainBean, and most also provide optimizations that can result
in gaps in the series.

There is an alternative to using numbers for ID values, namely to generate a value that
must be unique. On Windows PCs, you may well have seen strings in the format

{32F8CA14-087C-4908-B7C4-6757FE7E90AB}

In case you are wondering, this was found by delving into the Windows Registry and
(apparently) represents the FormatGUID for .AVI files (whatever that means!). The point

Entity EJBs 245 |

is that it is—to all intents and purposes—guaranteed to be unique. In the case of GUIDs,
it is unique because it is based on the MAC address of the ethernet card of the PC, plus
the time.

Clearly, other algorithms can be created, and a quick search on the Web should throw up
some commercial products and free software from which to select. For example, one
algorithm generates values unique to the millisecond, the machine, the object creating the
ID, and the top-most method of the call stack.

Granularity Revisited

A recurrent theme when developing Entity beans is in selecting an appropriate granulari-
ty for the bean. Prior to EJB 2.0, Entity beans could only provide a remote interface,
which meant that a relatively coarse grained interface was required to minimize the
client-to-bean network traffic. Indeed, this is still the recommendation made for Session
beans in EJB 2.0 that have a remote interface.

With EJB 2.0, Entity beans can have a local interface, meaning that the cost of interac-
tion with the client becomes minimal. If the cost of interaction of the Entity bean to the
persistent data store is not too high, fine-grained Entity beans are quite possible. This
may be true, either because the EJB container can optimize the database access in some
way (true only for CMP Entity beans) or if the data store resides on the same computer
as the EJB container and, ideally, within the same JVM process space.

N“tﬂ Running a persistent data store in the same process space as the EJB contain-
er is quite possible; a number of pure Java RDBMS—including Cloudscape,

the database bundled with the J2EE Rl—provide an “embedded mode.”

Under BMP however, the advice is generally not to use fine-grained Entity beans, princi-
pally because the EJB container will be unable to perform any database access optimiza-
tion. Choosing the granularity is then best determined by focusing on the identity and
lifecycle on the candidate Entity beans. Hence, order and order-detail should be a single
order bean, but customer and order, while related, should be kept separate.

In the case study, you will find that the Job bean writes to both the Job table and also the
JobSkill table (to record the skill(s) needed to perform the job).

Beware Those Finder Methods!

As you now have learned, Entity beans can be created, removed, and found through their
home interface. While these all seem straightforward enough operations, there’s danger

| 246

Day 6

lurking in the last of these; finder methods can cripple the performance of your applica-
tion if used incorrectly.

This probably doesn’t seem obvious, but if you consider the interplay between the EJB
container (implementing the local-home interface) and the bean itself, it becomes easier
to see:

e The local-home interface’s findManyByXxx () method is called. For the purposes
of this discussion, this finder method returns a Collection.

e The local-home interface delegates to a pooled bean, calling its
ejbFindManyByXxx () method. This performs an SQL SELECT statement (or the
equivalent), and returns back a Collection of primary keys to the local-home
interface.

 The local-home interface instantiates a Collection the same size as was obtained
from the bean and populates it with local proxies. Each local proxy is assigned a
primary key.

So far so good, the client receives a Collection of proxies. Suppose now that the client
iterates over this collection, calling some getter method getXxx ().

* The client calls getXxx () on the first proxy in its Collection. The proxy holds a
primary key, but there is no corresponding bean actually associated with the proxy.
Therefore, the EJB container activates a bean from the pool, calls its ejbLoad ()
lifecycle method, and then finally delegates the getXxx () business method. After
that method has completed, the ejbStore () method is called.

e This process continues for all of the proxies in the collection.

You can probably see the problem; the persistent data store will be hit numerous times.
First, it will be hit as a result of the ejbFindManyByXxx () method; this will return a thin
column of primary key values. Then, because ejbLoad () is called for each bean, the rest
of the data for that row is returned. This is shown in Figure 6.8.

Consequently, if 20 primary keys were returned by the bean following the initial
ejbFindManyByXxx (), the network would be transversed 21 times, and the database will
be hit in all 41 times—once for the initial SELECT and two times each for each of the
beans.

There are a number of techniques that can eliminate this overhead, each with pros and
cons:

* The most obvious solution is to not use finder methods that return Collections of
many beans. Instead, use stateless Session beans that perform a direct SQL SELECT
query against the database, iterate over the ResultSet, and return back a
Collection of serializable value objects that mirror the data contained in the actual
entity. This technique is called the Fast-lane Reader.

Entity EJBs 247 |

FIGURE 6.8 local 1. findManyBy local) 2 eibFindManyBy
A B LR L L = e n
Finder methods can client - .- 4 home -~ aeeaaa

result in poor perfor-
mance under BMP.

3. select
where...

4. getXXX
[for each local proxy]

H 5. ejbLoad

: 7. getXXX 6. select...

el Ut
8. ejbStore 9. update...

* Another technique that can be used is to alter the definition of the primary key
class. As well as holding the key information that identifies the bean in the data-
base, it also holds the rest of the bean’s data as well. When the original finder bean
returns the Collection of primary keys, the primary keys are held by the local
proxies. When the beans are activated, they can obtain their state from the proxy by
using entityContext.getLocalObject().getPrimaryKey (). This technique has
been dubbed the fat key pattern, for obvious reasons.

» Last, you may be able to remove the performance hit by porting the bean to use
container managed persistence. Because under CMP the EJB container is responsi-
ble for all access to the persistent data store, many will obtain all the required
information from the data store during the first findManyByXxx method call, and
then eagerly instantiate beans using this information. You will be learning more
about CMP tomorrow.

Incidentally, Figure 6.8 shows a graphic illustration of why Entity beans should, in gener-
al, define only a local interface—not a remote interface. If the client were remote rather
than local, the total network calls for a finder method returning references to 20 beans
would be double the original figure, namely 42! Moreover, every subsequent business
method invocation (call to getYYY() for example) would inflict a further 20 network calls.

EJB Container Performance Tuning

Many organizations are wary of using Entity beans because of the performance costs that
are associated with it. You have already seen the performance issues arising from using
finder methods, but even ignoring this, any business method to an Entity bean will
require two database calls—one resulting from the ejbLoad () that precedes the business
method and one from the ejbStore() to save the bean’s new state back to the data store.

| 248

Day 6

Of course, these database calls may be unnecessary. If a bean hasn’t been passivated
since the last business call, the ejbLoad () need not do anything, provided that nothing
has updated the data store through non-EJB mechanisms. Also, if the business method
called did not change the state of the bean the ejbStore() has nothing to do also.

Another scenario is where a bean is interacted with several times as part of a transaction.
You will be learning more about transactions on Day 8, so for now, just appreciate that
when a bean is modified through the course of a transaction, either all of its changes in
state or none of them need to be persisted. In other words, there is only really the
requirement to call ejbStore () just once at the end of the transaction.

Taking these points together, the amount of network traffic from the EJB container to the
persistent data store can be substantially reduced, down to the levels that might be
expected in a hand-written J2SE client/server application. Although not part of the EJB
specification, many EJB containers provide proprietary mechanisms to prevent unneces-
sary ejbLoad() or ejbStore() calls. Of course, the use of these mechanisms will make
your bean harder to port to another EJB container, but you may well put up with the
inconvenience for the performance gains realized. Indeed, if you are in the process of
evaluating EJB containers, as many companies are, you may even have placed these fea-
tures on your requirements list.

Configuring and Deploying a BMP
Entity Bean

Yesterday, you learned how to deploy Session beans by creating ejb-jar files with their
own deployment descriptor and including the ejb-jar into an enterprise application.
Deploying Entity beans is done in precisely the same way, by creating ejb-jar files that
contain the Entity bean classes, with appropriate entries in the deployment descriptor.
This deployment descriptor is the same deployment descriptor as for Session beans. As
you saw yesterday, the root element of this deployment descriptor is the ejb-jar ele-
ment:

<!ELEMENT ejb-jar (description?, display-name?, small-icon?, large-icon?,
enterprise-beans, relationships?, assembly-descriptor?, ejb-client-jar?)>

Looking at the enterprise-beans element, this is defined as follows:
<!ELEMENT enterprise-beans (session | entity | message-driven)+>

The deployment descriptor can contain Session, Entity, and/or Message-driven beans. Or
put another way, Session beans and Entity beans can be placed in the same ejb-jar if
required.

Entity EJBs 249|

Entity Element
The entity element of the DTD is defined as follows:

<!ELEMENT entity (description?, display-name?, small-icon?, large-icon?,
ejb-name, home?, remote?, local-home?, local?, ejb-class,
persistence-type,

prim-key-class,

reentrant,

cmp-version?, abstract-schema-name?,

cmp-field*, primkey-field?,

env-entry*,

ejb-ref*, ejb-local-ref*,

security-role-ref*, security-identity?,

resource-ref*,

resource-env-ref*,

query*)>

Many of the elements referred by the entity element are also used by the session ele-
ment, and were discussed yesterday:

e Presentational elements—description, display-name, small-icon, and large-
icon.

» Elements describing the components of the bean—ejb-name, home, remote, local-
home, local, and ejb-class elements. The local-home and local elements just
name the interfaces that extend javax.ejb.EJBLocalHome and
javax.ejb.EJBLocal, respectively.

o Elements referring to the environment and other resources—env -entry, ejb-ref,
ejb-local-ref, resource-ref, and resource-env-ref.

The remaining elements are specific to Entity beans:

* persistence-type Set to Bean for bean-managed persistence or Container for
container-managed persistence. For the purposes of today, this will be set to Bean.

e prim-key-class This mandatory element indicates the name of the primary key
class. This will be a custom developed class for beans that have primary keys
(JobPK for Job bean) but may be a regular class (java.lang.String) for others
(for example, the Location bean).

e cmp-version, abstract-schema-name, cmp-field, prim-key-field, query
These are used only for CMP beans and are covered tomorrow.

e reentrant Set to true for reentrant Entity beans, or false for non reentrant
beans. It’s safer to mark Entity beans as non reentrant.

* security-role-ref, security-identity You will learn more about security on
Day 15.

| 250 Day 6

Listing 6.12 shows the deployment descriptor for the Job bean.

LIsTING 6.12 entity Element Descriptor for the Job Bean

1: <entity>

2: <display-name>JobBean</display-name>

3 <ejb-name>JobBean</ejb-name>

4: <local-home>data.JobLocalHome</local-home>
5: <local>data.JoblLocal</local>

6: <ejb-class>data.JobBean</ejb-class>

7 <persistence-type>Bean</persistence-type>
8: <prim-key-class>data.JobPK</prim-key-class>
9: <reentrant>False</reentrant>

10: <ejb-local-ref>

11: <ejb-ref-name>ejb/SkillLocal</ejb-ref-name>

12: <ejb-ref-type>Entity</ejb-ref-type>

13: <local-home>data.SkillLocalHome</local-home>

14: <local>data.SkilllLocal</local>

15: <ejb-link>data_entity_ejbs.jar#SkillBean</ejb-1link>
16: </ejb-local-ref>

17: <ejb-local-ref>

18: <ejb-ref-name>ejb/LocationLocal</ejb-ref-name>
19: <ejb-ref-type>Entity</ejb-ref-type>

20: <local-home>data.LocationLocalHome</local-home>
21: <local>data.LocationLocal</local>

22: <ejb-link>data_entity_ejbs.jar#LocationBean</ejb-1link>
23: </ejb-local-ref>

24: <ejb-local-ref>

25: <ejb-ref-name>ejb/CustomerLocal</ejb-ref-name>
26: <ejb-ref-type>Entity</ejb-ref-type>

27: <local-home>data.CustomerLocalHome</local-home>
28: <local>data.CustomerLocal</local>

29: <ejb-link>data_entity_ejbs.jar#CustomerBean</ejb-1link>
30: </ejb-local-ref>

31: <security-identity>

32: <description></description>

33: <use-caller-identity></use-caller-identity>

34: </security-identity>

35: <resource-ref>

36: <res-ref-name>jdbc/Agency</res-ref-name>

37: <res-type>javax.sql.DataSource</res-type>

38: <res-auth>Container</res-auth>

39: <res-sharing-scope>Shareable</res-sharing-scope>
40: </resource-ref>

41: </entity>

Note the resource-ref dependency on jdbc/Agency, just as you saw for Session beans
that make JDBC calls. The res-ref-name is the coded name jdbc/Agency that appears
in the setEntityContext () method of LocationBean. This logical reference is mapped

Entity EJBs 251 |

to the physical resource through the auxiliary deployment descriptor agency_ea-sun-
j2ee-ri.xml. There are also ejb-ref dependencies on various other beans; these are
ultimately used to manage the relationships with the Location, Skill, and Customer
beans.

All of this information can be seen through the J2EE RI deploytool GUI, as shown in
Figure 6.9.

Fl GURE 69 [E3 Application Deployment Taol: agency:

File Edit Tools Help

g ¢ [F

The deploytool GUI | @B cl@lEl BlERRI [5E] [
displays deployment © CIFiles |[Inspecting: Files.Applications.agency.Data.JobBean
. . . @ [Applications Resource Re f
descriptor information ? < agency
H @ RegisterClient
graphlcally' AdwertiseClient ean Type
@ AdminClient
TableClient @ Entity
AllClisnts O Message-Driven
? B Agency)
@ RegisterBean O Session
@ AdvertiselohBean
@ pgencyBean Clslnaiss
@ AdvertiseBean O Stateful
] Data
@ gkillBean
@ LocationBean Enterprise Bean Class: rLocal Interfaces———————————————————
Z 5;‘;;1:?993” [da(a.JuhBean Local Home Interface:
® (@ senvers Eda(a.JubanaIHnme
% & 1ocalhost Beanfamei Local
@ agency [mbBean | | tata.JobLocal
Enterprise Bean Display Name:
rRemote

‘ Remaote Home Interface:

i

Remote Interface:

|

‘ [Description...

‘ Icons...

Good though the deploytool GUI is, sometimes a command-line interface is required.
For example, you might want to automatically compile and then re-deploy your enter-
prise application in a project as part of a nightly build. Luckily, the deploytool also pro-
vides a command-line interface, so today you will deploy the Entity beans using this
mechanism.

Under day06\agency, the directory structure has been organized into a number of subdi-
rectories, as shown in Table 6.2.

TABLE 6.2 Directory Structure under day@6\agency

Subdirectory Contents

build a) buildAll, which calls most of the other scripts in this directory, except
b) deploy, which deploys the enterprise application.

src Java source for the client, agency, and data packages.

| 252 Day 6

TaBLE 6.2 Continued

Subdirectory Contents

dd Standard XML deployment descriptors for the EJBs, for the enterprise applica-
tion, and for the application clients. This directory also contains auxiliary
deployment descriptors used by the J2EE RI to map the logical references in
the standard deployment descriptors to the physical runtime environment man-
aged by the J2EE RI container.

classes Compiled Java classes. The various compile* scripts in the build directory
compile into this directory.

jar ejb-jar and ear (Enterprise Application) archives. Generated by the various
build* scripts in the build directory.

run The scripts to run the various clients.

To deploy the enterprise application, start Cloudscape and the J2EE RI, and then type

> cd day@6\agency\build
> buildAll
> deploy

It’s as simple as that!

One of the benefits of this approach is that bean developers, application assemblers and
deployers who are familiar with the standard EJB deployment descriptors can modify the
bean’s deployment configuration by simply editing the XML deployment descriptors
directly—without having to get to grips with the J2EE RI GUI. Moreover, some of the
names automatically assigned by the deploytool GUI, such as the names of the ejb-jar
files themselves, can be given more descriptive names. Consequently, the ejb-jar that
contains the Entity beans is called data_entity_ejbs.jar and its deployment descriptor
is called data_entity_ejbs_ejb-jar.xml.

If you look in the dd directory (or in the deploytool GUI as shown in Figure 6.9), you
can see that the case study separates out the Session beans and the Entity beans into two
different ejb-jars. The Agency ejb-jar contains the same set of Session beans that you
saw yesterday (although their implementation is different as you shall see shortly, they
now delegate to the Entity beans), while the Data ejb-jar has the new BMP Entity
beans. How you choose to organize your enterprise application is up to you.

Client's View

You’ve now learned how to specify, implement, and deploy BMP Entity beans, but how
are they used? As you can probably imagine, the steps to obtain a reference to an Entity
bean are similar to that for Session beans:

Entity EJBs 253 |

1. Look up the home interface for the Entity bean from JNDI.
2. To create a new entity instance, use the relevant home.create () method.

3. To locate an existing entity instance, use home . findByPrimaryKey () if the primary
key is known, or some other home.findXxx () finder method to obtain a
Collection of matching entities.

4. For the returned local proxy to the Entity bean, invoke the business methods
defined in the local interface of the bean.

The javax.ejb.EJBLocalObject interface also defines a number of other methods that
can be called by the client, and it is worth discussing the semantics of these briefly:

e The getPrimaryKey () method of EJBLocalObject returns the primary key that
identifies the bean.

[:autinn Note that because EJBLocalObject is also the super-interface for Session
bean interfaces, this method can also be called when the client has a refer-
ence to the local proxy of a Session bean. However, because primary keys do
not make sense for Session beans, an EJBException will always be thrown.

 If an Entity bean has both a local and a remote interface, and then
EJBObject.getPrimaryKey () (from the remote proxy) and
EJBLocalObject.getPrimaryKey () (from the local proxy) will both return objects
that are equal (according to the definition the primary key’s definition of
equals()).

e The isIdentical() method can be used instead of comparing primary key classes
to determine if two bean references refer to the same Entity bean. In other words,
beani.isIdentical(bean2) returns true if and only if
beani.getPrimaryKey().equals(bean2.getPrimaryKey()).

One scenario that can occur is that a client can have a reference to an Entity bean, and
then the bean could be deleted by some other client. This could occur either by an EJB
application client that invokes remove () on the same Entity bean, or it could be a non-
EJB client that deletes the data directly from the underlying persistent data store. Either
way, the original client will not be notified of this, and won’t detect this situation until it
next invokes a method on the Entity bean. In this case, the client will receive a
javax.ejb.NoSuchObjectLocalException (a subclass of javax.ejb.EJBException, in
turn a subclass of java.lang.RuntimeException) if accessing the Entity bean through
its local interface.

| 254

Day 6

The javax.ejb.NoSuchObjectLocalException caught by local clients is analogous to
the java.rmi.NoSuchObjectException that would be caught if accessing the Entity bean
through its remote interface. Table 6.3 shows the table from yesterday detailing various
other exceptions, supplemented with the exception classes received by local clients.

TABLE 6.3 System Exceptions Are Thrown in a Variety of Situations
Local Client Remote Client
What Event Receives Receives
Any bean Throws javax.ejb. javax.ejb. java.rmi.
EJBException (or any subclass) EJBException RemoteException
(or subclass)
BMP Entity Throws NoSuchEntityException javax.ejb. java.rmi
bean NoSuchEntity NoSuchObject
Exception Exception
Container When client invokes method on javax.ejb. java.rmi.
a reference to a bean that no NoSuchObject NoSuchObject
longer exists LocalException Exception
When client calls a method javax.ejb. javax.transaction.
without a transaction context TransactionRequired TransactionRequired
LocalException Exception
When client has insufficient javax.ejb. java.rmi.
security access Accesslocal AccessException
Exception
When transaction needs to be javax.ejb. javax.transaction.
rolled back TransactionRolled TransactionRolled

Back LocalException

Back Exception

As you can see, the EJB Specification makes some attempt at a naming standard so that

the models are as similar as possible for local and remote clients.

Session Beans Revisited

The case study for today has the same set of Session beans as yesterday, and their inter-
faces are the same. However, their implementation is quite different, because they dele-
gate all database interactions to the Entity bean layer.

Entity EJBs 255 |

As an example, Listing 6.13 shows the original updateDetails () method in the stateful
Advertisedob bean. The AdvertiseJob bean provides services for managing jobs.

LISTING 6.13 AdvertiseJobBean.updateDetails() Without an Entity Bean Layer

1: package agency;
2:
3: import java.util.*;
4: import javax.ejb.*;
5: import java.sql.*;
6: // imports omitted
7:
8: public class AdvertisedobBean extends SessionBean
9: {
10: public void updateDetails(String description,
=String location, String[] skills) {
11: if (skills == null) {
12: skills = new String[0];
13: }
14: Connection con = null;
15: PreparedStatement stmt = null;
16: try {
17: con = dataSource.getConnection();
18: stmt = con.prepareStatement(
= "UPDATE JOB
= SET description = ?, location = ?
= WHERE ref = ? AND customer = ?");
19: stmt.setString(1, description);
20: stmt.setString(2, location);
21: stmt.setString(3, ref);
22: stmt.setString(4, customer);
23: stmt.executeUpdate();
24: stmt = con.prepareStatement(
= "DELETE FROM JobSkill
= WHERE job = ? AND customer = ?");
25: stmt.setString(1, ref);
26: stmt.setString(2, customer);
27: stmt.executeUpdate();
28: stmt = con.prepareStatement(
= "INSERT INTO JobSkill (job, customer, skill)
= VALUES (?, ?, 7)");
29: for (int i = 0; i < skills.length; i++) {
30: stmt.setString(1, ref);
31: stmt.setString(2, customer);
32: stmt.setString(3, skills[i]);
33: stmt.executeUpdate();
34: }
35: this.description = description;

36: this.location = location;

| 256

Day 6

LisTING 6.13 Continued

37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47
48: }

this.skills.clear();
for (int i = 0; i < skills.length; i++)
this.skills.add(skills[i]);
}
catch (SQLException e) {
error("Error updating job " + ref + " for " + customer, e);

}
finally {

closeConnection(con, stmt, null);
}

Listing 6.14 shows the updated version, delegating the hard work to the Job bean:

LISTING 6.14 AdvertiseJobBean.updateDetails() with an Entity Bean Layer

—_

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

- 0 WO NOOU~WN =

package agency;

import java.util.*;
import javax.ejb.*;
import data.*;

// imports omitted

public class AdvertiseJobBean extends SessionBean

private JobLocal job;
public void updateDetails(String description,

=»String locationName, String[] skillNames) {
if (skillNames == null) {
skillNames = new String[0];
}
List skilllist;
try {
skilllList = skillHome.lookup(Arrays.asList(skillNames));
} catch (FinderException ex) {
error("Invalid skill", ex); // throws an exception
return;
}
LocationLocal location = null;
if (locationName != null) {
try {
location = locationHome.findByPrimaryKey(locationName);
} catch (FinderException ex) {
error("Invalid location", ex); // throws an exception
return;

Entity EJBs 257 |

LisTING 6.14 Continued

31:
32:
33:
34:
35:
36:

job.setDescription(description);
job.setLocation(location);
job.setSkills(skilllList);

}

/] code omitted

}

The updated version is much more object-oriented; the knowledge of the database
schema has been encapsulated where it rightfully belongs—in the Entity bean layer.

All this means that the AdvertiseJob bean no longer has any dependencies on the
jdbc/Agency DataSource. On the other hand, it does now have dependencies on several
of the Entity beans. These are defined using ejb-local-ref elements in the deployment
descriptor. The relevant portion of the AdvertiseJob deployment descriptor
(agency_session_ejbs_ejb-jar.xml file in the dd directory) is shown in Listing 6.15:

LIsTING 6.15 AdvertiseJob Bean’s Reference to the Entity Beans

<ejb-local-ref>
<ejb-ref-name>ejb/SkillLocal</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>data.SkillLocalHome</local-home>
<local>data.SkilllLocal</local>
<ejb-link>data_entity_ejbs.jar#SkillBean</ejb-1link>

</ejb-local-ref>

<ejb-local-ref>
<ejb-ref-name>ejb/LocationLocal</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>data.LocationLocalHome</local-home>
<local>data.LocationLocal</local>
<ejb-link>data_entity_ejbs.jar#LocationBean</ejb-link>

: </ejb-local-ref>
! <ejb-local-ref>

<ejb-ref-name>ejb/JobLocal</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>data.JobLocalHome</local-home>
<local>data.JoblLocal</local>
<ejb-link>data_entity_ejbs.jar#JobBean</ejb-link>

: </ejb-local-ref>
: <ejb-local-ref>

<ejb-ref-name>ejb/CustomerLocal</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>data.CustomerLocalHome</local-home>
<local>data.JobLocal</local>
<ejb-link>data_entity_ejbs.jar#CustomerBean</ejb-link>

: </ejb-local-ref>

| 258

Day 6

Note the ejb-1ink reference, which names the bean that implements the required inter-
faces. This notation is used rather than a JNDI name because JNDI can (potentially) refer
to remote EJBs, whereas local EJBs must—by definition—be deployed on the same
server.

Patterns and Idioms

Yesterday, you saw some patterns and idioms that apply to writing Session beans. In this
section, you will see some more that relate to BMP Entity beans and local interfaces. If
you are impatient to get onto the exercise, feel free to skip this section and revisit later.

Interfaces, Facades, and State

This is a pattern that relates mostly to Session beans, but is discussed today rather than
yesterday because it uses local interfaces.

While Session beans can provide both a remote and a local interface, you’ll only want to
provide one or the other more often than not. Generally, you should aim to have a small
number of Session beans that offer a remote interface, and the remainder will be local
“helper” beans. In design pattern terms, the remote Session beans create a Fagcade. This
pattern is discussed more fully on Day 18, “Patterns.”

The Facade beans will likely be stateful. Certainly, the helper beans should not be state-
ful, because chaining stateful objects is poor design, as noted yesterday.

Use Local Interfaces for Entity Beans

Entity beans should only ever be accessed through a local interface, and there are some
very good reasons for this.

First, accessing Entity beans through a remote interface implies network traffic and the
cost of cloning serializable objects. When the client runs in the same JVM as the Entity
bean, a local interface eliminates cost.

This ties in with the previous discussion on Session bean interfaces and facades. Session
beans provide a remote interface to the enterprise application, so Session beans should
act as a front-end to Entity beans. Some people think of this as the verb/noun
paradigm—the Session beans are the verbs (the doing end of the application) and the
Entity beans are the nouns (the reusable business objects within some domain). Defining
only local interfaces to Entity beans effectively enforces this pattern.

Second, finder methods of Entity beans—already expensive to use—become even more
so when the client is remote. This was remarked on earlier today.

Entity EJBs 259 |

Lastly, and perhaps most significantly, local interfaces are the cornerstone of container-
managed relationships (CMR)—part and parcel of container-managed persistence. You’ll
be learning all about this tomorrow. If you build your BMP beans using local interfaces,
you provide a migration path to implementing those beans using CMP in the future.

Dependent Value Classes

Under BMP, the Entity bean’s state can be represented in any way that is appropriate.
Moreover, the bean can persist this state, in any way it wants.

Sometimes, a bean’s state will be simple enough (that is, just a set of scalar fields) that it
will correspond to a row in an RDBMS table. More often though, some of those fields
will be vector, and they might even include some complex data, such as a map or photo
and so on.

One simple solution to persisting such objects is to ensure that the fields of the bean are
either scalar primitives or are a reference to a serializable object, an instance of what are
sometimes called dependent value classes. The structure of that object can be as complex
as needed, so long as it is serializable. The scalar fields are stored in regular columns in
the RDBMS table, and the serializable object is stored as a binary large object (BLOB).

For example, the Job bean is mapped to both the Job and JobSkill table in the case
study, accessing both in its ejbLoad () and ejbStore() methods. The JobBean.skills
field is a List of SkilllLocal references.

An alternative design would be to store the skills list as a BLOB in the database. The
Job table would be redefined to be something like the following:
create table Job
(ref varchar(16),
customer varchar(16),
description varchar(512),
location varchar(16),
skills long varbinary -- store a BLOB in Cloudscape

)

There is then a one-to-one mapping between an instance of the Job Entity bean and a
row in the Job table. One slight complication is that because the JobBean.skills field
contains references to SkilllLocal references, which are not necessarily serializable, the
skills variable would not be serializable either. So, in the ejbStore () method, a List
of skill names (that is, primary key to each SkilllLocal) would be created and saved to
the database. This List of skill names is the “dependent value class.”

stmt = con.prepareStatement (

= "UPDATE Job

= SET description = ?, location = ?, skills = ?
= WHERE ref = ? AND customer = ?");

| 260

Day 6

stmt.setString(1, description);

if (location != null) {
stmt.setString(2, location.getName());
} else {

stmt.setNull(2, java.sql.Types.VARCHAR);
}

List skillNameList = new ArrayList();
for(Iterator iter = this.skills.iterator();) {
skillNameList.add(((SkillLocal)iter.next()).getName());

}
stmt.setBlob (3, skillNamelList);

stmt.setString(4, ref);
stmt.setString(5, customerObj.getLogin());
stmt.executeUpdate();

Conversely, in the ejbLoad (), the List of skill names would be converted back to a List
of SkilllLocal references. The SELECT statement would be as follows:

stmt = con.prepareStatement (
"SELECT description,location,skills FROM Job WHERE ref = ? AND customer = ?");

and the processing of the result set would be

this.description = rs.getString(1);

String locationName = rs.getString(2);
this.location = (locationName != null)?
=]locationHome.findByPrimaryKey(locationName):null;

List skillNameList = (List)rs.getBlob(3);
this.skills = skillHome.lookup(skillNamelList);

The skillHome.lookup () home method of the Skill bean does the actual conversion
from name to SkilllLocal. (In fact, this method is actually used in JobBean’s ejbLoad ()
method, so you can check out the code yourself).

This approach can substantially reduce the coding effort, although you should also be
aware of some of the downsides:

 First, the BLOB field is effectively atomic; even if just a small piece of information is
changed (for example, a new skill is added), and then entire BLOB must be replaced.

* Furthermore, information previously easily accessible can now only be accessed
through a single route. In the previous example, the data that was previously in the
JobSkill table is now buried within the Job.skills field. It is no longer possible
to perform an efficient SQL SELECT to find out which jobs require a certain skill.
Instead, such a query will involve instantiating and then querying every Job bean
instance.

Entity EJBs

261 |

 Last, the data in the persistent data store is stored in Java’s own serializable format.
While this is a well-defined structure, it nevertheless makes it non-trivial for non-
Java clients to access this data.

Nﬂtﬂ It is possible to serialize Java classes in a custom-defined manner (for exam-
ple, as an XML string) by either providing a readobject() and
writeObject() method or by implementing java.io.Externalizable and
implementing readExternal() and writeExternal() methods. However,
such an approach would probably involve more development effort than
had been saved by using a BLOB to store the dependent value class.

Because dependent value classes are serializable, it is also possible to use them as the
return types of accessor methods (getters and setters) of the interface. Indeed, prior to the
introduction of local interfaces in EJB 2.0, this was a recommended pattern to minimize
network traffic across the Entity bean’s remote interface. However, provided that only
local interfaces are provided (and especially if using CMP), there is nothing wrong with
providing fine-grained access to the values of the Entity bean. In effect, this design pat-
tern has been deprecated with EJB 2.0.

Self-Encapsulate Fields

In the case study BMP beans, the private fields that represent state are accessed directly
within methods. For example, the following is a fragment of the JobBean.ejbCreate ()
method:

public JobPK ejbCreate (String ref, String customer) throws CreateException {
// database access code omitted

this.ref = ref;

this.customer = customer;
this.description = description;
this.location = null;
this.skills = new ArrayList();

// further code omitted
}

Some OO proponents argue that all access to fields should be through getter and setter
accessor methods, even for other methods of the class. In other words, the principle of
encapsulation should be applied everywhere. Using such an approach, the ejbCreate ()
method would be as follows:

|262 Day 6

public JobPK ejbCreate (String ref, String customer) throws CreateException {
/| database access code omitted

setRef(ref);

setCustomer (customer);
setDescription(description);
setLocation(null);
setSkills(new ArrayList());

// further code omitted

}

Some people find this overly dogmatic, and, indeed, the code in the case study takes the
more direct approach. However, you may want to consider self-encapsulation because it
makes BMP beans easier to convert to CMP. As you will see tomorrow, all accessing to
the Entity bean’s state must be through accessor methods.

Don’t Use Enumeration for Finders

The EJB 1.0 specification was introduced before J2SE 1.2, so the specification allowed
finder methods that returned many instances to return java.util.Enumeration
instances. For backward compatibility, the EJB 2.0 specification still supports this, but
you should always use java.util.Collection as the return type for finder methods
returning more than one Entity bean instance.

Acquire Late, Release Early

In conventional J2SE programs, the idiom usually is to connect to the database at the
start of the program when the user logs in, and only disconnect when the user logs out.
Holding onto the open database connection while the user logs in substantially improves
performance; database connections are relatively expensive to obtain. So, for J2SE pro-
grams, the mantra is “Acquire early, release late.”

With J2EE programs, things are inverted. The database connection should be obtained
just before it is required, and closed immediately after it has been used. In other words,
“Acquire late, release early.” This is shown in the Job bean, as shown in Listing 6.16.

LISTING 6.16 Acquire Late, Release Early, as Shown in JobBean

package data;

import javax.ejb.*;
import java.sql.*;
// imports omitted

OO hs N =

Entity EJBs 263 |

LisTING 6.16 Continued

7: public class JobBean implements EntityBean

8:

9: public void ejbLoad() {

10: JobPK key = (JobPK)ctx.getPrimaryKey();

11: Connection con = null;

12: PreparedStatement stmt = null;

13: ResultSet rs = null;

14: try {

15: con = dataSource.getConnection();

16: stmt = con.prepareStatement(..);

17:

18: /] SQL code omitted

19:

20: }

21: catch (SQLException e) {

22: error("Error in ejbLoad for " + key, e);

23: }

24: catch (FinderException e) {

25: error("Error in ejbLoad (invalid customer or location) for "
= + key, e);

26: }

27: finally {

28: closeConnection(con, stmt, rs);

29: }

30: }

31: // code omitted

32: }

The reason that this works is because the database connection is obtained from a
javax.sql.DataSource (line 15) in a J2EE environment, rather than using the
java.sql.DriverManager.getConnection () method. Obtaining connections from
DataSources is not expensive in performance terms because they are logical connections,
not physical connections. When such a connection is obtained, it is merely obtained from
a connection pool, and when it is “closed,” it is simply returned back to the connection
pool.

Indeed, using the J2SE idiom of acquire early, release late (for example, by obtaining a
connection in setEntityContext() and releasing it in unsetEntityContext()) can
adversely affect performance, because every instantiated bean would have its own data-
base connection. This may well reduce application throughput because the memory
resources of both the EJB container and the database server would be increased to handle
many open database connections. In comparison, the J2EE idiom means that the number
of database connections open is no more than the number of methods concurrently exe-
cuting.

| 264

Day 6

Business Interface Revisited

Yesterday, you learned about the business interface idiom, whereby the business methods
are pulled out into a separate interface such that the bean itself can implement this inter-
face. This principle can equally be applied to Entity beans using local interfaces, as
shown in Figure 6.10.

FIGURE 6.10 interface interface interface
. . EJBLocalHome EJBLocalObject data.JobBus
Business interfaces can < - -1
1 / remove getEJBLocalHome getRef
be app ll?d to Ent%ty getPrimaryKey getCustomer
beans with local inter- remove getCustomerObj
isldentical setDescription
f aces. getDescription
setLocation
getlLocation
getSkills
setSkills
[}
IJ I
interface interface data.JobBean
data.JobLocalHome data.JobLocal
F - > getRef
create getCustomer
findByPrimaryKey getCustomerObj
findByCustomer getDescription
findByLocation setDescription
deleteByCustomer getLocation
attributes, EJB lifecycle methods setlLocation
and private helper methods B|- = getSkills
have been hidden. setSkills

There is one difference when applying this technique to beans that only have local inter-
faces; there is no longer any need for the methods of the business interface to throw
RemoteException, because the local interface of the bean (JobLocal in Figure 6.10) is
not itself remote. Even so, the bean still does not implement its local interface because
the methods of the EUJBLocalObject interface are there to be implemented by the local
proxy object, not by the bean.

Gotchas

The following is a quick checklist of “gotchas” to help you with your implementation:

* Primary keys must be immutable. In other words, it is not possible to change the
value of a primary key for an entity once assigned (see EJB specification, section
10.3.5).

Of course, there is nothing to prevent you from directly changing the data in the
underlying persistent data store (for example, with an SQL UPDATE statement). But
you will need to do this with the EJB container offline or otherwise at rest.

Entity EJBs 265 |

* Sometimes, Entity beans interact with non-data store resources. An example might
be a client java.net.Socket or perhaps a subscription to a JMS topic (covered
more on Days 9, “Java Messaging Service,” and Day 10, “Message-Driven
Beans”). These resources will need to be acquired in both ejbActivate() (for an
existing bean) and also for ejbCreate () (if the bean has just been created).

Similarly, resources should be released in both ejbPassivate() and ejbRemove().
This is because a bean being deleted will not be passivated first.

* Finder methods can return Collections, but they can’t return Lists, Sets, or Maps.
However, this capability is planned for future versions of the EJB specification.

* If you have two bean references, note that the value of bean1.equals(bean2) is
unspecified, and that bean1 == bean2 is also unspecified. Moreover, hashCode ()
may differ for two references to the same underlying EJB. (All of these points are
made in the EJB specification, section 9.8.)

The correct way to compare bean identity is to use bean.isIdentical() or to use
the equals() method on the primary key classes.

* Beware of a reliance on pass-by-reference side-effects when using local interfaces.
Such a reliance would compromise portability.

Summary

Another long day, but you now have lots of good new material under your belt. You’ve
learned that Entity beans represent persistent domain data with corresponding domain

(not application) logic. You’ve seen that the constituent parts of Entity beans are pretty
much the same as Session beans, though Entity beans also require a primary key class

that must be custom-developed if the key is composite.

You’ve also learned that there are two different ways to implement Entity beans, either
using bean-managed persistence, whereby the persistence code (JDBC, for example)
resides within the bean code, or using container-managed persistence. You now know the
lifecycle for BMP beans and how to implement such beans.

You saw that the EJB specification allows local interfaces to be defined for EJBs, as well
as or instead of remote interfaces, and saw several good reasons why Entity beans should
always use local interfaces.

Onto deployment, you now know that the J2EE RI allows EJBs can be deployed using a
command line interface. A deeper understanding of the XML deployment descriptor is
needed, but the process for deployment is (arguably) more portable and faster.

Finally, you’ve learned numerous design techniques, patterns, and idioms that should set
you up for designing and implementing Entity beans effectively.

| 266

Day 6

Q&A

Q
A

o oo

(=)

What do Entity beans represent?

Entity beans represent persistent data that can be accessed and shared by many
clients over time.

What are the two types of Entity beans?
The two types of Entity beans are BMP and CMP.
Why are local interfaces preferable to remote interfaces for Entity beans?

Local interfaces perform better because there is no network traffic when calling a
bean through its local interface, and there is also no need to clone serializable
objects. They are also the basis for CMP.

How does a BMP Entity bean know what its primary key is?

It can be passed as an argument of ejbCreate(), it could be generated by the
RDBMS, it could be generated by some other bean, or it might be generated as a
pseudo-random value using an algorithm that guarantees uniqueness.

Which two methods should the primary key class implement?

The primary key class should implement the hashCode () and equals() methods.

Exercises

The exercise starts with a version of today’s case study that has a complete set of Session
beans, but an incomplete set of Entity beans. Where there is no Entity bean, the Session
bean performs direct SQL. The state of affairs is shown in Table 6.4.

TABLE 6.4 Case Study Session and Entity Beans

Session Functional Implementation/
Bean Area Functions Delegation
Agency Applicants create, delete, find all Direct SQL
Customers create, delete, find all Customer bean
Locations add, get details, get plural, remove Location bean
Skills add, get details, get plural, remove Skill bean
Advertise Job create, delete, get plural Job bean
Customer get details, update Customer bean
Advertisedob Job get details, update Skill bean, Location bean

Register Applicant get details, update Direct SQL

Entity EJBs 267 |

The exercise is to implement an Applicant Entity bean and to update the Agency and
Register Session beans to use this new Entity bean.

The Applicant bean should map itself to the Applicant and ApplicantSkill tables and
define the following fields:

* login This is the primary key for the Applicant Entity bean.

* name Simple scalar field.

e email Simple scalar field.

e summary Simple scalar field.

e location Should be a reference to a LocationLocal to ensure referential integrity.

e skills Should be a collection of SkilllLocal references to ensure referential

integrity.

You should find that the structure of your new bean shares many similarities with the Job
Entity bean. One difference will be the primary key. The Job bean required a JobPK
because it had a composite primary key. For your Applicant bean, you should not need
to develop a custom primary key class because applicants will be identified simply by
their login—a simple String.

The ApplicantLocalHome and ApplicantLocal interfaces have already been provided;
note their similarity to JobLocalHome and JobLocal.

The directory structure of day@6\exercise is the same as yesterday:

* src The source code for the EJBs and clients.
e classes Directory to hold the compiled classes; empty.
e dd Holds XML deployment descriptors.

* build Batch scripts (for Windows and UNIX) to compile the source and to build
the EAR files into the jar directory.

e jar Holds agency.ear: the agency enterprise application. Also holds
agencyClient.jar, the client-side JAR file optionally generated when deploy
EAR. This directory also holds some intermediary JAR files that are used only to
create the previous two jar files.

e run Batch scripts (for Windows and UNIX) to run the JARs. Use the files in the
jar directory.

In the detailed steps that follow, note one difference from yesterday is that today you
will be defining and configuring the EJB as part of the enterprise application by directly
editing the XML deployment descriptors in the dd directory. If you feel uneasy about
doing this, there is nothing to prevent you from making the changes through the GUI.

| 268

Day 6

Do note, however, that the build scripts that create the agency. ear file do require that the
ApplicantBean.java source exists (even if its implementation is incomplete).

The steps you should follow are:

1.

Locate the ApplicantBean.java file within day@6\exercise\src\data. This
should have an empty implementation.

. Implement ApplicantBean to support the Applicant and ApplicantLocalHome

interfaces supplied. Base your implementation on JobBean, if you want.

Next, modify the AgencyBean Session bean. The findAllApplicants(),
createApplicant(), and deleteApplicant () methods should instead delegate to
ApplicantHome.

Now update the RegisterBean Session bean. In its ejbCreate () method, it should
obtain a reference to an underlying Applicant Entity bean. Each of the business
methods should then delegate to this applicant. If you want something to work
from, look at the approach adopted by the AdvertiseJob Session bean, delegating
to an instance of Job Entity bean.

. Update the data_entity ejbs_ejb-jar.xml deployment descriptor in the dd

directory; again, cloning and adapting the Job bean entries will be a good start.

Update the agency_session_ejbs_ejb-jar.xml deployment descriptor to indicate
the new dependencies of the Agency and Register Session beans. Both will
depend on ApplicantLocal; you should also find that Register depends on
SkilllLocal and LocationLocal (to call the business methods of Applicant).

The buildDataEntityEjbs script already references ApplicantBean, so there is no

need to change it. This causes your classes to be added to the resultant
data_entity ejbs.jar ejb-jar file.

. Now, build the jar\agency.ear enterprise application by using build\buildAll.

Load the resultant EAR file into deploytool, and check that the EJB is correctly
defined. If it is not, either make the appropriate changes and run buildAll or make
the changes through the deploytool GUI itself. Then, save the deployment
descriptors into the dd directory.

Your agency . ear file is not quite ready to deploy, because the vendor-specific
mapping information has not yet been specified. This is most easily generated by
deploying the enterprise application from deploytool. The wizard that then
appears will ensure that you have the opportunity to indicate any missing informa-
tion. Then, test by using the A11Clients client, invoked using the run\runAll
script.

Entity EJBs 269 |

10. Optionally, you may want to save the auxiliary deployment descriptor to
dd\agency_ea-sun-j2ee-ri.xml. If you do this, you will be able to build and
deploy the application directly from the command line using build\buildAll and
build\deploy, respectively. However, to obtain the auxiliary deployment descrip-
tor, you will need to manually load the agency . ear file (from the previous step)
into WinZip or equivalent and extract the auxiliary deployment descriptor; the
deploytool GUI does not provide any direct mechanism.

Good luck. A working example can be found in day@6\agency (with a correct auxiliary
deployment descriptor).

WEEK 1

DAY 7

CMP and EJB QL

Yesterday, you learned how to specify, implement, and deploy bean-managed
persistence (BMP) Entity beans. Today, you will learn

* How to specify, implement, configure and deploy CMP Entity beans
* How to use EJB Query Language (EJB QL)
¢ How to define relationships between CMP Entity beans

Overview of Container-Managed
Persistence

The EJB specification provides for two different ways of implementing Entity
beans. The first approach, covered yesterday, is for the bean provider to embed
the persistence logic within the bean itself—hence the name bean-managed per-
sistence or BMP. The second is for the container vendor to provide that logic,
either generated by the EJB container vendor’s deployment tools or as part of
the EJB container itself. Entity beans built this way are called CMP Entity
beans.

| 272 Day 7

Nﬂtﬂ CMP Entity beans have always been part of the EJB specification, first in EJB
1.0 and then with some minor refinements in EJB 1.1. The changes to CMP
) Entity beans in EJB 2.0 are substantial—so substantial, in fact, that CMP 1.1
Entity beans are not forward compatible with EJB 2.0.

To deal with this, the EJB specification actually provides two different ways
to write CMP Entity beans. The first is the legacy 1.1 approach; beans that
are written this way indicate it using an entry in their deployment descrip-
tor. The second is using the new and far more powerful approach intro-
duced in EJB 2.0.

Today, you will be learning only about the new EJB 2.0 approach.

The “anatomy” of CMP Entity beans is very much the same as BMP Entity beans:

* They have a local-home (or remote home) interface that defines the create meth-
ods, the finder methods, optional home methods, and a remove method.

» They have a local (or remote) interface that defines the business methods of the
bean.

* Obviously, they have the bean class itself that implements methods corresponding
to the previously mentioned interfaces, and implements the lifecycle methods
inherited from javax.ejb.EntityBean.

* Finally, they may have a primary key class (and must have one if the primary key
is composite).

However, there are some differences. The responsibilities of the bean in the lifecycle
methods are different, because there is no longer any requirement to persist the bean’s
state. This raises the question as to when the state is persisted by the container, because it
could be done either before the lifecycle method is called or after. There are changes in
the interactions between the container and the bean, as you will see.

Another significant difference is the finder methods. Under BMP, the bean provider
writes the appropriate finder methods that interact with the persistent data store. Under
CMP, the container will do this work, so there is no longer any need to implement the
finder methods in the bean. However, the bean provider must still specify the nature of
the query to be performed to obtain the correct data from the data store. This is done
using EJB Query Language (EIB QL), appearing in the bean’s deployment descriptor.
EJB QL shares many similarities with ANSI SQL 92, so you should not have too many
difficulties picking it up.

CMP and EJB QL 273 |

FIGURE 7.1

CMP Entity beans are
split into two compo-

nents.

Just as tables in relational databases have relationships, so too do Entity beans. You saw
this yesterday with the relationship between the Job bean, which had relationships with
the Skill, Location, and Customer beans. Under BMP, the bean provider must write the
code that maintains all of these relationships explicitly. If CMP is used, these relation-
ships can be declaratively defined using container-managed relationships, or CMR.
Again, the declarations of these associations are in the bean’s deployment descriptor.

Relationships between Entity beans are intrinsically fine-grained. For example, a many-
to-many relationship between Job and Skill (indicating which skills are needed for
such-and-such a job) would involve dealing with many (job, skill) tuples in the case
study stored in the JobSkill table. You know that Entity beans can have either a local or
a remote interface, and that it’s good practice to only ever interact with an Entity bean
through its local interface because this reduces network traffic. Because the performance
cost of maintaining a fine-grained relationship across the network would be too severe,
the EJB specification requires that container-manager relationships between Entity beans
are defined only through local interfaces. Indeed, one of the primary reasons for the
introduction of local interfaces in the EJB specification was to make CMR feasible.

N-tier Architecture (Revisited Again) and CMP Fields

CMP has an impact on the n-tier architecture that you seen have on several previous
days. Figure 7.1 shows an update of a figure that you saw yesterday.

«swing»
user interface

% «entity EJB»
domain logic

D> «bean provider»

D> CMP bean

«database»
persistence layer

«session EJB»
== application logic

INFEN D)

[H

«servlet»
user interface

«EJB container» '
CMP implementaton "FF =~~~ "~

«servlet» «session EJB»
user interface - application logic j_

There are still four tiers to the architecture—namely, the interface, application, domain,
and persistence layers. However, with CMP, the Entity beans split into two components.
The first component is provided by you, the bean provider. This defines the bean’s

local-home and local interfaces, but the implementation of the bean itself is incomplete.

| 274

Day 7

It provides a full implementation of the business methods, but there is no implementation
of the accessor methods for the bean’s state. Indeed, you will see that the methods are
marked as abstract. The concrete implementation of the CMP bean is completed by

the EJB container provider. This component has dependencies on both the bean
provider’s bean, and—of course—on the persistence layer. The first dependency is
because the concrete implementation uses the bean provider’s abstract bean class as its
superclass; in other words, it extends from the CMP bean. The second dependency is
because the implementation of the bean performs appropriate data store calls.

You may recognize this design as an instance of the Template design pattern. The
abstract CMP bean provided by the bean provider is a template, defining certain manda-
tory “hook” methods—namely, the accessor methods. The implementation of these
hooks is provided by the EJB container in terms of the concrete CMP implementation.

Listing 7.1 shows this for the Job Entity bean. This bean defines a pair of accessor meth-
ods (the getter and setter) for each of its fields—ref, customer, description, location,
and skills.

LisTING 7.1 The JobBean'’s Fields Are Implied by the Presence of These Abstract Accessor

Methods
1: package data;
2:
3: import javax.ejb.*;
4: /] imports omitted
5:
6: public abstract class JobBean implements EntityBean {
7:
8: public abstract void setRef(String ref);
9: public abstract String getRef();
10:
11: public abstract void setCustomer(String customer);
12: public abstract String getCustomer();
13:
14: public abstract String getDescription();
15: public abstract void setDescription(String description);
16:
17: public abstract LocationLocal getLocation();
18: public abstract void setLocation(LocationLocal location);
19:

20: public abstract Collection getSkills();

CMP and EJB QL 275 |

LisTING 7.1 Continued

21: public abstract void setSkills(Collection skills);
22:

23: // code omitted

24: }

Each of these accessors is implemented by the concrete CMP implementation. The actual
instance variables are effectively part of the subclass’ implementation, ultimately popu-
lated from the persistent data store.

[:ﬂlltil]n This naming scheme throws up a very curious restriction, specifically that
cmp - fields must not start with a capital letter. Thus, customer and even
CUSTOMER are valid names, but CUSTOMER would not be. This is because the
methods capitalize the cmp - fields, and one cannot capitalize a capital!

Another way of thinking about this design is in terms of vertical delegation. The Session
beans can call the accessor methods on methods defined in the superclass, but the actual
method that is invoked is the implementation defined in the subclass. The superclass
CMP bean “delegates” vertically down to its subclass CMP implementation.

This design gives several advantages. One immediate advantage of this pattern is that it
gives the EJB container (through the concrete bean implementation) much more control
over populating the bean’s state, without compromising good OO principles. For exam-
ple, it is up to the EJB container whether it chooses to obtain all of the bean’s state when
the bean is activated or created (eager loading), or whether it chooses to fetch the bean’s
state from the persistent data store as and when needed (lazy loading). Indeed, the con-
crete implementation may adopt some half-way house, eagerly loading all the scalar data
pertaining to the bean but lazily loading data corresponding to bean relationships.
Indeed, this advantage is pointed out in the EJB specification (section 10.4.2.1).

Another advantage is that the EJB container only need persist the bean’s state to the data
store when the bean’s state has changed. The concrete implementation can keep track of
the before-and-after versions of the bean’s state and compare them to see if any have
changed as the result of a business method invocation. If a read-only accessor method (a
“getter” method) is called, there would be no change in state and so the concrete imple-
mentation need not perform an unnecessary update to the data store. Taking this on one
further stage, when the bean’s state is changed, the EJB container need only update those
fields that have changed and can ignore fields that have not changed. This reduces net-
work traffic between the EJB container and the persistent data store.

| 276 Day 7

One final advantage worth mentioning is that some value-add services, such as optimistic
locking, can be implemented by EJB container vendors more straight-forwardly.

A Quick Word about the Case Study Database

As you go through the remaining topics for today, you may well want to load up and run
the case study code. Before you can do this, the Agency database needs to be modified to
support CMP. This is because the J2EE RI container generates its own SQL schema to
store the Entity beans’ data.

Figure 7.2 shows the revised schema for the case study, as generated by the J2EE RI

container.
FIGURE 7_2 CustomerBeanTable
login
The case study data- addresst
address2
base schema changes emi
under CMP. i

advertises

JobBeanTable

p N LocationBeanTable ApplicantBeanTable
ref N
I
c Tabie.login(FK) name ogin
| description I- = { description - -I email
\| name
1 1 summary
at location for I workplace for I
! ! works at
z R R z
JobBean_location_LocationBean_Table Appli _location_L i _Table
[_JobBean_rei JobBeanTable.ref(FK)) f_AppIicanlBean_Iogin ApplicamBeanTable.\ogin(FK)]
requires _JobBean_customer JobBeanTable.customer(FK) 1 _name LocationB u..TabIe.name(FK)J
LLocationBean,name LocationBeanTable.name(FK)
has
SkillBeanTable
name
JobBean_skills_SkillBean_Table description ApplicantBean_skills_SkillBean_Table
_JobBean_ref JobBeanTable.ref(FK) needed for‘l T ilties of _SkillBean_name SkillBeanTable.name(FK))
_JobBean_customer JobBeanTable.customer(FK) _Appli 1_login Appli \Table.login(FK),
_SkillBean_name SkillBeanTable.name(FK)

)

The J2EE RI container can automatically create this schema when the Entity beans are
deployed. However, because there is example data in the case study database, it is easier
to run the provided utility to “upgrade” the database to support CMP. The Agency
Session bean queries the Cloudscape RDBMS tables directly. To ensure that this contin-
ues to work, the utility also creates SQL views with the names of the old tables
(JobSkill and so on) against the new tables.

CMP and EJB QL 277 |

The steps for converting the database to support CMP are as follows:

1. Shut down Cloudscape if it is running.

2. Back up the current (pre day 7) version of the Agency database, under
*%sJ2EE_HOMES\cloudscape.

Under Windows, you can do this using copy and paste, or from the command line

type:
> cd %J2EE_HOME%\cloudscape
> xcopy Agency bmpAgency /I /E

Under Unix, you can do this using the following:

$ cd $J2EE_HOME/cloudscape
$ cp -r Agency bmpAgency

3. Restart Cloudscape.

4. Under the case study day@7\Database directory, run the batch
CreateCMPAgency.bat (Windows) or CreateCMPAgency.sh (Unix). This calls
CreateCMPAgency . java (already compiled for you) which, in turn, creates the pre-
vious tables, populates the tables with the same sample data, and creates the views
for backward compatibility.

5. When you have done this, you may want to shut down Cloudscape and then back-
up the CMP version of the database to a directory called cmpAgency, using similar
commands to those in step 2. That way, you can easily switch between the two
different schemas. To reinstate either version, just delete the Agency directory and
then copy back either the bmpAgency or cmpAgency using xcopy (Windows) or
cp -r (Unix).

CMP Entity Bean Lifecycle

The lifecycle for CMP Entity beans is substantially the same as BMP Entity beans,
reflected in an almost identical diagram (see Figure 7.3).

This diagram differs from the lifecycle you saw yesterday in that there are no
ejbFindXxx () methods for pooled beans. This is not to say that pooled CMP Entity
beans do not perform finder methods; they do. However, the EJB container generates the
actual code that performs this. There will be a finder method in the bean’s local-home
interface, but not necessarily an equivalent ejbFindXxx () method in the bean itself (and
certainly not in the code written by the bean provider).

| 278

Day 7

[pool too small] [pool too large]
/setEntityContext /unsetEntityContext
FIGURE 7.3
Th
¢ (Pooled
javax.ejb.EntityBean
lifecycle for CMP

|
Entity beans. /ejbActivate

/ejbCreate
(Creating)
L exit/AejbLocalObject.new()
/ejpPostCreate
/ejbPassivate
([Cached
. ejbLoad
ejpRemove /“business method”
ejbStore
Nntﬂ Where the implementation of the finder methods is will depend on the EJB

container. It does seem likely that many vendors will choose to place the
finder logic in the bean’s concrete implementation. An advantage of this
approach (for the EJB container vendor) is that the rest of the EJB container
need not differentiate between BMP and CMP Entity beans.

Yesterday, you saw the responsibilities of the bean provider for each of these lifecycle
methods for the Job bean when implemented using BMP. The implementation is some-
what simpler when using CMP, as shown next.

As for BMP Entity beans, the setEntityContext() and unsetEntityContext() meth-
ods must be implemented to look up any required resources (although the resources are
likely to be different than those needed for BMP; in particular, the JDBC DataSource
should not be needed).

Under BMP, the ejbCreate () method was responsible for persisting the newly created
bean’s state to the persistent data store. Under CMP, the ejbCreate () method does not
need to do this, but does still need to set the bean’s fields to the parameters passed in.
This can include generating a unique primary key value.

CMP and EJB QL 279 |

The BMP version of ejbRemove () was responsible for physically removing the bean’s
state from the data store. The CMP version does not need to do this (and later on, you’ll
see that this method actually has a null implementation).

Nevertheless, sometimes there may be occasions when work needs to be done in the
ejbRemove () method. For example, you could imagine an Entity bean that has some sub-
scribers interested in observing its changing state. One such Entity bean might be a head-
line news item publicized from Reuters. When this Entity bean is finally removed, it
would notify those subscribers of the event.

On a more mundane level, the bean might want to prevent the delete from occurring if,
for example, some referential integrity constraint would be violated by the bean being
removed. In such cases, you need to know that the ejbRemove () is called before the con-
tainer actually removes the data.

Next are the ejbLoad() and ejbStore() methods. Under BMP, these methods for the
Job bean were substantial, because they had to read/write the bean’s state to both the Job
and JobSkill tables. Under CMP, unless there is any derived data to be maintained,
these methods could well have an empty implementation.

The ejbActivate() and ejbPassivate () methods for a CMP Entity bean are pretty
much identical to their implementations for a BMP Entity bean; after all, these methods
have nothing to do with the persistent data store.

If you’ve been mentally (or manually) comparing this section with the previous section
yesterday, you’ll note that yesterday there was discussion on the finder methods. There is
no such discussion here because the finder methods will be generated automatically.
However, as the bean provider, you will need to indicate to the container the semantics of
the finder queries. To do that, you must be familiar with EJB QL. But to understand EJB
QL queries of any complexity, you need first to understand container-managed relation-
ships. CMR is discussed in the next section, followed then by EJB QL.

Container-Managed Relationships

Container-managed relationships (CMR) might possibly sound pretty daunting, and cer-
tainly from the EJB container vendor’s perspective, there could be some fairly complex
activity happening behind the scenes. However, from the bean provider’s perspective
(that is, you), they are fairly straightforward and easy to use.

CMRs are defined declaratively through the deployment descriptor, underneath the
relationships element. Therefore, container-managed relationships can only be defined
between Entity beans that reside within the same local relationship scope (EJB specification,

| 280

Day 7

section 10.3.2). What this means in practice is that beans that have relationships must be
deployed in the same ejb-jar file. You will be learning more about actually declaring
CMRs later today, in “Configuring a CMP Entity Bean.”

Note

The restriction that CMR can only be defined between EJBs deployed in the
same ejb-jar file could possibly create problems. Some organizations main-
tain static reference data globally and replicate that data locally. This works
because such data is often updated relatively infrequently.

By its nature, reference data is referenced (!), so one would expect relation-
ships from domain-specific Entity beans up to cross-organizational reference
beans. However, if the reference Entity beans are deployed separately from
the domain-specific Entity beans (as would be likely), no such relationships
can be assigned.

Relationship Types

CMR allows three different types of relationships to be defined between Entity beans:

¢ One-to-one

* One-to-many

* Many-to-many

The first two relationship types are to be expected, but the last is perhaps more unexpect-
ed if you are used to using RDBMS. In relational theory, it is not possible to create a
many-to-many relationship directly; instead, a link (or association) table is required.
Indeed, such a table can be seen directly in the BMP version of the case study database;
the many-to-many link between jobs and skills is captured in the JobSkill table.
However, the EJB specification allows many-to-many links to be defined directly for
Entity beans, an immediate simplification over the RDBMS approach.

Note

Of course, most EJB containers—the J2EE RI included—will persist to RDBMS,
so will require a link table in the physical schema. Indeed, the J2EE Rl uses a
link table even for one-to-many associations. You can see this if you look
back to Figure 7.2. For example, the one-to-many link from Job to Location
is captured through the snappily named
JobBean_location_LocationBean_Table table.

CMP and EJB QL

281 |

These relationship types actually refer to the maximum cardinality (also sometimes
called multiplicity) of the related beans in the relationship. That is, saying that there is “a
one-to-many relationship between Location and Job” is shorthand for “the maximum
number of Locations that a Job can be related to is one, and the maximum number of
Jobs that a Location can be related to is many.” There is also the question of minimum
cardinality. In other words, is it necessary for a Job to be related to any Location (or can
it be related to none)? Equally, must a Location have any Job related to it?

The EJB specification answers this question implicitly by always allowing a minimum
cardinality of zero. Hence, “one-to-many” also allows for none-to-many, one-to-none,
one-to-many, and (trivially) none-to-none.

There are sometimes situations when a minimum cardinality of none is not acceptable.
For example, it might be the case that a Job must always relate to a Location. (Actually,
for the case study, this is not enforced except in principle). In these cases, it is up to the
bean to do the appropriate validation. In other words, the Job bean would only define a
create () method that accepted a Location bean reference, and if it provided a
setLocation() accessor method in its interface, it would ensure that the supplied
Location reference was not null.

A related question is, “What happens if a bean is removed?” Suppose that the Job bean
relates to a Location, and the Location bean is deleted. The Job bean will be left with a
null reference. In relational terms, this is sometimes called a cascade null.

Suppose (again) that every Job must always relate to a non-null Location. There are a
number of options:

 The first, somewhat radical, option is to remove the related Job beans—in other
words, perform a cascade delete. CMR supports this directly (it is specified
through the deployment descriptor) and will remove each Job bean in turn.

» Second, the application can prevent the removal of the foreign key Location bean
from occurring. This would be done by implementing an appropriate check in the
ejbRemove () lifecycle method.

* Another alternative would be to reassign every impacted Job bean to some new
Location. Again, the ejbRemove () method would need to do this work.

The second option is probably the most likely, so you should take care to do this type of
minimum cardinality analysis to make sure that you do not unwittingly end up with
beans that have null relationships when the semantics of the problem domain prohibit
this from occurring.

| 282

Day 7

Navigability
In addition to specifying multiplicity of the relationships, CMR also allows the naviga-

bility of the relationship to be defined. The navigability is either unidirectional or bidi-
rectional.

Navigability is defined by indicating the name of the field that references the related
bean. For example, in a many-to-one relationship between the Job and Location beans,
indicating a field of location for the Job bean means that there is navigability from Job
to Location. There may not necessarily be navigability in the opposite direction; that
would depend on whether the Location bean defines a field called jobs.

ﬂﬂlltil]ll While the case study does not require bi-directional navigability either from
Location to Job or from Skill to Job, it does define navigability neverthe-
less. Otherwise, the code generated by the J2EE Rl 1.3 deployment tools
(somewhat unfortunately) does not compile—not something to inspire con-
fidence!

The term “field” (or more properly, cmr-field) used here indicates the accessor methods
for the virtual fields defined in the CMP superclass and implemented by the EJB contain-
er. The next section looks at these methods in more detail.

cmr-fields

By way of example, the location cmr-field for the Job bean has accessor methods of
getLocation() and setLocation(), and the skills cmr-field has the accessor meth-
ods getSkills() and setSkills(). The return type of these methods depend on the
multiplicity of the relationship.

The relationship from Job to Location is many-to-one, so the methods that correspond to
the location cmr-field are as follows:

public abstract LocationLocal getLocation();
public abstract void setLocation(LocationLocal location);

CMP and EJB QL 283 |

'I'iI] The same restriction on naming that applies to cmp-fields also applies to
cmr-fields: the name must not start with a capital letter.

For single-valued cmr-fields, the return type for the getter and the parameter to the set-
ter is the local interface of the related bean (LocationLocal in this case). Yesterday, it
was noted that local interfaces are the cornerstone of container-managed relationships;
this shows why. Remote interfaces cannot be used in CMR.

Nﬂtﬂ This isn"t recommended, but there is nothing in principle to prevent an
Entity bean with only a remote interface from having relationships with
other Entity beans. However, the target Entity beans must themselves have a
local interface, and the relationship will be unidirectional. The absence of a
local interface in the source Entity bean prevents the related Entity beans
navigating back to the Entity bean.

The Job bean also has a relationship with the Skill bean, this time many-to-many. Thus,
the skills cmr-field corresponds to the following methods:

public abstract java.util.Collection getSkills();
public abstract void setSkills(java.util.Collection skills);

This is a multi-valued cmr-field because a collection of values is returned, not just a
single value. The collection returned here is a java.util.Collection of references to
the local interface of the related bean (SkilllLocal in this case). The EJB specification
also allows for java.util.Sets to be returned. The EJB specification does not currently
allow Lists or Maps to be returned from multi-valued cmr-fields, but does hint that they
may be added in the future.

Note that the fields of a bean are either regular cmp-fields or they are cmr-fields (or
they are just regular instance variables, not managed by the container at all). Put another
way, cmp-fields cannot be defined that have references to other beans as their argument
or return type; such fields must be defined as cmr-fields.

| 284

Day 7

Composite Primary Keys and Relationships

The Job Entity bean has a relationship with both the Location bean and the Customer
bean. The getCustomer () method returns the name of a customer as a String, whereas
the getLocation() method returns a reference to a LocationLocal. In other words, the
former returns the name (the primary key) to a bean, and the latter returns the bean
itself. So why the difference?

The reason is that the customer field is part of the primary key for the Job bean, and
appears in JobPK. Every public field in JobPK must have a corresponding field in the bean
itself.

If the JobPK class defined its customer field to be a reference to a CustomerLocal, the
JobPK class could not be guaranteed to be serializable.

This shows up a very subtle area, not highlighted at all in the EJB specification. In the
case study, there is a relationship between Customer and Job, in that Jobs are identified
by Customer. In other words, the primary key of Job contains the primary key of the
Customer that “owns” that Job.

The case study does not define the one-to-many relationship between Customer and Job.
If this had been done, a virtual field and corresponding accessor methods
({get/set}CustomerObj () methods) would need to have been defined. The problem that
would then have arisen, however, is that potentially the name of the customer returned
by getCustomer () may not correspond to the actual customer returned by
getCustomer0Obj ().

In commercial EJB containers, this problem can be resolved by mapping both the
getCustomer () and getCustomerObj () methods to the same physical data in the persistent
data store (the customer column in the Job table). This prevents them from getting out
of step (although even here, the EJB container would need to make the customerobj
field read-only because allowing it to be changed would implicitly change the primary
key of the Job bean).

However, the J2EE RI container does not make the mapping of the Entity beans data to
the physical schema explicit. While it might be possible to modify the implied mapping,
it would be unclear (from an education standpoint) what was being done. For this rea-
son, the case study does not define the Customer/Job relationship. This is why, for exam-
ple, the customerobj field is derived from the customer field, and is looked up in the
JobBean’s ejbLoad () method.

Not only do the methods corresponding to the cmr-field return and accept only local
and not remote interfaces to beans, they also cannot appear in the remote interface of the
bean. This is not really surprising. After all, the return types and arguments to the meth-
ods corresponding to the cmr-field take only local interfaces of remote beans, so the
client of the bean invoking the cmr-field methods must be local. You saw yesterday that
there are very good reasons why remote interfaces are bad news for Entity beans; this is
another reason not to provide a remote interface.

CMP and EJB QL 285 |

Nﬂtﬂ The other reason that cmr-field methods cannot appear in the remote
interface is to prevent untoward network traffic. The performance cost of
transporting large collections of references across the wire (even assuming
those references were serializable) would be overwhelming.

Table 7.1 compares the use of cmp-fields and cmr-fields in interfaces.

TABLE 7.1 cmp-fields and cmr-fields and Interfaces

Feature cmp-field cmr-field
Can appear in local Yes Yes
interface

Can appear in remote Yes No
interface Not recommended though;

Entity beans should be
accessed via remote clients.

Can accept as parameters No Yes

and return local references cmp-fields deal only with

to beans primitives (or serializable
objects).

Can accept as parameters No No

and return remote references cmp-fields deal only with Container managed relationships

to beans primitives (or serializable are defined only through local
objects). interfaces of beans.

The EJB specification also requires that the Collection returned by a cmr-field method
is only used in the same transaction context. You will be learning more about transactions
tomorrow, but for now, just consider the following scenario. A Session bean could invoke
a multi-valued cmr-field’s getter method and receive back a Collection. It could then
hold onto this Collection for a few seconds, minutes, days, or months. It might also
remove and add elements to this Collection. If the client then calls the setter method for
the bean, there are no guarantees that either the Collection hasn’t been changed by
some other client of the entity bean (the so-called lost update problem) or that the ele-
ments in the originally returned collection are still valid (the repeatable read problem).
The EJB specification’s insistence that collections are only manipulated within a transac-
tion solves these problems, primarily because transactions both prevent the items in the
Collection from being removed, and ensure that new items will remain valid.

| 286

Day 7

Manipulating Relationships

In the context of an RDBMS, relationships between tables can be manipulated in several
ways. Consider, for example, the case study (with the schema used in Day 6, “Entity
EJBs”). The Job and Skill tables are in a many-to-many relationship, resolved through
the JobSkill link table, and the Job and Location table have a many-to-one relation-
ship, implemented through the location column acting as a foreign key in the Job table.

To change a many-to-many relationship means adding or removing entries from the
appropriate link table. In the example, this means adding or removing (job, skill)
tuples from the JobSkill table.

To change a many-to-one relationship means changing the value of the foreign key col-
umn. In the example, this means changing the value of the location column in the Job
table.

Manipulating relationships between Entity beans is somewhat different. As you have
seen, the setter method for a multi-valued cmr-field (such as setSkills()) takes an
entire Collection of items. And for many-to-one relationships (with the appropriate nav-
igability), the relationship can be modified from the “parent” end, just as much as from
the “child” end.

Moreover, for multi-valued cmr-fields, the collection of beans referenced by the rela-
tionship can be modified just by using the usual add () or remove () methods of the
java.util.Collection interface.

The EJB specification lays out in some detail the semantics of various actions that
impact relationships between Entity beans. Many of these are straightforward and act as
expected, but a few deserve special comment.

Figure 7.4 shows an example configuration of Location and Job beans, and indicates the
relationships before and after executing:

loct.getJobs ().add(job2q)

The relationships indicated {new} are created as a result of this action, while the relation-
ships indicated {destroyed} disappear. (This rather elegant notation is an enhancement
to UML, described by deSouza and Wills’ Catalysis Method.)

Initially, 1oc1 is associated with job14 through job1,, and similarly, loc2 is associated with
job24 through job2,,. You can see that as a result of the action, the job24 bean is added to
the collection of jobs associated with the loc1 location. However, perhaps less obviously,
the job24 bean is also removed from the collection of jobs associated with the loc2 location.
This is because there is a one-to-many relationship between Location and Job, so the job24
bean cannot have a relationship with both loc1 and loc2 at the same time.

CMP and EJB QL

287 |

FIGURE 7.4

Before and after object
diagram for
loc1.getJobs().add
(job24).

Note that the collection of jobs associated with loc1 changes, even though the
setJobs () method of Location is not called! At least, these are the semantics laid out by
the EJB specification, but it would be wise to check that your own EJB container correct-

(new)

job1.1

loct

job2.1

{destroyed}

job1.2

/
\

job2.2

loc2

job1.n

job2.n

AL/

ly implements this. (The J2EE RI server does implement this correctly.)

The java.util.Collection interface defines the addAll() method as well as the add()
method, and this is also supported for CMR collections. This takes a collection of ele-
ments rather than a single element. For one-to-many associations, the addA11() has the
same semantics as add () in that any child elements (the Job bean in the example) that
are added to some collection will also be removed from the collection where they

resided.

The diagram in Figure 7.4 holds good for either unidirectional relationships with naviga-

bility from Location to Job, and for bi-directional relationships.

Figure 7.5 shows the “opposite” case of removing a bean from a collection, having exe-

cuted

loc1.getJobs().remove(joblp)

FIGURE 7.5

Before and after object
diagram for
loc1.getdobs().
remove(job1p,).

job1.1

loc1

job2.1

/

job1.2

job2.2

{destroyed}

job1.n

loc2

job2.n

\
/

| 288

Day 7

Initially, loc1 is associated with job14 through job1,, and similarly, loc2 is associated
with job2¢ through job2,. As you can see, after executing this action, the job1, bean is
no longer associated with any Location bean. Earlier today, it was noted that the EJB
specification always allows a minimum multiplicity of zero, and this is what has
occurred here. Suppose though that every Job should always be related to a Location—
that is, a minimum multiplicity of one. Given that the job’s location is being set to null
indirectly (by calling remove () on the returned Collection from the getJobs()
method), there is no easy way to enforce this business rule.

The only available solution is to not make the getJobs () method available in the inter-
face of the bean. You could provide another method, perhaps named getJobsCopy (), that
returns a copy of the Collection and make it clear that adding or removing beans to this
Collection will not influence the relationship itself. Even better, the Collection could
be made immutable. The following is a possible implementation for this method (assum-
ing java.util.* is imported):
public Collection getJobsCopy()
List jobs = new ArrayList()

5
for(Iterator iter = getJobs().iterator(); iter.hasNext();) {
jobs.add(iter.next());

{

}

return Collections.unmodifiableList(jobs);
}

Incidentally, another way of removing elements from the collection returned by a getter
method is to do so using an Iterator. Indeed, changing the contents of a Collection,
either directly by using remove () or indirectly, such as by the use of add () as described
in figure 7.4, will invalidate any Iterators instantiated from that Collection. In any
case, the following would disassociate the loc1 location from all of its jobs:
for(Iterator iter = locl.getJobs().iterator(); iter.hasNext();) {

iter.next();

iter.remove();

}

The diagram in Figure 7.5 again holds good for either unidirectional relationships with
navigability from Location to Job and for bi-directional relationships.

The case study does not define any one-to-one relationships between beans, so imagine
that there is an Employee bean that has a one-to-one relationship with Job. This could
perhaps represent the Employee of the Advertiser who originally placed the Job advert.

In any case, Figure 7.6 shows the object diagram having executed

job1.setEmployee(job2.getEmployee())

CMP and EJB QL

289 |

FIGURE 7.6

Before and after object
diagram for
job1.setEmployee(
job2.getEmployee()).

job1 {destroyed} | emp1

{new}

emp2

{destroyed}

/

job2

Initially, job1 has a relationship with emp1, and job2 has a relationship with emp2. After
the action, emp1 has no relationship with any Job, job2 has no relationship with any
Employee, and job1 has a relationship with emp2.

This seems quite straightforward, but again, a minimum multiplicity of zero is needed. If
either every Employee must always relate to a Job, or if every Job must always relate to
an Employee, there is no method where this application validation can be performed. The
Job bean’s setEmployee () method might look like a good candidate, until you realize
that this method is abstract and is generated entirely by the beans’ subclass.

The solution, again, must be to not expose the setter method in the interface of the bean.
Instead, a method, such as setEmployeeField(), could be provided. Its implementation,
for the case where every Job must relate to an Employee (though not every Employee
need have a relationship with a Job), might be as follows:
public void setEmployeeField(EmployeeLocal newEmployee) {

if (newEmployee.getdob() != null) {
throw new IllegalArgumentException(

= "New employee must not already be related to a job");

}
setEmployee(newEmployee);

}

As you can see, this implementation requires that the supplied employee is not related to
a job. (If it were, that job would, in turn, need to be assigned a new employee not related
to any job, and so on.)

Nﬂtﬂ Clearly, this technique is good wherever some application-level validation is
required. For example, if a bean had a cmp-field called phoneNumber, the
format of the supplied number could be checked.

The diagram in Figure 7.6 holds good for unidirectional relationships with navigability
from Job to Employee and for bi-directional relationships.

| 290 Day 7

Figure 7.7 returns to the relationship between the Location and Job beans, this time
showing the object diagrams having executed

loc1.setJobs(loc2.getdobs())

FIGURE 7.7 {new}

Before and after object
diagram for

loc1.setJobs(loc2. destroyed) {destroyed}
getJdobs()).

job2.1

loc1 {destroyed} |job1.2 job2.2 | {destroyed} loc2

{destroyed job2.n m

{new}

Again, initially loc1 is associated with job14 through job1,, and similarly, loc2 is asso-
ciated with job24 through job2,. After the action has completed, the Collection of jobs
previously associated to loc2 are associated to loc1. The loc2 bean itself, and the
Collection of jobs previously associated with loc1, no longer have any associations.

The discussion for the diagram in Figure 7.7 follows similar lines to that for the previous
diagram in Figure 7.6. Specifically, handling minimum cardinality of one for either Job
or Location will require the setJobs () method to be removed from the interface of the
bean. Instead, a method, such as setJobsField(), should be exposed that will do the
validation and then delegate to setJobs ().

It’s also worth remarking that behind the scenes, the EJB container is having to perform
some significant updates to the persistent data store. Assuming an RDBMS physical
schema of Location and Job tables with a foreign key in the Job table, the foreign key
for job14 through job1, would need to be set to null, and the foreign key for job24
through job2,, updated to be loc1.

N“tﬂ You saw earlier today that the actual physical schema used by J2EE Rl actual-
ly has a separate link table called JobBean_location_LocationBean_Table
that holds the foreign key. For the J2EE Rl to implement this action, it would
need to delete all the rows in this table for 1oc1 and loc2, and then re-
insert new rows corresponding to the (loc1, job2{)... (loci, job2p)
tuples.

CMP and EJB QL 291 |

If you were to design a bean with multi-valued relationships without using CMR, you
might well have provided methods such as addSkill() and removeSkill(). As you now
appreciate, CMR itself does not require or provide such methods, relying instead on a
single setter method for the cmr-field.

Of course, there is nothing to prevent providing methods, such as addSkill() and
removeSkill(), in the bean itself. Indeed, as you have seen, there are good reasons why
the setSkills () method might not appear in the local interface to the bean; providing
just addSkill() and removeSkill() in the interface would provide an (arguably) more
natural interface to the bean while also allowing the bean to perform any application-
specific validation.

Finally in this section, note that it is illegal to call the setter method of a multi-valued
cmr-field with null; a java.lang.IllegalArgumentException will be thrown by the
EJB container if this is attempted. In the example, to indicate that a job has no skills
associated with it, an empty collection (for example,
java.util.Collection.EMPTY_LIST) must be passed as the argument to setSkills().

EJB QL

By now, you should have a good idea as to how a bean’s CMP fields and CMR fields are
managed and persisted by the EJB container. However, there is still one area that you
covered yesterday when you were learning about BMP Entity beans that has not yet been
touched on today, and that is how to specify finder methods. For this, you need to know
something about the EJB Query Language, or EJB QL.

EJB QL was introduced in the EJB 2.0 specification to make beans more portable across
EJB containers. Previously, each EJB container vendor created their own proprietary
mechanism for specifying the semantics of finder methods. This is no longer the case.

As a language, EJB QL is based on ANSI SQL, which you have seen embedded within
the case study code (for example, on Day 5, “Session EJBs” and Day 6, “Entity EJBs”).
EJB QL also bears some similarity with the Object Constraint Language (OCL), part of
UML. Familiarity with ANSI SQL (and ideally OCL too) will see you well on the way to
picking up EJB QL.

Select Methods

The EJB 2.0 specification also introduces another concept that also uses EJB QL queries,
namely that of select methods. These are like finder methods in that their purpose is to
return data from the persistent data store, but there are also some important differences.
Table 7.2 is an expanded version of the comparison that appears in the EJB specification.

Day 7

references to bean

Returns any cmp-field or
cmr-field

Returns java.util.Collections
of references

Returns java.util.Sets of
references

Returns java.util.
Enumerations of references

Called on pooled beans

Local references are returned if
specified on local-home interface,
remote references if specified on
home interface.

No

Yes

No

Duplicates can be eliminated
using the distinct keyword in
the EJB QL query.

Yes

This is to support legacy EJB 1.x
beans; do not use.

Yes

The EJB container selects an

unused bean to perform the query.

TABLE 7.2 Finder and Select Methods Compared

Feature Finder Method Select Method

Can be defined for CMP Yes Yes

Entity beans

Can be defined for BMP Yes No

Entity beans

Semantics specified using Yes Yes

EJB QL query, implementation

generated by container

Appears in local-home (home) Yes No

interfaces This is the way in which

formal arguments are specified.

Abstract method signature in No Yes

bean class This is the way in which the
formal arguments are speci-
fied.

Returns local (remote) Yes Yes

By default, local references
are returned, but remote
references can be returned if
indicated in the deployment
descriptor (the result-type-
mapping element).

Yes
A different syntax of EJB QL
query is used.

Yes

Yes

Yes
If being called from a home
method.

CMP and EJB QL 293 |

TaBLE 7.2 Continued
Feature Finder Method Select Method

Called on activated beans No Yes
If being called from a business
method, this allows the under-
lying query to be logically
scoped (for example, based on
the primary key), if needed.

Own transaction context can Yes No

be specified Because the select method
does not appear in the inter-
faces, no transaction context
can be defined. Instead, the
context of the calling method
is used.

You’ll be learning how to write select methods later, as part of specifying and imple-
menting CMP beans.

Syntax and Examples

The EJB Specification formally defines the syntax of EJB QL queries using Bacchus
Normal Form (BNF). This can be somewhat heavy going to wade through, but is com-
prehensive. This section introduces EJB QL using BNF, with annotations and examples
along the way.

An EJB QL query is defined as follows:
EJB QL ::= select_clause from_clause [where_clause]

This says that a query consists of a select_clause and a from_clause, and optionally a
where_clause. Immediately, you can see the similarity with ANSI SQL.

In ANSI SQL, you may recall that the columns listed in the SELECT clause relate to the
tables identified in the FROM clause. So in exploring EJB QL, it makes sense to look at
the from_clause before the select_clause; after all, both are needed for any well-
formed EJB QL query.

from_clause

The from_clause is defined as follows:

from_clause ::= FROM identification_variable_declaration
w[, identification_variable declaration]*

| 294

Day 7

This says that in an EJB QL query, the from_clause consists of one or more identifi-
cation_variable_declaration clauses. This corresponds to ANSI SQL where there are
one or more tables/views listed in a SQL FROM clause. The

identification_variable declaration clause is then defined as follows:
identification_variable_declaration ::=

= {range_variable_declaration | collection_member_declaration}
=[AS | identification variable

where

range_variable _declaration ::= abstract_schema_name

and

collection_member_declaration ::= IN (collection valued path_expression)

collection_valued_path_expression ::=

=identification_variable.

w[single valued_cmr_field.]*

w=collection_valued_cmr_field
In other words, each item in the from_clause either is just an abstract_schema_name, or
is an expression of the form IN (o.abc.def.xyz). The abstract_schema_name is proba-
bly the easier expression to understand. Each CMP Entity bean has a corresponding
abstract_schema_name, ultimately declared in the deployment descriptor. So in ANSI
SQL terms, this is very similar to just listing the “table” that corresponds to the bean.

The IN (o.abc.def.xyz) expression is similar to an OCL expression. Here o refers is
the identication_variable assigned by the previous AS phrase. In other words, it corre-
sponds to some abstract_schema_name (that is, bean) also in the from_clause. The abc
and def are single value_cmr_fields. In other words, these are fields of the o bean
that return a single element. The abc is a field of o, returning a reference to a bean, and
def is a field of this reference that has a field xyz. This xyz field, in turn, returns a
Collection or List of some other data (a bean or otherwise).

That’s pretty heavy, so some examples from the case study may clarify things. Assuming
that the Job bean has an abstract schema name called Job, that the Customer bean has an
abstract schema name called Customer, and so on.

FROM Job AS j

sets up an identification_variable called j that refers to the Job schema. The com-
parison with ANSI SQL is obvious; the syntax is the same.

FROM Job AS j, IN (j.skills) AS s

sets up the j identification_variable as before and also an
identification_variable called s that refers to each of the skills related to the Job
bean in turn.

CMP and EJB QL

295 |

Comparing this to ANSI SQL, this most likely would correspond to

FROM Job AS j

INNER JOIN JobSkill AS s
ON s.customer = j.customer
AND s.ref = j.ref

or if you prefer the old-fashioned way:

FROM Job AS j, JobSkill AS s
WHERE s.customer = j.customer
AND s.ref = j.ref

The following is another example:
FROM Job AS j, IN (j.location.jobs) AS k

sets up the j identification_variable as before and also an identification_vari-
able called k that refers to all of the jobs that have the same location as the original job.
To see this, note that j.location returns a reference to the Location bean for the Job,
and then that j.location.jobs returns the Collection of Jobs for that Location. Of
course, this Collection will include the original job, but it will include others as well.

Comparing this to ANSI SQL, you can see that this is a self-join:

FROM Job AS j
INNER JOIN Job AS k
ON j.location = k.location

or in the old money:

FROM Job AS j, Job AS k
WHERE j.location = k.location

select_clause
The select clause is defined as follows:

select_clause ::= SELECT [DISTINCT] {single_valued_path_expression |
=»0BJECT (identification_variable)}

The easy case is the SELECT OBJECT (o) style of the select_clause, where o is an
identication_variable defined by the from_clause. (You see now why the
from_clause was presented first.) This returns all the data from the data store required to
instantiate a bean. In ANSI SQL terms, you might think of it as an intelligent SELECT *
FROM

All finder methods must use the SELECT OBJECT (o) style, where the objects returned are
of the schema associated with the bean for which the finder is being specified. The other
style of the select_clause, using a single_valued_path_expression is for use only by
select methods that you were introduced to briefly earlier. (More on these to follow.)

| 296

Day 7

The following are some examples from the case study.

SELECT OBJECT(j)
FROM Job as j

will return all jobs. If the JobLocalHome interface defined a finder method called
findAll(), this would be the corresponding EJB QL query.

The next example

SELECT DISTINCT OBJECT(s)
FROM Job as j, IN (j.skills) as s

will return back all skills used by any job. Because some skills will be required by more
than one job, the DISTINCT keyword is used to eliminate duplicates. This EJB QL query
might perhaps be associated with a finder method called findAl11RequiredSkills() on
the SkillLocalHome interface.

The other style of the select_clause uses a single_valued_path_expression. This is
defined as follows:

single_valued_path_expression ::=
w{single valued navigation | identification_variable}
= .cmp_field | single_valued_navigation
where a single_valued_navigation is
single_valued_navigation ::= identification_variable.[single_valued_cmr_field.]*
=single valued cmr_field

Taking these definitions together, a single_valued_path_expression is effectively just
a chain of (none or many) single_valued_cmr_fields (cmr-fields returning a refer-
ence to a single bean, and not a collection), eventually finishing with a cmp-field.

In the following examples

SELECT DISTINCT j.location.name
FROM Job as j

location is the cmr-field of the Job schema (identified by j), and name is the cmp-
field of the bean referenced by the cmr-field (a Location bean, obviously).

This returns the names of the locations where there are jobs. Comparing this to ANSI
SQL, you can see that EJB QL is actually simpler (because of its use of the OCL-like
path expressions to navigate between beans):

SELECT DISTINCT 1.name
FROM Job as j INNER JOIN Location as 1 ON j.location = 1l.location

However, the following is not allowed:

SELECT DISTINCT j.skills.name
FROM Job as j

CMP and EJB QL

297 |

This is because the skills cmr-field of Job returns a collection of skills, not a single
skill. The correct way to phrase this query is as follows:

SELECT DISTINCT s.name
FROM Job as j, IN (j.skills) AS s

You might like to think of the s identification variable as an iterator over the collection
of skills returned by the skills cmr-field.

Note that the select_clause in EJB QL can only ever return a single item of informa-
tion, so the following also is not allowed:

SELECT DISTINCT j.location.name, j.location.description
FROM Job as j

where_clause

The where_clause is optional in an EJB QL query, but will be present in the majority of
cases. It is defined in BNF as follows:

where_clause ::= WHERE conditional_expression

conditional_expression ::=

wconditional term | conditional expression OR conditional term
conditional_term ::=

wconditional_factor | conditional_term AND conditional_factor
conditional_factor ::=

= [NOT] conditional_test

This just says that clauses can be combined using the usual AND, OR, and NOT. Much of
the rest of the formal BNF definitions for the where_clause also makes somewhat heavy
work of some fairly straightforward concepts, so to paraphrase,

e conditional_tests can involve =, >, <, >=, <=, and <> operators. These apply vari-
ously to numbers and datetimes (all operators), and strings, Booleans, and Entity
beans (the = and <> operators). You will recall that Entity beans are considered
identical if their primary keys are equal.

» Comparisons can involve input parameters, where these correspond to the argu-
ments of the finder or select method. More on this topic shortly.

* Arithmetic expressions can use the BETWEEN. . . AND operator, just as in ANSI SQL.

* String expressions can be compared against lists using the IN operator and against
patterns using the LIKE operator. These also exist within ANSI SQL. Unlike Java,
string literals should appear in single quotes.

e The IS NOT NULL operator exists to determine if an object is null. Again, this syn-
tax is borrowed from ANSI SQL.

| 298

Day 7

Nﬂtﬂ ANSI SQL supports the concept of nullable primitives (ints and so on),
whereas Java and EJB QL do not. However, nullable primitives can be simu-
lated by using wrapper classes as cmp-fields and using these in EJB QL
expressions.

There are some more operators to EJB QL and some built-in functions, but first, some
examples using these operators are in order.
SELECT OBJECT(c)

FROM Customer AS c
WHERE c.name LIKE "J%"

This will find all customers whose name begins with the letter J. Note that the ANSI
SQL wildcards (% to match none or many characters, _ to match precisely one character)
are used.

The following

SELECT OBJECT(j)
FROM Jobs AS j
WHERE j.location IS NULL

will find all jobs where the location has not been specified.

SELECT 1.description
FROM Location AS 1
WHERE 1.name IN ("London", "Washington")

returns the descriptions of the locations named London and Washington.

The where_clause can also include input parameters. These parameters correspond to
the arguments of the finder or the select method, as defined in the local-home interface
or bean, respectively.

For example, the Job bean declares the following finder method in the JobLocalHome
interface:

Collection findByCustomer(String customer);

The EJB QL query for this finder method is as follows:

SELECT OBJECT(j)
FROM Job AS j
WHERE j.customer = ?1

?1 acts as a placeholder, with the 1 indicating that the first argument of the finder
method (the customer string) be implicitly bound to this input parameter. Unlike
JDBC SQL strings, the number is required because the binding is implicit, not explicit.

CMP and EJB QL

299 |

It is also needed in the cases where a single argument is used more than once in the
query. For example, consider the following finder method:

Collection findLocationsNamedOrNamedShorterThan(String name);

This might have an EJB QL query of

SELECT OBJECT(1)

FROM Location AS 1

WHERE 1.name = 21

OR LENGTH(l.name) < LENGTH(?1)

This example uses the built-in function LENGTH that returns the length of a String. In any
case, this rather peculiar finder method will find those locations that have the exact
name, and will also return any name whose length is strictly shorter than the supplied
name. You can see that the ?1 placeholder appears more than once because the name
argument needs to be bound to the query in two places.

EJB QL defines just a few more built-in functions. The functions that return a string are
CONCAT and SUBSTRING. The functions that return a number are LENGTH, ABS, SQRT, and
LOCATE. This last is effectively the same as String.indexOf (String str, int
fromIndex).

EJB QL defines two final operators—IS [NOT] EMPTY and [NOT] MEMBER OF. Neither of
these have any direct equivalents in ANSI SQL, but both do have equivalents in OCL.

The IS [NOT] EMPTY operator can is similar to the isEmpty operator of OCL. It can be
used to determine whether a collection returned by a cmr-field is empty. For example,
SELECT OBJECT(s)

FROM Skill AS s
WHERE s.jobs IS EMPTY

will return all those skills that are not marked as required by any job. This might be the
query for a finder method on the SkilllLocalHome interface, called something like
findNotNeededSkills ().

In fact, this type of query can be expressed in ANSI SQL, though it does require a sub-
query:

SELECT s.*
FROM Skill AS s
WHERE NOT EXISTS
(SELECT *
FROM JobSkill AS j
WHERE s.skill = j.skill)

| 300

Day 7

The [NOT] MEMBER OF operator is similar to the include operator of OCL. Consider the
following finder method on the JobLocalHome interface:

Collection findJobsRequiringSkill(SkilllLocal skill);

The EJB QL query for this would be

SELECT OBJECT(j)
FROM Job AS j
WHERE ?1 MEMBER OF j.skills

Again, this can be expressed in ANSI SQL, but only using a subquery:

SELECT j.*
FROM Job AS j
WHERE EXISTS
(SELECT *
FROM JobSkill AS
WHERE j.customer = s.customer
AND j.ref s.ref
AND s.skill 1)

[72]

Further Notes

You may have heard of the “OO/relational impedance mismatch.” This is that to deal
with objects, each must be instantiated and then a message sent to it. On the other hand,
relational theory deals with sets of elements sharing some common attribute; to identify
these elements without instantiating them effectively breaks encapsulation.

EJB QL does a pretty reasonable job of reconciling these concerns. By allowing queries
to be expressed in a set-oriented syntax, the EJB container can easily map these to ANSI
SQL when the persistent data store is an RDBMS. On the other hand, the generated
implementations of finder methods return only objects or Collections of objects.

Nevertheless, EJB QL does have some limitations. For example, when constructing an
EJB QL query, only declared relationships between beans can be followed. It is not pos-
sible to join arbitrary fields together (as it is in ANSI SQL). For example, those
Customers who are also Applicants could not be identified using a condition such as
Applicant.name = Customer.name.

There are a number of other cases where EJB QL is not (yet) as powerful as ANSI SQL.
For example, EJB QL does not support grouping and aggregating, ordering, subqueries,
and unions. Expect these features to be added as EJB QL matures. Also, even though
EJB QL does not directly support subqueries, one might not be needed anyway thanks to
the IS [NOT] EMPTY and [NOT] MEMBER OF operators.

CMP and EJB QL 301 |

Specifying a CMP Entity Bean
Specifying a CMP Entity bean is identical to specifying a BMP Entity bean; it consists
of defining the local-home interface and the local interface. This makes sense; after all,
to the user of the bean, it should not matter whether the bean is implemented internally
using CMP or BMP.

The Local-Home Interface

For completeness, Listing 7.2 is the local-home interface of the Job bean.

LISTING 7.2 JobLocalHome Interface

1: package data;

2:

3: import java.rmi.*;

4: import java.util.*;

5: import javax.ejb.*;

6:

7: public interface JobLocalHome extends EJBLocalHome

8: {

9: JobLocal create (String ref, String customer) throws CreateException;
10: JobLocal findByPrimaryKey(JobPK key) throws FinderException;

11: Collection findByCustomer (String customer) throws FinderException;
12: Collection findByLocation(String location) throws FinderException;
13: void deleteByCustomer(String customer);

14: }

The Local Interface

Listing 7.3 shows the local interface for the Job bean; it, too, is unchanged from the
BMP version.

LisTING 7.3 JobLocal Interface

package data;

import java.rmi.*;
import javax.ejb.*;
import java.util.?*;

public interface JobLocal extends EJBLocalObject
{

9: String getRef();

10: String getCustomer();

11: CustomerLocal getCustomerObj(); // derived

ONOO O WN =

13: void setDescription(String description);

| 302

Day 7

LisTiING 7.3 Continued

14:
15:
16:
17:
18:
19:
20:
21:

String getDescription();

void setlLocation(LocationLocal location);
LocationLocal getLocation();

Collection getSkills();
void setSkills(Collection skills);
}

Implementing a CMP Entity Bean

Just as for BMP Entity beans, implementing a CMP Entity bean involves providing an
implementation for the methods of the javax.ejb.EntityBean, corresponding methods
for each method in the home interface, and a method for each method in the remote

interface.

Implementing javax.ejb.EntityBean

Under BMP, the setEntityContext () method was used to look up various bean home
interfaces from JNDI, and the JDBC DataSource called java:comp/env/jdbc/Agency
was also obtained. Because most of these relationships are now managed by the contain-
er, only a couple of home interfaces now need to be obtained, and there is no require-
ment to look up the DataSource. Listing 7.4 shows this.

LISTING 7.4 The JobBean's setEntityContext() and unsetEntityContext() Methods

[le]

—_
OO hs WN =

—_
~

0N OB WD =

_
S

package data;

import javax.ejb.*;
import javax.naming.*;
// imports omitted

public abstract class JobBean implements EntityBean {
private EntityContext ctx;

public void setEntityContext(EntityContext ctx) {

this.ctx = ctx;

InitialContext ic = null;

try {
ic = new InitialContext();
customerHome = (CustomerLocalHome)
=ic.lookup("java:comp/env/ejb/CustomerLocal");
jobHome = (JobLocalHome)
=ic.lookup("java:comp/env/ejb/JobLocal");

CMP and EJB QL 303 |

LisTING 7.4 Continued

18: }

19: catch (NamingException ex) {
20: error("Error looking up depended EJB or resource", ex);
21: return;

22: }

23: }

24:

25: public void unsetEntityContext() {
26: this.ctx = null;

27: customerHome = null;

28: jobHome = null;

29: }

30:

31: // code omitted

32: }

The lookup of the CustomerHome home interface is required because the relationship
from Customer to Job is maintained by the bean.

The lookup of the JobHome home interface is required only because the
ctx.getLocalHome () method returns NULL for the J2EE RI 1.3. This would appear to be
a bug. The ejbHomeDeleteByCustomer () home method actually uses the bean’s own
home interface.

As noted previously, under CMP, the ejbLoad() and ejbStore() methods often have
empty implementations. If there is derived data to be maintained, it should be managed
here. Indeed, the JobBean class does need to do this, as shown in Listing 7.5.

LISTING 7.5 The JobBean's ejbLoad() and ejbStore() Methods

1: package data;

2:

3: import javax.ejb.*;

4: import javax.naming.*;

5: // imports omitted

6:

7: public abstract class JobBean implements EntityBean {

8:

9: public void ejbLoad() {

10: JObPK key = (JobPK)ctx.getPrimaryKey();

11:

12: try {

13: this.customerObj =
wcustomerHome.findByPrimaryKey(getCustomer())

14:

15: catch (FinderException e) {

16: error("Error in ejbLoad (invalid customer) for " + key, e);

| 304 Day 7

LisTING 7.5 Continued

17: }

18: }

19:

20: public void ejbStore() { }
21:

22: // code omitted

23: }

The ejbLoad () method is called after the bean’s state has been populated, so the bean’s
state can be read through the accessor methods, if needed.

The findByPrimaryKey () method call on line 13 populates the customeroObj field, using
the value of getCustomer () accessor method. It’s worth appreciating that getCustomer ()
returns just a String. In other words, this is the name (actually, the primary key) of a cus-
tomer. To save business methods having to continually look up the actual customer that
corresponds to this customer name, the ejbLoad () method does it once.

You can see that the ejbStore () method is trivial—there is nothing to do.

The ejbActivate() and ejbPassivate () methods have nothing to do with data stores, so
their implementation is unchanged from the BMP version. This is shown in Listing 7.6.

LiISTING 7.6 The JobBean's ejbActivate() and ejbPassivate() Methods

package data;

import javax.ejb.*;
/] imports omitted

public abstract class JobBean implements EntityBean {

public void ejbPassivate() {
setRef(null);
setCustomer(null);
customerObj = null;

- 0 WO NOOA~WN =

—_

CMP and EJB QL 305 |

LisTING 7.6 Continued

12:
13:
14:
15:
16:
17:
18:
19:

setDescription(null);
setLocation(null);
}

public void ejbActivate() { }

// code omitted

}

Implementing the Local-Home Interface Methods

The methods of the local-home interface are implemented partly in code and partly
through the provision of an appropriate EJB QL query. This section shows the queries
that correspond to the finder methods in the home interface; the next section (configuring
a CMP Entity bean) shows how to take those EJB QL strings and put them into the cor-
rect part of the deployment descriptor.

Create and Remove Methods
Listing 7.7 shows the ejbCreate () method for Job bean under CMP.

LisTING 7.7 The JobBean's ejbCreate() Method

1:
2:
3:
4:
5:
6:
7

8

9:
10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:

package data;

import javax.ejb.*;
/] imports omitted

public abstract class JobBean implements EntityBean {

public JobPK ejbCreate(String ref, String customer)
wthrows CreateException {
// validate customer login is valid.
try {
customerObj = customerHome.findByPrimaryKey (customer);
} catch (FinderException ex) {
error("Invalid customer.", ex);

}

JobPK key = new JobPK(ref,customerObj.getLogin());
/| for BMP, there was a workaround here,
=namely to call ejbFindByPrimaryKey
// under CMP, cannot call since doesn't exist.
// instead, use jobHome interface ...
try {

| 306 Day 7

LisTING 7.7 Continued

21: jobHome. findByPrimaryKey (key);
22: throw new CreateException("Duplicate job name: "+key);
23: }

24: catch (FinderException ex) {}

25:

26: setRef(ref);

27: setCustomer (customer);

28: setDescription(null);

29: setLocation(null);

30: return null;

31: }

32:

33: // code omitted

34: }

Note the use of accessor methods (the “setter” methods) to save the bean’s state. This
contrasts with the BMP equivalent where the fields were written to directly (for example,
this.ref = ref).

The implementation of this method would have been even shorter if the
findByPrimaryKey () call checking for duplicates had been omitted. Indeed, if an
RDBMS is being used as the persistent data store (as it is for the case study), there is
likely to be a unique index on the primary key on the appropriate table, meaning that any
attempt to INSERT a duplicate would be detected.

ﬂalltillll Strictly, the appropriate exception to throw here is a
DuplicateKeyException, not a CreateException. However, the EJB
specification does not mandate this. Moreover, the specification even allows
that the EJB container can defer any interaction with the persistent data
store until the end of the transaction, and is not clear in this circumstance
what type of exception should be raised.

As the EJB specification continues to mature, it will more fully define expect-
ed exceptions in different situations. Until then, beware that—regardless of
the hype—moving from one EJB container to another may well throw up
differences that will necessitate changes in your application.

The ejbCreate () method is called first, and then the container’s concrete implementa-
tion persists the bean’s state, and then the bean’s ejbPostCreate () method is called.

CMP and EJB QL 307 |

Under CMP, the bean should return null from the ejbCreate() method. This compares
to returning the actual primary key under BMP. Put another way, it doesn’t matter what
your method returns, it will be ignored. The reason for this is that the EJB container can
access the information that constitutes the primary key anyway, by virtue of the cmp-
fields.

Nﬂtﬂ The technical reason that the EJB container requires that CMP Entity beans
return null is so that EJB container vendors can implement CMP by effective-
ly subclassing the CMP bean and creating a BMP Entity bean (so far as the
rest of the EJB container is concerned). Indeed, if you look at the generated
code, this is precisely what the J2EE Rl container does:

package data;

public final class JobBean_PM extends JobBean implements
com.sun.ejb.PersistentInstance {

public data.JobPK ejbCreate(java.lang.String paramo,
java.lang.String parami) throws javax.ejb.CreateException {
com.sun.ejb.Partition partition =
com.sun.ejb.PersistenceUtils.getPartition(this);
partition.beforeEjbCreate(this);
super.ejbCreate(paramd, parami);
return (data.JobPK) partition.afterEjbCreate(this);

}
// code omitted

}

You can see the call to super.ejbCreate(). The return type is ignored, but
the subclass’ ejbCreate () does return a primary key to the rest of the EJB
container.

The ejbRemove ()method for the Job bean is shown in Listing 7.8.

LisTING 7.8 The JobBean's ejbRemove() Methods

: package data;

1
2:
3: import javax.ejb.*;

4: // imports omitted

5:

6: public abstract class JobBean implements EntityBean {
7
8

public void ejbRemove() { }

| 308 Day 7

LisTiING 7.8 Continued

9:
10: // code omitted
11: }

As you can see, the implementation of ejbRemove () is trivial—there is nothing to do.
Nevertheless, an implementation is required.

[: t' The BMP version of ejbRemove () for Job bean reset all the fields to null.
dution) : : : o

Strictly speaking, there was no direct requirement for doing this, because
when the bean instance is next used from the pool, its ejbLoad () will
(should) populate all fields.

When implementing CMP Entity beans, you absolutely must not reset the
fields to null. Doing so will cause the EJB container to throw an exception,
because the bean’s state is required so that the container can remove the
correct data from the persistent data store.

Finder Methods

The implementation of the finder methods is by formulating appropriate EJB QL queries.
The JobLocalHome interface defines three finder methods—findByPrimaryKey (),
findByCustomer (), and findByLocation().

The first bit of good news is that there is no need to define an EJB QL query for the
findByPrimaryKey () method at all. You will recall that the primkey-class element is
used in the deployment descriptor to indicate to the EJB container the class (either cus-
tom or pre-existing) that represents the primary key of the Entity bean. When there is a
custom primary key class, the EJB container can use the structure of that class to figure
out how to implement this method.

If there is no custom primary key class, an additional piece of information is required in
the deployment descriptor—namely, the primkey-field element. This nominates the
(single) cmp-field that represents the primary key for the bean.

If you are using a custom primary key class (such as JobPK), you do need to ensure that
its public fields correspond exactly in name and type to a subset of the cmp-fields of the
bean. The JobPK class is shown in Listing 7.9.

CMP and EJB QL 309 |

LisTING 7.9 JobPK Class

1: package data;

2:

3: import java.io.*;

4: import javax.ejb.*;

5:

6: public class JobPK implements Serializable
7: {

8: public String ref;

9: public String customer;

10:

11: public JobPK() {

12: }

13: public JobPK(String ref, String customer) {
14: this.ref = ref;

15: this.customer = customer;
16: }

17:

18: public String getRef() {

19: return ref;
20: }
21: public String getCustomer() {
22: return customer;
23: }
24:
25: /| code omitted
26: }

The EJB container will match the ref and customer fields with getRef ()/setRef () and
getCustomer()/setCustomer () accessor methods for the cmp-fields. You can see here
that the fields in the primary key class must be declared to have public visibility.

Moving onto the other finder methods, the findByCustomer() method has the following
signature in the local-home interface:

Collection findByCustomer(String customer) throws FinderException;

The EJB QL query for this is as follows:

SELECT OBJECT(j)
FROM Job AS j
WHERE j.customer = ?1

The other finder method is findByLocation(), whose signature is as follows:

Collection findByLocation(String location) throws FinderException;

|310

Day 7

The EJB QL query for this is as follows:

SELECT OBJECT(;)
FROM Job AS ;
WHERE ;.location.name = ?1

Home Methods

The last method in the local-home interface is the home method deleteByCustomer().
This is used by clients when removing a customer; all of its jobs must also be removed.
You’ve already seen the implementation of this home method under BMP, using SQL to
delete from the Job and JobSkill tables. Under CMP, the implementation is somewhat
more object-oriented, as shown in Listing 7.10.

LisTING 7.10 JobBean’s ejbHomeDeleteByCustomer() Method

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

0N O WN =

: package data;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
/] imports omitted

public abstract class JobBean implements EntityBean {

public void ejbHomeDeleteByCustomer(String customer) {
try {
Collection col = this.jobHome.findByCustomer(customer);
for (Iterator iter = col.iterator(); iter.hasNext();) {
JobLocal job = (JobLocal)iter.next();
/| remove job from collection
iter.remove();
// remove job itself
job.remove();
}
}
catch (FinderException e) {
error("Error removing all jobs for " + customer, e);

}

// needed because of the explicit job.remove()
catch (RemoveException e) {
error("Error explicitly removing job for " + customer, e);

}
}

// code omitted

}

CMP and EJB QL 311 |

The method calls the bean’s own findByCustomer () method, which returns a collection
of jobs for the customer. It then iterates over these jobs and removes them one-by-one.

ﬂalltillll The jobHome field holds a reference to the bean’s own home interface. In
principle, the entityContext.getEJBHome () method could have been called,
but the J2EE RI 1.3 container seems always to return null.

If there had been no suitable finder method, this would have been a prime case for using
a select method. The select method would be declared in the JobBean class as follows:
package data;

import java.rmi.*;

import java.util.*;

import javax.ejb.*;
/] imports omitted

public abstract class JobBean implements EntityBean {
public abstract Collection ejbSelectByCustomer(String customer);

// code omitted
}

The EJB QL query would be identical to that of the finder method. The only other differ-
ence would be in how the method was called. Rather than invoking the finder method
through the home interface, the ejbSelect method could be called directly. So, in the
ejbHomeDeleteByCustomer() method, the line

Collection col = this.jobHome.findByCustomer (customer);
would be replaced with
Collection col = this.ejbSelectByCustomer(customer);

In fact, the BMP and CMP implementations are not quite comparable; the CMP implemen-
tation is a little more robust. As was mentioned earlier, the BMP version of this method just
deleted the appropriate rows from the Job and JobSkill table (turn back to yesterday’s
chapter to see this, if needed). This means that the Job bean’s ejbRemove () method is
never called; there is no opportunity for the bean to perform clean-up processing.

|312

Day 7

Nﬂtﬂ An alternative design again might have been to define a cascade delete
relationship from Customer through to Job. The EJB Specification does
require that ejbRemove () is called on every bean being deleted as a result of
the cascade, so the net result is similar to the CMP implementation.

However, as has been remarked earlier, setting up a (cascade delete) rela-
tionship for Customer and Job is not easy when using the J2EE RI, because it
does not easily support relationships between beans when one bean is iden-
tified by another (part of the primary key is also a foreign key).

N t A cascade delete relationship might be preferable to the CMP implementa-
ote . . o :

tion. A naive EJB container implementation would work the same way as
the hand-coded CMP implementation, explicitly deleting each and every
child bean one-by-one. The performance hit could be substantial.

A more sophisticated EJB container implementation ought to be able to call
ejbRemove () for each bean, but then delete all of the child beans using a
single call to the persistent data store; in other words, combining the best of
the BMP and CMP approaches.

A related issue is that if a client happens to have a reference to a Job for the Customer
being deleted, they won’t find out that the Job has been removed until they attempt to
access that Job again. At that point, the client will receive a
java.rmi.NoSuchObjectException. But note that this isn’t a problem just with BMP;
the same behavior will occur for CMP also.

Implementing the Local Interface Methods

Looking back at the JobLocal interface back in Listing 7.3, you can see that many of the
methods in the local interface simply expose the bean’s cmp-fields or cmr-fields to its
clients. Of course, there is no implementation for these methods because they are imple-
mented by the EJB container’s deployment tools. Therefore, all that is required is to copy
the methods over from the local interface and mark them abstract. If you cast your eyes
back all the way to Listing 7.1, you’ll see that this is precisely what was done.

The only method in the JobLocal interface that does not correspond to an accessor
method for a cmp-field or cmr-field is the getCustomerObj () method. Its implementa-
tion is shown in Listing 7.11.

CMP and EJB QL 313 |

LisTInG 7.11 JobBean's getCustomerObj () Method

1: package data;

2:

3: import javax.ejb.*;

4: /] imports omitted

5:

6: public abstract class JobBean implements EntityBean {
7 private CustomerLocal customerObj; // derived
8 public CustomerLocal getCustomerObj() {

9: return customerObj;

10: }

11: // code omitted

12: }

Pretty straightforward, though of course the hard work is done in ejbLoad () (Listing 7.5)
and ejbcCreate () (Listing 7.7). Recall that the customer0Obj field holds the actual refer-
ence to the “parent” Customer for the Job and is derived from the customer cmp-field
that holds merely the name of the Customer. Because the customer cmp-field makes up
part of the primary key, it is immutable, and so is the customeroObj field—hence, no
setCustomer0Obj () method.

Configuring a CMP Entity Bean
As you now appreciate, a substantial part of the implementation effort for CMP Entity

beans is simply completing the deployment descriptor correctly.

This will always involve completing the entity element of the deployment descriptor,
either manually or using a GUI tool such as deploytool. If the CMP Entity has
container-managed relationships, these too must be specified under the relationships
element of the deployment descriptor.

The entity Element
To remind you, the structure of the deployment descriptor is as follows:

<!ELEMENT ejb-jar (description?, display-name?, small-icon?, large-icon?,
enterprise-beans, relationships?, assembly-descriptor?, ejb-client-jar?)>

Here you can see the relationships element, with

<!ELEMENT enterprise-beans (session | entity | message-driven)+>

|314

Day 7

and the entity element defined as

<!ELEMENT entity (description?, display-name?, small-icon?, large-icon?,
ejb-name, home?, remote?, local-home?, local?, ejb-class,
persistence-type,

prim-key-class,

reentrant,

cmp-version?, abstract-schema-name?,

cmp-field*, primkey-field?,

env-entry*,

ejb-ref*, ejb-local-ref*,

security-role-ref*, security-identity?,

resource-ref*,

resource-env-ref*,

query*)>

Looking first at the entity element, much of it will be unchanged. What needs to be
specified for a CMP entity are

cmp-version Always set to 2.0. The value 1.1 is supported only for legacy CMP
Entity beans written to the EJB 1.1 specification.

abstract-schema-name Any unique name, this defines the name used to identify
the bean in EJB QL queries. It makes sense to base this on the name of the bean.
In the case study, the JobBean bean has a schema with the name of Job.

cmp-field One for each cmp-field (but not cmr-fields). In the Job bean, the
cmp-fields are ref, customer, and description. The location and skills fields
are cmr-fields representing relations to the Location and Skill beans respective-
ly, and so do not appear.

primkey-field This optional field is used when the primkey-class element
does not identify a custom primary key class. It is not specified for the Job bean,
but for the Location bean, for example, it is specified and is set to name.

query Defines an EJB QL query, associating it with a finder or select method.

Listing 7.12 shows the entity element for the Job bean.

LISTING 7.12 Job Bean’s entity Element

1
2
3:
4:
5:
6
7

1 <entity>

<display-name>JobBean</display-name>
<ejb-name>JobBean</ejb-name>
<local-home>data.JobLocalHome</local-home>
<local>data.JobLocal</local>
<ejb-class>data.JobBean</ejb-class>
<persistence-type>Container</persistence-type>

CMP and EJB QL

315|

LisTING 7.12 Continued

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

<prim-key-class>data.JobPK</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Job</abstract-schema-name>
<cmp-field>
<description>no description</description>
<field-name>ref</field-name>
</cmp-field>
<cmp-field>
<description>no description</description>
<field-name>description</field-name>
</cmp-field>
<cmp-field>
<description>no description</description>
<field-name>customer</field-name>
</cmp-field>
<ejb-local-ref>
<ejb-ref-name>ejb/CustomerLocal</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>CustomerLocalHome</local-home>
<local>CustomerLocal</local>
<ejb-link>data_entity_ejbs.jar#CustomerBean</ejb-link>
</ejb-local-ref>
<!-- shouldn't be needed, but
wCtx.getEJBHome () returns null in J2EE RI -->
<ejb-local-ref>
<ejb-ref-name>ejb/JobLocal</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>JobLocalHome</local-home>
<local>JobLocal</local>
<ejb-link>data_entity_ejbs.jar#JobBean</ejb-1link>
</ejb-local-ref>
<security-identity>
<description></description>
<use-caller-identity></use-caller-identity>
</security-identity>
<query>
<description></description>
<query-method>
<method-name>findByCustomer</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>
</query-method>
<ejb-q1>SELECT OBJECT(j)
FROM Job AS j
WHERE j.customer = ?1</ejb-ql>
</query>

|316 Day 7

LisTING 7.12 Continued

55: <query>

56: <description></description>

57: <query-method>

58: <method-name>findByLocation</method-name>

59: <method-params>

60: <method-param>java.lang.String</method-param>
61: </method-params>

62: </query-method>

63: <ejb-ql>SELECT OBJECT(0)

64: FROM Job o
65: WHERE o.location.name = ?1</ejb-ql>
66: </query>
67: </entity>

The definition of the query element is as follows:
<!ELEMENT query (description?, query-method, result-type-mapping?, ejb-ql)>

You can see from the listing that the query-method element just identifies the name of
the finder or select method. Note that if a finder method is being identified, it is the name
appearing in the local-home (or home) interface; that is, without the ejb prefix. On the
other hand, if a select method is being identified, there will be an ejb prefix, because
select methods never appear in the interfaces of the bean.

The result-type-mapping element applies only if the method identified by query-
method has identified a select method, and only then if the EJB QL string returns Entity
bean references (that is, if the SELECT [DISTINCT] OBJECT(x) style of select_clause
has been used). The allowable values are Local and Remote, indicating whether the
clause should return references through the local or remote interfaces. Obviously, if spec-
ified, the bean must provide an interface of the appropriate type; if not specified, the
bean must provide a local interface, because this is the implied value for the result-
type-mapping element.

Of course, all of this deployment information can be entered graphically using the
deploytool. Figure 7.8 shows some of the equivalent information for Listing 7.12.

FIGURE 7.8 [E3Finder/Select Methods for JobBean S x|
£JB-0L Queries for Finder/Select Methods———————————————————————————
deploytool lets CMP Show: Wethod [| EJB-QL Query for findByCustomer
. @ LocalFinders |ndByCustome | [1 | [SELECT OBJECT()
deployment informa- fincByLocation(..| [| |FROM Job A5

O Remote Finders WHERE J.customer = 21

tion be defined through
a GUL

C Select Methods Return EJBs Of Type:

o

[
‘ OK || Cancel H Help... |

CMP and EJB QL

317|

The relationships Element
The relationships element is defined in the EJB 2.0 DTD as follows:

<!ELEMENT relationships (description?, ejb-relation+)>

That is, it consists of one or more ejb-relation elements. These in turn are defined as
<!ELEMENT ejb-relation (description?, ejb-relation-name?,
ejb-relationship-role, ejb-relationship-role)>

which is a somewhat curious definition: an optional description, an optional name, and
then precisely two ejb-relationship-role elements. Each of these identifies the role
that some bean is playing with respect to the relationship.

N“tﬂ It is possible that the same bean appears in both roles to model recursive
relationships.

The ejb-relationship-role element is defined as follows:

<!ELEMENT ejb-relationship-role (description?, ejb-relationship-role-name?,
multiplicity, cascade-delete?, relationship-role-source, cmr-field?)>

with

<!ELEMENT relationship-role-source (description?, ejb-name)>

You can see that the relationship-role-source element merely identifies an Entity
bean by name. This element’s name is perhaps somewhat misleading, because it is nei-
ther a “source” nor (for that matter) a target within the relationship. The navigability of
the relationship comes from the presence (or not) of the cmr-field element. Of course,

at least one of the ejb-relationship-role elements must have a cmr-field specified,
and if both do, the relationship is bi-directional.

The choices for the multiplicity element are either One or Many. There will be two such
elements in the complete ejb-relation element, so this is what gives one-to-one, one-
to-many, many-to-one, or many-to-many.

There is also an optional cascade -delete element. Perhaps non-intuitively, this is placed
on the “child” (multiplicity = many) side of a relationship.

Finally, the cmr-field is defined as follows:

<!ELEMENT cmr-field (description?, cmr-field-name, cmr-field-type?)>

|318 Day 7

The cmr-field-name element just names the cmr-field (for example, skills or loca-
tion for the Job bean). The cmr-field-type element is needed only for multi-valued
cmr-fields (for example, skills for the Job bean) and indicates whether the return type
is a java.util.Collection or java.util.Set.

ﬂﬂlltil]ll Do not confuse this return type with the allowable return types for select
methods. These are unrelated areas that just happen to have the same
allowable return types.

Okay! Time for an example or two from the case study to see if all that theory makes
sense.

Listing 7.13 shows the ejb-relation element defining the one-to-many relationship
between the Location bean and the Job bean.

LisTING 7.13 The Location/Job Relationship

1: <ejb-relation>

2 <ejb-relation-name></ejb-relation-name>

3 <ejb-relationship-role>

4: <ejb-relationship-role-name>JobBean</ejb-relationship-role-name>
5: <multiplicity>Many</multiplicity>

6: <relationship-role-source>

7 <ejb-name>JobBean</ejb-name>

8: </relationship-role-source>

9: <cmr-field>

10: <cmr-field-name>location</cmr-field-name>
11: </cmr-field>

12: </ejb-relationship-role>

13: <ejb-relationship-role>

14: <ejb-relationship-role-name>

- LocationBean
w</ejb-relationship-role-name>

15: <multiplicity>One</multiplicity>

16: <relationship-role-source>

17: <ejb-name>LocationBean</ejb-name>

18: </relationship-role-source>

19: <cmr-field>

20: <cmr-field-name>jobs</cmr-field-name>

21: <cmr-field-type>java.util.Collection</cmr-field-type>
22: </cmr-field>

23: </ejb-relationship-role>

24: </ejb-relation>

Figure 7.9 shows this relationship overlaid onto the implied abstract schema.

CMP and EJB QL 319 |

FIGURE 7.9

The ejb-relation]

element describes the "Location) <ejb-relation-role>
characteristics of a name <ejb-relationsip-role-name>

<multiplicity>
<relationship-role-source>/<ejb-name>
<cmr-field>/<cmr-field-name>
</ejb-relation-role>

one-to-many relation-
ship in the abstract VA
schema. o

description

oee RS
CJob) o LNDT Skill

customer] name

ref requires

descriptign ”) description
location “ocation.na e(FK) jobs skills

<ejb-relation-role>
<ejb-relationsip-role-name>
<multiplicity>
<relationship-role-source>/<ejb-name>
<cmr-field>/<cmr-field-name>
</ejb-relation-role>

Another example; Listing 7.14 shows the ejb-relation element defining the many-to-
many relationship between the Job bean and the Skill bean.

LisTING 7.14 The Job/Skill Relationship

1: <ejb-relation>

2 <ejb-relation-name></ejb-relation-name>

3 <ejb-relationship-role>

4: <ejb-relationship-role-name>JobBean</ejb-relationship-role-name>
5: <multiplicity>Many</multiplicity>

6: <relationship-role-source>

7 <ejb-name>JobBean</ejb-name>

8: </relationship-role-source>

9: <cmr-field>

10: <cmr-field-name>skills</cmr-field-name>

11: <cmr-field-type>java.util.Collection</cmr-field-type>
12: </cmr-field>

13: </ejb-relationship-role>

14: <ejb-relationship-role>

15: <ejb-relationship-role-name>

- SkillBean
w</ejb-relationship-role-name>
16: <multiplicity>Many</multiplicity>

| 320 Day 7
Listing 7.14 Continued
17: <relationship-role-source>
18: <ejb-name>SkillBean</ejb-name>
19: </relationship-role-source>
20: <cmr-field>
21: <cmr-field-name>jobs</cmr-field-name>
22: <cmr-field-type>java.util.Collection</cmr-field-type>
23: </cmr-field>
24: </ejb-relationship-role>

25: </ejb-relation>

Figure 7.10 shows these elements overlaid onto the abstract schema.

FIGURE 7.10 Location <ejb-relation-role>
<ejb-relationsip-role-name>
)) name
The ejb-relation S <multiplicity>
element describes the description <relationship-role-source>/<ejb-name>

<cmr-field>/<cmr-field-name>

characteristics of a +)
f \ location </ejb-relation-role>

many-to-many rela- 1
tionship in the abstract
schema.

1
location for 1

1

1

1

1
-~ jobs -
7 N 7 N
Job) ﬁ\ « Skill)

customer \
ref) R requires -

description Y € =~ P 'description
location Location.name(FK)Ji°Ps) < skills

<ejb-relation-role>
<ejb-relationsip-role-name>
<multiplicity>
<relationship-role-source>/<ejb-name>
<cmr-field>/<cmr-field-name>
</ejb-relation-role>

As always, configuring these deployment descriptor elements can be done either by edit-
ing the deployment descriptors directly or by using the deploytool. Figure 7.11 shows
the deploytool for the Job/Skill relationship.

To actually deploy the enterprise application, use the buildAll and deploy batch scripts
in the day@7\build directory, or use buildAll to assemble the enterprise application and
deploy from deploytool.

CMP and EJB QL 321 |

FlGURE 7_1 1 [=3 Edit Relationship 1 i
ity (Bean A : Bean B):
deploytool can be [Manyto Many ') - 01 Description... |
used to configure rela- Enterprise Bean A nterprise Bean B
tionships through itS Enterprise Bean Name: ise Bean Name:
| JobBean -] | [swingean M
GUI Field Referencing Bean B: Field Referencing Bean A:
[skits ~|| [ions -
Field Type Field Type
‘ java.util.Collection - ‘ |iaua.u|il.(:ullecliun - |
[] Delete When Bean B Is Deleted [[] Delete When Bean A Is Deleted
‘ OK | | Cancel ‘ ‘ Help... |

Over the last three days, you have seen Session beans, BMP Entity beans and CMP
Entity beans deployed using both the graphical deploytool and then using batch scripts.
Clearly, the information held in those deployment descriptors is valuable and should be
under source code control. Moreover, the mechanism for building and deploying enter-
prise applications should be able to use that information rather than recreate it from
scratch. This suggests that, for the production environment, the graphical deploytool
should be used only for deploying enterprise applications and for configuring J2EE RI
servers.

On the other hand, in the development environment, it can be an error-prone task to
attempt to write XML deployment descriptors from scratch. If a valid deployment
descriptor already exists, modifying it (to add a new ejb-ref element or something simi-
lar) can often be accomplished, but larger changes (such as adding a completely new
bean) will be more difficult without much practice. Here, deploytool comes into its own
to modify the enterprise application as required (or indeed, to create an enterprise appli-
cation from scratch).

When you are happy that the beans and clients in your enterprise application are correct-
ly configured, deploytool allows the XML deployment descriptor to be saved, for
checking into source code control. This is shown in Figure 7.12.

FIGURE 7.12 [Toois |

deploytool allows is:::f“es
deployment descriptors g
to be saved as XML Update and Redeploy..
ﬁles. Verifier...

Clone Inspector

Edit Roles.

Server Configuration...

| 322

Day 7

The Tools, Descriptor Viewer menu option brings up a dialog box displaying the XML
deployment descriptor; from there, the data can be saved as a file. This menu option is
context sensitive, so what it shows will depend on the node selected in the explorer on
the left pane in the GUI. The descriptor viewer dialog should be brought up for each
node under the enterprise application node, and for the enterprise application node itself.
In the case study, this means for each of the clients, for the data Entity EJBs, for the
agency Session EJBs, and for the agency application node.

Deploying a CMP Entity Bean

The enterprise application can be deployed either from the command line (deploy script
in the build directory) or using deploytool itself.

However, before an enterprise application containing CMP Entity beans can be deployed,
the default SQL must be generated by using the Deployment Settings dialog box. This
is performed once for each CMP Entity bean, as shown in Figure 7.13.

deploytool allows
SOL to create the
database schema to be
generated.

FlG URE 7 . 1 3 [E3Deployment Settings 1 i x|
rDatahase Table @s
[_] Create table on deploy Generate Default SQL... cancel
[C] Delete table on undeplay Database Settings... ‘
Hedn
Deployment Settings
rMethad ion Queries:
Show: Method [| SOL Queny:
(® Local Finders ndByCustom.. _Dt SELECT"0""customer, "o""ref' =
- findByLacation... 01| [From “JobBeanTable' “o" WHERE
) Remote Finders . =
() Select Methods EJB QL Oueny:
. SELECT OBJECT()
) Container Methods
FROM Joh AS |
WHERE |.custorner = 21
Edit...

You can see from the figure that J2EE RI generates default SQL. It allows the SQL query
for the finder and select methods to be tuned, and also (the container methods radio

button) allows
also. The case

the actual SQL to create the tables, insert rows, and so on to be modified
study does not change any of this default SQL.

Note

Right at the beginning of today’s chapter, it was noted that the schema of
the database for the case study had changed from that of Day 6. If one want-
ed to use the exact schema from Day 6, it could have been entered here.

CMP and EJB QL 323 |

Also, the dialog allows the underlying tables to be created and deleted on deploy/unde-
ploy. This obviously isn’t appropriate for a production environment, because it would
delete any data already there. It also is not appropriate for the case study, because there is
example data.

Nﬂtﬂ The CreateCMPAgency script (provided in the day@7\Database directory) cre-
ates exactly the same schema as that generated by default by J2EE RI. It also
) populates that schema with the same data as in Day 6 and creates views for
backwards compatibility.

You will recall that the auxiliary deployment descriptor agency_ea-sun-j2ee-ri.xml
contains all the mappings of the logical dependencies of the EJBs to the physical runtime
environment. This includes all of the SQL specified in Figure 7.13.

It was noted earlier that when creating a new CMP Entity bean, it is often easiest to load
the enterprise application into deploytool and then save the XML deployment descriptor
using the Tools, Descriptor Viewer menu option/dialog. Unfortunately, deploytool does
not provide any easy way to write out the auxiliary deployment descriptor, and it is
required for the command line approach. The buildAll script calls the addJ2eeRiToEar
script that does precisely this.

The only real option is to save the agency.ear file once modified, and then use a tool,
such as WinZip, to load up the EAR file. The auxiliary deployment descriptor can be
extracted from that.

Patterns and Idioms

This section presents some patterns and idioms that relate to CMP Entity beans. You’ll
recognize some of the points made here; they were made earlier in the “Container
Managed Relationships” section.

Normalize/Denormalize Data in ejbLoad()/ejbStore()

Under CMP, the ejbLoad() and ejbStore () methods don’t have very much (or indeed
anything) to do; the interactions with the persistent data store are done by the EJB con-
tainer.

However, it may be that the physical schema of the persistent data store (especially if
that persistent data store is an RDBMS) does not correspond exactly with the logical
schema of the Entity bean.

| 324

Day 7

For example, the Applicant table defines two columns—address1 and address2.
However, at least conceptually, the Applicant Entity bean has a vector field of address,
of type String[]; there could be many lines in the address (and it’s just that the physi-
cal schema of the persistent data store constrains the size of this vector to 2):

Santa Claus

No. 1 Grotto Square (line 1)

Christmas Town (line 2)

North Pole (line 3)

The World (line 4)

Earth (line 5)
(

The Solar System line 6, and so on ..)

Because the ejbLoad () method is called after the EJB container has loaded the data, it
may renormalize the data. In other words, the data in the two cmp-fields of address1
and address2 can be converted into the String[] address field. The bean’s clients’ view
(as presented by the methods of the local interface) is that the address field is a vector.

Conversely, the ejbStore () method, called just before the EJB container updates the
data, can denormalize the data. In other words, the data in the address vector field can
be “posted” back to the address1 and address2 cmp-fields.

Don’t Expose cmp-fields

Although the EJB specification allows cmp-fields to be exposed in the local (or remote)
interface of a CMP Entity bean, there are problems with doing so. Because the setter
method that corresponds to the field is generated by the EJB container, it is not possible
to perform any application-level validation.

Instead, it is better to create a shadow setter method, have it do any validation, and then
delegate to the actual cmp-field setter method.

You may also want to create a shadow getter method. This would allow you symmetry in
the names of the methods, and you could also perhaps do some caching of values or
other application-level logic.

As an example, instead of exposing the getter and setter methods for the description
cmp-field of the Job bean, you might have a local interface of
package data;

import javax.ejb.*;
// imports omitted

public interface JobLocal extends EJBLocalObject {
String getDescriptionField();
void setDescriptionField(String description);

CMP and EJB QL

325|

// code omitted

}
with a corresponding implementation of

package data;

import javax.ejb.*;
// imports omitted

public abstract class JobBean implements EntityBean {
public String getDescriptionField() {
// any application logic here
return getDescription();
}

public void setDescriptionField(String description) {
// any application logic and validation here
setDescription(description);

}
public abstract String getDescription();
public abstract void setDescription(String description);

}

Don’'t Expose cmr-fields

Although the EJB specification allows cmr-fields to be exposed in the local interface of
a CMP Entity bean, it may be best not to. There are two reasons why exposing the cmr -
field causes problems, both related to the returned collection from the getter method of
acmr-field:

¢ The first is that this returned collection is mutable. A client can change of the
Entity bean’s relationships with other beans by manipulating this collection. In
other words, the bean’s state is changed without it being aware.

¢ The second is that the ret