SERVLETS and
JAVASERVER PAGES

MANTY HALL

More Servlets and JavaServer Pages

Marty Hall

Publisher: Prentice Hall PTR
First Edition December 01, 2001
ISBN: 0-13-067614-4, 752 pages

More Servlets and JavaServer Pages shows developers how to
use the latest advances in servlet and JSP technology. A
companion to the worldwide bestseller Core Servlets and
JavaServer Pages, it starts with a fast introduction to basic
servlet and JSP development, including session tracking, custom
JSP tag libraries, and the use of the MVC architecture. It then
covers the use and deployment of Web applications, declarative
and programmatic security, servlet and JSP filters, life-cycle
event listeners, new features for writing tag libraries, the
standard JSP tag library (JSPTL), and much more.

Library of Congress Cataloging-in-Publication Data
Hall, Marty

More Servlets and JavaServer Pages / Marty Hall.

p. cm.

Includes index.

ISBN 0-13-067614-4

1. Java (Computer programming language) 2. Servlets. 3. Active server pages. I.
Title.

QA76.73.138 H3455 2001

005.2'762--dc21

2001056014

© 2002 Sun Microsystems, Inc.

Printed in the United States of America.
901 San Antonio Road, Palo Alto, California
94303-4900 U.S.A.

All rights reserved. This product and related documentation are protected by
copyright and distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United
States Government is subject to the restrictions set forth in DFARS
252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The products described may be protected by one or more U.S. patents, foreign
patents, or pending applications.

TRADEMARKS—HotJava, Java, Java Development Kit, Solaris, SPARC, SunQOS,
and Sunsoft are trademarks of Sun Microsystems, Inc. All other products or
services mentioned in this book are the trademarks or service marks of their
respective companies or organizations

The publisher offers discounts on this book when ordered in bulk quantities. For
more information, contact Corporate Sales Department, Prentice Hall PTR , One
Lake Street, Upper Saddle River, NJ 07458. Phone: 800-382-3419; FAX: 201-
236-7141. E-mail: corpsales@prenhall.com.

Credits

Production Editor and Compositor: Vanessa Moore
Copy Editor: Mary Lou Nohr

Project Coordinator: Anne R. Garcia

Acquisitions Editor: Gregory G. Doench

Editorial Assistant: Brandt Kenna

Cover Design Director: Jerry Votta

Cover Designer: Design Source

Art Director: Gail Cocker-Bogusz

Manufacturing Manager: Alexis R. Heydt-Long
Marketing Manager: Debby vanDijk

Sun Microsystems Press Publisher: Michael Liwyd Alread
10987654321

Sun Microsystems Press

A Prentice Hall Title

Acknowledgments
About the Author

Introduction
Who Should Read This Book
Book Distinctives
How This Book Is Organized
Conventions
About the Web Site

I: The Basics

1. Server Setup and Configuration
1.1 Download the Java Development Kit (JDK)

1.2 Download a Server for Your Desktop

1.3 Change the Port and Configure Other Server Settings
1.4 Test the Server

1.5 Try Some Simple HTML and JSP Pages

1.6 Set Up Your Development Environment
1.7 Compile and Test Some Simple Serviets
1.8 Establish a Simplified Deployment Method

1.9 Deployment Directories for Default Web Application: Summary

2. A Fast Introduction to Basic Serviet Programming
2.1 The Advantages of Servilets Over “"Traditional” CGI

2.2 Basic Servlet Structure

2.3 The Servlet Life Cycle

2.4 The Client Request: Form Data

2.5 The Client Request: HTTP Request Headers

2.6 The Serviet Equivalent of the Standard CGI Variables
2.7 The Server Response: HTTP Status Codes

2.8 The Server Response: HTTP Response Headers

2.9 Cookies

2.10 Session Tracking

3. A Fast Introduction to Basic JSP Programming
3.1 JSP Overview
3.2 Advantages of JSP
3.3 Invoking Code with JSP Scripting Elements
3.4 Structuring Autogenerated Serviets: The JSP page Directive
3.5 Including Files and Applets in JSP Documents
3.6 Using JavaBeans with JSP
3.7 Defining Custom JSP Tag Libraries
3.8 Integrating Serviets and JSP: The MVC Architecture

II: Web Applications

4. Using and Deploying Web Applications
4.1 Registering Web Applications

4.2 Structure of a Web Application
4.3 Deploying Web Applications in WAR Files
4.4 Recording Dependencies on Server Libraries

4.5 Handling Relative URLSs in Web Applications
4.6 Sharing Data Among Web Applications

5. Controlling Web Application Behavior with web.xml

5.1 Defining the Header and Root Elements

5.2 The Order of Elements within the Deployment Descriptor
5.3 Assigning Names and Custom URLs

5.4 Disabling the Invoker Serviet

5.5 Initializing and Preloading Servlets and JSP Pages

5.6 Declaring Filters
5.7 Specifying Welcome Pages

5.8 Designating Pages to Handle Errors
5.9 Providing Security

5.10 Controlling Session Timeouts

5.11 Documenting Web Applications

5.12 Associating Files with MIME Types
5.13 Locating Tag Library Descriptors

5.14 Designating Application Event Listeners
5.15 J2EE Elements

6. A Sample Web Application: An Online Boat Shop
6.1 General Configuration Files
6.2 The Top-Level Page
6.3 The Second-Level Pages
6.4 The Item Display Serviet
6.5 The Purchase Display Page

ITII: Web Application Security

7. Declarative Security
7.1 Form-Based Authentication

7.2 Example: Form-Based Authentication
7.3 BASIC Authentication

7.4 Example: BASIC Authentication
7.5 Configuring Tomcat to Use SSL

8. Programmatic Security
8.1 Combining Container-Managed and Programmatic Security
8.2 Example: Combining Container-Managed and Programmatic Security
8.3 Handling All Security Programmatically
8.4 Example: Handling All Security Programmatically

8.5 Using Programmatic Security with SSL
8.6 Example: Programmatic Security and SSL

IV: Major New Serviet and JSP Capabilities

9. Servlet and JSP Filters
9.1 Creating Basic Filters
9.2 Example: A Reporting Filter
9.3 Accessing the Servilet Context from Filters
9.4 Example: A Logging Filter
9.5 Using Filter Initialization Parameters
9.6 Example: An Access Time Filter

9.7 Blocking the Response
9.8 Example: A Prohibited-Site Filter

9.9 Modifying the Response

9.10 Example: A Replacement Filter

9.11 Example: A Compression Filter

9.12 The Complete Filter Deployment Descriptor

10. The Application Events Framework
10.1 Monitoring Creation and Destruction of the Serviet Context
10.2 Example: Initializing Commonly Used Data
10.3 Detecting Changes in Serviet Context Attributes
10.4 Example: Monitoring Changes to Commonly Used Data
10.5 Packaging Listeners with Tag Libraries
10.6 Example: Packaging the Company Name Listeners
10.7 Recognizing Session Creation and Destruction
10.8 Example: A Listener That Counts Sessions
10.9 Watching for Changes in Session Attributes
10.10 Example: Monitoring Yacht Orders
10.11 Using Multiple Cooperating Listeners
10.12 The Complete Events Deployment Descriptor

V: New Tag Library Capabilities

11. New Tag Library Features in JSP 1.2

11.1 Using the New Tag Library Descriptor Format
11.2 Bundling Listeners with Tag Libraries

11.3 Checking Syntax with TaglLibraryValidator

11.4 Aside: Parsing XML with SAX 2.0
11.5 Handling Exceptions with the TryCatchFinally Interface
11.6 New Names for Return Values

11.7 Looping Without Generating BodyContent
11.8 Introducing Scripting Variables in the TLD File

12. The JSP Standard Tag Library
12.1 Using JSTL: An Overview

12.2 Installing and Configuring JSTL
12.3 Looping with the forEach Tag

12.4 Accessing the Loop Status

12.5 Looping with the forTokens Tag
12.6 Evaluating Items Conditionally
12.7 Using the Expression Lanquage

Server Organization and Structure
Download Sites

Starting and Stopping the Server

Servlet JAR File Locations

Locations for Files in the Default Web Application
Locations for Files in Custom Web Applications

Acknowledgments

Many people helped me with this book. Without their assistance, I would still be
on the third chapter. Larry Brown (U.S. Navy), John Guthrie (American Institutes
for Research), Randal Hanford (Boeing, University of Washington), Bill Higgins
(IBM), and Rich Slywczak (NASA) provided valuable technical feedback on many
different chapters. Others providing useful suggestions or corrections include
Nathan Abramson (ATG), Wayne Bethea (Johns Hopkins University Applied
Physics Lab—JHU/ APL), Lien Duong (JHU/APL), Bob Evans (JHU/APL), Lis Immer
(JHU/APL), Makato Ishii (Casa Real), Tyler Jewell (BEA), Jim Mayfield (JHU/APL),
Matt McGinty (New Atlanta), Paul McNamee (JHU/APL), Karl Moss (Macromedia),
and Jim Stafford (Capita). I hope I learned from their advice. Mary Lou “Eagle
Eyes” Nohr spotted my errant commas, awkward sentences, typographical errors,
and grammatical inconsistencies. She improved the result immensely. Vanessa
Moore desighed the book layout and produced the final version; she did a great
job despite my many last-minute changes. Greg Doench of Prentice Hall believed
in the concept from the beginning and encouraged me to write the book. Mike
Alread persuaded Sun Microsystems Press to believe in it also. Thanks to all.

Most of all, thanks to B.]., Lindsay, and Nathan for their patience and
encouragement. God has blessed me with a great family.

About the Author

Marty Hall is president of coreservlets.com, a small company that provides
training courses and consulting services related to server-side Java technology.
He also teaches Java and Web programming in the Johns Hopkins University
part-time graduate program in Computer Science, where he directs the
Distributed Computing and Web Technology concentration areas. Marty is the
author of Core Web Programming and Core Servlets and JavaServer Pages, both
from Sun Microsystems Press and Prentice Hall. You can reach Marty at
hall@coreservlets.com; you can find out about his onsite training courses at
http://courses.coreservlets.com.

Introduction

Suppose your company wants to sell products online. You have a database that
gives the price and inventory status of each item. But, your database doesn’t
speak HTTP, the protocol that Web browsers use. Nor does it output HTML, the
format Web browsers need. What can you do? Once users know what they want
to buy, how do you gather that information? You want to customize your site
based on visitors’ preferences and interests—how? You want to let users see their
previous purchases, but you don’t want to reveal that information to other
visitors. How do you enforce these security restrictions? When your Web site
becomes popular, you might want to compress pages to reduce bandwidth. How
can you do this without causing your site to fail for the 30% of visitors whose
browsers don’t support compression? In all these cases, you need a program to
act as the intermediary between the browser and some server-side resource.
This book is about using the Java platform for this type of program.

“Wait a second,” you say. “"Didn’t you already write a book about that?” Well, yes.
In May of 2000, Sun Microsystems Press and Prentice Hall released my second
book, Core Servlets and JavaServer Pages. It was successful beyond everyone’s
wildest expectations, selling approximately 100,000 copies in the first year,
getting translated into Bulgarian, Chinese, Czech, French, German, Hebrew,
Japanese, Korean, Polish, Russian, and Spanish, and being chosen by
Amazon.com as one of the top five computer programming books of 2001. Even
better, I was swamped with requests for what I really like doing: teaching short
courses for developers in industry. Despite having to decline most of the requests,
I was still able to teach servlet and JSP short courses in Australia, Canada, Japan,
the Philippines, and at a variety of U.S. venues. What fun!

Since then, use of servlets and JSP has continued to grow at a phenomenal rate.
The Java 2 Platform has become the technology of choice for developing
e-commerce applications, dynamic Web sites, and Web-enabled applications and
service. Servlets and JSP continue to be the foundation of this platform—they
provide the link between Web clients and server-side applications. Virtually all
major Web servers for Windows, Unix (including Linux), MacOS, VMS, and
mainframe operating systems now support servlet and JSP technology either
natively or by means of a plugin. With only a small amount of configuration, you
can run servlets and JSP in Microsoft IIS, iPlanet/Netscape Enterprise Server, the
Apache Web Server, IBM WebSphere, BEA WebLogic, and dozens of other
servers. Performance of both commercial and open-source servlet and JSP
engines has improved significantly.

However, the field continues to evolve rapidly. For example:

o The official servlet and JSP reference implementation is no longer
developed by Sun. Instead, it is Apache Tomcat, an open-source product
developed by a team from many different organizations.

o Use of Web applications to bundle groups of servilets and JSP pages has
grown significantly.

« Portable mechanisms for enforcing Web application security have started
to displace the server-specific mechanisms that were formerly used.

o Version 2.3 of the servlet specification was released (August 2001). New
features in this specification include servlet and JSP filters, application
life-cycle event handlers, and a number of smaller additions and changes
to existing APIs and to the deployment descriptor (web.xml).

o Version 1.2 of the JSP specification was released (also August 2001). This
version lets you bundle event listeners with tag libraries, lets you designate
XML-based programs to check the syntax of pages that use custom tags,
and supplies interfaces that let your custom tags loop more efficiently and
handle errors more easily. JSP 1.2 also makes a number of smaller changes
and additions to existing APIs and to the TLD file format.

« XML has become firmly entrenched as a data-interchange language.
Servlet and JSP pages use it for configuration files. Tag library validators
can use it to verify custom tag syntax. JSP pages can be represented
entirely in XML.

o Throughout 2000 and 2001, the JSR-052 expert group put together a
standard tag library for JSP. In November of 2001 they released early
access version 1.2 of this library, called JSTL (JSP Standard Tag Library).
This library provides standard tags for simple looping, iterating over a
variety of data structures, evaluating content conditionally, and accessing
objects without using explicit scripting code.

Whew. Lots of changes. The new features are very useful, but is there a single
place where you can learn about all of them? Here! That’s why I wrote this book:
to show developers how to make use of all of these new features. If you aren’t
familiar with basic servlet and JSP development, don’t worry. I provide a
thorough review at the beginning of the book.

Who Should Read This Book

This book is aimed at two main groups.

The first group is composed of people who are familiar with basic servlet and JSP
development and want to learn how to make use of all the new capabilities I just
described.

However, if you are new to this technology, there is no need to go away and learn
older servlet and JSP versions and then come back to this book. Assuming you

are familiar with the basics of the Java programming language itself, you fit into
the second main group for whom this book is designed. For you, I start the book
with a detailed review of the foundations of servlet and JSP programming, set in
the context of the servlet 2.3 and JSP 1.2 specifications. Furthermore, when

space prevents coverage of some of the finer points of basic development, I cite
the specific sections of Core Servlets and JavaServer Pages that provide details
and put those sections online at http://www.moreservlets.com. In fact, I put the
entire text of Core Servlets and JavaServer Pages on the Web site (in PDF).

Although this book is well suited for both experienced servlet and JSP
programmers and newcomers to the technology, it assumes that you are familiar
with basic Java programming. You don’t have to be an expert Java developer, but
if you know nothing about the Java programming language, this is not the place
to start. After all, servlet and JSP technology is an application of the Java
programming language. If you don’t know the language, you can’t apply it. So, if
you know nothing about basic Java development, start with a good introductory
book like Thinking in Java, Core Java, or Core Web Programming. Come back
here after you are comfortable with at least the basics.

Book Distinctives

This book has four important characteristics that set it apart from many other similar-sounding
books:

o Integrated coverage of servlets and JSP. The two technologies are closely related;
you should learn and use them together.

¢ Real code. Complete, working, documented programs are essential to learning; I
provide lots of them.

¢ Step-by-step instructions. Complex tasks are broken down into simple steps that are
illustrated with real examples.

¢ Server configuration and usage details. I supply lots of concrete examples to get you
going quickly.

Integrated Coverage of Servlets and JSP

One of the key philosophies behind Core Servlets and JavaServer Pages was that servlets and JSP
should be learned (and used!) together, not separately. After all, they aren’t two entirely distinct
technologies: JSP is just a different way of writing servlets. If you don’t know servlet

programming, you can’t use servlets when they are a better choice than JSP, you can’t use the
MVC architecture to integrate servlets and JSP, you can't understand complex JSP constructs, and
you can’t understand how JSP scripting elements work (since they are really just servlet code). If
you don’t understand JSP development, you can’t use JSP when it is a better option than servlet

technology, you can’t use the MVC architecture, and you are stuck using print statements even
for pages that consist almost entirely of static HTML.

In this book, an integrated approach is more important than ever. Web applications let you
bundle both servilets and JSP pages into a single file or directory. The custom URLs, initialization
parameters, preload settings, and session timeouts of the deployment descriptor apply equally to
servlets and JSP pages. Declarative security applies equally to both technologies. The new
filtering capability applies to both. Event listeners apply to both. The jx portion of the JSP
standard tag library (JSTL) is mostly predicated on the assumption that the JSP page is
presenting data that was established by a servlet. Servlets and JSP go together!

Real Code

Sure, small code snippets are useful for introducing concepts. The book has lots of them. But, for
you to really understand how to use various techniques, you also need to see the techniques in
the context of complete working programs. Not huge programs: just ones that have no missing
pieces and thus really run. I provide plenty of such programs, all of them documented and
available for unrestricted use at www.moreservlets.com.

Step-by-Step Instructions

When I was a graduate student (long before Java existed), I had an Algorithms professor who
explained in class that he was a believer in step-by-step instructions. I was puzzled: wasn't
everyone? Not at all. Sure, most instructors explained simple tasks that way, but this professor
took even highly theoretical concepts and said “first you do this, then you do that,” and so on. The
other instructors didn’t explain things this way; neither did my textbooks. But, it helped me
enormously.

If such an approach works even for theoretical subjects, how much more should it work with
applied tasks like those described in this book?

Server Configuration and Usage Details

When I first tried to learn server-side programming, I grabbed a couple of books, the official
specifications, and some online papers. Almost without fail, they said something like “since this
technology is portable, we won’t cover specifics of any one server.” Aargh. I couldn’t even get
started. After hunting around, I downloaded a server. I wrote some code. How did I compile it?
Where did I put it? How did I invoke it?

Servlet and JSP code is portable. The APIs are standardized. But, server structure and
organization are not standardized. The directory in which you place your code is different on

ServletExec than it is on JRun. You set up SSL differently with Tomcat than you do with other
servers. These details are important.

Now, I'm not saying that this is a book that is specific to any particular server. I'm just saying that
when a topic requires server-specific knowledge, it is important to say so. Furthermore, specific
examples are helpful. So, when I describe a topic that requires server-specific information like the
directory in which to place a Web application, I first explain the general pattern that servers tend
to follow. Then, I give very specific details for three of the most popular servers that are available
without cost for desktop development: Apache Tomcat, Macromedia/Allaire JRun, and New
Atlanta ServletExec.

How This Book Is Organized

This book consists of five parts:

e Part I: The Basics. Server setup and configuration. Basic servlet programming. Basic
JSP programming.

e PartII: Web Applications. Using and deploying Web applications. Controlling behavior
with web.xml. A larger example.

e Part III: Web Application Security. Declarative security. Programmatic security.
SSL.

¢ PartIV: Major New Servilet and JSP Capabilities. Servlet and JSP filters. Application
life-cycle event listeners.

e Part V: New Tag Library Capabilities. New tag library features in JSP 1.2. The JSP
Standard Tag Library (JSTL).

The Basics

e Server setup and configuration.

e Downloading the JDK.

e Obtaining a development server.

e Configuring and testing the server.

e Deploying and accessing HTML and JSP pages.

e Setting up your development environment.

e Deploying and accessing servlets.

e Simplifying servlet and JSP deployment.

e Basic servlet programming.

e The advantages of servlets over competing technologies.
e The basic servlet structure and life cycle.

e Servlet initialization parameters.

e Access to form data.

e HTTP 1.1 request headers, response headers, and status codes.
e The servlet equivalent of the standard CGI variables.

e Cookies in servlets.

e Session tracking.

e Basic JSP programming.

e Understanding the benefits of JSP.

e Invoking Java code with JSP expressions, scriptlets, and declarations.

e Structuring the servlet that results from a JSP page.

e Including files and applets in JSP documents.

e Using JavaBeans with JSP.

e Creating custom JSP tag libraries.

e Combining servlets and JSP: the Model View Controller (Model 2) architecture.

Web Applications

e Using and deploying Web applications.

e Registering Web applications with the server.

e Organizing Web applications.

e Deploying applications in WAR files.

e Recording Web application dependencies on shared libraries.
e Dealing with relative URLs.

e Sharing data among Web applications.

e Controlling Web application behavior with web.xml.

e Customizing URLs.

e Turning off default URLs.

e Initializing servlets and JSP pages.

e Preloading servlets and JSP pages.

e Declaring filters for servlets and JSP pages.

e Designating welcome pages and error pages.

e Restricting access to Web resources.

e Controlling session timeouts.

e Documenting Web applications.

e Specifying MIME types.

e Locating tag library descriptors.

e Declaring event listeners.

e Accessing J2EE Resources.

e Defining and using a larger Web application.

e The interaction among components in a Web application.
e Using sessions for per-user data.

e Using the servlet context for multiuser data.

e Managing information that is accessed by multiple servlets and JSP pages.
e Eliminating dependencies on the Web application name.

Web Application Security

e Declarative security.

¢ Understanding the major aspects of Web application security.
e Authenticating users with HTML forms.

e Using BASIC HTTP authentication.

¢ Defining passwords in Tomcat, JRun, and ServletExec.

e Designating protected resources with the security-constraint element.
e Using login-config to specify the authentication method.

¢ Mandating the use of SSL.

e Configuring Tomcat to use SSL.

e Programmatic security.

e Combining container-managed and programmatic security.

e Using the isUserinRole method.

e Using the getrRemoteUser method.

e Using the getUserpPrincipal method.

e Programmatically controlling all aspects of security.

e Using SSL with programmatic security.

Major New Serviet and JSP Capabilities

e Servlet and JSP filters.

e Designing basic filters.

¢ Reading request data.

e Accessing the servlet context.

e [Initializing filters.

e Blocking the servlet or JSP response.

e Modifying the servlet or JSP response.

e Using filters for debugging and logging.

e Using filters to monitor site access.

e Using filters to replace strings.

e Using filters to compress the response.

e Application life-cycle event listeners.

¢ Understanding the general event-handling strategy.

e Monitoring servlet context initialization and shutdown.
e Setting application-wide values.

e Detecting changes in attributes of the servlet context.
e Recognizing creation and destruction of HTTP sessions.
e Analyzing overall session usage.

e Watching for changes in session attributes.

e Tracking purchases at an e-commerce site.

e Using multiple cooperating listeners.

e Packaging listeners in JSP tag libraries.

New Tag Library Capabilities

e New tag library features in JSP 1.2.

e Converting TLD files to the new format.

¢ Bundling life-cycle event listeners with tag libraries.

e Checking custom tag syntax with TagLibraryvalidator.

e Using the Simple API for XML (SAX) in validators.

e Handling errors with the TrycatchFinally interface.

e Changing names of method return values.

e Looping without creating BodyContent.

e Declaring scripting variables in the TLD file.

e The JSP Standard Tag Library (JSTL).

e Downloading and installing the standard JSP tag library.

e Reading attributes without using Java syntax.

e Accessing bean properties without using Java syntax.

e Looping an explicit number of times.

e Iterating over various data structures.

e Checking iteration status.

o Iterating with string-based tokens.

e Evaluating expressions conditionally.

e Using the JSTL expression language to set attributes, return values, and declare scripting
variables.

Conventions

Throughout the book, concrete programming constructs or program output are presented in a
monospaced font. For example, when abstractly discussing server-side programs that use HTTP,
I might refer to "HTTP servlets” or just “servlets,” but when I say HttpServlet I am talking about
a specific Java class.

User input is indicated in boldface, and command-line prompts are either generic (Prompt>) or
indicate the operating system to which they apply (pos>). For instance, the following indicates
that ™ some output ”is the result when ™ java SomeProgram ” is executed on any platform.

Prompt> java SomeProgram

Some Output

URLs, filenames, and directory names are presented with italics. So, for example, I would say
“the stringTokenizer class” (monospaced because I'm talking about the class name) and
“Listing such and such shows SomeFile.java” (italic because I'm talking about the filename).
Paths use forward slashes as in URLs unless they are specific to the Windows operating system.

So, forinstance, I would use a forward slash when saying “look in install_dir/bin” (OS neutral) but
use backslashes when saying “C:\Windows\Temp” (Windows specific).

Important standard techniques are indicated by specially marked entries, as in the following
example.

Core Approach

Pay particular attention to items in "Core Approach” sections. They
indicate techniques that should always or almost always be used.

Notes and warnings are called out in a similar manner.

About the Web Site

The book has a companion Web site at http://www.moreservlets.com/. This free site includes:

¢ Documented source code for all examples shown in the book; this code can be downloaded
for unrestricted use.

e The complete text of Core Serviets and JavaServer Pages in PDF format.

e Up-to-date download sites for servlet and JSP software.

e Links to all URLs mentioned in the text of the book.

e Information on book discounts.

e Reports on servlet and JSP short courses.

e Book additions, updates, and news.

Part I: The Basics

Part I The Basics

Chapter 1 Server Setup and Configuration

Chapter 2 A Fast Introduction to Basic Servlet Programming

Chapter 3 A Fast Introduction to Basic JSP Programming

Chapter 1. Server Setup and Configuration

Topics in This Chapter

o Downloading the JDK

o Obtaining a development server

o Configuring and testing the server

o Deploying and accessing HTML and JSP pages
o Setting up your development environment

o Deploying and accessing servlets

o Simplifying servlet and JSP deployment

Before you can start learning specific servlet and JSP techniques, you need to
have the right software and know how to use it. This introductory chapter
explains how to obtain, configure, test, and use free versions of all the software
needed to run servlets and JavaServer Pages.

1.1 Download the Java Development Kit (JDK)

You probably already have the JDK installed, but if not, installing it should be
your first step. Version 2.3 of the servilet API and version 1.2 of the JSP API
require the Java 2 platform (standard or enterprise edition). If you aren’t using
J2EE features like EJB or JNDI, I recommend that you use the standard edition,
JDK 1.3 or 1.4.

For Solaris, Windows, and Linux, obtain JDK 1.3 at
http://java.sun.com/j2se/1.3/ and JDK 1.4 at http://java.sun.com/j2se/1.4/.
For other platforms, check first whether a Java 2 implementation comes
preinstalled as it does with MacOS X. If not, see Sun’s list of third-party Java
implementations at http://java.sun.com/cgi-bin/java-ports.cqi.

1.2 Download a Server for Your Desktop

Your second step is to download a server that implements the Java Servlet 2.3
and JSP 1.2 specifications for use on your desktop. In fact, I typically keep two
servers installed on my desktop (Apache’s free Tomcat server and one
commercial server) and test my applications on both to keep myself from
accidentally using nonportable constructs.

Regardless of the server that you will use for final deployment, you will want at
least one server on your desktop for development. Even if the deployment server
is in the office next to you connected by a lightning-fast network connection, you

still don’t want to use it for your development. Even a test server on your intranet
that is inaccessible to customers is much less convenient for development
purposes than a server right on your desktop. Running a development server on
your desktop simplifies development in a number of ways, as compared to
deploying to a remote server each and every time you want to test something.

1. It is faster to test. With a server on your desktop, there is no need to
use FTP or another upload program. The harder it is for you to test changes,
the less frequently you will test. Infrequent testing will let errors persist
that will slow you down in the long run.

2. It is easier to debug. When running on your desktop, many servers
display the standard output in a normal window. This is in contrast to
deployment servers where the standard output is almost always either
completely hidden or only available on the screen of the system

administrator. So, with a desktop server, plain old System.out.println

statements become useful tracing and debugging utilities.

3. Itis simple to restart. During development, you will find that you need
to restart the server frequently. For example, the server typically reads the
web.xml file (see Chapter 4, ™ Using and Deploying Web Applications ”)
only at startup. So, you normally have to restart the server each time you
modify web.xml. Although some servers (e.g., ServietExec) have an
interactive method of reloading web.xml, tasks such as clearing session

data, resetting the servletContext, or replacing modified class files used

indirectly by servlets or JSP pages (e.g., beans or utility classes) may still
necessitate restarting the server. Some older servers also need to be
restarted because they implement servlet reloading unreliably. (Normally,
servers instantiate the class that corresponds to a servlet only once and
keep the instance in memory between requests. With servlet reloading, a
server automatically replaces servlets that are in memory but whose class
file has changed on the disk). Besides, some deployment servers
recommend completely disabling servlet reloading in order to increase
performance. So, it is much more productive to develop in an environment
where you can restart the server with a click of the mouse without asking
for permission from other developers who might be using the server.

4. It is more reliable to benchmark. Although it is difficult to collect
accurate timing results for short-running programs even in the best of
circumstances, running benchmarks on systems that have heavy and
varying system loads is notoriously unreliable.

5. It is under your control. As a developer, you may not be the
administrator of the system on which the test or deployment server runs.
You might have to ask some system administrator every time you want the

server restarted. Or, the remote system may be down for a system
upgrade at the most critical juncture of your development cycle. Not fun.

Now, if you can run on your desktop the same server you use for deployment, all
the better. But one of the beauties of servlets and JSP is that you don’t have to;
you can develop with one server and deploy with another. Following are some of
the most popular free options for desktop development servers. In all cases, the
free version runs as a standalone Web server; in most cases, you have to pay for
the deployment version that can be integrated with a regular Web server like
Microsoft IIS, iPlanet/Netscape, or the Apache Web Server. However, the
performance difference between using one of the servers as a servlet and JSP
engine within a regular Web server and using it as a complete standalone Web
server is not significant enough to matter during development. See
http://java.sun.com/products/servlet/industry.html for a more complete list of
servers.

« Apache Tomcat. Tomcat 4 is the official reference implementation of the
servilet 2.3 and JSP 1.2 specifications. Tomcat 3 is the official reference
implementation for servlets 2.2 and JSP 1.1. Both versions can be used as
a standalone server during development or can be plugged into a standard
Web server for use during deployment. Like all Apache products, Tomcat is
entirely free and has complete source code available. Of all the servers, it
also tends to be the one that is most compliant with the latest servlet and
JSP specifications. However, the commercial servers tend to be better
documented, easier to configure, and a bit faster. To download Tomcat, see
http://jakarta.apache.org/tomcat/.

« Allaire/Macromedia JRun. JRun is a servlet and JSP engine that can be
used in standalone mode for development or plugged into most common
commercial Web servers for deployment. It is free for development
purposes, but you have to purchase a license before deploying with it. It is
a popular choice among developers that are looking for easier
administration than Tomcat. For details, see
http://www.allaire.com/products/JRun/.

« New Atlanta’s ServletExec. ServletExec is another popular servlet and
JSP engine that can be used in standalone mode for development or, for
deployment, plugged into the Microsoft IIS, Apache, and iPlanet/Netscape
Web servers. Version 4.0 supports servilets 2.3 and JSP 1.2. You can
download and use it for free, but some of the high-performance capabilities
and administration utilities are disabled until you purchase a license. The
ServletExec Debugger is the configuration you would use as a standalone
desktop development server. For details, see
http://www.servletexec.com/.

« Caucho’s Resin. Resin is a fast servlet and JSP engine with extensive
XML support. It is free for development and noncommercial deployment
purposes. For details, see http://www.caucho.com/.

« LiteWebServer from Gefion Software. LWS is a small standalone Web
server that supports servlets and JSP. It is free for both development and
deployment purposes, but a license will entitle you to increased support
and the complete server source code. See
http://www.gefionsoftware.com/LiteWebServer/ for details.

1.3 Change the Port and Configure Other Server
Settings

Most of the free servers listed in Section 1.2 use a nonstandard default port in
order to avoid conflicts with other Web servers that may be using the standard
port (80). However, if you are using the servers in standalone mode and have no
other server running permanently on port 80, you will find it more convenient to
use port 80. That way, you don’t have to use the port number in every URL you
type in your browser. There are one or two other settings that you might want to
modify as well.

Changing the port or other configuration settings is a server-specific process, so
you need to read your server’s documentation for definitive instructions.
However, I'll give a quick summary of the process for three of the most popular
free servers here: Tomcat, JRun, and ServletExec.

Apache Tomcat

Tomcat Port Number

With Tomcat 4, modifying the port number involves editing
install_dir/conf/server.xml, changing the port attribute of the Connector

element from 8080 to 80, and restarting the server. Remember that this section
applies to the use of Tomcat in standalone mode on your desktop system where
no other server is already running permanently on port 80. On Unix/Linux, you
must have system administrator privileges to start services on port 80 or other
port numbers below 1024. You probably have such privileges on your desktop
machine; you do not necessarily have them on deployment servers.

The original element will look something like the following:

<Connector
className="org.apache.catalina.connector.http.HttpConnector"
port="8080". ..
/>

It should change to something like the following:

<Connector
className="org.apache.catalina.connector.http.HttpConnector"
port="80"...
/>

The easiest way to find the correct entry is to search for 8080 in server.xml; there
should only be one noncomment occurrence. Be sure to make a backup of

server.xml before you edit it, just in case you make a mistake that prevents the
server from running. Also, remember that XML is case sensitive, so for instance,

you cannot replace port with Port or Connector with connector.

With Tomcat 3, you modify the same file (install_dir/conf/server.xml), but you

need to use slightly different connector elements for different minor releases of

Tomcat. With version 3.2, you replace 8080 with 80 in the following Parameter

element.

<Connector ...>
<Parameter name="port" value="8080"/>
</Connector>

Again, restart the server after making the change.

Other Tomcat Settings

Besides the port, three additional Tomcat settings are important: the JAVA HOME

variable, the DOS memory settings, and the CATALINA HOME Or TOMCAT HOME

variable.

The most critical Tomcat setting is the JavA HOME environment variable—failing

to set it properly prevents Tomcat from handling JSP pages. This variable should
list the base JDK installation directory, not the bin subdirectory. For example, if
you are on Windows 98/Me and installed the JDK in C:\JDK1.3, you might put the
following line in your autoexec.bat file.

set JAVA HOME=C:\JDKI.3

On Windows NT/2000, you would go to the Start menu and select Settings, then
Control Panel, then System, then Environment. Then, you would enter the

JAVA HOME value.

On Unix/Linux, if the JDK is installed in /usr/j2sdk1_3 1 and you use the C shell,
you would put the following into your.cshrc file.

setenv JAVA HOME /usr/j2sdkl 3 1

Rather than setting the JaAvA HOME environment variable globally in the operating

system, some developers prefer to edit the startup script to set it there. If you
prefer this strategy, edit install_dir/bin/catalina.bat (Tomcat 4; Windows) or
install_dir/bin/tomcat.bat (Tomcat 3; Windows) and change the following:

if not "%JAVA HOMEZ" == "" goto gotJavaHome
echo You must set JAVA HOME to point at ...
goto cleanup
:gotJavaHome

to:

if not "%JAVA HOMEZ" == "" goto gotJavaHome
set JAVA HOME=C:\JDK1.3
:gotJavaHome

Be sure to make a backup copy of catalina.bat or tomcat.bat before making the
changes. Unix/Linux users would make similar changes in catalina.sh or
tomcat.sh.

If you use Windows, you may also have to change the DOS memory settings for
the startup and shutdown scripts. If you get an “Out of Environment Space” error
message when you start the server, you will need to right-click on
install_dir/bin/startup.bat, select Properties, select Memory, and change the
Initial Environment entry from Auto to 2816. Repeat the process for
install_dir/bin/shutdown.bat.

In some cases, it is also helpful to set the cATALINA HOME (Tomcat 4) or

TOMCAT HOME (Tomcat 3) environment variables. This variable identifies the

Tomcat installation directory to the server. However, if you are careful to avoid
copying the server startup scripts and you use only shortcuts (called “symbolic
links” on Unix/Linux) instead, you are not required to set this variable. See
Section 1.6 for more information on using these shortcuts.

Please note that this section describes the use of Tomcat as a standalone server
for servlet and JSP development. It requires a totally different configuration to
deploy Tomcat as a servilet and JSP container integrated within a regular Web
server. For information on the use of Tomcat for deployment, please see
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/.

Allaire/Macromedia JRun

When using JRun in standalone mode (vs. integrated with a standard Web
server), there are several options that you probably want to change from their
default values. All can be set from the graphical JRun Management Console
and/or through the JRun installation wizard.

JRun Port Number

To change the JRun port, first start the JRun Admin Server by clicking on the
appropriate icon (on Windows, go to the Start menu, then Programs, then JRun
3.x). Then, click on the JRun Management Console (JMC) button or enter the URL

http://localhost:8000/ in a browser. Log in, using a username of admin and the

password that you specified when you installed JRun, choose JRun Default Server,
then select JRun Web Server. Figure 1-1 shows the result. Next, select Web
Server Port, enter 80, and press Update. See Figure 1-2. Finally, select JRun
Default Server again and press the Restart Server button.

Figure 1-1. JMC configuration screen for the JRun Default

Server.

B Jian M anagament Console - Nelecaps HFJE

Fe £ Yow Go Lommncam bdb
o)

B

&S JRUN

[l

| on1a991293 = =
(3] TRm Adman Servee JRun Default Server
=0 M Dulault Server ['*W&R daploymant| [EJB deploymand| [EAR deploymend|

@ IDRC Dats Soureas

Eervar Mame defaull

M Jsvs Saktingr
Earwur Root Direclary | CUProgram Filesiadiinsl Runisemenidetaul

H Log Filg Saktings
@ application Hosts

Eerwir Descriplion
Esrvr Stalus T L]
E‘I Extarmal Wab Samar

[] akun wab Servar restat sernar I

L.] 55L
[6] Lo Viawar Falder Optinns:
i-‘lLU_ Walks Apsdeationd
& e duicaphan
o Ertmrprias JavaBamng
L 'ﬂ JOET Dabs B D ek JIOBC o R Sivaiioks il by Wiah applicatiorg
[B] |savasating: Carfigene Jova Vidysl Machise mings
lt_?l Leg Fila Saltings Carfigarid g e deMifgs
!ﬁ Agphaaian Higl Dokt wisiy gl hoagis awailabibe Jar fb i) Wiah 29 ploarisang
D Exdsmal Walk Seresr Corfigurss b JAun cornaci $3 an axdamal Wal perear
U JFun Wil Bebeai Configui ha Builin JFan Wb 8kl
L.J- Wiah Apalicatione Wlanages Wed appligtione
w L,_.,'u Entarpros Javs Baans | Wanages Erdsigrirs Jovabisan
i | ¥ =
== [Eiocament: Do i oAp =

Figure 1-2. JRun Default Server port configuration window.

i default : Edit Window - Nelzcape

JREUN Dafaull Serer §JE L W el - Edit Wird o

EnRer thi pom number of the IED
zocket listening for connections
from HTTP clients

[defandt: empty]

Other JRun Settings

When you install JRun, the installation wizard will ask you three questions that
are particularly relevant to using JRun in standalone mode for development
purposes. First, it will ask for a serial number. You can leave that blank; it is only

required for deployment servers. Second, it will ask if you want to start JRun as
a service. You should deselect this option; starting JRun automatically is useful
for deployment but inconvenient for development because the server icon does
not appear in the taskbar, thus making it harder to restart the server. The wizard
clearly states that using JRun as a service should be reserved for deployment, but
since the service option is selected by default, you can easily miss it. Finally, you
will be asked if you want to configure an external Web server. Decline this option;
you need no separate Web server when using JRun in standalone mode.

New Atlanta ServietExec

The following settings apply to use of the ServletExec Debugger 4.0, the version
of ServletExec that you would use for standalone desktop development (vs.
integrated with a regular Web server for deployment).

ServietExec Port Number

To change the port number from 8080 to 80, edit install_dir/StartSED40.bat and
add “-port 80” to the end of the line that starts the server, as below.

$JAVA HOME%\bin\java ... ServletExecDebuggerMain -port 80

Remember that this section applies to the use of ServietExec in standalone mode
on your desktop system where no other server is already running permanently on
port 80. On Unix/Linux, you must have system administrator privileges to start
services on port 80 or other port numbers below 1024. You probably have such
privileges on your desktop machine; you do not necessarily have them on
deployment servers.

Other ServiletExec Settings

ServletExec shares two settings with Tomcat. The one required setting is the
JAVA HOME environment variable. As with Tomcat, this variable refers to the base
installation directory of the JDK (not the bin subdirectory). For example, if the
JDK is installed in C:\JDK1.3, you should modify the JAVA HOME entry in
install_dir/StartSED40.bat to look like the following.

set JAVA HOME=C:\JDKI.3

Also as with Tomcat, if you use Windows, you may have to change the DOS
memory settings for the startup script. If you get an “"Out of Environment Space”
error message when you start the server, you will need to right-click on
install_dir/bin/StartSED40.bat, select Properties, select Memory, and change the
Initial Environment entry from Auto to 2816.

1.4 Test the Server

Before trying your own servlets or JSP pages, you should make sure that the
server is installed and configured properly. For Tomcat, click on
install_dir/bin/startup.bat (Windows) or execute install_dir/bin/startup.sh
(Unix/Linux). For JRun, go to the Start menu and select Programs, JRun 3.1, and
JRun Default Server. For ServiletExec, click on install_dir/bin/StartSED40.bat. In
all three cases, enter the URL http://localhost/ in your browser and make sure
you get a regular Web page, not an error message saying that the page cannot be
displayed or that the server cannot be found. Figures 1-3 through 1-5 show
typical results. If you chose not to change the port number to 80 (see Section 1.3,
" Change the Port and Configure Other Server Settings ”), you will need to use a
URL like http://localhost:8080/ that includes the port number.

Figure 1-3. Initial home page for Tomcat 4.0.

A Jakara Project - Tomeat (wA_0-rcl) - Mictosof Intemmet Explorer M= E
| Ble Edt Wiew Go Favoiles Help | 2 |
[«-=- 0@ el ¥ B8

| Addrass IE] firpflocahost indes kiml

H
/"{?_ The Jakarta Project

http:z//jakarta.apache.org

If you're seeing this page via a web browser, It means you've

we'b Apﬂﬁcahﬂm setup Tomcat successfully. Congratulations!

SP Examplas
Sendet Examplos As you may have guessed by now, this is the defauk Tomcat home
WebDal capabillies page. It can be found on the kacal filasystam a

=

2] [¥4 Loced intranat pana

Figure 1-4. Initial home page for JRun 3.1.

) Index of J - Microzoft Intemet Explorer

'_ File Edi View Favotes Took Help -
[» QB AAHID DA~ |
|| Addess |@] nirp:/acahos/ =

Index of /

|&] Dane || B Local miranet

i,

Figure 1-5. Initial home page for ServletExec 4.0.

Y ServietExec Adminiztiation - Miciozell Intesmel Esploser O] =] I
| Fie Edt Yiew Favoles ook Hep El
le-» QEA QLD S

| Agdbesz 2] b/ ocaihoat =l |

ServietExec Debugger 4.0

Free Technical Support Options

ServietExec Tech Support FAQ
shutdown . . .
If you're hawing difficulty installing or configuring ServletExec, check the
Virtual Machinge onling support FAQ 1o soe if thir answer 1o your question 1§ thore:

P — g r -
optional packages

Wb Applications

ServietExec-Interest Mailing List

The ServietExec-Interest mailing list is a user-supported discussion forum
for ServletExec developers. Instructions for subscribing to ServietExec-
Interest, and a searchable archive of the n|¢|l|r||:_| ligt are svailable fram
the ServletExec web site:

loaded

Paid Technical Support Options

Data So

L Detals an thi pad suppart aplions, ||’1|':Iu:!||'||:| aribria-, telephane-, and

pager-based support are available from the ServietExec web site:

h A e saryl ¥EC.COmSsLs rt.j
Copyright & 1997-2001 Mew Atlants Communications, LLC. A1l pights reserved,

[By Locdiniranst i

1.5 Try Some Simple HTML and JSP Pages

After you have verified that the server is running, you should make sure that you can install and
access simple HTML and JSP pages. This test, if successful, shows two important things. First,
successfully accessing an HTML page shows that you understand which directories should hold
HTML and JSP files. Second, successfully accessing a new JSP page shows that the Java compiler
(not just the Java virtual machine) is configured properly.

Eventually, you will almost certainly want to create and use your own Web applications (see
Chapter 4, * Using and Deploying Web Applications "), but for initial testing I recommend that you
use the default Web application. Although Web applications follow a common directory structure,
the exact location of the default Web application is server specific. Check your server’s
documentation for definitive instructions, but I summarize the locations for Tomcat, JRun, and
ServletExec in the following list. Where I list SomeDirectory you can use any directory name you
like. (But you are never allowed to use WEB-INF or META-INF as directory names. For the default
Web application, you also have to avoid a directory name that matches the URL prefix of any
other Web application.)

¢ Tomcat Directory

install_dir/webapps/ROOT

(or install_dir/webapps/ROOT/SomeDirectory)
¢ JRun Directory

install_dir/servers/default/default-app

(or install_dir/servers/default/default-app/SomeDirectory)
e ServletExec Directory

install_dir/public_htm]

(11 Note that the public_html directory is created automatically by ServletExec the first time you run the server. So, you

will be unable to find public_html if you have not yet tested the server as described in Section 1.4 (Test the Server).
(or install_dir/public_html/SomeDirectory)

e Corresponding URLs
http://host/Hello.html

(or http://host/SomeDirectory/Hello.html)

http://host/Hello.jsp
(or http://host/SomeDirectory/Hello.jsp)

For your first tests, I suggest you simply take Hello.htm/ (Listing 1.1, Figure 1-6) and Hello.jsp
(Listing 1.2, Figure 1-7) and drop them into the appropriate locations. The code for these files, as
well as all the code from the book, is available online at http://www.moreservlets.com. That Web
site also contains updates, additions, information on short courses, and the full text of Core
Servlets and JavaServer Pages (in PDF). If neither the HTML file nor the JSP file works (e.g., you
get File Not Found—404—errors), you likely are using the wrong directory for the files. If the
HTML file works but the JSP file fails, you probably have incorrectly specified the base JDK
directory (e.g., with the JavA HOME variable).

Figure 1-6. Result of Hello.html.

HEHTML Test - Netzcape

Fle Edi Miew Go Communicstor Help

22 Ad,mssO H O
“| ¥ Bookmaiks i Locatior: [itn:/7iacahostHelo bl =]
HTML Test

Hello.

== | Docum =1 56 i 3 (@) w2 | 4

Figure 1-7. Result of Hello.jsp.

= J5P Test - Metzcape

Fle Edt View Go Communicator Help

T 48 3 VoD O

*| wuf " Bookmarks & Location: [hutp:/facahestHelo jp |

JSP Test

Time: Tue Jul 17 15:05:58 EDT 2001
== Docum =1 5% Tie AP [E@ & | s

Listing 1.1 Hello.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD><TITLE>HTML Test</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1>HTML Test</H1>

Hello.
</BODY>
</HTML>

Listing 1.2 Hello.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD><TITLE>JSP Test</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1>JSP Test</H1>

Time: <%= new java.util.Date() %>

</BODY>

</HTML>

1.6 Set Up Your Development Environment

The server startup script automatically sets the server’s cLASSPATH to include the standard
servlet and JSP classes and the WEB-INF/classes directory (containing compiled servlets) of each
Web application. But you need similar settings, or you will be unable to compile servlets in the
first place. This section summarizes the configuration needed for servlet development.

Create a Development Directory

The first thing you should do is create a directory in which to place the servlets and JSP pages that
you develop. This directory can be in your home directory (e.g., ~/ServiletDevel on Unix) or in a
convenient general location (e.g., C:\ServletDevel on Windows). It should not, however, be in the
server’s installation directory.

Eventually, you will organize this development directory into different Web applications (each
with a common structure—see Chapter 4). For initial testing of your environment, however, you
can just put servlets either directly in the development directory (for packageless servlets) or in
a subdirectory that matches the servlet package name. Many developers simply put all their code
in the server’'s deployment directory (see Section 1.9). I strongly discourage this practice and
instead recommend one of the approaches described in Section 1.8 (Establish a Simplified
Deployment Method). Although developing in the deployment directory seems simpler at the
beginning since it requires no copying of files, it significantly complicates matters in the long run.
Mixing locations makes it hard to separate an operational version from a version you are testing,
makes it difficult to test on multiple servers, and makes organization much more complicated.
Besides, your desktop is almost certainly not the final deployment server, so you’'ll eventually
have to develop a good system for deploying anyhow.

Core Warning

Don’t use the server’s deployment directory as your development
location. Instead, keep a separate development directory.

Make Shortcuts to Start and Stop the Server

Since I find myself frequently restarting the server, I find it convenient to place shortcuts to the
server startup and shutdown icons inside my main development directory. You will likely find it
convenient to do the same.

For example, for Tomcat on Windows, go to install_dir/bin, right-click on startup.bat, and select
Copy. Then go to your development directory, right-click in the window, and select Paste Shortcut
(not just Paste). Repeat the process for install_dir/bin/shutdown.bat. On Unix, you would use 1n
-s to make a symbolic link to startup.sh, tomcat.sh (needed even though you don’t directly
invoke this file), and shutdown.sh.

For JRun on Windows, go to the Start menu, select Programs, select JRun 3.x, right-click on the
JRun Default Server icon, and select Copy. Then go to your development directory, right-click in
the window, and select Paste Shortcut. Repeat the process for the JRun Admin Server and JRun
Management Console.

For the ServletExec Debugger (i.e., standalone development server), go to install_dir, right-click
on StartSED40.bat, and select Copy. Then go to your development directory, right-click in the
window, and select Paste Shortcut (not just Paste). There is no separate shutdown file; to stop
ServletExec, just go to http://localhost/ (see Figure 1-5) and click on the Shutdown link in the
General category on the left-hand side.

Set Your CLASSPATH

Since servlets and JSP are not part of the Java 2 platform, standard edition, you have to identify
the servlet classes to the compiler. The server already knows about the servlet classes, but the
compiler (i.e., javac) you use for development probably doesn’t. So, if you don’t set your

CLASSPATH, attempts to compile servlets, tag libraries, or other classes that use the servlet API

will fail with error messages about unknown classes. The exact location of the servlet JAR file
varies from server to server. In most cases, you can hunt around for a file called servlet.jar. Or,
read your server’s documentation to discover the location. Once you find the JAR file, add the
location to your development cLASSPATH. Here are the locations for some common development
servers:

Tomcat 4 Location.

install_dir/common/lib/servlet.jar

¢ Tomcat 3 Location.
install_dir/lib/servlet.jar

¢ JRun Location.
install_dir/lib/ext/servlet.jar

e ServletExec Location.
install_dir/ServletExecDebugger.jar

Now, in addition to the servlet JAR file, you also need to put your development directory in the
CcLASSPATH. Although this is not necessary for simple packageless servlets, once you gain
experience you will almost certainly use packages. Compiling a file that is in a package and that
uses another class in the same package requires the cLASSPATH to include the directory that is at
the top of the package hierarchy. In this case, that’s the development directory I just discussed
in the first subsection. Forgetting this setting is perhaps the most common mistake made by
beginning servlet programmers.

Core Approach

Remember to add your development directory to your CLASSPATH .

Otherwise, you will get “"Unresolved symbol” error messages when you
attempt to compile servlets that are in packages and that make use of

other classes in the same package.

A\ /4

Finally, you should include “.” (the current directory) in the cLAsSsSPATH. Otherwise, you will only
be able to compile packageless classes that are in the top-level development directory.

Here are a few representative methods of setting the cLASSPATH. They assume that your
development directory is C:\devel (Windows) or /usr/devel (Unix/Linux) and that you are using
Tomcat 4. Replace install_dir with the actual base installation location of the server. Be sure to
use the appropriate case for the filenames. Note that these examples represent only one
approach for setting the cLAsspATH. Many Java integrated development environments have a
global or project-specific setting that accomplishes the same result. But these settings are totally
IDE-specific and won't be discussed here.

Windows 98/Me. Put the following in your autoexec.bat. (Note that this all goes on one
line with no spaces—it is broken here for readability.)

(] set CLASSPATH=.;
° C:\devel;

install dir\common\lib\servlet.jar

¢ Windows NT/2000. Go to the Start menu and select Settings, then Control Panel, then
System, then Environment. Then, enter the cLASSPATH value from the previous bullet.

e Unix/Linux (C shell). Put the following in your .cshrc. (Again, in the real file it goes on
a single line without spaces.)

° setenv CLASSPATH .:
° /usr/devel:

install dir/common/lib/servlet.jar

Bookmark or Install the Serviet and JSP API Documentation

Just as no serious programmer should develop general-purpose Java applications without access
to the JDK 1.3 or 1.4 API documentation (in Javadoc format), no serious programmer should
develop servlets or JSP pages without access to the API for classes in the javax.servlet
packages. Here is a summary of where to find the API:

e http://java.sun.com/products/jsp/download.html This site lets you download
the Javadoc files for either the servlet 2.3 and JSP 1.2 API or for the servlet 2.2 and JSP
1.1 API. You will probably find this API so useful that it will be worth having a local copy
instead of browsing it online. However, some servers bundle this documentation, so check
before downloading.

e http://java.sun.com/products/serviet/2.3/javadoc/ This site lets you browse
the servlet 2.3 API online.

o http://java.sun.com/products/serviet/2.2/javadoc/ This site lets you browse
the servlet 2.2 and JSP 1.1 API online.

o http://java.sun.com/j2ee/j2sdkee/techdocs/api/ This address lets you browse
the complete API for the Java 2 Platform, Enterprise Edition (J2EE), which includes the
servlet 2.2 and JSP 1.1 packages.

1.7 Compile and Test Some Simple Serviets

OK, so your environment is all set. At least you think it is. It would be nice to confirm that
hypothesis. Following are three tests that help verify this.

Test 1: A Servlet That Does Not Use Packages

The first servlet to try is a basic one: no packages, no utility (helper) classes, just simple HTML
output. Rather than writing your own test servlet, you can just grab HelloServlet.java (Listing 1.3)
from the book’s source code archive at http://www.moreservlets.com. If you get compilation
errors, go back and check your CLASSPATH settings (Section 1.6)—you most likely erred in listing
the location of the JAR file that contains the servlet classes (e.g., serviet.jar). Once you compile
Hello-Servlet.java, put HelloServlet.class in the appropriate location (usually the WEB-INF/
classes directory of your server’s default Web application). Check your server’s documentation
for this location, or see the following list for a summary of the locations used by Tomcat, JRun,
and ServletExec. Then, access the servlet with the URL http://localhost/servlet/HelloServlet (or
http://localhost:8080/serviet/HelloServlet if you chose not to change the port number as
described in Section 1.3). You should get something similar to Figure 1-8. If this URL fails but the
test of the server itself (Section 1.4) succeeded, you probably put the class file in the wrong
directory.

Figure 1-8. Result of neiioserviet.

Z} Hello - Miciozoit Internet Explores
| Ble Edt View Favoites Took Help -
o= QN QS DI "
| Addvess | hutp:/focabiost/serdetHelioS erviel =)
=
Hello
- |
|27 Dane | |Fg Local intranel -

¢ Tomcat Directory.

install_dir/webapps/ROOT/WEB-INF/classes

¢ JRun Directory.
install_dir/servers/default/default-app/WEB-INF/classes
e ServletExec Directory.
install_dir/Serviets
¢ Corresponding URL.

http://host/serviet/HelloServiet

Listing 1.3 HelloServiet.java

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;
/** Simple servlet used to test server. */

public class HelloServlet extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String docType =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.println (docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>Hello</H1>\n" +
"</BODY></HTML>") ;

Test 2: A Serviet That Uses Packages

The second servlet to try is one that uses packages but no utility classes. Again, rather than
writing your own test, you can grab HelloServiet2.java (Listing 1.4) from the book’s source code
archive at http://www.moreservlets.com. Since this servlet is in the moreservlets package, it

should go in the moreserviets directory, both during development and when deployed to the
server. If you get compilation errors, go back and check your cLASSPATH settings (Section
1.6)—you most likely forgot to include “.” (the current directory). Once you compile
HelloServlet2.java, put HelloServlet2.class in the moreserviets subdirectory of whatever
directory the server uses for servlets that are not in custom Web applications (usually the
WEB-INF/classes directory of the default Web application). Check your server’s documentation
for this location, or see the following list for a summary of the locations for Tomcat, JRun, and
ServletExec. For now, you can simply copy the class file from the development directory to the
deployment directory, but Section 1.8 (Establish a Simplified Deployment Method) will provide

some options for simplifying the process.

Once you have placed the servlet in the proper directory, access it with the URL
http://localhost/servilet/moreservlets.HelloServlet2. You should get something similar to Figure
1-9. If this test fails, you probably either typed the URL wrong (e.g., used a slash instead of a dot
after the package name) or put HelloServiet2.class in the wrong location (e.g., directly in the
server’s WEB-INF/classes directory instead of in the moreserviets subdirectory).

Figure 1-9. Result of seiiocserviet2.

3 Hello [2) - Mictozolt Intemmet Explores

| Ble Edt View Favodes Took Help -

-2 BN AEI I *

| Adress |E| hitg: A Moe sl servletmereservels HellaS endet2 j

=l

Hello (2)
- |
] Dane | |Eg Local intrans! -

¢ Tomcat Directory.
install_dir/webapps/ROOT/WEB-INF/classes/moreservliets

¢ JRun Directory.
install_dir/servers/default/default-app/WEB-INF/classes/moreserviets

e ServletExec Directory.
install_dir/Serviets/moreservliets

e Corresponding URL.

http://host/servlet/moreserviets. HelloServiet2

Listing 1.4 moreserviets/HelloServiet2.java

package moreservlets;

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;
/** Simple servlet used to test the use of packages. */

public class HelloServlet2 extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String docType =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.println (docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello (2)</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>Hello (2)</H1>\n" +
"</BODY></HTML>") ;

1.7.3 A Servilet That Uses Packages and Utilities

The final servlet you should test to verify the configuration of your server and development
environment is one that uses both packages and utility classes. Listing 1.5 presents
HelloServlet3.java, a servlet that uses the servletutilities class (Listing 1.6) to simplify the
generation of the pocTYPE (specifies the HTML version— useful when using HTML validators) and
HEAD (specifies the title) portions of the HTML page. Those two parts of the page are useful
(technically required, in fact), but are tedious to generate with servlet print1n statements. Again,
the source code can be found at http://www.moreservlets.com.

Since both the servlet and the utility class are in the moreservlets package, they should go in the
moreservlets directory. If you get compilation errors, go back and check your cLASSPATH settings
(Section 1.6)—you most likely forgot to include the top-level development directory. I've said it
before, but I'll say it again: your CLASSPATH must include the top-level directory of your package
hierarchy before you can compile a packaged class that makes use of another class from the same

package. This requirement is not particular to servlets; it is the way packages work on the Java
platform in general. Nevertheless, many servlet developers are unaware of this fact, and it is one
of the (perhaps the) most common errors beginning developers encounter.

Core Warning

Your cL.ASSPATH must include your top-level development directory.

Otherwise, you cannot compile servlets that are in packages and that
also use classes from the same package.

Once you compile HelloServlet3.java (which will automatically cause ServletUtilities.java to be
compiled), put HelloServlet3.class and ServletUtilities.class in the moreserviets subdirectory of
whatever directory the server uses for servlets that are not in custom Web applications (usually
the WEB-INF/classes directory of the default Web application). Check your server’s
documentation for this location, or see the following list for a summary of the locations used by
Tomcat, JRun, and ServletExec. Then, access the servlet with the URL
http://localhost/servlet/moreserviets.HelloServlet3. You should get something similar to Figure
1-10.

Figure 1-10. Result of ueiioserviets.

a Hello [3] - Microzolt Internel Exploser
| Bl Edt Vew Favodes Took Hep E3

e-2-003 QLI HI "

| Addvess | @] hitp:/ocahost/serdetimoreserviets HelloSerdetd |

|

Hello (3)
|
|2] Dane | | |Eg Loca intranst 5

¢ Tomcat Directory.

install_dir/webapps/ROOT/WEB-INF/classes/moreserviets

¢ JRun Directory.
install_dir/servers/default/default-app/WEB-INF/classes/moreserviets
e ServletExec Directory.
install_dir/Serviets/moreservliets
¢ Corresponding URL.

http://host/serviet/moreserviets. HelloServiet3

Listing 1.5 moreserviets/HelloServlet3.java

package moreservlets;

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet used to test the use of packages
* and utilities from the same package.

*/

public class HelloServlet3 extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Hello (3)";
out.println (ServletUtilities.headWithTitle (title) +
"<BODY BGCOLOR=\"#FDFS5E6\">\n" +
"<H1I>" + title + "</H1>\n" +
"</BODY></HTML>") ;

Listing 1.6 moreserviets/ServiletUtilities.java

package moreservlets;

import javax.servlet.*;

import javax.servlet.http.*;
/** Some simple time savers. Note that most are static methods. */

public class ServletUtilities {
public static final String DOCTYPE =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

"Transitional//EN\">";

public static String headWithTitle (String title) {
return (DOCTYPE + "\n" +
"<HTML>\n" +
"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");

1.8 Establish a Simplified Deployment Method

OK, so you have a development directory. You can compile servlets with or without packages. You
know which directory the servlet classes belong in. You know the URL that should be used to
access them (at least the default URL; in Section 5.3, ™ Assigning Names and Custom URLs,”
you’ll see how to customize that address). But how do you move the class files from the
development directory to the deployment direc-tory? Copying each one by hand every time is
tedious and error prone. Once you start using Web applications (see Chapter 4), copying
individual files becomes even more cumbersome.

There are several options to simplify the process. Here are a few of the most popular ones. If you
are just beginning with servlets and JSP, you probably want to start with the first option and use
it until you become comfortable with the development process. Note that I do not list the option
of putting your code directly in the server’s deployment directory. Although this is one of the most
common choices among beginners, it scales so poorly to advanced tasks that I recommend you
steer clear of it from the start.

1. Copy to a shortcut or symbolic link.

2. Use the -d option of javac.

3. Let your IDE take care of deployment.
4. Use ant or a similar tool.

Details on these four options are given in the following subsections.

Copy to a Shortcut or Symbolic Link

On Windows, go to the server’s default Web application, right-click on the classes directory, and
select Copy. Then go to your development directory, right-click, and select Paste Shortcut (not

just Paste). Now, whenever you compile a packageless servlet, just drag the class files onto the
shortcut. When you develop in packages, use the right mouse to drag the entire directory (e.g.,
the moreservlets directory) onto the shortcut, release the mouse, and select Copy. On Unix/Linux,
you can use symbolic links (created with 1n -s) in @ manner similar to that for Windows shortcuts.

An advantage of this approach is that it is simple. So, it is good for beginners who want to
concentrate on learning servlets and JSP, not deployment tools. Another advantage is that a
variation applies once you start using your own Web applications (see Chapter 4). Just make a
shortcut to the main Web application directory (one level up from the top of the default Web
application), and copy the entire Web application each time by using the right mouse to drag the
directory that contains your Web application onto this shortcut and selecting Copy.

One disadvantage of this approach is that it requires repeated copying if you use multiple servers.
For example, I keep at least two different servers on my development system and regularly test
my code with both servers. A second disadvantage is that this approach copies both the Java
source code files and the class files to the server, whereas only the class files are needed. This
may not matter much on your desktop server, but when you get to the “real” deployment server,
you won’'t want to include the source code files.

Use the -d Option of javac

By default, the Java compiler (7avac) places class files in the same directory as the source code
files that they came from. However, javac has an option (-d) that lets you designate a different
location for the class files. You need only specify the top-level directory for class files— javac will
automatically put packaged classes in subdirectories that match the package names. So, for
example, with Tomcat I could compile the HelloServlet2 servlet (Listing 1.4, Section 1.7) as

follows (line break added only for clarity; omit it in real life).

javac -d install dir/webapps/ROOT/WEB-INF/classes
HelloServlet2.java

You could even make a Windows batch file or Unix shell script or alias that makes a command like
servletc expand to javac -d install dir/.../classes. See
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/javac.html for more details on -d and other
javac options.

An advantage of this approach is that it requires no manual copying of class files. Furthermore,
the exact same command can be used for classes in different packages since javac automatically
puts the class files in a subdirectory matching the package.

The main disadvantage is that this approach applies only to Java class files; it won’t work for
deploying HTML and JSP pages, much less entire Web applications.

Let Your IDE Take Care of Deployment

Most servlet- and JSP-savvy development environments (e.g., IBM WebSphere Studio,
Macromedia JRun Studio, Borland JBuilder) have options that let you tell the IDE where to deploy
class files for your project. Then, when you tell the IDE to build the project, the class files are
automatically deployed to the proper location (package-specific subdirectories and all).

An advantage of this approach, at least in some IDEs, is that it can deploy HTML and JSP pages
and even entire Web applications, not just Java class files. A disadvantage is that it is an
IDE-specific technique and thus is not portable across systems.

Use ant or a Similar Tool

Developed by the Apache foundation, ant is a tool similar to the Unix make utility. However, ant
is written in the Java programming language (and thus is portable) and is touted to be both
simpler to use and more powerful than make. Many servlet and JSP developers use ant for
compiling and deploying. The use of ant is especially popular among Tomcat users and with those
developing Web applications (see Chapter 4).

For general information on using ant, see http://jakarta.apache.org/ant/manual/. See
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/appdev/processes.html for specific guidance
on using ant with Tomcat.

The main advantage of this approach is flexibility: ant is powerful enough to handle everything
from compiling the Java source code to copying files to producing WAR files (Section 4.3). The
disadvantage of ant is the overhead of learning to use it; there is more of a learning curve with
ant than with the other techniques in this section.

1.9 Deployment Directories for Default Web

Application: Summary

The following subsections summarize the way to deploy and access HTML files, JSP pages,
servlets, and utility classes in Tomcat, JRun, and ServletExec. The summary assumes that you
are deploying files in the default Web application, have changed the port number to 80 (see

Section 1.3), and are accessing servlets through the default URL (i.e.,
http://host/serviet/ServietName). Later chapters explain how to deploy user-defined Web
applications and how to customize the URLs. But you’ll probably want to start with the defaults
just to confirm that everything is working properly. The Appendix (Server Organization and
Structure) gives a unified summary of the directories used by Tomcat, JRun, and ServletExec for
both the default Web application and custom Web applications.

If you are using a server on your desktop, you can use localhost for the host portion of each of the
URLs in this section.

Tomcat

HTML and JSP Pages

¢ Main Location.
install_dir/webapps/ROOT

e Corresponding URLs.
http://host/SomeFile.html
http://host/SomeFile.jsp

¢ More Specific Location (Arbitrary Subdirectory).
install_dir/webapps/ROOT/SomeDirectory

e Corresponding URLs.
http://host/SomeDirectory/SomefFile.html

http://host/SomeDirectory/SomefFile.jsp

Individual Servlet and Utility Class Files

¢ Main Location (Classes without Package).
install_dir/webapps/ROOT/WEB-INF/classes
e Corresponding URL (Servlets).

http://host/serviet/ServietName

More Specific Location (Classes in Packages).
install_dir/webapps/ROOT/WEB-INF/classes/packageName
Corresponding URL (Servlets in Packages).

http://host/serviet/packageName.ServietName

Servilet and Utility Class Files Bundled in JAR Files

Location.
install_dir/webapps/ROOT/WEB-INF/Ilib
Corresponding URLs (Servlets).
http://host/serviet/ServietName

http://host/serviet/packageName.ServietName

JRuUnN

HTML and JSP Pages

Main Location.
install_dir/servers/default/default-app
Corresponding URLs.

http://host/SomeFile.html

http://host/SomekFile.jsp

More Specific Location (Arbitrary Subdirectory).
install_dir/servers/default/default-app/SomeDirectory
Corresponding URLs.
http://host/SomeDirectory/SomeFile.html

http://host/SomeDirectory/SomefFile.jsp

Individual Servilet and Utility Class Files

Main Location (Classes without Package).
install_dir/servers/default/default-app/WEB-INF/classes
Corresponding URL (Servlets).

http://host/serviet/ServietName

More Specific Location (Classes in Packages).
install_dir/servers/default/default-app/WEB-INF/classes/packageName
Corresponding URL (Servlets in Packages).

http://host/serviet/packageName.ServietName

Servilet and Utility Class Files Bundled in JAR Files

Location.
install_dir/servers/default/default-app/WEB-INF/Iib
Corresponding URLs (Servlets).
http://host/serviet/ServietName

http://host/serviet/packageName.ServietName

ServietExec

HTML and JSP Pages

Main Location.
install_dir/public_html
Corresponding URLs.

http://host/SomeFile.html

http://host/SomeFile.jsp

¢ More Specific Location (Arbitrary Subdirectory).
install_dir/public_html/SomeDirectory

e Corresponding URLs.
http://host/SomeDirectory/SomefFile.html

http://host/SomeDirectory/SomeFile.jsp

Individual Servilet and Utility Class Files

Main Location (Classes without Package).

install_dir/Servlets

e Corresponding URL (Servlets).
http://host/serviet/ServietName

¢ More Specific Location (Classes in Packages).
install_dir/Servlets/packageName

¢ Corresponding URL (Servlets in Packages).

http://host/serviet/packageName.ServietName

Servilet and Utility Class Files Bundled in JAR Files

¢ Location.
install_dir/Servlets

e Corresponding URLs (Servlets).
http://host/serviet/ServietName

http://host/serviet/packageName.ServietName

Chapter 2. A Fast Introduction to Basic Servlet

Programming

Topics in This Chapter

e The advantages of servlets over competing technologies

e The basic servlet structure and life cycle

e Servlet initialization parameters

e Access to form data

e HTTP 1.1 request headers, response headers, and status codes
e The servlet equivalent of the standard CGI variables

e Cookies in servlets

e Session tracking

Servlets are Java technology’s answer to Common Gateway Interface (CGI) programming. They
are programs that run on a Web server, acting as a middle layer between a request coming from
a Web browser or other HTTP client and databases or applications on the HTTP server. Their job
is to perform the following tasks, as illustrated in Figure 2-1.

Figure 2-1. The role of Web middleware.

Diatabase

Legacy Application

_..—" N Java Application
i . B2B Application
Client (End User) Web Server

1. Read the explicit data sent by the client. The end user normally enters this data in an
HTML form on a Web page. However, the data could also come from an applet or a custom
HTTP client program.

2. Read the implicit HTTP request data sent by the browser. Figure 2-1 shows a
single arrow going from the client to the Web server (the layer where servlets and JSP
execute), but there are really two varieties of data: the explicit data the end user enters
in a form and the behind-the-scenes HTTP information. Both varieties are critical to
effective development. The HTTP information includes cookies, media types and
compression schemes the browser understands, and so forth.

3. Generate the results. This process may require talking to a database, executing an
RMI or CORBA call, invoking a legacy application, or computing the response directly. Your

real data may be in a relational database. Fine. But your database probably doesn’t speak
HTTP or return results in HTML, so the Web browser can’t talk directly to the database. The
same argument applies to most other applications. You need the Web middle layer to
extract the incoming data from the HTTP stream, talk to the application, and embed the
results inside a document.

Send the explicit data (i.e., the document) to the client. This document can be sent
in a variety of formats, including text (HTML), binary (GIF images), or even a compressed
format like gzip that is layered on top of some other underlying format.

Send the implicit HTTP response data. Figure 2-1 shows a single arrow going from
the Web middle layer (the servlet or JSP page) to the client. But, there are really two
varieties of data sent: the document itself and the behind-the-scenes HTTP information.
Both varieties are critical to effective development. Sending HTTP response data involves
telling the browser or other client what type of document is being returned (e.g., HTML),
setting cookies and caching parameters, and other such tasks.

Many client requests can be satisfied by prebuilt documents, and the server would handle these
requests without invoking servlets. In many cases, however, a static result is not sufficient, and
a page needs to be generated for each request. There are a number of reasons why Web pages
need to be built on-the-fly like this:

The Web page is based on data sent by the client. For instance, the results page
from search engines and order-confirmation pages at online stores are specific to
particular user requests. Just remember that the user submits two kinds of data: explicit
(i.e., HTML form data) and implicit (i.e., HTTP request headers). Either kind of input can
be used to build the output page. In particular, it is quite common to build a user-specific
page based on a cookie value.

The Web page is derived from data that changes frequently. For example, a
weather report or news headlines site might build the pages dynamically, perhaps
returning a previously built page if that page is still up to date.

The Web page uses information from corporate databases or other server-side
sources. For example, an e-commerce site could use a servlet to build a Web page that
lists the current price and availability of each sale item.

In principle, servlets are not restricted to Web or application servers that handle HTTP requests
but can be used for other types of servers as well. For example, servlets could be embedded in
FTP or mail servers to extend their functionality. In practice, however, this use of servlets has not
caught on, and I'll only be discussing HTTP servlets.

2.1 The Advantages of Servilets Over “"Traditional” CGI

Java servlets are more efficient, easier to use, more powerful, more portable, safer, and cheaper
than traditional CGI and many alternative CGI-like technologies.

Efficient

With traditional CGI, a new process is started for each HTTP request. If the CGI program itself is
relatively short, the overhead of starting the process can dominate the execution time. With
servlets, the Java virtual machine stays running and handles each request with a lightweight Java
thread, not a heavyweight operating system process. Similarly, in traditional CGI, if there are N
requests to the same CGI program, the code for the CGI program is loaded into memory N times.
With servlets, however, there would be N threads, but only a single copy of the servlet class would
be loaded. This approach reduces server memory requirements and saves time by instantiating
fewer objects. Finally, when a CGI program finishes handling a request, the program terminates.
This approach makes it difficult to cache computations, keep database connections open, and
perform other optimizations that rely on persistent data. Servlets, however, remain in memory
even after they complete a response, so it is straightforward to store arbitrarily complex data
between client requests.

Convenient

Servlets have an extensive infrastructure for automatically parsing and decoding HTML form data,
reading and setting HTTP headers, handling cookies, tracking sessions, and many other such
high-level utilities. Besides, you already know the Java programming language. Why learn Perl
too? You're already convinced that Java technology makes for more reliable and reusable code
than does Visual Basic, VBScript, or C++. Why go back to those languages for server-side
programming?

Powerful

Servlets support several capabilities that are difficult or impossible to accomplish with regular CGI.
Servlets can talk directly to the Web server, whereas regular CGI programs cannot, at least not
without using a server-specific API. Communicating with the Web server makes it easier to
translate relative URLs into concrete path names, for instance. Multiple servlets can also share
data, making it easy to implement database connection pooling and similar resource-sharing
optimizations. Servlets can also maintain information from request to request, simplifying
techniques like session tracking and caching of previous computations.

Portable

Servlets are written in the Java programming language and follow a standard API. Servlets are
supported directly or by a plug-in on virtually every major Web server. Consequently, servlets
written for, say, iPlanet Enterprise Server can run virtually unchanged on Apache, Microsoft

Internet Information Server (IIS), IBM WebSphere, or StarNine WebStar. They are part of the

Java 2 Platform, Enterprise Edition (J2EE; see http://java.sun.com/j2ee/), so industry support
for servlets is becoming even more pervasive.

Secure

One of the main sources of vulnerabilities in traditional CGI stems from the fact that the programs
are often executed by general-purpose operating system shells. So, the CGI programmer must
be careful to filter out characters such as backquotes and semicolons that are treated specially by
the shell. Implementing this precaution is harder than one might think, and weaknesses
stemming from this problem are constantly being uncovered in widely used CGI libraries.

A second source of problems is the fact that some CGI programs are processed by languages that
do not automatically check array or string bounds. For example, in C and C++ it is perfectly legal
to allocate a 100-element array and then write into the 999th “element,” which is really some
random part of program memory. So, programmers who forget to perform this check open up
their system to deliberate or accidental buffer overflow attacks.

Servlets suffer from neither of these problems. Even if a servlet executes a system call (e.g., with
Runtime.exec or JNI) to invoke a program on the local operating system, it does not use a shell
to do so. And, of course, array bounds checking and other memory protection features are a
central part of the Java programming language.

Inexpensive

There are a number of free or very inexpensive Web servers that are good for development use
or deployment of low- or medium-volume Web sites. Thus, with servlets and JSP you can start
with a free or inexpensive server and migrate to more expensive servers with high-performance
capabilities or advanced administration utilities only after your project meets initial success. This
is in contrast to many of the other CGI alternatives, which require a significant initial investment
for the purchase of a proprietary package.

2.2 Basic Servlet Structure

Listing 2.1 outlines a basic servlet that handles GET requests. GET requests, for those unfamiliar
with HTTP, are the usual type of browser requests for Web pages. A browser generates this
request when the user enters a URL on the address ling, follows a link from a Web page, or
submits an HTML form that either does not specify a METHOD or specifies METHOD="GET". Servlets
can also easily handle posT requests, which are generated when someone submits an HTML form
that specifies METHOD="POST". For details on using HTML forms, see Chapter 16 of Core Servlets
and JavaServer Pages (available in PDF at http://www.moreservlets.com).

Listing 2.1 ServiletTemplate.java

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException ({

// Use "request" to read incoming HTTP headers

// (e.g., cookies) and query data from HTML forms.

// Use "response" to specify the HTTP response status

// code and headers (e.g. the content type, cookies).

PrintWriter out = response.getWriter();

// Use "out" to send content to browser.

To be a servlet, a class should extend HttpServlet and override doGet or doPost, depending on
whether the data is being sent by GET or by posT. If you want a servlet to take the same action
for both GET and pOST requests, simply have doGet call doPost, or vice versa.

Both doGet and doPost take two arguments: an HttpServletRequest and an
HttpServletResponse. The HttpServletRequest has methods by which you can find out about
incoming information such as form (query) data, HTTP request headers, and the client’s
hostname. The HttpServletResponse lets you specify outgoing information such as HTTP status
codes (200, 404, etc.) and response headers (Content-Type, Set-Cookie, etc.). Most
importantly, it lets you obtain a printiriter with which you send the document content back to
the client. For simple servlets, most of the effort is spentin print1n statements that generate the
desired page. Form data, HTTP request headers, HTTP responses, and cookies are all discussed in
the following sections.

Since doGet and doPost throw two exceptions, you are required to include them in the
declaration. Finally, you must import classes in java.io (for PrintWiriter, etc.), javax.servlet
(for HttpServlet, etc.), and javax.servlet.http (for HttpServletRequest and
HttpServletResponse).

A Serviet That Generates Plain Text

Listing 2.2 shows a simple servlet that outputs plain text, with the output shown in Figure 2-2.

Before we move on, it is worth spending some time reviewing the process of installing, compiling,
and running this simple servlet. See Chapter 1 (Server Setup and Configuration) for a much more
detailed description of the process.

Figure 2-2. Result of zei1oworia servlet.

2} http:/ MocalloztfservietHellowod ... W= E

| Bie Edt Yew Favoites Took I_'lt”-

B> IR A I 1 1

| Address |£] hip:/ focahos/serdetHelowold =]

|

Hello World
~ - |
[#] Dane T4 Local inlranst P

First, be sure that your server is set up properly as described in Section 1.4 (Test the Server) and
that your cLASSPATH refers to the necessary three entries (the JAR file containing the
javax.servlet classes, your development directory, and “.”), as described in Section 1.6 (Set Up
Your Development Environment).

Second, type " javac HelloWorld.java ” or tell your development environment to compile the
servlet (e.g., by clicking Build in your IDE or selecting Compile from the emacs JDE menu). This
will compile your servlet to create HelloWorld.class.

Third, move HelloWorld.class to the directory that your server uses to store servlets (usually
install_dir/.../WEB-INF/classes—see Section 1.7). Alternatively, you can use one of the
techniques of Section 1.8 (Establish a Simplified Deployment Method) to automatically place the
class files in the appropriate location.

Finally, invoke your servlet. This last step involves using either the default URL of
http://host/serviet/ServietName or a custom URL defined in the web.xml file as described in
Section 5.3 (Assigning Names and Custom URLS). Figure 2-2 shows the servlet being accessed by
means of the default URL, with the server running on the local machine.

Listing 2.2 HelloWorld.java

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorld extends HttpServlet ({
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
PrintWriter out = response.getWriter();

out.println ("Hello World");

A Serviet That Generates HTML

Most servlets generate HTML, not plain text as in the previous example. To build HTML, you need
two additional steps:

1. Tell the browser that you're sending back HTML.
2. Modify the print1n statements to build a legal Web page.

You accomplish the first step by setting the HTTP Content-Type response header. In general,
headers are set by the setHeader method of HttpServletResponse, but setting the content type
is such a common task that there is also a special setContentType method just for this purpose.
The way to designate HTML is with a type of text/html, so the code would look like this:

response.setContentType ("text/html") ;

Although HTML is the most common type of document that servlets create, it is not unusual for
servlets to create other document types. For example, it is quite common to use servlets to
generate GIF images (content type image/gif) and Excel spreadsheets (content type

application/vnd.ms-excel).

Don't be concerned if you are not yet familiar with HTTP response headers; they are discussed in
Section 2.8. Note that you need to set response headers before actually returning any of the
content with the printWriter. That's because an HTTP response consists of the status line, one
or more headers, a blank line, and the actual document, in that order. The headers can appear in
any order, and servlets buffer the headers and send them all at once, so it is legal to set the status
code (part of the first line returned) even after setting headers. But servlets do not necessarily
buffer the document itself, since users might want to see partial results for long pages. Servlet
engines are permitted to partially buffer the output, but the size of the buffer is left unspecified.
You can use the getBuffersSize method of HttpServletResponse to determine the size, or you
can use setBufferSize to specify it. You can set headers until the buffer fills up and is actually
sent to the client. If you aren’t sure whether the buffer has been sent, you can use the

isCommitted method to check. Even so, the simplest approach is to simply put the
setContentType line before any of the lines that use the printwWriter.

Core Approach

Always set the content type before transmitting the actual document.

The second step in writing a servlet that builds an HTML document is to have your println
statements output HTML, not plain text. Listing 2.3 shows Hello-Servlet.java, the sample servlet
used in Section 1.7 to verify that the server is func-tioning properly. As Figure 2-3 illustrates, the
browser formats the result as HTML, not as plain text.

Figure 2-3. Result of zeiiocserviet.

4} Hello - Miciozoll Internet Explores

| Ble Edt View Favoites Took Help

| Address (4] hitg:! tocathos)) servielHelloS erval =l
Hello

|27 Done || [y Lecdl iniranet =

o

Listing 2.3 HelloServiet.java

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class HelloServlet extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({

response.setContentType ("text/html") ;

PrintWriter out = response.getWriter();
String docType =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.println (docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>Hello</H1>\n" +
"</BODY></HTML>") ;

Servlet Packaging

In a production environment, multiple programmers can be developing servlets for the same
server. So, placing all the servlets in the same directory results in a massive, hard-to-manage
collection of classes and risks name conflicts when two developers accidentally choose the same
servlet name. Packages are the natural solution to this problem. As we’ll see in Chapter 4, even
the use of Web applications does not obviate the need for packages.

When you use packages, you need to perform the following two additional steps.

1. Move the files to a subdirectory that matches the intended package name. For
example, I'll use the moreservlets package for most of the rest of the servlets in this
book. So, the class files need to go in a subdirectory called moreservlets.

2. Insert a package statement in the class file. For example, to place a class in a
package called somePackage, the class should be in the somePackage directory and the

first non-comment line of the file should read
package somePackage;

For example, Listing 2.4 presents a variation of HelloServlet thatis in the moreservilets
package and thus the moreservlets directory. As discussed in Section 1.7 (Compile and Test
Some Simple Servlets), the class file should be placed in
install_dir/webapps/ROOT/WEB-INF/classes/moreserviets for Tomcat, in
install_dir/servers/default/default-app/WEB-INF/classes/moreserviets for JRun, and in
install_dir/Serviets/moreservliets for ServletExec.

Figure 2-4 shows the servlet accessed by means of the default URL.

Figure 2-4. Result of ueilioserviet2.

<} Hello [2) - Microzoft Intermet Explorer

| Fle Edt View Favoites Took Help -

-2 QI DD "

| Addvess |21 hitp:/ocabost/serdel/moreservists HelloSendet2 |

- |
Hello (2)

|27 Dane || |[Fg Local intranet

I

Listing 2.4 HelloServiet2.java

package moreservlets;

import Jjava.io.*;
import javax.servlet.*;

import javax.servlet.http.*;
/** Simple servlet used to test the use of packages. */

public class HelloServlet?2 extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String docType =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
out.println (docType +
"<HTML>\n" +
"<HEAD><TITLE>Hello (2)</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>Hello (2)</HI>\n" +
"</BODY></HTML>") ;

Simple HTML-Building Utilities

As you probably already know, an HTML document is structured as follows:

<!DOCTYPE ...>

<HTML>
<HEAD><TITLE>...</TITLE>...</HEAD>
<BODY ...>...</BODY>

</HTML>

When using servlets to build the HTML, you might be tempted to omit part of this structure,
especially the pocTyPE line, noting that virtually all major browsers ignore it even though the
HTML 3.2 and 4.0 specifications require it. I strongly discourage this practice. The advantage of
the pocTYPE line is that it tells HTML validators which version of HTML you are using so they know
which specification to check your document against. These validators are valuable debugging
services, helping you catch HTML syntax errors that your browser guesses well on but that other
browsers will have trouble displaying.

The two most popular online validators are the ones from the World Wide Web Consortium
(http://validator.w3.org/) and from the Web Design Group
(http://www.htmlhelp.com/tools/validator/). They let you submit a URL, then they retrieve the
page, check the syntax against the formal HTML specification, and report any errors to you. Since,
to a visitor, a servlet that generates HTML looks exactly like a regular Web page, it can be
validated in the normal manner unless it requires posT data to return its result. Since GET data is
attached to the URL, you can even send the validators a URL that includes GeT data. If the servlet
is available only inside your corporate firewall, simply run it, save the HTML to disk, and choose
the validator’s File Upload option.

Core Approach

Use an HTML validator to check the syntax of pages that your serviets
generate.

Admittedly, it is a bit cumbersome to generate HTML with print1n statements, especially long
tedious lines like the pocTyPE declaration. Some people address this problem by writing detailed
HTML-generation utilities, then use the utilities throughout their servilets. I'm skeptical of the
usefulness of such an extensive library. First and foremost, the inconvenience of generating HTML
programmatically is one of the main problems addressed by JavaServer Pages. Second, HTML
generation routines can be cumbersome and tend not to support the full range of HTML attributes

(crLass and 1D for style sheets, JavaScript event handlers, table cell background colors, and so

forth).

Despite the questionable value of a full-blown HTML generation library, if you find you're
repeating the same constructs many times, you might as well create a simple utility file that
simplifies those constructs. For standard servlets, two parts of the Web page (DOCTYPE and HEAD)
are unlikely to change and thus could benefit from being incorporated into a simple utility file.
These are shown in Listing 2.5, with Listing 2.6 showing a variation of HelloServlet that makes

use of this utility. I'll add a few more utilities throughout the chapter.

Listing 2.5 moreserviets/ServiletUtilities.java

package moreservlets;

import javax.servlet.*;

import javax.servlet.http.*;

/** Some simple time savers. Note that most are static methods.

public class ServletUtilities {
public static final String DOCTYPE =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

"Transitional//EN\">";

public static String headWithTitle (String title) {
return (DOCTYPE + "\n" +
"<HTML>\n" +
"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");

Listing 2.6 moreserviets/HelloServiet3.java

package moreservlets;

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet used to test the use of packages

* and utilities from the same package.

*/

*/

public class HelloServlet3 extends HttpServlet ({
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Hello (3)";
out.println (ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1>" + title + "</HI>\n" +

"</BODY></HTML>") ;

After you compile HelloServlet3.java (which results in ServletUtilities.java being compiled
automatically), you need to move the two class files to the moreserviets subdirectory of the
server’s default deployment location. If you get an “Unresolved symbol” error when compiling
HelloServlet3.java, go back and review the cLASSPATH settings described in Section 1.6 (Set Up
Your Development Environment). If you don’t know where to put the class files, review Sections
1.7 and 1.9. Figure 2-5 shows the result when the servlet is invoked with the default URL.

Figure 2-5. Result of seiioserviets.

2} Hello [3] - Microzolt Internet Exploses
| Fle Edt View Favoites Took Help -

[+-2-00A QLI ”

| Bddress [@] hitp:/Moeahost/sardetimorsserviels HelloSeiatd = |

[|
Hello (3)

[
|&] Dane || Em Locel miranst P

2.3 The Serviet Life Cycle

In Section 2.1 (The Advantages of Servlets Over “Traditional” CGI), I referred to the fact that only
a single instance of a servlet gets created, with each user request resulting in a new thread that
is handed off to doGet or doPost as appropriate. I'll now be more specific about how servlets are
created and destroyed, and how and when the various methods are invoked. I give a quick
summary here, then elaborate in the following subsections.

When the servlet is first created, its init method is invoked, so init is where you put one-time
setup code. After this, each user request results in a thread that calls the service method of the
previously created instance. Multiple concurrent requests normally result in multiple threads
calling service simultaneously, although your servlet can implement a special interface
(singleThreadModel) that stipulates that only a single thread is permitted to run at any one time.
The service method then calls doGet, doPost, or another do Xxx method, depending on the type
of HTTP request it received. Finally, when the server decides to unload a servlet, it first calls the
servlet’s destroy method.

The init Method

The init method is called when the servlet is first created; it is not called again for each user
request. So, it is used for one-time initializations, just as with the init method of applets. The
servlet is normally created when a user first invokes a URL corresponding to the servlet, but you
can also specify that the servlet be loaded when the server is first started (see Section 5.5,

“ Initializing and Preloading Servlets and JSP Pages).

The init method definition looks like this:

public void init () throws ServletException {

// Initialization code...

One of the most common tasks that init performs is reading server-specific initialization
parameters. For example, the servlet might need to know about database settings, password files,
server-specific performance parameters, hit count files, or serialized cookie data from previous
requests. Initialization parameters are particularly valuable because they let the servlet deployer
(e.g., the server administrator), not just the servlet author, customize the servlet.

To read initialization parameters, you first obtain a servletConfig object by means of
getServletConfig, then call getInitParameter on the result. Here is an example:

public void init () throws ServletException {
ServletConfig config = getServletConfig();

String paraml = config.getInitParameter ("parameterl");

Notice two things about this code. First, the init method uses getServletConfig to obtain a
reference to the servletConfig object. Second, ServlietConfig has a getInitParameter
method with which you can look up initialization parameters associated with the servlet. Just as
with the getpParameter method used in the init method of applets, both the input (the
parameter name) and the output (the parameter value) are strings.

You read initialization parameters by calling the getInitParameter method of ServletConfig.
But how do you set them? That’s the job of the web.xml file, called the deployment descriptor.
This file belongs in the WEB-INF directory of the Web application you are using, and it controls
many aspects of servlet and JSP behavior. Many servers provide graphical interfaces that let you
specify initialization parameters and control various aspects of servlet and JSP behavior. Although
those interfaces are server specific, behind the scenes they use the web.xml/ file, and this file is
completely portable. Use of web.xml/ is discussed in detail in Chapter 4 (Using and Deploying Web
Applications) and Chapter 5 (Controlling Web Application Behavior with web.xml), but for a quick
preview, web.xm/ contains an XML header, a DOCTYPE declaration, and a web-app element. For
the purpose of initialization parameters, the web-app element should contain a servlet element
with three subelements: servlet-name, servlet-class, and init-param. The servlet-name
element is the name that you want to use to access the servlet. The servlet-class element
gives the fully qualified (i.e., including packages) class hame of the servlet, and init-param gives
names and values to initialization parameters.

For example, Listing 2.7 shows a web.xml/ file that gives a value to the initialization parameter
called parameterl of the OriginalServlet class thatis in the somePackage package. However,
the initialization parameter is available only when the servlet is accessed with the registered
servlet name (or a custom URL as described in Section 5.3). So, the paraml variable in the
previous code snippet would have the value "First Parameter Value" when the servlet is
accessed by means of http://host/serviet/SomeName, but would have the value null when the
servlet is accessed by means of http://host/serviet/somePackage.OriginalServlet.

Core Warning

Initialization parameters are not available to servlets that are accessed
by means of their default URL. A registered name or custom URL must be
used.

For more information on the web.xml/ file, including new parameters available with servlets
version 2.3, see Chapter 5 (Controlling Web Application Behavior with web.xml). For specific
details on initialization parameters and a complete working example, see Section 5.5 (Initializing
and Preloading Servlets and JSP Pages).

Listing 2.7 web.xml (Excerpt illustrating initialization

parameters)

<?xml version="1.0" encoding="IS0-8859-1"7?2>

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app 2 2.dtd">

<web-app>
<servlet>
<servlet-name>SomeName</servlet-name>
<servlet-class>somePackage.OriginalServlet</servlet-class>
<init-param>
<param-name>parameterl</param-name>
<param-value>First Parameter Value</param-value>
</init-param>
</servlet>
<l .. ==

</web-app>

The service Method

Each time the server receives a request for a servlet, the server spawns a new thread (perhaps by
reusing an idle Thread from a thread pool) and calls service. The service method checks the
HTTP request type (GET, POST, PUT, DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc.,
as appropriate. A GET request results from a normal request for a URL or from an HTML form that
has no METHOD specified. A POST request results from an HTML form that specifically lists POST as
the METHOD. Other HTTP requests are generated only by custom clients. If you aren’t familiar with
HTML forms, see Chapter 16 of Core Serviets and JavaServer Pages (available in PDF at
http://www.moreservlets.com).

Now, if you have a servlet that needs to handle both POST and GET requests identically, you may
be tempted to override service directly rather than implementing both doGet and doPost. This
is not a good idea. Instead, just have dorost call doGet (or vice versa), as below.

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// Servlet code

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

doGet (request, response) ;

Although this approach takes a couple of extra lines of code, it has several advantages over
directly overriding service. First, you can later add support for other HTTP request methods by
adding doPut, doTrace, etc., perhaps in a subclass. Overriding service directly precludes this
possibility. Second, you can add support for modification dates by adding a getLastModified
method. Since getLastModified is invoked by the default service method, overriding service
eliminates this option. Finally, you get automatic support for HEAD, OPTION, and TRACE requests.

Core Approach

If your servlet needs to handle both GET and pPoST identically, have your

doPost method call doGet , or vice versa. Don’t override service.

The doGet, doPost, and doXxx Methods

These methods contain the real meat of your servlet. Ninety-nine percent of the time, you only
care about GET or POST requests, so you override doGet and/or doPost. However, if you want to,
you can also override doDelete for DELETE requests, doput for PUT, doOptions for OPTIONS, and
doTrace for TRACE. Recall, however, that you have automatic support for 0PTIONS and TRACE.

In versions 2.1 and 2.2 of the servlet API, there is no doHead method. That’s because the system
automatically uses the status line and header settings of doGet to answer HEAD requests. In
version 2.3, however, doHead was added so that you can generate responses to HEAD requests
(i.e., requests from custom clients that want just the HTTP headers, not the actual document)
more quickly—without building the actual document output.

The SingleThreadModel Interface

Normally, the system makes a single instance of your servlet and then creates a new thread for
each user request, with multiple concurrent threads running if a new request comes in while a
previous request is still executing. This means that your doGet and doPost methods must be
careful to synchronize access to fields and other shared data, since multiple threads may access
the data simultaneously. If you want to prevent this multithreaded access, you can have your
servlet implement the singleThreadModel interface, as below.

public class YourServlet extends HttpServlet
implements SingleThreadModel {

If you implement this interface, the system guarantees that there is never more than one request
thread accessing a single instance of your servlet. In most cases, it does so by queuing all the
requests and passing them one at a time to a single servlet instance. However, the server is
permitted to create a pool of multiple instances, each of which handles one request at a time.
Either way, this means that you don’t have to worry about simultaneous access to regular fields
(instance variables) of the servlet. You do, however, still have to synchronize access to class
variables (static fields) or shared data stored outside the servlet.

Synchronous access to your servlets can significantly hurt performance (latency) if your servlet is
accessed frequently. When a servlet waits for I/O, the server remains idle instead of handling
pending requests. So, think twice before using the singleThreadModel approach.

Core Warning

Avoid implementing SingleThreadModel for high-traffic servlets. Use

explicit synchronized blocks instead.

The destroy Method

The server may decide to remove a previously loaded servlet instance, perhaps because it is
explicitly asked to do so by the server administrator, or perhaps because the servlet is idle for a
long time. Before it does, however, it calls the servlet’s destroy method. This method gives your
servlet a chance to close database connections, halt background threads, write cookie lists or hit
counts to disk, and perform other such cleanup activities. Be aware, however, that it is possible
for the Web server to crash. So, don’t count on destroy as the only mechanism for saving state
to disk. Activities like hit counting or accumulating lists of cookie values that indicate special
access should also proactively write their state to disk periodically.

2.4 The Client Request: Form Data

One of the main motivations for building Web pages dynamically is to base the result upon query
data submitted by the user. This section briefly shows you how to access that data. More details
are provided in Chapter 3 of Core Servlets and JavaServer Pages (available in PDF at
http://www.moreservlets.com).

If you've ever used a search engine, visited an online bookstore, tracked stocks on the Web, or
asked a Web-based site for quotes on plane tickets, you've probably seen funny-looking URLs like
http://host/path?user=Marty+Hall&origin=bwi&dest=nrt. The part after the question mark (i.e.,
user=Marty+Hall&origin=bwi&dest=nrt) is known as form data (or query data) and is the most
common way to get information from a Web page to a server-side program. Form data can be
attached to the end of the URL after a question mark (as above) for GET requests or sent to the
server on a separate line for POST requests. If you're not familiar with HTML forms, see Chapter
16 of Core Servlets and JavaServer Pages (in PDF at http://www.moreservilets.com) for details on
how to build forms that collect and transmit data of this sort.

Reading Form Data from CGI Programs

Extracting the needed information from form data is traditionally one of the most tedious parts of
CGI programming. First, you have to read the data one way for GET requests (in traditional CGI,
this is usually through the QUERY STRING environment variable) and a different way for posT
requests (by reading the standard input in traditional CGI). Second, you have to chop the pairs at
the ampersands, then separate the parameter names (left of the equal signs) from the parameter
values (right of the equal signs). Third, you have to URL-decode the values. Alphanumeric
characters are sent unchanged, but spaces are converted to plus signs and other characters are
converted to %XX where XX is the ASCII (or ISO Latin-1) value of the character, in hex.

Reading Form Data from Serviets

One of the nice features of servlets is that all the form parsing is handled automatically. You
simply call the getParameter method of HttpServletRequest, supplying the case-sensitive
parameter name as an argument. You use getParameter exactly the same way when the data is
sent by GET as you do when it is sent by posT. The servlet knows which request method was used
and automatically does the right thing behind the scenes. The return value is a string
corresponding to the URL-decoded value of the first occurrence of that parameter name. An
empty string is returned if the parameter exists but has no value, and null is returned if there
is no such parameter in the request.

Technically, it is legal for a single HTML form to use the same parameter name twice, and in fact
this situation really occurs when you use seLECT elements that allow multiple selections (see
Section 16.6 of Core Serviets and JavaServer Pages). If the parameter could potentially have
more than one value, you should call getParametervalues (which returns an array of strings)
instead of getpParameter (which returns a single string). The return value of
getParameterValues is null for nonexistent parameter names and is a one-element array when
the parameter has only a single value.

Parameter names are case sensitive, so, for example, request.getParameter ("Paraml") and
request.getParameter ("paraml") are not interchangeable.

Core Note

The values supplied to get Parameter and getParameterValues are case

sensitive.

Finally, although most real servlets look for a specific set of parameter names, for debugging
purposes it is sometimes useful to get a full list. Use getParameterNames to get this list in the
form of an Enumeration, each entry of which can be castto a string and used in a getParameter
or getParameterValues call. Just note that the HttpServletRequest API does not specify the
order in which the names appear within that Enumeration.

Example: Reading Three Explicit Parameters

Listing 2.8 presents a simple servlet called ThreeParams that reads form data parameters named
paraml, param2, and param3 and places their values in a bulleted list. Listing 2.9 shows an HTML
form that collects user input and sends it to this servlet. By use of an AcT10N URL that begins with
a slash (e.qg., /servlet/moreserviets. ThreeParams), the form can be installed anywhere in the
server’s Web document hierarchy; there need not be any particular association between the
directory containing the form and the servlet installation directory. When you use Web
applications, HTML files (and images and JSP pages) go in the directory above the one containing
the WEB-INF directory; see Section 4.2 (Structure of a Web Application) for details. The directory
for HTML files that are not part of an explicit Web application varies from server to server. As
described in Section 1.5 (Try Some Simple HTML and JSP Pages) HTML and JSP pages go in
install_dir/webapps/ROQOT for Tomcat, in install_dir/servers/default/default-app for JRun, and in
install_dir/public_html for ServletExec. For other servers, see the appropriate server
documentation.

Also note that the ThreeParams servlet reads the query data after it starts generating the page.
Although you are required to specify response settings before beginning to generate the content,
there is no requirement that you read the request parameters at any particular time.

Listing 2.8 ThreeParams.java

package moreservlets;

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet that reads three parameters from the
* form data.

*/

public class ThreeParams extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Reading Three Request Parameters";
out.println(ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title + "</HI>\n" +
"\n" +

" paraml: "

+ request.getParameter ("paraml") + "\n" +
" param2: "

+ request.getParameter ("param2") + "\n" +
" param3: "

+ request.getParameter ("param3") + "\n" +
"\n" +

"</BODY></HTML>") ;

Listing 2.9 ThreeParamsForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Collecting Three Parameters</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Collecting Three Parameters</H1>

<FORM ACTION="/servlet/moreservlets.ThreeParams">
First Parameter: <INPUT TYPE="TEXT" NAME="paraml'">

Second Parameter: <INPUT TYPE="TEXT" NAME="param2">

Third Parameter: <INPUT TYPE="TEXT" NAME="param3'">

<CENTER><INPUT TYPE="SUBMIT"></CENTER>

</FORM>

</BODY>
</HTML>

Figure 2-6 shows the HTML form after the user enters the home directories of three famous
Internet personalities (OK, two famous Internet personalities). Figure 2-7 shows the result of the
form submission. Note that, although the form contained ~, a non-alphanumeric character that
was transmitted by use of its hex-encoded Latin-1 value (%7E), the servlet had to do nothing
special to get the value as it was typed into the HTML form. This conversion (called URL decoding)
is done automatically. Servlet authors simply specify the parameter name as it appears in the
HTML source code and get back the parameter value as it was entered by the end user: a big
improvement over CGI and many alternatives to servlets and JSP.

Figure 2-6. HTML front end resulting from

ThreeParamsForm.html.

i Collecting Thiee Paameten - Helscape

Fis Edt Vew Lo Commurcstor Helo

A AN mIdDH o

=

J'm & LMTIWJMWAUTHMPmm:anmd ﬂ

Collecting Three Parameters

First Parameter |-hall

Second Parameter |-~!~'~t &3

Third Parameter |* menealy

Submit Cwery I

FEG] = e & o o @ 2 s

Figure 2-7. Output of rhreerarams serviet.

i= Reading Thiee Aequest Parameters - Netzcape HEE I
Fie E® Vew Lo Commricsin Helo
Ao A s d @ @ =

__!'Bwlmﬂ.i J&Lmdiuflhm;‘#h:.\lﬂr.al.-’w&ewrrﬂnsﬂvhls.'I'uan".u.\rm’Tw.\rm-.'.?Fhal.'.n.vm?-k?Fgﬂns:’.r..um?!-'.'-'Fm:miy :I

Reading Three Request Parameters

* paraml ~hall
* paraml: —gafes
* param3 -mcnealy

e == = E— R VR = M = IV I

If you're accustomed to the traditional CGI approach where you read posT data through the
standard input, you should note that it is possible to do the same thing with servlets by calling
getReader OF getInputStream on the HttpServletRequest and then using that stream to obtain
the raw input. This is a bad idea for regular parameters; getbParameter is simpler and yields
results that are parsed and URL-decoded. However, reading the raw input might be of use for
uploaded files or POST data being sent by custom clients. Note, however, that if you read the posT
data in this manner, it might no longer be found by getpParameter.

Core Warning

Do not use getpParameter when you also call getInputStream and read

the raw servlet input.

Filtering Query Data

In the previous example, we read the paraml, param2, and param3 request parameters and
inserted them verbatim into the page being generated. This is not necessarily safe, since the
request parameters might contain HTML characters such as “<” that could disrupt the rest of the
page processing, causing some of the subsequent tags to be interpreted incorrectly. For an
example, see Section 3.6 of Core Servlets and JavaServer Pages (available in PDF at
http://www.moreservilets.com). A safer approach is to filter out the HTML-specific characters
before inserting the values into the page. Listing 2.10 shows a static filter method that
accomplishes this task.

Listing 2.10 ServletUtilities.java

package moreservlets;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletUtilities {

// Other parts shown elsewhere.

// Given a string, this method replaces all occurrences of
// '<' with '<', all occurrences of '>' with

// '>', and (to handle cases that occur inside attribute
// wvalues), all occurrences of double quotes with

// '"' and all occurrences of '&' with '&'.

// Without such filtering, an arbitrary string

// could not safely be inserted in a Web page.

public static String filter (String input) ({
StringBuffer filtered = new StringBuffer (input.length())

char c;
for (int i=0; i<input.length(); i++) {
c = input.charAt(i);

if (¢ == '<') {
filtered.append("<") ;

} else if (¢ == '>') {
filtered.append(">") ;

} else if (¢ == """) {
filtered.append (" "") ;

} else if (c == '&') {
filtered.append("&") ;

} else {

filtered.append(c) ;

}
return (filtered. toString()) ;

2.5 The Client Request: HTTP Request Headers

One of the keys to creating effective servlets is understanding how to manipulate the HyperText
Transfer Protocol (HTTP). Getting a thorough grasp of this protocol is not an esoteric, theoretical
concept, but rather a practical issue that can have an immediate impact on the performance and
usability of your servlets. This section discusses the HTTP information that is sent from the
browser to the server in the form of request headers. It explains a few of the most important HTTP
1.1 request headers, summarizing how and why they would be used in a servlet. For more details
and examples, see Chapter 4 of Core Servlets and JavaServer Pages (available in PDF at
http://www.moreservlets.com).

Note that HTTP request headers are distinct from the form (query) data discussed in the previous
section. Form data results directly from user input and is sent as part of the URL for GET requests
and on a separate line for POST requests. Request headers, on the other hand, are indirectly set
by the browser and are sent immediately following the initial GET or POST request line. For
instance, the following example shows an HTTP request that might result from a user submitting
a book-search request to a servlet at http://www.somebookstore.com/servlet/Search. The
request includes the headers Accept, Accept-Encoding, Connection, Cookie, Host, Referer,
and user-Agent, all of which might be important to the operation of the servlet, but none of which
can be derived from the form data or deduced automatically: the servlet needs to explicitly read
the request headers to make use of this information.

GET /servlet/Search?keywords=servlets+jsp HTTP/1.1

Accept: image/gif, image/Jjpg, */*

Accept-Encoding: gzip

Connection: Keep-Alive

Cookie: userID=1d456578

Host: www.somebookstore.com

Referer: http://www.somebookstore.com/findbooks.html

User-Agent: Mozilla/4.7 [en] (Win98; U)

Reading Request Headers from Servlets

Reading headers is straightforward; just call the getHeader method of HttpServletRequest,
which returns a string if the specified header was supplied on this request, null otherwise.
Header names are not case sensitive. So, for example, request.getHeader ("Connection") is
interchangeable with request.getHeader ("connection").

Although getHeader is the general-purpose way to read incoming headers, a few headers are so
commonly used that they have special access methods in HttpServletRequest. Following is a
summary.

e getCookies The getCookies method returns the contents of the cookie header, parsed
and stored in an array of Cookie objects. This method is discussed in more detail in
Section 2.9 (Cookies).

e getAuthType and getRemoteUser The getAuthType and getRemoteUser methods break
the authorization header into its component pieces.

e getContentLength The getContentLength method returns the value of the
Content-Length header (as an int).

e getContentType The getContentType method returns the value of the Content-Type
header (as a string).

e getDateHeader and getIntHeader The getDateHeader and getIntHeader methods
read the specified headers and then convert them to pate and int values, respectively.

e getHeaderNames Rather than looking up one particular header, you can use the
getHeaderNames method to get an Enumeration of all header names received on this
particular request. This capability is illustrated in Listing 2.11.

e getHeaders In most cases, each header name appears only once in the request.
Occasionally, however, a header can appear multiple times, with each occurrence listing a
separate value. Accept-Language is one such example. You can use getHeaders to obtain
an Enumeration of the values of all occurrences of the header.

Finally, in addition to looking up the request headers, you can get information on the main
request line itself, also by means of methods in HttpServletRequest. Here is a summary of the
three main methods.

e getMethod The getMethod method returns the main request method (normally GET or
pPOST, but methods like HEAD, PUT, and DELETE are possible).

e getRequestURI The getRequestURI method returns the part of the URL that comes after
the host and port but before the form data. For example, for a URL of
http://randomhost.com/serviet/search.BookSearch, getRequestURI would return

"/servlet/search.BookSearch".

e getProtocol The getProtocol method returns the third part of the request line, which
is generally HTTP/1.0 or HTTP/1.1. Servlets should usually check getProtocol before
specifying response headers (Section 2.8) that are specific to HTTP 1.1.

Example: Making a Table of All Request Headers

Listing 2.11 shows a servlet that simply creates a table of all the headers it receives, along with
their associated values. It also prints out the three components of the main request line (method,
URI, and protocol). Figures 2-8 and 2-9 show typical results with Netscape and Internet Explorer.

Figure 2-8. Request headers sent by Netscape 4.7 on

Windows 98.

5 Servlet Example: Showing Request Headers - Netscape

Fle Edt View Go Commuricalor Help

IR RPN TN N o

o "Bockmaks K Locaion: [l /Mocabon/sendet/moreserviels ShowRequestHaaders = |

Servlet Example: Showing Request Headers

Request Method: GET
Request URTL fservietmoreserviets ShowRequestHeaders
Fequest Protocol: HTTE/1.0

Header Name Header Value

connection Keep-Alne

\LEEr-AEent Monllaid 7 [en] (Win%8; TN

host localhost

accept .rnagelgf, imageE-xhitmap, mage/jpeg, mnage/pipeg, mage/png, =™

accept-encoding gap
accept-language en
accept-charset 150-8839-1,%* utf-8

Figure 2-9. Request headers sent by Internet Explorer 5.0 on

Windows 98.

a Serylet Example: Showing Request Headers - Miciosoft Intemel Explores

:lEH Edt Wiew Favoiles Jools Help
I« 2 0RA0EI I

(| Address | @) bitpe A ocatos/seretimeeeserviels ShowRiequestHeaders =]

Servlet Example: Showing Request Headers

Request Method: GET
Request TRI: fservietimoreservlets. ShowBRequestHeaders
Request Protocol: HTTE/1.1

N Header Value

ame

Moot magegd, mageix-rhitmap, magefipeg, mage'pipeg, apphcatonfmsword,
appbcationfmd ms-excel, applicationmd ms-powerpoint, **

accept-
en-1s

a.gc =

accept- S

encodmg s

|l.|.5|:r-a.g-|:nt Meoalla. 0 (compatible, MEIE 5.0, Windows 28, DigExt)

ihc-st localhost

|c<:-n|1|.=|:tian Eleep-Alnre

i

8] Done [22 Local niranet

Listing 2.11 ShowRequestHeaders.java

package moreservlets;

import Jjava.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import java.util.*;
/** Shows all the request headers sent on this request. */

public class ShowRequestHeaders extends HttpServlet
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();

String title = "Servlet Example: Showing Request Headers";

out.println (ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title + "</HI1>\n" +
"Request Method: " +
request.getMethod () + "
\n" +
"Request URI: " +
request.getRequestURI() + "
\n" +
"Request Protocol: " +
request.getProtocol () + "

\n" +
"<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
"<TR BGCOLOR=\"#FFADOO\">\n" +
"<TH>Header Name<TH>Header Value");
Enumeration headerNames = request.getHeaderNames() ;
while (headerNames.hasMoreElements ()) {
String headerName = (String)headerNames.nextElement ();
out.println ("<TR><TD>" + headerName) ;
out.println (" <TD>" + request.getHeader (headerName)) ;
}
out.println ("</TABLE>\n</BODY></HTML>") ;

}
/** Let the same servlet handle both GET and POST. */

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

doGet (request, response);

Understanding HTTP 1.1 Request Headers

Access to the request headers permits servlets to perform a number of optimizations and to
provide a number of features not otherwise possible. This subsection summarizes the headers
most often used by servlets; more details are given in Core Servlets and JavaServer Pages,
Chapter 4 (in PDF at http://www.moreservilets.com). Note that HTTP 1.1 supports a superset of
the headers permitted in HTTP 1.0. For additional details on these and other headers, see the
HTTP 1.1 specification, given in RFC 2616. The official RFCs are archived in a number of places;
your best bet is to start at http://www.rfc-editor.org/ to get a current list of the archive sites.

Accept

This header specifies the MIME types that the browser or other clients can handle. A servlet that
can return a resource in more than one format can examine the Accept header to decide which
format to use. For example, images in PNG format have some compression advantages over

those in GIF, but only a few browsers support PNG. If you had images in both formats, a servlet
could call request.getHeader ("Accept"), check for image/png, and if it finds a match, use
xxx.png filenames in all the 1MG elements it generates. Otherwise, it would just use xxx.gif.

See Table 2.1 in Section 2.8 (The Server Response: HTTP Response Headers) for the names and
meanings of the common MIME types

Note that Internet Explorer 5 has a bug whereby the Accept header is not sent properly when you
reload a page. It is sent properly on the original request, however.

Accept-Charset
This header indicates the character sets (e.g., ISO-8859-1) the browser can use.
Accept-Encoding

This header designates the types of encodings that the client knows how to handle. If the server
receives this header, it is free to encode the page by using one of the formats specified (usually
to reduce transmission time), sending the Content-Encoding response header to indicate that it
has done so. This encoding type is completely distinct from the MIME type of the actual document
(as specified in the content-Type response header), since this encoding is reversed before the
browser decides what to do with the content. On the other hand, using an encoding the browser
doesn’t understand results in totally incomprehensible pages. Consequently, it is critical that you
explicitly check the Accept-Encoding header before using any type of content encoding. Values
of gzip or compress are the two most common possibilities.

Compressing pages before returning them is a valuable service because the decoding time is
likely to be small compared to the savings in transmission time. See Section 9.5 where gzip
compression is used to reduce download times by a factor of 10.

Accept-Language
This header specifies the client’s preferred languages in case the servlet can produce results in

more than one language. The value of the header should be one of the standard language codes
such as en, en-us, da, etc. See RFC 1766 for details (start at http://www.rfc-editor.org/ to get a

current list of the RFC archive sites).
Authorization

This header is used by clients to identify themselves when accessing password-protected Web
pages. For details, see Chapters 7 and 8.

Connection

This header indicates whether the client can handle persistent HTTP connections. Persistent
connections permit the client or other browser to retrieve multiple files (e.g., an HTML file and

several associated images) with a single socket connection, saving the overhead of negotiating
several independent connections. With an HTTP 1.1 request, persistent connections are the
default, and the client must specify a value of close for this header to use old-style connections.
In HTTP 1.0, a value of Keep-Alive means that persistent connections should be used.

Each HTTP request results in a new invocation of a servlet (i.e., a thread calling the servlet’s
service and do xxx methods), regardless of whether the request is a separate connection. That
is, the server invokes the servlet only after the server has already read the HTTP request. This
means that servlets need help from the server to handle persistent connections. Consequently,
the servlet's job is just to make it possible for the server to use persistent connections, which the
servlet does by setting the content-Length response header.

Content-Length

This header is applicable only to POST requests and gives the size of the pPOST data in bytes. Rather
than calling request.getIntHeader ("Content-Length"), you can simply use
request.getContentLength (). However, since servlets take care of reading the form data for
you (see Section 2.4), you rarely use this header explicitly.

Cookie

This header is used to return cookies to servers that previously sent them to the browser. Never
read this header directly; use request.getCookies instead. For details, see Section 2.9
(Cookies). Technically, cookie is not part of HTTP 1.1. It was originally a Netscape extension but
is now widely supported, including in both Netscape Navigator/Communicator and Microsoft
Internet Explorer.

Host

In HTTP 1.1, browsers and other clients are required to specify this header, which indicates the
host and port as given in the original URL. Due to request forwarding and machines that have
multiple hostnames, it is quite possible that the server could not otherwise determine this
information. This header is not new in HTTP 1.1, but in HTTP 1.0 it was optional, not required.

If-Modified-Since

This header indicates that the client wants the page only if it has been changed after the specified
date. The server sends a 304 (Not Modified) header if no newer result is available. This option
is useful because it lets browsers cache documents and reload them over the network only when
they’ve changed. However, servlets don't need to deal directly with this header. Instead, they
should just implement the getLastModified method to have the system handle modification
dates automatically. See Section 2.8 of Core Servliets and JavaServer Pages (available in PDF at
http://www.moreservlets.com) for an example of the use of getLastModified.

If-Unmodified-Since

This header is the reverse of 1f-Modified-Since; it specifies that the operation should succeed
only if the document is older than the specified date. Typically, I1f-Modified-Since is used for
GET requests (“give me the document only if it is newer than my cached version”), whereas
If-Unmodified-Since is used for pUT requests (“update this document only if nobody else has
changed it since I generated it"”). This header is new in HTTP 1.1.

Referer

This header indicates the URL of the referring Web page. For example, if you are at Web page 1
and click on a link to Web page 2, the URL of Web page 1 is included in the Referer header when
the browser requests Web page 2. All major browsers set this header, so it is a useful way of
tracking where requests come from. This capability is helpful for tracking advertisers who refer
people to your site, for slightly changing content depending on the referring site, or simply for
keeping track of where your traffic comes from. In the last case, most people simply rely on Web
server log files, since the rReferer is typically recorded there. Although the referer header is
useful, don't rely too heavily on it since it can easily be spoofed by a custom client. Finally, note
that, due to a spelling mistake by one of the original HTTP authors, this header is Referer, not the
expected Referrer.

User-Agent

This header identifies the browser or other client making the request and can be used to return
different content to different types of browsers. Be wary of this usage when dealing only with Web
browsers; relying on a hard-coded list of browser versions and associated features can make for
unreliable and hard-to-modify servlet code. Whenever possible, use something specific in the
HTTP headers instead. For example, instead of trying to remember which browsers support gzip
on which platforms, simply check the Accept-Encoding header.

However, the User-Agent header is quite useful for distinguishing among different categories of
client. For example, Japanese developers might see if the User-Agent is an Imode cell phone (in
which case you would redirect to a chtml page), a Skynet cell phone (in which case you would
redirect to a wml page), or a Web browser (in which case you would generate regular HTML).

Most Internet Explorer versions list a “"Mozilla” (Netscape) version first in their User-Agent line,
with the real browser version listed parenthetically. This is done for compatibility with JavaScript,
where the User-Agent header is sometimes used to determine which JavaScript features are
supported. Also note that this header can be easily spoofed, a fact that calls into question the
reliability of sites that use this header to “show” market penetration of various browser versions.

2.6 The Serviet Equivalent of the Standard CGI

Variables

If you come to servlets with a background in traditional Common Gateway Interface (CGI)
programming, you are probably used to the idea of “"CGI variables.” These are a somewhat
eclectic collection of information about the current request. Some are based on the HTTP request
line and headers (e.g., form data), others are derived from the socket itself (e.g., the name and
IP address of the requesting host), and still others are taken from server installation parameters
(e.g., the mapping of URLs to actual paths).

Although it probably makes more sense to think of different sources of data (request data, server
information, etc.) as distinct, experienced CGI programmers may find it useful to see the servlet
equivalent of each of the CGI variables. If you don't have a background in traditional CGI, first,
count your blessings; servlets are easier to use, more flexible, and more efficient than standard
CGI. Second, just skim this section, noting the parts not directly related to the incoming HTTP
request. In particular, observe that you can use getServletContext () .getRealPath to map a
URI (here, URI refers to the part of the URL that comes after the host and port) to an actual path
and that you can use request.getRemoteHost () and request.getRemoteAddress () to get the
name and IP address of the client.

AUTH_TYPE

If an Authorization header was supplied, this variable gives the scheme specified (basic or
digest). Access it with request.getAuthType ().

CONTENT_LENGTH

For pOST requests only, this variable stores the number of bytes of data sent, as given by the
Content-Length request header. Technically, since the CONTENT LENGTH CGI variable is a string,
the servlet equivalent is string.valueOf (request.getContentLength()) or
request.getHeader ("Content-Length"). You'll probably want to just call
request.getContentLength (), which returns an int.

CONTENT_TYPE
CONTENT TYPE designates the MIME type of attached data, if specified.

See Table 2.1 in Section 2.8 (The Server Response: HTTP Response Headers) for the names and
meanings of the common MIME types. Access CONTENT TYPE With request.getContentType ().

DOCUMENT_ROOT

The DOCUMENT ROOT variable specifies the real directory corresponding to the URL http://host/.
Access it with getServletContext () .getRealPath ("/"). In older servlet specifications, you
accessed this variable with request.getRealPath ("/"); however, the older access method is no
longer supported. Also, you can use getServletContext () .getRealPath to map an arbitrary
URI (i.e., URL suffix that comes after the hostname and port) to an actual path on the local
machine.

HTTP_XXX_YYY

Variables of the form uTTP HEADER NAME were how CGI programs obtained access to arbitrary
HTTP request headers. The cookie header became HTTP COOKIE, User-Agent became

HTTP USER AGENT, Referer became HITP REFERER, and so forth. Servlets should just use
request.getHeader or one of the shortcut methods described in Section 2.5 (The Client Request:
HTTP Request Headers).

PATH_INFO

This variable supplies any path information attached to the URL after the address of the servlet
but before the query data. For example, with
http://host/serviet/moreserviets.SomeServlet/foo/bar?’baz=quux, the path information is
/foo/bar. Since servlets, unlike standard CGI programs, can talk directly to the server, they don’t
need to treat path information specially. Path information could be sent as part of the regular
form data and then translated by getServletContext () .getRealPath. Access the value of
PATH INFO by using request.getPathInfo ().

PATH_TRANSLATED

PATH TRANSLATED gives the path information mapped to a real path on the server. Again, with
servlets there is no need to have a special case for path information, since a servlet can call
getServletContext () .getRealPath () to translate partial URLs into real paths. This translation
is not possible with standard CGI because the CGI program runs entirely separately from the
server. Access this variable by means of request.getPathTranslated().

QUERY_STRING

For GET requests, this variable gives the attached data as a single string with values still
URL-encoded. You rarely want the raw data in servlets; instead, use request.getParameter to
access individual parameters, as described in Section 2.5 (The Client Request: HTTP Request
Headers). However, if you do want the raw data, you can get it with request.getQueryString().

REMOTE_ADDR

This variable designates the IP address of the client that made the request, as a string (e.g.,
"198.137.241.30"). Access it by calling request.getRemoteAddr ().

REMOTE_HOST

REMOTE HOST indicates the fully qualified domain name (e.g., whitehouse.gov) of the client that
made the request. The IP address is returned if the domain name cannot be determined. You can
access this variable with request.getRemoteHost ().

REMOTE_USER

If an Authorization header was supplied and decoded by the server itself, the REMOTE USER
variable gives the user part, which is useful for session tracking in protected sites. Access it with

request.getRemoteUser ().

REQUEST_METHOD

This variable stipulates the HTTP request type, which is usually GET or pPOST but is occasionally
HEAD, PUT, DELETE, OPTIONS, Or TRACE. Servlets rarely need to look up REQUEST METHOD explicitly,
since each of the request types is typically handled by a different servlet method (doGet, doPost,
etc.). An exception is HEAD, which is handled automatically by the service method returning
whatever headers and status codes the doGet method would use. Access this variable by means
of request.getMethod ().

SCRIPT_NAME

This variable specifies the path to the server-side program (i.e., the servlet in our case), relative
to the server’s root directory. It can be accessed through request.getServletPath ().

SERVER_NAME

SERVER NAME gives the host name of the server machine. It can be accessed by means of

request.getServerName ().

SERVER_PORT

This variable stores the port the server is listening on. Technically, the servlet equivalent is
String.valueOf (request.getServerPort ()), which returns a string. You'll usually just want
request.getServerPort (), which returns an int.

SERVER_PROTOCOL

The SERVER PROTOCOL variable indicates the protocol name and version used in the request line
(e.g., HTTP/1.0 or HTTP/1.1). Access it by calling request.getProtocol ().

SERVER_SOFTWARE

This variable gives identifying information about the Web server. Access it with
getServletContext () .getServerInfo().

2.7 The Server Response: HTTP Status Codes

When a Web server responds to a request from a browser or other Web client, the response
typically consists of a status line, some response headers, a blank line, and the document. Here
is @ minimal example:

HTTP/1.1 200 OK
Content-Type: text/plain

Hello World

The status line consists of the HTTP version (HTTP/1.1 in the example above), a status code (an
integer; 200 in the example), and a very short message corresponding to the status code (0OX in
the example). In most cases, all of the headers are optional except for Content-Type, which
specifies the MIME type of the document that follows. Although most responses contain a
document, some don’t. For example, responses to HEAD requests should never include a
document, and a variety of status codes essentially indicate failure and either don’t include a
document or include only a short error-message document.

Servlets can perform a variety of important tasks by manipulating the status line and the
response headers. For example, they can forward the user to other sites; indicate that the
attached document is an image, Adobe Acrobat file, or HTML file; tell the user that a password is
required to access the document; and so forth. This section briefly summarizes the most
important status codes and what can be accomplished with them; see Chapter 6 of Core Serviets
and JavaServer Pages (in PDF at http://www.moreservlets.com) for more details. The following
section discusses the response headers.

Specifying Status Codes

As just described, the HTTP response status line consists of an HTTP version, a status code, and
an associated message. Since the message is directly associated with the status code and the
HTTP version is determined by the server, all a servlet needs to do is to set the status code. A
code of 200 is set automatically, so servlets don't usually need to specify a status code at all.
When they do set a code, they do so with the setstatus method of HttpServletResponse. If
your response includes a special status code and a document, be sure to call setstatus before
actually returning any of the content with the printwWriter. That's because an HTTP response
consists of the status line, one or more headers, a blank line, and the actual document, in that
order. As discussed in Section 2.2 (Basic Servlet Structure), servlets do not necessarily buffer the
document (version 2.1 servlets never do so), so you have to either set the status code before first
using the printwWriter or carefully check that the buffer hasn’t been flushed and content actually
sent to the browser.

Core Approach

Set status codes before sending any document content to the client.

The setstatus method takes an int (the status code) as an argument, but instead of using
explicit numbers, for clarity and reliability use the constants defined in HttpServletResponse.
The name of each constant is derived from the standard HTTP 1.1 message for each constant, all
upper case with a prefix of sc (for Status Code) and spaces changed to underscores. Thus, since
the message for 404 is Not Found, the equivalent constant in HttpServletResponse is

SC_NOT FOUND. There are two exceptions, however. The constant for code 302 is derived from the
HTTP 1.0 message (Moved Temporarily), not the HTTP 1.1 message (Found), and the constant for
code 307 (Temporary Redirect) is missing altogether.

Although the general method of setting status codes is simply to call response.setStatus (int),
there are two common cases where a shortcut method in HttpServletResponse is provided. Just
be aware that both of these methods throw I0Exception, whereas setStatus does not.

¢ public void sendError(int code, String message) The sendeError method sends a
status code (usually 404) along with a short message that is automatically formatted
inside an HTML document and sent to the client.

¢ public void sendRedirect(String url) The sendrRedirect method generates a 302
response along with a Location header giving the URL of the new document. With servlets
version 2.1, this must be an absolute URL. In version 2.2 and 2.3, either an absolute or a
relative URL is permitted; the system automatically translates relative URLs into absolute
ones before putting them in the Location header.

Setting a status code does not necessarily mean that you don’t need to return a document. For
example, although most servers automatically generate a small File Not Found message for 404
responses, a servlet might want to customize this response. Again, remember that if you do send
output, you have to call setStatus or sendError first.

HTTP 1.1 Status Codes

In this subsection I describe the most important status codes available for use in servlets talking
to HTTP 1.1 clients, along with the standard message associated with each code. A good

understanding of these codes can dramatically increase the capabilities of your servlets, so you
should at least skim the descriptions to see what options are at your disposal. You can come back
for details when you are ready to make use of some of the capabilities.

The complete HTTP 1.1 specification is given in RFC 2616. In general, you can access RFCs online
by going to http://www.rfc-editor.org/ and following the links to the latest RFC archive sites, but
since this one came from the World Wide Web Consortium, you can just go to
http://www.w3.org/Protocols/. Codes that are new in HTTP 1.1 are noted, since some browsers
support only HTTP 1.0. You should only send the new codes to clients that support HTTP 1.1, as
verified by checking request.getRequestProtocol.

The rest of this section describes the specific status codes available in HTTP 1.1. These codes fall
into five general categories:

¢ 100-199 Codes in the 100s are informational, indicating that the client should respond
with some other action.

e 200-299 Values in the 200s signify that the request was successful.

e 300-399 Values in the 300s are used for files that have moved and usually include a
Location header indicating the new address.

e 400-499 Values in the 400s indicate an error by the client.

¢ 500-599 Codes in the 500s signify an error by the server.

The constants in HttpServletResponse that represent the various codes are derived from the
standard messages associated with the codes. In servlets, you usually refer to status codes only
by means of these constants. For example, you would use

response.setStatus (response.SC _NO CONTENT) rather than response.setStatus (204),
since the latter is unclear to readers and is prone to typographical errors. However, you should
note that servers are allowed to vary the messages slightly, and clients pay attention only to the
numeric value. So, for example, you might see a server return a status line of HTTP/1.1 200
Document Follows instead of HTTP/1.1 200 OK.

100 (Continue)

If the server receives an Expect request header with a value of 100-continue, it means that the
client is asking if it can send an attached document in a follow-up request. In such a case, the
server should either respond with status 100 (sc_CONTINUE) to tell the client to go ahead or use
417 (Expectation Failed) to tell the browser it won't accept the document. This status code is
new in HTTP 1.1.

200 (OK)

A value of 200 (sc_0k) means that everything is fine. The document follows for GET and POST
requests. This status is the default for servlets; if you don’t use setstatus, you'll get 200.

202 (Accepted)

A value of 202 (sc_ACcCEPTED) tells the client that the request is being acted upon, but processing
is not yet complete.

204 (No Content)

A status code of 204 (sc_NO_CONTENT) stipulates that the browser should continue to display the
previous document because no new document is available. This behavior is useful if the user
periodically reloads a page by pressing the Reload button, and you can determine that the
previous page is already up-to-date.

205 (Reset Content)

A value of 205 (sC_RESET CONTENT) means that there is no new document, but the browser
should reset the document view. This status code instructs browsers to clear form fields. It is new
in HTTP 1.1.

301 (Moved Permanently)

The 301 (sc_MOVED PERMANENTLY) status indicates that the requested document is elsewhere;
the new URL for the document is given in the Location response header. Browsers should
automatically follow the link to the new URL.

302 (Found)

This value is similar to 301, except that in principle the URL given by the Location header should
be interpreted as a temporary replacement, not a permanent one. In practice, most browsers
treat 301 and 302 identically. Note: In HTTP 1.0, the message was Moved Temporarily instead
of Found, and the constant in HttpServletResponse is SC MOVED TEMPORARILY, not the expected
SC_FOUND.

Core Note

The constant representing 302 is SC_MOVED TEMPORARILY , not

SC_FOUND.

Status code 302 is useful because browsers automatically follow the reference to the new URL
given in the Location response header. It is so useful, in fact, that there is a special method for
it, sendRedirect. Using response.sendRedirect (url) has a couple of advantages over using
response.setStatus (response.SC _MOVED TEMPORARILY) and

response.setHeader ("Location", url). First, it is shorter and easier. Second, with
sendRedirect, the servlet automatically builds a page containing the link to show to older
browsers that don’t automatically follow redirects. Finally, with version 2.2 and 2.3 of servlets,
sendRedirect can handle relative URLs, automatically translating them into absolute ones.

Technically, browsers are only supposed to automatically follow the redirection if the original
request was GET. For details, see the discussion of the 307 status code.

303 (See Other)

The 303 (sCc_SEE OTHER) status is similar to 301 and 302, except that if the original request was
POST, the new document (given in the Location header) should be retrieved with GET. This code
is new in HTTP 1.1.

304 (Not Modified)

When a client has a cached document, it can perform a conditional request by supplying an
If-Modified-Since header to indicate that it wants the document only if it has been changed
since the specified date. A value of 304 (sc_NOT MODIFIED) means that the cached version is
up-to-date and the client should use it. Otherwise, the server should return the requested
document with the normal (200) status code. Servlets normally should not set this status code
directly. Instead, they should implement the getLastModified method and let the default
service method handle conditional requests based upon this modification date. For an example,
see Section 2.8 of Core Servlets and JavaServer Pages.

307 (Temporary Redirect)

The rules for how a browser should handle a 307 status are identical to those for 302. The 307
value was added to HTTP 1.1 since many browsers erroneously follow the redirection on a 302
response even if the original message is a POST. Browsers are supposed to follow the redirection
of a POST request only when they receive a 303 response status. This new status is intended to be
unambiguously clear: follow redirected GET and pPOST requests in the case of 303 responses;
follow redirected GET but not POST requests in the case of 307 responses. Note: For some reason
there is no constant in HttpServletResponse corresponding to this status code, so you have to
use 307 explicitly. This status code is new in HTTP 1.1.

400 (Bad Request)
A 400 (sc_BAD REQUEST) status indicates bad syntax in the client request.

401 (Unauthorized)

A value of 401 (sCc_UNAUTHORIZED) signifies that the client tried to access a password-protected
page without proper identifying information in the Authorization header. The response must
include a wWww-Authenticate header.

403 (Forbidden)

A status code of 403 (sc_FORBIDDEN) means that the server refuses to supply the resource,
regardless of authorization. This status is often the result of bad file or directory permissions on
the server.

404 (Not Found)

The infamous 404 (sc_NOT FOUND) status tells the client that no resource could be found at that
address. This value is the standard “no such page” response. It is such a common and useful
response that there is a special method for it in the HttpServletResponse class:

sendError ("message"). The advantage of sendError over setStatus is that, with sendError,
the server automatically generates an error page showing the error message. 404 errors need not
merely say “Sorry, the page cannot be found.” Instead, they can give information on why the
page couldn’t be found or supply search boxes or alternative places to look. The sites at
www.microsoft.com and www.ibm.com have particularly good examples of useful error pages. In
fact, there is an entire site dedicated to the good, the bad, the ugly, and the bizarre in 404 error
messages: http://www.plinko.net/404/. I find
http://www.plinko.net/404/category.asp?Category=Funny particularly amusing.

Unfortunately, however, the default behavior of Internet Explorer 5 is to ignore the error page
you send back and to display its own, even though doing so contradicts the HTTP specification. To
turn off this setting, you can go to the Tools menu, select Internet Options, choose the Advanced
tab, and make sure “Show friendly HTTP error messages” box is not checked. Unfortunately,
however, few users are aware of this setting, so this “feature” prevents most users of Internet
Explorer version 5 from seeing any informative messages you return. Other major browsers and
version 4 of Internet Explorer properly display server-generated error pages.

Core Warning

By default, Internet Explorer version 5 improperly ignores
server-generated error pages.

To make matters worse, some versions of Tomcat 3 fail to properly handle strings that are passed
to sendError. So, if you are using Tomcat 3, you may need to generate 404 error messages by
hand. Fortunately, it is relatively uncommon for individual servlets to build their own 404 error
pages. A more common approach is to set up error pages for each Web application; see Section
5.8 (Designating Pages to Handle Errors) for details. Tomcat correctly handles these pages.

Core Warning

Some versions of Tomcat 3.x fail to properly display strings that are

supplied to sendError.

405 (Method Not Allowed)

A 405 (sC METHOD NOT ALLOWED) value indicates that the request method (GET, POST, HEAD, PUT,
DELETE, etc.) was not allowed for this particular resource. This status code is new in HTTP 1.1.

415 (Unsupported Media Type)

A value of 415 (sC_UNSUPPORTED MEDIA TYPE) means that the request had an attached
document of a type the server doesn’t know how to handle. This status code is new in HTTP 1.1.

417 (Expectation Failed)

If the server receives an Expect request header with a value of 100-continue, it means that the
client is asking if it can send an attached document in a follow-up request. In such a case, the
server should either respond with this status (417) to tell the browser it won't accept the
document or use 100 (sc_CONTINUE) to tell the client to go ahead. This status code is new in HTTP
1.1.

500 (Internal Server Error)

500 (sCc INTERNAL SERVER ERROR) is the generic “server is confused” status code. It often
results from CGI programs or (heaven forbid!) servlets that crash or return improperly formatted
headers.

501 (Not Implemented)

The 501 (sc NOT IMPLEMENTED) status notifies the client that the server doesn’t support the
functionality to fulfill the request. It is used, for example, when the client issues a command like
pUT that the server doesn’t support.

503 (Service Unavailable)

A status code of 503 (SC_SERVICE UNAVAILABLE) signifies that the server cannot respond
because of maintenance or overloading. For example, a servlet might return this header if some
thread or database connection pool is currently full. The server can supply a Retry-After header
to tell the client when to try again.

505 (HTTP Version Not Supported)

The 505 (sCc HTTP VERSION NOT SUPPORTED) code means that the server doesn’t support the
version of HTTP named in the request line. This status code is new in HTTP 1.1.

A Front End to Various Search Engines

Listing 2.12 presents an example that makes use of the two most common status codes other
than 200 (ok): 302 (Found) and 404 (Not Found). The 302 code is set by the shorthand
sendRedirect method of HttpServletResponse, and 404 is specified by sendError.

In this application, an HTML form (see Figure 2-10 and the source code in Listing 2.14) first
displays a page that lets the user specify a search string, the number of results to show per page,
and the search engine to use. When the form is submitted, the servlet extracts those three
parameters, constructs a URL with the parameters embedded in a way appropriate to the search
engine selected (see the searchspec class of Listing 2.13), and redirects the user to that URL
(see Figure 2-11). If the user fails to choose a search engine or specify search terms, an error
page informs the client of this fact (but see warnings under the 404 status code in the previous
subsection).

Figure 2-10. Front end to the secarchengines servlet. See Listing

2.14 for the HTML source code.

- Searching the Web - Helzcape

Fle Edit Visw Go Communicalor Help

1 42 ADd2unsdD @ =

°| " Bookmarks & Locatioe [Fiip: Mlocabost S earchE ngines himi |
Searching the Web

Search Strmp: |EEfVlEt3 Jap

Results to Show Per Page: [10
T Google | ™ AlaWVista] © Lycos| © HotBot
Search

[== |Document: Done S % P @A 2| 2

Figure 2-11. Result of the scarchengines serviet when the form of

Figure 2-10 is submitted.

i AlaVista - Web Results for: serviets jep - Nelicape
File Edit Miew Go Communicster Help

14y A rmIdd il o

|l " Bookmarks A Location:[ip: /v abavista com/sites/search/meb I q=serviati+isplaba=10 =
e
altaV|5ta Tl'_.,l YoOul seard h in: Shgpgmg -lm_.a_gga-'\i'j_d_g_q . MEE,!I-'},! d'g L] I"_EH.E
Search for: Halp | Customize Seflings | Eamile Filder froff,
[SENIEI‘; isp |ar1!,r language j Search i
™ saaeh within thass rsuits Septch Aggigiend | Advenced Sesrch

Virtual Yegas.com - Free Online Casino

| Over 30Games || Awaysfree || WinPrizes IIE“.':LE [Got |

Home > Search Results for serviets jsp , page 1 of 20

Parmer Listings:

T P
Get your JSP Serviet applications developed through us in India. We
hawe been senicing Web development companies and end clients in
Morh America, Evrope and Asia Pacific regions.

We found 232 886 resulis:
Corg nd Jaa P [

Home page for Core Sendets and JavaServer Pages (JSP). A Sun

Microsystems Press book
LRL hitp:ffwenss coreserdets. com = Belaled pages = Tranglate

Additional relevant pages from this site
=

== [Document: Deone B v e

Figure 2-12. Result of the secarchengines serviet when a form that
has no search string is submitted. This result is for JRun 3.1;
results can vary slightly among servers and will omit the

“Missing search string” message in most Tomcat versions.

2 JRun Serviet Emor - Netzcapa

Fle Edit View Go Comminicaior Help

I d AB2rmISdd =

'l ‘!iﬂudunuks .&.Ln-::ab'm.'l|I|:-:.|'ﬂccdlr:lsl.i’s:awlaw'mureaewlal*.Seaml‘Er-;hea?searcl‘ﬁlli-1g-&r1u‘rﬂasuls-1IZIﬂ

404 Not Found

Missing search string.

I == | [Document: Done

Listing 2.12 SearchEngines.java

package moreservlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

import java.net.*;

/** Servlet that takes a search string, number of results per
* page, and a search engine name, sending the query to

* that search engine. Illustrates manipulating

* the response status line. It sends a 302 response

* (via sendRedirect) if it gets a known search engine,

* and sends a 404 response (via sendError) otherwise.

*/

public class SearchEngines extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

String searchString = request.getParameter ("searchString");

if ((searchString == null) ||
(searchString.length() == 0)) {
reportProblem(response, "Missing search string.");
return;
}
// The URLEncoder changes spaces to "+" signs and other
// non-alphanumeric characters to "%XY", where XY is the
// hex value of the ASCII (or ISO Latin-1) character.
// Browsers always URL-encode form values, so the
// getParameter method decodes automatically. But since
// we're just passing this on to another server, we need to
// re-encode it.
searchString = URLEncoder.encode (searchString);
String numResults = request.getParameter ("numResults");
if ((numResults == null) ||
(numResults.equals ("0")) ||
(numResults.length() == 0)) {
numResults = "10";
}
String searchEngine =
request.getParameter ("searchEngine") ;
if (searchEngine == null) {
reportProblem(response, "Missing search engine name.");
return;
}
SearchSpec[] commonSpecs = SearchSpec.getCommonSpecs() ;
for (int i=0; i<commonSpecs.length; i++) {
SearchSpec searchSpec = commonSpecs[i];
if (searchSpec.getName () .equals (searchEngine)) {
String url =
searchSpec.makeURL (searchString, numResults);
response.sendRedirect (url) ;

return;

}

reportProblem (response, "Unrecognized search engine.");
}
private void reportProblem (HttpServletResponse response,

String message)
throws IOException {
response.sendError (response.SC_NOT_FOUND,
"<H2>" + message + "</H2>");

}
public void doPost (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

doGet (request, response);

Listing 2.13 SearchSpec.java

package moreservlets;

/** Small class that encapsulates how to construct a

* search string for a particular search engine.

*/

public class SearchSpec {
private String name, baseURL, numResultsSuffix;
private static SearchSpec[] commonSpecs =
{ new SearchSpec
("google™",
"http://www.google.com/search?g=",
"&num="),
new SearchSpec
("altavista",
"http://www.altavista.com/sites/search/web?g=",
"&nbg="),
new SearchSpec
("lycos",
"http://lycospro.lycos.com/cgi-bin/" +
"pursuit?query=",
"gmaxhits="),
new SearchSpec
("hotbot",
"http://www.hotbot.com/?MT=",
"&DC=")

}s

public SearchSpec (String name,
String baseURL,
String numResultsSuffix) {

this.name = name;
this.baseURL = baseURL;
this.numResultsSuffix = numResultsSuffix;

}
public String makeURL(String searchString,

String numResults) {
return (baseURL + searchString +
numResultsSuffix + numResults);
}
public String getName () {
return (name) ;
}
public static SearchSpec[] getCommonSpecs () {

return (commonSpecs) ;

Listing 2.14 SearchEngines.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Searching the Web</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Searching the Web</H1>

<FORM ACTION="/servlet/moreservlets.SearchEngines">
<CENTER>

Search String:

<INPUT TYPE="TEXT" NAME="searchString">

Results to Show Per Page:

<INPUT TYPE="TEXT" NAME="numResults"
VALUE=10 SIZE=3>

<INPUT TYPE="RADIO" NAME="searchEngine"
VALUE="google">

Google |

<INPUT TYPE="RADIO" NAME="searchEngine"
VALUE="altavista">

AltaVista |

<INPUT TYPE="RADIO" NAME="searchEngine"
VALUE="1lycos">

Lycos |

<INPUT TYPE="RADIO" NAME="searchEngine"
VALUE="hotbot">

HotBot

<INPUT TYPE="SUBMIT" VALUE="Search">

</CENTER>

</FORM>

</BODY>
</HTML>

2.8 The Server Response: HTTP Response Headers

As discussed in the previous section, a response from a Web server normally consists of a status
line, one or more response headers (one of which must be Content-Type), a blank line, and the
document. To get the most out of your servlets, you need to know how to use the status line and
response headers effectively, not just how to generate the document.

Setting the HTTP response headers often goes hand in hand with setting the status codes in the
status line, as discussed in the previous section. For example, all the “"document moved” status
codes (300 through 307) have an accompanying Location header, and a 401 (Unauthorized)
code always includes an accompanying WWiW-Authenticate header. However, specifying headers
can also play a useful role even when no unusual status code is set. Response headers can be
used to specify cookies, to supply the page modification date (for client-side caching), to instruct
the browser to reload the page after a designated interval, to give the file size so that persistent
HTTP connections can be used, to designate the type of document being generated, and to
perform many other tasks. This section gives a brief summary of the handling of response
headers. See Chapter 7 of Core Serviets and JavaServer Pages (available in PDF at
http://www.moreservilets.com) for more details and examples.

Setting Response Headers from Servlets

The most general way to specify headers is to use the setHeader method of
HttpServletResponse. This method takes two strings: the header name and the header value.
As with setting status codes, you must specify headers before returning the actual document.

In addition to the general-purpose setHeader method, HttpServletResponse also has two
specialized methods to set headers that contain dates and integers:

¢ setDateHeader(String header, long milliseconds) This method saves you the
trouble of translating a Java date in milliseconds since 1970 (as returned by
System.currentTimeMillis, Date.getTime, OF Calendar.getTimeInMillis) into a GMT
time string.

o setIntHeader(String header, int headerValue) This method spares you the minor
inconvenience of converting an int to a string before inserting it into a header.

HTTP allows multiple occurrences of the same header name, and you sometimes want to add a
new header rather than replace any existing header with the same name. For example, it is quite
common to have multiple Accept and set-Cookie headers that specify different supported MIME

types and different cookies, respectively. With servlets version 2.1, setHeader, setDateHeader,
and setIntHeader always add new headers, so there is no way to “"unset” headers that were set
earlier (e.g., by an inherited method). With servlets versions 2.2 and 2.3, setHeader,
setDateHeader, and setIntHeader replace any existing headers of the same name, whereas
addHeader, addDateHeader, and addIntHeader add a header regardless of whether a header of
that name already exists. If it matters to you whether a specific header has already been set, use
containsHeader to check.

Finally, HttpServletResponse also supplies a number of convenience methods for specifying
common headers. These methods are summarized as follows.

e setContentType This method sets the content-Type header and is used by the majority
of servlets.

e setContentLength This method sets the Content-Length header, which is useful if the
browser supports persistent (keep-alive) HTTP connections.

e addCookie This method inserts a cookie into the set-cookie header. There is no
corresponding setCookie method, since it is normal to have multiple set-Cookie lines.
See Section 2.9 (Cookies) for a discussion of cookies.

e sendRedirect As discussed in the previous section, the sendrRedirect method sets the
Location header as well as setting the status code to 302. See Listing 2.12 for an
example.

Understanding HTTP 1.1 Response Headers

Following is a summary of the most useful HTTP 1.1 response headers. A good understanding of
these headers can increase the effectiveness of your servlets, so you should at least skim the
descriptions to see what options are at your disposal. You can come back for details when you are
ready to use the capabilities.

These headers are a superset of those permitted in HTTP 1.0. The official HTTP 1.1 specification
is given in RFC 2616. The RFCs are online in various places; your best bet is to start at
http://www.rfc-editor.org/ to get a current list of the archive sites. Header names are not case
sensitive but are traditionally written with the first letter of each word capitalized.

Be cautious in writing servlets whose behavior depends on response headers that are only
available in HTTP 1.1, especially if your servlet needs to run on the WWW "“at large” rather than
on an intranet—many older browsers support only HTTP 1.0. It is best to explicitly check the HTTP
version with request.getRequestProtocol before using new headers.

Allow

The Allow header specifies the request methods (GET, PoST, etc.) that the server supports. It is
required for 405 (Method Not Allowed) responses.

The default service method of servlets automatically generates this header for opTIONS
requests.

Cache-Control

This useful header tells the browser or other client the circumstances in which the response
document can safely be cached. It has the following possible values:

e public. Document is cacheable, even if normal rules (e.g., for password-protected
pages) indicate that it shouldn’t be.

e private. Document is for a single user and can only be stored in private (nonshared)
caches.

e no-cache. Document should never be cached (i.e., used to satisfy a later request). The
server can also specify * no-cache="headerl, header?2, ...,headerN " ” to indicate the
headers that should be omitted if a cached response is later used. Browsers normally do
not cache documents that were retrieved by requests that include form data. However, if
a servlet generates different content for different requests even when the requests
contain no form data, it is critical to tell the browser not to cache the response. Since older
browsers use the pragma header for this purpose, the typical servlet approach is to set
both headers, as in the following example.

° response.setHeader ("Cache-Control", "no-cache");

response.setHeader ("Pragma", "no-cache");

e no-store. Document should never be cached and should not even be stored in a
temporary location on disk. This header is intended to prevent inadvertent copies of
sensitive information.

e must-revalidate. Client must revalidate document with original server (not just
intermediate proxies) each time it is used.

e proxy-revalidate. This is the same as must-revalidate, except that it applies only to
shared caches.

e max-age=xxx. Document should be considered stale after xxx seconds. This is a
convenient alternative to the Expires header but only works with HTTP 1.1 clients. If both
max-age and Expires are present in the response, the max-age value takes precedence.

e s-max-age=xxx. Shared caches should consider the document stale after xxx seconds.

The cache-Control header is new in HTTP 1.1.
Connection

A value of close for this response header instructs the browser not to use persistent HTTP
connections. Technically, persistent connections are the default when the client supports HTTP
1.1 and does not specify a Connection: close request header (or when an HTTP 1.0 client
specifies Connection: keep-alive). However, since persistent connections require a
Content-Length response header, there is no reason for a servlet to explicitly use the

Connection header. Just omit the content-Length header if you aren’t using persistent
connections.

Content-Encoding

This header indicates the way in which the page was encoded during transmission. The browser
should reverse the encoding before deciding what to do with the document. Compressing the
document with gzip can result in huge savings in transmission time; for an example, see Section
9.5.

Content-Language

The content-Language header signifies the language in which the document is written. The value
of the header should be one of the standard language codes such as en, en-us, da, etc. See RFC
1766 for details on language codes (you can access RFCs online at one of the archive sites listed
at http://www.rfc-editor.org/).

Content-Length

This header indicates the number of bytes in the response. This information is needed only if the
browser is using a persistent (keep-alive) HTTP connection. See the Connection header for
determining when the browser supports persistent connections. If you want your servlet to take
advantage of persistent connections when the browser supports it, your servlet should write the
document into a ByteArrayOutputStream, look up its size when done, put that into the
Content-Length field with response.setContentLength, then send the content by
byteArrayStream.writeTo (response.getOutputStream()). See Core Servlets and JavaServer
Pages Section 7.4 for an example.

Content-Type

The Content-Type header gives the MIME (Multipurpose Internet Mail Extension) type of the
response document. Setting this header is so common that there is a special method in
HttpServletResponse forit: setContentType. MIME types are of the form maintype /subtype
for officially registered types and of the form maintype /x-subtype for unregistered types. Most
servlets specify text/html; they can, however, specify other types instead.

In addition to a basic MIME type, the Content-Type header can also designate a specific
character encoding. If this is not specified, the default is 1s0-8859 1 (Latin). For example, the
following instructs the browser to interpret the document as HTML in the shift JIs (standard
Japanese) character set.

response.setContentType ("text/html; charset=Shift JIS");

Table 2.1 lists some the most common MIME types used by servlets. RFC 1521 and RFC 1522 list
more of the common MIME types (again, see http://www.rfc-editor.org/ for a list of RFC archive
sites). However, new MIME types are registered all the time, so a dynamic list is a better place to

look. The officially registered types are listed at

http://www.isi.edu/in-notes/iana/assignments/media-types/media-types. For common

unregistered types, http://www.ltsw.se/knbase/internet/mime.htp is a good source.

Table 2.1. Common MIME Types

Type

Meaning

application/msword

Microsoft Word document

application/octet-stream

Unrecognized or binary data

application/pdf

Acrobat (.pdf) file

application/postscript

PostScript file

application/vnd.lotus-notes

Lotus Notes file

application/vnd.ms-excel

Excel spreadsheet

application/vnd.ms-powerpoint

PowerPoint presentation

application/x-gzip

Gzip archive

application/x-java-archive

JAR file

application/x-java-serialized-object

Serialized Java object

application/x-java-vm

Java bytecode (.class) file

application/zip

Zip archive

audio/basic Sound file in.au or.snd format
audio/midi MIDI sound file
audio/x-aiff AIFF sound file

audio/x-wav

Microsoft Windows sound file

image/gif GIF image

image/jpeg JPEG image
image/png PNG image
image/tiff TIFF image

image/x-xbitmap

X Windows bitmap image

text/css HTML cascading style sheet
text/html HTML document

text/plain Plain text

text/xml XML

video/mpeg MPEG video clip

video/quicktime

QuickTime video clip

Expires

This header stipulates the time at which the content should be considered out-of-date and thus no
longer be cached. A servlet might use this for a document that changes relatively frequently, to
prevent the browser from displaying a stale cached value. Furthermore, since some older
browsers support pragma unreliably (and Cache-Control not at all), an Expires header with a
date in the past is often used to prevent browser caching.

For example, the following would instruct the browser not to cache the document for more than
10 minutes.

long currentTime = System.currentTimeMillis();
long tenMinutes = 10*60*1000; // In milliseconds

response.setDateHeader ("Expires", currentTime + tenMinutes);
Also see the max-age value of the cache-Control header.
Last-Modified

This very useful header indicates when the document was last changed. The client can then cache
the document and supply a date by an I1f-Modified-Since request header in later requests. This
request is treated as a conditional GeT, with the document being returned only if the
Last-Modified date is later than the one specified for If-Modified-Since. Otherwise, a 304
(Not Modified) status line is returned, and the client uses the cached document. If you set this
header explicitly, use the setDateHeader method to save yourself the bother of for-matting GMT
date strings. However, in most cases you simply implement the getLastModified method (see
Core Servlets and JavaServer Pages Section 2.8) and let the standard service method handle
If-Modified-Since requests

Location

This header, which should be included with all responses that have a status code in the 300s,
notifies the browser of the document address. The browser automatically reconnects to this
location and retrieves the new document. This header is usually set indirectly, along with a 302
status code, by the sendrRedirect method of HttpServletResponse. An example is given in the

previous section (Listing 2.12).
Pragma

Supplying this header with a value of no-cache instructs HTTP 1.0 clients not to cache the
document. However, support for this header was inconsistent with HTTP 1.0 browsers, so
Expires with a date in the past is often used instead. In HTTP 1.1, Cache-Control: no-cache is
a more reliable replacement.

Refresh

This header indicates how soon (in seconds) the browser should ask for an updated page. For
example, to tell the browser to ask for a new copy in 30 seconds, you would specify a value of 30
with

response.setIntHeader ("Refresh", 30)

Note that rRefresh does not stipulate continual updates; it just specifies when the next update
should be. So, you have to continue to supply Refresh in all subsequent responses. This header
is extremely useful because it lets servlets return partial results quickly while still letting the client
see the complete results at a later time. For an example, see Section 7.3 of Core Servlets and
JavaServer Pages (in PDF at http://www.moreservlets.com).

Instead of having the browser just reload the current page, you can specify the page to load. You
do this by supplying a semicolon and a URL after the refresh time. For example, to tell the browser
to go to http://host/path after 5 seconds, you would do the following.

response.setHeader ("Refresh", "5; URL=http://host/path/")

This setting is useful for “splash screens,” where an introductory image or message is displayed
briefly before the real page is loaded.

Note that this header is commonly set indirectly by putting

<META HTTP-EQUIV="Refresh"
CONTENT="5; URL=http://host/path/">

in the HEAD section of the HTML page, rather than as an explicit header from the server. That
usage came about because automatic reloading or forwarding is something often desired by
authors of static HTML pages. For servlets, however, setting the header directly is easier and
clearer.

This header is not officially part of HTTP 1.1 but is an extension supported by both Netscape and
Internet Explorer.

Retry-After

This header can be used in conjunction with a 503 (Service Unavailable) response to tell the
client how soon it can repeat its request.

Set-Cookie

The set-Cookie header specifies a cookie associated with the page. Each cookie requires a
separate set-Cookie header. Servlets should not use response.setHeader ("Set-Cookie", ...
but instead should use the special-purpose addCookie method of HttpServletResponse. For
details, see Section 2.9 (Cookies). Technically, set-Cookie is not part of HTTP 1.1. It was
originally a Netscape extension but is now widely supported, including in both Netscape and
Internet Explorer.

WWW-Authenticate

This header is always included with a 401 (Unauthorized) status code. It tells the browser what
authorization type (BAsIC or DIGEST) and realm the client should supply in its Authorization
header. See Chapters 7 and 8 for a discussion of the various security mechanisms available to
servlets.

2.9 Cookies

Cookies are small bits of textual information that a Web server sends to a browser and that the
browser later returns unchanged when visiting the same Web site or domain. By letting the server
read information it sent the client previously, the site can provide visitors with a number of
conveniences such as presenting the site the way the visitor previously customized it or letting
identifiable visitors in without their having to reenter a password.

This section discusses how to explicitly set and read cookies from within servlets, and the next
section shows how to use the servlet session tracking API (which can use cookies behind the
scenes) to keep track of users as they move around to different pages within your site.

Benefits of Cookies

There are four typical ways in which cookies can add value to your site.

Identifying a User During an E-commerce Session

Many online stores use a “shopping cart” metaphor in which the user selects an item, adds it to
his shopping cart, then continues shopping. Since the HTTP connection is usually closed after
each page is sent, when the user selects a new item to add to the cart, how does the store know
that it is the same user who put the previous item in the cart? Persistent (keep-alive) HTTP
connections do not solve this problem, since persistent connections generally apply only to
requests made very close together in time, as when a browser asks for the images associated
with a Web page. Besides, many servers and browsers lack support for persistent connections.
Cookies, however, can solve this problem. In fact, this capability is so useful that servlets have an
API specifically for session tracking, and servlet authors don’t need to manipulate cookies directly
to take advantage of it. Session tracking is discussed in Section 2.10.

Avoiding Username and Password

Many large sites require you to register to use their services, but it is inconvenient to remember
and enter the username and password each time you visit. Cookies are a good alternative for
low-security sites. When a user registers, a cookie containing a unique user ID is sent to him.
When the client reconnects at a later date, the user ID is returned automatically, the server looks
it up, determines it belongs to a registered user, and permits access without an explicit username
and password. The site might also store the user’s address, credit card number, and so forth in a
database and use the user ID from the cookie as a key to retrieve the data. This approach
prevents the user from having to reenter the data each time.

Customizing a Site

Many “portal” sites let you customize the look of the main page. They might let you pick which
weather report you want to see, what stock and sports results you care about, how search results
should be displayed, and so forth. Since it would be inconvenient for you to have to set up your
page each time you visit their site, they use cookies to remember what you wanted. For simple
settings, the site could accomplish this customization by storing the page settings directly in the
cookies. For more complex customization, however, the site just sends the client a unique
identifier and keeps a server-side database that associates identifiers with page settings.

Focusing Advertising

Most advertiser-funded Web sites charge their advertisers much more for displaying “directed”
ads than “random” ads. Advertisers are generally willing to pay much more to have their ads
shown to people that are known to have some interest in the general product category. For
example, if you go to a search engine and do a search on “Java Servlets,” the search site can
charge an advertiser much more for showing you an ad for a servlet development environment
than for an ad for an online travel agent specializing in Indonesia. On the other hand, if the search
had been for “Java Hotels,” the situation would be reversed. Without cookies, the sites have to
show a random ad when you first arrive and haven’t yet performed a search, as well as when you
search on something that doesn’t match any ad categories. With cookies, they can identify your
interests by remembering your previous searches.

Some Problems with Cookies

Providing convenience to the user and added value to the site owner is the purpose behind

cookies. And despite much misinformation, cookies are not a serious security threat. Cookies are
never interpreted or executed in any way and thus cannot be used to insert viruses or attack your
system. Furthermore, since browsers generally only accept 20 cookies per site and 300 cookies

total, and since browsers can limit each cookie to 4 kilobytes, cookies cannot be used to fill up
someone’s disk or launch other denial-of-service attacks.

However, even though cookies don’t present a serious security threat, they can present a
significant threat to privacy. First, some people don't like the fact that search engines can
remember that they’re the user who usually does searches on certain topics. For example, they
might search for job openings or sensitive health data and don’t want some banner ad tipping off
their coworkers next time they do a search. Even worse, two sites can share data on a user by
each loading small images off the same third-party site, where that third party uses cookies and
shares the data with both original sites. The doubleclick.net service is the prime example of this
technique. (Netscape, however, provides a nice feature that lets you refuse cookies from sites
other than that to which you connected, but without disabling cookies altogether.) This trick of
associating cookies with images can even be exploited through e-mail if you use an
HTML-enabled e-mail reader that “supports” cookies and is associated with a browser. Thus,
people could send you e-mail that loads images, attach cookies to those images, then identify you
(e-mail address and all) if you subsequently visit their Web site. Boo.

A second privacy problem occurs when sites rely on cookies for overly sensitive data. For example,
some of the big online bookstores use cookies to remember users and let you order without
reentering much of your personal information. This is not a particular problem since they don't
actually display the full credit card number and only let you send books to an address that was
specified when you did enter the credit card in full or use the username and password. As a result,
someone using your computer (or stealing your cookie file) could do no more harm than sending
a big book order to your address, where the order could be refused. However, other companies
might not be so careful, and an attacker who gained access to someone’s computer or cookie file
could get online access to valuable personal information. Even worse, incompetent sites might
embed credit card or other sensitive information directly in the cookies themselves, rather than
using innocuous identifiers that are only linked to real users on the server. This is dangerous,
since most users don’t view leaving their computer unattended in their office as being tantamount
to leaving their credit card sitting on their desk.

The point of this discussion is twofold. First, due to real and perceived privacy problems, some
users turn off cookies. So, even when you use cookies to give added value to a site, your site
shouldn’t depend on them. Second, as the author of servlets that use cookies, you should be
careful not to use cookies for particularly sensitive information, since this would open users up to
risks if somebody accessed their computer or cookie files.

The Serviet Cookie API

To send cookies to the client, a servlet should create one or more cookies with designated names
and values with new Cookie (name, value), set any optional attributes with cookie.set Xxx
(readable later by cookie.get Xxx), and insert the cookies into the response headers with
response.addCookie (cookie). To read incoming cookies, a servlet should call
request.getCookies, which returns an array of Cookie objects corresponding to the cookies the

browser has associated with your site (null if there are no cookies in the request). In most cases,
the servlet loops down this array until it finds the one whose name (getName) matches the name
it had in mind, then calls getvalue on that Cookie to see the value associated with that name.
Each of these topics is discussed in more detail in the following sections.

Creating Cookies

You create a cookie by calling the cookie constructor, which takes two strings: the cookie name
and the cookie value. Neither the name nor the value should contain white space or any of the
following characters:

L1 ¢)y=,"/2@Q:;

If you want the browser to store the cookie on disk instead of just keeping it in memory, use
setMaxAge to specify how long (in seconds) the cookie should be valid.

Placing Cookies in the Response Headers

The cookie is inserted into a set-Cookie HTTP response header by means of the addCookie
method of HttpServletResponse. The method is called addCookie, not setCookie, because any
previously specified set-Cookie headers are left alone and a new header is set. Here’s an
example:

Cookie userCookie = new Cookie ("user", "uidl234");
userCookie.setMaxAge (60*60*24*365); // Store cookie for 1 year

response.addCookie (userCookie) ;

Reading Cookies from the Client

To send cookies to the client, you create a Cookie, then use addCookie to send a Set-Cookie
HTTP response header. To read the cookies that come back from the client, you call getCookies
on the HttpServletRequest. This call returns an array of Cookie objects corresponding to the
values that came in on the cookie HTTP request header. If the request contains no cookies,
getCookies should return null. However, Tomcat 3.x returns a zero-length array instead.

Core Warning

In Tomcat 3.x, calls to request.getCookies return a zero-length array
instead of null when there are no cookies in the request. Tomcat 4 and

most commercial servers properly return null.

Once you have this array, you typically loop down it, calling getName on each Cookie until you find
one matching the name you have in mind. You then call getvalue on the matching cookie and
finish with some processing specific to the resultant value. This is such a common process that,
at the end of this section, I present two utilities that simplify retrieving a cookie or cookie value
that matches a designated cookie name.

Using Cookie Attributes

Before adding the cookie to the outgoing headers, you can set various characteristics of the
cookie by using one of the following set Xxx methods, where Xxx is the name of the attribute you
want to specify. Each set Xxx method has a corresponding get Xxx method to retrieve the
attribute value. Except for name and value, the cookie attributes apply only to outgoing cookies
from the server to the client; they aren’t set on cookies that come from the browser to the server.
So, don’t expect these attributes to be available in the cookies you get by means of

request.getCookies.

public String getComment()

public void setComment(String comment)

These methods look up or specify a comment associated with the cookie. With version 0 cookies
(see the upcoming entry on getVersion and setVersion), the comment is used purely for
informational purposes on the server; it is not sent to the client.

public String getDomain()

public void setDomain(String domainPattern)

These methods get or set the domain to which the cookie applies. Normally, the browser returns
cookies only to the same hostname that sent them. You can use setDomain method to instruct
the browser to return them to other hosts within the same domain. To prevent servers from
setting cookies that apply to hosts outside their domain, the specified domain must meet the
following two requirements: It must start with a dot (e.g., .prenhall.com); it must contain two
dots for noncountry domains like.com,.edu, and.gov; and it must contain three dots for country
domains like.co.uk and.edu.es. For instance, cookies sent from a servlet at bali.vacations.com
would not normally get returned by the browser to pages at mexico.vacations.com. If the site
wanted this to happen, the servlets could specify cookie.setDomain (".vacations.com").

public int getMaxAge()
public void setMaxAge(int lifetime)

These methods tell how much time (in seconds) should elapse before the cookie expires. A
negative value, which is the default, indicates that the cookie will last only for the current session
(i.e., until the user quits the browser) and will not be stored on disk. See the LongLivedCookie
class (Listing 2.18), which defines a subclass of Cookie with a maximum age automatically set
one year in the future. Specifying a value of 0 instructs the browser to delete the cookie.

public String getName()
public void setName(String cookieName)

This pair of methods gets or sets the name of the cookie. The name and the value are the two
pieces you virtually always care about. However, since the name is supplied to the cookie
constructor, you rarely need to call setName. On the other hand, getName is used on almost every
cookie received on the server. Since the getCookies method of HttpServletRequest returns an
array of Cookie objects, a common practice is to loop down the array, calling getName until you
have a particular name, then to check the value with getvalue. For an encapsulation of this
process, see the getCookievalue method shown in Listing 2.17.

public String getPath()
public void setPath(String path)

These methods get or set the path to which the cookie applies. If you don’t specify a path, the
browser returns the cookie only to URLs in or below the directory containing the page that sent
the cookie. For example, if the server sent the cookie from
http://ecommerce.site.com/toys/specials.html, the browser would send the cookie back when
connecting to http://ecommerce.site.com/toys/bikes/beginners.html, but not to
http://ecommerce.site.com/cds/classical.html. The setPath method can specify something
more general. For example, someCookie.setPath ("/") specifies that all pages on the server
should receive the cookie. The path specified must include the current page; that is, you may
specify a more general path than the default, but not a more specific one. So, for example, a

servlet at http://host/store/cust-service/request could specify a path of /store/ (since /store/
includes /store/cust-service/) but not a path of /store/cust-service/returns/ (since this directory
does not include /store/cust-service/).

public boolean getSecure()
public void setSecure(boolean secureFlag)
This pair of methods gets or sets the boolean value indicating whether the

cookie should only be sent over encrypted (i.e., SSL) connections. The default is false; the
cookie should apply to all connections.

public String getValue()
public void setValue(String cookieValue)

The getvalue method looks up the value associated with the cookie; the setvalue method
specifies it. Again, the name and the value are the two parts of a cookie that you almost a/lways
care about, although in a few cases, a name is used as a boolean flag and its value is ignored (i.e.,
the existence of a cookie with the designated name is all that matters).

public int getVersion()
public void setVersion(int version)

These methods get and set the cookie protocol version the cookie complies with. Version 0, the
default, follows the original Netscape specification

(http://www.netscape.com/newsref/std/cookie spec.html). Version 1, not yet widely supported,
adheres to RFC 2109 (retrieve RFCs from the archive sites listed at http://www.rfc-editor.org/).

Examples of Setting and Reading Cookies

Listing 2.15 and Figure 2-13 show the setCookies servlet, a servlet that sets six cookies. Three

have the default expiration date, meaning that they should apply only until the user next restarts
the browser. The other three use setMaxage to stipulate that they should apply for the next hour,
regardless of whether the user restarts the browser or reboots the computer to initiate a new
browsing session.

Figure 2-13. Result of sectcookies servlet.

Z} Setting Cookies - Miciozolt Internet Explorer H=] E

| Fle Edt View Favostes Took Help -

&5 @0 ESI S

|| Addyess [EI http: /facahost/ servial/ moreserviats SelCookiss E'_
=

Setting Cookies

There are s1x cookies associated with this page To
see them, visit the showcookies serviet.

Three of the cookies are associated only with the
current session, while three are persistent. Quut the
browser, restart, and return to the showcookies
servlet to verify that the three long-lived ones
persist across sessions.

| |
|&] Dane || |Zg Local ntranel i

Listing 2.16 shows a servlet that creates a table of all the cookies sent to it in the request. Figure
2-14 shows this servlet immediately after the setCookies servlet is visited. Figure 2-15 shows it
within an hour of when setCookies is visited but when the browser has been closed and restarted.
Figure 2-16 shows it within an hour of when setCookies is visited but when the browser has been
closed and restarted.

Figure 2-14. Result of visiting the shoucookies serviet within an

hour of visiting setcookies (Same browser session).

= Active Cookies - Miciozoil Internat Explores

| Fle Edt View Favoites Took Help E3
H

a2 QA0 EBD I -

| Ajdress [EI hitp: Aocahost!zerviat! moreserviets ShosCookias -

Active Cookies

. Cookie Name Cookie Value
Session-Cookie-0 |Cookie-Value-S0 |
Persistent-Cookie-0|Cookie-Value-P0
Session-Cookie-1 |[Cookie-Value-S1
Persistent-Cookie-1 Cookie-Value-P1
Session-Cookie-2 |Cookie-Value-S2
Persistent-Cookie-2 (Cookie-Value-P2

18] Dore [[Ex Local miranst

%

Figure 2-15. Result of visiting the shoucookies serviet within an

hour of visiting setcookies (different browser session).

) Active Cookies - Miciozoit Internat Explores
| Fle Edt View Favoiles Took Help E3
e = - QN DEIHIH-
|| Address [EI hitp:/flocahost/serviet/ moreserviats. ShowCookies 3_
|
Active Cookies
Cookie Name = Cookie Value
Persistent-Cookie-0 Cookie-Value-P0
Persistent-Cookie-1 [Cookie-Value-P1
Persistent-Cookie-2 [Cookie-Value-P2
| -]
!E'I Dione | | _Eg Local mirarst -

Figure 2-16. Result of visiting the shoucookies Serviet more than

an hour after visiting setcookies (different browser session).

2} Active Cookies - Miciozoll Internat Explores

| Fle Edt View Favoles Took Help E3
Hi
=

&2 QAR QLI DI -

| Address [EI hitp: /hcalhost/serviat/morezerviats ShowCookies

Active Cookies

Cookie Name Cookie Value
No cookies

|2] Done || |Eg Local ntranel

E

Listing 2.15 SetCookies.java

package moreservlets;

import Jjava.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

/** Sets six cookies: three that apply only to the current
* session (regardless of how long that session lasts)
* and three that persist for an hour (regardless of
* whether the browser is restarted).

*/
public class SetCookies extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
for(int 1=0; 1i<3; 1i++) {
// Default maxAge is -1, indicating cookie
// applies only to current browsing session.
Cookie cookie = new Cookie("Session-Cookie-" + i,
"Cookie-Value-S" + 1i);

response.addCookie (cookie) ;
cookie = new Cookie ("Persistent-Cookie-" + i,
"Cookie-Value-P" + 1i);
// Cookie is valid for an hour, regardless of whether
// user quits browser, reboots computer, or whatever.
cookie.setMaxAge (3600) ;
response.addCookie (cookie) ;
}
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Setting Cookies";
out.println
(ServletUtilities.headWithTitle (title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title + "</HI>\n" +
"There are six cookies associated with this page.\n" +
"To see them, visit the\n" +
"\n" +
"<CODE>ShowCookies</CODE> servlet.\n" +
"<pP>\n" +
"Three of the cookies are associated only with the\n" +
"current session, while three are persistent.\n" +
"Quit the browser, restart, and return to the\n" +
"<CODE>ShowCookies</CODE> servlet to verify that\n" +
"the three long-lived ones persist across sessions.\n" +

"</BODY></HTML>") ;

Listing 2.16 ShowCookies.java

package moreservlets;

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

/** Creates a table of the cookies associated with
* the current page.

*/

public class ShowCookies extends HttpServlet {
public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException ({
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Active Cookies";
out.println (ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + title + "</HI1>\n" +
"<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
"<TR BGCOLOR=\"#FFADOO\">\n" +
" <TH>Cookie Name\n" +
" <TH>Cookie Value");
Cookie[] cookies = request.getCookies() ;
if (cookies == null) {
out.println ("<TR><TH COLSPAN=2>No cookies");
} else {
Cookie cookie;
for (int i1=0; i<cookies.length; i++) {
cookie = cookies[i];
out.println ("<TR>\n" +
" <TD>" + cookie.getName() + "\n" +

" <TD>" + cookie.getValue()):;

}
out.println ("</TABLE></BODY></HTML>") ;

Basic Cookie Utilities

This section presents some simple but useful utilities for dealing with cookies.

Finding Cookies with Specified Names

Listing 2.17 shows a section of ServletUtilities.java that simplifies the retrieval of a cookie or
cookie value, given a cookie name. The getCookievalue method loops through the array of
available cookie objects, returning the value of any Cookie whose name matches the input. If
there is no match, the designated default value is returned. So, for example, our typical approach
for dealing with cookies is as follows:

Cookie[] cookies = request.getCookies();
String color =

ServletUtilities.getCookieValue (cookies, "color", "black");

String font =

ServletUtilities.getCookieValue (cookies, "font", "Arial");

The getCookie method also loops through the array comparing names but returns the actual
Cookie object instead of just the value. That method is for cases when you want to do something
with the Cookie other than just read its value.

Listing 2.17 ServletUtilities.java

package moreservlets;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletUtilities {

// Other parts of ServletUtilities shown elsewhere.

/** Given an array of Cookies, a name, and a default value,
* this method tries to find the value of the cookie with
* the given name. If there is no cookie matching the name
* in the array, then the default value is returned instead.
*/
public static String getCookieValue (Cookie[] cookies,
String cookieName,
String defaultValue) ({
if (cookies !'= null) {
for(int i=0; i<cookies.length; i++) ({
Cookie cookie = cookies[i];
if (cookieName.equals (cookie.getName()))

return (cookie.getValue()) ;

}

return (defaultvValue) ;

/** Given an array of cookies and a name, this method tries
* to find and return the cookie from the array that has

* the given name. If there is no cookie matching the name
* 1in the array, null is returned.

*/

public static Cookie getCookie (Cookie[] cookies,
String cookieName) {

if (cookies != null) {

for (int i=0; i<cookies.length; i++) {
Cookie cookie = cookies[i];
if (cookieName.equals (cookie.getName()))

return (cookie) ;

}

return (null) ;

Creating Long-Lived Cookies

Listing 2.18 shows a small class that you can use instead of Ccookie if you want your cookie to
automatically persist for a year when the client quits the browser. For an example of the use of
this class, see the customized search engine interface of Section 8.6 of Core Serviets and
JavaServer Pages (available in PDF at http://www.moreservlets.com).

Listing 2.18 LongLivedCookie.java

package moreservlets;
import javax.servlet.http.*;

/** Cookie that persists 1 year. Default Cookie doesn't

* persist past current session.

*/

public class LongLivedCookie extends Cookie {

public static final int SECONDS PER YEAR = 60*60*24*365;

public LongLivedCookie (String name, String value) {
super (name, value);

setMaxAge (SECONDS_PER YEAR) ;

2.10 Session Tracking

This section briefly introduces the servlet session-tracking API, which keeps track of visitors as
they move around at your site. For additional details and examples, see Chapter 9 of Core
Servlets and JavaServer Pages (in PDF at http://www.moreservilets.com).

The Need for Session Tracking

HTTP is a “stateless” protocol: each time a client retrieves a Web page, it opens a separate
connection to the Web server. The server does not automatically maintain contextual information
about a client. Even with servers that support persistent (keep-alive) HTTP connections and keep
a socket open for multiple client requests that occur close together in time, there is no built-in
support for maintaining contextual information. This lack of context causes a number of
difficulties. For example, when clients at an online store add an item to their shopping carts, how
does the server know what’s already in the carts? Similarly, when clients decide to proceed to
checkout, how can the server determine which previously created shopping carts are theirs?

There are three typical solutions to this problem: cookies, URL rewriting, and hidden form fields.
The following subsections quickly summarize what would be required if you had to implement
session tracking yourself (without using the built-in session tracking API) each of the three ways.

Cookies

You can use HTTP cookies to store information about a shopping session, and each subsequent
connection can look up the current session and then extract information about that session from
some location on the server machine. For example, a servlet could do something like the
following:

String sessionID = makeUniqueString();

Hashtable sessionInfo = new Hashtable();

Hashtable globalTable = findTableStoringSessions();
globalTable.put (sessionID, sessionInfo);

Cookie sessionCookie = new Cookie ("JSESSIONID", sessionlID);
sessionCookie.setPath("/");

response.addCookie (sessionCookie) ;

Then, in later requests the server could use the globalTable hash table to associate a session ID
from the JSESSTONID cookie with the sessionInfo hash table of data associated with that
particular session. This is an excellent solution and is the most widely used approach for session
handling. Still, it is nice that servlets have a higher-level API that handles all this plus the
following tedious tasks:

e Extracting the cookie that stores the session identifier from the other cookies (there may
be many cookies, after all).

¢ Setting an appropriate expiration time for the cookie.

e Associating the hash tables with each request.

e Generating the unique session identifiers.

URL Rewriting

With this approach, the client appends some extra data on the end of each URL that identifies the
session, and the server associates that identifier with data it has stored about that session. For
example, with http://host/path/file.html;jsessionid=1234, the session information is attached as
jsessionid=1234. This is also an excellent solution and even has the advantage that it works when
browsers don’t support cookies or when the user has disabled them. However, it has most of the
same problems as cookies, namely, that the server-side program has a lot of straightforward but
tedious processing to do. In addition, you have to be very careful that every URL that references
your site and is returned to the user (even by indirect means like Location fields in server
redirects) has the extra information appended. And, if the user leaves the session and comes
back via a bookmark or link, the session information can be lost.

Hidden Form Fields

HTML forms can have an entry that looks like the following:

<INPUT TYPE="HIDDEN" NAME="session" VALUE="...">

This entry means that, when the form is submitted, the specified hame and value are included in
the GET or POST data. This hidden field can be used to store information about the session but has
the major disadvantage that it only works if every page is dynamically generated by a form
submission. Thus, hidden form fields cannot support general session tracking, only tracking
within a specific series of operations.

Session Tracking in Servlets

Servlets provide an outstanding technical solution: the HttpSession APIL. This high-level
interface is built on top of cookies or URL rewriting. All servers are required to support session
tracking with cookies, and many have a setting that lets you globally switch to URL rewriting. In
fact, some servers use cookies if the browser supports them but automatically revert to URL
rewriting when cookies are unsupported or explicitly disabled.

Either way, the servlet author doesn’t need to bother with many of the details, doesn’t have to
explicitly manipulate cookies or information appended to the URL, and is automatically given a
convenient place to store arbitrary objects that are associated with each session.

The Session-Tracking API

Using sessions in servlets is straightforward and involves looking up the session object associated
with the current request, creating a new session object when necessary, looking up information
associated with a session, storing information in a session, and discarding completed or
abandoned sessions. Finally, if you return any URLs to the clients that reference your site and URL
rewriting is being used, you need to attach the session information to the URLs.

Looking Up the HttpSession Object Associated with the

Current Request

You look up the HttpSession object by calling the getsSession method of HttpServletRequest.
Behind the scenes, the system extracts a user ID from a cookie or attached URL data, then uses
that as a key into a table of previously created HttpSession objects. But this is all done
transparently to the programmer: you just call getSession. If getSession returns null, this
means that the user is not already participating in a session, so you can create a new session.
Creating a new session in this case is so commonly done that there is an option to automatically
create a new session if one doesn't already exist. Just pass true to getSession. Thus, your first
step usually looks like this:

HttpSession session = request.getSession (true);

If you care whether the session existed previously or is newly created, you can use isNew to
check.

Looking Up Information Associated with a Session

HttpSession objects live on the server; they're just automatically associated with the client by a
behind-the-scenes mechanism like cookies or URL rewriting. These session objects have a built-in
data structure that lets you store any number of keys and associated values. In version 2.1 and
earlier of the servlet API, you use session.getValue ("attribute") to look up a previously
stored value. The return type is 0bject, so you have to do a typecast to whatever more specific
type of data was associated with that attribute name in the session. The return value is null if
there is no such attribute, so you need to check for nul1 before calling methods on objects
associated with sessions.

In versions 2.2 and 2.3 of the servlet API, getvalue is deprecated in favor of getAttribute
because of the better naming match with setattribute (in version 2.1, the match for getvalue
is putValue, Not setValue).

Here’s a representative example, assuming shoppingCart is some class you've defined to store
information on items being purchased.

HttpSession session = request.getSession(true) ;
ShoppingCart cart =
(ShoppingCart) session.getAttribute ("shoppingCart") ;
if (cart == null) { // No cart already in session
cart = new ShoppingCart () ;
session.setAttribute ("shoppingCart", cart);
}
doSomethingWith (cart) ;

In most cases, you have a specific attribute name in mind and want to find the value (if any)
already associated with that name. However, you can also discover all the attribute names in a
given session by calling getvalueNames, which returns an array of strings. This method was your
only option for finding attribute names in version 2.1, but in servlet engines supporting versions
2.2 and 2.3 of the servlet specification, you can use getAttributeNames. That method is more
consistent in that it returns an Enumeration, just like the getHeaderNames and
getParameterNames methods of HttpServletRequest.

Although the data that was explicitly associated with a session is the part you care most about,
some other pieces of information are sometimes useful as well. Here is a summary of the methods
available in the HttpSession class.

public Object getAttribute(String name)
public Object getValue(String name) [deprecated]

These methods extract a previously stored value from a session object. They return null if no
value is associated with the given name. Use getvalue only if you need to support servers that
run version 2.1 of the servlet API. Versions 2.2 and 2.3 support both methods, but getAttribute
is preferred and getvalue is deprecated.

public void setAttribute(String name, Object value)
public void putValue(String name, Object value) [deprecated]

These methods associate a value with a name. Use putvalue only if you need to support servers
that run version 2.1 of the servlet API. If the object supplied to setAttribute Or putvalue
implements the HttpSessionBindingListener interface, the object’s valueBound method is
called after it is stored in the session. Similarly, if the previous value implements
HttpSessionBindingListener, its valueUnbound method is called.

public void removeAttribute(String name)

public void removeValue(String name) [deprecated]

These methods remove any values associated with the designated name. If the value being
removed implements HttpSessionBindingListener, its valueUnbound method is called. Use
removeValue only if you need to support servers that run version 2.1 of the servlet APIL. In
versions 2.2 and 2.3, removeAttribute is preferred, but removevalue is still supported (albeit
deprecated) for backward compatibility.

public Enumeration getAttributeNames()
public String[] getValueNames() [deprecated]

These methods return the names of all attributes in the session. Use getvalueNames only if you
need to support servers that run version 2.1 of the servlet API.

public String getld()

This method returns the unique identifier generated for each session. It is useful for debugging or
logging.

public boolean isNew()

This method returns true if the client (browser) has never seen the session, usually because it
was just created rather than being referenced by an incoming client request. It returns false for
preexisting sessions.

public long getCreationTime()

This method returns the time in milliseconds since midnight, January 1, 1970 (GMT) at which the
session was first built. To get a value useful for printing, pass the value to the Date constructor or
the setTimeInMillis method of GregorianCalendar.

public long getLastAccessedTime()

This method returns the time in milliseconds since midnight, January 1, 1970 (GMT) at which the
session was last sent from the client.

public int getMaxInactivelInterval()
public void setMaxInactivelInterval(int seconds)

These methods get or set the amount of time, in seconds, that a session should go without access
before being automatically invalidated. A negative value indicates that the session should never
time out. Note that the timeout is maintained on the server and is not the same as the cookie
expiration date, which is sent to the client. See Section 5.10 (Controlling Session Timeouts) for
instructions on changing the default session timeout interval.

public void invalidate()

This method invalidates the session and unbinds all objects associated with it. Use this method
with caution; remember that sessions are associated with users (i.e., clients), not with individual
servlets or JSP pages. So, if you invalidate a session, you might be destroying data that another
servlet or JSP page is using.

Associating Information with a Session

As discussed in the previous section, you read information associated with a session by using
getAttribute. To specify information, use setAttribute. To let your values perform side effects
when they are stored in a session, simply have the object you are associating with the session
implement the HttpSessionBindingListener interface. That way, every time setAttribute (Or
putValue) is called on one of those objects, its valueBound method is called immediately
afterward.

Be aware that setAttribute replaces any previous values; if you want to remove a value without
supplying a replacement, use removeAttribute. This method triggers the valueUnbound method
of any values that implement HttpSessionBindingListener.

Following is an example of adding information to a session. You can add information in two ways:
by adding a new session attribute (as with the first bold line in the example) or by augmenting an
object that is already in the session (as in the last line of the example).

HttpSession session = request.getSession (true);
ShoppingCart cart =
(ShoppingCart) session.getAttribute ("shoppingCart") ;
if (cart == null) { // No cart already in session
cart = new ShoppingCart () ;
session.setAttribute ("shoppingCart", cart);
}
addSomethingTo (cart) ;

Terminating Sessions

Sessions automatically become inactive when the amount of time between client accesses
exceeds the interval specified by getMaxInactiveInterval. When this happens, any objects
bound to the HttpSession object automatically get unbound. Then, your attached objects are
automatically notified if they implement the HttpSessionBindingListener interface.

Rather than waiting for sessions to time out, you can explicitly deactivate a session with the
session’s invalidate method.

Encoding URLs Sent to the Client

If you are using URL rewriting for session tracking and you send a URL that references your site
to the client, you need to explicitly add the session data. There are two possible places where you
might use URLs that refer to your own site.

The first is where the URLs are embedded in the Web page that the servlet generates. These URLs
should be passed through the encodeURL method of HttpServletResponse. The method
determines if URL rewriting is currently in use and appends the session information only if
necessary. The URL is returned unchanged otherwise.

Here’s an example:

String originalURL = someRelativeOrAbsoluteURL;
String encodedURL = response.encodeURL(originalURL) ;
out.println ("...");

The second place you might use a URL that refers to your own site is in a sendredirect call (i.e.,
placed into the Location response header). In this second situation, different rules determine
whether session information needs to be attached, so you cannot use encodeURL. Fortunately,
HttpServletResponse supplies an encodeRedirectURL method to handle that case. Here's an
example:

String originalURL = someURL;
String encodedURL = response.encodeRedirectURL (originalURL) ;

response.sendRedirect (encodedURL) ;

Since you often don’t know if your servlet will later become part of a series of pages that use
session tracking, it is good practice to plan ahead and encode URLs that reference your own site.

A Serviet Showing Per-Client Access Counts

Listing 2.19 presents a simple servlet that shows basic information about the client’s session.
When the client connects, the servlet uses request.getSession (true) either to retrieve the
existing session or, if there was no session, to create a new one. The servlet then looks for an
attribute of type Integer called accessCount. If it cannot find such an attribute, it uses 0 as the
number of previous accesses. This value is then incremented and associated with the session by
setAttribute. Finally, the servlet prints a small HTML table showing information about the
session. Figures 2-17 and 2-18 show the servlet on the initial visit and after the page was
reloaded several times.

Figure 2-17. First visit by client to snowsession servlet.

- Sezzion Tracking Example - Halzcape

Fle Edit View Go Communicater Help

e e Ao vl e D =

“| f "Bookmarks & Localion:[ritp:ocahost/serviel/moreserviets. ShowS ession =]

Welcome, Newcomer

Information on Your Session:

Info Type | Value
I EOF295B1C075FEE3DST020F6064294ES
Creahon Time Fn Jul 20 17:11:1%2 EDT 2001
Tune of Last Access Fri Jul 20 17:11:19 EDT 2001

Nurnber of Previous Accesses |0

== [Document: Done S N o it

Figure 2-18. Eleventh visit to showsession servlet. Access count is

independent of nhumber of visits by other clients.

- Seseien Tracking Example - Hatzcape

Fle Edik \iew Go Communicator Hel

I e 9y Adomsad@ =
°| wuf "Bookmarks b Location:[itp:/iocahost/serviel/moreserviets. ShowG ession =]

Welcome Back

Information on Your Session:

Info Type | Value
J1N] ENE295E 1 COTSFEEIDST020EA064294ES
Creahon Time ..Fn.Iul 20 17:11:19 EDT 2001
Time of Last Access (Fri Jul 20 17:12:25 EDT 2001

Nurrber of Previous Accesses |10

== [Dacument: Dione Slsk e P FE A s

Listing 2.19 ShowSession.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;
import java.net.*;

import java.util.x*;

/** Simple example of session tracking. */

public class ShowSession extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Session Tracking Example";
HttpSession session = request.getSession (true);
String heading;
Integer accessCount =
(Integer)session.getAttribute ("accessCount") ;
if (accessCount == null) {

accessCount = new Integer (0);

heading = "Welcome, Newcomer";
} else {
heading = "Welcome Back";
accessCount = new Integer (accessCount.intValue() + 1);

}
session.setAttribute ("accessCount", accessCount);
out.println (ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=\"CENTER\">" + heading + "</H1>\n" +
"<H2>Information on Your Session:</H2>\n" +
"<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
"<TR BGCOLOR=\"#FFADOO\">\n" +
" <TH>Info Type<TH>Value\n" +
"<TR>\n" +
" <TD>ID\n" +
" <TD>" + session.getId() + "\n" +
"<TR>\n" +
" <TD>Creation Time\n" +
" TD>" +
new Date (session.getCreationTime()) + "\n" +
"<TR>\n" +
" <TD>Time of Last Access\n" +
" TD>" +
new Date (session.getlLastAccessedTime()) + "\n"

"<TR>\n" +

+

<TD>Number of Previous Accesses\n" +
" <TD>" + accessCount + "\n" +
"</TABLE>\n" +

"</BODY></HTML>") ;

/** Handle GET and POST requests identically. */

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({

doGet (request, response);

A Simplified Shopping Cart Application

Core Servlets and JavaServer Pages (available in PDF at http://www.moreservlets.com) presents
a full-fledged shopping cart example. Most of the code in that example is for automatically
building the Web pages that display the items and for the shopping cart itself. Although these
application-specific pieces can be somewhat complicated, the basic session tracking is quite
simple. This section illustrates the fundamental approach to session tracking, but without a
full-featured shopping cart.

Listing 2.20 shows an application that uses a simple ArrayList (the Java 2 platform’s
replacement for vector) to keep track of all the items each user has previously purchased. In
addition to finding or creating the session and inserting the newly purchased item (the value of
the newItem request parameter) into it, this example outputs a bulleted list of whatever items are
in the “cart” (i.e., the ArrayList). Notice that the code that outputs this list is synchronized on
the ArrayList. This precaution is worth taking, but you should be aware that the circumstances
that make synchronization necessary are exceedingly rare. Since each user has a separate
session, the only way a race condition could occur is if the same user submits two purchases very
close together in time. Although unlikely, this is possible, so synchronization is worthwhile.

Listing 2.20 ShowItems.java

package moreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import java.util.ArraylList;

import moreservlets.*;

/** Servlet that displays a list of items being ordered.
* Accumulates them in an ArrayList with no attempt at
* detecting repeated items. Used to demonstrate basic
* session tracking.

*/

public class ShowItems extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
HttpSession session = request.getSession(true) ;
ArrayList previousItems =
(Arraylist) session.getAttribute ("previousItems") ;
if (previousItems == null) {
previousItems = new ArrayList();
session.setAttribute ("previousItems", previousItems) ;
}
String newltem = request.getParameter ("newltem") ;
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String title = "Items Purchased";
out.println (ServletUtilities.headWithTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<HI>M™ 4+ title + "</H1>");
synchronized (previousItems) {
if (newItem != null) {
previousItems.add (newItem) ;
}
if (previousItems.size() == 0) {
out.println ("<I>No items</I>");
} else {
out.println ("") ;
for (int i=0; i<previousItems.size(); i++) {
out.println ("" + (String)previousItems.get(i));
}
out.println ("");

}
out.println ("</BODY></HTML>") ;

Listing 2.21 shows an HTML form that collects values of the newItem parameter and submits them
to the servlet. Figure 2-19 shows the result of the form; Figures 2-20 and 2-21 show the results
of the servlet before visiting the order form and after visiting the order form several times,
respectively.

Figure 2-19. Front end to the item display servlet.

H Order Form - Microsoft Internet Explorer

| File Edit Yiew Go Favorites Help 2 |

22000 DESY DRAEH

| Address |l__'| hitp: / Mlocalhost OrderForm himl E|
=l

Order Form
New Item to Order: [yacht
Order and Show All Purchases |

|

(2] 2 |ocal infranet zone y

Figure 2-20. The item display serviet before any purchases

are made.
A tems Purchased - Microsoft Internet Explorer
| File Edit View Go Favortes Help 2 |
e 0o~ Q3 RS
| Address |{tﬂ http:{ flocalhost/sendet/ moresendsts Showltems j
=l
Items Purchased
No items
|
[#] 2 Local intranet zone p

Figure 2-21. The item display serviet after a few small

purchases are made.

A hems Purchased - Microsoft Internet Explorer
| File Edit View Go Favorites Help 2 |
ler»-QP0A Q503 Y FRIH |
__.ﬂu:lnlrass [l__] hitp:/ flocalhostfsandet moresendets, Showliems Tnewitern=car El |
=
Items Purchased

« yacht

+ chalet

+ plane

+ car
2] [] | £ Local intranet 20ne o

Listing 2.21 OrderForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DID HTIML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Order Form</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Order Form</H1>
<FORM ACTION="/servlet/moreservlets.ShowItems">
New Item to Order:
<INPUT TYPE="TEXT" NAME="newItem" VALUE="yacht">

<CENTER>
<INPUT TYPE="SUBMIT" VALUE="Order and Show All Purchases">
</CENTER>
</FORM>
</BODY>
</HTML>

Chapter 3. A Fast Introduction to Basic JSP

Programming

Topics in This Chapter

o Understanding the benefits of JSP

o Invoking Java code with JSP expressions, scriptlets, and declarations

o Structuring the servlet that results from a JSP page

o Including files and applets in JSP documents

o Using JavaBeans with JSP

o Creating custom JSP tag libraries

o Combining servlets and JSP: the Model View Controller (Model 2)
architecture

JavaServer Pages (JSP) technology enables you to mix regular, static HTML with
dynamically generated content. You simply write the regular HTML in the normal
manner, using familiar Web-page-building tools. You then enclose the code for
the dynamic parts in special tags, most of which start with <% and end with %>.
For example, here is a section of a JSP page that results in "Thanks for ordering
Core Web Programming” for a URL of

http://host/OrderConfirmation.jsp ?title=Core+Web+Programming:

Thanks for ordering <I><%= request.getParameter ("title") $></I>

Separating the static HTML from the dynamic content provides a humber of
benefits over servlets alone, and the approach used in JavaServer Pages offers
several advantages over competing technologies such as ASP, PHP, or
ColdFusion. Section 3.2 gives some details on these advantages, but they
basically boil down to two facts: JSP is widely supported and thus doesn’t lock
you into a particular operating system or Web server; and JSP gives you full
access to the Java programming language and Java servlet technology for the
dynamic part, rather than requiring you to use an unfamiliar and weaker
special-purpose language.

3.1 JSP Overview

The process of making JavaServer Pages accessible on the Web is much simpler
than that for servlets. Assuming you have a Web server that supports JSP, you
give your file a.jsp extension and simply place it in any of the designated JSP
locations (which, on many servers, is any place you could put a normal Web

page): no compiling, no packages, and no user CLASSPATH settings. However,

although your personal environment doesn’t need any special settings, the
server still has to be set up with access to the servlet and JSP class files and the
Java compiler. For details, see Chapter 1 (Server Setup and Configuration).

Although what you write often looks more like a regular HTML file than like a
servlet, behind the scenes the JSP page is automatically converted to a normal
servlet, with the static HTML simply being printed to the output stream
associated with the servlet. This translation is nhormally done the first time the
page is requested. To ensure that the first real user doesn’t experience a
momentary delay when the JSP page is translated into a servlet and compiled,
developers can simply request the page themselves after first installing it.
Alternatively, if you deliver your applications on the same server you develop
them on, you can deliver the precompiled servlet class files in their
server-specific directories (see example locations on page 128). You can even
omit the JSP source code in such a case.

One warning about the automatic translation process is in order. If you make an
error in the dynamic portion of your JSP page, the system may not be able to
properly translate it into a servlet. If your page has such a fatal translation-time
error, the server will present an HTML error page describing the problem to the
client. Internet Explorer 5, however, typically replaces server-generated error
messages with a canned page that it considers friendlier. You will need to turn off
this “feature” when debugging JSP pages. To do so with Internet Explorer 5, go to
the Tools menu, select Internet Options, choose the Advanced tab, and make
sure the “Show friendly HTTP error messages” box is not checked.

Core Approach

When debugging JSP pages, be sure to turn off Internet Explorer ’s
“friendly” HTTP error messages.

Aside from the regular HTML, there are three main types of JSP constructs that
you embed in a page: scripting elements, directives, and actions. Scripting
elements let you specify Java code that will become part of the resultant servlet,

directives let you control the overall structure of the servlet, and actions let you
specify existing components that should be used and otherwise control the
behavior of the JSP engine. To simplify the scripting elements, you have access to

a number of predefined variables, such as request in the code snippet just

shown.

This book covers versions 1.1 and 1.2 of the JavaServer Pages specification.
Basic JSP constructs are backward-compatible with JSP 1.0, but custom tags,
Web applications, and use of the deployment descriptor (web.xml) are specific to
JSP 1.1 and later. Furthermore, JSP 1.1 did not mandate the use of Java 2; JSP
1.2 does. Consequently, if you use constructs specific to Java 2 (e.g., collections),
your JSP 1.2 code will not run on JSP 1.1-compatible servers that are running on
top of JDK 1.1. Finally, note that all JSP 1.x versions are completely incompatible
with the long-obsolete JSP 0.92. If JSP 0.92 was your only exposure to JSP, you
have a pleasant surprise in store; JSP technology has been totally revamped (and
improved) since then.

3.2 Advantages of JSP

JSP has a number of advantages over many of its alternatives. Here are a few of them.

Versus Active Server Pages (ASP) or ColdFusion

ASP is a competing technology from Microsoft. The advantages of JSP are twofold.

First, the dynamic part is written in Java, not VBScript or another ASP-specific language, so JSP
is more powerful and better suited to complex applications that require reusable components.

Second, JSP is portable to other operating systems and Web servers; you aren’t locked into
Windows and IIS. Even if ASP.NET (not yet available as of fall 2001) succeeds in addressing the
problem of developing server-side code with VBScript, you cannot expect to use ASP on multiple
servers and operating systems.

You could make the same argument when comparing JSP to the current version of ColdFusion;
with JSP you can use Java for the “real code” and are not tied to a particular server product. Note,
however, that the next release of ColdFusion (version 5.0) will be within the context of a J2EE
server, allowing developers to easily mix ColdFusion and servlet/JSP code.

Versus PHP

PHP (a recursive acronym for “PHP: Hypertext Preprocessor”) is a free, open-source,
HTML-embedded scripting language that is somewhat similar to both ASP and JSP. One
advantage of JSP is that the dynamic part is written in Java, which already has an extensive API
for networking, database access, distributed objects, and the like, whereas PHP requires learning
an entirely new, less widely used language. A second advantage is that JSP is much more widely
supported by tool and server vendors than is PHP.

Versus Pure Serviets

JSP doesn’t provide any capabilities that couldn’t, in principle, be accomplished with a servlet. In
fact, JSP documents are automatically translated into servlets behind the scenes. But it is more
convenient to write (and to modify!) regular HTML than to have a zillion print1n statements that
generate the HTML. Plus, by separating the presentation from the content, you can put different
people on different tasks: your Web page design experts can build the HTML by using familiar
tools and either leave places for your servlet programmers to insert the dynamic content or
invoke the dynamic content indirectly by means of XML tags.

Does this mean that you can just learn JSP and forget about servilets? By no means! JSP
developers need to know servlets for four reasons:

1. JSP pages get translated into servlets. You can’t understand how JSP works without
understanding servlets.

2. JSP consists of static HTML, special-purpose JSP tags, and Java code. What kind of Java
code? Servlet code! You can’t write that code if you don’t understand servlet
programming.

3. Some tasks are better accomplished by servlets than by JSP. JSP is good at generating
pages that consist of large sections of fairly well structured HTML or other character data.
Servlets are better for generating binary data, building pages with highly variable
structure, and performing tasks (such as redirection) that involve little or no output.

4. Some tasks are better accomplished by a combination of servlets and JSP than by either
servlets or JSP alone. See Section 3.8 (Integrating Servlets and JSP: The MVC
Architecture) for details.

Versus JavaScript

JavaScript, which is completely distinct from the Java programming language, is hormally used to
generate HTML dynamically on the client, building parts of the Web page as the browser loads the
document. This is a useful capability and does not normally overlap with the capabilities of JSP
(which runs only on the server). JSP pages still include scr1pPT tags for JavaScript, just as normal

HTML pages do. In fact, JSP can even be used to dynamically generate the JavaScript that will be
sent to the client.

It is also possible to use JavaScript on the server, most notably on Netscape, IIS, and BroadVision
servers. However, Java is more powerful, flexible, reliable, and portable.

3.3 Invoking Code with JSP Scripting Elements

There are a number of different ways to generate dynamic content from JSP, as illustrated in
Figure 3-1. Each of these approaches has a legitimate place; the size and complexity of the
project is the most important factor in deciding which approach is appropriate. However, be
aware that people err on the side of placing too much code directly in the page much more often
than they err on the opposite end of the spec-trum. Although putting small amounts of Java code
directly in JSP pages works fine for simple applications, using long and complicated blocks of Java
code in JSP pages yields a result that is hard to maintain, hard to debug, and hard to divide among
different members of the development team. Nevertheless, many pages are quite simple, and the
first two approaches of Figure 3-1 (placing explicit Java code directly in the page) work quite well.
This section discusses those approaches.

Figure 3-1. Strategies for invoking dynamic code from JSP.

Simple opplication or Call Java code directly, Place all Java code in JSP page.
small development team, Section 3.3 " ; '

1 * *

. Mdﬂdjmﬂ!, [Jewln]} serrate 11ti|Et}' clisses.
Insert into JSP page only the Java code needed to imvoke the
utility classes. Section 3.5,

* Use beans. Develop separate utility classes structured as
beans. Use sp:useBean, jsp:getProperty, and
Jsp:setProperty to invoke the code, Section 3.6,

* Use custom tags. Develop tag handler elasses. If the handlers
become complicated, use separate utility elasses. Invoke the
bagt handlers with XML-like custom tags. Section 3.7,

* Use the MVC architecture. Have a servlet respond to
original request, look up data, and store results in beans.

Complex application or Forward to a JSP page to present |‘c‘5.u]l.~s. 5P page uses beans

laige development laam. and possibly custom tags. Section 3.5,

JSP scripting elements let you insert code into the servlet that will be generated from the JSP
page. There are three forms:

1. Expressions of the form <%= Expression %>, which are evaluated and inserted into the
servlet’s output.

2. Scriptlets of the form <% code %>, which are inserted into the servilet’'s jspService
method (called by service).

3. Declarations of the form <% ! code %>, which are inserted into the body of the servlet class,
outside of any existing methods.

Each of these scripting elements is described in more detail in the following sections.

In many cases, a large percentage of your JSP page just consists of static HTML, known as
template text. In almost all respects, this HTML looks just like normal HTML, follows all the same
syntax rules, and is simply “passed through” to the client by the servlet created to handle the
page. Not only does the HTML look normal, it can be created by whatever tools you already are
using for building Web pages. For example, I used Macromedia’s HomeSite for most of the ISP
pages in this book.

There are two minor exceptions to the “template text is passed straight through” rule. First, if you
want to have <% in the output, you need to put <\% in the template text. Second, if you want a
comment to appear in the JSP page but not in the resultant document, use

<%-- JSP Comment --%>

HTML comments of the form

<!-- HTML Comment —-->

are passed through to the resultant HTML normally.

Expressions

A JSP expression is used to insert values directly into the output. It has the following form:

<%= Java Expression %>

The expression is evaluated, converted to a string, and inserted in the page. That is, this
evaluation is performed at run time (when the page is requested) and thus has full access to
information about the request. For example, the following shows the date/time that the page was
requested.

Current time: <%= new java.util.Date() %>

Predefined Variables

To simplify these expressions, you can use a number of predefined variables (or “implicit
objects”). There is nothing magic about these variables; the system simply tells you what names
it will use for the local variables in jspservice. These implicit objects are discussed in more
detail later in this section, but for the purpose of expressions, the most important ones are:

e request, the HttpServietRequest

e response, the HttpServletResponse

e session, the HttpSession associated with the request (unless disabled with the session
attribute of the page directive—see Section 3.4)

e out, the Writer (a buffered version called JspWriter) used to send output to the client

Here is an example:

Your hostname: <%= request.getRemoteHost () %>

JSP/Servlet Correspondence

Now, I just stated that a JSP expression is evaluated and inserted into the page output. Although
this is true, it is sometimes helpful to understand in a bit more detail what is going on.

It is actually pretty simple: JSP expressions basically become print (or write) statements in the
servlet that results from the JSP page. Whereas regular HTML becomes print statements with
double quotes around the text, JSP expressions become print statements with no double quotes.
Instead of being placed in the doGet method, these print statements are placed in a new method
called jspservice thatis called by service for both GET and POST requests. For instance, Listing
3.1 shows a small JSP sample that includes some static HTML and a JSP expression. Listing 3.2
shows a jspsService method that might result. Of course, different vendors will produce code in
slightly different ways, and optimizations such as reading the HTML from a static byte array are
quite common.

Also, I oversimplified the definition of the out variable; out in a JSP page is a JspWriter, SO you
have to modify the slightly simpler printwWriter that directly results from a call to getwWriter. So,
don’t expect the code your server generates to look exactly like this.

Listing 3.1 Sample JSP Expression: Random Number

<H1>A Random Number</H1>

<%= Math.random() %>

Listing 3.2 Representative Resulting Serviet Code: Random

Number

public void JjspService (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
response.setContentType ("text/html") ;
HttpSession session = request.getSession (true);
JspWriter out = response.getWriter(); // Oversimplified a bit
out.println("<H1>A Random Number</H1>") ;
out.println(Math.random()) ;

If you want to see the exact code that your server generates, you’ll have to dig around a bit to find
it. In fact, some servers delete the source code files once they are successfully compiled. But here
is a summary of the locations used by three common, free development servers.

Tomcat 4.0 Autogenerated Servlet Source Code
install_dir/work/localhost/_

(The final directory is an underscore.)

JRun 3.1 Autogenerated Servlet Source Code
install_dir/servers/default/default-app/WEB-INF/jsp

(More generally, in the WEB-INF/jsp directory of the Web application to which the JSP page
belongs.)

ServletExec 4.0 Autogenerated Servlet Source Code
install_dir/Servlets/pagecompile

(More generally, in install_dir/ServiletExec Data/virtual-server-name/
web-app-name/pagecompile.)

XML Syntax for Expressions

On some servers, XML authors can use the following alternative syntax for JSP expressions:

<jsp:expression>Java Expression</jsp:expression>

However, in JSP 1.1 and earlier, servers are not required to support this alternative syntax, and
in practice few do. In JSP 1.2, servers are required to support this syntax as long as authors don't
mix the XML version (<jsp:expression> ... </jsp:expression>) and the standard JSP version
that follows ASP syntax (<%= ... %>) in the same page. Note that XML elements, unlike HTML
ones, are case sensitive, so be sure to use jsp:expression in lower case.

Installing JSP Pages

Servlets require you to set your CLASSPATH, use packages to avoid name conflicts, install the
class files in servlet-specific locations, and use special-purpose URLs. Not so with JSP pages. JSP
pages can be placed in the same directories as normal HTML pages, images, and style sheets;
they can also be accessed through URLs of the same form as those for HTML pages, images, and
style sheets. Here are a few examples of default installation locations (i.e., locations that apply
when you aren’t using custom Web applications) and associated URLs. Where I list SomeDirectory,
you can use any directory name you like. (But you are never allowed to use WEB-INF or META-INF
as directory names. For the default Web application, you also have to avoid a directory name that
matches the URL prefix of any other Web application. For information on defining your own Web
application, see Chapter 4, ™ Using and Deploying Web Applications.”)

Tomcat Directory
install_dir/webapps/ROOT
(or install_dir/webapps/ROOT/SomeDirectory)
e JRun Directory
install_dir/servers/default/default-app
(or install_dir/servers/default/default-app/SomeDirectory)
e ServletExec Directory
install_dir/public_html
(or install_dir/public_html/SomeDirectory)
e Corresponding URLs
http://host/Hello.html

(or http://host/SomeDirectory/Hello.html)

http://host/Hello.jsp
(or http://host/SomeDirectory/Hello.jsp)

Note that, although JSP pages themselves need no special installation directories, any Java
classes called from ISP pages still need to go in the standard locations used by servlet classes
(e.qg.,.../WEB-INF/classes; see Sections 1.7 and 1.9).

Example: JSP Expressions

Listing 3.3 gives an example JSP page called Expressions.jsp. 1 placed the file in a subdirectory
called jsp-intro, copied the entire directory from my development directory to the deployment
location just discussed, and used a base URL of http://host/jsp-intro/Expressions.jsp. Figures 3-2
and 3-3 show some typical results.

Figure 3-2. Result of Expressions.jsp using JRun 3.1 and

omitting the testraram request parameter.

FZ ISP Expressions - Melscape

Fle Edit Yiew Go Communicator Help

IR Forar Y Jon =

'j J'Endunu'ks ,&. Lmah'nﬂ:|I'ﬂ:\:a’.-'hmhwrﬁsp-hlm."Ese:fcw-:ﬂs P LI

JSP Expressions

* Cumrent trme: Wed Jul 25 13:05.55 EDT 2001
* Server: JRun 3.1 3.1.15506

* Seszion ID- 338 168996080569860

* The testFaram form parameter; null

b (=b=| [Document Done e %o P @ & | s

Figure 3-3. Result of Expressions.jsp using ServietExec 4.0
and specifying test+vaiuve as the value of the testraram request

parameter.

HZ ISP Expressions - Melecaps

Fle Edit Yiew Go Communicaior Help

1o ADdo @ISO @ [

':f J'Emhnarks ,&. Lnoah'm:|I'ﬂrn’a'l-:|-:.ah-:-:h'|s|:--i'1lr~1J'Eserfcssn:ﬂs|:|:-?I¢$‘.F‘a'an'--lcsrﬂ'all.lc j

JSP Expressions

Current time: Wed Jul 25 13:06:55 EDT 2001
cerver: Mew Atlanta Servletbxec Debugger/d. ()
Session [D: HnTHFad K xZ CovZD BeHSTulCuTn
The test Param form parameter; test walue

& & & @

Notice that I included META tags and a style sheet link in the HEAD section of the JSP page. It is
good practice to include these elements, but there are two reasons why they are often omitted
from pages generated by normal servlets.

First, with servlets, it is tedious to generate the required print1n statements. With JSP, however,
the format is simpler and you can make use of the code reuse options in your usual HTML building
tools.

Second, servlets cannot use the simplest form of relative URLs (ones that refer to files in the same
directory as the current page) since the servlet directories are not mapped to URLs in the same
manner as are URLs for normal Web pages. JSP pages, on the other hand, are installed in the
normal Web page hierarchy on the server, and relative URLs are resolved properly as long as the
JSP page is accessed directly by the client, rather than indirectly by means of a
RequestDispatcher. Even then, there are some techniques you can use to simplify the use of
relative URLs. For details, see Section 4.5 (Handling Relative URLs in Web Applications).

Thus, in most cases style sheets and JSP pages can be kept together in the same directory. The
source code for the style sheet, like all code shown or referenced in the book, can be found at
http://www.moreservlets.com.

Listing 3.3 Expressions.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>JSP Expressions</TITLE>
<META NAME="keywords"
CONTENT="JSP, expressions, JavaServer Pages,servlets">
<META NAME="description"
CONTENT="A quick example of JSP expressions.">
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>

<BODY>

<H2>JSP Expressions</H2>

Current time: <%= new java.util.Date() %>
Server: <%= application.getServerInfo() %>
Session ID: <%= session.getId() %>
The <CODE>testParam</CODE> form parameter:

<%= request.getParameter ("testParam") %>

</BODY>

</HTML>

Scriptlets

If you want to do something more complex than output a simple expression, JSP scriptlets let you
insert arbitrary code into the servlet’s jspservice method (which is called by service).
Scriptlets have the following form:

<% Java Code %>

Scriptlets have access to the same automatically defined variables as do expressions (request,
response, session, out, etc.). So, for example, if you want to explicitly send output to the
resultant page, you could use the out variable, as in the following example.

<%
String queryData = request.getQueryString();
out.println ("Attached GET data: " + queryData);

s>

In this particular instance, you could have accomplished the same effect more easily by using the
following JSP expression:

Attached GET data: <%= request.getQueryString() %>

In general, however, scriptlets can perform a number of tasks that cannot be accomplished with
expressions alone. These tasks include setting response headers and status codes, invoking side
effects such as writing to the server log or updating a database, or executing code that contains
loops, conditionals, or other complex constructs. For instance, the following snippet specifies that
the current page is sent to the client as plain text, not as HTML (which is the default).

<% response.setContentType ("text/plain); %>

It is important to note that you can set response headers or status codes at various places within
a JSP page, even though this capability appears to violate the rule that this type of response data
needs to be specified before any document content is sent to the client. Setting headers and
status codes is permitted because servlets that result from JSP pages use a special variety of
Writer (of type Jspuiiriter) that partially buffers the document. This buffering behavior can be
changed, however; see Section 3.4 for a discussion of the buffer and autoflush attributes of the
page directive.

JSP/Servlet Correspondence

It is easy to understand how JSP scriptlets correspond to servlet code: the scriptlet code is just
directly inserted into the jspservice method: no strings, no print statements, no changes
whatsoever. For instance, Listing 3.4 shows a small JSP sample that includes some static HTML,
a JSP expression, and a JSP scriptlet. Listing 3.5 shows a jspService method that might result.
Again, different vendors will produce this code in slightly different ways, and I oversimplified the
out variable (which is a Jspwriter, not the slightly simpler printwriter that results from a call
to getWriter). So, don't expect the code your server generates to look exactly like this.

Listing 3.4 Sample JSP Expression/Scriptlet

<H2>foo</H2>

Listing 3.5 Representative Resulting Serviet Code:

Expression/Scriptlet

public void JspService (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {
response.setContentType ("text/html") ;
HttpSession session = request.getSession (true);
JspWriter out = response.getWriter();
out.println ("<H2>foo</H2>") ;
out.println(bar());
baz () ;

Scriptlet Example

As an example of code that is too complex for a JSP expression alone, Listing 3.6 presents a JSP
page that uses the bgColor request parameter to set the background color of the page.
JSP-Styles.css is omitted so that the style sheet does not override the background color. Figures
3-4, 3-5, and 3-6 show the default result, the result for a background of cococo, and the result
for papayawhip (one of the oddball X11 color names still supported for historical reasons),
respectively.

Figure 3-4. Default result of BGColor.jsp.

/2 Color Testing - Microzoft Intemnet Explorer M= E3
| Fle Edt View Favotes Took Help E3
[-2-90A QeI H I |
| Address | @] i/ Mocahost/jsp-ntio/BgCakar jsp |

Testing a Background of
"WHITE"

|

] Done || [Ea Local miranet

Figure 3-5. Result of BGColor.jsp when accessed with a vgcoior

parameter having the RGB value cococo.

a Color Testing - Microzoft Internet Explorer

| Fle Edt Yiew Favoies Took Help IIII

[e-2-00dQuI DI

| Address | @] kitp:/ Mocahost/jsp-tio/BgCokt jsp TogColer=COCICD =]

-
Testing a Background of
"Cococo"
-]
&1 0o | e mianet /

Figure 3-6. Result of BGColor.jsp when accessed with a vgcoior

parameter having the X11 color name papayawhip.

Y Color Testing - Microzoft Intemet Explorer

|| Ele Edt Miew Favodss ook Help (& |

(o2 QA AES I

| Address |E| hitg: Mlacathost/jsp-ntio/Bglalor jsn Mgl olor=papapawhip ﬂ

|
Testing a Background of
"papayawhip"
=
&) Dore | Looalranet y

Listing 3.6 BGColor.jsp

<!DOCTYPE HTML

<HTML>

<HEAD>
<TITLE>Color

</HEAD>

<%

String bgColor

if (bgColor ==

%>

PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

Testing</TITLE>

request.getParameter ("bgColor") ;
null) { bgColor = "WHITE"; }

<BODY BGCOLOR="<%= bgColor %>">

<H2 ALIGN="CENTER">Testing a Background of "<%= bgColor $%>"</H2>
</BODY>
</HTML>

Using Scriptlets to Make Parts of the JSP Page Conditional

Another use of scriptlets is to conditionally output HTML or other content that is not within any JSP
tags. The key to this approach is the fact that code inside a scriptlet gets inserted into the
resultant servlet’'s jspservice method (called by service) exactly as written and that any static
HTML (template text) before or after a scriptlet gets converted to print statements. This means
that scriptlets need not contain complete Java statements and that blocks left open can affect the
static HTML or JSP outside of the scriptlets. For example, consider the following JSP fragment
containing mixed template text and scriptlets.

<% if (Math.random() < 0.5) { %>
Have a nice day!

<% } else { %>

Have a lousy day!

<% } %>

You probably find that a bit confusing. I certainly did the first few times. Neither the “have a nice
day” nor the “have a lousy day” lines are contained within a JSP tag, so it seems odd that only one
of the two becomes part of the output for any given request. But, when you think about how this
example will be converted to servlet code by the JSP engine, you get the following easily
understandable result.

if (Math.random() < 0.5) {
out.println ("Have a nice day!");
} else {

out.println("Have a lousy day!");

XML and Other Special Scriptlet Syntax

There are two special constructs you should take note of. First, if you want to use the characters
s> inside a scriptlet, enter 2\> instead. Second, the XML equivalent of <% Java Code %> is

<jsp:scriptlet>Java Code</jsp:scriptlet>

In JSP 1.1 and earlier, servers are not required to support this alternative syntax, and in practice
few do. In JSP 1.2, servers are required to support this syntax as long as authors don’t mix the
XML version (<jsp:scriptlet> ... </jsp:scriptlet>) and the ASP-like version (<% ... %>)in
the same page. Remember that XML elements are case sensitive; be sure to use jsp:scriptlet
in lower case.

Declarations

A JSP declaration lets you define methods or fields that get inserted into the main body of the
servlet class (outside of the jspservice method that is called by service to process the
request). A declaration has the following form:

<%! Java Code %>

Since declarations do not generate any output, they are normally used in conjunction with JSP
expressions or scriptlets. The declarations define methods or fields that are later used by
expressions or scriptlets. One caution is warranted however: do not use JSP declarations to
override the standard servlet life-cycle methods (service, doGet, init, etc.). The servlet into
which the JSP page gets translated already makes use of these methods. There is no need for
declarations to gain access to service, doGet, Oor doPost, since calls to service are
automatically dispatched to jspService, which is where code resulting from expressions and
scriptlets is put. However, for initialization and cleanup, you can use jspInit and jspDestroy
—the standard init and destroy methods are guaranteed to call these two methods when in
servlets that come from JSP.

Core Approach

For initialization and cleanup in JSP pages, use JSP declarations to

override jspInit and/or jspDestroy.

Aside from overriding standard methods like jspInit and jspDestroy, the utility of JSP
declarations for defining methods is somewhat questionable. Moving the methods to separate
classes (possibly as static methods) makes them easier to write (since you are using a Java

environment, not an HTML-like one), easier to test (no need to run a server), easier to debug (no
tricks are needed to see the standard output), and easier to reuse (many different JSP pages can
use the same utility class). However, using JSP declarations to define fields, as we will see shortly,
gives you something not easily reproducible with separate utility classes: a place to store data
that is persistent between requests.

Core Approach

Consider separate helper classes instead of methods defined by means of
JSP declarations.

JSP/Servlet Correspondence

JSP declarations result in code that is placed inside the servlet class definition but outside the
_jspservice method. Since fields and methods can be declared in any order, it does not matter
if the code from declarations goes at the top or bottom of the servlet. For instance, Listing 3.7
shows a small JSP snippet that includes some static HTML, a JSP declaration, and a JSP
expression. Listing 3.8 shows a servlet that might result. Note that the specific name of the
resultant servlet is not defined by the JSP specification, and in fact different servers have different
conventions. Besides, as already stated, different vendors will produce this code in slightly
different ways, and I oversimplified the out variable (which is a Jspliriter, not the slightly
simpler printWriter that results from a call to getwWriter). So, don’t expect the code your server
generates to look exactly like this.

Listing 3.7 Sample JSP Declaration

<H1>Some Heading</H1>
<

o\°

|
private String randomHeading () {

return ("<H2>" + Math.random() + "</H2>");

o\
\

<%= randomHeading () %>

Listing 3.8 Representative Resulting Serviet Code:

Declaration

public class xxxx implements HttpJdspPage {
private String randomHeading() ({
return ("<H2>" + Math.random() + "</H2>");

public void JspService (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

response.setContentType ("text/html") ;

HttpSession session = request.getSession (true);

JspWriter out = response.getWriter();

out.println("<H1>Some Heading</H1>") ;

out.println (randomHeading()) ;

Declaration Example

In this example, a JSP fragment prints the number of times the current page has been requested
since the server was booted (or the servlet class was changed and reloaded). A hit counter in one
line of code!

<%! private int accessCount = 0; %>
Accesses to page since server reboot:

<%= ++accessCount %>

Recall that multiple client requests to the same servlet result only in multiple threads calling the
service method of a single servlet instance. They do not result in the creation of multiple servlet
instances except possibly when the servlet implements singleThreadModel (see Section 2.3,

" The Servlet Life Cycle ”). Thus, instance variables (fields) of a normal servlet are shared by
multiple requests, and accessCount does not have to be declared static. Now, advanced
readers might wonder if the snippet just shown is thread safe; does the code guarantee that each
visitor gets a unique count? The answer is no; in unusual situations multiple users could see the
same value. For access counts, as long as the count is correct in the long run, it does not matter
if two different users occasionally see the same count. But, for values such as session identifiers,

it is critical to have unique values. For an example similar to the previous snippet but that
guarantees thread safety, see the discussion of the isThreadsafe attribute of the page directive
in Section 3.4.

Listing 3.9 shows the full JSP page; Figure 3-7 shows a representative result. Now, before you
rush out and use this approach to track access to all your pages, a couple of cautions are in order.
First of all, you couldn’t use this for a real hit counter, since the count starts over whenever you
restart the server. So, a real hit counter would need to use jspInit and jspDestroy to read the
previous count at startup and store the old count when the server is shut down. Even then, it
would be possible for the server to crash unexpectedly (e.g., when a rolling blackout strikes
Silicon Valley). So, you would have to periodically write the hit count to disk. Finally, some
advanced servers support distributed applications whereby a cluster of servers appears to the
client as a single server. If your servlets or JSP pages might need to support distribution in this
way, plan ahead and avoid the use of fields for persistent data. Use a database instead.

Figure 3-7. Visiting AccessCounts.jsp after it has been
requested nine previous times by the same or different

clients.

HL ISP Declaiations - Melzcape

Fle Edit iew Go Communicsior Help

49 AV omIdD =

.- J*Ems .&.L-u-::aﬁon:lprw'.-'hcah-:-:Ir'i:p-hlr-:l.-'.ﬁo:et:stmn:3i:|:- ﬂ

JSP Declarations

Accesses to page since server reboot: 10

Listing 3.9 AccessCounts.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>JSP Declarations</TITLE>
<META NAME="keywords"
CONTENT="JSP,declarations, JavaServer, Pages, servlets">
<META NAME="description"
CONTENT="A quick example of JSP declarations.">
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"

TYPE="text/css">
</HEAD>
<BODY>
<H1>JSP Declarations</H1>
<%! private int accessCount = 0; %>
<H2>Accesses to page since server reboot:
<%= ++accessCount $></H2>
</BODY>
</HTML>

XML and Special Declaration Syntax

As with scriptlets, if you want to output %>, enter $\> instead. Finally, note that the XML
equivalent of <3! Java Code %> is

<jsp:declaration>Java Code</jsp:declaration>

In JSP 1.1 and earlier, servers are not required to support this alternative syntax, and in practice
few do. In JSP 1.2, servers are required to support this syntax as long as authors don’t mix the
XML version (<jsp:declaration> ... </jsp:declaration>) and the standard ASP-like version
(<%! ... %>)in the same page. Remember that XML elements are case sensitive; be sure to use
jsp:declaration in lower case.

Predefined Variables

To simplify code in JSP expressions and scriptlets, you are supplied with eight automatically
defined local variables in jspsService, sometimes called implicit objects. Since JSP declarations
result in code that appears outside of the jspService method, these variables are not accessible
in declarations. The available variables are request, response, out, session, application,
config, pageContext, and page. Details for each are given below.

e request This variable is the HttpServletRequest associated with the request; it gives
you access to the request parameters, the request type (e.g., GET or p0sT), and the
incoming HTTP headers (e.g., cookies).

e response This variableis the HttpServletResponse associated with the response to the
client. Since the output stream (see out) is normally buffered, it is usually legal to set
HTTP status codes and response headers in the body of JSP pages, even though the
setting of headers or status codes is not permitted in servlets once any output has been
sent to the client. If you turn buffering off, however (see the buffer attribute in Section
3.4), you must set status codes and headers before supplying any output.

e out This variable is the Writer used to send output to the client. However, to make it
easy to set response headers at various places in the JSP page, out is not the standard

PrintWriter but rather a buffered version of writer called JspWriter. You can adjust the
buffer size through use of the buffer attribute of the page directive. The out variable is
used almost exclusively in scriptlets, since JSP expressions are automatically placed in the
output stream and thus rarely need to refer to out explicitly.

e session This variable is the HttpSession object associated with the request. Recall that
sessions are created automatically in JSP, so this variable is bound even if there is no
incoming session reference. The one exception is when you use the session attribute of
the page directive (Section 3.4) to disable session tracking. In that case, attempts to
reference the session variable cause errors at the time the JSP page is translated into a
servlet.

e application This variable is the servletContext as obtained by getServletContext.
Servlets and JSP pages can store persistent data in the servletContext object rather
than in instance variables. ServletContext has setAttribute and getAttribute
methods that let you store arbitrary data associated with specified keys. The difference
between storing data in instance variables and storing it in the servletContext is that the
ServletContext is shared by all servlets in the Web application, whereas instance
variables are available only to the same servlet that stored the data.

e config This variable is the servletConfig object for this page. The jspinit method
would use it to read initialization parameters.

e pageContext JSP introduced a class called pageContext to give a single point of access
to many of the page attributes. The pageContext variable stores the value of the
PageContext Object associated with the current page. If a method or constructor needs
access to multiple page-related objects, passing pageContext is easier than passing many
separate references to out, request, response, and so forth.

e page This variable is simply a synonym for this and is not very useful. It was created as
a placeholder for the time when the scripting language could be something other than
Java.

3.4 Structuring Autogenerated Servlets: The JSP page

Directive

A JSP directive affects the overall structure of the servlet that results from the JSP page. The
following templates show the two possible forms for directives. Single quotes can be substituted
for the double quotes around the attribute values, but the quotation marks cannot be omitted
altogether. To obtain quote marks within an attribute value, precede them with a backslash,
using \’ for * and \" for ".

<%@ directive attribute="value" %>

<%@ directive attributel="valuel"

attributeZ2="valuel"

attributeN="valueN" $%>

In JSP, there are three types of directives: page, include, and taglib. The page directive lets
you control the structure of the servlet by importing classes, customizing the servlet superclass,
setting the content type, and the like. A page directive can be placed anywhere within the
document; its use is the topic of this section. The second directive, include, lets you insert a file
into the servlet class at the time the JSP file is translated into a servlet. An include directive
should be placed in the document at the point at which you want the file to be inserted; it is
discussed in Section 3.5. JSP 1.1 introduced a third directive, taglib, which is used to define
custom markup tags; it is discussed in Section 3.7.

The page directive lets you define one or more of the following case-sensitive attributes: import,
contentType, isThreadSafe, session, buffer, autoflush, extends, info, errorPage,
isErrorPage, language, and pageEncoding. These attributes are explained in the following
subsections.

The import Attribute

The import attribute of the page directive lets you specify the packages that should be imported
by the servlet into which the JSP page gets translated. As illustrated in Figure 3-8, using separate
utility classes makes your dynamic code easier to maintain, debug, and reuse, and your utility
classes are sure to use packages.

Figure 3-8. Strategies for invoking dynamic code from JSP.

Simple application or - » Call Java code direetly. Place all Java code in [SP page.
small development feam. Spction 3.3,

1 s &

» Call Java code indirectly, Develop separate utility clisses.
Insert into JSP page only the Java code needed to invoke the
utility classes. Section 3.3

= Use beans. Dm—l‘]{}p separate uli|it}.' clusses structured as
beans. Use jsp:useBean, jep:getProperty, and
jsp:setProperty to invoke the code. Section 3.6.

* Use custom tags. Develop tag handler classes, I the handlers
become con |p[iL'uLH]. use separale uti]il}.' classes, Invoke the
tag handlers with XM L-like custom tags. Section 3.7,

* Use the MVC architecture. Have a serviet respond to

' original request, look up data, and store results in beans.

Fy 5 a [SP pawre g e o ISP pare tses besns
Gomplex application or Fora Lr[|_‘m L [SF puage h]-plr{ M_]]T e .\.u]h-._ JSP pagre uses bens
lorge development learm, and possibly custom tags. Section 3.5.

In fact, all of your utility classes should be placed in packages. For one thing, packages are a good
strategy on any large project because they help protect against name conflicts. With JSP,
however, packages are absolutely required. That’'s because, in the absence of packages, classes

you reference are assumed to be in the same package as the current class. For example, suppose
that a JSP page contains the following scriptlet.

<% Test t = new Test(); %>

Now, if Test is in an imported package, there is no ambiguity. But, if Test is not in a package, or
the package to which Test belongs is not explicitly imported, then the system will assume that
Test is in the same package as the autogenerated servlet. The problem is that the autogenerated
servlet’s package is not known! It is quite common for servers to create servlets whose package
is determined by the directory in which the JSP page is placed. Other servers use different
approaches. So, you simply cannot rely on packageless classes to work properly. The same
argument applies to beans (Section 3.6), since beans are just classes that follow some simple
naming and structure conventions.

Core Approach

Always put your utility classes and beans in packages.

By default, the servlet imports java.lang.*, javax.servlet.*, javax.servlet.jsp.*,
javax.servlet.http.*, and possibly some number of server-specific entries. Never write JSP
code that relies on any server-specific classes being imported automatically.

Use of the import attribute takes one of the following two forms.

<%@ page import="package.class" %>

<%@ page import="package.classl,...,package.classN" %>

For example, the following directive signifies that all classes in the java.util package should be

available to use without explicit package identifiers.

<%@ page import="java.util.*" %>

The import attribute is the only page attribute that is allowed to appear multiple times within the
same document. Although page directives can appear anywhere within the document, it is
traditional to place import statements either near the top of the document or just before the first
place that the referenced package is used.

Note that, although the JSP pages go in the normal HTML directories of the server, the classes you
write that are used by JSP pages must be placed in the special servlet directories
(e.qg.,.../WEB-INF/classes; see Sections 1.7 and 1.9).

For example, Listing 3.10 presents a page that uses three classes not in the standard JSP import
list: java.util.Date, moreservlets.ServletUtilities (see Listing 2.17), and
moreservlets.LongLivedCookie (see Listing 2.18). To simplify references to these classes, the
JSP page uses

<%@ page import="java.util.*,moreservlets.*" %>

Figures 3-9 and 3-10 show some typical results.

Figure 3-9. ImportAttribute.jsp when first accessed.

2§ The import Attribute - Microzoft |ntemmet Explore | - [O] x}
|| Fle Edt View Favortes Took Hep -
e QNG AEI B IN
ﬁdd'tﬂ|€| bt A Macabostfep-inod mpotdinbuta j:p ﬂ
=

The import Attribute

Thus page was accessed on Thu Jul 26 172448 EDT 2001
with a userlD coolae of No Valus.
-

|2] Dane || g Local miranet

i

Figure 3-10. ImportAttribute.jsp when accessed in a

subsequent request.

2§ The import Attribute - Microzoft Intemmet Explores HE=E

[-=-QA QNI DS
| Adcress [&] g Mocabostisp inoimpodtinbate jip

The import Attribute

| Fle Edt Vew Favoes Iooks Hep El
|

=

This page was accessed on Thu Jul 26 17:25:33 EDT 2001
with a userlD cookse of id368543,

| |
@] Dore || By Local nitrane

i,

Listing 3.10 ImportAttribute.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DID HTIML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>The import Attribute</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<H2>The import Attribute</H2>
<%-- JSP page directive --%>
<%@ page import="java.util.* moreservlets.*" %>
<%-- JSP Declaration --%>
<%!
private String randomID() {
int num = (int) (Math.random()*10000000.0) ;
return ("id" + num) ;
}
private final String NO VALUE = "<I>No Value</I>";
%>
<%-- JSP Scriptlet --%>
<%
Cookie[] cookies = request.getCookies();
String o0ldID =
ServletUtilities.getCookieValue (cookies, "userID", NO VALUE);
if (oldID.equals (NO_VALUE)) {

String newID = randomID() ;

Cookie cookie = new LongLivedCookie ("userID", newlD);

response.addCookie (cookie) ;

o0 ——

>
<%-- JSP Expressions --%>
This page was accessed on <%= new Date() %> with a userID

cookie of <%= o0ldID $%>.
</BODY>
</HTML>

The contentType Attribute

The contentType attribute sets the content-Type response header, indicating the MIME type of
the document being sent to the client. For more information on MIME types, see Table 2.1
(Common MIME Types) in Section 2.8 (The Server Response: HTTP Response Headers).

Use of the contentType attribute takes one of the following two forms.
<%Q@ page contentType="MIME-Type" %>
<%@ page contentType="MIME-Type; charset=Character-Set" %>

For example, the directive

<%@ page contentType="application/vnd.ms-excel" %>

has the same effect as the scriptlet

<% response.setContentType ("application/vnd.ms-excel"); %>

The main difference between the two forms is that response.setContentType can be invoked
conditionally whereas the page directive cannot be. Setting the content type conditionally is
occasionally useful when the same content can be displayed in different forms—for an example,
see the Section “Generating Excel Spreadsheets” starting on page 254 of Core Servlets and
JavaServer Pages (available in PDF at http://www.moreservlets.com).

Unlike regular servlets, where the default MIME type is text/plain, the default for JSP pages is
text/html (with a default character set of 150-8859-1). Thus, JSP pages that output HTML in a
Latin character set need not use contentType at all. But, pages in JSP 1.1 and earlier that output
other character sets need to use contentType even when they generate HTML. For example,
Japanese JSP pages might use the following.

<%Q@ page contentType="text/html; charset=Shift JIS" %>

In JSP 1.2, however, the pageEncoding attribute (see details later in this section) can be used to
directly specify the character set.

Listing 3.11 shows a JSP page that generates tab-separated Excel output. Note that the page
directive and comment are at the bottom so that the carriage returns at the ends of the lines don't
show up in the Excel document (remember: JSP does not ignore white space—JSP usually
generates HTML where most white space is ignored by the browser). Figure 3-11 shows the result
in Internet Explorer on a system that has Microsoft Office installed.

Figure 3-11. Excel document (Excel.jsp) in Internet Explorer.

- http:/ Nocalhost/jrp-intio/Excel jep - Miciozoft Inter... M=) B3

| Fle Edt View Insent Fomst Jeok Das Go “-

R Al e e

| Address [2] nirp:/Mocahostfisp-niia/Eveel s =
R1LCL = =
1 | 2 3 | 4 | &8 | =
1 |First Last Email Address |
2 |Marty Hall hali@meresendels. com i3]
3 |Lary Briswin b corewa bprogramming. com

4 | Steve Balmer balmen@sun.com
ﬂﬂtutt Mchealy menealy@microsofl.com
5]

ﬁlbiu\hsﬂf I=1 | 31
2] || [Za Lecal niranet p

Listing 3.11 Excel.jsp

First Last Email Address

Marty Hall hall@moreservlets.com

Larry Brown Dbrown@corewebprogramming.com

Steve Balmer balmer@sun.com

Scott McNealy mcnealy@microsoft.com

<%@ page contentType="application/vnd.ms-excel" %>

<%-- There are tabs, not spaces, between columns. --%>

The isThreadSafe Attribute

The isThreadsSafe attribute controls whether the servlet that results from the JSP page will
implement the singleThreadModel interface (Section 2.3). Use of the isThreadsafe attribute
takes one of the following two forms.

<%@ page isThreadSafe="true" %> <%-- Default --%>

<%@ page isThreadSafe="false" %>

With normal servlets, simultaneous user requests result in multiple threads concurrently
accessing the service method of the same servlet instance. This behavior assumes that the
servlet is thread safe; that is, that the servlet synchronizes access to data in its fields so that
inconsistent values will not result from an unexpected ordering of thread execution. In some
cases (such as page access counts), you may not care if two visitors occasionally get the same
value, but in other cases (such as user IDs), identical values can spell disaster. For example, the
following snippet is not thread safe since a thread could be preempted after reading idNum but
before updating it, yielding two users with the same user ID.

<%! private static int idNum = 0; %>

<%
String userID = "userID" + idNum;
out.println("Your ID is " + userID + ".");

idNum = idNum + 1;

o

>

The code should have used a synchronized block. This construct is written

synchronized (someObject) { ... }

and means that once a thread enters the block of code, no other thread can enter the same block
(or any other block marked with the same object reference) until the first thread exits. So, the
previous snippet should have been written in the following manner.

<%! private static int idNum = 0; %>

<%

synchronized (this) {
String userID = "userID" + idNum;
out.println ("Your ID is " + userID + ".");

idNum = idNum + 1;

e

o
\

That’s the normal servlet behavior: multiple simultaneous requests are dispatched to multiple

threads that concurrently access the same servlet instance. However, if a servlet implements the
SingleThreadModel interface, the system guarantees that there will not be simultaneous access
to the same servlet instance. The system can satisfy this guarantee either by queuing all requests
and passing them to the same servlet instance or by creating a pool of instances, each of which

handles a single request at a time. The possibility of a pool of instances explains the need for the
static qualifier in the idNum field declaration in the previous examples.

You use <% @ page isThreadSafe="false" %> to indicate that your code is not thread safe and
thus that the resulting servlet should implement singleThreadModel. The default value is true,
which means that the system assumes you made your code thread safe and it can consequently
use the higher-performance approach of multiple simultaneous threads accessing a single servlet
instance.

Explicitly synchronizing your code as in the previous snippet is preferred whenever possible. In
particular, explicit synchronization yields higher performance pages that are accessed frequently.
However, using isThreadSafe="false" is useful when the problematic code is hard to find
(perhaps it is in a class for which you have no source code) and for quick testing to see if a
problem stems from race conditions at all.

Core Note

With frequently accessed pages, you get better performance by using

explicit synchronization than by using the isThreadSare attribute.

The session Attribute

The session attribute controls whether the page participates in HTTP sessions. Use of this
attribute takes one of the following two forms.

<%@ page session="true" %> <%-- Default --%>

<%@ page session="false" %>

A value of true (the default) indicates that the predefined variable session (of type HttpSession)
should be bound to the existing session if one exists; otherwise, a new session should be created

and bound to session. A value of false means that no sessions will be used automatically and

attempts to access the variable session will result in errors at the time the JSP page is translated

into a servlet. Turning off session tracking may save significant amounts of server memory on

high-traffic sites. Just remember that sessions are user specific, not page specific. Thus, it doesn't
do any good to turn off session tracking for one page unless you also turn it off for related pages
that are likely to be visited in the same client session.

The buffer Attribute

The buffer attribute specifies the size of the buffer used by the out variable, which is of type
JspWriter. Use of this attribute takes one of two forms.

<%@ page buffer="sizekb" %>

<%@ page buffer="none" %>

Servers can use a larger buffer than you specify, but not a smaller one. For example, <%@ page
buffer="32kb" %> means the document content should be buffered and not sent to the client
until at least 32 kilobytes have been accumulated, the page is completed, or the output is
explicitly flushed (e.g., with response. flushBuffer). The default buffer size is server specific,
but must be at least 8 kilobytes. Be cautious about turning off buffering; doing so requires JSP
elements that set headers or status codes to appear at the top of the file, before any HTML
content.

The autoflush Attribute

The autoflush attribute controls whether the output buffer should be automatically flushed when
it is full or whether an exception should be raised when the buffer overflows. Use of this attribute
takes one of the following two forms.

<%@ page autoflush="true" %> <%-- Default --%>

<%@ page autoflush="false" %>

A value of false is illegal when buffer="none" is also used.

The extends Attribute

The extends attribute designates the superclass of the servlet that will be generated for the JSP
page and takes the following form.

<%@ page extends="package.class" %>

This attribute is normally reserved for developers or vendors that implement fundamental
changes to the way that pages operate (e.g., to add in personalization features). Ordinary
mortals should steer clear of this attribute.

The info Attribute

The info attribute defines a string that can be retrieved from the servlet by means of the
getServletInfo method. Use of info takes the following form.

<%@ page info="Some Message" %>

The errorPage Attribute

The errorpPage attribute specifies a JSP page that should process any exceptions (i.e., something
of type Throwable) thrown but not caught in the current page. The designated error page must
use isErrorPage="true" (see next entry) to indicate that it permits use as an error page. The
errorPage attribute is used as follows.

<%@ page errorPage="Relative URL" %>
The exception thrown will be automatically available to the designated error page by means of the

exception variable. For an example, see Section 11.10 of Core Servlets and JavaServer Pages
(available in PDF at http://www.moreservilets.com).

Note that the errorpage attribute is used to designate page-specific error pages. To designate
error pages that apply to an entire Web application or to various categories of errors within an
application, use the error-page element in web.xml. For details, see Section 5.8 (Designating
Pages to Handle Errors).

The isErrorPage Attribute

The isErrorPage attribute indicates whether the current page can act as the error page for
another JSP page. Use of isErrorPage takes one of the following two forms:

<%@ page isErrorPage="true" %>

<%@ page isErrorPage="false" %> <%-- Default --%>

The language Attribute

At some point, the 1anguage attribute is intended to specify the underlying programming
language being used, as below.

<%@ page language="cobol" %>

For now, don't bother with this attribute since java is both the default and the only legal choice.

The pageEncoding Attribute

The pageEncoding attribute, available only in JSP 1.2, defines the character encoding for the
page. The default value is ISO-8859-1 unless the contentType attribute of the page directive is
specified, in which case the charset entry of contentType is the default.

XML Syntax for Directives

All JSP 1.2 servers (containers) and some JSP 1.1 servers permit you to use an alternative
XML-compatible syntax for directives as long as you don’t mix the XML version and the normal
version in the same page. These constructs take the following form:

<jsp:directive.directiveType attribute="value" />

For example, the XML equivalent of

<%@ page import="java.util.*" %>

<jsp:directive.page import="java.util.*" />

3.5 Including Files and Applets in JSP Documents

JSP has three main capabilities for including external pieces into a JSP document.

1. The include directive. The construct lets you insert JSP code into the main page before
that main page is translated into a servlet. The included code can contain JSP constructs

such as field definitions and content-type settings that affect the main page as a whole.
This capability is discussed in the first of the following subsections.

2. The jsp:include action. Although reusing chunks of JSP code is a powerful capability,
most times you would rather sacrifice a small amount of power for the convenience of
being able to change the included documents without updating the main JSP page. The
jsp:include action lets you include the output of a page at request time. Note that
jsp:include only lets you include the output of the secondary page, not the secondary
page’s actual code as with the include directive. Consequently, the secondary page
cannot use any JSP constructs that affect the main page as a whole. Use of §sp:include
is discussed in the second subsection.

3. The jsp:plugin action. Although this chapter is primarily about server-side Java,
client-side Java in the form of Web-embedded applets continues to play a role, especially
within corporate intranets. The jsp:plugin element is used to insert applets that use the
Java Plug-In into JSP pages. This capability is discussed in the third subsection.

Including Files at Page Translation Time: The include

Directive

You use the include directive to include a file in the main JSP document at the time the document
is translated into a servlet (which is typically the first time it is accessed). The syntax is as follows:

<%@ include file="Relative URL" %>

There are two ramifications of the fact that the included file is inserted at page translation time,
not at request time as with jsp:include (see the next subsection).

First, the included file is permitted to contain JSP code such as response header settings and field
definitions that affect the main page. For example, suppose snippet.jsp contained the following
code:

<%! int accessCount = 0; %>

In such a case, you could do the following:

<%@ include file="snippet.]jsp" %> <%-- Defines accessCount --%>
<%= accessCount++ %> <%-- Uses accessCount --%>

Second, if the included file changes, all the ISP files that use it may need to be updated.
Unfortunately, although servers are allowed to support a mechanism for detecting when an

included file has changed (and then recompiling the servlet), they are not required to do so. So,

you may have to update the modification dates of each JSP page that uses the included code.
Some operating systems have commands that update the modification date without your actually
editing the file (e.g., the Unix touch command), but a simple portable alternative is to include a
JSP comment in the top-level page. Update the comment whenever the included file changes. For
example, you might put the modification date of the included file in the comment, as below.

<%-- Navbar.jsp modified 3/1/00 --%>

<%@ include file="Navbar.jsp" %>

Core Warning

If you change an included JSP file, you may have to update the
modification dates of all JSP files that use it.

XML Syntax for the include Directive

The XML-compatible equivalent of

<%@ include file="..." %>
is
<jsp:directive.include file="..." />

Remember that only servlet and JSP containers (servers) that support JSP 1.2 are required to
support the XML version.

Including Pages at Request Time: The jsp:include Action

The include directive (see the previous subsection) lets you include actual JSP code into multiple
different pages. Including the code itself is sometimes a useful capability, but the include
directive requires you to update the modification date of the page whenever the included file

changes. This is a significant inconvenience. The jsp:include action includes the output of a
secondary page at the time the main page is requested. Thus, jsp:include does not require you
to update the main file when an included file changes. On the other hand, the main page has
already been translated into a servlet by request time, so the included pages cannot contain JSP
that affects the main page as a whole. Also, inclusion at page translation time is marginally faster.
These are relatively minor considerations, and jsp:include is almost always preferred.

Core Approach

For file inclusion, use jsp:include whenever possible. Reserve the

include directive for cases when the included file defines fields or
methods that the main page uses or when the included file sets response
headers of the main page.

Although the output of the included pages cannot contain JSP, the pages can be the result of
resources that use JSP to create the output. That is, the URL that refers to the included resource
is interpreted in the normal manner by the server and thus can be a servlet or JSP page. The
server runs the included page in the usual manner and places the output into the main page. This
is precisely the behavior of the include method of the RequestDispatcher class (Section 3.8),
which is what servlets use if they want to do this type of file inclusion.

The §sp:include element has two attributes, as shown in the sample below: page and flush.

The page attribute is required and designates a relative URL referencing the file to be included.
The flush attribute specifies whether the output stream of the main page should flushed before
the inclusion of the page. In JSP 1.2, f1ush is an optional attribute and the default value is false.
In JSP 1.1, flush is a required attribute and the only legal value is true.

<jsp:include page="Relative URL" flush="true" />
The included file automatically is given the same request parameters as the originally requested

page. If you want to augment those parameters, you can use the jsp:param element (which has
name and value attributes). For example, consider the following snippet.

<jsp:include page="/fragments/StandardHeading.jsp">
<jsp:param name="bgColor" wvalue="YELLOW" />
</jsp:include>

Now, suppose that the main page is invoked by means of
http://host/path/MainPage.jsp?fgColor=RED. In such a case, the main page receives "RED" for
calls to request.getParameter ("fgColor") and null for calls to

request.getParameter ("bgColor") (regardless of whether the bgColor attribute is accessed
before or after the inclusion of the StandardHeading.jsp page). The StandardHeading.jsp page
would receive "RED" for calls to request.getParameter ("fgColor") and "YELLOW" for calls to
request.getParameter ("bgColor"). If the main page receives a request parameter that is also
specified with the jsp:param element, the value from jsp:param takes precedence in the
included page.

As an example of a typical use of ysp:include, consider the simple news summary page shown
in Listing 3.12. Page developers can change the news items in the files Tteml.html through
Item3.html (Listings 3.13 through 3.15) without having to update the main news page. Figure
3-12 shows the result.

Figure 3-12. Including files at request time makes it easier to

update the individual files.

5% hat's Hew at JepMews. com - Nelicape

Fle Edt Mew Go Communicator Help

A AN amsSdD F =

o " Bookmarks & Locatio: [bitg: /locahost st WhatsHew.jsp]

Here 15 a summary of our three most recent news stones:

1. Bill Gates acts humble. In a starting and unexpected
development, Bicrozoft bug wig Ball Gates put on an open act
of humlity yesterday, hore details

2. Scott McNealy acts serions. In an unexpected twist,
wisecrackmg Sun head Scott Melealy was sober and
subdued at vesterday's meetng. More detals

3. Larry Ellison acts conciiatory. Catching iz compettors off
guard yesterday, Oracle prez Lany Elbson referred to his nvals
in friendly and respectfill terms. More detals

& == |Document Done | =] S35 &5 42 [El A _,-;

Listing 3.12 WhatsNew.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE>What's New at JspNews.com</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
<TR><TH CLASS="TITLE">
What's New at JspNews.com</TABLE>
<p>
Here is a summary of our three most recent news stories:

<jsp:include page="news/Iteml.html" flush="true" />
<jsp:include page="news/Item2.html" flush="true" />
<jsp:include page="news/Item3.html" flush="true" />
</0L>
</BODY>
</HTML>

Listing 3.13 Item1l.html

Bill Gates acts humble. In a startling and unexpected
development, Microsoft big wig Bill Gates put on an open act of
humility yesterday.

More details...

Listing 3.14 Item2.html

Scott McNealy acts serious. In an unexpected twist,
wisecracking Sun head Scott McNealy was sober and subdued at
yesterday's meeting.

More details...

Listing 3.15 Item3.html

Larry Ellison acts conciliatory. Catching his competitors
off guard yesterday, Oracle prez Larry Ellison referred to his
rivals in friendly and respectful terms.

More details...

Including Applets for the Java Plug-In

With JSP, you don’t need any special syntax to include ordinary applets: just use the normal HTML
APPLET tag. However, except for intranets that use Netscape 6 exclusively, these applets must
use JDK 1.1 or JDK 1.02 since neither Netscape 4.x nor Internet Explorer 5.x supports the Java 2
platform (i.e., JDK 1.2-1.4). This lack of support imposes several restrictions on applets:

1. To use Swing, you must send the Swing files over the network. This process is time
consuming and fails in Internet Explorer 3 and Netscape 3.x and 4.01-4.05 (which only
support JDK 1.02), since Swing depends on JDK 1.1.

2. You cannot use Java 2D.

You cannot use the Java 2 collections package.

4. Your code runs more slowly, since most compilers for the Java 2 platform are significantly
improved over their 1.1 predecessors.

w

To address these problems, Sun developed a browser plug-in for Netscape and Internet Explorer
that lets you use the Java 2 platform in a variety of browsers. This plug-in is available at
http://java.sun.com/products/plugin/ and also comes bundled with JDK 1.2.2 and later. Since
the plug-in is quite large (several megabytes), it is not reasonable to expect users on the WWW
at large to download and install it just to run your applets. On the other hand, it is a reasonable
alternative for fast corporate intranets, especially since applets can automatically prompt
browsers that lack the plug-in to download it.

Unfortunately, however, the normal 2PpLET tag will not work with the plug-in, since browsers are
specifically designed to use only their built-in virtual machine when they see AppLET. Instead, you
have to use a long and messy OBJECT tag for Internet Explorer and an equally long EMBED tag for
Netscape. Furthermore, since you typically don’t know which browser type will be accessing your
page, you have to either include both oBJECT and EMBED (placing the EMBED within the COMMENT
section of OBJECT) or identify the browser type at the time of the request and conditionally build
the right tag. This process is straightforward but tedious and time consuming.

The jsp:plugin element instructs the server to build a tag appropriate for applets that use the
plug-in. This element does not add any Java capabilities to the client. How could it? JSP runs
entirely on the server; the client knows nothing about JSP. The jsp:plugin element merely
simplifies the generation of the OBJECT or EMBED tags.

Servers are permitted some leeway in exactly how they implement jsp:plugin but most simply
include both oBJECT and EMBED. To see exactly how your server translates jsp:plugin, insertinto
a page a simple jsp:plugin element with type, code, width, and height attributes as in the
following example. Then, access the page from your browser and view the HTML source. You
don’t need to create an applet to perform this experiment.

Note that JRun 3.0 SP2 does not support jsp:plugin; JRun 3.1 supports it properly.

The jsp:plugin Element

The simplest way to use jsp:plugin is to supply four attributes: type, code, width, and height.
You supply a value of applet for the type attribute and use the other three attributes in exactly
the same way as with the ApPLET element, with two exceptions: the attribute names are case

sensitive, and single or double quotes are always required around the attribute values. So, for
example, you could replace

<APPLET CODE="MyApplet.class"

WIDTH=475 HEIGHT=350>

</APPLET>

with

<jsp:plugin type="applet"

code="MyApplet.class"
width="475" height="350">

</jsp:plugin>

The jsp:plugin element has a number of other optional attributes. Most parallel the attributes of
the ApPPLET element. Here is a full list.

type For applets, this attribute should have a value of applet. However, the Java Plug-In
also permits you to embed JavaBeans components in Web pages. Use a value of bean in
such a case.

code This attribute is used identically to the copk attribute of ApPLET, specifying the
top-level applet class file that extends Applet or JApplet.

width This attribute is used identically to the wiDpTH attribute of APPLET, specifying the
width in pixels to be reserved for the applet.

height This attribute is used identically to the HEIGHT attribute of APPLET, specifying the
height in pixels to be reserved for the applet.

codebase This attribute is used identically to the coDEBASE attribute of APPLET,
specifying the base directory for the applets. The code attribute is interpreted relative to
this directory. As with the ArPPLET element, if you omit this attribute, the directory of the
current page is used as the default. In the case of JSP, this default location is the directory
where the original JSP file resided, not the system-specific location of the servlet that
results from the JSP file.

align This attribute is used identically to the AL1GN attribute of APPLET and 1MG,
specifying the alignment of the applet within the Web page. Legal values are 1eft, right,
top, bottom, and middle.

hspace This attribute is used identically to the HSPACE attribute of APPLET, specifying
empty space in pixels reserved on the left and right of the applet.

vspace This attribute is used identically to the vspacE attribute of APPLET, specifying
empty space in pixels reserved on the top and bottom of the applet.

archive This attribute is used identically to the ARCHIVE attribute of APPLET, specifying
a JAR file from which classes and images should be loaded.

name This attribute is used identically to the NaME attribute of APPLET, specifying a name
to use for interapplet communication or for identifying the applet to scripting languages
like JavaScript.

title This attribute is used identically to the very rarely used TITLE attribute of APPLET
(and virtually all other HTML elements in HTML 4.0), specifying a title that could be used
for a tool-tip or for indexing.

jreversion This attribute identifies the version of the Java Runtime Environment (JRE)
that is required. The default is 1.1.

iepluginurl This attribute designates a URL from which the plug-in for Internet Explorer
can be downloaded. Users who don't already have the plug-in installed will be prompted to
download it from this location. The default value will direct the user to the Sun site, but for
intranet use you might want to direct the user to a local copy.

nspluginurl This attribute designates a URL from which the plug-in for Netscape can be
downloaded. The default value will direct the user to the Sun site, but for intranet use you
might want to direct the user to a local copy.

The jsp:param and jsp:params Elements

The jsp:param element is used with ysp:plugin in @ manner similar to the way that pAraM is
used with APPLET, specifying a name and value that are accessed from within the applet by
getParameter. There are two main differences, however. First, since jsp:param follows XML
syntax, attribute names must be lower case, attribute values must be enclosed in single or double
quotes, and the element must end with />, not just >. Second, all ysp:param entries must be
enclosed within a jsp:params element.

So, for example, you would replace

<APPLET CODE="MyApplet.class"

WIDTH=475 HEIGHT=350>

<PARAM NAME="PARAM1" VALUE="VALUEl">
<PARAM NAME="PARAM2" VALUE="VALUE2">
</APPLET>

<jsp:plugin type="applet"

code="MyApplet.class"
width="475" height="350">

<jsp:params>
<jsp:param name="PARAM1" value="VALUE1l" />
<jsp:param name="PARAM2" value="VALUE2" />
</jsp:params>
</jsp:plugin>

The jsp:fallback Element

The jsp:fallback element provides alternative text to browsers that do not support oBJECT or
EMBED. You use this element in almost the same way as you would use alternative text placed
within an ApPLET element. So, for example, you would replace

<APPLET CODE="MyApplet.class"
WIDTH=475 HEIGHT=350>
Error: this example requires Java.
</APPLET>

with

<jsp:plugin type="applet"
code="MyApplet.class"
width="475" height="350">
<jsp:fallback>
Error: this example requires Java.
</jsp:fallback>
</jsp:plugin>

A jsp:plugin Example

Listing 3.16 shows a JSP page that uses the jsp:plugin element to generate an entry for the
Java 2 Plug-In. Listings 3.17 through 3.20 show the code for the applet itself (which uses Swing
and Java 2D), and Figure 3-13 shows the result.

Figure 3-13. Result of PluginApplet.jsp in Internet Explorer

when the Java 2 Plug-In is installed.

=} Using jzp:plugin - Micriozoit Internet Esplores

| Fle Edt Vew Favotes Took Hep E
[-2-0NAQAEI B I
| Adekess [e /Mocaboat/isp-pio/Phgrdepiet i =]

Font |Ransom =

&1 Applet started, [Ea Local niranet y

Listing 3.16 PluginApplet.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Using jsp:plugin</TITLE>

<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

<TR><TH CLASS="TITLE">

Using jsp:plugin</TABLE>

<pP>

<CENTER>

<jsp:plugin type="applet"
code="PluginApplet.class"
width="370" height="420">

</jsp:plugin>

</CENTER>

</BODY>

</HTML>

Listing 3.17 PluginApplet.java

import javax.swing.*;

/** An applet that uses Swing and Java 2D and thus requires
* the Java Plug-In.
*/

public class PluginApplet extends JApplet {
public void init () {
WindowUtilities.setNativeLookAndFeel () ;

setContentPane (new TextPanel());

Listing 3.18 TextPanel.java

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

/** JPanel that places a panel with text drawn at various angles
* in the top part of the window and a JComboBox containing
* font choices in the bottom part.

*/

public class TextPanel extends JPanel
implements ActionListener {
private JComboBox fontBox;

private DrawingPanel drawingPanel;

public TextPanel() {

GraphicsEnvironment env =

GraphicsEnvironment.getLocalGraphicsEnvironment () ;
String[] fontNames = env.getAvailableFontFamilyNames () ;
fontBox = new JComboBox (fontNames) ;
setLayout (new BorderLayout());

JPanel fontPanel = new JPanel () ;
fontPanel.add (new JLabel ("Font:"));
fontPanel.add (fontBox) ;

JButton drawButton = new JButton ("Draw");
drawButton.addActionListener (this) ;
fontPanel.add (drawButton) ;

add (fontPanel, BorderLayout.SOUTH) ;
drawingPanel = new DrawingPanel () ;
fontBox.setSelectedItem ("Serif") ;
drawingPanel.setFontName ("Serif");

add (drawingPanel, BorderLayout.CENTER) ;

public void actionPerformed (ActionEvent e) {
drawingPanel.setFontName ((String) fontBox.getSelectedItem()) ;

drawingPanel.repaint () ;

Listing 3.19 DrawingPanel.java

import java.awt.*;
import java.awt.geom.*;

import javax.swing.*;

/** A window with text drawn at an angle. The font is
* set by means of the setFontName method.
*/

class DrawingPanel extends JPanel {
private Ellipse2D.Double circle =
new Ellipse2D.Double (10, 10, 350, 350);
private GradientPaint gradient =
new GradientPaint (0, 0, Color.red, 180, 180, Color.yellow,
true); // true means to repeat pattern

private Color[] colors = { Color.white, Color.black };

public void paintComponent (Graphics g) {
super.paintComponent (g) ;

Graphics2D g2d = (Graphics2D)g;

g2d.setPaint (gradient) ;

g2d.fill (circle);

g2d.translate (185, 185);

for (int i=0; i<16; i++) {
g2d.rotate (Math.PI/8.0);
g2d.setPaint (colors[i%2]);
g2d.drawString ("jsp:plugin", 0, 0);

public void setFontName (String fontName) {
setFont (new Font (fontName, Font.BOLD, 35));

Listing 3.20 WindowUtilities.java

import javax.swing.*;

import java.awt.*;
/** A few utilities that simplify using windows in Swing. */
public class WindowUtilities {

/** Tell system to use native look and feel, as in previous
* releases. Metal (Java) LAF is the default otherwise.

*/

public static void setNativeLookAndFeel () {
try {
UIManager.setLookAndFeel
(UIManager.getSystemLookAndFeelClassName ()) ;
} catch (Exception e) {

System.out.println ("Error setting native LAF: " + e);

// See www.moreservlets.com for remaining code.

3.6 Using JavaBeans with JSP

This section discusses the third general strategy for inserting dynamic content in JSP pages (see
Figure 3-14): by means of JavaBeans components.

Figure 3-14. Strategies for invoking dynamic code from JSP.

Simpie application o Call Java code directly. Plice all Java code in [SP page.

small development team, Saction 1.3

* Call Java code indireetly. Develop separate utility classes.
Insert into |SP page only the Java code needed to invoke the
utility classes. Section 3.3,

* Usc beans. Develop separate utility classes structured as
bens, Use jsp:useBean, jsp:getProperty, and
jsp:setProperty to invoke the code. Section 3.6,

= Use custom tags. Develop tag handler classes, If the handlers
become complicated, use separate utility classes. Invoke the
tag handlers with XML-like custom tags. Section 3.7.

* Use the MVC architecture. Have a servlet respond to
original request, look up data, and store results in beans.

Complex opplication or I*'nm';l.r[l_t[: a |SP page to p.rvm_*nl |1~.';.u]l::-;. J5F page uses beans

large development feam. and possibly custom tags, Section 3.8

The JavaBeans API provides a standard format for Java classes. Visual manipulation tools and
other programs can automatically discover information about classes that follow this format and
can then create and manipulate the classes without the user having to explicitly write any code.
Use of JavaBeans components in JSP provides three advantages over scriptlets and JSP
expressions.

1. No Java syntax. By using beans, page authors can manipulate Java objects, using only
XML-compatible syntax: no parentheses, semicolons, or curly braces. This promotes a
stronger separation between the content and the presentation and is especially useful in
large development teams that have separate Web and Java developers.

2. Simpler object sharing. The JSP bean constructs make it much easier to share objects
among multiple pages or between requests than if the equivalent explicit Java code were
used.

3. Convenient correspondence between request parameters and object
properties. The JSP bean constructs greatly simplify the process of reading request
parameters, converting from strings, and stuffing the results inside objects.

Full coverage of JavaBeans is beyond the scope of this book. If you want details, pick up one of
the many books on the subject or see the documentation and tutorials at
http://java.sun.com/products/javabeans/docs/. For the purposes of this chapter, however, all
you need to know about beans are three simple points:

1. A bean class must have a zero-argument (empty) constructor. You can satisfy
this requirement either by explicitly defining such a constructor or by omitting all
constructors, which results in an empty constructor being created automatically. The
empty constructor will be called when JSP elements create beans. In fact, as we will see in
Section 3.8 (Integrating Servlets and JSP: The MVC Architecture), it is quite common for
a servlet to create a bean and a JSP page to merely look up data from the existing bean.
In that case, the requirement that the bean have a zero-argument constructor is waived.

2. A bean class should have no public instance variables (fields). I hope you already
follow this practice and use accessor methods instead of allowing direct access to the
instance variables. Use of accessor methods lets you do three things without users of your
class changing their code: (a) impose constraints on variable values (e.g., have the
setSpeed method of your car class disallow negative speeds); (b) change your internal
data structures (e.g., change from English units to metric units internally, but still have
getSpeedInMPH and getSpeedInKPH methods); (¢) perform side effects automatically
when values change (e.g., update the user interface when setposition is called).

3. Persistent values should be accessed through methods called getXxx and
setXxx. For example, if your car class stores the current number of passengers, you
might have methods hamed getNumPassengers (which takes no arguments and returns
an int) and setNumPassengers (wWhich takes an int and has a void return type). In such
a case, the car class is said to have a property named numPassengers (notice the
lowercase n in the property name, but the uppercase N in the method names). If the class
has a get Xxx method but no corresponding set Xxx, the class is said to have a read-only
property named xxx.

The one exception to this naming convention is with boolean properties: they use a
method called is Xxx to look up their values. So, for example, your car class might have
methods called isLeased (which takes no arguments and returns a boolean) and
setLeased (which takes a boolean and has a void return type), and would be said to have
a boolean property named leased (again, notice the lowercase leading letter in the
property name).

Although you can use JSP scriptlets or expressions to access arbitrary methods of a class,

standard JSP actions for accessing beans can only make use of methods that use the get
Xxx/ set Xxx or is Xxx/ set Xxx naming convention.

Basic Bean Use

The jsp:useBean action lets you load a bean to be used in the JSP page. Beans provide a very
useful capability because they let you exploit the reusability of Java classes without sacrificing the
convenience that JSP adds over servlets alone.

The simplest syntax for specifying that a bean should be used is the following.

<jsp:useBean id="name" class="package.Class" />

This statement usually means “instantiate an object of the class specified by class, and bind it to
a variable with the name specified by id.”

So, for example, the JSP action

<jsp:useBean id="bookl" class="moreservlets.Book" />

can normally be thought of as equivalent to the scriptlet

<% moreservlets.Book bookl = new moreservlets.Book(); %>

The bean class definition should be placed in the server’s class path (generally, in the same
directories where servlets can be installed), not in the directory that contains the JSP file. Thus,
on most servers, the proper location for bean classes is the.../WEB-INF/classes directory
discussed in Sections 1.7 and 1.9. With some servers, however (e.g., ServletExec), you have to
explicitly add bean classes to the server’s CLASSPATH if you are using the default serviet
directories (i.e., not using user-defined Web applications). With user-defined Web applications
(see Chapter 4), all servers permit individual bean classes to be placed in the application’s
WEB-INF/classes directory and JAR files containing bean classes to be placed in the WEB-INF/Iib
directory.

Although it is convenient to think of jsp:useBean as being equivalent to building an object,
jsp:useBean has additional options that make it more powerful. As we'll see later, you can
specify a scope attribute that associates the bean with more than just the current page. If beans
can be shared, it is useful to obtain references to existing beans, rather than always building a
new object. So, the jsp:useBean action specifies that a new object is instantiated only if there is
no existing one with the same id and scope.

Rather than using the c1ass attribute, you are permitted to use beanName instead. The difference
is that beanName can refer either to a class or to a file containing a serialized bean object. The
value of the beanName attribute is passed to the instantiate method of java.beans.Bean.

In most cases, you want the local variable to have the same type as the object being created. In
a few cases, however, you might want the variable to be declared to have a type that is a
superclass of the actual bean type or is an interface that the bean implements. Use the type
attribute to control this declaration, as in the following example.

<jsp:useBean id="threadl" class="MyClass" type="Runnable" />

This use results in code similar to the following being inserted into the jspservice method.

Runnable threadl = new MyClass();

Note that since jsp:useBean uses XML syntax, the format differs in three ways from HTML syntax:
the attribute names are case sensitive, either single or double quotes can be used (but one or the
other must be used), and the end of the tag is marked with />, not just >. The first two syntactic
differences apply to all ISP elements that look like ysp: xxx. The third difference applies unless
the element is a container with a separate start and end tag.

A few character sequences also require special handling in order to appear inside attribute values.
To get ' within an attribute value, use \'. Similarly, to get ", use \"; to get \, use \\; to get 3>,
use %\>; and to get <%, use <\%.

Accessing Bean Properties

Once you have a bean, you can access its properties with jsp:getProperty, which takes a name
attribute that should match the id given in §sp:useBean and a property attribute that names the
property of interest. Alternatively, you could use a JSP expression and explicitly call a method on
the object that has the variable name specified with the id attribute. For example, assuming that
the Book class has a string property called title and that you've created an instance called
bookl by using the jsp:useBean example just given, you could insert the value of the title
property into the JSP page in either of the following two ways.

<jsp:getProperty name="bookl" property="title" />
<%= bookl.getTitle() %>

The first approach is preferable in this case, since the syntax is more accessible to Web page
designers who are not familiar with the Java programming language. However, direct access to
the variable is useful when you are using loops, conditional statements, and methods not
represented as properties.

If you are not familiar with the concept of bean properties, the standard interpretation of the
statement “this bean has a property of type T called foo ” is “this class has a method called
getFoo that returns something of type T, and it has another method called setFoo that takesa T
as an argument and stores it for later access by getFoo.”

Setting Bean Properties: Simple Case

To modify bean properties, you normally use jsp:setProperty. This action has several different
forms, but with the simplest form you just supply three attributes: name (which should match the
id given by jsp:useBean), property (the name of the property to change), and value (the new
value). Later in this section I present some alternate forms of jsp:setProperty that let you

automatically associate a property with a request parameter. That section also explains how to
supply values that are computed at request time (rather than fixed strings) and discusses the
type conversion conventions that let you supply string values for parameters that expect
numbers, characters, or boolean values.

An alternative to using the jsp:setProperty action is to use a scriptlet that explicitly calls
methods on the bean object. For example, given the bookl object shown earlier in this section,
you could use either of the following two forms to modify the title property.

<jsp:setProperty name="bookl"
property="title"
value="Core Servlets and JavaServer Pages" />

<% bookl.setTitle ("Core Servlets and JavaServer Pages"); %>

Using jsp:setProperty has the advantage that it is more accessible to the nonprogrammer, but
direct access to the object lets you perform more complex operations such as setting the value
conditionally or calling methods other than get Xxx or set Xxx on the object.

Example: StringBean

Listing 3.21 presents a simple class called stringBean that is in the moreservlets package.
Because the class has no public instance variables (fields) and has a zero-argument constructor
since it doesn’t declare any explicit constructors, it satisfies the basic criteria for being a bean.
Since stringBean has a method called getMessage that returns a string and another method
called setMessage that takes a string as an argument, in beans terminology the class is said to
have a string property called message.

Listing 3.22 shows a JSP file that uses the stringBean class. First, an instance of StringBean is
created with the jsp:useBean action as follows.

<jsp:useBean id="stringBean" class="moreservlets.StringBean" />

After this, the message property can be inserted into the page in either of the following two ways.
<jsp:getProperty name="stringBean" property="message" />

<%= stringBean.getMessage () %>

The message property can be modified in either of the following two ways.

<jsp:setProperty name="stringBean"

property="message"
value="some message" />

<% stringBean.setMessage ("some message"); %>
Please note that I do not recommend that you really mix the explicit Java syntax and the XML
syntax in the same page; this example is just meant to illustrate the equivalent results of the two

forms.

Figure 3-15 shows the result.

Figure 3-15. Result of StringBean.jsp.

- Using JavaBeans with JSP - Hetscape

Ele Edit Miew Go Communicalor Help

12 dyAdasdsDH O

°| wlf "Bookmarks & Locatio: [Fip/ocakostspintio/StngBeanjso. =]

1. Initial value (getProperty) No message specified

Initial value (JSF expression): No message specified

Value after settng property with setProperty; Best string

bean: Fortex

4. Value after zeting property with scriptlet: My faveorites
Kentucky Wonder

L B3

== [Decument =) 52 N =42 (&l & | =

Listing 3.21 StringBean.java

package moreservlets;

/** A simple bean that has a single String property
* called message.

*/

public class StringBean ({

private String message = "No message specified";
public String getMessage () {

return (message) ;

public void setMessage (String message) {

this.message = message;

Listing 3.22 StringBean.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using JavaBeans with JSP</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
<TR><TH CLASS="TITLE">
Using JavaBeans with JSP</TABLE>
<jsp:useBean id="stringBean" class="moreservlets.StringBean" />

Initial value (getProperty):
<I><]jsp:getProperty name="stringBean"
property="message" /></I>
Initial value (JSP expression):
<I><%= stringBean.getMessage () %></I>
<]jsp:setProperty name="stringBean"
property="message"
value="Best string bean: Fortex" />
Value after setting property with setProperty:
<I><]jsp:getProperty name="stringBean"
property="message" /></I>
<% stringBean.setMessage ("My favorite: Kentucky Wonder"); %>
Value after setting property with scriptlet:
<I><%= stringBean.getMessage () %></I>
</0L>
</BODY>
</HTML>

Setting Bean Properties

You normally use jsp:setProperty to set bean properties. The simplest form of this action takes
three attributes: name (which should match the id given by jsp:useBean), property (the name
of the property to change), and value (the new value).

For example, the saleEntry class shown in Listing 3.23 has an itemID property (a String), a
numItems property (an int), a discountCode property (a double), and two read-only properties
itemCost and totalCost (each of type double). Listing 3.24 shows a JSP file that builds an
instance of the salekEntry class by means of:

<jsp:useBean id="entry" class="moreservlets.SaleEntry" />

The results are shown in Figure 3-16.

Figure 3-16. Result of SaleEntry1.jsp.

a Uzing jspsetPropeity - Microzolt Internet Explorer
_EkE:HEmFgwﬂnIud;H:h -
e > QLA0EI B SN
| Address [E] hitp: fMacahostfjspentro/SdeEningd jip HlemlD=al 2348 numltems=11 discountCode=0.35 El_
=l
I 1
!US'I’IQ_J_EP:SEtPI’OP&I’t! |
Item ID Unit Price Number Ordered Total Price
al23d4| $12.34 11| $135.74
El
2] Dore || E3 Local iranet p

Once the bean is instantiated, using an input parameter to set the itemID is straightforward, as
shown below.

<jsp:setProperty
name="entry"
property="itemID"

value="'<%= request.getParameter ("itemID") %>' />

Notice that I used a JSP expression for the value parameter. Most JSP attribute values have to be
fixed strings, but the value attribute of jsp:setProperty is permitted to be a request time
expression. If the expression uses double quotes internally, recall that single quotes can be used
instead of double quotes around attribute values and that \' and \" can be used to represent
single or double quotes within an attribute value. In any case, the point is that it is possible to use
JSP expressions here, but doing so requires the use of explicit Java code. In some applications,
avoiding such explicit code is the main reason for using beans in the first place. Besides, as the
next examples will show, the situation becomes much more complicated when the bean property
is not of type string. The next two subsections will discuss how to solve these problems.

Listing 3.23 SaleEntry.java

package moreservlets;
/** Simple bean to illustrate the various forms
* of Jjsp:setProperty.

*/

public class SaleEntry {

private String itemID = "unknown";
private double discountCode = 1.0;
private int numItems = 0;

public String getItemID() {
return (itemID) ;
}
public void setItemID(String itemID) {
if (itemID != null) {
this.itemID = itemID;
} else {

this.itemID = "unknown";

public double getDiscountCode () {

return (discountCode) ;

public void setDiscountCode (double discountCode) {

this.discountCode = discountCode;

public int getNumItems () {

return (numlItems) ;

public void setNumItems (int numItems) ({

this.numItems = numItems;

// In real life, replace this with database lookup.

public double getItemCost () {

double cost;
if (itemID.equals ("al234")) {
cost = 12.99*getDiscountCode () ;
} else {
cost = -9999;
}

return (roundToPennies (cost)) ;

private double roundToPennies (double cost) {

return (Math.floor (cost*100) /100.0) ;

public double getTotalCost () {
return (getItemCost () * getNumltems())

Listing 3.24 SaleEntryl.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using jsp:setProperty</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
<TR><TH CLASS="TITLE">
Using jsp:setProperty</TABLE>
<jsp:useBean id="entry" class="moreservlets.SaleEntry" />
<jsp:setProperty
name="entry"
property="itemID"
value='<%= request.getParameter ("itemID") %>' />
<%
int numItemsOrdered = 1;
try {
numItemsOrdered =
Integer.parselnt (request.getParameter ("numItems")) ;
} catch (NumberFormatException nfe) ({}
%>

<jsp:setProperty
name="entry"
property="numItems"
value="<%= numItemsOrdered %>" />
<%
double discountCode = 1.0;
try {
String discountString =
request.getParameter ("discountCode") ;
// In JDK 1.1 use Double.valueOf (discountString) .doubleValue ()
discountCode =
Double.parseDouble (discountString) ;
} catch (NumberFormatException nfe) {}
%>
<jsp:setProperty
name="entry"
property="discountCode"
value="<%= discountCode %>" />

<TABLE ALIGN="CENTER" BORDER=1>
<TR CLASS="COLORED">
<TH>Item ID<TH>Unit Price<TH>Number Ordered<TH>Total Price
<TR ALIGN="RIGHT">
<TD><jsp:getProperty name="entry" property="itemID" />
<TD>$<jsp:getProperty name="entry" property="itemCost" />
<TD><jsp:getProperty name="entry" property="numItems" />
<TD>$<]jsp:getProperty name="entry" property="totalCost" />
</TABLE>
</BODY>
</HTML>

Associating Individual Properties with Input Parameters

Setting the itemID property is easy since its value is a string. Setting the numItems and
discountCode properties is a bit more problematic since their values must be humbers and
getParameter returns a string. Here is the somewhat cumbersome code required to set

numltems:

<

o

int numItemsOrdered = 1;
try |
numltemsOrdered =

Integer.parselnt (request.getParameter ("numltems"));

} catch (NumberFormatException nfe) {}

o

>

<jsp:setProperty
name="entry"
property="numItems"

value="<%= numItemsOrdered %>" />

Fortunately, JSP has a nice solution to this problem. It lets you associate a property with a request
parameter and automatically perform type conversion from strings to numbers, characters, and
boolean values. Instead of using the value attribute, you use param to name an input parameter.
The value of the named request parameter is automatically used as the value of the bean
property, and simple type conversions are performed automatically. If the specified parameter is
missing from the request, no action is taken (the system does not pass null to the associated
property). So, for example, setting the numItems property can be simplified to:

<jsp:setProperty
name="entry"
property="numItems"

param="numItems" />

Listing 3.25 shows the relevant part of the JSP page reworked in this manner.

Listing 3.25 SaleEntry2.jsp

<jsp:useBean id="entry" class="moreservlets.SaleEntry" />
<jsp:setProperty
name="entry"
property="itemID"
param="itemID" />
<jsp:setProperty
name="entry"
property="numItems"
param="numItems" />
<jsp:setProperty
name="entry"
property="discountCode"

param="discountCode" />

Converting Types Automatically

When bean properties are associated with input parameters, the system automatically performs
simple type conversions for properties that expect primitive types (byte, int, double, etc.) or
the corresponding wrapper types (Byte, Integer, Double, etc.).

Associating All Properties with Input Parameters

Associating a property with an input parameter saves you the bother of performing conversions
for many of the simple built-in types. JSP lets you take the process one step further by associating
all properties with identically named input parameters. All you have to do is to supply "*" for the
property parameter. So, for example, all three of the jsp:setProperty statements of Listing
3.25 can be replaced by the following simple line. Listing 3.26 shows the relevant part of the
page.

<jsp:setProperty name="entry" property="*" />

Although this approach is simple, three small warnings are in order. First, as with individually
associated properties, no action is taken when an input parameter is missing. In particular, the
system does not supply null as the property value. Second, automatic type conversion does not
guard against illegal values as effectively as does manual type conversion. So, you might
consider error pages when using automatic type conversion. Third, since both bean property
names and request parameters are case sensitive, the property name and request parameter
name must match exactly.

Listing 3.26 SaleEntry3.jsp

<jsp:useBean id="entry" class="msajsp.SaleEntry" />

<jsp:setProperty name="entry" property="*" />

Sharing Beans

Up to this point, I have treated the objects that were created with jsp:useBean as though they
were simply bound to local variables in the jspservice method (which is called by the service
method of the servlet that is generated from the page). Although the beans are indeed bound to
local variables, that is not the only behavior. They are also stored in one of four different locations,
depending on the value of the optional scope attribute of §sp:useBean. The scope attribute has
the following possible values:

e page This is the default value. It indicates that, in addition to being bound to a local
variable, the bean object should be placed in the pageContext object for the duration of
the current request. Storing the object there means that servlet code can access it by
calling getAttribute on the predefined pageContext variable.

e application This very useful value means that, in addition to being bound to a local
variable, the bean will be stored in the shared servletContext available through the
predefined application variable or by a call to getServletContext (). The
ServletContext is shared by all servlets in the same Web application. Values in the
ServletContext can be retrieved by the getAttribute method. This sharing has a couple
of ramifications.

First, it provides a simple mechanism for multiple servlets and JSP pages to access the
same object. See the following subsection (Creating Beans Conditionally) for details and
an example.

Second, it lets a servlet create a bean that will be used in JSP pages, not just access one
that was previously created. This approach lets a servlet handle complex user requests by
setting up beans, storing them in the servletContext, then forwarding the request to one
of several possible JSP pages to present results appropriate to the request data. For
details on this approach, see Section 3.8 (Integrating Servlets and JSP: The MVC
Architecture).

e session This value means that, in addition to being bound to a local variable, the bean
will be stored in the HttpSession object associated with the current request, where it can
be retrieved with getAttribute.

e request This value signifies that, in addition to being bound to a local variable, the bean
object should be placed in the servletRequest object for the duration of the current
request, where it is available by means of the getAttribute method. Storing values in the
request object is common when using the MVC (Model 2) architecture. For details, see
Section 3.8 (Integrating Servilets and JSP: The MVC Architecture).

Creating Beans Conditionally

To make bean sharing more convenient, you can conditionally evaluate bean-related elements in
two situations.

First, a jsp:useBean element results in a new bean being instantiated only if no bean with the
same id and scope can be found. If a bean with the same id and scope is found, the preexisting
bean is simply bound to the variable referenced by id. A typecast is performed if the preexisting
bean is of a more specific type than the bean being declared, and a ClassCastException results
if this typecast is illegal.

Second, instead of

<jsp:useBean ... />

you can use

<jsp:useBean ...>statements</jsp:useBean>

The point of using the second form is that the statements between the jsp:useBean start and end
tags are executed only if a new bean is created, not if an existing bean is used. This conditional
execution is convenient for setting initial bean properties for beans that are shared by multiple
pages. Since you don’t know which page will be accessed first, you don’t know which page should
contain the initialization code. No problem: they can all contain the code, but only the page first
accessed actually executes it. For example, Listing 3.27 shows a simple bean that can be used to
record cumulative access counts to any of a set of related pages. It also stores the name of the
first page that was accessed. Since there is no way to predict which page in a set will be accessed
first, each page that uses the shared counter has statements like the following to ensure that only
the first page that is accessed sets the firstpage attribute.

<jsp:useBean id="counter"
class="moreservlets.AccessCountBean"
scope="application">
<jsp:setProperty name="counter"
property="firstPage"
value="Current Page Name" />

</jsp:useBean>

Listing 3.28 shows the first of three pages that use this approach. The source code archive at
http://www.moreservlets.com contains the other two nearly identical pages. Figure 3-17 shows
a typical result.

Figure 3-17. Result of a user visiting SharedCounts3.jsp. The
first page visited by any user was SharedCounts2.jsp.
SharedCountsl.jsp, SharedCounts2.jsp, and
SharedCounts3.jsp were collectively visited a total of twelve

times after the server was last started but before the visit

shown in this figure.

2} Shared Access Counts: Page 3 - Microzoll Internet Explores H=] E3
| Fle Edt View Favortes Took Help El
R IEall- e T] | _
| Beldase [@] b/ focabicstfjsp-inlio/S haiedCounts 3 jsp |

|

Shared Access Counts: Page 3

Of SharedCounts3 jsp (tlus page), SharedCount=1 jsp, and
SharedCounts2 j=p, SharedCoumts2 jsp was the first page
accessed.

Collectively, the three pages have been accessed 13 hmes.

sl

|&] Dane || [Zg Local ntanet

Listing 3.27 AccessCountBean.java

package moreservlets;

/** Simple bean to illustrate sharing beans through
* use of the scope attribute of Jjsp:useBean.

*/

public class AccessCountBean {
private String firstPage;
private int accessCount = 1;
public String getFirstPage () {

return (firstPage) ;

public void setFirstPage (String firstPage) {

this.firstPage = firstPage;
}
public int getAccessCount () {

return (accessCount) ;

public void setAccessCountIncrement (int increment) {

accessCount = accessCount + increment;

Listing 3.28 SharedCountsl1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Shared Access Counts: Page 1</TITLE>
<LINK REL=STYLESHEET

HREF="JSP-Styles.css"

TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">

<TR><TH CLASS="TITLE">

Shared Access Counts: Page 1</TABLE>
<p>
<jsp:useBean id="counter"

class="moreservlets.AccessCountBean"
scope="application">
<]jsp:setProperty name="counter"
property="£firstPage"
value="SharedCountsl. jsp" />

</jsp:useBean>
Of SharedCountsl.jsp (this page),
SharedCounts2.jsp, and
SharedCounts3.jsp,
<jsp:getProperty name="counter" property="firstPage" />
was the first page accessed.
<p>
Collectively, the three pages have been accessed
<jsp:getProperty name="counter" property="accessCount" />
times.
<jsp:setProperty name="counter" property="accessCountIncrement"

value="1" />

</BODY>
</HTML>

3.7 Defining Custom JSP Tag Libraries

JSP 1.1 introduced an extremely valuable new capability: the ability to create your own JSP tags.
You define how a tag, its attributes, and its body are interpreted, then group your tags into
collections called tag libraries that can be used in any number of JSP files. The ability to define tag
libraries in this way permits Java developers to boil down complex server-side behaviors into
simple and easy-to-use elements that content developers can easily incorporate into their JSP
pages. This section introduces the basic capabilities of custom tags. New features introduced in
JSP 1.2 are covered in Chapter 11 (New Tag Library Features in JSP 1.2).

Custom tags accomplish some of the same goals as beans that are accessed with jsp:useBean
(see Figure 3-18)—encapsulating complex behaviors into simple and accessible forms. There are
several differences, however:

Figure 3-18. Strategies for invoking dynamic code from JSP.

Simple application or -« Call Java code directly. Place all Java code in JSP page.

small devalopment team, Section 3.3,

* Call Java code indirectly. Develop separate utility classes.
Insert into JSP page only the Java code needed to invoke the
utility classes. Section 3.3,

* Use beans. Develop separate utility classes structured as
beans. Use jsp:useBean, jsp:gekProperty. and
jep:setProperty toinvoke the code. Section 3.6,

» Use custom tags, Develop tag landler elasses. I the handlers
become {THH]‘.I]]'["‘IH"(], use separate ulilit’_\' elasses. Invoke the
tag handlers with XML-like custom tags. Section 3.7.

* Use the MVC architecture. Have a servlet respond to
original request, look up data, and store results in beans.

Compleox application ar I*"nm'urzl_tn a |SP page to present results. JSP page uses beans

large development 1eam, and |1t1551|1]_‘r custonn tags. Section 3.5,

1. Custom tags can manipulate JSP content; beans cannot.

Complex operations can be reduced to a significantly simpler form with custom tags than
with beans.

3. Custom tags require quite a bit more work to set up than do beans.

4. Custom tags usually define relatively self-contained behavior, whereas beans are often
defined in one servlet and then used in a different servlet or JSP page (see the following
section on integrating servlets and JSP).

5. Custom tags are available only in JSP 1.1 and later, but beans can be used in all JSP 1.x
versions.

The Components That Make Up a Tag Library

To use custom JSP tags, you need to define three separate components: the tag handler class
that defines the tag’s behavior, the tag library descriptor file that maps the XML element names
to the tag implementations, and the JSP file that uses the tag library. The rest of this subsection
gives an overview of each of these components, and the following subsections give details on how
to build these components for various styles of tags. Most people find that the first tag they write
is the hardest—the difficulty being in knowing where each component should go, not in writing
the components. So, I suggest that you start by just downloading the examples of this subsection
and getting the example tag working. After that, you can move on to the following subsections
and try some of your own tags.

The Tag Handler Class

When defining a new tag, your first task is to define a Java class that tells the system what to do
when it sees the tag. This class must implement the javax.servlet.jsp.tagext.Tag interface.
You usually accomplish this by extending the TagSupport or BodyTagSupport class.

Listing 3.29 is an example of a simple tag that just inserts * Custom tag example
(msajsp.tags.ExampleTag) " into the JSP page wherever the corresponding tag is used. Don't
worry about understanding the exact behavior of this class; that will be made clear in the next
subsection. For now, just note that the class is in the moreservlets.tags package and is called
ExampleTag. Consequently, the class file needs to be placed in tags subdirectory of the
moreservlets subdirectory of whatever directory the current Web application is using for Java
class files (i.e.,.../WEB-INF/classes—see Sections 1.7 and 1.9). With Tomcat, for example, the
class file would be in install_dir/webapps/ROOT/WEB-INF/classes/moreserviets/tags/
ExampleTag.class.

Listing 3.29 ExampleTag.java

package moreservlets.tags;

import Jjavax.servlet.jsp.*;
import Jjavax.servlet.jsp.tagext.*;

import java.io.*;

/** Very simple JSP tag that just inserts a string

* ("Custom tag example...") into the output.

* The actual name of the tag is not defined here;

* that is given by the Tag Library Descriptor (TLD)
* file that is referenced by the taglib directive
* in the JSP file.

*/

public class ExampleTag extends TagSupport {
public int doStartTag() {
try |
JspWriter out = pageContext.getOut();
out.print ("Custom tag example " +
" (moreservlets.tags.ExampleTaqg)") ;
} catch (IOException ioe) {
System.out.println ("Error in ExampleTag: " + ioe);
}
return (SKIP_BODY) ;

The Tag Library Descriptor File

Once you have defined a tag handler, your next task is to identify the class to the server and to
associate it with a particular XML tag name. This task is accomplished by means of a tag library
descriptor file (in XML format) like the one shown in Listing 3.30. This file contains some fixed
information, an arbitrary short name for your library, a short description, and a series of tag
descriptions. The nonbold part of the listing is the same in virtually all tag library descriptors and
can be copied verbatim from the source code archive at http://www.moreservlets.com.

The format of tag descriptions is described in later sections. For now, just note that the tag
element defines the main name of the tag (really tag suffix, as will be seen shortly) and identifies
the class that handles the tag. Since the tag handler class is in the moreservlets.tags package,
the fully qualified class name of moreservlets.tags.ExampleTag is used. Note that this is a class
name, not a URL or relative path name. The class can be installed anywhere on the server that
beans or other supporting classes can be put. With Tomcat, the base location for classes in the
default Web application is install_dir/webapps/ROOT/WEB-INF/classes, so ExampleTag.class
would be in install_dir/webapps/ROOT/WEB-INF/classes/moreserviets/tags. Although it is
always a good idea to put your servlet classes in packages, a surprising feature of Tomcat is that
tag handlers are required to be in packages.

Listing 3.30 msajsp-taglib.tid

<?xml version="1.0" encoding="ISO-8859-1" 72>

<!DOCTYPE taglib

PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary 1 1.dtd">

<taglib>

<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>msajsp-tags</shortname>
<info>
A tag library from More Servlets and JavaServer Pages,
http://www.moreservlets.com/.
</info>
<tag>
<name>example</name>
<tagclass>moreservlets.tags.ExampleTag</tagclass>
<bodycontent>empty</bodycontent>
<info>Simplest example: inserts one line of output</info>

</tag>

</taglib>

The ISP File

Once you have a tag handler implementation and a tag library description, you are ready to write
a JSP file that makes use of the tag. Listing 3.31 gives an example. Somewhere before the first
use of your tag, you need to use the taglib directive. This directive has the following form:

<%@ taglib uri="..." prefix="..." %>

The required uri attribute can be either an absolute or relative URL referring to a tag library
descriptor file like the one shown in Listing 3.30. For now, we will use a simple relative URL
corresponding to a TLD file that is in the same directory as the JSP page that uses it. When we get
to Web applications, however (see Chapter 4), we will see that it makes more sense for larger
applications to put the TLD files in a subdirectory inside the WEB-INF directory. This configuration
makes it easier to reuse the same TLD file from JSP pages in multiple directories, and it prevents
end users from retrieving the TLD file. Furthermore, as we will see in Section 5.13 (Locating Tag
Library Descriptors), you can use the Web application deployment descriptor (i.e., web.xml) to
change the meaning of strings supplied to the uri attribute of the taglib directive. When starting
out, however, you will probably find it easiest to put the TLD file in the same directory as the JSP
page that uses it and then use a simple filename as the value of the uri attribute.

The prefix attribute, also required, specifies a prefix that will be used in front of whatever tag
name the tag library descriptor defined. For example, if the TLD file defines a tag named tag1 and
the prefix attribute has a value of test, the actual tag name would be test:tagl. This tag could
be used in either of the following two ways, depending on whether it is defined to be a container
that makes use of the tag body:

<test:tagl>Arbitrary JSP</test:tagl>

or just

<test:tagl />

To illustrate, the descriptor file of Listing 3.30 is called msajsp-taglib.tld and resides in the
same directory as the JSP file shown in Listing 3.31 (i.e., any of the standard locations for JSP files
described in Section 3.3, not the directory where Java class files are placed). Thus, the taglib
directive in the JSP file uses a simple relative URL giving just the filename, as shown below.

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

Furthermore, since the prefix attribute is msajsp (for More Servlets and JavaServer Pages), the
rest of the JSP page uses msajsp:example to refer to the example tag defined in the descriptor

file. Figure 3-19 shows the result.

Figure 3-19. Result of SimpleExample.jsp.

T Custom tag example [morezervlels tags ExampleT ag] - Hetscape

Fle Edit View Go Communicalss Help

4 ADd2nIsdD H =

°| wuf " Bookmadks & Localion [Fiip:/ Flocaiost fspiniso/SimpleE xample i |

Custom tag example
(moreserviets.tags.ExampleTag)

Custom tag example (moreservlets tags ExampleTag)

= | Document Done Sk 05 a2 N2

Listing 3.31 SimpleExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

<TITLE><msajsp:example /></TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"

TYPE="text/css">

</HEAD>

<BODY>

<Hl><msajsp:example /></H1>
<msajsp:example />

</BODY>

</HTML>

Defining a Basic Tag

This subsection gives details on defining simple tags without attributes or tag bodies; the tags are
thus of the form <prefix:tagname />.

A Basic Tag: Tag Handler Class

Tags that either have no body or that merely include the body verbatim should extend the
TagSupport class. This is a built-in class in the javax.servlet.jsp.tagext package that
implements the Tag interface and contains much of the standard functionality basic tags need.
Because of other classes you will use, your tag should normally import classes in the
javax.servlet.jsp and java.io packages as well. So, most tag implementations contain the
following import statements after the package declaration:

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

import java.io.*;

I recommend that you grab an example from http://www.moreservlets.com and use it as the
starting point for your own implementations.

For a tag without attributes or body, all you need to do is override the dostartTag method, which
defines code that gets called at request time at the place where the element’s start tag is found.
To generate output, the method should obtain the Jspwriter (the specialized iriter available in
JSP pages through use of the predefined out variable) from the automatically defined
pageContext field by means of getout. In addition to the getout method, the pageContext field
(of type PageContext) has methods for obtaining other data structures associated with the
request. The most important ones are getRequest, getResponse, getServletContext, and

getSession.

Since the print method of Jspliriter throws I0Exception, the print statements should be
inside a try/catch block. To report other types of errors to the client, you can declare that your
doStartTag method throws a JspException and then throw one when the error occurs.

If your tag does not have a body, your dostartTag should return the sk1p_BoDY constant. This
instructs the system to ignore any content between the tag’s start and end tags. As we will see
shortly, skIpP_BoODY is sometimes useful even when there is a tag body (e.g., if you sometimes
include it and other times omit it), but the simple tag we’re developing here will be used as a
stand-alone tag (<prefix:tagname />) and thus does not have body content.

Listing 3.32 shows a tag implementation that uses this approach to generate a random 50-digit
prime number through use of the primes class (Listing 3.33), which is adapted from Section 7.3
(Persistent Servlet State and Auto-Reloading Pages) of Core Servlets and JavaServer Pages.
Remember that the full text of Core Servlets and JavaServer Pages is available in PDF at
http://www.moreservlets.com.

Listing 3.32 SimplePrimeTag.java

package moreservlets.tags;

import Jjavax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;
import Jjava.io.*;

import java.math.*;

import moreservlets.*;

/** Generates a prime of approximately 50 digits.

* (50 is actually the length of the random number

* generated -- the first prime above that number will
* be returned.)

*/

public class SimplePrimeTag extends TagSupport {
protected int len = 50;

public int doStartTag() {

try {
JspWriter out = pageContext.getOut();
BigInteger prime = Primes.nextPrime (Primes.random(len));
out.print (prime) ;

} catch (IOException ioe) {
System.out.println ("Error generating prime: " + ioe);

}

return (SKIP_BODY) ;

Listing 3.33 Primes.java

package moreservlets;
import java.math.BigInteger;

/** A few utilities to generate a large random BiglInteger,
* and find the next prime number above a given BigInteger.
*/
public class Primes {
// Note that BigInteger.ZERO and BigInteger.ONE are
// unavailable in JDK 1.1.
private static final BigInteger ZERO = BigInteger.ZERO;
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TWO = new BigInteger ("2");
// Likelihood of false prime is less than 1/2”ERR VAL
// Assumedly BigInteger uses the Miller-Rabin test or
// equivalent, and thus is NOT fooled by Carmichael numbers.
// See section 33.8 of Cormen et al.'s Introduction to
// Algorithms for details.
private static final int ERR VAL = 100;

public static BigInteger nextPrime (BigInteger start) {
if (isEven(start))
start = start.add(ONE) ;
else
start = start.add(TWO) ;
if (start.isProbablePrime (ERR VAL))
return(start);
else

return (nextPrime (start)) ;

private static boolean isEven (BigInteger n) {

return (n.mod (TWO) .equals (ZERO)) ;

private static StringBuffer[] digits =

H),

{ new StringBuffer ("0"), new StringBuffer ("

" 1]

new StringBuffer (" , new StringBuffer ("

4

" 1]

new StringBuffer (" , new StringBuffer ("

4

1
("2m) ("3")
new StringBuffer ("4"), new StringBuffer ("5"),
("e") ("7m)
new StringBuffer ("8"), new StringBuffer ("9") };

private static StringBuffer randomDigit (boolean isZeroOK)
int index;
if (isZeroOK) {
index = (int)Math.floor (Math.random() * 10);
} else {
index = 1 + (int)Math.floor (Math.random() * 9);
}
return (digits[index]) ;
}
/** Create a random big integer where every digit is
* selected randomly (except that the first digit
* cannot be a zero).

*/

public static BigInteger random(int numDigits) {
StringBuffer s = new StringBuffer("");
for (int i=0; i<numDigits; i++) {
if (1 == 0) {
// First digit must be non-zero.
s.append (randomDigit (false)) ;
} else {

s.append (randomDigit (true)) ;

}

return (new BigInteger (s.toString()));

/** Simple command-line program to test. Enter number
* of digits, and it picks a random number of that

* length and then prints the first 50 prime numbers
* above that.

*/

public static void main(String[] args) {

int numDigits;

try {
numDigits = Integer.parselnt (args[0]);

} catch (Exception e) { // No args or illegal arg.
numbDigits = 150;

}

BigInteger start = random(numDigits);

for (int 1=0; i<50; i++) {

start = nextPrime (start);

{

System.out.println ("Prime " + i + " = " + start);

A Basic Tag: Tag Library Descriptor File

The general format of a descriptor file is almost always the same: it should contain an XML
version identifier followed by a bocTyPE declaration followed by a taglib container element, as
shown earlier in Listing 3.10. To get started, just download a sample from the source code archive
at http://www.moreservlets.com. The important part to understand is what goes in the taglib
element: the tag element. For tags without attributes, the tag element should contain four
elements between <tag> and </tag>:

1. name, whose body defines the base tag name to which the prefix of the taglib directive
will be attached. In this case, I use

<name>simplePrime</name>
to assign a base tag name of simplePrime.

3. tagclass, which gives the fully qualified class name of the tag handler. In this case, I use
<tagclass>moreservlets.tags.SimplePrimeTag</tagclass>

Note that tagclass was renamed tag-class in JSP 1.2. So, if you use features specific to
JSP 1.2 and use the JSP 1.2 DOCTYPE, you should use tag-class, not tagclass.

5. bodycontent, which can be omitted, but if present should have the value empty for tags
without bodies. Tags with normal bodies that might be interpreted as normal JSP use a
value of Jsp (the default value), and the rare tags whose handlers completely process the
body themselves use a value of tagdependent. For the simplePrimeTag discussed here,
I use empty as below:

<bodycontent>empty</bodycontent>

Note that bodycontent was renamed body-content in JSP 1.2. However, as with the
other new element names, you are only required to make the change if you use the JSP
1.2 DOCTYPE.

7. info, which gives a short description. Here, I use

<info>Outputs a random 50-digit prime.</info>

Note that info was renamed description in JSP 1.2.

Core Note

In JSP 1.2, tagclass was renamed tag-class, bodycontent was

renamed body-content, and info was renamed description.
However, the old element names still work in JSP 1.2 servers as long as

the TLD file uses the JSP 1.1 DOCTYPE.

Listing 3.34 shows the relevant part of the TLD file.

Listing 3.34 msajsp-taglib.tld (Excerpt 1)

<?xml version="1.0" encoding="IS0-8859-1" ?>
<!DOCTYPE ...>
<taglib>

<tag>
<name>simplePrime</name>
<tagclass>moreservlets.tags.SimplePrimeTag</tagclass>
<bodycontent>empty</bodycontent>
<info>Outputs a random 50-digit prime.</info>

</tag>

</taglib>

A Basic Tag: ISP File

JSP documents that make use of custom tags need to use the taglib directive, supplying a uri
attribute that gives the location of the tag library descriptor file and a prefix attribute that
specifies a short string that will be attached (along with a colon) to the main tag name.

Remember that the uri attribute can be an absolute or relative URL. When first learning, it is
easiest to use a simple relative URL corresponding to a TLD file that is in the same directory as the
JSP page that uses it. When we get to Web applications, however (see Chapter 4), we will see that
it makes more sense for larger applications to put the TLD files in a subdirectory inside the
WEB-INF directory. This configuration makes it easier to reuse the same TLD file from JSP pages
in multiple directories, and it prevents end users from retrieving the TLD file.

Furthermore, as we will see in Section 5.13 (Locating Tag Library Descriptors), you can use the
Web application deployment descriptor (i.e., web.xml) to change the meaning of strings supplied
to the uri attribute of the taglib directive. For now, however, you will probably find it easiest to

put the TLD file in the same directory as the JSP page that uses it and then use a simple filename
as the value of the uri attribute.

Listing 3.35 shows a JSP document that uses

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

to use the TLD file just shown in Listing 3.34 with a prefix of msajsp. Since the base tag name is
simplePrime, the full tag used is

<msajsp:simplePrime />

Figure 3-20 shows the result.

Figure 3-20. Result of SimplePrimeExample.jsp.

<} Some 50-Digit Primes - Microzolt Internet Explorer M= E
| Fle Edt View Favosles Took Help -
=

s QA 0EI B I

| Address [«E] http: AMacahost/jsp-nino/SimplePrimeE xample.jzp

B
Some 50-Digit Primes

ITR120T6237T2600305 7476 TETT2951 980361 2022857393667
S2T312421305T36644 502785574401 37504423031 282716280
8563997011710844029628255260324 63548484 007704451951
F114758077 100179609023 TE4TA 38248474 TF 1402702407973

- & & =

sllEL

|&] Dane | | [E3 Local niranet

Listing 3.35 SimplePrimeExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
<HEAD>
<TITLE>Some 50-Digit Primes</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<H1>Some 50-Digit Primes</H1>
<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

<msajsp:simplePrime />
<msajsp:simplePrime />
<msajsp:simplePrime />
<msajsp:simplePrime />

</BODY>
</HTML>

Assigning Attributes to Tags

Allowing tags like

<prefix:name attributel="valuel" attribute2="value2"... />

adds significant flexibility to your tag library. This subsection explains how to add attribute
support to your tags.

Tag Attributes: Tag Handler Class

Providing support for attributes is straightforward. Use of an attribute called attributel simply
results in a call to a method called setAttributel in your class that extends TagSupport (or that
otherwise implements the Tag interface). Consequently, adding support for an attribute named
attributel is merely a matter of implementing the following method:

public void setAttributel (String valuel) {
doSomethingWith (valuel) ;

Note that an attribute of attributeName (lowercase a) corresponds to a method called
setAttributeName (uppercase 2).

Static values (i.e., those determined at page translation time) are always supplied to the method
as type string. However, you can use rtexprvalue and type elements in the TLD file to permit
attributes of other types to be dynamically calculated. See the following subsection for details.

One of the most common things to do in the attribute handler is to simply store the attribute in a
field that will later be used by dostartTag or a similar method. For example, the following is a
section of a tag implementation that adds support for the message attribute.

private String message = "Default Message";

public void setMessage (String message) {

this.message = message;

If the tag handler will be accessed from other classes, it is a good idea to provide a
getAttributeName method in addition to the setAttributeName method. Only
setAttributeName is required, however.

Listing 3.36 shows a subclass of simplePrimeTag that adds support for the length attribute.
When such an attribute is supplied, it results in a call to setLength, which converts the input
String to an int and stores it in the len field already used by the dostartTag method in the
parent class.

Listing 3.36 PrimeTag.java

package moreservlets.tags;

/** Generates an N-digit random prime (default N = 50).
* Extends SimplePrimeTag, adding a length attribute

* to set the size of the prime. The doStartTag

* method of the parent class uses the len field

* to determine the length of the prime.

*/

public class PrimeTag extends SimplePrimeTag {
public void setLength(String length) {
try |
len = Integer.parselnt (length);
} catch (NumberFormatException nfe) {
len = 50;

Tag Attributes: Tag Library Descriptor File

Tag attributes must be declared inside the tag element by means of an attribute element. The
attribute element has five nested elements that can appear between <attribute> and
</attribute>.

1. name, a required element that defines the case-sensitive attribute name. In this case, I
use

<name>length</name>

3. required, a required element that stipulates whether the attribute must always be
supplied (true) or is optional (false) . In this case, to indicate that 1ength is optional, I
use

<required>false</required>

If required is false and the JSP page omits the attribute, no call is made to the
setAttributeName method. So, be sure to give default values to the fields that the
method sets. Omitting a required attribute results in an error at page translation time.

5. rtexprvalue, an optional element that indicates whether the attribute value can be a
JSP expression like <%= expression $> (true) or whether it must be a fixed string (false).
The default value is false, so this element is usually omitted except when you want to
allow attributes to have values determined at request time.

6. type, an optional elementthat designates the class to which the value should be typecast.
Designating a type is only legal when rtexprvalue is true.

7. example, an optional element that gives an example of how to use the tag. This element
is intended for development environments and has no effect on execution; it is available
only in JSP 1.2.

Listing 3.37 shows the relevant tag element within the tag library descriptor file. In addition to
supplying an attribute element to describe the 1ength attribute, the tag element also contains
the standard name (prime), tagclass (moreservlets.tags.PrimeTag), bodycontent (empty),

and info (short description) elements. Note that if you use features specific to JSP 1.2 and the
JSP 1.2 pocTyPE (see Chapter 11, * New Tag Library Features in JSP 1.2 "), you should change
tagclass, bodycontent, and info to tag-class, body-content, and description, respectively.

Listing 3.37 msajsp-taglib.tld (Excerpt 2)

<?xml version="1.0" encoding="ISO-8859-1" 72>
<!DOCTYPE ...>
<taglib>

<tag>
<name>prime</name>
<tagclass>moreservlets.tags.PrimeTag</tagclass>
<bodycontent>empty</bodycontent>
<info>Outputs a random N-digit prime.</info>
<attribute>
<name>length</name>
<required>false</required>
</attribute>
</tag>

</taglib>

Tag Attributes: JSP File

Listing 3.38 shows a JSP document that uses the taglib directive to load the tag library
descriptor file and to specify a prefix of msajsp. Since the prime tag is defined to permit a 1ength
attribute, Listing 3.38 uses

<msajsp:prime length="xxx" />

Remember that custom tags follow XML syntax, which requires attribute values to be enclosed in
either single or double quotes. Also, since the 1ength attribute is not required, it is permissible to
just use

<msajsp:prime />

The tag handler is responsible for using a reasonable default value in such a case. Figure 3-21
shows the result of Listing 3.38.

Figure 3-21. Result of PrimeExample.jsp.

#= Some M-Digit Primes - Metzcape

Fle Edit View Go Communicstor Help

1A v dd e nsadd @ =

°| f "Bookmarks & Location: [Fitp:/acahost/isp-intro/PrimeE sample =0 =

Some N-Digit Primes

20-digit: 60269083243729421317

40-digit 285452348T688208685250T05959253980326353

G0-digit 197860928766632474585120651584 1 827217889225095778646024334151
Default (50-digith: 523447 18557980%243424 52300012621 798187297010409523

- & & @

== [Diacument: Dione Sl ke 9P @ N2 s

Listing 3.38 PrimeExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some N-Digit Primes</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<H1>Some N-Digit Primes</H1>
<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

20-digit: <msajsp:prime length="20" />
40-digit: <msajsp:prime length="40" />
80-digit: <msajsp:prime length="80" />
Default (50-digit): <msajsp:prime />

</BODY>
</HTML>

Including the Tag Body

Up to this point, all of the custom tags you have seen ignore the tag body and thus are used as
stand-alone tags of the form

<prefix:tagname />

In this section, we see how to define tags that use their body content and are thus written in the
following manner:

<prefix:tagname>body</prefix:tagname>

Tag Bodies: Tag Handler Class

In the previous examples, the tag handlers defined a dostartTag method that returned

SKIP BODY. To instruct the system to make use of the body that occurs between the new
element’s start and end tags, your dostartTag method should return EVAL BODY INCLUDE
instead. The body content can contain JSP scripting elements, directives, and actions, just like the
rest of the page. The JSP constructs are translated into servlet code at page translation time, and
that code is invoked at request time.

If you make use of a tag body, then you might want to take some action after the body as well as
before it. Use the doEndTag method to specify this action. In almost all cases, you want to
continue with the rest of the page after finishing with your tag, so the doEndTag method should
return EVAL PAGE. If you want to abort the processing of the rest of the page, you can return
SKIP PAGE instead.

Listing 3.39 defines a tag for a heading element that is more flexible than the standard HTML H1
through H6 elements. This new element allows a precise font size, a list of preferred font names
(the first entry that is available on the client system will be used), a foreground color, a
background color, a border, and an alignment (LEFT, CENTER, RIGHT). Only the alignment
capability is available with the H1 through H6 elements. The heading is implemented through use
of a one-cell table enclosing a spaN element that has embedded style sheet attributes. The
dostartTag method generates the TABLE and SPAN start tags, then returns EVAL BODY INCLUDE
to instruct the system to include the tag body. The doEndTag method generates the and
</TABLE> tags, then returns EVAL PAGE to continue with normal page processing. Various
setAttributeName methods are used to handle the attributes like bgColor and fontSize.

Listing 3.39 HeadingTag.java
package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

/** Generates an HTML heading with the specified background

* color, foreground color, alignment, font, and font size.
* You can also turn on a border around it, which normally
* just barely encloses the heading, but which can also

* stretch wider. All attributes except the background

* color are optional.

*/

public class HeadingTag extends TagSupport {
private String bgColor; // The one required attribute
private String color = null;
private String align="CENTER";
private String fontSize="36";
private String fontList="Arial, Helvetica, sans-serif";
private String border="0";

private String width=null;
public void setBgColor (String bgColor) {

this.bgColor = bgColor;

public void setColor (String color) {

this.color = color;

public void setAlign(String align) {
this.align = align;

public void setFontSize (String fontSize) {

this.fontSize = fontSize;

public void setFontList (String fontList) {
this.fontList = fontList;
public void setBorder (String border) {

this.border = border;

public void setWidth (String width) {
this.width = width;

public int doStartTag() {

try {

JspWriter out = pageContext.getOut();

out.print ("<TABLE BORDER=" + border +
" BGCOLOR=\"" + bgColor + "\"" +
" ALIGN=\"" + align + "\"");

if (width != null) {

out.print (" WIDTH=\"" + width + "\"");

}

out.print ("><TR><TH>") ;

out.print ("<SPAN STYLE=\"" +

"font-size: " + fontSize + "px; " +
"font-family: " + fontList + "; ");
if (color != null) {
out.println("color: " + color + ";");
}
out.print ("\"> "); // End of

} catch (IOException ioe) {

System.out.println ("Error in HeadingTag: " + ioe);
}
return (EVAL BODY INCLUDE); // Include tag body

public int doEndTag() {
try {
JspWriter out = pageContext.getOut();
out.print ("</TABLE>") ;
} catch (IOException ioe) ({
System.out.println ("Error in HeadingTag: " + ioe);
}
return (EVAL PAGE); // Continue with rest of JSP page

Tag Bodies: Tag Library Descriptor File

There is only one new feature in the use of the tag element for tags that use body content: the
bodycontent element should contain the value Jsp as below.

<bodycontent>JSP</bodycontent>

Remember, however, that bodycontent is optional (Jsp is the default value) and is mainly
intended for IDEs. The name, tagclass, info, and attribute elements are used in the same
manner as described previously. Listing 3.40 gives the relevant part of the code.

Listing 3.40 msajsp-taglib.tid (Excerpt 3)

<?xml version="1.0" encoding="IS0-8859-1" 72>
<!DOCTYPE ...>
<taglib>

<tag>

<name>heading</name>

<tagclass>moreservlets. tags.HeadingTag</tagclass>

<bodycontent>JSP</bodycontent>

<info>Outputs a l-cell table used as a heading.</info>

<attribute>
<name>bgColor</name>
<required>true</required> <!'-- bgColor is required -->

</attribute>

<attribute>
<name>color</name>
<required>false</required>

</attribute>

<attribute>
<name>align</name>
<required>false</required>

</attribute>

<attribute>
<name>fontSize</name>
<required>false</required>

</attribute>

<attribute>
<name>fontList</name>
<required>false</required>

</attribute>

<attribute>
<name>border</name>
<required>false</required>

</attribute>

<attribute>
<name>width</name>
<required>false</required>

</attribute>

</tag>

</taglib>

Tag Bodies: JSP File

Listing 3.41 shows a document that uses the heading tag just defined. Since the bgColor
attribute was defined to be required, all uses of the tag include it. Figure 3-22 shows the result.

Figure 3-22. The custom nsajsp:heading €lement gives you much
more succinct control over heading format than do the

standard =1 through zs elements in HTML.

3 Some Tag-Generated Headings - Microsolt Interned Exploner [(O] =]
Fle Ed Y Faoiss Took Hep Ea
-2 QNSNS o

|

Agdess |-lﬂ hep Ao shost pp-nboHeadngE canpls (50

|

Default Heading

Large Bordered Heading|

Heading with Full-Width Background

Heading with Non- Standard Fout

&1 Done F5 Local nkanat

-

Listing 3.41 HeadingExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

<TITLE>Some Tag-Generated Headings</TITLE>

</HEAD>

<BODY>

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>
<msajsp:heading bgColor="#C0COCO">

Default Heading

</msajsp:heading>

<p>

<msajsp:heading bgColor="BLACK" color="WHITE">

White on Black Heading

</msajsp:heading>

<p>

<msajsp:heading bgColor="#EF8429" fontSize="60" border="5">

Large Bordered Heading

</msajsp:heading>

<p>

<msajsp:heading bgColor="CYAN" width="100%">

Heading with Full-Width Background

</msajsp:heading>

<p>

<msajsp:heading bgColor="CYAN" fontSize="60"
fontList="Brush Script MT, Times, serif">

Heading with Non-Standard Font

</msajsp:heading>

</BODY>

</HTML>

Optionally Including the Tag Body

Most tags either never make use of body content or a/lways do so. In either case, you decide in
advance whether the body content is used. However, you are also permitted to make this decision
at request time. This subsection shows you how to use request time information to decide
whether to include the tag body.

Optional Body Inclusion: Tag Handler Class

Optionally including the tag body is a trivial exercise: just return EVAL BODY INCLUDE Or

SKIP BODY, depending on the value of some request time expression. The important thing to
know is how to discover that request time information, since doStartTag does not have
HttpServletRequest and HttpServletResponse a@unnentsaS(k)service,ijspService,
doGet, and doPost. The solution to this dilemma is to use getRequest to obtain the
HttpServletRequest from the automatically defined pageContext field of TagSupport. Strictly
speaking, the return type of getRequest is ServletRequest, SO you have to do a typecast to
HttpServletRequest if you want to call a method that is not inherited from ServletRequest.
However, in this case I just use getParameter, SO no typecast is required.

Listing 3.42 defines a tag that ignores its body unless a request time debug parameter is supplied.
Such a tag provides a useful capability whereby you embed debugging information directly in the
JSP page during development but activate it only when a problem occurs.

Listing 3.42 DebugTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.]jsp.tagext.*;
import java.io.*;

import javax.servlet.*;

/** A tag that includes the body content only if
* the "debug" request parameter is set.

*/

public class DebugTag extends TagSupport {
public int doStartTag() {
ServletRequest request = pageContext.getRequest() ;
String debugFlag = request.getParameter ("debug");
if ((debugFlag != null) &&
(!debugFlag.equalsIgnoreCase ("false"))) {
return (EVAL BODY_ INCLUDE) ;
} else {

return (SKIP_BODY) ;

Optional Body Inclusion: Tag Library Descriptor File

If your tag ever makes use of its body, you should provide the value Jsp inside the bodycontent
element (if you use bodycontent at all). Other than that, all the elements within tag are used in
the same way as described previously. Listing 3.43 shows the entries needed for DebugTag.

Listing 3.43 msajsp-taglib.tld (Excerpt 4)

<?xml version="1.0" encoding="IS0-8859-1" 72>

<!DOCTYPE ...>
<taglib>
<tag>
<name>debug</name>

<tagclass>moreservlets. tags.DebugTag</tagclass>
<bodycontent>JSP</bodycontent>

<info>Includes body only if debug param is set.</info>
</tag>

</taglib>

Optional Body Inclusion: JSP File

Suppose that you have an application where most of the problems that occur are due to requests
occurring close together in time, the host making the request, or session tracking. In such a case,
the time, requesting host, and session ID would be useful information to track. Listing 3.43 shows
a page that encloses debugging information between <msajsp:debug> and </msajsp:debug>.
Figures 3-23 and 3-24 show the normal result and the result when a request time debug
parameter is supplied, respectively.

Figure 3-23. The body of the nsajsp:debug €lement is normally

ignored.

= Using the Debug Tag - Metscape

Fle Edit Miew Go Communicalee Help

IEE S raryi-y o

°| Uf " Bookmarks & Location:[hitp:/ocalhast s intio/DebugE xample s =

Using the Debug Tag

Top of repular page. Elah, blah, blah. Yadda, yadda, vadda

Bottom of regular page. Blah, blah, blah Yadda, yadda, vadda.

] Documert Done SR S o0 - B

Figure 3-24. The body of the nsajsp:debug @lement is included

when a sebug request parameter is supplied.

1"— Uzing the Debug Tag - HNelscapa

Fle Edit iew Go Communicator Help

Ay A s E D 3 o

“| " Bookmacks K Location: [Fitp:/Mocalhost/sprinio/DebugE ample.so debugetive]

Using the Debug Tag

Top of regular page. Blah, blah, blah. Yadda, yadda, vadda

Debug:
* Current time: Mon Aug 06 13:03:11 EDT 2001
* Eequestng hosmame: 127.0.0.1
* Session ID: 27472354840353E 1A424D44488100247

Eottom of regular page. Elah, blah, blah. Yadda, yadda, yadda.

Listing 3.44 DebugExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DID HTIML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using the Debug Tag</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<H1>Using the Debug Tag</Hl>
<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>
Top of regular page. Blah, blah, blah. Yadda, yadda, yadda.
<P>
<msa’jsp:debug>
Debug:

Current time: <%= new java.util.Date() %>
Requesting hostname: <%= request.getRemoteHost () %>
Session ID: <%= session.getId() %>

</msajsp:debug>
<P>

Bottom of regular page. Blah, blah, blah. Yadda, yadda, yadda.
</BODY>
</HTML>

Manipulating the Tag Body

The msajsp:prime element ignored any body content, the msajsp:heading element used body
content, and the msajsp:debug element ignored or used it, depending on a request time
parameter. The common thread among these elements is that the body content was never
modified; it was either ignored or included verbatim (after JSP translation). This section shows
you how to process the tag body.

Tag Body Processing: Tag Handler Class

Up to this point, all of the tag handlers have extended the TagSupport class. This is a good
standard starting point, since it implements the required Tag interface and performs a number of
useful setup operations like storing the pPageContext reference in the pageContext field.
However, TagSupport is not powerful enough for tag implementations that need to manipulate
their body content, and BodyTagSupport should be used instead.

BodyTagSupport extends TagSupport, SO the doStartTag and doEndTag methods are used in the
same way as before. Two important new methods are defined by BodyTagSupport:

1. doAfterBody, a method that you should override to handle the manipulation of the tag
body. This method should normally return skI1p BODY when it is done, indicating that no
further body processing should be performed.

2. getBodyContent, a method that returns an object of type BodyContent that
encapsulates information about the tag body. In tag libraries that are intended only for
JSP 1.2, you can use the bodyContent field of BodyTagSupport instead of calling
getBodyContent. Most libraries, however, are intended to run in either JSP version.

The BodyContent class has three important methods:

1. getEnclosingWriter, a method that returns the Jspwriter being used by doStartTag
and doEndTag.

2. getReader, a method that returns a Reader that can read the tag’s body.

3. getString, a method that returns a string containing the entire tag body.

The servletUtilities class (see Listing 2.10) contains a static filter method that takes a
string and replaces <, >, ", and & with <, >, squot;, and samp;, respectively. This method is useful
when servlets output strings that might contain characters that would interfere with the HTML
structure of the page in which the strings are embedded. Listing 3.45 shows a tag implementation
that gives this filtering functionality to a custom JSP tag.

Listing 3.45 FilterTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.]jsp.tagext.*;
import java.io.*;

import moreservlets.*;

/** A tag that replaces <, >, ", and & with their HTML
* character entities (<, >, ", and &) .

* After filtering, arbitrary strings can be placed

* 1in either the page body or in HTML attributes.

*/

public class FilterTag extends BodyTagSupport {
public int doAfterBody () {

BodyContent body = getBodyContent() ;

String filteredBody =
ServletUtilities.filter (body.getString())

try {
JspWriter out = body.getEnclosingWriter() ;
out.print (filteredBody) ;

} catch(IOException ioe) {
System.out.println ("Error in FilterTag: " + ioe);

}

// SKIP BODY means we're done. If we wanted to evaluate

// and handle the body again, we'd return EVAL BODY TAG

// (JSP 1.1/1.2) or EVAL BODY AGAIN (JSP 1.2 only)
return (SKIP_BODY) ;

Tag Body Processing: Tag Library Descriptor File

Tags that manipulate their body content should use the bodycontent element the same way as
tags that simply include it verbatim; they should supply a value of gsp. Other than that, nothing
new is required in the descriptor file, as you can see by examining Listing 3.46, which shows the

relevant portion of the TLD file.

Listing 3.46 msajsp-taglib.tld (Excerpt 5)

<?xml version="1.0" encoding="IS0-8859-1" 2>
<!DOCTYPE ...>
<taglib>

<tag>
<name>filter</name>
<tagclass>moreservlets.tags.FilterTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Replaces HTML-specific characters in body.</info>
</tag>

</;éélib>
Tag Body Processing: JSP File

Listing 3.47 shows a page that uses a table to show some sample HTML and its result. Creating
this table would be tedious in regular HTML since the table cell that shows the original HTML would
have to change all the < and > characters to < and >. This necessity is particularly onerous during
development when the sample HTML is frequently changing. Use of the <msajsp:filter> tag
greatly simplifies the process, as Listing 3.47 illustrates. Figure 3-25 shows the result.

Figure 3-25. The nsajsp:rilter €lement lets you insert text

without worrying about it containing special HTML characters.

a HTHL Losgical Character Styles - Microsoft Ireanst Explorer

|| Bl Ed Miw Faoes Took Heb

IR S JEFa i e e

| | Aegdreas] b tocshastinp-nboF e vamle o

LELI

HTML Logical Character Styles

Phiysical character styles (B, L etc) are rendered consistently in diferent browsers. Logical character siyles, however, may
be rendered diferently by different browsers. Here's how your broweer (BMoalla™d 0 (compatible, MSIE 5.0, Windows 98,
DegExt)) renders the HTML 4.0 logical character styles

| Example Result
Scme emphasized text.
 & :
Some strongly emphasized text.<BE> Fore enphaszed text,
<CODE>S0me code.</CoDE>
 Some strongly emphasied text
<HAMP>Some sample text.</SAMP=<BR: Some code.

- 5 1 .
<KBD>Some keyboard text.</KED=
 T

<DEN>A term being defined.</DEN>
» |4 termn being dafined.
<VAR>A variable.</VRAR>
 |4 werriabla, g
<CITE*A citation or reference.«</CITE» A itation or reforance.
.|
2] Done [B Locanbanat v

Listing 3.47 FilterExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DID HTIML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>HTML Logical Character Styles</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<H1>HTML Logical Character Styles</H1>
Physical character styles (B, I, etc.) are rendered consistently
in different browsers. Logical character styles, however,
may be rendered differently by different browsers.
Here's how your browser
(<%= request.getHeader ("User-Agent") %>)
renders the HTML 4.0 logical character styles:
<P>
<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>
<TABLE BORDER=1 ALIGN="CENTER">
<TR CLASS="COLORED"><TH>Example<TH>Result

<TR>

<TD><PRE><msajsp:filter>

Some emphasized text.

Some strongly emphasized text.

<CODE>Some code.</CODE>

<SAMP>Some sample text.</SAMP>

<KBD>Some keyboard text.</KBD>

<DFN>A term being defined.</DFN>

<VAR>A variable.</VAR>

<CITE>A citation or reference.</CITE>
</msajsp:filter></PRE>

<TD>

Some emphasized text.

Some strongly emphasized text.

<CODE>Some code.</CODE>

<SAMP>Some sample text.</SAMP>

<KBD>Some keyboard text.</KBD>

<DFN>A term being defined.</DFN>

<VAR>A variable.</VAR>

<CITE>A citation or reference.</CITE>
</TABLE>

</BODY>

</HTML>

Including or Manipulating the Tag Body Multiple Times

Rather than just including or processing the body of the tag a single time, you sometimes want to
do so more than once. The ability to support multiple body inclusion lets you define a variety of
iteration tags that repeat JSP fragments a variable number of times, repeat them until a certain
condition occurs, and so forth. This subsection shows you how to build such tags.

Multiple Body Actions: the Tag Handler Class

Tags that process the body content multiple times should start by extending BodyTagSupport and
implementing doStartTag, doEndTag, and, most importantly, doAfterBody as before. The
difference lies in the return value of doAfterBody. If this method returns EVAL BODY TAG, then
the tag body is evaluated again, resulting in a new call to doAfterBody. This process continues
until doAfterBody returns SKIP BODY. InJSP 1.2, the EVAL BODY TAG constant is deprecated and
replaced with EVAL BODY AGAIN. The two constants have the same value, but EVAL BODY AGAIN
is a clearer name. So, if your tag library is designed to be used only in JSP 1.2 containers (e.g.,
it uses some features specific to JSP 1.2 as described in Chapter 11), you should use

EVAL BODY AGAIN. Mosttag libraries, however, are designed to run in either JSP version and thus
use EVAL BODY TAG.

Core Note

EVAL BODY TAG Iis renamed EVAL BODY AGAIN in JSP 1.2.

Listing 3.48 defines a tag that repeats the body content the number of times specified by the reps
attribute. Since the body content can contain JSP (which is converted into servlet code at page
translation time but is invoked at request time), each repetition does not necessarily result in the
same output to the client.

Listing 3.48 RepeatTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.]jsp.tagext.*;

import java.io.*;

/** A tag that repeats the body the specified
* number of times.

*/

public class RepeatTag extends BodyTagSupport {

private int reps;

public void setReps (String repeats) {
try {
reps = Integer.parselnt (repeats);
} catch (NumberFormatException nfe) {

reps = 1;

public int doAfterBody () {
if (reps-- >= 1) {

BodyContent body = getBodyContent () ;
try |
JspWriter out = body.getEnclosingWriter();
out.println (body.getString());
body.clearBody(); // Clear for next evaluation
} catch (IOException ioe) {
System.out.println ("Error in RepeatTag: " + ioe);
}
// Replace EVAL BODY TAG with EVAL BODY AGAIN in JSP 1.2.
return (EVAL BODY TAG) ;
} else {
return (SKIP_BODY) ;

Multiple Body Actions: the Tag Library Descriptor File

Listing 3.49 shows the relevant section of the TLD file that gives the name msajsp: repeat to the
tag just defined. To accommodate request time values in the reps attribute, the file uses an
rtexprvalue element (enclosing a value of true) within the attribute element.

Listing 3.49 msajsp-taglib.tid (Excerpt 6)

<?xml version="1.0" encoding="IS0O-8859-1" 2>
<!DOCTYPE ...>
<taglib>

<tag>
<name>repeat</name>
<tagclass>moreservlets. tags.RepeatTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>Repeats body the specified number of times.</info>
<attribute>
<name>reps</name>
<required>true</required>
<!-- rtexprvalue indicates whether attribute
can be a JSP expression. -->
<rtexprvalue>true</rtexprvalue>
</attribute>
</tag>

</taglib>

Multiple Body Actions: the JSP File

Listing 3.50 shows a JSP document that creates a numbered list of prime numbers. The number
of primes in the list is taken from the request time repeats parameter. Figure 3-26 shows one
possible result.

Figure 3-26. Result of RepeatExample.jsp when accessed with

a repeats parameter of 10.

- Some A0-Digit Primes - Netscape

Fle Edit Wiew Go Communicale Help

Ay A mSIED F =

:l L ” Bockmarks _&,Lu-:abutll'tlpc-"'lucaln-:nst-'is.:l|rtrn-'F!mc:|lE:-cam|:J|:|$|:n'-'|-:4:|¢als-1|] |

Some 40-Digit Primes

Each entry in the following hist 15 the first prime number higher than a randomly
selected 40-digit number.

ZBESESSEZTA0BSTIS3ERE6 128528 T3066638911
1416201631 2756327384 TE4538404TT1 15557693
1071646 1872085471 5514 1802502700163877571
1348046666874 146444 T528B65E2605724157
E03401 15688172604 12884 156208524350360073
TEET2003386563 1246315844 17430892 10606139
192152923828 16T71 8634551527806 7334557783
S36908877155245336303 75060338 7080336245
THS3045263255044 1 SB404 62482 55T00TTE317
47494 1402065320299T8153870950962797479

== B = = RN (= L o L

ik

&= Documert: Dane Sl e 0@ @ W2 4

Listing 3.50 RepeatExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some 40-Digit Primes</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<H1>Some 40-Digit Primes</H1>
Each entry in the following list is the first prime number

higher than a randomly selected 40-digit number.

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

<!-- Repeats N times. A null reps value means repeat once. -->

<msajsp:repeat reps='<%= request.getParameter ("repeats") %>'>
<msajsp:prime length="40" />

</msajsp:repeat>

</0L>

</BODY>

</HTML>

Using Nested Tags

Although Listing 3.50 places the msajsp:prime element within the msajsp:repeat element, the
two elements are independent of each other. The first generates a prime number regardless of
where it is used, and the second repeats the enclosed content regardless of whether that content
uses an msajsp:prime element.

Some tags, however, depend on a particular nesting. For example, in standard HTML, the Tp and
TH elements can only appear within TR, which in turn can only appear within TABLE. The color and
alignment settings of TABLE are inherited by TR, and the values of Tr affect how TD and TH behave.
So, the nested elements can-not act in isolation even when nested properly. Similarly, the tag
library descriptor file makes use of a humber of elements like taglib, tag, attribute, and
required where a strict nesting hierarchy is imposed.

This subsection shows you how to define tags that depend on a particular nesting order and where
the behavior of certain tags depends on values supplied by earlier ones.

Nested Tags: the Tag Handler Classes

Class definitions for nested tags can extend either TagSupport or BodyTagSupport, depending on
whether they need to manipulate their body content (these extend BodyTagSupport) or, more
commonly, just ignore it or include it verbatim (these extend TagSupport).

Although nested tags use the standard tag handler classes, they use two new techniques within
those classes. First, nested tags can use findAncestorWithClass to find the tag in which they
are nested. This method takes a reference to the current class (e.g., this) and the class object
of the enclosing class (e.g., EnclosingTag.class) as arguments. If no enclosing class is found,
the method in the nested class can throw a JspTagException that reports the problem. Second,
if one tag wants to store data that a later tag will use, it can place that data in the instance of the
enclosing tag. The definition of the enclosing tag should provide methods for storing and
accessing this data.

Suppose that we want to define a set of tags that would be used like this:

<msajsp:if>
<msajsp:condition><%= someExpression %$></msajsp:condition>
<msajsp:then>JSP to include if condition is true</msajsp:then>
<msajsp:else>JSP to include if condition is false</msajsp:else>

</msajsp:if>

To accomplish this task, the first step is to define an 1fTag class to handle the msajsp:if tag.
This handler should have methods to specify and check whether the condition is true or false
(setCondition and getCondition). The handler should also have methods to designate and
check whether the condition has ever been explicitly set (setHasCondition and
getHasCondition), since we want to disallow msajsp:if tags that contain nomsajsp:condition
entry. Listing 3.51 shows the code for 1fTag.

The second step is to define a tag handler for msajsp:condition. This class, called
IfConditionTag, defines a doStartTag method that merely checks whether the tag appears
within IfTag. It returns EVAL BODY TAG (EVAL BODY BUFFERED in tag libraries that are specific to
JSP 1.2) if so and throws an exception if not. The handler’s doAfterBody method looks up the
body content (getBodyContent), converts it to a String (getString), and compares that to
"true". This approach means that an explicit value of true can be substituted for a JSP
expression like <%= expression %> if, during initial page development, you want to temporarily
designate that the then portion should always be used. Using a comparison to "true" also means
that any other value will be considered false. Once this comparison is performed, the result is
stored in the enclosing tag by means of the setCondition method of 1fTag. The code for
IfConditionTag is shown in Listing 3.52.

Listing 3.51 If Tag.java

package moreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.]jsp.tagext.*;
import java.io.*;

import javax.servlet.*;
/** A tag that acts like an if/then/else. */

public class IfTag extends TagSupport {
private boolean condition;

private boolean hasCondition = false;

public void setCondition (boolean condition) {
this.condition = condition;

hasCondition = true;

public boolean getCondition() {

return (condition);

public void setHasCondition (boolean flag) {
this.hasCondition = flag;

/** Has the condition field been explicitly set? */

public boolean hasCondition() {

return (hasCondition) ;

public int doStartTag() {
return (EVAL BODY INCLUDE) ;

Listing 3.52 IfConditionTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.]jsp.tagext.*;
import java.io.*;

import javax.servlet.*;
/** The condition part of an if tag. */

public class IfConditionTag extends BodyTagSupport {
public int doStartTag() throws JspTagException {

IfTag parent =

(IfTag) findAncestorWithClass (this, IfTag.class);
if (parent == null) {

throw new JspTagException ("condition not inside if");
}
// If your tag library is intended to be used ONLY
// in JSP 1.2, replace EVAL BODY TAG with
// EVAL BODY BUFFERED.
return (EVAL BODY TAG) ;

public int doAfterBody () {
IfTag parent =
(IfTag) findAncestorWithClass (this, IfTag.class);
String bodyString = getBodyContent () .getString();
if (bodyString.trim() .equals("true")) {
parent.setCondition (true);
} else {
parent.setCondition (false);
}
return (SKIP_BODY) ;

The third step is to define a class to handle the msajsp:then tag. The dostartTag method of this
class verifies that it is inside IfTag and also checks that an explicit condition has been set (i.e.,
that the 1fconditionTag has already appeared within the 1fTag). The doAfterBody method
checks for the condition in the 1£Tag class, and, if it is true, looks up the body content and prints
it. Listing 3.53 shows the code.

The final step in defining tag handlers is to define a class for msajsp:else. This class is very
similar to the one that handles the then part of the tag, except that this handler only prints the
tag body from doAfterBody if the condition from the surrounding 1fTag is false. The code is
shown in Listing 3.54.

Listing 3.53 If ThenTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.]jsp.tagext.*;
import java.io.*;

import javax.servlet.*;
/** The then part of an if tag. */

public class IfThenTag extends BodyTagSupport {
public int doStartTag() throws JspTagException {
IfTag parent =
(IfTag) findAncestorWithClass (this, IfTag.class);
if (parent == null) {
throw new JspTagException ("then not inside if");
} else if (!parent.hasCondition()) {

String warning =

"condition tag must come before then tag";

throw new JspTagException (warning);

}

// If your tag library is intended to be used ONLY
// in JSP 1.2, replace EVAL BODY TAG with

// EVAL BODY BUFFERED.
return (EVAL BODY TAG) ;

public int doAfterBody ()

IfTag parent =

(IfTag) findAncestorWithClass (this,
if (parent.getCondition()) {

try |

BodyContent body

JspWriter out

out.print (body.getString()) ;

body.getEnclosingWriter () ;

{

IfTag.class);

getBodyContent () ;

} catch (IOException ioe) {

System.out.println ("Error in IfThenTag:

}
return (SKIP_BODY)

Listing 3.54 IfElseTag.java

package moreservlets

import javax.servlet
import javax.servlet

import java.io.*;

import javax.servlet.

/** The else part of an if tag.

’

.tags;

.sp.*;
.Jjsp.tagext.*;

*/

"

public class IfElseTag extends BodyTagSupport {
public int doStartTag()

IfTag parent =

+ ioe);

throws JspTagException {

(IfTag) findAncestorWithClass (this,

if (parent == null)

{

IfTag.class) ;

throw new JspTagException("else not inside if");

} else if (!parent.hasCondition())

String warning

{

"condition tag must come before else tag";
throw new JspTagException (warning);
}
// If your tag library is intended to be used ONLY
// in JSP 1.2, replace EVAL BODY TAG with
// EVAL BODY BUFFERED.
return (EVAL BODY TAG) ;

public int doAfterBody () {
IfTag parent =
(IfTag) findAncestorWithClass (this, IfTag.class);
if (!parent.getCondition()) ({
try |
BodyContent body = getBodyContent ()
JspWriter out = body.getEnclosingWriter();
out.print (body.getString());
} catch (IOException ioe) {

System.out.println ("Error in IfElseTag: " + ioe);

}
return (SKIP_BODY) ;

Nested Tags: the Tag Library Descriptor File

Even though there is an explicit required nesting structure for the tags just defined, the tags must
be declared separately in the TLD file. This means that nesting validation is performed only at
request time, not at page translation time. In JSP 1.1, you could instruct the system to do some
validation at page translation time by using a TagExtraInfo class. This class has a
getVariableInfo method that you can use to check whether attributes exist and where they are
used. Once you have defined a subclass of TagkxtraInfo, you associate it with your tag in the tag
library descriptor file by means of the teiclass element (tei-class in JSP 1.2), which is used
just like tagclass. In practice, however, TagextralInfo is a bit cumbersome to use. Fortunately,
JSP 1.2 introduced a very useful new class for this purpose: TagLibraryValidator. See Chapter
11 (New Tag Library Features in JSP 1.2) for information on using this class.

Listing 3.55 msajsp-taglib.tld (Excerpt 7)

<?xml version="1.0" encoding="IS0-8859-1" 2>
<!DOCTYPE ...>
<taglib>

<tag>
<name>if</name>
<tagclass>moreservlets. tags.IfTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>if/condition/then/else tag.</info>
</tag>
<tag>
<name>condition</name>
<tagclass>moreservlets. tags.IfConditionTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>condition part of if/condition/then/else tag.</info>
</tag>
<tag>
<name>then</name>
<tagclass>moreservlets. tags.IfThenTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>then part of if/condition/then/else tag.</info>
</tag>
<tag>
<name>else</name>
<tagclass>moreservlets. tags.IfElseTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>else part of if/condition/then/else tag.</info>
</tag>

</taglib>

Nested Tags: the JSP File

Listing 3.56 shows a page that uses the msajsp:if tag three different ways. In the first instance,
a value of true is hardcoded for the condition. In the second instance, a parameter from the HTTP
request is used for the condition, and in the third case, a random number is generated and
compared to a fixed cutoff. Figure 3-27 shows a typical result.

Figure 3-27. Result of IfExample.jsp.

ZX If Tag Example - Microsolt Intemat Explores HEE

| Ble Edt Mew Faverles Jook Help El

o= - QR QS S

| Address [EI hitp: MlocathoztdispntnoME sampla jsp E_
[|

If Tag Example

Condibon 15 brue

Eequest iz not using 551

Some coin tosses:
« Heads
Tails
Tails
Heads
Tails
Tails
Heads
Tauls
Tails
Tads

- & = & & =

il L

[&] Done [[Ea Local miranst

Listing 3.56 IfExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>If Tag Example</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<H1>If Tag Example</H1>
<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>
<msajsp:if>
<msajsp:condition>true</msajsp:condition>
<msajsp:then>Condition is true</msajsp:then>
<msajsp:else>Condition is false</msajsp:else>
</msajsp:if>
<p>
<msajsp:if>

<msajsp:condition><%= request.isSecure() %$></msajsp:condition>

<msajsp:then>Request is using SSL (https)</msajsp:then>
<msajsp:else>Request is not using SSL</msajsp:else>
</msajsp:if>
<p>
Some coin tosses:

<msajsp:repeat reps="10">
<msajsp:if>
<msajsp:condition><%= Math.random() < 0.5 %$></msajsp:condition>
<msajsp:then>Heads
</msajsp:then>
<msajsp:else>Tails
</msajsp:else>
</msajsp:if>
</msajsp:repeat>
</BODY>
</HTML>

3.8 Integrating Serviets and JSP: The MVC

Architecture

Servlets are great when your application requires a lot of real programming to accomplish its task.
Servlets can manipulate HTTP status codes and headers, use cookies, track sessions, save
information between requests, compress pages, access databases, generate GIF images
on-the-fly, and perform many other tasks flexibly and efficiently. But, generating HTML with
servlets can be tedious and can yield a result that is hard to modify.

That’s where JSP comes in; it lets you separate much of the presentation from the dynamic
content. That way, you can write the HTML in the normal manner, even using HTML-specific tools
and putting your Web content developers to work on your JSP documents. JSP expressions,
scriptlets, and declarations let you insert simple Java code into the servlet that results from the
JSP page, and directives let you control the overall layout of the page. For more complex
requirements, you can wrap up Java code inside beans or define your own JSP tags.

Great. We have everything we need, right? Well, no, not quite. The assumption behind a JSP
document is that it provides a single overall presentation. What if you want to give totally
different results depending on the data that you receive? Beans and custom tags (see Figure
3-28), although extremely powerful and flexible, don‘t overcome the limitation that the JSP page
defines a relatively fixed top-level page appearance. The solution is to use both servilets and
JavaServer Pages. If you have a complicated application that may require several substantially
different presentations, a servlet can handle the initial request, partially process the data, set up
beans, and then forward the results to one of a number of different JSP pages, depending on the
circumstances. This approach is known as the Model View Controller (MVC) or Model 2
architecture. For code that supports a formalization of this approach, see the Apache Struts
Framework at http://jakarta.apache.org/struts/.

Figure 3-28. Strategies for invoking dynamic code from JSP.

simple application of - » Call Java code direetly. Place all Java code in [SP page.

small development team. Saction 3.3

* Call Java code indirectly. Develop separate utility classes.
Insert into]SP page only the Java code needed to invoke the
utility classes. Section 3.3,

* Use beans. Develop separate utility cdlasses structured as
beans. Use §sp: useBean, Jsp :getPraperty, and
jsp:setProperty to nvoke the code. Section 3.6

= Use custom tags. Develop tag handler classes, If the handlers
become complicated, use separate utility classes. Invoke the
tag handlers with XML-like custom tags, Section 3.7.

* Useth rchitecture. Have a servlet respond to
' {:rig_{imﬂ rejuest, loake Lp duta, and store results in beans.
Torward to a JSP page to present results. JSP page uses beans
Complex applcation or Fory ml_t \JSP page to present Ie .u]tx J5P page uses beans
large develepment teom. aniel |1t155!l:|_'.'{'nsmt|| tugs. Section 3.8

Forwarding Requests

The key to letting servlets forward requests or include external content is to use a
RequestDispatcher. You obtain a RequestDispatcher by calling the getRequestDispatcher
method of servletContext, supplying a URL relative to the server root. For example, to obtain a
RequestDispatcher associated with http://yourhost/presentations/presentationl.jsp, you
would do the following:

String url = "/presentations/presentationl.jsp";
RequestDispatcher dispatcher =
getServletContext () .getRequestDispatcher (url) ;

Once you have a RequestDispatcher, you use forward to completely transfer control to the
associated URL and you use include to output the associated URL’'s content. In both cases, you
supply the HttpServletRequest and HttpServletResponse as arguments. Both methods throw
ServletException and IOException. For example, Listing 3.57 shows a portion of a servlet that
forwards the request to one of three different JSP pages, depending on the value of the
operation parameter. To avoid repeating the getRequestDispatcher call, I use a utility method
called gotopPage that takes the URL, the HttpServletRequest, and the HttpServletResponse;
gets a RequestDispatcher; and then calls forward on it.

Listing 3.57 Request Forwarding Example

public void doGet (HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

String operation = request.getParameter ("operation");
if (operation == null) {
operation = "unknown";
}
if (operation.equals ("operationl™)) {

gotoPage ("/operations/presentationl.jsp",
request, response);
} else if (operation.equals ("operation2™)) {
gotoPage ("/operations/presentation2.jsp",
request, response);
} else {
gotoPage ("/operations/unknownRequestHandler. jsp",

request, response);

private void gotoPage (String address,
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
RequestDispatcher dispatcher =
getServletContext () .getRequestDispatcher (address) ;

dispatcher. forward (request, response);

Using Static Resources

In most cases, you forward requests to a JSP page or another servilet. In some cases, however,
you might want to send the request to a static HTML page. In an e-commerce site, for example,
requests that indicate that the user does not have a valid account name might be forwarded to an
account application page that uses HTML forms to gather the requisite information. With GeT
requests, forwarding requests to a static HTML page is perfectly legal and requires no special
syntax; just supply the address of the HTML page as the argument to getRequestDispatcher.
However, since forwarded requests use the same request method as the original request, PosT
requests cannot be forwarded to normal HTML pages. The solution to this problem is to simply
rename the HTML page to have a.jsp extension. Renaming somefile.html to somefile.jsp does not
change its output for GET requests, but somefile.htm/ cannot handle posT requests, whereas
somefile.jsp gives an identical response for both GET and pPOST.

Supplying Information to the Destination Pages

A servlet can store data for JSP pages in three main places: in the HttpServletRequest, in the
HttpSession, and in the servletContext. These storage locations correspond to the three
nondefault values of the scope attribute of jsp:useBean: thatis, request, session, and

application.

1. Storing data that servlet looked up and that JSP page will use only in this
request. The servlet would create and store data as follows:

2.

3. SomeClass value = new SomeClass(...);
request.setAttribute ("key", wvalue)
Then, the servlet would forward to a JSP page that uses the following to retrieve the data:
<jsp:useBean id="key" class="SomeClass"

scope="request" />

4. Storing data that servlet looked up and that JSP page will use in this request and
in later requests from same client. The servlet would create and store data as
follows:

5.

6. SomeClass value = new SomeClass(...);

7. HttpSession session = request.getSession (true) ;
session.setAttribute ("key", wvalue)
Then, the servlet would forward to a JSP page that uses the following to retrieve the data:
<jsp:useBean id="key" class="SomeClass"

scope="session" />

8. Storing data that servlet looked up and that JSP page will use in this request and
in later requests from any client. The servlet would create and store data as follows:

9.

10 SomeClass value = new SomeClass(...);

getServletContext () .setAttribute ("key", wvalue)

Then, the servlet would forward to a JSP page that uses the following to retrieve the data:

<jsp:useBean id="key" class="SomeClass"

scope="application" />

Interpreting Relative URLs in the Destination Page

Although a servlet can forward the request to an arbitrary location on the same server, the
process is quite different from that of using the sendrRedirect method of HttpServletResponse.
First, sendredirect requires the client to reconnect to the new resource, whereas the forward
method of RequestDispatcher is handled completely on the server. Second, sendrRedirect does
not automatically preserve all of the request data; forward does. Third, sendrRedirect results in
a different final URL, whereas with forward, the URL of the original servlet is maintained.

This final point means that if the destination page uses relative URLs for images or style sheets,
it needs to make them relative to the server root, not to the destination page’s actual location. For
example, consider the following style sheet entry:

<LINK REL=STYLESHEET
HREF="my-styles.css"
TYPE="text/css">

If the JSP page containing this entry is accessed by means of a forwarded request,
my-styles.css Will be interpreted relative to the URL of the originating servlet, not relative to the
JSP page itself, almost certainly resulting in an error. Section 4.5 (Handling Relative URLs in Web
Applications) discusses several approaches to this problem. One simple solution, however, is to
give the full server path to the style sheet file, as follows.

<LINK REL=STYLESHEET
HREF="/path/my-styles.css"
TYPE="text/css">

The same approach is required for addresses used in and .

Using Alternative Means to Get a RequestDispatcher

Servers that support version 2.2 or 2.3 of the servlet specification have two additional ways of
obtaining a RequestDispatcher besides the getRequestDispatcher method of

ServletContext.

First, since most servers let you register explicit names for servlets or JSP pages, it makes sense
to access them by name rather than by path. Use the getNamedDispatcher method of
ServletContext for this task.

Second, you might want to access a resource by a path relative to the current servlet’s location,
rather than relative to the server root. This approach is not common when servlets are accessed

in the standard manner (http://host/serviet/ServietName), because ISP files would not be
accessible by means of http://host/servlet/... since that URL is reserved especially for servlets.
However, it is common to register servlets under another path (see Section 5.3, “Assigning
Names and Custom URLs”), and in such a case you can use the getRequestDispatcher method
of HttpServletRequest rather than the one from ServletContext. For example, if the
originating servlet is at http://host/travel/TopLevel,

getServletContext () .getRequestDispatcher ("/travel/cruises.jsp")

could be replaced by

request.getRequestDispatcher ("cruises.jsp") ;

Example: An Online Travel Agent

Consider the case of an online travel agent that has a quick-search page, as shown in Figure 3-29
and Listing 3.58. Users need to enter their email address and password to associate the request
with their previously established customer account. Each request also includes a trip origin, trip
destination, start date, and end date. However, the action that will result will vary substantially in
accordance with the action requested. For example, pressing the “Book Flights” button should
show a list of available flights on the dates specified, ordered by price (see Figure 3-30). The
user’s real name, frequent flyer information, and credit card number should be used to generate
the page. On the other hand, selecting “Edit Account” should show any previously entered
customer information, letting the user modify values or add entries. Likewise, the actions
resulting from choosing “"Rent Cars” or “Find Hotels” will share much of the same customer data
but will have a totally different presentation.

Figure 3-29. Front end to travel servlet (see Listing 3.58).

2 Dnline Travel Quick Search - Netscape

Fle Edit View Go Cemmunicsiee Help

dw Ad e msadD FH O

Fl ¥ * Bockmarks ¢ Location: |hitpc//locakastfspintio/iravelfquick:search biml |

Online Travel Quick Search

Email address |jne@snmehnst . @am
Password: |* """
Origin: [Bu1
Dieshinaton [I-le

Start date (MMIDTT): [p1705/0z
End date MMDDYY): [01/11/02

PaSSPOXT
=
.;': Y]

1 I
iy

Back Filght | RentCar | Find Hotel | Edit Azcount

Not yet a member? Get a free account here.

== |Decument: Dene SN

Figure 3-30. Result of travel servlet (Listing 3.59) dispatching

request to BookFlights.jsp (Listing 3.60).

it Best Available Flights - Hetscape

ghg&!bnﬁntmmrkmuﬂn
I e Ad e mlsd D H =

" J'Enolu'ru'l:: __.& annﬁmTIht:p:.-'dn-cahn:Hsmhb’mmseMﬂ:Tlm.'zl _:I

Best Available Flights

Finding flights for Joe Hacker

Java Airwavs Flight 1522 (§455.95)

Outgomng: Leaves BWI at 2:00 AN on 010502, armvme m LA at 3:15 P (1 stop -- Java, Indonesia).
Betwn: Leaves LA at 500 AM on 0171102, arviving n BWT at 315 PR (1 stop -- Sun Microsystens).

Servlet Express Flight 2612 ($505 95)

Omtgoing: Leaves BWT at 530 AW on 010502, armvng m LAY at 415 FM (1 stop -- Mew Atlanta)
Retwrm: Leaves LA at 930 AW on 01711702, amving in BWI at 4:15 PII (1 stop -- Mew Atlanta)

Geek Airlines Flight 3.14159 (§675.00)

Outgoing: Leaves BWT at 10:02:37 AWM on 010502, arriving in LAK at 222:19 PM (1 stop -- THI.
Retun: Leaves LAS at 10002:37 AWM on 0171102, arviwing in BWT at 22215 PM (1 stop -- MIT)

Airline Frequent Flver Number

Tawa Adrvweays 321-9299.J
Truted 442-2212-17
Southwrest 14345

Credit Card: JavaZmart©ard (x-S0 E -2 - 31207

Hald for 24 Hrg
Book Il |

s == [Document: Dane I S o O T

To accomplish the desired behavior, the front end (Listing 3.58) submits the request to the
top-level travel serviet shown in Listing 3.59. This servlet looks up the customer information (see
http://www.moreservlets.com for the actual code used, but this would be replaced by a database
lookup in real life), puts it in the HttpSession object associating the value (of type
moreservlets.TravelCustomer) with the name customer, and then forwards the request to a
different JSP page corresponding to each of the possible actions. The destination page (see
Listing 3.60 and the result in Figure 3-30) looks up the customer information by means of

<jsp:useBean id="customer"
class="moreservlets.TravelCustomer"

scope="session" />

and then uses jsp:getProperty to insert customer information into various parts of the page.

Listing 3.58 quick-search.html (Excerpt)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Online Travel Quick Search</TITLE>
<LINK REL=STYLESHEET
HREF="travel-styles.css"
TYPE="text/css">
</HEAD>
<BODY>

<H1>Online Travel Quick Search</H1>
<FORM ACTION="/servlet/moreservlets.Travel" METHOD="POST">
<CENTER>
Email address: <INPUT TYPE="TEXT" NAME="emailAddress">

Password: <INPUT TYPE="PASSWORD" NAME="password" SIZE=10>

<TABLE CELLSPACING=1>
<TR>
<TH> <IMG SRC="airplane.gif" WIDTH=100 HEIGHT=29
ALIGN="TOP" ALT="Book Flight">

<TR>
<TH><SMALL>
<INPUT TYPE="SUBMIT" NAME="flights" VALUE="Book Flight">
</SMALL>

</TABLE>
</CENTER>
</FORM>

</BODY>
</HTML>

Listing 3.59 Travel.java

package moreservlets;

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

/** Top-level travel-processing servlet. This servlet sets up
* the customer data as a bean, then forwards the request

* to the airline booking page, the rental car reservation

* page, the hotel page, the existing account modification

* page, or the new account page.

*/

public class Travel extends HttpServlet {

private TravelCustomer[] travelData;

public void init () {

travelData = TravelData.getTravelData();

/** Since password is being sent, use POST only. However,
* the use of POST means that you cannot forward

* the request to a static HTML page, since the forwarded
* request uses the same request method as the original

* one, and static pages cannot handle POST. Solution:

* have the "static" page be a JSP file that contains

* HTML only. That's what accounts.jsp is. The other

* JSP files really need to be dynamically generated,

* since they make use of the customer data.

*/

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
String emailAddress = request.getParameter ("emailAddress");
String password = request.getParameter ("password");
TravelCustomer customer =
TravelCustomer.findCustomer (emailAddress, travelData):;
if ((customer == null) || (password == null) ||
(!'password.equals (customer.getPassword()))) {

gotoPage ("/jsp-intro/travel/accounts.jsp",

request, response);
}
// The methods that use the following parameters will
// check for missing or malformed values.
customer.setStartDate (request.getParameter ("startDate")) ;
customer.setEndDate (request.getParameter ("endDate")) ;
customer.setOrigin (request.getParameter ("origin"));

customer.setDestination (request.getParameter

("destination")) ;
HttpSession session = request.getSession (true);
session.setAttribute ("customer", customer);
if (request.getParameter ("flights") != null) {

gotoPage ("/jsp-intro/travel/BookFlights.jsp",
request, response) ;
} else if (request.getParameter ("cars") != null) {
gotoPage ("/jsp-intro/travel/RentCars. jsp",
request, response) ;
} else if (request.getParameter ("hotels™) != null) {
gotoPage ("/jsp-intro/travel/FindHotels. jsp",
request, response) ;
} else if (request.getParameter ("account") != null) {
gotoPage ("/jsp-intro/travel/EditAccounts.jsp",
request, response) ;
} else {
gotoPage ("/jsp-intro/travel/IllegalRequest.jsp",

request, response);

private void gotoPage (String address,
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
RequestDispatcher dispatcher =
getServletContext () .getRequestDispatcher (address) ;

dispatcher. forward (request, response) ;

Listing 3.60 BookFlights.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<TITLE>Best Available Flights</TITLE>
<LINK REL=STYLESHEET
HREF="/jsp-intro/travel/travel-styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<H1>Best Available Flights</H1>
<CENTER>
<jsp:useBean id="customer"
class="moreservlets.TravelCustomer"
scope="session" />
Finding flights for
<jsp:getProperty name="customer" property="fullName" />
<p>
<jsp:getProperty name="customer" property="flights" />
<P>
<HR>

<FORM ACTION="/servlet/BookFlight">
<jsp:getProperty name="customer"
property="frequentFlyerTable" />
<p>
Credit Card:
<jsp:getProperty name="customer" property="creditCard" />
<p>
<INPUT TYPE="SUBMIT" NAME="holdButton" VALUE="Hold for 24 Hrs">
<p>
<INPUT TYPE="SUBMIT" NAME="bookItButton" VALUE="Book It!">
</FORM>
</CENTER>
</BODY>
</HTML>

You should pay careful attention to the TravelCustomer class (shown partially in Listing 3.61,
with the complete code available at http://www.moreservlets.com). In particular, note that the
class spends a considerable amount of effort making the customer information accessible as plain
strings or even HTML-formatted strings through simple properties. Every task that requires any
substantial amount of programming is spun off into the bean, rather than being performed in the
JSP page itself. This is typical of servlet/JSP integration—the use of JSP does not entirely obviate
the need to format data as strings or HTML in Java code. Significant up-front effort to make the
data conveniently available to JSP more than pays for itself when multiple JSP pages access the
same type of data. Other supporting classes (Frequent-Flyerinfo.java, TravelData.java, etc.), ISP
pages (RentCars.jsp, FindHotels.jsp, etc.), and the travel-styles.css style sheet can be found at
http://www.moreservlets.com.

Listing 3.61 TravelCustomer.java

package moreservlets;

import java.util.*;

import java.text.*;

/** Describes a travel services customer. Implemented
* as a bean with some methods that return data in HTML
* format, suitable for access from JSP.

*/

public class TravelCustomer ({
private String emailAddress, password, firstName, lastName;
private String creditCardName, creditCardNumber;
private String phoneNumber, homeAddress;
private String startDate, endDate;
private String origin, destination;
private FrequentFlyerInfo[] frequentFlyerData;
private RentalCarInfo[] rentalCarData;

private HotelInfo[] hotelData;

public TravelCustomer (String emailAddress,
String password,
String firstName,
String lastName,
String creditCardName,
String creditCardNumber,
String phoneNumber,
String homeAddress,
FrequentFlyerInfo[] frequentFlyerData,
RentalCarInfo[] rentalCarData,
HotelInfo[] hotelData) {
setEmailAddress (emailAddress) ;
setPassword (password) ;
setFirstName (firstName) ;
setLastName (lastName) ;
setCreditCardName (creditCardName) ;
setCreditCardNumber (creditCardNumber) ;
setPhoneNumber (phoneNumber) ;
setHomeAddress (homeAddress) ;
setStartDate (startDate) ;
setEndDate (endDate) ;

setFrequentFlyerData (frequentFlyerData) ;
setRentalCarData (rentalCarData) ;

setHotelData (hotelData) ;

public String getEmailAddress () {

return (emailAddress) ;

public void setEmailAddress (String emailAddress) {

this.emailAddress = emailAddress;

// See http://www.moreservlets.com for missing code.
public String getFrequentFlyerTable () {
FrequentFlyerInfo[] frequentFlyerData =
getFrequentFlyerDatal() ;
if (frequentFlyerData.length == 0) {
return ("<I>No frequent flyer data recorded.</I>");
} else {
String table =
"<TABLE>\n" +
" <TR><TH>Airline<TH>Frequent Flyer Number\n";
for (int 1i=0; i<frequentFlyerData.length; i++) {
FrequentFlyerInfo info = frequentFlyerDatali];
table = table +
"<TR ALIGN=\"CENTER\">" +
"<TD>" + info.getAirlineName () +
"<TD>" + info.getFrequentFlyerNumber () + "\n";
}
table = table + "</TABLE>\n";

return (table) ;

// This would be replaced by a database lookup

// in a real application.

public String getFlights () {
String flightOrigin =
replacelfMissing (getOrigin (), "Nowhere");
String flightDestination =
replacelfMissing (getDestination (), "Nowhere");

Date today = new Date();

DateFormat formatter =
DateFormat.getDateInstance (DateFormat.MEDIUM) ;
String dateString = formatter.format (today);
String flightStartDate =
replaceIfMissing (getStartDate (), dateString);
String flightEndDate =
replaceIlfMissing (getEndDate (), dateString);
String [][] flights =
{ { "Java Airways", "1522", "455.95", "Java, Indonesia",
"Sun Microsystems", "9:00", "3:15" 1},
{ "Servlet Express", "2622", "505.95", "New Atlanta",
"New Atlanta™, "9:30", "4:15" },
{ "Geek Airlines"™, "3.14159", "675.00", "JHU",
"MIT", "10:02:37", "2:22:19" } };
String flightString = "";
for (int i=0; i<flights.length; i++) {
String[] flightInfo = flights[i];
flightString =
flightString + getFlightDescription(flightInfo[O0],
flightInfo
flightInfo
flightInfo
flightInfo
flightInfo
flightInfo
flightOrigin,
flightDestination,
flightStartDate,
flightEndDate) ;
}
return (flightString);
}
private String getFlightDescription(String airline,
String flightNum,
String price,
String stopl,
String stop2,
String timel,
String time2,
String flightOrigin,
String flightDestination,
String flightStartDate,
String flightEndDate) ({
String flight =

"<P>
\n" +
"<TABLE WIDTH=\"100%\"><TR><TH CLASS=\"COLORED\">\n" +
"" + airline + " Flight " + flightNum +
" ($" + price + ")</TABLE>
\n" +
"Outgoing: Leaves " + flightOrigin +
"at " + timel + " AM on " + flightStartDate +
", arriving in " + flightDestination +
" at " + time2 + " PM (1 stop -- " + stopl + ").\n" +
"
\n" +
"Return: Leaves " + flightDestination +
"at " + timel + " AM on " + flightEndDate +
", arriving in " + flightOrigin +

" at " + time2 + " PM (1 stop -- " + stop2 + ").\n";
return (flight);

private String replaceIfMissing(String value,
String defaultValue) {
if ((value != null) && (value.length() > 0)) {
return (value) ;
} else {

return (defaultValue) ;

public static TravelCustomer findCustomer
(String emailAddress,
TravelCustomer[] customers) {
if (emailAddress == null) {
return (null) ;
}
for (int i=0; i<customers.length; i++) {
String custEmail = customers[i].getEmailAddress() ;
if (emailAddress.equalsIgnoreCase (custEmail)) {

return (customers[i]) ;

}

return (null) ;

Forwarding Requests from JSP Pages

The most common request-forwarding scenario is that the request first comes to a servlet and the
servlet forwards the request to a JSP page. The reason a servlet usually handles the original
request is that checking request parameters and setting up beans requires a lot of programming,
and it is more convenient to do this programming in a servlet than in a JSP document. The reason
that the destination page is usually a JSP document is that JSP simplifies the process of creating
the HTML content.

However, just because this is the usual approach doesn’t mean that it is the only way of doing
things. It is certainly possible for the destination page to be a servlet. Similarly, it is quite possible
for a JSP page to forward requests elsewhere. For example, a request might go to a JSP page that
normally presents results of a certain type and that forwards the request elsewhere only when it
receives unexpected values.

Sending requests to servlets instead of JSP pages requires no changes whatsoever in the use of
the RequestDispatcher. However, there is special syntactic support for forwarding requests
from JSP pages. In JSP, the jsp:forward action is simpler and easier to use than wrapping up
RequestDispatcher code in a scriptlet. This action takes the following form:

<jsp:forward page="Relative URL" />

The page attribute is allowed to contain JSP expressions so that the destination can be computed
at request time. For example, the following code sends about half the visitors to
http://host/examples/pagel.jsp and the others to http://host/examples/pageZ2.jsp.

<% String destination;

if (Math.random() > 0.5) {

destination = "/examples/pagel.jsp";
} else {
destination = "/examples/page2.jsp";

o

>

<jsp:forward page="<%= destination %>" />

The jsp: forward action, like ysp:include, can make use of jsp:param elements to supply extra
request parameters to the destination page. For details, see the discussion of jsp:include in
Section 3.5.

Part I1: Web Applications

Part II Web Applications

Chapter 4 Using and Deploying Web Applications

Chapter 5 Controlling Web Application Behavior with web.xml

Chapter 6 A Sample Web Application: An Online Boat Shop

Chapter 4. Using and Deploying Web
Applications

Topics in This Chapter

e Registering Web applications with the server

e Organizing Web applications

e Deploying applications in WAR files

e Recording Web application dependencies on shared libraries
e Dealing with relative URLs

e Sharing data among Web applications

Web applications (or *Web apps”) let you bundle a set of servlets, JSP pages, tag libraries, HTML
documents, images, style sheets, and other Web content into a single collection that can be used
on any server compatible with servlet version 2.2 or later (JSP 1.1 or later). When designed
carefully, Web apps can be moved from server to server or placed at different locations on the
same server, all without making any changes to any of the servlets, JSP pages, or HTML files in
the application.

This capability lets you move complex applications around with a minimum of effort, streamlining
application reuse. In addition, since each Web app has its own directory structure, sessions,
ServletContext, and class loader, using a Web app simplifies even the initial development
because it reduces the amount of coordination needed among various parts of your overall
system.

4.1 Registering Web Applications

With servlets 2.2 and later (JSP 1.1 and later), Web applications are portable. Regardless of the
server, you store files in the same directory structure and access them with URLs in identical
formats. For example, Figure 4-1 summarizes the directory structure and URLs that would be
used for a simple Web application called webappl. This section will illustrate how to install and
execute this simple Web application on different platforms.

Figure 4-1. Structure of the vevapp1 Web application.

webappl =======m===-- HelloWebApp.jsp
(URL: hitp:#host/webapp 1/HelloWebApp.fsp)

WEB-INF ======-- web.xm|

classes -—- HelloWebApp.class
(URL: hitp:ithostiwabapp 1/serviet/HelloWebApp)

Although Web applications themselves are completely portable, the registration process is server
specific. For example, to move the webappl application from server to server, you don’t have to
modify anything inside any of the directories shown in Figure 4-1. However, the location in which
the top-level directory (webapp1 in this case) is placed will vary from server to server. Similarly,
you use a server-specific process to tell the system that URLs that begin with
http://host/webapp1/ should apply to the Web application. In general, you will need to read your
server’s documentation to get details on the registration process. I'll present a few brief examples
here, then give explicit details for Tomcat, JRun, and ServletExec in the following subsections.

My usual strategy is to build Web applications in my personal development environment and
periodically copy them to various deployment directories for testing on different servers. I never
place my development directory directly within a server’s deployment directory—doing so makes
it hard to deploy on multiple servers, hard to develop while a Web application is executing, and
hard to organize the files. I recommend you avoid this approach as well; instead, use a separate
development directory and deploy by means of one of the strategies outlined in Section 1.8
(Establish a Simplified Deployment Method). The simplest approach is to keep a shortcut
(Windows) or symbolic link (Unix/Linux) to the deployment directories of various servers and
simply copy the entire development directory whenever you want to deploy. For example, on
Windows you can use the right mouse button to drag the development folder onto the shortcut,
release the button, and select Copy.

To illustrate the registration process, the iPlanet Server 6.0 provides you with two choices for
creating Web applications. First, you can edit iPlanet’s web-apps.xml file (not web.xml') and
insert a web-app element with attributes dir (the directory containing the Web app files) and uri
(the URL prefix that designates the Web application). Second, you can create a Web Archive
(WAR) file and then use the wdeploy command-line program to deploy it. WAR files are simply
JAR files that contain a Web application directory and use.war instead of.jar for file extensions.
See Section 4.3 for a discussion of creating and using WAR files.

With the Resin server from Caucho, you use a web-app element within web.xm/ and supply
app-dir (directory) and id (URL prefix) attributes. Resin even lets you use regular expressions in
the id. So, for example, you can automatically give users their own Web apps that are accessed
with URLs of the form http://hostname/~username/.

With the BEA WeblLogic 6 Server, you have two choices. First, you can place a directory (see
Section 4.2) containing a Web application into the config/domain/applications directory, and the
server will automatically assign the Web application a URL prefix that matches the directory name.
Second, you can create a WAR file (see Section 4.3) and use the Web Applications entry of the
Administration Console to deploy it.

Registering a Web Application with Tomcat

With Tomcat 4, creating a Web application consists simply of creating the appropriate directory
structure and restarting the server. For extra control over the process, you can modify
install_dir/conf/server.xml (a Tomcat-specific file) to refer to the Web application. The following
steps walk you through what is required to create a Web app that is accessed by means of URLs
that start with http://host/webappl/. These examples are taken from Tomcat 4.0, but the
process for Tomcat 3 is very similar.

1. Create a simple directory called webappl1. Since this is your personal development
directory, it can be located at any place you find convenient. Once you have a webapp1
directory, place a simple JSP page called HelloWebApp.jsp (Listing 4.1) in it. Put a simple
servlet called HelloWebApp.class (compiled from Listing 4.2) in the WEB-INF/classes
subdirectory. Section 4.2 gives details on the directory structure of a Web application, but
for now just note that the JSP pages, HTML documents, images, and other regular Web
documents go in the top-level directory of the Web app, whereas servlets are placed in the
WEB-INF/classes subdirectory.

You can also use subdirectories relative to those locations, although recall that a servlet in
a subdirectory must use a package name that matches the directory name.

Finally, although Tomcat doesn’t actually require it, it is a good idea to include a web.xm/
file in the WEB-INF directory. The web.xml file, called the deployment descriptor, is
completely portable across servers. We'll see some uses for this deployment descriptor
later in this chapter, and Chapter 5 (Controlling Web Application Behavior with web.xml)
will discuss it in detail. For now, however, just copy the existing web.xml/ file from
install_dir/webapps/ROOT/WEB-INF or use the version that is online under Chapter 4 of
the source code archive at http://www.moreservlets.com. In fact, for purposes of testing
Web application deployment, you might want to start by simply downloading the entire
webappl directory from http://www.moreservlets.com.

2. Copy that directory to install_dir/webapps. For example, suppose that you are
running Tomcat version 4.0, and it is installed in C:\jakarta-tomcat-4.0. You would then

copy the webapp1 directory to the webapps directory, resulting in
C:\jakarta-tomcat-4.0\webapps\ webapp1\HelloWebApp.jsp,
C:\jakarta-tomcat-4.0\webapps\webapp1\ WEB-INF\classes\HelloWebApp.class, and
C:\jakarta-tomcat-4.0\ webapps\webapp1\WEB-INF\web.xml. You could also wrap the
directory inside a WAR file (Section 4.3) and simply drop the WAR file into
C:\jakarta-tomcat-4.0\webapps.

Optional: add a context entry to install_dir/conf/server.xml. If you want your
Web application to have a URL prefix that exactly matches the directory name and you are
satisfied with the default Tomcat settings for Web applications, you can omit this step. But,
if you want a bit more control over the Web app registration process, you can supply a
Context element in install_dir/conf/server.xml. If you do edit server.xml, be sure to make
a backup copy first; a small syntax error in server.xml can completely prevent Tomcat
from running.

The context element has several possible attributes that are documented at
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config/context.html. For instance, you
can decide whether to use cookies or URL rewriting for session tracking, you can enable or
disable servlet reloading (i.e., monitoring of classes for changes and reloading servlets
whose class file changes on disk), and you can set debugging levels. However, for basic
Web apps, you just need to deal with the two required attributes: path (the URL prefix)
and docBase (the base installation directory of the Web application, relative to
install_dir/webapps). This entry should look like the following snippet. See Listing 4.3 for
more detail.

<Context path="/webappl" docBase="webappl" />

Note that you should not use /examples as the URL prefix; Tomcat already uses that prefix
for a sample Web application.

Core Warning

Do not use /examples as the URL prefix of a Web application in Tomcat.

4. Restart the server. 1 keep a shortcut to install_dir/bin/startup.bat
(install_dir/bin/startup.sh on Unix) and install_dir/bin/shutdown.bat
(install_dir/bin/shutdown.sh on Unix) in my development directory. I recommend you do
the same. Thus, restarting the server involves simply double-clicking the shutdown link
and then double-clicking the startup link.

5. Access the JSP page and the servlet. The URL
http://hostname/webapp1/HelloWebApp.jsp invokes the JSP page (Figure 4-2), and
http://hostname/webapp1/serviet/HelloWebApp invokes the servlet (Figure 4-3). During
development, you probably use /ocalhost for the host name. These URLs assume that you
have modified the Tomcat configuration file (install_dir/conf/server.xml) to use port 80 as
recommended in Chapter 1 (Server Setup and Configuration). If you haven’t made this
change, use http://hostname:8080/webapp1/HelloWebApp.jsp and
http://hostname:8080/webapp1/serviet/HelloWebApp.

Figure 4-2. Invoking a JSP page that is in a Web

application.

¥ JSP: Hello Web App - Netscape
File Edit Yiew Go Communicator Help

143 damasdB H =

.‘t'EDﬂkmm A Location: |ht:|:| {/localhostfwabappl/HelloWebipp jsp vl fgﬂ‘ What's Related

JSP: Hello Web App

== [Document Dane e O e B o R

Figure 4-3. Invoking a servlet that is in a Web

application.

i Senvet; Hello Web App - Netscape
File Edit “iew Go Communicator Help

1 223 VasadB R =

«f "Bookmarks & Location [htp /localhost/webapp feendetHelloWebapp =] @27 What's Flelated

Servlet: Hello Web App

i =b= Document Done | %o P @ 2 |

Listing 4.1 HelloWebApp.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD><TITLE>JSP: Hello Web App</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1>JSP: Hello Web App</H1>

</BODY>

</HTML>

Listing 4.2 HelloWebApp.java

import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWebApp extends HttpServlet {
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
String docType =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n";
String title = "Servlet: Hello Web App";
out.println (docType +

"<HTML>\n" +

"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<HI>" 4+ title + "</H1>\n" +

"</BODY></HTML>") ;

Listing 4.3 Partial server.xml for Tomcat 4

<?xml version="1.0" encoding="ISO-8859-1"7?>

<Server>
<l== .. ==
<!-- Having the URL prefix (path) match the actual directory
(docBase) 1s a convenience, not a requirement. -->

<Context path="/webappl" docBase="webappl" />

</Server>

Registering a Web Application with JRun

Registering a Web app with JRun 3.1 involves nine simple steps. The process is nearly identical to
other versions of JRun.

1. Create the directory. Use the directory structure illustrated in Figure 4-1: a webapp1
directory containing HelloWebApp.jsp, WEB-INF/classes/HelloWebApp.class, and
WEB-INF/web.xml.

2. Copy the entire webapp1 directory to install_dir/servers/default. The
install_dir/servers/default directory is the standard location for Web applications in JRun.
Again, I recommend that you simplify the process of copying the directory by using one of
the methods described in Section 1.8 (Establish a Simplified Deployment Method). The
easiest approach is to make a shortcut or symbolic link from your development directory
to install_dir/servers/default and then simply copy the webapp1 directory onto the
shortcut whenever you redeploy. You can also deploy using WAR files (Section 4.3).

3. Start the JRun Management Console. You can invoke the Console either by selecting
JRun Management Console from the JRun menu (on Microsoft Windows, this is available
by means of Start, Programs, JRun) or by opening http://hostname:8000/. Either way,
the JRun Admin Server has to be running first.

4. Click on JRun Default Server. This entry is in the left-hand pane, as shown in Figure
4-4.

Figure 4-4. JRun Web application setup screen.

A JFum Mrnagaman Console - Microsol Intemet Explorar =] E3 I
Eia Edi Mew Go Fgvorins Hlp Ex

== --00R Q¥ @RE=

_Mﬂmssl hipefflocelhost 8000 ndex jsp j

L] Al

{admin)

witlcaome | connectar wizard | password change | manage JMC users | serial number | key search | logot

3 halmr
: i JRun Admin Server Edit / Create / Dﬂplnl,' Applications Currentdy Awaitable on this Server
= JRun Default Sarver and Rﬂ'mﬂ"l’ﬂ Diefault ser Appkcation 1} E‘_
[d] JDBC Data Souces Applications

[@) Java Settings

Defad asolcaloe i galling slaied
roet dir - D-WWAAURUnzerversidetauidefault-

[§) Log Fie Sattings
[d] Appication Hosts ?FF
URL rriap J

_" Extamal Wab Server

._1 JRun Wab Sarver

Femoe® an Apphicaion

JRun Derna & &

By WEB A EACATIn S

#(0g Oevmule Lrar Asplization | This interface wal alow you (o Do
By Mun femo Add, Rernove and Deploy new ok DA IRuMsarversdef aultidemo-
. - appicalions o this Serer ant @r apa
(3 Enterpnse Javabaans emironment, A5 well as provide Ll
quick access to the spications s ALl L)
currently running on the sender
=
[@]web Appications I [[Z Local etranet toee 7

Click on Web Applications. This item is in the bottom of the list that is created when
you select the default server from the previous step. Again, see Figure 4-4.

Click on Create an Application. This entry is in the right-hand pane that is created
when you select Web Applications from the previous step. If you deploy using WAR files
(see Section 4.3) instead of an unpacked directory, choose Deploy an Application instead.

Specify the directory name and URL prefix. To tell the system that the files are in the
directory webapp1, specify webappl for the Application Name entry. To designate a URL
prefix of /webapp1, put /webappl in the Application URL textfield. Note that you do not

have to modify the Application Root Dir entry; that is done automatically when you enter
the directory name. Press the Create button when done. See Figure 4-5.

Figure 4-5. JRun Web application creation screen. You
only need to fill in the Application Name and Application

Root Dir entries.

A JRum Managamam Conssle - Microsolt Intemet Explarar

|| Ea Edt Mew Go Favories Help Ex
w00 OO R JBSEH
E_Adllmsll hipefflacelhost 8000 ndex jsp j

&S JRUN s

{admin)

|w1:|l:u:|rnl: cannectar wizard | passward change | manage JMC users | serial number | key search | logout

3 halmri

&g Jrun Admin Server Crﬂiﬂﬂ a Wﬂh

=y IRun Default Sarver ﬂpplicatlun
[IDBEC Data Sowces

JRun Server Name: [JRun Admin Servar
{g] Log Fio Sattngs Fahim ta Man Page

[B) Java Settings

Apphcaticn Hosts Edi an Apolication
] A9 | ; Craate an Application Agphcation Marrs [V"Elha-FlF'l
[H) Eunarnal Web Server Ciepiony an Aplicatan

£] IRun Wab Sarver Remmve an Apalic sbor Appication Host | All Hosts =
sy Web Appications Applic:ation URL L"HElhElFlFl'l

Wb Application Information

. P ar Asplication
& = h_?""__ - e Plaasa Mote: i
By Fun Dewme ToU Hust FEStart the Applicaton Foot O preers/defaultiwebappl Browse
g Enterpnse JavaBeans JRun servar befora the
new Web applicationwil —rv— i
baceme avallable, @ -
al |
[&] I [T [[Locatiwanet e v

8. Restart the server. From the JRun Management Console, click on JRun Default Server
and then press the Restart Server button. Assuming JRun is not running as a Windows NT
or Windows 2000 service, you can also double-click the JRun Default Server icon from the
taskbar and then press Restart. See Figure 4-6.

Figure 4-6. You must restart JRun for a newly created

Web app to take effect.

X IFus Manogamant Coneele - Micieoll Innemei Explosar

. Ela Eon Yew LGo Favonies Help -
R - N R M=l R =
Address | repoesihos B0 e s =l
T Apaicaton Management Consoe
& JH“H ANc Serder Acmnisrabor
{admin) | weicome | connectorwizard | passwan change | manage JMC users | serial numaer | =ey searnch
- nalmrl a
*: -[(! IRun fdimin Barvier
JRun Default Server
129 Wi Dl aasll Serwar] [ViR depioyrrart | | EJE doaloyrert| | EAR doplyment |
| JOBC Data Sources
] Java Sattings Sarver Hame 1 defaur
© Log Fla Sattngs Server Reot Directary @ D AW IRursereraidefaut
T Appheation Hosts Server Description
Eut ek - Server Status Y rUNnng
| Evtarna wah Serve
_'I 1Reim Wah Sarsed I:l‘-ﬂﬂ-ll m
g web apploations —_—
i (3 Wit Urer dnphcation
B3 Bun Dams
23 Enterpuise Javabeans |i!-r||l descripisin
B [J0oC Dxa Saurces Defnas JOBC dota aoumes used by Wieb agphizatans
T -
1' 3 e T p— TR SRS P § yu JRP] Sppp | |——— I*
£] =4 Loeal mranct ioce

JRia Daliall Sadei

_ s |

9. Access the ISP page and the servlet. The URL
http://hostname/webapp1/HelloWebApp.jsp invokes the JSP page (Figure 4-2), and
http://hostname/webapp1/serviet/HelloWebApp invokes the servlet (Figure 4-3). During
development, you probably use /ocalhost for the host name. These are exactly the same
URLs and results as with Tomcat and ServletExec. This approach assumes that you have
modified JRun to use port 80 as recommended in Chapter 1 (Server Setup and
Configuration). If you haven’t made this change, use
http://hostname:8100/webapp1/HelloWebApp.jsp and
http://hostname:8100/webapp1/serviet/HelloWebApp.

Registering a Web Application with ServietExec

The process of registering Web applications is particularly simple with ServletExec 4. To make a
Web app with a prefix webapp1, just create a directory called webapp1 with the structure
described in the previous two subsections. Drop this directory into install_dir/webapps/default,
restart the server, and access resources in the Web app with URLs that begin with

http://hostname/webappl1/. You can also drop WAR files (Section 4.3) in the same directory; the
name of the WAR file (minus the.war extension) automatically is used as the URL prefix.

For more control over the process or to add a Web application when the server is already running,
perform the following steps. Note that, using this approach, you do not need to restart the server
after registering the Web app.

1. Create a simple directory called webapp1. Use the structure summarized in Figure
4-1: place a simple JSP page called HelloWebApp.jsp (Listing 4.1) in the top-level
directory and put a simple servlet called AppTest.class (compiled from Listing 4.2) in the
WEB-INF/classes subdirectory. Section 4.2 gives details on the directory structure of a
Web app, but for now just note that the JSP pages, HTML documents, images, and other
regular Web documents go in the top-level directory of the Web app, whereas servlets are
placed in the WEB-INF/classes subdirectory. You can also use subdirectories relative to
those locations, although recall that a servlet in a subdirectory must use a package name
that matches the directory name. Later in this chapter (and throughout Chapter 5), we’ll
see uses for the web.xml file that goes in the WEB-INF directory. For now, however, you
can omit this file and let ServletExec create one automatically, or you can copy a simple
example from http://www.moreservlets.com. In fact, you can simply download the entire
webapp1 directory from the Web site.

2. Optional: copy that directory to install_dir/webapps/default. ServletExec allows
you to store your Web application directory at any place on the system, so it is possible to
simply tell ServletExec where the existing webapp1 directory is located. However, I find it
convenient to keep separate development and deployment copies of my Web applications.
That way, I can develop continually but only deploy periodically. Since
install_dir/webapps/default is the standard location for ServletExec Web applications,
that’s a good location for your deployment directories.

3. Go to the ServiletExec Web app management interface. Access the ServletExec
administration interface by means of the URL http://hostname and select Manage under
the Web Applications heading. During development, you probably use /ocalhost for the
host name. See Figure 4-7. This assumes that you have modified ServletExec to use port
80 as recommended in Chapter 1 (Server Setup and Configuration). If you haven’t made
this change, use http://hostname:8080.

Figure 4-7. ServietExec interface for managing Web

applications.

GervietExec Administation - Natscapn

Fle Edt 'fiew Go Communicator Help
EEE P BT -8 =

J'Ebnk.rnmks A& Locatian In-.; Focelhosy -| fj"-u'v'lm‘: Felated

ServietExec 4.0 - -
Debugger Manage Web Applications
b Configure Edit Reload Remowe
Se ity axampletdobann et xwrml r r
Add Web Application | Reload Remove |
QuickHelp

Manage all installed web applications fram this page.

= Configure—=conflgure a web application's settings by clicking the nams
of the web application.

* Edit—onfigure a web spplication’'s web. aml sattings by clicking here

» Reload—reloads the checked web application(s).

* Remove—removes the chedied web application{s)

Copynght @ 1957-2001 Mew Atlants Communicotisns, LLG, &0 ights resered

~ |epyfiocahostsendm) edmintapplicadons kimi G M g2 (D a2

Enter the Web app name, URL prefix, and directory location. From the previous
user interface, select Add Web Application (see Figure 4-7). This results in an interface
(Figure 4-8) with text fields for the Web application configuration information. It is
traditional, but not required, to use the same name (e.g., webapp1) for the Web app name,
the URL prefix, and the main directory that contains the Web application.

Figure 4-8. ServletExec interface for adding new Web

applications.

#= ServieiExec Adminisatian - Matscapoe

Fle Edt 'fiew Go Communicator Help
A A D2anasdD W =

f " Bookmaks &

ServietExec 4.0
Debugger

aliases

s |

requests
SEEEI0NS
thireads

Lecation [Ty e =] @7 What's Felaied

Add a Web Application

Application Mame: |wat Appl

LIRL Context Path: |fwebaopl

Location: |:'. \ServietExecDebugger_d. 0\webappsdefault\webappl
ServietExec Extensions: ¢ Erabled & Disabled

File Caching: & Emabled © Disabled
Submit | | Reset
1
QuickHelp

Add new a web application from this page,

» Application Name—unigua name for the web application.

* URL Context Path—IURL path that irvokes the spplicstion,

* Location—directory (or WaR file) where the application resides

* ServietExec Extensions—enables/disables the use of proprietary
SarvletExec session bracking extensions in the web application's
weln il file, WARNING: thase extensions are nob portable b other
servlet engines

= File Caching=—enables/dizables the caching of the web application’s
static content (HTML pages, GIF images, etc.) in memory. Enabling
caching improves performance but uses more memany

Copynght & 1997-2001 Maw atlanta Commanicationg, LLE, A1 nchts resenad

T e D R T 3

5. Add the Web application. After entering the information from Item 4, select Add Web
Application. See Figure 4-8.

Access the JSP page and the servlet. The URL

http://hostname/webapp1/HelloWebApp.jsp invokes the JSP page (Figure 4-2), and
http://hostname/webapp1/serviet/HelloWebApp invokes the servilet (Figure 4-3). During
development, you probably use localhost for the host name. These are exactly the same
URLs and results as with Tomcat and JRun. This assumes that you have modified
ServletExec to use port 80 as recommended in Chapter 1 (Server Setup and
Configuration). If you haven’t made this change, use
http://hostname:8080/webapp1/HelloWebApp.jsp and
http://hostname:8080/webapp1/serviet/HelloWebApp.

4.2 Structure of a Web Application

The process of registering a Web application is not standardized; it frequently involves
server-specific configuration files or user interfaces. However, the Web application itself has a
completely standardized format and is totally portable across all Web or application servers that
support version 2.2 or later of the servlet specification. The top-level directory of a Web
application is simply a directory with a name of your choosing. Within that directory, certain types
of content go in designated locations. This section provides details on the type of content that is
placed in various locations; it also gives a sample Web application layout.

Locations for Various File Types

Quick summary: JSP pages and other normal Web documents go in the top-level directory,
unbundled Java classes go in the WEB-INF/classes directory, JAR files go in WEB-INF/Ilib, and the
web.xml file goes in WEB-INF. Figure 4-9 shows a representative example. For details or a more
explicit sample hierarchy, check out the following subsections.

Figure 4-9. A representative Web application.

B vevappDirectory ~---=----=-=--- SomeFile.htmi

' (URL: hitp:ifhostiwabAppPrefixSamefFife.himi)

1-—-- SameFile.jsp
[URL: Mip2ifaeslwabAppPrafiv’'SamaFiie jsp)

----- Images, Style Sheets, alc.

—- WEB-INF ============ ===~ web.xml

—- ClBSSES =mmmmmmmemep=——= SomoSaryiet.class
i [URL: frpedhostwobdpePralivSardatSamaSarvlaf b

[
t——-= Somellility.class

somaPackage --+1---- AnotherServiet.class
| (UAL: hrpihostwshdpoPrefiesandatisomePackage AnatherSandar |

-=--= AnctherMility.class

_- lig===========n=e=g-—-= SomaClasses. jar
)

[
leeex MoreClasses.jar

_- lids =emmmm B SomeTags.tid

e MoraTags.tid

—- META-INF ==-==nnnmm=cmecm=n= MANIFESTME

JSP Pages

JSP pages should be placed in the top-level Web application directory or in a subdirectory with
any name other than WEB-INF or META-INF. Servers are prohibited from serving files from
WEB-INF or META-INF to the user. When you register a Web application (see Section 4.1), you tell
the server the URL prefix that designates the Web app and define where the Web app directory is
located. It is common, but by ho means mandatory, to use the name of the main Web application
directory as the URL prefix. Once you register a prefix, JSP pages are then accessed with URLs of
the form http://hostname/webAppPrefix/filename.jsp (if the pages are in the top-level directory
of the Web application) or http://hostname/webAppPrefix/subdirectory/filename.jsp (if the
pages are in a subdirectory).

It depends on the server whether a default file such as index.jsp can be accessed with a URL that
specifies only a directory (e.qg., http://hostname/webAppPrefix/) without the developer first
making an entry in the Web app’s WEB-INF/web.xml file. If you want index.jsp to be the default
filename, I strongly recommend that you make an explicit welcome-file-1ist entry in your Web
app’s web.xml file. For example, the following web.xml entry specifies that if a URL gives a
directory name but no filename, the server should try index.jsp first and index.html second. If
neither is found, the result is server specific (e.g., a directory listing).

<welcome-file-list>
<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>

</welcome-file-list>

For details, see Section 5.7 (Specifying Welcome Pages).

HTML Documents, Images, and Other Regular Web Content

As far as the servlet and JSP engine is concerned, HTML files, GIF and JPEG images, style sheets,
and other Web documents follow exactly the same rules as do JSP pages. They are placed in
exactly the same locations and accessed with URLs of exactly the same form. In deployment
scenarios, however, a servlet or JSP engine such as JRun, ServletExec, Tomcat, or Resin is often
plugged into a regular Web server like Microsoft IIS, Apache, or older versions of the Netscape
Web server. In such a case, the regular Web server usually serves regular Web pages more
quickly than does the servlet and JSP engine. So, if your static Web documents are accessed
extremely frequently, you are faced with a portability vs. performance trade-off. Putting the
static documents in the Web application hierarchy lets you move the servlets, the JSP pages, and
the static documents from server to server with a minimum of changes. Putting the static
resources in the regular Web server’s hierarchy increases performance but requires
server-specific changes when you move the Web app to another server. Fortunately, this issue is
important only for the highest-traffic pages.

It depends on the server whether a default file such as index.html can be accessed with a URL
that specifies only a directory (e.g., http://hostname/webAppPrefix/>) without the developer
first making an entry in the Web app’s WEB-INF/web.xml file. If you want index.html to be the
default filename, I recommend that you make an explicit welcome-file-1ist entry in web.xml.
For details, see Section 5.7 (Specifying Welcome Pages).

Servlets, Beans, and Helper Classes (Unbundled)

Servlets and other.class files are placed either in WEB-INF/classes or in a subdirectory of
WEB-INF/classes that matches their package name. During development, don't forget that your
CLASSPATH should include the classes directory. The server already knows about this location, but
your development environment does not. In order to compile servlets that are in packages, the
compiler needs to know the location of the top-level directory of your package hierarchy. See
Section 1.6 (Set Up Your Development Environment) for details.

The default way to access servlets is with URLs of the form
http://hostname/webAppPrefix/serviet/ServietName or
http://hostname/webAppPrefix/serviet/packageName.ServietName. To designate a different
URL, you use the servlet-mapping element in the web.xm/ deployment descriptor file that is
located within the WEB-INF directory of the Web application. See Section 5.3 (Assigning Names
and Custom URLSs) for details.

Servlets, Beans, and Helper Classes (Bundled in JAR Files)

If the servlets or other.class files are bundled inside JAR files, then the JAR files should be placed
in WEB-INF/Ilib. If the classes are in packages, then within the JAR file they should be in a
directory that matches their package name.

Deployment Descriptor

The deployment descriptor file, web.xml/, should be placed in the WEB-INF subdirectory of the
main Web application directory. For details on using web.xml, see Chapter 5 (Controlling Web
Application Behavior with web.xml). Note that a few servers (e.g., Tomcat) have a global
web.xml/ file that applies to all Web applications. That file is entirely server specific; the only
standard web.xml file is the per-application one that is placed within the WEB-INF directory of the
Web app.

Tag Library Descriptor Files

TLD files can be placed almost anywhere within the Web application. However, I recommend that
you put them in a t/ds directory within WEB-INF. Grouping them in a common directory (e.g., t/ds)

simplifies their management. Placing that directory within WEB-INF prevents end users from
retrieving them. JSP pages, however, can access TLD files that are in WEB-INF. They just use a
taglib element as follows

<%@ taglib uri="/WEB-INF/tlds/myTaglibFile.tld"...%>

Since it is the server, not the client, that accesses the TLD file in this case, the prohibition that
content inside of WEB-INF is not Web accessible does not apply.

WAR Manifest File

When you create a WAR file (see Section 4.3), a MANIFEST.MF file is placed in the META-INF

subdirectory. Normally, the jar utility automatically creates MANIFEST.MF and places it in the
META-INF directory, and you ignore it if you unpack the WAR file. Occasionally, however, you

modify MANIFEST.MF explicitly (see Section 4.4), so it is useful to know where it is stored.

Sample Hierarchy

Suppose you have a Web application that is in a directory named widgetStore and is registered
(see Section 4.1) with the URL prefix /widgetStore. Following is one possible structure for the
Web app.

widgetStore/orders.jsp
widgetStore/specials.html

These files would be accessed with the URLs http://hostname/widgetStore/orders.jsp and
http://hostname/widgetStore/specials.html, respectively.

widgetStore/info/company-profile.jsp
widgetStore/info/contacts.html

These files would be accessed with the URLs
http://hostname/widgetStore/info/company-profile.jsp and
http://hostname/widgetStore/info/contacts.html, respectively.

widgetStore/founder.jpg

Since the orders.jsp and specials.html files are in the same directory as this file, they would use
a simple relative URL to refer to the image, as below.

Since company-profile.jsp and contacts.htm/ are in a lower-level directory, they would use a

w o

relative URL that contains “..”, as below.

But what if you want to support the flexibility of moving a JSP page to a different directory without
changing the URL that refers to the image? Or what if a servlet wants to refer to this image? This
is slightly more complicated; see Section 4.5 (Handling Relative URLs in Web Applications) for a
discussion of the problem and its solutions.

widgetStore/images/buttonl.gif

Since the orders.jsp and specials.html files are in the parent directory of this file, they would refer
to the image by using a relative URL that contains the directory name, as below.

Since company-profile.jsp and contacts.html/ are in a sibling directory, they would use a relative
URL that contains “..” and the directory name, as below.

Again, if you want to be able to move the JSP page without changing the image URL or if you want
to refer to the image from a servlet, things are a bit complicated. See Section 4.5 (Handling
Relative URLs in Web Applications) for a discussion of the problem and its solutions.

widgetStore/WEB-INF/tlds/widget-taglib.tld

This tag library descriptor file would be referenced from a JSP page by use of a taglib element
as follows.

<%@ taglib uri="/WEB-INF/tlds/widget-taglib.tld"...%>

Note that the JSP page that uses this TLD file can be located anywhere within the widgetStore
Web app directory. Note, too, that there is no potential problem regarding relative URLs as there
is with images (as mentioned in the previous two subsections). Also note that it is legal
(recommended, in fact) to place the t/ds directory within the WEB-INF directory, even though the
WEB-INF directory is not accessible to Web clients. It is legal because the server, not the client,
retrieves the TLD file.

widgetStore/WEB-INF/web.xml

This is the deployment descriptor. It is not accessible by Web clients; it is used only by the server
itself. See Chapter 5 (Controlling Web Application Behavior with web.xml) for details on its use.

widgetStore/WEB-INF/classes/CheckoutServiet.class

This packageless servlet would be accessed either with the URL
http://hostname/widgetStore/serviet/CheckoutSe