

More Servlets and JavaServer Pages

Marty Hall
Publisher: Prentice Hall PTR
First Edition December 01, 2001
ISBN: 0-13-067614-4, 752 pages

More Servlets and JavaServer Pages shows developers how to

use the latest advances in servlet and JSP technology. A

companion to the worldwide bestseller Core Servlets and

JavaServer Pages, it starts with a fast introduction to basic

servlet and JSP development, including session tracking, custom

JSP tag libraries, and the use of the MVC architecture. It then

covers the use and deployment of Web applications, declarative

and programmatic security, servlet and JSP filters, life-cycle

event listeners, new features for writing tag libraries, the

standard JSP tag library (JSPTL), and much more.

Library of Congress Cataloging-in-Publication Data

Hall, Marty

More Servlets and JavaServer Pages / Marty Hall.

p. cm.

Includes index.

ISBN 0-13-067614-4

1. Java (Computer programming language) 2. Servlets. 3. Active server pages. I.
Title.

QA76.73.J38 H3455 2001

005.2'762--dc21

2001056014

© 2002 Sun Microsystems, Inc.

Printed in the United States of America.

901 San Antonio Road, Palo Alto, California

94303-4900 U.S.A.

All rights reserved. This product and related documentation are protected by
copyright and distributed under licenses restricting its use, copying, distribution,
and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United
States Government is subject to the restrictions set forth in DFARS
252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The products described may be protected by one or more U.S. patents, foreign
patents, or pending applications.

TRADEMARKS—HotJava, Java, Java Development Kit, Solaris, SPARC, SunOS,
and Sunsoft are trademarks of Sun Microsystems, Inc. All other products or
services mentioned in this book are the trademarks or service marks of their
respective companies or organizations

The publisher offers discounts on this book when ordered in bulk quantities. For
more information, contact Corporate Sales Department, Prentice Hall PTR , One
Lake Street, Upper Saddle River, NJ 07458. Phone: 800-382-3419; FAX: 201-
236-7141. E-mail: corpsales@prenhall.com.

Credits

Production Editor and Compositor: Vanessa Moore

Copy Editor: Mary Lou Nohr

Project Coordinator: Anne R. Garcia

Acquisitions Editor: Gregory G. Doench

Editorial Assistant: Brandt Kenna

Cover Design Director: Jerry Votta

Cover Designer: Design Source

Art Director: Gail Cocker-Bogusz

Manufacturing Manager: Alexis R. Heydt-Long

Marketing Manager: Debby vanDijk

Sun Microsystems Press Publisher: Michael Llwyd Alread

10 9 8 7 6 5 4 3 2 1

Sun Microsystems Press

A Prentice Hall Title

Acknowledgments

 About the Author

Introduction

 Who Should Read This Book

 Book Distinctives

 How This Book Is Organized

 Conventions

 About the Web Site

I: The Basics

1. Server Setup and Configuration

 1.1 Download the Java Development Kit (JDK)

 1.2 Download a Server for Your Desktop

 1.3 Change the Port and Configure Other Server Settings

 1.4 Test the Server

 1.5 Try Some Simple HTML and JSP Pages

 1.6 Set Up Your Development Environment

 1.7 Compile and Test Some Simple Servlets

 1.8 Establish a Simplified Deployment Method

 1.9 Deployment Directories for Default Web Application: Summary

2. A Fast Introduction to Basic Servlet Programming

 2.1 The Advantages of Servlets Over “Traditional” CGI

 2.2 Basic Servlet Structure

 2.3 The Servlet Life Cycle

 2.4 The Client Request: Form Data

 2.5 The Client Request: HTTP Request Headers

 2.6 The Servlet Equivalent of the Standard CGI Variables

 2.7 The Server Response: HTTP Status Codes

 2.8 The Server Response: HTTP Response Headers

 2.9 Cookies

 2.10 Session Tracking

3. A Fast Introduction to Basic JSP Programming

 3.1 JSP Overview

 3.2 Advantages of JSP

 3.3 Invoking Code with JSP Scripting Elements

 3.4 Structuring Autogenerated Servlets: The JSP page Directive

 3.5 Including Files and Applets in JSP Documents

 3.6 Using JavaBeans with JSP

 3.7 Defining Custom JSP Tag Libraries

 3.8 Integrating Servlets and JSP: The MVC Architecture

II: Web Applications

4. Using and Deploying Web Applications

 4.1 Registering Web Applications

 4.2 Structure of a Web Application

 4.3 Deploying Web Applications in WAR Files

 4.4 Recording Dependencies on Server Libraries

 4.5 Handling Relative URLs in Web Applications

 4.6 Sharing Data Among Web Applications

5. Controlling Web Application Behavior with web.xml

 5.1 Defining the Header and Root Elements

 5.2 The Order of Elements within the Deployment Descriptor

 5.3 Assigning Names and Custom URLs

 5.4 Disabling the Invoker Servlet

 5.5 Initializing and Preloading Servlets and JSP Pages

 5.6 Declaring Filters

 5.7 Specifying Welcome Pages

 5.8 Designating Pages to Handle Errors

 5.9 Providing Security

 5.10 Controlling Session Timeouts

 5.11 Documenting Web Applications

 5.12 Associating Files with MIME Types

 5.13 Locating Tag Library Descriptors

 5.14 Designating Application Event Listeners

 5.15 J2EE Elements

6. A Sample Web Application: An Online Boat Shop

 6.1 General Configuration Files

 6.2 The Top-Level Page

 6.3 The Second-Level Pages

 6.4 The Item Display Servlet

 6.5 The Purchase Display Page

III: Web Application Security

7. Declarative Security

 7.1 Form-Based Authentication

 7.2 Example: Form-Based Authentication

 7.3 BASIC Authentication

 7.4 Example: BASIC Authentication

 7.5 Configuring Tomcat to Use SSL

8. Programmatic Security

 8.1 Combining Container-Managed and Programmatic Security

 8.2 Example: Combining Container-Managed and Programmatic Security

 8.3 Handling All Security Programmatically

 8.4 Example: Handling All Security Programmatically

 8.5 Using Programmatic Security with SSL

 8.6 Example: Programmatic Security and SSL

IV: Major New Servlet and JSP Capabilities

9. Servlet and JSP Filters

 9.1 Creating Basic Filters

 9.2 Example: A Reporting Filter

 9.3 Accessing the Servlet Context from Filters

 9.4 Example: A Logging Filter

 9.5 Using Filter Initialization Parameters

 9.6 Example: An Access Time Filter

 9.7 Blocking the Response

 9.8 Example: A Prohibited-Site Filter

 9.9 Modifying the Response

 9.10 Example: A Replacement Filter

 9.11 Example: A Compression Filter

 9.12 The Complete Filter Deployment Descriptor

10. The Application Events Framework

 10.1 Monitoring Creation and Destruction of the Servlet Context

 10.2 Example: Initializing Commonly Used Data

 10.3 Detecting Changes in Servlet Context Attributes

 10.4 Example: Monitoring Changes to Commonly Used Data

 10.5 Packaging Listeners with Tag Libraries

 10.6 Example: Packaging the Company Name Listeners

 10.7 Recognizing Session Creation and Destruction

 10.8 Example: A Listener That Counts Sessions

 10.9 Watching for Changes in Session Attributes

 10.10 Example: Monitoring Yacht Orders

 10.11 Using Multiple Cooperating Listeners

 10.12 The Complete Events Deployment Descriptor

V: New Tag Library Capabilities

11. New Tag Library Features in JSP 1.2

 11.1 Using the New Tag Library Descriptor Format

 11.2 Bundling Listeners with Tag Libraries

 11.3 Checking Syntax with TagLibraryValidator

 11.4 Aside: Parsing XML with SAX 2.0

 11.5 Handling Exceptions with the TryCatchFinally Interface

 11.6 New Names for Return Values

 11.7 Looping Without Generating BodyContent

 11.8 Introducing Scripting Variables in the TLD File

12. The JSP Standard Tag Library

 12.1 Using JSTL: An Overview

 12.2 Installing and Configuring JSTL

 12.3 Looping with the forEach Tag

 12.4 Accessing the Loop Status

 12.5 Looping with the forTokens Tag

 12.6 Evaluating Items Conditionally

 12.7 Using the Expression Language

Server Organization and Structure

 Download Sites

 Starting and Stopping the Server

 Servlet JAR File Locations

 Locations for Files in the Default Web Application

 Locations for Files in Custom Web Applications

Acknowledgments

Many people helped me with this book. Without their assistance, I would still be
on the third chapter. Larry Brown (U.S. Navy), John Guthrie (American Institutes
for Research), Randal Hanford (Boeing, University of Washington), Bill Higgins
(IBM), and Rich Slywczak (NASA) provided valuable technical feedback on many
different chapters. Others providing useful suggestions or corrections include
Nathan Abramson (ATG), Wayne Bethea (Johns Hopkins University Applied
Physics Lab—JHU/ APL), Lien Duong (JHU/APL), Bob Evans (JHU/APL), Lis Immer
(JHU/APL), Makato Ishii (Casa Real), Tyler Jewell (BEA), Jim Mayfield (JHU/APL),
Matt McGinty (New Atlanta), Paul McNamee (JHU/APL), Karl Moss (Macromedia),
and Jim Stafford (Capita). I hope I learned from their advice. Mary Lou “Eagle
Eyes” Nohr spotted my errant commas, awkward sentences, typographical errors,
and grammatical inconsistencies. She improved the result immensely. Vanessa
Moore designed the book layout and produced the final version; she did a great
job despite my many last-minute changes. Greg Doench of Prentice Hall believed
in the concept from the beginning and encouraged me to write the book. Mike
Alread persuaded Sun Microsystems Press to believe in it also. Thanks to all.

Most of all, thanks to B.J., Lindsay, and Nathan for their patience and
encouragement. God has blessed me with a great family.

About the Author

Marty Hall is president of coreservlets.com, a small company that provides
training courses and consulting services related to server-side Java technology.
He also teaches Java and Web programming in the Johns Hopkins University
part-time graduate program in Computer Science, where he directs the
Distributed Computing and Web Technology concentration areas. Marty is the
author of Core Web Programming and Core Servlets and JavaServer Pages, both
from Sun Microsystems Press and Prentice Hall. You can reach Marty at
hall@coreservlets.com; you can find out about his onsite training courses at
http://courses.coreservlets.com.

Introduction

Suppose your company wants to sell products online. You have a database that
gives the price and inventory status of each item. But, your database doesn’t
speak HTTP, the protocol that Web browsers use. Nor does it output HTML, the
format Web browsers need. What can you do? Once users know what they want
to buy, how do you gather that information? You want to customize your site
based on visitors’ preferences and interests—how? You want to let users see their
previous purchases, but you don’t want to reveal that information to other
visitors. How do you enforce these security restrictions? When your Web site
becomes popular, you might want to compress pages to reduce bandwidth. How
can you do this without causing your site to fail for the 30% of visitors whose
browsers don’t support compression? In all these cases, you need a program to
act as the intermediary between the browser and some server-side resource.
This book is about using the Java platform for this type of program.

“Wait a second,” you say. “Didn’t you already write a book about that?” Well, yes.
In May of 2000, Sun Microsystems Press and Prentice Hall released my second
book, Core Servlets and JavaServer Pages. It was successful beyond everyone’s
wildest expectations, selling approximately 100,000 copies in the first year,
getting translated into Bulgarian, Chinese, Czech, French, German, Hebrew,
Japanese, Korean, Polish, Russian, and Spanish, and being chosen by
Amazon.com as one of the top five computer programming books of 2001. Even
better, I was swamped with requests for what I really like doing: teaching short
courses for developers in industry. Despite having to decline most of the requests,
I was still able to teach servlet and JSP short courses in Australia, Canada, Japan,
the Philippines, and at a variety of U.S. venues. What fun!

Since then, use of servlets and JSP has continued to grow at a phenomenal rate.
The Java 2 Platform has become the technology of choice for developing
e-commerce applications, dynamic Web sites, and Web-enabled applications and
service. Servlets and JSP continue to be the foundation of this platform—they
provide the link between Web clients and server-side applications. Virtually all
major Web servers for Windows, Unix (including Linux), MacOS, VMS, and
mainframe operating systems now support servlet and JSP technology either
natively or by means of a plugin. With only a small amount of configuration, you
can run servlets and JSP in Microsoft IIS, iPlanet/Netscape Enterprise Server, the
Apache Web Server, IBM WebSphere, BEA WebLogic, and dozens of other
servers. Performance of both commercial and open-source servlet and JSP
engines has improved significantly.

However, the field continues to evolve rapidly. For example:

• The official servlet and JSP reference implementation is no longer
developed by Sun. Instead, it is Apache Tomcat, an open-source product
developed by a team from many different organizations.

• Use of Web applications to bundle groups of servlets and JSP pages has
grown significantly.

• Portable mechanisms for enforcing Web application security have started
to displace the server-specific mechanisms that were formerly used.

• Version 2.3 of the servlet specification was released (August 2001). New
features in this specification include servlet and JSP filters, application
life-cycle event handlers, and a number of smaller additions and changes
to existing APIs and to the deployment descriptor (web.xml).

• Version 1.2 of the JSP specification was released (also August 2001). This
version lets you bundle event listeners with tag libraries, lets you designate
XML-based programs to check the syntax of pages that use custom tags,
and supplies interfaces that let your custom tags loop more efficiently and
handle errors more easily. JSP 1.2 also makes a number of smaller changes
and additions to existing APIs and to the TLD file format.

• XML has become firmly entrenched as a data-interchange language.
Servlet and JSP pages use it for configuration files. Tag library validators
can use it to verify custom tag syntax. JSP pages can be represented
entirely in XML.

• Throughout 2000 and 2001, the JSR-052 expert group put together a
standard tag library for JSP. In November of 2001 they released early
access version 1.2 of this library, called JSTL (JSP Standard Tag Library).
This library provides standard tags for simple looping, iterating over a
variety of data structures, evaluating content conditionally, and accessing
objects without using explicit scripting code.

Whew. Lots of changes. The new features are very useful, but is there a single
place where you can learn about all of them? Here! That’s why I wrote this book:
to show developers how to make use of all of these new features. If you aren’t
familiar with basic servlet and JSP development, don’t worry. I provide a
thorough review at the beginning of the book.

Who Should Read This Book

This book is aimed at two main groups.

The first group is composed of people who are familiar with basic servlet and JSP
development and want to learn how to make use of all the new capabilities I just
described.

However, if you are new to this technology, there is no need to go away and learn
older servlet and JSP versions and then come back to this book. Assuming you

are familiar with the basics of the Java programming language itself, you fit into
the second main group for whom this book is designed. For you, I start the book
with a detailed review of the foundations of servlet and JSP programming, set in
the context of the servlet 2.3 and JSP 1.2 specifications. Furthermore, when
space prevents coverage of some of the finer points of basic development, I cite
the specific sections of Core Servlets and JavaServer Pages that provide details
and put those sections online at http://www.moreservlets.com. In fact, I put the
entire text of Core Servlets and JavaServer Pages on the Web site (in PDF).

Although this book is well suited for both experienced servlet and JSP
programmers and newcomers to the technology, it assumes that you are familiar
with basic Java programming. You don’t have to be an expert Java developer, but
if you know nothing about the Java programming language, this is not the place
to start. After all, servlet and JSP technology is an application of the Java
programming language. If you don’t know the language, you can’t apply it. So, if
you know nothing about basic Java development, start with a good introductory
book like Thinking in Java, Core Java, or Core Web Programming. Come back
here after you are comfortable with at least the basics.

Book Distinctives

This book has four important characteristics that set it apart from many other similar-sounding

books:

• Integrated coverage of servlets and JSP. The two technologies are closely related;

you should learn and use them together.

• Real code. Complete, working, documented programs are essential to learning; I

provide lots of them.

• Step-by-step instructions. Complex tasks are broken down into simple steps that are

illustrated with real examples.

• Server configuration and usage details. I supply lots of concrete examples to get you

going quickly.

Integrated Coverage of Servlets and JSP

One of the key philosophies behind Core Servlets and JavaServer Pages was that servlets and JSP

should be learned (and used!) together, not separately. After all, they aren’t two entirely distinct

technologies: JSP is just a different way of writing servlets. If you don’t know servlet

programming, you can’t use servlets when they are a better choice than JSP, you can’t use the

MVC architecture to integrate servlets and JSP, you can’t understand complex JSP constructs, and

you can’t understand how JSP scripting elements work (since they are really just servlet code). If

you don’t understand JSP development, you can’t use JSP when it is a better option than servlet

technology, you can’t use the MVC architecture, and you are stuck using print statements even

for pages that consist almost entirely of static HTML.

In this book, an integrated approach is more important than ever. Web applications let you

bundle both servlets and JSP pages into a single file or directory. The custom URLs, initialization

parameters, preload settings, and session timeouts of the deployment descriptor apply equally to

servlets and JSP pages. Declarative security applies equally to both technologies. The new

filtering capability applies to both. Event listeners apply to both. The jx portion of the JSP

standard tag library (JSTL) is mostly predicated on the assumption that the JSP page is

presenting data that was established by a servlet. Servlets and JSP go together!

Real Code

Sure, small code snippets are useful for introducing concepts. The book has lots of them. But, for

you to really understand how to use various techniques, you also need to see the techniques in

the context of complete working programs. Not huge programs: just ones that have no missing

pieces and thus really run. I provide plenty of such programs, all of them documented and

available for unrestricted use at www.moreservlets.com.

Step-by-Step Instructions

When I was a graduate student (long before Java existed), I had an Algorithms professor who

explained in class that he was a believer in step-by-step instructions. I was puzzled: wasn’t

everyone? Not at all. Sure, most instructors explained simple tasks that way, but this professor

took even highly theoretical concepts and said “first you do this, then you do that,” and so on. The

other instructors didn’t explain things this way; neither did my textbooks. But, it helped me

enormously.

If such an approach works even for theoretical subjects, how much more should it work with

applied tasks like those described in this book?

Server Configuration and Usage Details

When I first tried to learn server-side programming, I grabbed a couple of books, the official

specifications, and some online papers. Almost without fail, they said something like “since this

technology is portable, we won’t cover specifics of any one server.” Aargh. I couldn’t even get

started. After hunting around, I downloaded a server. I wrote some code. How did I compile it?

Where did I put it? How did I invoke it?

Servlet and JSP code is portable. The APIs are standardized. But, server structure and

organization are not standardized. The directory in which you place your code is different on

ServletExec than it is on JRun. You set up SSL differently with Tomcat than you do with other

servers. These details are important.

Now, I’m not saying that this is a book that is specific to any particular server. I’m just saying that

when a topic requires server-specific knowledge, it is important to say so. Furthermore, specific

examples are helpful. So, when I describe a topic that requires server-specific information like the

directory in which to place a Web application, I first explain the general pattern that servers tend

to follow. Then, I give very specific details for three of the most popular servers that are available

without cost for desktop development: Apache Tomcat, Macromedia/Allaire JRun, and New

Atlanta ServletExec.

How This Book Is Organized

This book consists of five parts:

• Part I: The Basics. Server setup and configuration. Basic servlet programming. Basic

JSP programming.

• Part II: Web Applications. Using and deploying Web applications. Controlling behavior

with web.xml. A larger example.

• Part III: Web Application Security. Declarative security. Programmatic security.

SSL.

• Part IV: Major New Servlet and JSP Capabilities. Servlet and JSP filters. Application

life-cycle event listeners.

• Part V: New Tag Library Capabilities. New tag library features in JSP 1.2. The JSP

Standard Tag Library (JSTL).

The Basics

• Server setup and configuration.

• Downloading the JDK.

• Obtaining a development server.

• Configuring and testing the server.

• Deploying and accessing HTML and JSP pages.

• Setting up your development environment.

• Deploying and accessing servlets.

• Simplifying servlet and JSP deployment.

• Basic servlet programming.

• The advantages of servlets over competing technologies.

• The basic servlet structure and life cycle.

• Servlet initialization parameters.

• Access to form data.

• HTTP 1.1 request headers, response headers, and status codes.

• The servlet equivalent of the standard CGI variables.

• Cookies in servlets.

• Session tracking.

• Basic JSP programming.

• Understanding the benefits of JSP.

• Invoking Java code with JSP expressions, scriptlets, and declarations.

• Structuring the servlet that results from a JSP page.

• Including files and applets in JSP documents.

• Using JavaBeans with JSP.

• Creating custom JSP tag libraries.

• Combining servlets and JSP: the Model View Controller (Model 2) architecture.

Web Applications

• Using and deploying Web applications.

• Registering Web applications with the server.

• Organizing Web applications.

• Deploying applications in WAR files.

• Recording Web application dependencies on shared libraries.

• Dealing with relative URLs.

• Sharing data among Web applications.

• Controlling Web application behavior with web.xml.

• Customizing URLs.

• Turning off default URLs.

• Initializing servlets and JSP pages.

• Preloading servlets and JSP pages.

• Declaring filters for servlets and JSP pages.

• Designating welcome pages and error pages.

• Restricting access to Web resources.

• Controlling session timeouts.

• Documenting Web applications.

• Specifying MIME types.

• Locating tag library descriptors.

• Declaring event listeners.

• Accessing J2EE Resources.

• Defining and using a larger Web application.

• The interaction among components in a Web application.

• Using sessions for per-user data.

• Using the servlet context for multiuser data.

• Managing information that is accessed by multiple servlets and JSP pages.

• Eliminating dependencies on the Web application name.

Web Application Security

• Declarative security.

• Understanding the major aspects of Web application security.

• Authenticating users with HTML forms.

• Using BASIC HTTP authentication.

• Defining passwords in Tomcat, JRun, and ServletExec.

• Designating protected resources with the security-constraint element.

• Using login-config to specify the authentication method.

• Mandating the use of SSL.

• Configuring Tomcat to use SSL.

• Programmatic security.

• Combining container-managed and programmatic security.

• Using the isUserInRole method.

• Using the getRemoteUser method.

• Using the getUserPrincipal method.

• Programmatically controlling all aspects of security.

• Using SSL with programmatic security.

Major New Servlet and JSP Capabilities

• Servlet and JSP filters.

• Designing basic filters.

• Reading request data.

• Accessing the servlet context.

• Initializing filters.

• Blocking the servlet or JSP response.

• Modifying the servlet or JSP response.

• Using filters for debugging and logging.

• Using filters to monitor site access.

• Using filters to replace strings.

• Using filters to compress the response.

• Application life-cycle event listeners.

• Understanding the general event-handling strategy.

• Monitoring servlet context initialization and shutdown.

• Setting application-wide values.

• Detecting changes in attributes of the servlet context.

• Recognizing creation and destruction of HTTP sessions.

• Analyzing overall session usage.

• Watching for changes in session attributes.

• Tracking purchases at an e-commerce site.

• Using multiple cooperating listeners.

• Packaging listeners in JSP tag libraries.

New Tag Library Capabilities

• New tag library features in JSP 1.2.

• Converting TLD files to the new format.

• Bundling life-cycle event listeners with tag libraries.

• Checking custom tag syntax with TagLibraryValidator.

• Using the Simple API for XML (SAX) in validators.

• Handling errors with the TryCatchFinally interface.

• Changing names of method return values.

• Looping without creating BodyContent.

• Declaring scripting variables in the TLD file.

• The JSP Standard Tag Library (JSTL).

• Downloading and installing the standard JSP tag library.

• Reading attributes without using Java syntax.

• Accessing bean properties without using Java syntax.

• Looping an explicit number of times.

• Iterating over various data structures.

• Checking iteration status.

• Iterating with string-based tokens.

• Evaluating expressions conditionally.

• Using the JSTL expression language to set attributes, return values, and declare scripting

variables.

Conventions

Throughout the book, concrete programming constructs or program output are presented in a

monospaced font. For example, when abstractly discussing server-side programs that use HTTP,

I might refer to “HTTP servlets” or just “servlets,” but when I say HttpServlet I am talking about

a specific Java class.

User input is indicated in boldface, and command-line prompts are either generic (Prompt>) or

indicate the operating system to which they apply (DOS>). For instance, the following indicates

that “ Some Output ” is the result when “ java SomeProgram ” is executed on any platform.

Prompt> java SomeProgram

Some Output

URLs, filenames, and directory names are presented with italics. So, for example, I would say

“the StringTokenizer class” (monospaced because I’m talking about the class name) and

“Listing such and such shows SomeFile.java” (italic because I’m talking about the filename).

Paths use forward slashes as in URLs unless they are specific to the Windows operating system.

So, for instance, I would use a forward slash when saying “look in install_dir/bin” (OS neutral) but

use backslashes when saying “C:\Windows\Temp” (Windows specific).

Important standard techniques are indicated by specially marked entries, as in the following

example.

Core Approach

Pay particular attention to items in “Core Approach” sections. They
indicate techniques that should always or almost always be used.

Notes and warnings are called out in a similar manner.

About the Web Site

The book has a companion Web site at http://www.moreservlets.com/. This free site includes:

• Documented source code for all examples shown in the book; this code can be downloaded

for unrestricted use.

• The complete text of Core Servlets and JavaServer Pages in PDF format.

• Up-to-date download sites for servlet and JSP software.

• Links to all URLs mentioned in the text of the book.

• Information on book discounts.

• Reports on servlet and JSP short courses.

• Book additions, updates, and news.

Part I: The Basics

Part I The Basics

Chapter 1 Server Setup and Configuration

Chapter 2 A Fast Introduction to Basic Servlet Programming

Chapter 3 A Fast Introduction to Basic JSP Programming

Chapter 1. Server Setup and Configuration

Topics in This Chapter

• Downloading the JDK
• Obtaining a development server
• Configuring and testing the server
• Deploying and accessing HTML and JSP pages
• Setting up your development environment
• Deploying and accessing servlets
• Simplifying servlet and JSP deployment

Before you can start learning specific servlet and JSP techniques, you need to
have the right software and know how to use it. This introductory chapter
explains how to obtain, configure, test, and use free versions of all the software
needed to run servlets and JavaServer Pages.

1.1 Download the Java Development Kit (JDK)

You probably already have the JDK installed, but if not, installing it should be
your first step. Version 2.3 of the servlet API and version 1.2 of the JSP API
require the Java 2 platform (standard or enterprise edition). If you aren’t using
J2EE features like EJB or JNDI, I recommend that you use the standard edition,
JDK 1.3 or 1.4.

For Solaris, Windows, and Linux, obtain JDK 1.3 at
http://java.sun.com/j2se/1.3/ and JDK 1.4 at http://java.sun.com/j2se/1.4/.
For other platforms, check first whether a Java 2 implementation comes
preinstalled as it does with MacOS X. If not, see Sun’s list of third-party Java
implementations at http://java.sun.com/cgi-bin/java-ports.cgi.

1.2 Download a Server for Your Desktop

Your second step is to download a server that implements the Java Servlet 2.3
and JSP 1.2 specifications for use on your desktop. In fact, I typically keep two
servers installed on my desktop (Apache’s free Tomcat server and one
commercial server) and test my applications on both to keep myself from
accidentally using nonportable constructs.

Regardless of the server that you will use for final deployment, you will want at
least one server on your desktop for development. Even if the deployment server
is in the office next to you connected by a lightning-fast network connection, you

still don’t want to use it for your development. Even a test server on your intranet
that is inaccessible to customers is much less convenient for development
purposes than a server right on your desktop. Running a development server on
your desktop simplifies development in a number of ways, as compared to
deploying to a remote server each and every time you want to test something.

1. It is faster to test. With a server on your desktop, there is no need to
use FTP or another upload program. The harder it is for you to test changes,
the less frequently you will test. Infrequent testing will let errors persist
that will slow you down in the long run.

2. It is easier to debug. When running on your desktop, many servers
display the standard output in a normal window. This is in contrast to
deployment servers where the standard output is almost always either
completely hidden or only available on the screen of the system

administrator. So, with a desktop server, plain old System.out.println

statements become useful tracing and debugging utilities.
3. It is simple to restart. During development, you will find that you need

to restart the server frequently. For example, the server typically reads the
web.xml file (see Chapter 4, “ Using and Deploying Web Applications ”)
only at startup. So, you normally have to restart the server each time you
modify web.xml. Although some servers (e.g., ServletExec) have an
interactive method of reloading web.xml, tasks such as clearing session

data, resetting the ServletContext, or replacing modified class files used

indirectly by servlets or JSP pages (e.g., beans or utility classes) may still
necessitate restarting the server. Some older servers also need to be
restarted because they implement servlet reloading unreliably. (Normally,
servers instantiate the class that corresponds to a servlet only once and
keep the instance in memory between requests. With servlet reloading, a
server automatically replaces servlets that are in memory but whose class
file has changed on the disk). Besides, some deployment servers
recommend completely disabling servlet reloading in order to increase
performance. So, it is much more productive to develop in an environment
where you can restart the server with a click of the mouse without asking
for permission from other developers who might be using the server.

4. It is more reliable to benchmark. Although it is difficult to collect
accurate timing results for short-running programs even in the best of
circumstances, running benchmarks on systems that have heavy and
varying system loads is notoriously unreliable.

5. It is under your control. As a developer, you may not be the
administrator of the system on which the test or deployment server runs.
You might have to ask some system administrator every time you want the

server restarted. Or, the remote system may be down for a system
upgrade at the most critical juncture of your development cycle. Not fun.

Now, if you can run on your desktop the same server you use for deployment, all
the better. But one of the beauties of servlets and JSP is that you don’t have to;
you can develop with one server and deploy with another. Following are some of
the most popular free options for desktop development servers. In all cases, the
free version runs as a standalone Web server; in most cases, you have to pay for
the deployment version that can be integrated with a regular Web server like
Microsoft IIS, iPlanet/Netscape, or the Apache Web Server. However, the
performance difference between using one of the servers as a servlet and JSP
engine within a regular Web server and using it as a complete standalone Web
server is not significant enough to matter during development. See
http://java.sun.com/products/servlet/industry.html for a more complete list of
servers.

• Apache Tomcat. Tomcat 4 is the official reference implementation of the
servlet 2.3 and JSP 1.2 specifications. Tomcat 3 is the official reference
implementation for servlets 2.2 and JSP 1.1. Both versions can be used as
a standalone server during development or can be plugged into a standard
Web server for use during deployment. Like all Apache products, Tomcat is
entirely free and has complete source code available. Of all the servers, it
also tends to be the one that is most compliant with the latest servlet and
JSP specifications. However, the commercial servers tend to be better
documented, easier to configure, and a bit faster. To download Tomcat, see
http://jakarta.apache.org/tomcat/.

• Allaire/Macromedia JRun. JRun is a servlet and JSP engine that can be
used in standalone mode for development or plugged into most common
commercial Web servers for deployment. It is free for development
purposes, but you have to purchase a license before deploying with it. It is
a popular choice among developers that are looking for easier
administration than Tomcat. For details, see
http://www.allaire.com/products/JRun/.

• New Atlanta’s ServletExec. ServletExec is another popular servlet and
JSP engine that can be used in standalone mode for development or, for
deployment, plugged into the Microsoft IIS, Apache, and iPlanet/Netscape
Web servers. Version 4.0 supports servlets 2.3 and JSP 1.2. You can
download and use it for free, but some of the high-performance capabilities
and administration utilities are disabled until you purchase a license. The
ServletExec Debugger is the configuration you would use as a standalone
desktop development server. For details, see
http://www.servletexec.com/.

• Caucho’s Resin. Resin is a fast servlet and JSP engine with extensive
XML support. It is free for development and noncommercial deployment
purposes. For details, see http://www.caucho.com/.

• LiteWebServer from Gefion Software. LWS is a small standalone Web
server that supports servlets and JSP. It is free for both development and
deployment purposes, but a license will entitle you to increased support
and the complete server source code. See
http://www.gefionsoftware.com/LiteWebServer/ for details.

1.3 Change the Port and Configure Other Server

Settings

Most of the free servers listed in Section 1.2 use a nonstandard default port in
order to avoid conflicts with other Web servers that may be using the standard
port (80). However, if you are using the servers in standalone mode and have no
other server running permanently on port 80, you will find it more convenient to
use port 80. That way, you don’t have to use the port number in every URL you
type in your browser. There are one or two other settings that you might want to
modify as well.

Changing the port or other configuration settings is a server-specific process, so
you need to read your server’s documentation for definitive instructions.
However, I’ll give a quick summary of the process for three of the most popular
free servers here: Tomcat, JRun, and ServletExec.

Apache Tomcat

Tomcat Port Number

With Tomcat 4, modifying the port number involves editing

install_dir/conf/server.xml, changing the port attribute of the Connector

element from 8080 to 80, and restarting the server. Remember that this section
applies to the use of Tomcat in standalone mode on your desktop system where
no other server is already running permanently on port 80. On Unix/Linux, you
must have system administrator privileges to start services on port 80 or other
port numbers below 1024. You probably have such privileges on your desktop
machine; you do not necessarily have them on deployment servers.

The original element will look something like the following:

<Connector
 className="org.apache.catalina.connector.http.HttpConnector"
 port="8080"...
 ... />

It should change to something like the following:

<Connector
 className="org.apache.catalina.connector.http.HttpConnector"
 port="80"...
 ... />

The easiest way to find the correct entry is to search for 8080 in server.xml; there
should only be one noncomment occurrence. Be sure to make a backup of
server.xml before you edit it, just in case you make a mistake that prevents the
server from running. Also, remember that XML is case sensitive, so for instance,

you cannot replace port with Port or Connector with connector.

With Tomcat 3, you modify the same file (install_dir/conf/server.xml), but you

need to use slightly different Connector elements for different minor releases of

Tomcat. With version 3.2, you replace 8080 with 80 in the following Parameter

element.

<Connector ...>
 <Parameter name="port" value="8080"/>
</Connector>

Again, restart the server after making the change.

Other Tomcat Settings

Besides the port, three additional Tomcat settings are important: the JAVA_HOME

variable, the DOS memory settings, and the CATALINA_HOME or TOMCAT_HOME

variable.

The most critical Tomcat setting is the JAVA_HOME environment variable—failing

to set it properly prevents Tomcat from handling JSP pages. This variable should
list the base JDK installation directory, not the bin subdirectory. For example, if
you are on Windows 98/Me and installed the JDK in C:\JDK1.3, you might put the
following line in your autoexec.bat file.

set JAVA_HOME=C:\JDK1.3

On Windows NT/2000, you would go to the Start menu and select Settings, then
Control Panel, then System, then Environment. Then, you would enter the

JAVA_HOME value.

On Unix/Linux, if the JDK is installed in /usr/j2sdk1_3_1 and you use the C shell,
you would put the following into your.cshrc file.

setenv JAVA_HOME /usr/j2sdk1_3_1

Rather than setting the JAVA_HOME environment variable globally in the operating

system, some developers prefer to edit the startup script to set it there. If you
prefer this strategy, edit install_dir/bin/catalina.bat (Tomcat 4; Windows) or
install_dir/bin/tomcat.bat (Tomcat 3; Windows) and change the following:

if not "%JAVA_HOME%" == "" goto gotJavaHome
echo You must set JAVA_HOME to point at ...
goto cleanup
:gotJavaHome

to:

if not "%JAVA_HOME%" == "" goto gotJavaHome
set JAVA_HOME=C:\JDK1.3
:gotJavaHome

Be sure to make a backup copy of catalina.bat or tomcat.bat before making the
changes. Unix/Linux users would make similar changes in catalina.sh or
tomcat.sh.

If you use Windows, you may also have to change the DOS memory settings for
the startup and shutdown scripts. If you get an “Out of Environment Space” error
message when you start the server, you will need to right-click on
install_dir/bin/startup.bat, select Properties, select Memory, and change the
Initial Environment entry from Auto to 2816. Repeat the process for
install_dir/bin/shutdown.bat.

In some cases, it is also helpful to set the CATALINA_HOME (Tomcat 4) or

TOMCAT_HOME (Tomcat 3) environment variables. This variable identifies the

Tomcat installation directory to the server. However, if you are careful to avoid
copying the server startup scripts and you use only shortcuts (called “symbolic
links” on Unix/Linux) instead, you are not required to set this variable. See
Section 1.6 for more information on using these shortcuts.

Please note that this section describes the use of Tomcat as a standalone server
for servlet and JSP development. It requires a totally different configuration to
deploy Tomcat as a servlet and JSP container integrated within a regular Web
server. For information on the use of Tomcat for deployment, please see
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/.

Allaire/Macromedia JRun

When using JRun in standalone mode (vs. integrated with a standard Web
server), there are several options that you probably want to change from their
default values. All can be set from the graphical JRun Management Console
and/or through the JRun installation wizard.

JRun Port Number

To change the JRun port, first start the JRun Admin Server by clicking on the
appropriate icon (on Windows, go to the Start menu, then Programs, then JRun
3.x). Then, click on the JRun Management Console (JMC) button or enter the URL

http://localhost:8000/ in a browser. Log in, using a username of admin and the

password that you specified when you installed JRun, choose JRun Default Server,
then select JRun Web Server. Figure 1-1 shows the result. Next, select Web
Server Port, enter 80, and press Update. See Figure 1-2. Finally, select JRun
Default Server again and press the Restart Server button.

Figure 1-1. JMC configuration screen for the JRun Default

Server.

Figure 1-2. JRun Default Server port configuration window.

Other JRun Settings

When you install JRun, the installation wizard will ask you three questions that
are particularly relevant to using JRun in standalone mode for development
purposes. First, it will ask for a serial number. You can leave that blank; it is only

required for deployment servers. Second, it will ask if you want to start JRun as
a service. You should deselect this option; starting JRun automatically is useful
for deployment but inconvenient for development because the server icon does
not appear in the taskbar, thus making it harder to restart the server. The wizard
clearly states that using JRun as a service should be reserved for deployment, but
since the service option is selected by default, you can easily miss it. Finally, you
will be asked if you want to configure an external Web server. Decline this option;
you need no separate Web server when using JRun in standalone mode.

New Atlanta ServletExec

The following settings apply to use of the ServletExec Debugger 4.0, the version
of ServletExec that you would use for standalone desktop development (vs.
integrated with a regular Web server for deployment).

ServletExec Port Number

To change the port number from 8080 to 80, edit install_dir/StartSED40.bat and
add “-port 80” to the end of the line that starts the server, as below.

%JAVA_HOME%\bin\java ... ServletExecDebuggerMain -port 80

Remember that this section applies to the use of ServletExec in standalone mode
on your desktop system where no other server is already running permanently on
port 80. On Unix/Linux, you must have system administrator privileges to start
services on port 80 or other port numbers below 1024. You probably have such
privileges on your desktop machine; you do not necessarily have them on
deployment servers.

Other ServletExec Settings

ServletExec shares two settings with Tomcat. The one required setting is the

JAVA_HOME environment variable. As with Tomcat, this variable refers to the base

installation directory of the JDK (not the bin subdirectory). For example, if the

JDK is installed in C:\JDK1.3, you should modify the JAVA_HOME entry in

install_dir/StartSED40.bat to look like the following.

set JAVA_HOME=C:\JDK1.3

Also as with Tomcat, if you use Windows, you may have to change the DOS
memory settings for the startup script. If you get an “Out of Environment Space”
error message when you start the server, you will need to right-click on
install_dir/bin/StartSED40.bat, select Properties, select Memory, and change the
Initial Environment entry from Auto to 2816.

1.4 Test the Server

Before trying your own servlets or JSP pages, you should make sure that the
server is installed and configured properly. For Tomcat, click on
install_dir/bin/startup.bat (Windows) or execute install_dir/bin/startup.sh
(Unix/Linux). For JRun, go to the Start menu and select Programs, JRun 3.1, and
JRun Default Server. For ServletExec, click on install_dir/bin/StartSED40.bat. In
all three cases, enter the URL http://localhost/ in your browser and make sure
you get a regular Web page, not an error message saying that the page cannot be
displayed or that the server cannot be found. Figures 1-3 through 1-5 show
typical results. If you chose not to change the port number to 80 (see Section 1.3,
“ Change the Port and Configure Other Server Settings ”), you will need to use a
URL like http://localhost:8080/ that includes the port number.

Figure 1-3. Initial home page for Tomcat 4.0.

Figure 1-4. Initial home page for JRun 3.1.

Figure 1-5. Initial home page for ServletExec 4.0.

1.5 Try Some Simple HTML and JSP Pages

After you have verified that the server is running, you should make sure that you can install and

access simple HTML and JSP pages. This test, if successful, shows two important things. First,

successfully accessing an HTML page shows that you understand which directories should hold

HTML and JSP files. Second, successfully accessing a new JSP page shows that the Java compiler

(not just the Java virtual machine) is configured properly.

Eventually, you will almost certainly want to create and use your own Web applications (see

Chapter 4, “ Using and Deploying Web Applications ”), but for initial testing I recommend that you

use the default Web application. Although Web applications follow a common directory structure,

the exact location of the default Web application is server specific. Check your server’s

documentation for definitive instructions, but I summarize the locations for Tomcat, JRun, and

ServletExec in the following list. Where I list SomeDirectory you can use any directory name you

like. (But you are never allowed to use WEB-INF or META-INF as directory names. For the default

Web application, you also have to avoid a directory name that matches the URL prefix of any

other Web application.)

• Tomcat Directory

install_dir/webapps/ROOT

(or install_dir/webapps/ROOT/SomeDirectory)

• JRun Directory

install_dir/servers/default/default-app

(or install_dir/servers/default/default-app/SomeDirectory)

• ServletExec Directory

install_dir/public_html [1]

[1] Note that the public_html directory is created automatically by ServletExec the first time you run the server. So, you

will be unable to find public_html if you have not yet tested the server as described in Section 1.4 (Test the Server).

(or install_dir/public_html/SomeDirectory)

• Corresponding URLs

http://host/Hello.html

(or http://host/SomeDirectory/Hello.html)

http://host/Hello.jsp

(or http://host/SomeDirectory/Hello.jsp)

For your first tests, I suggest you simply take Hello.html (Listing 1.1, Figure 1-6) and Hello.jsp

(Listing 1.2, Figure 1-7) and drop them into the appropriate locations. The code for these files, as

well as all the code from the book, is available online at http://www.moreservlets.com. That Web

site also contains updates, additions, information on short courses, and the full text of Core

Servlets and JavaServer Pages (in PDF). If neither the HTML file nor the JSP file works (e.g., you

get File Not Found—404—errors), you likely are using the wrong directory for the files. If the

HTML file works but the JSP file fails, you probably have incorrectly specified the base JDK

directory (e.g., with the JAVA_HOME variable).

Figure 1-6. Result of Hello.html.

Figure 1-7. Result of Hello.jsp.

Listing 1.1 Hello.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD><TITLE>HTML Test</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1>HTML Test</H1>

Hello.

</BODY>

</HTML>

Listing 1.2 Hello.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD><TITLE>JSP Test</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1>JSP Test</H1>

Time: <%= new java.util.Date() %>

</BODY>

</HTML>

1.6 Set Up Your Development Environment

The server startup script automatically sets the server’s CLASSPATH to include the standard

servlet and JSP classes and the WEB-INF/classes directory (containing compiled servlets) of each

Web application. But you need similar settings, or you will be unable to compile servlets in the

first place. This section summarizes the configuration needed for servlet development.

Create a Development Directory

The first thing you should do is create a directory in which to place the servlets and JSP pages that

you develop. This directory can be in your home directory (e.g., ~/ServletDevel on Unix) or in a

convenient general location (e.g., C:\ServletDevel on Windows). It should not, however, be in the

server’s installation directory.

Eventually, you will organize this development directory into different Web applications (each

with a common structure—see Chapter 4). For initial testing of your environment, however, you

can just put servlets either directly in the development directory (for packageless servlets) or in

a subdirectory that matches the servlet package name. Many developers simply put all their code

in the server’s deployment directory (see Section 1.9). I strongly discourage this practice and

instead recommend one of the approaches described in Section 1.8 (Establish a Simplified

Deployment Method). Although developing in the deployment directory seems simpler at the

beginning since it requires no copying of files, it significantly complicates matters in the long run.

Mixing locations makes it hard to separate an operational version from a version you are testing,

makes it difficult to test on multiple servers, and makes organization much more complicated.

Besides, your desktop is almost certainly not the final deployment server, so you’ll eventually

have to develop a good system for deploying anyhow.

Core Warning

Don’t use the server’s deployment directory as your development
location. Instead, keep a separate development directory.

Make Shortcuts to Start and Stop the Server

Since I find myself frequently restarting the server, I find it convenient to place shortcuts to the

server startup and shutdown icons inside my main development directory. You will likely find it

convenient to do the same.

For example, for Tomcat on Windows, go to install_dir/bin, right-click on startup.bat, and select

Copy. Then go to your development directory, right-click in the window, and select Paste Shortcut

(not just Paste). Repeat the process for install_dir/bin/shutdown.bat. On Unix, you would use ln

-s to make a symbolic link to startup.sh, tomcat.sh (needed even though you don’t directly

invoke this file), and shutdown.sh.

For JRun on Windows, go to the Start menu, select Programs, select JRun 3.x, right-click on the

JRun Default Server icon, and select Copy. Then go to your development directory, right-click in

the window, and select Paste Shortcut. Repeat the process for the JRun Admin Server and JRun

Management Console.

For the ServletExec Debugger (i.e., standalone development server), go to install_dir, right-click

on StartSED40.bat, and select Copy. Then go to your development directory, right-click in the

window, and select Paste Shortcut (not just Paste). There is no separate shutdown file; to stop

ServletExec, just go to http://localhost/ (see Figure 1-5) and click on the Shutdown link in the

General category on the left-hand side.

Set Your CLASSPATH

Since servlets and JSP are not part of the Java 2 platform, standard edition, you have to identify

the servlet classes to the compiler. The server already knows about the servlet classes, but the

compiler (i.e., javac) you use for development probably doesn’t. So, if you don’t set your

CLASSPATH, attempts to compile servlets, tag libraries, or other classes that use the servlet API

will fail with error messages about unknown classes. The exact location of the servlet JAR file

varies from server to server. In most cases, you can hunt around for a file called servlet.jar. Or,

read your server’s documentation to discover the location. Once you find the JAR file, add the

location to your development CLASSPATH. Here are the locations for some common development

servers:

• Tomcat 4 Location.

install_dir/common/lib/servlet.jar

• Tomcat 3 Location.

install_dir/lib/servlet.jar

• JRun Location.

install_dir/lib/ext/servlet.jar

• ServletExec Location.

install_dir/ServletExecDebugger.jar

Now, in addition to the servlet JAR file, you also need to put your development directory in the

CLASSPATH. Although this is not necessary for simple packageless servlets, once you gain

experience you will almost certainly use packages. Compiling a file that is in a package and that

uses another class in the same package requires the CLASSPATH to include the directory that is at

the top of the package hierarchy. In this case, that’s the development directory I just discussed

in the first subsection. Forgetting this setting is perhaps the most common mistake made by

beginning servlet programmers.

Core Approach

Remember to add your development directory to your CLASSPATH .

Otherwise, you will get “Unresolved symbol” error messages when you
attempt to compile servlets that are in packages and that make use of

other classes in the same package.

Finally, you should include “.” (the current directory) in the CLASSPATH. Otherwise, you will only

be able to compile packageless classes that are in the top-level development directory.

Here are a few representative methods of setting the CLASSPATH. They assume that your

development directory is C:\devel (Windows) or /usr/devel (Unix/Linux) and that you are using

Tomcat 4. Replace install_dir with the actual base installation location of the server. Be sure to

use the appropriate case for the filenames. Note that these examples represent only one

approach for setting the CLASSPATH. Many Java integrated development environments have a

global or project-specific setting that accomplishes the same result. But these settings are totally

IDE-specific and won’t be discussed here.

• Windows 98/Me. Put the following in your autoexec.bat. (Note that this all goes on one

line with no spaces—it is broken here for readability.)

•

• set CLASSPATH=.;

• C:\devel;

 install_dir\common\lib\servlet.jar

• Windows NT/2000. Go to the Start menu and select Settings, then Control Panel, then

System, then Environment. Then, enter the CLASSPATH value from the previous bullet.

• Unix/Linux (C shell). Put the following in your .cshrc. (Again, in the real file it goes on

a single line without spaces.)

•

• setenv CLASSPATH .:

• /usr/devel:

 install_dir/common/lib/servlet.jar

Bookmark or Install the Servlet and JSP API Documentation

Just as no serious programmer should develop general-purpose Java applications without access

to the JDK 1.3 or 1.4 API documentation (in Javadoc format), no serious programmer should

develop servlets or JSP pages without access to the API for classes in the javax.servlet

packages. Here is a summary of where to find the API:

• http://java.sun.com/products/jsp/download.html This site lets you download

the Javadoc files for either the servlet 2.3 and JSP 1.2 API or for the servlet 2.2 and JSP

1.1 API. You will probably find this API so useful that it will be worth having a local copy

instead of browsing it online. However, some servers bundle this documentation, so check

before downloading.

• http://java.sun.com/products/servlet/2.3/javadoc/ This site lets you browse

the servlet 2.3 API online.

• http://java.sun.com/products/servlet/2.2/javadoc/ This site lets you browse

the servlet 2.2 and JSP 1.1 API online.

• http://java.sun.com/j2ee/j2sdkee/techdocs/api/ This address lets you browse

the complete API for the Java 2 Platform, Enterprise Edition (J2EE), which includes the

servlet 2.2 and JSP 1.1 packages.

1.7 Compile and Test Some Simple Servlets

OK, so your environment is all set. At least you think it is. It would be nice to confirm that

hypothesis. Following are three tests that help verify this.

Test 1: A Servlet That Does Not Use Packages

The first servlet to try is a basic one: no packages, no utility (helper) classes, just simple HTML

output. Rather than writing your own test servlet, you can just grab HelloServlet.java (Listing 1.3)

from the book’s source code archive at http://www.moreservlets.com. If you get compilation

errors, go back and check your CLASSPATH settings (Section 1.6)—you most likely erred in listing

the location of the JAR file that contains the servlet classes (e.g., servlet.jar). Once you compile

Hello-Servlet.java, put HelloServlet.class in the appropriate location (usually the WEB-INF/

classes directory of your server’s default Web application). Check your server’s documentation

for this location, or see the following list for a summary of the locations used by Tomcat, JRun,

and ServletExec. Then, access the servlet with the URL http://localhost/servlet/HelloServlet (or

http://localhost:8080/servlet/HelloServlet if you chose not to change the port number as

described in Section 1.3). You should get something similar to Figure 1-8. If this URL fails but the

test of the server itself (Section 1.4) succeeded, you probably put the class file in the wrong

directory.

Figure 1-8. Result of HelloServlet.

• Tomcat Directory.

install_dir/webapps/ROOT/WEB-INF/classes

• JRun Directory.

install_dir/servers/default/default-app/WEB-INF/classes

• ServletExec Directory.

install_dir/Servlets

• Corresponding URL.

http://host/servlet/HelloServlet

Listing 1.3 HelloServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet used to test server. */

public class HelloServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 out.println(docType +

 "<HTML>\n" +

 "<HEAD><TITLE>Hello</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1>Hello</H1>\n" +

 "</BODY></HTML>");

 }

}

Test 2: A Servlet That Uses Packages

The second servlet to try is one that uses packages but no utility classes. Again, rather than

writing your own test, you can grab HelloServlet2.java (Listing 1.4) from the book’s source code

archive at http://www.moreservlets.com. Since this servlet is in the moreservlets package, it

should go in the moreservlets directory, both during development and when deployed to the

server. If you get compilation errors, go back and check your CLASSPATH settings (Section

1.6)—you most likely forgot to include “.” (the current directory). Once you compile

HelloServlet2.java, put HelloServlet2.class in the moreservlets subdirectory of whatever

directory the server uses for servlets that are not in custom Web applications (usually the

WEB-INF/classes directory of the default Web application). Check your server’s documentation

for this location, or see the following list for a summary of the locations for Tomcat, JRun, and

ServletExec. For now, you can simply copy the class file from the development directory to the

deployment directory, but Section 1.8 (Establish a Simplified Deployment Method) will provide

some options for simplifying the process.

Once you have placed the servlet in the proper directory, access it with the URL

http://localhost/servlet/moreservlets.HelloServlet2. You should get something similar to Figure

1-9. If this test fails, you probably either typed the URL wrong (e.g., used a slash instead of a dot

after the package name) or put HelloServlet2.class in the wrong location (e.g., directly in the

server’s WEB-INF/classes directory instead of in the moreservlets subdirectory).

Figure 1-9. Result of HelloServlet2.

• Tomcat Directory.

install_dir/webapps/ROOT/WEB-INF/classes/moreservlets

• JRun Directory.

install_dir/servers/default/default-app/WEB-INF/classes/moreservlets

• ServletExec Directory.

install_dir/Servlets/moreservlets

• Corresponding URL.

http://host/servlet/moreservlets.HelloServlet2

Listing 1.4 moreservlets/HelloServlet2.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet used to test the use of packages. */

public class HelloServlet2 extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 out.println(docType +

 "<HTML>\n" +

 "<HEAD><TITLE>Hello (2)</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1>Hello (2)</H1>\n" +

 "</BODY></HTML>");

 }

}

1.7.3 A Servlet That Uses Packages and Utilities

The final servlet you should test to verify the configuration of your server and development

environment is one that uses both packages and utility classes. Listing 1.5 presents

HelloServlet3.java, a servlet that uses the ServletUtilities class (Listing 1.6) to simplify the

generation of the DOCTYPE (specifies the HTML version— useful when using HTML validators) and

HEAD (specifies the title) portions of the HTML page. Those two parts of the page are useful

(technically required, in fact), but are tedious to generate with servlet println statements. Again,

the source code can be found at http://www.moreservlets.com.

Since both the servlet and the utility class are in the moreservlets package, they should go in the

moreservlets directory. If you get compilation errors, go back and check your CLASSPATH settings

(Section 1.6)—you most likely forgot to include the top-level development directory. I’ve said it

before, but I’ll say it again: your CLASSPATH must include the top-level directory of your package

hierarchy before you can compile a packaged class that makes use of another class from the same

package. This requirement is not particular to servlets; it is the way packages work on the Java

platform in general. Nevertheless, many servlet developers are unaware of this fact, and it is one

of the (perhaps the) most common errors beginning developers encounter.

Core Warning

Your CLASSPATH must include your top-level development directory.

Otherwise, you cannot compile servlets that are in packages and that
also use classes from the same package.

Once you compile HelloServlet3.java (which will automatically cause ServletUtilities.java to be

compiled), put HelloServlet3.class and ServletUtilities.class in the moreservlets subdirectory of

whatever directory the server uses for servlets that are not in custom Web applications (usually

the WEB-INF/classes directory of the default Web application). Check your server’s

documentation for this location, or see the following list for a summary of the locations used by

Tomcat, JRun, and ServletExec. Then, access the servlet with the URL

http://localhost/servlet/moreservlets.HelloServlet3. You should get something similar to Figure

1-10.

Figure 1-10. Result of HelloServlet3.

• Tomcat Directory.

install_dir/webapps/ROOT/WEB-INF/classes/moreservlets

• JRun Directory.

install_dir/servers/default/default-app/WEB-INF/classes/moreservlets

• ServletExec Directory.

install_dir/Servlets/moreservlets

• Corresponding URL.

http://host/servlet/moreservlets.HelloServlet3

Listing 1.5 moreservlets/HelloServlet3.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet used to test the use of packages

 * and utilities from the same package.

 */

public class HelloServlet3 extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Hello (3)";

 out.println(ServletUtilities.headWithTitle(title) +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1>" + title + "</H1>\n" +

 "</BODY></HTML>");

 }

}

Listing 1.6 moreservlets/ServletUtilities.java

package moreservlets;

import javax.servlet.*;

import javax.servlet.http.*;

/** Some simple time savers. Note that most are static methods. */

public class ServletUtilities {

 public static final String DOCTYPE =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">";

 public static String headWithTitle(String title) {

 return(DOCTYPE + "\n" +

 "<HTML>\n" +

 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");

 }

 ...

}

1.8 Establish a Simplified Deployment Method

OK, so you have a development directory. You can compile servlets with or without packages. You

know which directory the servlet classes belong in. You know the URL that should be used to

access them (at least the default URL; in Section 5.3, “ Assigning Names and Custom URLs,”

you’ll see how to customize that address). But how do you move the class files from the

development directory to the deployment direc-tory? Copying each one by hand every time is

tedious and error prone. Once you start using Web applications (see Chapter 4), copying

individual files becomes even more cumbersome.

There are several options to simplify the process. Here are a few of the most popular ones. If you

are just beginning with servlets and JSP, you probably want to start with the first option and use

it until you become comfortable with the development process. Note that I do not list the option

of putting your code directly in the server’s deployment directory. Although this is one of the most

common choices among beginners, it scales so poorly to advanced tasks that I recommend you

steer clear of it from the start.

1. Copy to a shortcut or symbolic link.

2. Use the -d option of javac.

3. Let your IDE take care of deployment.

4. Use ant or a similar tool.

Details on these four options are given in the following subsections.

Copy to a Shortcut or Symbolic Link

On Windows, go to the server’s default Web application, right-click on the classes directory, and

select Copy. Then go to your development directory, right-click, and select Paste Shortcut (not

just Paste). Now, whenever you compile a packageless servlet, just drag the class files onto the

shortcut. When you develop in packages, use the right mouse to drag the entire directory (e.g.,

the moreservlets directory) onto the shortcut, release the mouse, and select Copy. On Unix/Linux,

you can use symbolic links (created with ln -s) in a manner similar to that for Windows shortcuts.

An advantage of this approach is that it is simple. So, it is good for beginners who want to

concentrate on learning servlets and JSP, not deployment tools. Another advantage is that a

variation applies once you start using your own Web applications (see Chapter 4). Just make a

shortcut to the main Web application directory (one level up from the top of the default Web

application), and copy the entire Web application each time by using the right mouse to drag the

directory that contains your Web application onto this shortcut and selecting Copy.

One disadvantage of this approach is that it requires repeated copying if you use multiple servers.

For example, I keep at least two different servers on my development system and regularly test

my code with both servers. A second disadvantage is that this approach copies both the Java

source code files and the class files to the server, whereas only the class files are needed. This

may not matter much on your desktop server, but when you get to the “real” deployment server,

you won’t want to include the source code files.

Use the -d Option of javac

By default, the Java compiler (javac) places class files in the same directory as the source code

files that they came from. However, javac has an option (-d) that lets you designate a different

location for the class files. You need only specify the top-level directory for class files— javac will

automatically put packaged classes in subdirectories that match the package names. So, for

example, with Tomcat I could compile the HelloServlet2 servlet (Listing 1.4, Section 1.7) as

follows (line break added only for clarity; omit it in real life).

javac -d install_dir/webapps/ROOT/WEB-INF/classes

 HelloServlet2.java

You could even make a Windows batch file or Unix shell script or alias that makes a command like

servletc expand to javac -d install_dir/.../classes. See

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/javac.html for more details on -d and other

javac options.

An advantage of this approach is that it requires no manual copying of class files. Furthermore,

the exact same command can be used for classes in different packages since javac automatically

puts the class files in a subdirectory matching the package.

The main disadvantage is that this approach applies only to Java class files; it won’t work for

deploying HTML and JSP pages, much less entire Web applications.

Let Your IDE Take Care of Deployment

Most servlet- and JSP-savvy development environments (e.g., IBM WebSphere Studio,

Macromedia JRun Studio, Borland JBuilder) have options that let you tell the IDE where to deploy

class files for your project. Then, when you tell the IDE to build the project, the class files are

automatically deployed to the proper location (package-specific subdirectories and all).

An advantage of this approach, at least in some IDEs, is that it can deploy HTML and JSP pages

and even entire Web applications, not just Java class files. A disadvantage is that it is an

IDE-specific technique and thus is not portable across systems.

Use ant or a Similar Tool

Developed by the Apache foundation, ant is a tool similar to the Unix make utility. However, ant

is written in the Java programming language (and thus is portable) and is touted to be both

simpler to use and more powerful than make. Many servlet and JSP developers use ant for

compiling and deploying. The use of ant is especially popular among Tomcat users and with those

developing Web applications (see Chapter 4).

For general information on using ant, see http://jakarta.apache.org/ant/manual/. See

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/appdev/processes.html for specific guidance

on using ant with Tomcat.

The main advantage of this approach is flexibility: ant is powerful enough to handle everything

from compiling the Java source code to copying files to producing WAR files (Section 4.3). The

disadvantage of ant is the overhead of learning to use it; there is more of a learning curve with

ant than with the other techniques in this section.

1.9 Deployment Directories for Default Web

Application: Summary

The following subsections summarize the way to deploy and access HTML files, JSP pages,

servlets, and utility classes in Tomcat, JRun, and ServletExec. The summary assumes that you

are deploying files in the default Web application, have changed the port number to 80 (see

Section 1.3), and are accessing servlets through the default URL (i.e.,

http://host/servlet/ServletName). Later chapters explain how to deploy user-defined Web

applications and how to customize the URLs. But you’ll probably want to start with the defaults

just to confirm that everything is working properly. The Appendix (Server Organization and

Structure) gives a unified summary of the directories used by Tomcat, JRun, and ServletExec for

both the default Web application and custom Web applications.

If you are using a server on your desktop, you can use localhost for the host portion of each of the

URLs in this section.

Tomcat

HTML and JSP Pages

• Main Location.

install_dir/webapps/ROOT

• Corresponding URLs.

http://host/SomeFile.html

http://host/SomeFile.jsp

• More Specific Location (Arbitrary Subdirectory).

install_dir/webapps/ROOT/SomeDirectory

• Corresponding URLs.

http://host/SomeDirectory/SomeFile.html

http://host/SomeDirectory/SomeFile.jsp

Individual Servlet and Utility Class Files

• Main Location (Classes without Package).

install_dir/webapps/ROOT/WEB-INF/classes

• Corresponding URL (Servlets).

http://host/servlet/ServletName

• More Specific Location (Classes in Packages).

install_dir/webapps/ROOT/WEB-INF/classes/packageName

• Corresponding URL (Servlets in Packages).

http://host/servlet/packageName.ServletName

Servlet and Utility Class Files Bundled in JAR Files

• Location.

install_dir/webapps/ROOT/WEB-INF/lib

• Corresponding URLs (Servlets).

http://host/servlet/ServletName

http://host/servlet/packageName.ServletName

JRun

HTML and JSP Pages

• Main Location.

install_dir/servers/default/default-app

• Corresponding URLs.

http://host/SomeFile.html

http://host/SomeFile.jsp

• More Specific Location (Arbitrary Subdirectory).

install_dir/servers/default/default-app/SomeDirectory

• Corresponding URLs.

http://host/SomeDirectory/SomeFile.html

http://host/SomeDirectory/SomeFile.jsp

Individual Servlet and Utility Class Files

• Main Location (Classes without Package).

install_dir/servers/default/default-app/WEB-INF/classes

• Corresponding URL (Servlets).

http://host/servlet/ServletName

• More Specific Location (Classes in Packages).

install_dir/servers/default/default-app/WEB-INF/classes/packageName

• Corresponding URL (Servlets in Packages).

http://host/servlet/packageName.ServletName

Servlet and Utility Class Files Bundled in JAR Files

• Location.

install_dir/servers/default/default-app/WEB-INF/lib

• Corresponding URLs (Servlets).

http://host/servlet/ServletName

http://host/servlet/packageName.ServletName

ServletExec

HTML and JSP Pages

• Main Location.

install_dir/public_html

• Corresponding URLs.

http://host/SomeFile.html

http://host/SomeFile.jsp

• More Specific Location (Arbitrary Subdirectory).

install_dir/public_html/SomeDirectory

• Corresponding URLs.

http://host/SomeDirectory/SomeFile.html

http://host/SomeDirectory/SomeFile.jsp

Individual Servlet and Utility Class Files

• Main Location (Classes without Package).

install_dir/Servlets

• Corresponding URL (Servlets).

http://host/servlet/ServletName

• More Specific Location (Classes in Packages).

install_dir/Servlets/packageName

• Corresponding URL (Servlets in Packages).

http://host/servlet/packageName.ServletName

Servlet and Utility Class Files Bundled in JAR Files

• Location.

install_dir/Servlets

• Corresponding URLs (Servlets).

http://host/servlet/ServletName

http://host/servlet/packageName.ServletName

Chapter 2. A Fast Introduction to Basic Servlet

Programming

Topics in This Chapter

• The advantages of servlets over competing technologies

• The basic servlet structure and life cycle

• Servlet initialization parameters

• Access to form data

• HTTP 1.1 request headers, response headers, and status codes

• The servlet equivalent of the standard CGI variables

• Cookies in servlets

• Session tracking

Servlets are Java technology’s answer to Common Gateway Interface (CGI) programming. They

are programs that run on a Web server, acting as a middle layer between a request coming from

a Web browser or other HTTP client and databases or applications on the HTTP server. Their job

is to perform the following tasks, as illustrated in Figure 2-1.

Figure 2-1. The role of Web middleware.

1. Read the explicit data sent by the client. The end user normally enters this data in an

HTML form on a Web page. However, the data could also come from an applet or a custom

HTTP client program.

2. Read the implicit HTTP request data sent by the browser. Figure 2-1 shows a

single arrow going from the client to the Web server (the layer where servlets and JSP

execute), but there are really two varieties of data: the explicit data the end user enters

in a form and the behind-the-scenes HTTP information. Both varieties are critical to

effective development. The HTTP information includes cookies, media types and

compression schemes the browser understands, and so forth.

3. Generate the results. This process may require talking to a database, executing an

RMI or CORBA call, invoking a legacy application, or computing the response directly. Your

real data may be in a relational database. Fine. But your database probably doesn’t speak

HTTP or return results in HTML, so the Web browser can’t talk directly to the database. The

same argument applies to most other applications. You need the Web middle layer to

extract the incoming data from the HTTP stream, talk to the application, and embed the

results inside a document.

4. Send the explicit data (i.e., the document) to the client. This document can be sent

in a variety of formats, including text (HTML), binary (GIF images), or even a compressed

format like gzip that is layered on top of some other underlying format.

5. Send the implicit HTTP response data. Figure 2-1 shows a single arrow going from

the Web middle layer (the servlet or JSP page) to the client. But, there are really two

varieties of data sent: the document itself and the behind-the-scenes HTTP information.

Both varieties are critical to effective development. Sending HTTP response data involves

telling the browser or other client what type of document is being returned (e.g., HTML),

setting cookies and caching parameters, and other such tasks.

Many client requests can be satisfied by prebuilt documents, and the server would handle these

requests without invoking servlets. In many cases, however, a static result is not sufficient, and

a page needs to be generated for each request. There are a number of reasons why Web pages

need to be built on-the-fly like this:

• The Web page is based on data sent by the client. For instance, the results page

from search engines and order-confirmation pages at online stores are specific to

particular user requests. Just remember that the user submits two kinds of data: explicit

(i.e., HTML form data) and implicit (i.e., HTTP request headers). Either kind of input can

be used to build the output page. In particular, it is quite common to build a user-specific

page based on a cookie value.

• The Web page is derived from data that changes frequently. For example, a

weather report or news headlines site might build the pages dynamically, perhaps

returning a previously built page if that page is still up to date.

• The Web page uses information from corporate databases or other server-side

sources. For example, an e-commerce site could use a servlet to build a Web page that

lists the current price and availability of each sale item.

In principle, servlets are not restricted to Web or application servers that handle HTTP requests

but can be used for other types of servers as well. For example, servlets could be embedded in

FTP or mail servers to extend their functionality. In practice, however, this use of servlets has not

caught on, and I’ll only be discussing HTTP servlets.

2.1 The Advantages of Servlets Over “Traditional” CGI

Java servlets are more efficient, easier to use, more powerful, more portable, safer, and cheaper

than traditional CGI and many alternative CGI-like technologies.

Efficient

With traditional CGI, a new process is started for each HTTP request. If the CGI program itself is

relatively short, the overhead of starting the process can dominate the execution time. With

servlets, the Java virtual machine stays running and handles each request with a lightweight Java

thread, not a heavyweight operating system process. Similarly, in traditional CGI, if there are N

requests to the same CGI program, the code for the CGI program is loaded into memory N times.

With servlets, however, there would be N threads, but only a single copy of the servlet class would

be loaded. This approach reduces server memory requirements and saves time by instantiating

fewer objects. Finally, when a CGI program finishes handling a request, the program terminates.

This approach makes it difficult to cache computations, keep database connections open, and

perform other optimizations that rely on persistent data. Servlets, however, remain in memory

even after they complete a response, so it is straightforward to store arbitrarily complex data

between client requests.

Convenient

Servlets have an extensive infrastructure for automatically parsing and decoding HTML form data,

reading and setting HTTP headers, handling cookies, tracking sessions, and many other such

high-level utilities. Besides, you already know the Java programming language. Why learn Perl

too? You’re already convinced that Java technology makes for more reliable and reusable code

than does Visual Basic, VBScript, or C++. Why go back to those languages for server-side

programming?

Powerful

Servlets support several capabilities that are difficult or impossible to accomplish with regular CGI.

Servlets can talk directly to the Web server, whereas regular CGI programs cannot, at least not

without using a server-specific API. Communicating with the Web server makes it easier to

translate relative URLs into concrete path names, for instance. Multiple servlets can also share

data, making it easy to implement database connection pooling and similar resource-sharing

optimizations. Servlets can also maintain information from request to request, simplifying

techniques like session tracking and caching of previous computations.

Portable

Servlets are written in the Java programming language and follow a standard API. Servlets are

supported directly or by a plug-in on virtually every major Web server. Consequently, servlets

written for, say, iPlanet Enterprise Server can run virtually unchanged on Apache, Microsoft

Internet Information Server (IIS), IBM WebSphere, or StarNine WebStar. They are part of the

Java 2 Platform, Enterprise Edition (J2EE; see http://java.sun.com/j2ee/), so industry support

for servlets is becoming even more pervasive.

Secure

One of the main sources of vulnerabilities in traditional CGI stems from the fact that the programs

are often executed by general-purpose operating system shells. So, the CGI programmer must

be careful to filter out characters such as backquotes and semicolons that are treated specially by

the shell. Implementing this precaution is harder than one might think, and weaknesses

stemming from this problem are constantly being uncovered in widely used CGI libraries.

A second source of problems is the fact that some CGI programs are processed by languages that

do not automatically check array or string bounds. For example, in C and C++ it is perfectly legal

to allocate a 100-element array and then write into the 999th “element,” which is really some

random part of program memory. So, programmers who forget to perform this check open up

their system to deliberate or accidental buffer overflow attacks.

Servlets suffer from neither of these problems. Even if a servlet executes a system call (e.g., with

Runtime.exec or JNI) to invoke a program on the local operating system, it does not use a shell

to do so. And, of course, array bounds checking and other memory protection features are a

central part of the Java programming language.

Inexpensive

There are a number of free or very inexpensive Web servers that are good for development use

or deployment of low- or medium-volume Web sites. Thus, with servlets and JSP you can start

with a free or inexpensive server and migrate to more expensive servers with high-performance

capabilities or advanced administration utilities only after your project meets initial success. This

is in contrast to many of the other CGI alternatives, which require a significant initial investment

for the purchase of a proprietary package.

2.2 Basic Servlet Structure

Listing 2.1 outlines a basic servlet that handles GET requests. GET requests, for those unfamiliar

with HTTP, are the usual type of browser requests for Web pages. A browser generates this

request when the user enters a URL on the address line, follows a link from a Web page, or

submits an HTML form that either does not specify a METHOD or specifies METHOD="GET". Servlets

can also easily handle POST requests, which are generated when someone submits an HTML form

that specifies METHOD="POST". For details on using HTML forms, see Chapter 16 of Core Servlets

and JavaServer Pages (available in PDF at http://www.moreservlets.com).

Listing 2.1 ServletTemplate.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 // Use "request" to read incoming HTTP headers

 // (e.g., cookies) and query data from HTML forms.

 // Use "response" to specify the HTTP response status

 // code and headers (e.g. the content type, cookies).

 PrintWriter out = response.getWriter();

 // Use "out" to send content to browser.

 }

}

To be a servlet, a class should extend HttpServlet and override doGet or doPost, depending on

whether the data is being sent by GET or by POST. If you want a servlet to take the same action

for both GET and POST requests, simply have doGet call doPost, or vice versa.

Both doGet and doPost take two arguments: an HttpServletRequest and an

HttpServletResponse. The HttpServletRequest has methods by which you can find out about

incoming information such as form (query) data, HTTP request headers, and the client’s

hostname. The HttpServletResponse lets you specify outgoing information such as HTTP status

codes (200, 404, etc.) and response headers (Content-Type, Set-Cookie, etc.). Most

importantly, it lets you obtain a PrintWriter with which you send the document content back to

the client. For simple servlets, most of the effort is spent in println statements that generate the

desired page. Form data, HTTP request headers, HTTP responses, and cookies are all discussed in

the following sections.

Since doGet and doPost throw two exceptions, you are required to include them in the

declaration. Finally, you must import classes in java.io (for PrintWriter, etc.), javax.servlet

(for HttpServlet, etc.), and javax.servlet.http (for HttpServletRequest and

HttpServletResponse).

A Servlet That Generates Plain Text

Listing 2.2 shows a simple servlet that outputs plain text, with the output shown in Figure 2-2.

Before we move on, it is worth spending some time reviewing the process of installing, compiling,

and running this simple servlet. See Chapter 1 (Server Setup and Configuration) for a much more

detailed description of the process.

Figure 2-2. Result of HelloWorld servlet.

First, be sure that your server is set up properly as described in Section 1.4 (Test the Server) and

that your CLASSPATH refers to the necessary three entries (the JAR file containing the

javax.servlet classes, your development directory, and “.”), as described in Section 1.6 (Set Up

Your Development Environment).

Second, type “ javac HelloWorld.java ” or tell your development environment to compile the

servlet (e.g., by clicking Build in your IDE or selecting Compile from the emacs JDE menu). This

will compile your servlet to create HelloWorld.class.

Third, move HelloWorld.class to the directory that your server uses to store servlets (usually

install_dir/.../WEB-INF/classes—see Section 1.7). Alternatively, you can use one of the

techniques of Section 1.8 (Establish a Simplified Deployment Method) to automatically place the

class files in the appropriate location.

Finally, invoke your servlet. This last step involves using either the default URL of

http://host/servlet/ServletName or a custom URL defined in the web.xml file as described in

Section 5.3 (Assigning Names and Custom URLs). Figure 2-2 shows the servlet being accessed by

means of the default URL, with the server running on the local machine.

Listing 2.2 HelloWorld.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 PrintWriter out = response.getWriter();

 out.println("Hello World");

 }

}

A Servlet That Generates HTML

Most servlets generate HTML, not plain text as in the previous example. To build HTML, you need

two additional steps:

1. Tell the browser that you’re sending back HTML.

2. Modify the println statements to build a legal Web page.

You accomplish the first step by setting the HTTP Content-Type response header. In general,

headers are set by the setHeader method of HttpServletResponse, but setting the content type

is such a common task that there is also a special setContentType method just for this purpose.

The way to designate HTML is with a type of text/html, so the code would look like this:

response.setContentType("text/html");

Although HTML is the most common type of document that servlets create, it is not unusual for

servlets to create other document types. For example, it is quite common to use servlets to

generate GIF images (content type image/gif) and Excel spreadsheets (content type

application/vnd.ms-excel).

Don’t be concerned if you are not yet familiar with HTTP response headers; they are discussed in

Section 2.8. Note that you need to set response headers before actually returning any of the

content with the PrintWriter. That’s because an HTTP response consists of the status line, one

or more headers, a blank line, and the actual document, in that order. The headers can appear in

any order, and servlets buffer the headers and send them all at once, so it is legal to set the status

code (part of the first line returned) even after setting headers. But servlets do not necessarily

buffer the document itself, since users might want to see partial results for long pages. Servlet

engines are permitted to partially buffer the output, but the size of the buffer is left unspecified.

You can use the getBufferSize method of HttpServletResponse to determine the size, or you

can use setBufferSize to specify it. You can set headers until the buffer fills up and is actually

sent to the client. If you aren’t sure whether the buffer has been sent, you can use the

isCommitted method to check. Even so, the simplest approach is to simply put the

setContentType line before any of the lines that use the PrintWriter.

Core Approach

Always set the content type before transmitting the actual document.

The second step in writing a servlet that builds an HTML document is to have your println

statements output HTML, not plain text. Listing 2.3 shows Hello-Servlet.java, the sample servlet

used in Section 1.7 to verify that the server is func-tioning properly. As Figure 2-3 illustrates, the

browser formats the result as HTML, not as plain text.

Figure 2-3. Result of HelloServlet.

Listing 2.3 HelloServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 out.println(docType +

 "<HTML>\n" +

 "<HEAD><TITLE>Hello</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1>Hello</H1>\n" +

 "</BODY></HTML>");

 }

}

Servlet Packaging

In a production environment, multiple programmers can be developing servlets for the same

server. So, placing all the servlets in the same directory results in a massive, hard-to-manage

collection of classes and risks name conflicts when two developers accidentally choose the same

servlet name. Packages are the natural solution to this problem. As we’ll see in Chapter 4, even

the use of Web applications does not obviate the need for packages.

When you use packages, you need to perform the following two additional steps.

1. Move the files to a subdirectory that matches the intended package name. For

example, I’ll use the moreservlets package for most of the rest of the servlets in this

book. So, the class files need to go in a subdirectory called moreservlets.

2. Insert a package statement in the class file. For example, to place a class in a

package called somePackage, the class should be in the somePackage directory and the

first non-comment line of the file should read
3.

package somePackage;

For example, Listing 2.4 presents a variation of HelloServlet that is in the moreservlets

package and thus the moreservlets directory. As discussed in Section 1.7 (Compile and Test

Some Simple Servlets), the class file should be placed in

install_dir/webapps/ROOT/WEB-INF/classes/moreservlets for Tomcat, in

install_dir/servers/default/default-app/WEB-INF/classes/moreservlets for JRun, and in

install_dir/Servlets/moreservlets for ServletExec.

Figure 2-4 shows the servlet accessed by means of the default URL.

Figure 2-4. Result of HelloServlet2.

Listing 2.4 HelloServlet2.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet used to test the use of packages. */

public class HelloServlet2 extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 out.println(docType +

 "<HTML>\n" +

 "<HEAD><TITLE>Hello (2)</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1>Hello (2)</H1>\n" +

 "</BODY></HTML>");

 }

}

Simple HTML-Building Utilities

As you probably already know, an HTML document is structured as follows:

<!DOCTYPE ...>

<HTML>

<HEAD><TITLE>...</TITLE>...</HEAD>

<BODY ...>...</BODY>

</HTML>

When using servlets to build the HTML, you might be tempted to omit part of this structure,

especially the DOCTYPE line, noting that virtually all major browsers ignore it even though the

HTML 3.2 and 4.0 specifications require it. I strongly discourage this practice. The advantage of

the DOCTYPE line is that it tells HTML validators which version of HTML you are using so they know

which specification to check your document against. These validators are valuable debugging

services, helping you catch HTML syntax errors that your browser guesses well on but that other

browsers will have trouble displaying.

The two most popular online validators are the ones from the World Wide Web Consortium

(http://validator.w3.org/) and from the Web Design Group

(http://www.htmlhelp.com/tools/validator/). They let you submit a URL, then they retrieve the

page, check the syntax against the formal HTML specification, and report any errors to you. Since,

to a visitor, a servlet that generates HTML looks exactly like a regular Web page, it can be

validated in the normal manner unless it requires POST data to return its result. Since GET data is

attached to the URL, you can even send the validators a URL that includes GET data. If the servlet

is available only inside your corporate firewall, simply run it, save the HTML to disk, and choose

the validator’s File Upload option.

Core Approach

Use an HTML validator to check the syntax of pages that your servlets
generate.

Admittedly, it is a bit cumbersome to generate HTML with println statements, especially long

tedious lines like the DOCTYPE declaration. Some people address this problem by writing detailed

HTML-generation utilities, then use the utilities throughout their servlets. I’m skeptical of the

usefulness of such an extensive library. First and foremost, the inconvenience of generating HTML

programmatically is one of the main problems addressed by JavaServer Pages. Second, HTML

generation routines can be cumbersome and tend not to support the full range of HTML attributes

(CLASS and ID for style sheets, JavaScript event handlers, table cell background colors, and so

forth).

Despite the questionable value of a full-blown HTML generation library, if you find you’re

repeating the same constructs many times, you might as well create a simple utility file that

simplifies those constructs. For standard servlets, two parts of the Web page (DOCTYPE and HEAD)

are unlikely to change and thus could benefit from being incorporated into a simple utility file.

These are shown in Listing 2.5, with Listing 2.6 showing a variation of HelloServlet that makes

use of this utility. I’ll add a few more utilities throughout the chapter.

Listing 2.5 moreservlets/ServletUtilities.java

package moreservlets;

import javax.servlet.*;

import javax.servlet.http.*;

/** Some simple time savers. Note that most are static methods. */

public class ServletUtilities {

 public static final String DOCTYPE =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">";

 public static String headWithTitle(String title) {

 return(DOCTYPE + "\n" +

 "<HTML>\n" +

 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");

 }

 ...

}

Listing 2.6 moreservlets/HelloServlet3.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet used to test the use of packages

 * and utilities from the same package.

 */

public class HelloServlet3 extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Hello (3)";

 out.println(ServletUtilities.headWithTitle(title) +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1>" + title + "</H1>\n" +

 "</BODY></HTML>");

 }

}

After you compile HelloServlet3.java (which results in ServletUtilities.java being compiled

automatically), you need to move the two class files to the moreservlets subdirectory of the

server’s default deployment location. If you get an “Unresolved symbol” error when compiling

HelloServlet3.java, go back and review the CLASSPATH settings described in Section 1.6 (Set Up

Your Development Environment). If you don’t know where to put the class files, review Sections

1.7 and 1.9. Figure 2-5 shows the result when the servlet is invoked with the default URL.

Figure 2-5. Result of HelloServlet3.

2.3 The Servlet Life Cycle

In Section 2.1 (The Advantages of Servlets Over “Traditional” CGI), I referred to the fact that only

a single instance of a servlet gets created, with each user request resulting in a new thread that

is handed off to doGet or doPost as appropriate. I’ll now be more specific about how servlets are

created and destroyed, and how and when the various methods are invoked. I give a quick

summary here, then elaborate in the following subsections.

When the servlet is first created, its init method is invoked, so init is where you put one-time

setup code. After this, each user request results in a thread that calls the service method of the

previously created instance. Multiple concurrent requests normally result in multiple threads

calling service simultaneously, although your servlet can implement a special interface

(SingleThreadModel) that stipulates that only a single thread is permitted to run at any one time.

The service method then calls doGet, doPost, or another do Xxx method, depending on the type

of HTTP request it received. Finally, when the server decides to unload a servlet, it first calls the

servlet’s destroy method.

The init Method

The init method is called when the servlet is first created; it is not called again for each user

request. So, it is used for one-time initializations, just as with the init method of applets. The

servlet is normally created when a user first invokes a URL corresponding to the servlet, but you

can also specify that the servlet be loaded when the server is first started (see Section 5.5,

“ Initializing and Preloading Servlets and JSP Pages ”).

The init method definition looks like this:

public void init() throws ServletException {

 // Initialization code...

}

One of the most common tasks that init performs is reading server-specific initialization

parameters. For example, the servlet might need to know about database settings, password files,

server-specific performance parameters, hit count files, or serialized cookie data from previous

requests. Initialization parameters are particularly valuable because they let the servlet deployer

(e.g., the server administrator), not just the servlet author, customize the servlet.

To read initialization parameters, you first obtain a ServletConfig object by means of

getServletConfig, then call getInitParameter on the result. Here is an example:

public void init() throws ServletException {

 ServletConfig config = getServletConfig();

 String param1 = config.getInitParameter("parameter1");

}

Notice two things about this code. First, the init method uses getServletConfig to obtain a

reference to the ServletConfig object. Second, ServletConfig has a getInitParameter

method with which you can look up initialization parameters associated with the servlet. Just as

with the getParameter method used in the init method of applets, both the input (the

parameter name) and the output (the parameter value) are strings.

You read initialization parameters by calling the getInitParameter method of ServletConfig.

But how do you set them? That’s the job of the web.xml file, called the deployment descriptor.

This file belongs in the WEB-INF directory of the Web application you are using, and it controls

many aspects of servlet and JSP behavior. Many servers provide graphical interfaces that let you

specify initialization parameters and control various aspects of servlet and JSP behavior. Although

those interfaces are server specific, behind the scenes they use the web.xml file, and this file is

completely portable. Use of web.xml is discussed in detail in Chapter 4 (Using and Deploying Web

Applications) and Chapter 5 (Controlling Web Application Behavior with web.xml), but for a quick

preview, web.xml contains an XML header, a DOCTYPE declaration, and a web-app element. For

the purpose of initialization parameters, the web-app element should contain a servlet element

with three subelements: servlet-name, servlet-class, and init-param. The servlet-name

element is the name that you want to use to access the servlet. The servlet-class element

gives the fully qualified (i.e., including packages) class name of the servlet, and init-param gives

names and values to initialization parameters.

For example, Listing 2.7 shows a web.xml file that gives a value to the initialization parameter

called parameter1 of the OriginalServlet class that is in the somePackage package. However,

the initialization parameter is available only when the servlet is accessed with the registered

servlet name (or a custom URL as described in Section 5.3). So, the param1 variable in the

previous code snippet would have the value "First Parameter Value" when the servlet is

accessed by means of http://host/servlet/SomeName, but would have the value null when the

servlet is accessed by means of http://host/servlet/somePackage.OriginalServlet.

Core Warning

Initialization parameters are not available to servlets that are accessed
by means of their default URL. A registered name or custom URL must be
used.

For more information on the web.xml file, including new parameters available with servlets

version 2.3, see Chapter 5 (Controlling Web Application Behavior with web.xml). For specific

details on initialization parameters and a complete working example, see Section 5.5 (Initializing

and Preloading Servlets and JSP Pages).

Listing 2.7 web.xml (Excerpt illustrating initialization

parameters)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <servlet>

 <servlet-name>SomeName</servlet-name>

 <servlet-class>somePackage.OriginalServlet</servlet-class>

 <init-param>

 <param-name>parameter1</param-name>

 <param-value>First Parameter Value</param-value>

 </init-param>

 </servlet>

 <!-- ... -->

</web-app>

The service Method

Each time the server receives a request for a servlet, the server spawns a new thread (perhaps by

reusing an idle Thread from a thread pool) and calls service. The service method checks the

HTTP request type (GET, POST, PUT, DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc.,

as appropriate. A GET request results from a normal request for a URL or from an HTML form that

has no METHOD specified. A POST request results from an HTML form that specifically lists POST as

the METHOD. Other HTTP requests are generated only by custom clients. If you aren’t familiar with

HTML forms, see Chapter 16 of Core Servlets and JavaServer Pages (available in PDF at

http://www.moreservlets.com).

Now, if you have a servlet that needs to handle both POST and GET requests identically, you may

be tempted to override service directly rather than implementing both doGet and doPost. This

is not a good idea. Instead, just have doPost call doGet (or vice versa), as below.

public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doGet(request, response);

}

Although this approach takes a couple of extra lines of code, it has several advantages over

directly overriding service. First, you can later add support for other HTTP request methods by

adding doPut, doTrace, etc., perhaps in a subclass. Overriding service directly precludes this

possibility. Second, you can add support for modification dates by adding a getLastModified

method. Since getLastModified is invoked by the default service method, overriding service

eliminates this option. Finally, you get automatic support for HEAD, OPTION, and TRACE requests.

Core Approach

If your servlet needs to handle both GET and POST identically, have your

doPost method call doGet , or vice versa. Don’t override service.

The doGet, doPost, and doXxx Methods

These methods contain the real meat of your servlet. Ninety-nine percent of the time, you only

care about GET or POST requests, so you override doGet and/or doPost. However, if you want to,

you can also override doDelete for DELETE requests, doPut for PUT, doOptions for OPTIONS, and

doTrace for TRACE. Recall, however, that you have automatic support for OPTIONS and TRACE.

In versions 2.1 and 2.2 of the servlet API, there is no doHead method. That’s because the system

automatically uses the status line and header settings of doGet to answer HEAD requests. In

version 2.3, however, doHead was added so that you can generate responses to HEAD requests

(i.e., requests from custom clients that want just the HTTP headers, not the actual document)

more quickly—without building the actual document output.

The SingleThreadModel Interface

Normally, the system makes a single instance of your servlet and then creates a new thread for

each user request, with multiple concurrent threads running if a new request comes in while a

previous request is still executing. This means that your doGet and doPost methods must be

careful to synchronize access to fields and other shared data, since multiple threads may access

the data simultaneously. If you want to prevent this multithreaded access, you can have your

servlet implement the SingleThreadModel interface, as below.

public class YourServlet extends HttpServlet

 implements SingleThreadModel {

 ...

}

If you implement this interface, the system guarantees that there is never more than one request

thread accessing a single instance of your servlet. In most cases, it does so by queuing all the

requests and passing them one at a time to a single servlet instance. However, the server is

permitted to create a pool of multiple instances, each of which handles one request at a time.

Either way, this means that you don’t have to worry about simultaneous access to regular fields

(instance variables) of the servlet. You do, however, still have to synchronize access to class

variables (static fields) or shared data stored outside the servlet.

Synchronous access to your servlets can significantly hurt performance (latency) if your servlet is

accessed frequently. When a servlet waits for I/O, the server remains idle instead of handling

pending requests. So, think twice before using the SingleThreadModel approach.

Core Warning

Avoid implementing SingleThreadModel for high-traffic servlets. Use

explicit synchronized blocks instead.

The destroy Method

The server may decide to remove a previously loaded servlet instance, perhaps because it is

explicitly asked to do so by the server administrator, or perhaps because the servlet is idle for a

long time. Before it does, however, it calls the servlet’s destroy method. This method gives your

servlet a chance to close database connections, halt background threads, write cookie lists or hit

counts to disk, and perform other such cleanup activities. Be aware, however, that it is possible

for the Web server to crash. So, don’t count on destroy as the only mechanism for saving state

to disk. Activities like hit counting or accumulating lists of cookie values that indicate special

access should also proactively write their state to disk periodically.

2.4 The Client Request: Form Data

One of the main motivations for building Web pages dynamically is to base the result upon query

data submitted by the user. This section briefly shows you how to access that data. More details

are provided in Chapter 3 of Core Servlets and JavaServer Pages (available in PDF at

http://www.moreservlets.com).

If you’ve ever used a search engine, visited an online bookstore, tracked stocks on the Web, or

asked a Web-based site for quotes on plane tickets, you’ve probably seen funny-looking URLs like

http://host/path?user=Marty+Hall&origin=bwi&dest=nrt. The part after the question mark (i.e.,

user=Marty+Hall&origin=bwi&dest=nrt) is known as form data (or query data) and is the most

common way to get information from a Web page to a server-side program. Form data can be

attached to the end of the URL after a question mark (as above) for GET requests or sent to the

server on a separate line for POST requests. If you’re not familiar with HTML forms, see Chapter

16 of Core Servlets and JavaServer Pages (in PDF at http://www.moreservlets.com) for details on

how to build forms that collect and transmit data of this sort.

Reading Form Data from CGI Programs

Extracting the needed information from form data is traditionally one of the most tedious parts of

CGI programming. First, you have to read the data one way for GET requests (in traditional CGI,

this is usually through the QUERY_STRING environment variable) and a different way for POST

requests (by reading the standard input in traditional CGI). Second, you have to chop the pairs at

the ampersands, then separate the parameter names (left of the equal signs) from the parameter

values (right of the equal signs). Third, you have to URL-decode the values. Alphanumeric

characters are sent unchanged, but spaces are converted to plus signs and other characters are

converted to %XX where XX is the ASCII (or ISO Latin-1) value of the character, in hex.

Reading Form Data from Servlets

One of the nice features of servlets is that all the form parsing is handled automatically. You

simply call the getParameter method of HttpServletRequest, supplying the case-sensitive

parameter name as an argument. You use getParameter exactly the same way when the data is

sent by GET as you do when it is sent by POST. The servlet knows which request method was used

and automatically does the right thing behind the scenes. The return value is a String

corresponding to the URL-decoded value of the first occurrence of that parameter name. An

empty String is returned if the parameter exists but has no value, and null is returned if there

is no such parameter in the request.

Technically, it is legal for a single HTML form to use the same parameter name twice, and in fact

this situation really occurs when you use SELECT elements that allow multiple selections (see

Section 16.6 of Core Servlets and JavaServer Pages). If the parameter could potentially have

more than one value, you should call getParameterValues (which returns an array of strings)

instead of getParameter (which returns a single string). The return value of

getParameterValues is null for nonexistent parameter names and is a one-element array when

the parameter has only a single value.

Parameter names are case sensitive, so, for example, request.getParameter("Param1") and

request.getParameter("param1") are not interchangeable.

Core Note

The values supplied to getParameter and getParameterValues are case

sensitive.

Finally, although most real servlets look for a specific set of parameter names, for debugging

purposes it is sometimes useful to get a full list. Use getParameterNames to get this list in the

form of an Enumeration, each entry of which can be cast to a String and used in a getParameter

or getParameterValues call. Just note that the HttpServletRequest API does not specify the

order in which the names appear within that Enumeration.

Example: Reading Three Explicit Parameters

Listing 2.8 presents a simple servlet called ThreeParams that reads form data parameters named

param1, param2, and param3 and places their values in a bulleted list. Listing 2.9 shows an HTML

form that collects user input and sends it to this servlet. By use of an ACTION URL that begins with

a slash (e.g., /servlet/moreservlets.ThreeParams), the form can be installed anywhere in the

server’s Web document hierarchy; there need not be any particular association between the

directory containing the form and the servlet installation directory. When you use Web

applications, HTML files (and images and JSP pages) go in the directory above the one containing

the WEB-INF directory; see Section 4.2 (Structure of a Web Application) for details. The directory

for HTML files that are not part of an explicit Web application varies from server to server. As

described in Section 1.5 (Try Some Simple HTML and JSP Pages) HTML and JSP pages go in

install_dir/webapps/ROOT for Tomcat, in install_dir/servers/default/default-app for JRun, and in

install_dir/public_html for ServletExec. For other servers, see the appropriate server

documentation.

Also note that the ThreeParams servlet reads the query data after it starts generating the page.

Although you are required to specify response settings before beginning to generate the content,

there is no requirement that you read the request parameters at any particular time.

Listing 2.8 ThreeParams.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet that reads three parameters from the

 * form data.

 */

public class ThreeParams extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Reading Three Request Parameters";

 out.println(ServletUtilities.headWithTitle(title) +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +

 "\n" +

 " param1: "

 + request.getParameter("param1") + "\n" +

 " param2: "

 + request.getParameter("param2") + "\n" +

 " param3: "

 + request.getParameter("param3") + "\n" +

 "\n" +

 "</BODY></HTML>");

 }

}

Listing 2.9 ThreeParamsForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

 <TITLE>Collecting Three Parameters</TITLE>

</HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1 ALIGN="CENTER">Collecting Three Parameters</H1>

<FORM ACTION="/servlet/moreservlets.ThreeParams">

 First Parameter: <INPUT TYPE="TEXT" NAME="param1">

 Second Parameter: <INPUT TYPE="TEXT" NAME="param2">

 Third Parameter: <INPUT TYPE="TEXT" NAME="param3">

 <CENTER><INPUT TYPE="SUBMIT"></CENTER>

</FORM>

</BODY>

</HTML>

Figure 2-6 shows the HTML form after the user enters the home directories of three famous

Internet personalities (OK, two famous Internet personalities). Figure 2-7 shows the result of the

form submission. Note that, although the form contained ~, a non-alphanumeric character that

was transmitted by use of its hex-encoded Latin-1 value (%7E), the servlet had to do nothing

special to get the value as it was typed into the HTML form. This conversion (called URL decoding)

is done automatically. Servlet authors simply specify the parameter name as it appears in the

HTML source code and get back the parameter value as it was entered by the end user: a big

improvement over CGI and many alternatives to servlets and JSP.

Figure 2-6. HTML front end resulting from

ThreeParamsForm.html.

Figure 2-7. Output of ThreeParams servlet.

If you’re accustomed to the traditional CGI approach where you read POST data through the

standard input, you should note that it is possible to do the same thing with servlets by calling

getReader or getInputStream on the HttpServletRequest and then using that stream to obtain

the raw input. This is a bad idea for regular parameters; getParameter is simpler and yields

results that are parsed and URL-decoded. However, reading the raw input might be of use for

uploaded files or POST data being sent by custom clients. Note, however, that if you read the POST

data in this manner, it might no longer be found by getParameter.

Core Warning

Do not use getParameter when you also call getInputStream and read

the raw servlet input.

Filtering Query Data

In the previous example, we read the param1, param2, and param3 request parameters and

inserted them verbatim into the page being generated. This is not necessarily safe, since the

request parameters might contain HTML characters such as “<” that could disrupt the rest of the

page processing, causing some of the subsequent tags to be interpreted incorrectly. For an

example, see Section 3.6 of Core Servlets and JavaServer Pages (available in PDF at

http://www.moreservlets.com). A safer approach is to filter out the HTML-specific characters

before inserting the values into the page. Listing 2.10 shows a static filter method that

accomplishes this task.

Listing 2.10 ServletUtilities.java

package moreservlets;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletUtilities {

 // Other parts shown elsewhere.

 // Given a string, this method replaces all occurrences of

 // '<' with '<', all occurrences of '>' with

 // '>', and (to handle cases that occur inside attribute

 // values), all occurrences of double quotes with

 // '"' and all occurrences of '&' with '&'.

 // Without such filtering, an arbitrary string

 // could not safely be inserted in a Web page.

 public static String filter(String input) {

 StringBuffer filtered = new StringBuffer(input.length());

 char c;

 for(int i=0; i<input.length(); i++) {

 c = input.charAt(i);

 if (c == '<') {

 filtered.append("<");

 } else if (c == '>') {

 filtered.append(">");

 } else if (c == '"') {

 filtered.append(""");

 } else if (c == '&') {

 filtered.append("&");

 } else {

 filtered.append(c);

 }

 }

 return(filtered.toString());

 }

}

2.5 The Client Request: HTTP Request Headers

One of the keys to creating effective servlets is understanding how to manipulate the HyperText

Transfer Protocol (HTTP). Getting a thorough grasp of this protocol is not an esoteric, theoretical

concept, but rather a practical issue that can have an immediate impact on the performance and

usability of your servlets. This section discusses the HTTP information that is sent from the

browser to the server in the form of request headers. It explains a few of the most important HTTP

1.1 request headers, summarizing how and why they would be used in a servlet. For more details

and examples, see Chapter 4 of Core Servlets and JavaServer Pages (available in PDF at

http://www.moreservlets.com).

Note that HTTP request headers are distinct from the form (query) data discussed in the previous

section. Form data results directly from user input and is sent as part of the URL for GET requests

and on a separate line for POST requests. Request headers, on the other hand, are indirectly set

by the browser and are sent immediately following the initial GET or POST request line. For

instance, the following example shows an HTTP request that might result from a user submitting

a book-search request to a servlet at http://www.somebookstore.com/servlet/Search. The

request includes the headers Accept, Accept-Encoding, Connection, Cookie, Host, Referer,

and User-Agent, all of which might be important to the operation of the servlet, but none of which

can be derived from the form data or deduced automatically: the servlet needs to explicitly read

the request headers to make use of this information.

GET /servlet/Search?keywords=servlets+jsp HTTP/1.1

Accept: image/gif, image/jpg, */*

Accept-Encoding: gzip

Connection: Keep-Alive

Cookie: userID=id456578

Host: www.somebookstore.com

Referer: http://www.somebookstore.com/findbooks.html

User-Agent: Mozilla/4.7 [en] (Win98; U)

Reading Request Headers from Servlets

Reading headers is straightforward; just call the getHeader method of HttpServletRequest,

which returns a String if the specified header was supplied on this request, null otherwise.

Header names are not case sensitive. So, for example, request.getHeader("Connection") is

interchangeable with request.getHeader("connection").

Although getHeader is the general-purpose way to read incoming headers, a few headers are so

commonly used that they have special access methods in HttpServletRequest. Following is a

summary.

• getCookies The getCookies method returns the contents of the Cookie header, parsed

and stored in an array of Cookie objects. This method is discussed in more detail in

Section 2.9 (Cookies).

• getAuthType and getRemoteUser The getAuthType and getRemoteUser methods break

the Authorization header into its component pieces.

• getContentLength The getContentLength method returns the value of the

Content-Length header (as an int).

• getContentType The getContentType method returns the value of the Content-Type

header (as a String).

• getDateHeader and getIntHeader The getDateHeader and getIntHeader methods

read the specified headers and then convert them to Date and int values, respectively.

• getHeaderNames Rather than looking up one particular header, you can use the

getHeaderNames method to get an Enumeration of all header names received on this

particular request. This capability is illustrated in Listing 2.11.

• getHeaders In most cases, each header name appears only once in the request.

Occasionally, however, a header can appear multiple times, with each occurrence listing a

separate value. Accept-Language is one such example. You can use getHeaders to obtain

an Enumeration of the values of all occurrences of the header.

Finally, in addition to looking up the request headers, you can get information on the main

request line itself, also by means of methods in HttpServletRequest. Here is a summary of the

three main methods.

• getMethod The getMethod method returns the main request method (normally GET or

POST, but methods like HEAD, PUT, and DELETE are possible).

• getRequestURI The getRequestURI method returns the part of the URL that comes after

the host and port but before the form data. For example, for a URL of

http://randomhost.com/servlet/search.BookSearch, getRequestURI would return

"/servlet/search.BookSearch".

• getProtocol The getProtocol method returns the third part of the request line, which

is generally HTTP/1.0 or HTTP/1.1. Servlets should usually check getProtocol before

specifying response headers (Section 2.8) that are specific to HTTP 1.1.

Example: Making a Table of All Request Headers

Listing 2.11 shows a servlet that simply creates a table of all the headers it receives, along with

their associated values. It also prints out the three components of the main request line (method,

URI, and protocol). Figures 2-8 and 2-9 show typical results with Netscape and Internet Explorer.

Figure 2-8. Request headers sent by Netscape 4.7 on

Windows 98.

Figure 2-9. Request headers sent by Internet Explorer 5.0 on

Windows 98.

Listing 2.11 ShowRequestHeaders.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Shows all the request headers sent on this request. */

public class ShowRequestHeaders extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Servlet Example: Showing Request Headers";

 out.println(ServletUtilities.headWithTitle(title) +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +

 "Request Method: " +

 request.getMethod() + "
\n" +

 "Request URI: " +

 request.getRequestURI() + "
\n" +

 "Request Protocol: " +

 request.getProtocol() + "

\n" +

 "<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +

 "<TR BGCOLOR=\"#FFAD00\">\n" +

 "<TH>Header Name<TH>Header Value");

 Enumeration headerNames = request.getHeaderNames();

 while(headerNames.hasMoreElements()) {

 String headerName = (String)headerNames.nextElement();

 out.println("<TR><TD>" + headerName);

 out.println(" <TD>" + request.getHeader(headerName));

 }

 out.println("</TABLE>\n</BODY></HTML>");

 }

 /** Let the same servlet handle both GET and POST. */

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doGet(request, response);

 }

}

Understanding HTTP 1.1 Request Headers

Access to the request headers permits servlets to perform a number of optimizations and to

provide a number of features not otherwise possible. This subsection summarizes the headers

most often used by servlets; more details are given in Core Servlets and JavaServer Pages,

Chapter 4 (in PDF at http://www.moreservlets.com). Note that HTTP 1.1 supports a superset of

the headers permitted in HTTP 1.0. For additional details on these and other headers, see the

HTTP 1.1 specification, given in RFC 2616. The official RFCs are archived in a number of places;

your best bet is to start at http://www.rfc-editor.org/ to get a current list of the archive sites.

Accept

This header specifies the MIME types that the browser or other clients can handle. A servlet that

can return a resource in more than one format can examine the Accept header to decide which

format to use. For example, images in PNG format have some compression advantages over

those in GIF, but only a few browsers support PNG. If you had images in both formats, a servlet

could call request.getHeader("Accept"), check for image/png, and if it finds a match, use

xxx.png filenames in all the IMG elements it generates. Otherwise, it would just use xxx.gif.

See Table 2.1 in Section 2.8 (The Server Response: HTTP Response Headers) for the names and

meanings of the common MIME types

Note that Internet Explorer 5 has a bug whereby the Accept header is not sent properly when you

reload a page. It is sent properly on the original request, however.

Accept-Charset

This header indicates the character sets (e.g., ISO-8859-1) the browser can use.

Accept-Encoding

This header designates the types of encodings that the client knows how to handle. If the server

receives this header, it is free to encode the page by using one of the formats specified (usually

to reduce transmission time), sending the Content-Encoding response header to indicate that it

has done so. This encoding type is completely distinct from the MIME type of the actual document

(as specified in the Content-Type response header), since this encoding is reversed before the

browser decides what to do with the content. On the other hand, using an encoding the browser

doesn’t understand results in totally incomprehensible pages. Consequently, it is critical that you

explicitly check the Accept-Encoding header before using any type of content encoding. Values

of gzip or compress are the two most common possibilities.

Compressing pages before returning them is a valuable service because the decoding time is

likely to be small compared to the savings in transmission time. See Section 9.5 where gzip

compression is used to reduce download times by a factor of 10.

Accept-Language

This header specifies the client’s preferred languages in case the servlet can produce results in

more than one language. The value of the header should be one of the standard language codes

such as en, en-us, da, etc. See RFC 1766 for details (start at http://www.rfc-editor.org/ to get a

current list of the RFC archive sites).

Authorization

This header is used by clients to identify themselves when accessing password-protected Web

pages. For details, see Chapters 7 and 8.

Connection

This header indicates whether the client can handle persistent HTTP connections. Persistent

connections permit the client or other browser to retrieve multiple files (e.g., an HTML file and

several associated images) with a single socket connection, saving the overhead of negotiating

several independent connections. With an HTTP 1.1 request, persistent connections are the

default, and the client must specify a value of close for this header to use old-style connections.

In HTTP 1.0, a value of Keep-Alive means that persistent connections should be used.

Each HTTP request results in a new invocation of a servlet (i.e., a thread calling the servlet’s

service and do Xxx methods), regardless of whether the request is a separate connection. That

is, the server invokes the servlet only after the server has already read the HTTP request. This

means that servlets need help from the server to handle persistent connections. Consequently,

the servlet’s job is just to make it possible for the server to use persistent connections, which the

servlet does by setting the Content-Length response header.

Content-Length

This header is applicable only to POST requests and gives the size of the POST data in bytes. Rather

than calling request.getIntHeader("Content-Length"), you can simply use

request.getContentLength(). However, since servlets take care of reading the form data for

you (see Section 2.4), you rarely use this header explicitly.

Cookie

This header is used to return cookies to servers that previously sent them to the browser. Never

read this header directly; use request.getCookies instead. For details, see Section 2.9

(Cookies). Technically, Cookie is not part of HTTP 1.1. It was originally a Netscape extension but

is now widely supported, including in both Netscape Navigator/Communicator and Microsoft

Internet Explorer.

Host

In HTTP 1.1, browsers and other clients are required to specify this header, which indicates the

host and port as given in the original URL. Due to request forwarding and machines that have

multiple hostnames, it is quite possible that the server could not otherwise determine this

information. This header is not new in HTTP 1.1, but in HTTP 1.0 it was optional, not required.

If-Modified-Since

This header indicates that the client wants the page only if it has been changed after the specified

date. The server sends a 304 (Not Modified) header if no newer result is available. This option

is useful because it lets browsers cache documents and reload them over the network only when

they’ve changed. However, servlets don’t need to deal directly with this header. Instead, they

should just implement the getLastModified method to have the system handle modification

dates automatically. See Section 2.8 of Core Servlets and JavaServer Pages (available in PDF at

http://www.moreservlets.com) for an example of the use of getLastModified.

If-Unmodified-Since

This header is the reverse of If-Modified-Since; it specifies that the operation should succeed

only if the document is older than the specified date. Typically, If-Modified-Since is used for

GET requests (“give me the document only if it is newer than my cached version”), whereas

If-Unmodified-Since is used for PUT requests (“update this document only if nobody else has

changed it since I generated it”). This header is new in HTTP 1.1.

Referer

This header indicates the URL of the referring Web page. For example, if you are at Web page 1

and click on a link to Web page 2, the URL of Web page 1 is included in the Referer header when

the browser requests Web page 2. All major browsers set this header, so it is a useful way of

tracking where requests come from. This capability is helpful for tracking advertisers who refer

people to your site, for slightly changing content depending on the referring site, or simply for

keeping track of where your traffic comes from. In the last case, most people simply rely on Web

server log files, since the Referer is typically recorded there. Although the Referer header is

useful, don’t rely too heavily on it since it can easily be spoofed by a custom client. Finally, note

that, due to a spelling mistake by one of the original HTTP authors, this header is Referer, not the

expected Referrer.

User-Agent

This header identifies the browser or other client making the request and can be used to return

different content to different types of browsers. Be wary of this usage when dealing only with Web

browsers; relying on a hard-coded list of browser versions and associated features can make for

unreliable and hard-to-modify servlet code. Whenever possible, use something specific in the

HTTP headers instead. For example, instead of trying to remember which browsers support gzip

on which platforms, simply check the Accept-Encoding header.

However, the User-Agent header is quite useful for distinguishing among different categories of

client. For example, Japanese developers might see if the User-Agent is an Imode cell phone (in

which case you would redirect to a chtml page), a Skynet cell phone (in which case you would

redirect to a wml page), or a Web browser (in which case you would generate regular HTML).

Most Internet Explorer versions list a “Mozilla” (Netscape) version first in their User-Agent line,

with the real browser version listed parenthetically. This is done for compatibility with JavaScript,

where the User-Agent header is sometimes used to determine which JavaScript features are

supported. Also note that this header can be easily spoofed, a fact that calls into question the

reliability of sites that use this header to “show” market penetration of various browser versions.

2.6 The Servlet Equivalent of the Standard CGI

Variables

If you come to servlets with a background in traditional Common Gateway Interface (CGI)

programming, you are probably used to the idea of “CGI variables.” These are a somewhat

eclectic collection of information about the current request. Some are based on the HTTP request

line and headers (e.g., form data), others are derived from the socket itself (e.g., the name and

IP address of the requesting host), and still others are taken from server installation parameters

(e.g., the mapping of URLs to actual paths).

Although it probably makes more sense to think of different sources of data (request data, server

information, etc.) as distinct, experienced CGI programmers may find it useful to see the servlet

equivalent of each of the CGI variables. If you don’t have a background in traditional CGI, first,

count your blessings; servlets are easier to use, more flexible, and more efficient than standard

CGI. Second, just skim this section, noting the parts not directly related to the incoming HTTP

request. In particular, observe that you can use getServletContext().getRealPath to map a

URI (here, URI refers to the part of the URL that comes after the host and port) to an actual path

and that you can use request.getRemoteHost() and request.getRemoteAddress() to get the

name and IP address of the client.

AUTH_TYPE

If an Authorization header was supplied, this variable gives the scheme specified (basic or

digest). Access it with request.getAuthType().

CONTENT_LENGTH

For POST requests only, this variable stores the number of bytes of data sent, as given by the

Content-Length request header. Technically, since the CONTENT_LENGTH CGI variable is a string,

the servlet equivalent is String.valueOf(request.getContentLength()) or

request.getHeader("Content-Length"). You'll probably want to just call

request.getContentLength(), which returns an int.

CONTENT_TYPE

CONTENT_TYPE designates the MIME type of attached data, if specified.

See Table 2.1 in Section 2.8 (The Server Response: HTTP Response Headers) for the names and

meanings of the common MIME types. Access CONTENT_TYPE with request.getContentType().

DOCUMENT_ROOT

The DOCUMENT_ROOT variable specifies the real directory corresponding to the URL http://host/.

Access it with getServletContext().getRealPath("/"). In older servlet specifications, you

accessed this variable with request.getRealPath("/"); however, the older access method is no

longer supported. Also, you can use getServletContext().getRealPath to map an arbitrary

URI (i.e., URL suffix that comes after the hostname and port) to an actual path on the local

machine.

HTTP_XXX_YYY

Variables of the form HTTP_HEADER_NAME were how CGI programs obtained access to arbitrary

HTTP request headers. The Cookie header became HTTP_COOKIE, User-Agent became

HTTP_USER_AGENT, Referer became HTTP_REFERER, and so forth. Servlets should just use

request.getHeader or one of the shortcut methods described in Section 2.5 (The Client Request:

HTTP Request Headers).

PATH_INFO

This variable supplies any path information attached to the URL after the address of the servlet

but before the query data. For example, with

http://host/servlet/moreservlets.SomeServlet/foo/bar?baz=quux, the path information is

/foo/bar. Since servlets, unlike standard CGI programs, can talk directly to the server, they don’t

need to treat path information specially. Path information could be sent as part of the regular

form data and then translated by getServletContext().getRealPath. Access the value of

PATH_INFO by using request.getPathInfo().

PATH_TRANSLATED

PATH_TRANSLATED gives the path information mapped to a real path on the server. Again, with

servlets there is no need to have a special case for path information, since a servlet can call

getServletContext().getRealPath() to translate partial URLs into real paths. This translation

is not possible with standard CGI because the CGI program runs entirely separately from the

server. Access this variable by means of request.getPathTranslated().

QUERY_STRING

For GET requests, this variable gives the attached data as a single string with values still

URL-encoded. You rarely want the raw data in servlets; instead, use request.getParameter to

access individual parameters, as described in Section 2.5 (The Client Request: HTTP Request

Headers). However, if you do want the raw data, you can get it with request.getQueryString().

REMOTE_ADDR

This variable designates the IP address of the client that made the request, as a String (e.g.,

"198.137.241.30"). Access it by calling request.getRemoteAddr().

REMOTE_HOST

REMOTE_HOST indicates the fully qualified domain name (e.g., whitehouse.gov) of the client that

made the request. The IP address is returned if the domain name cannot be determined. You can

access this variable with request.getRemoteHost().

REMOTE_USER

If an Authorization header was supplied and decoded by the server itself, the REMOTE_USER

variable gives the user part, which is useful for session tracking in protected sites. Access it with

request.getRemoteUser().

REQUEST_METHOD

This variable stipulates the HTTP request type, which is usually GET or POST but is occasionally

HEAD, PUT, DELETE, OPTIONS, or TRACE. Servlets rarely need to look up REQUEST_METHOD explicitly,

since each of the request types is typically handled by a different servlet method (doGet, doPost,

etc.). An exception is HEAD, which is handled automatically by the service method returning

whatever headers and status codes the doGet method would use. Access this variable by means

of request.getMethod().

SCRIPT_NAME

This variable specifies the path to the server-side program (i.e., the servlet in our case), relative

to the server’s root directory. It can be accessed through request.getServletPath().

SERVER_NAME

SERVER_NAME gives the host name of the server machine. It can be accessed by means of

request.getServerName().

SERVER_PORT

This variable stores the port the server is listening on. Technically, the servlet equivalent is

String.valueOf(request.getServerPort()), which returns a String. You’ll usually just want

request.getServerPort(), which returns an int.

SERVER_PROTOCOL

The SERVER_PROTOCOL variable indicates the protocol name and version used in the request line

(e.g., HTTP/1.0 or HTTP/1.1). Access it by calling request.getProtocol().

SERVER_SOFTWARE

This variable gives identifying information about the Web server. Access it with

getServletContext().getServerInfo().

2.7 The Server Response: HTTP Status Codes

When a Web server responds to a request from a browser or other Web client, the response

typically consists of a status line, some response headers, a blank line, and the document. Here

is a minimal example:

HTTP/1.1 200 OK

Content-Type: text/plain

Hello World

The status line consists of the HTTP version (HTTP/1.1 in the example above), a status code (an

integer; 200 in the example), and a very short message corresponding to the status code (OK in

the example). In most cases, all of the headers are optional except for Content-Type, which

specifies the MIME type of the document that follows. Although most responses contain a

document, some don’t. For example, responses to HEAD requests should never include a

document, and a variety of status codes essentially indicate failure and either don’t include a

document or include only a short error-message document.

Servlets can perform a variety of important tasks by manipulating the status line and the

response headers. For example, they can forward the user to other sites; indicate that the

attached document is an image, Adobe Acrobat file, or HTML file; tell the user that a password is

required to access the document; and so forth. This section briefly summarizes the most

important status codes and what can be accomplished with them; see Chapter 6 of Core Servlets

and JavaServer Pages (in PDF at http://www.moreservlets.com) for more details. The following

section discusses the response headers.

Specifying Status Codes

As just described, the HTTP response status line consists of an HTTP version, a status code, and

an associated message. Since the message is directly associated with the status code and the

HTTP version is determined by the server, all a servlet needs to do is to set the status code. A

code of 200 is set automatically, so servlets don’t usually need to specify a status code at all.

When they do set a code, they do so with the setStatus method of HttpServletResponse. If

your response includes a special status code and a document, be sure to call setStatus before

actually returning any of the content with the PrintWriter. That’s because an HTTP response

consists of the status line, one or more headers, a blank line, and the actual document, in that

order. As discussed in Section 2.2 (Basic Servlet Structure), servlets do not necessarily buffer the

document (version 2.1 servlets never do so), so you have to either set the status code before first

using the PrintWriter or carefully check that the buffer hasn’t been flushed and content actually

sent to the browser.

Core Approach

Set status codes before sending any document content to the client.

The setStatus method takes an int (the status code) as an argument, but instead of using

explicit numbers, for clarity and reliability use the constants defined in HttpServletResponse.

The name of each constant is derived from the standard HTTP 1.1 message for each constant, all

upper case with a prefix of SC (for Status Code) and spaces changed to underscores. Thus, since

the message for 404 is Not Found, the equivalent constant in HttpServletResponse is

SC_NOT_FOUND. There are two exceptions, however. The constant for code 302 is derived from the

HTTP 1.0 message (Moved Temporarily), not the HTTP 1.1 message (Found), and the constant for

code 307 (Temporary Redirect) is missing altogether.

Although the general method of setting status codes is simply to call response.setStatus(int),

there are two common cases where a shortcut method in HttpServletResponse is provided. Just

be aware that both of these methods throw IOException, whereas setStatus does not.

• public void sendError(int code, String message) The sendError method sends a

status code (usually 404) along with a short message that is automatically formatted

inside an HTML document and sent to the client.

• public void sendRedirect(String url) The sendRedirect method generates a 302

response along with a Location header giving the URL of the new document. With servlets

version 2.1, this must be an absolute URL. In version 2.2 and 2.3, either an absolute or a

relative URL is permitted; the system automatically translates relative URLs into absolute

ones before putting them in the Location header.

Setting a status code does not necessarily mean that you don’t need to return a document. For

example, although most servers automatically generate a small File Not Found message for 404

responses, a servlet might want to customize this response. Again, remember that if you do send

output, you have to call setStatus or sendError first.

HTTP 1.1 Status Codes

In this subsection I describe the most important status codes available for use in servlets talking

to HTTP 1.1 clients, along with the standard message associated with each code. A good

understanding of these codes can dramatically increase the capabilities of your servlets, so you

should at least skim the descriptions to see what options are at your disposal. You can come back

for details when you are ready to make use of some of the capabilities.

The complete HTTP 1.1 specification is given in RFC 2616. In general, you can access RFCs online

by going to http://www.rfc-editor.org/ and following the links to the latest RFC archive sites, but

since this one came from the World Wide Web Consortium, you can just go to

http://www.w3.org/Protocols/. Codes that are new in HTTP 1.1 are noted, since some browsers

support only HTTP 1.0. You should only send the new codes to clients that support HTTP 1.1, as

verified by checking request.getRequestProtocol.

The rest of this section describes the specific status codes available in HTTP 1.1. These codes fall

into five general categories:

• 100–199 Codes in the 100s are informational, indicating that the client should respond

with some other action.

• 200–299 Values in the 200s signify that the request was successful.

• 300–399 Values in the 300s are used for files that have moved and usually include a

Location header indicating the new address.

• 400–499 Values in the 400s indicate an error by the client.

• 500–599 Codes in the 500s signify an error by the server.

The constants in HttpServletResponse that represent the various codes are derived from the

standard messages associated with the codes. In servlets, you usually refer to status codes only

by means of these constants. For example, you would use

response.setStatus(response.SC_NO_CONTENT) rather than response.setStatus(204),

since the latter is unclear to readers and is prone to typographical errors. However, you should

note that servers are allowed to vary the messages slightly, and clients pay attention only to the

numeric value. So, for example, you might see a server return a status line of HTTP/1.1 200

Document Follows instead of HTTP/1.1 200 OK.

100 (Continue)

If the server receives an Expect request header with a value of 100-continue, it means that the

client is asking if it can send an attached document in a follow-up request. In such a case, the

server should either respond with status 100 (SC_CONTINUE) to tell the client to go ahead or use

417 (Expectation Failed) to tell the browser it won’t accept the document. This status code is

new in HTTP 1.1.

200 (OK)

A value of 200 (SC_OK) means that everything is fine. The document follows for GET and POST

requests. This status is the default for servlets; if you don’t use setStatus, you’ll get 200.

202 (Accepted)

A value of 202 (SC_ACCEPTED) tells the client that the request is being acted upon, but processing

is not yet complete.

204 (No Content)

A status code of 204 (SC_NO_CONTENT) stipulates that the browser should continue to display the

previous document because no new document is available. This behavior is useful if the user

periodically reloads a page by pressing the Reload button, and you can determine that the

previous page is already up-to-date.

205 (Reset Content)

A value of 205 (SC_RESET_CONTENT) means that there is no new document, but the browser

should reset the document view. This status code instructs browsers to clear form fields. It is new

in HTTP 1.1.

301 (Moved Permanently)

The 301 (SC_MOVED_PERMANENTLY) status indicates that the requested document is elsewhere;

the new URL for the document is given in the Location response header. Browsers should

automatically follow the link to the new URL.

302 (Found)

This value is similar to 301, except that in principle the URL given by the Location header should

be interpreted as a temporary replacement, not a permanent one. In practice, most browsers

treat 301 and 302 identically. Note: In HTTP 1.0, the message was Moved Temporarily instead

of Found, and the constant in HttpServletResponse is SC_MOVED_TEMPORARILY, not the expected

SC_FOUND.

Core Note

The constant representing 302 is SC_MOVED_TEMPORARILY , not

SC_FOUND.

Status code 302 is useful because browsers automatically follow the reference to the new URL

given in the Location response header. It is so useful, in fact, that there is a special method for

it, sendRedirect. Using response.sendRedirect(url) has a couple of advantages over using

response.setStatus(response.SC_MOVED_TEMPORARILY) and

response.setHeader("Location", url). First, it is shorter and easier. Second, with

sendRedirect, the servlet automatically builds a page containing the link to show to older

browsers that don’t automatically follow redirects. Finally, with version 2.2 and 2.3 of servlets,

sendRedirect can handle relative URLs, automatically translating them into absolute ones.

Technically, browsers are only supposed to automatically follow the redirection if the original

request was GET. For details, see the discussion of the 307 status code.

303 (See Other)

The 303 (SC_SEE_OTHER) status is similar to 301 and 302, except that if the original request was

POST, the new document (given in the Location header) should be retrieved with GET. This code

is new in HTTP 1.1.

304 (Not Modified)

When a client has a cached document, it can perform a conditional request by supplying an

If-Modified-Since header to indicate that it wants the document only if it has been changed

since the specified date. A value of 304 (SC_NOT_MODIFIED) means that the cached version is

up-to-date and the client should use it. Otherwise, the server should return the requested

document with the normal (200) status code. Servlets normally should not set this status code

directly. Instead, they should implement the getLastModified method and let the default

service method handle conditional requests based upon this modification date. For an example,

see Section 2.8 of Core Servlets and JavaServer Pages.

307 (Temporary Redirect)

The rules for how a browser should handle a 307 status are identical to those for 302. The 307

value was added to HTTP 1.1 since many browsers erroneously follow the redirection on a 302

response even if the original message is a POST. Browsers are supposed to follow the redirection

of a POST request only when they receive a 303 response status. This new status is intended to be

unambiguously clear: follow redirected GET and POST requests in the case of 303 responses;

follow redirected GET but not POST requests in the case of 307 responses. Note: For some reason

there is no constant in HttpServletResponse corresponding to this status code, so you have to

use 307 explicitly. This status code is new in HTTP 1.1.

400 (Bad Request)

A 400 (SC_BAD_REQUEST) status indicates bad syntax in the client request.

401 (Unauthorized)

A value of 401 (SC_UNAUTHORIZED) signifies that the client tried to access a password-protected

page without proper identifying information in the Authorization header. The response must

include a WWW-Authenticate header.

403 (Forbidden)

A status code of 403 (SC_FORBIDDEN) means that the server refuses to supply the resource,

regardless of authorization. This status is often the result of bad file or directory permissions on

the server.

404 (Not Found)

The infamous 404 (SC_NOT_FOUND) status tells the client that no resource could be found at that

address. This value is the standard “no such page” response. It is such a common and useful

response that there is a special method for it in the HttpServletResponse class:

sendError("message"). The advantage of sendError over setStatus is that, with sendError,

the server automatically generates an error page showing the error message. 404 errors need not

merely say “Sorry, the page cannot be found.” Instead, they can give information on why the

page couldn’t be found or supply search boxes or alternative places to look. The sites at

www.microsoft.com and www.ibm.com have particularly good examples of useful error pages. In

fact, there is an entire site dedicated to the good, the bad, the ugly, and the bizarre in 404 error

messages: http://www.plinko.net/404/. I find

http://www.plinko.net/404/category.asp?Category=Funny particularly amusing.

Unfortunately, however, the default behavior of Internet Explorer 5 is to ignore the error page

you send back and to display its own, even though doing so contradicts the HTTP specification. To

turn off this setting, you can go to the Tools menu, select Internet Options, choose the Advanced

tab, and make sure “Show friendly HTTP error messages” box is not checked. Unfortunately,

however, few users are aware of this setting, so this “feature” prevents most users of Internet

Explorer version 5 from seeing any informative messages you return. Other major browsers and

version 4 of Internet Explorer properly display server-generated error pages.

Core Warning

By default, Internet Explorer version 5 improperly ignores
server-generated error pages.

To make matters worse, some versions of Tomcat 3 fail to properly handle strings that are passed

to sendError. So, if you are using Tomcat 3, you may need to generate 404 error messages by

hand. Fortunately, it is relatively uncommon for individual servlets to build their own 404 error

pages. A more common approach is to set up error pages for each Web application; see Section

5.8 (Designating Pages to Handle Errors) for details. Tomcat correctly handles these pages.

Core Warning

Some versions of Tomcat 3.x fail to properly display strings that are

supplied to sendError.

405 (Method Not Allowed)

A 405 (SC_METHOD_NOT_ALLOWED) value indicates that the request method (GET, POST, HEAD, PUT,

DELETE, etc.) was not allowed for this particular resource. This status code is new in HTTP 1.1.

415 (Unsupported Media Type)

A value of 415 (SC_UNSUPPORTED_MEDIA_TYPE) means that the request had an attached

document of a type the server doesn’t know how to handle. This status code is new in HTTP 1.1.

417 (Expectation Failed)

If the server receives an Expect request header with a value of 100-continue, it means that the

client is asking if it can send an attached document in a follow-up request. In such a case, the

server should either respond with this status (417) to tell the browser it won’t accept the

document or use 100 (SC_CONTINUE) to tell the client to go ahead. This status code is new in HTTP

1.1.

500 (Internal Server Error)

500 (SC_INTERNAL_SERVER_ERROR) is the generic “server is confused” status code. It often

results from CGI programs or (heaven forbid!) servlets that crash or return improperly formatted

headers.

501 (Not Implemented)

The 501 (SC_NOT_IMPLEMENTED) status notifies the client that the server doesn’t support the

functionality to fulfill the request. It is used, for example, when the client issues a command like

PUT that the server doesn’t support.

503 (Service Unavailable)

A status code of 503 (SC_SERVICE_UNAVAILABLE) signifies that the server cannot respond

because of maintenance or overloading. For example, a servlet might return this header if some

thread or database connection pool is currently full. The server can supply a Retry-After header

to tell the client when to try again.

505 (HTTP Version Not Supported)

The 505 (SC_HTTP_VERSION_NOT_SUPPORTED) code means that the server doesn’t support the

version of HTTP named in the request line. This status code is new in HTTP 1.1.

A Front End to Various Search Engines

Listing 2.12 presents an example that makes use of the two most common status codes other

than 200 (OK): 302 (Found) and 404 (Not Found). The 302 code is set by the shorthand

sendRedirect method of HttpServletResponse, and 404 is specified by sendError.

In this application, an HTML form (see Figure 2-10 and the source code in Listing 2.14) first

displays a page that lets the user specify a search string, the number of results to show per page,

and the search engine to use. When the form is submitted, the servlet extracts those three

parameters, constructs a URL with the parameters embedded in a way appropriate to the search

engine selected (see the SearchSpec class of Listing 2.13), and redirects the user to that URL

(see Figure 2-11). If the user fails to choose a search engine or specify search terms, an error

page informs the client of this fact (but see warnings under the 404 status code in the previous

subsection).

Figure 2-10. Front end to the SearchEngines servlet. See Listing

2.14 for the HTML source code.

Figure 2-11. Result of the SearchEngines servlet when the form of

Figure 2-10 is submitted.

Figure 2-12. Result of the SearchEngines servlet when a form that

has no search string is submitted. This result is for JRun 3.1;

results can vary slightly among servers and will omit the

“Missing search string” message in most Tomcat versions.

Listing 2.12 SearchEngines.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.net.*;

/** Servlet that takes a search string, number of results per

 * page, and a search engine name, sending the query to

 * that search engine. Illustrates manipulating

 * the response status line. It sends a 302 response

 * (via sendRedirect) if it gets a known search engine,

 * and sends a 404 response (via sendError) otherwise.

 */

public class SearchEngines extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String searchString = request.getParameter("searchString");

 if ((searchString == null) ||

 (searchString.length() == 0)) {

 reportProblem(response, "Missing search string.");

 return;

 }

 // The URLEncoder changes spaces to "+" signs and other

 // non-alphanumeric characters to "%XY", where XY is the

 // hex value of the ASCII (or ISO Latin-1) character.

 // Browsers always URL-encode form values, so the

 // getParameter method decodes automatically. But since

 // we're just passing this on to another server, we need to

 // re-encode it.

 searchString = URLEncoder.encode(searchString);

 String numResults = request.getParameter("numResults");

 if ((numResults == null) ||

 (numResults.equals("0")) ||

 (numResults.length() == 0)) {

 numResults = "10";

 }

 String searchEngine =

 request.getParameter("searchEngine");

 if (searchEngine == null) {

 reportProblem(response, "Missing search engine name.");

 return;

 }

 SearchSpec[] commonSpecs = SearchSpec.getCommonSpecs();

 for(int i=0; i<commonSpecs.length; i++) {

 SearchSpec searchSpec = commonSpecs[i];

 if (searchSpec.getName().equals(searchEngine)) {

 String url =

 searchSpec.makeURL(searchString, numResults);

 response.sendRedirect(url);

 return;

 }

 }

 reportProblem(response, "Unrecognized search engine.");

 }

 private void reportProblem(HttpServletResponse response,

 String message)

 throws IOException {

 response.sendError(response.SC_NOT_FOUND,

 "<H2>" + message + "</H2>");

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doGet(request, response);

 }

}

Listing 2.13 SearchSpec.java

package moreservlets;

/** Small class that encapsulates how to construct a

 * search string for a particular search engine.

 */

public class SearchSpec {

 private String name, baseURL, numResultsSuffix;

 private static SearchSpec[] commonSpecs =

 { new SearchSpec

 ("google",

 "http://www.google.com/search?q=",

 "&num="),

 new SearchSpec

 ("altavista",

 "http://www.altavista.com/sites/search/web?q=",

 "&nbq="),

 new SearchSpec

 ("lycos",

 "http://lycospro.lycos.com/cgi-bin/" +

 "pursuit?query=",

 "&maxhits="),

 new SearchSpec

 ("hotbot",

 "http://www.hotbot.com/?MT=",

 "&DC=")

 };

 public SearchSpec(String name,

 String baseURL,

 String numResultsSuffix) {

 this.name = name;

 this.baseURL = baseURL;

 this.numResultsSuffix = numResultsSuffix;

 }

 public String makeURL(String searchString,

 String numResults) {

 return(baseURL + searchString +

 numResultsSuffix + numResults);

 }

 public String getName() {

 return(name);

 }

 public static SearchSpec[] getCommonSpecs() {

 return(commonSpecs);

 }

}

Listing 2.14 SearchEngines.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

 <TITLE>Searching the Web</TITLE>

</HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1 ALIGN="CENTER">Searching the Web</H1>

<FORM ACTION="/servlet/moreservlets.SearchEngines">

 <CENTER>

 Search String:

 <INPUT TYPE="TEXT" NAME="searchString">

 Results to Show Per Page:

 <INPUT TYPE="TEXT" NAME="numResults"

 VALUE=10 SIZE=3>

 <INPUT TYPE="RADIO" NAME="searchEngine"

 VALUE="google">

 Google |

 <INPUT TYPE="RADIO" NAME="searchEngine"

 VALUE="altavista">

 AltaVista |

 <INPUT TYPE="RADIO" NAME="searchEngine"

 VALUE="lycos">

 Lycos |

 <INPUT TYPE="RADIO" NAME="searchEngine"

 VALUE="hotbot">

 HotBot

 <INPUT TYPE="SUBMIT" VALUE="Search">

 </CENTER>

</FORM>

</BODY>

</HTML>

2.8 The Server Response: HTTP Response Headers

As discussed in the previous section, a response from a Web server normally consists of a status

line, one or more response headers (one of which must be Content-Type), a blank line, and the

document. To get the most out of your servlets, you need to know how to use the status line and

response headers effectively, not just how to generate the document.

Setting the HTTP response headers often goes hand in hand with setting the status codes in the

status line, as discussed in the previous section. For example, all the “document moved” status

codes (300 through 307) have an accompanying Location header, and a 401 (Unauthorized)

code always includes an accompanying WWW-Authenticate header. However, specifying headers

can also play a useful role even when no unusual status code is set. Response headers can be

used to specify cookies, to supply the page modification date (for client-side caching), to instruct

the browser to reload the page after a designated interval, to give the file size so that persistent

HTTP connections can be used, to designate the type of document being generated, and to

perform many other tasks. This section gives a brief summary of the handling of response

headers. See Chapter 7 of Core Servlets and JavaServer Pages (available in PDF at

http://www.moreservlets.com) for more details and examples.

Setting Response Headers from Servlets

The most general way to specify headers is to use the setHeader method of

HttpServletResponse. This method takes two strings: the header name and the header value.

As with setting status codes, you must specify headers before returning the actual document.

In addition to the general-purpose setHeader method, HttpServletResponse also has two

specialized methods to set headers that contain dates and integers:

• setDateHeader(String header, long milliseconds) This method saves you the

trouble of translating a Java date in milliseconds since 1970 (as returned by

System.currentTimeMillis, Date.getTime, or Calendar.getTimeInMillis) into a GMT

time string.

• setIntHeader(String header, int headerValue) This method spares you the minor

inconvenience of converting an int to a String before inserting it into a header.

HTTP allows multiple occurrences of the same header name, and you sometimes want to add a

new header rather than replace any existing header with the same name. For example, it is quite

common to have multiple Accept and Set-Cookie headers that specify different supported MIME

types and different cookies, respectively. With servlets version 2.1, setHeader, setDateHeader,

and setIntHeader always add new headers, so there is no way to “unset” headers that were set

earlier (e.g., by an inherited method). With servlets versions 2.2 and 2.3, setHeader,

setDateHeader, and setIntHeader replace any existing headers of the same name, whereas

addHeader, addDateHeader, and addIntHeader add a header regardless of whether a header of

that name already exists. If it matters to you whether a specific header has already been set, use

containsHeader to check.

Finally, HttpServletResponse also supplies a number of convenience methods for specifying

common headers. These methods are summarized as follows.

• setContentType This method sets the Content-Type header and is used by the majority

of servlets.

• setContentLength This method sets the Content-Length header, which is useful if the

browser supports persistent (keep-alive) HTTP connections.

• addCookie This method inserts a cookie into the Set-Cookie header. There is no

corresponding setCookie method, since it is normal to have multiple Set-Cookie lines.

See Section 2.9 (Cookies) for a discussion of cookies.

• sendRedirect As discussed in the previous section, the sendRedirect method sets the

Location header as well as setting the status code to 302. See Listing 2.12 for an

example.

Understanding HTTP 1.1 Response Headers

Following is a summary of the most useful HTTP 1.1 response headers. A good understanding of

these headers can increase the effectiveness of your servlets, so you should at least skim the

descriptions to see what options are at your disposal. You can come back for details when you are

ready to use the capabilities.

These headers are a superset of those permitted in HTTP 1.0. The official HTTP 1.1 specification

is given in RFC 2616. The RFCs are online in various places; your best bet is to start at

http://www.rfc-editor.org/ to get a current list of the archive sites. Header names are not case

sensitive but are traditionally written with the first letter of each word capitalized.

Be cautious in writing servlets whose behavior depends on response headers that are only

available in HTTP 1.1, especially if your servlet needs to run on the WWW “at large” rather than

on an intranet—many older browsers support only HTTP 1.0. It is best to explicitly check the HTTP

version with request.getRequestProtocol before using new headers.

Allow

The Allow header specifies the request methods (GET, POST, etc.) that the server supports. It is

required for 405 (Method Not Allowed) responses.

The default service method of servlets automatically generates this header for OPTIONS

requests.

Cache-Control

This useful header tells the browser or other client the circumstances in which the response

document can safely be cached. It has the following possible values:

• public. Document is cacheable, even if normal rules (e.g., for password-protected

pages) indicate that it shouldn’t be.

• private. Document is for a single user and can only be stored in private (nonshared)

caches.

• no-cache. Document should never be cached (i.e., used to satisfy a later request). The

server can also specify “ no-cache="header1,header2,...,headerN " ” to indicate the

headers that should be omitted if a cached response is later used. Browsers normally do

not cache documents that were retrieved by requests that include form data. However, if

a servlet generates different content for different requests even when the requests

contain no form data, it is critical to tell the browser not to cache the response. Since older

browsers use the Pragma header for this purpose, the typical servlet approach is to set

both headers, as in the following example.

•

• response.setHeader("Cache-Control", "no-cache");

response.setHeader("Pragma", "no-cache");

• no-store. Document should never be cached and should not even be stored in a

temporary location on disk. This header is intended to prevent inadvertent copies of

sensitive information.

• must-revalidate. Client must revalidate document with original server (not just

intermediate proxies) each time it is used.

• proxy-revalidate. This is the same as must-revalidate, except that it applies only to

shared caches.

• max-age=xxx. Document should be considered stale after xxx seconds. This is a

convenient alternative to the Expires header but only works with HTTP 1.1 clients. If both

max-age and Expires are present in the response, the max-age value takes precedence.

• s-max-age=xxx. Shared caches should consider the document stale after xxx seconds.

The Cache-Control header is new in HTTP 1.1.

Connection

A value of close for this response header instructs the browser not to use persistent HTTP

connections. Technically, persistent connections are the default when the client supports HTTP

1.1 and does not specify a Connection: close request header (or when an HTTP 1.0 client

specifies Connection: keep-alive). However, since persistent connections require a

Content-Length response header, there is no reason for a servlet to explicitly use the

Connection header. Just omit the Content-Length header if you aren’t using persistent

connections.

Content-Encoding

This header indicates the way in which the page was encoded during transmission. The browser

should reverse the encoding before deciding what to do with the document. Compressing the

document with gzip can result in huge savings in transmission time; for an example, see Section

9.5.

Content-Language

The Content-Language header signifies the language in which the document is written. The value

of the header should be one of the standard language codes such as en, en-us, da, etc. See RFC

1766 for details on language codes (you can access RFCs online at one of the archive sites listed

at http://www.rfc-editor.org/).

Content-Length

This header indicates the number of bytes in the response. This information is needed only if the

browser is using a persistent (keep-alive) HTTP connection. See the Connection header for

determining when the browser supports persistent connections. If you want your servlet to take

advantage of persistent connections when the browser supports it, your servlet should write the

document into a ByteArrayOutputStream, look up its size when done, put that into the

Content-Length field with response.setContentLength, then send the content by

byteArrayStream.writeTo(response.getOutputStream()). See Core Servlets and JavaServer

Pages Section 7.4 for an example.

Content-Type

The Content-Type header gives the MIME (Multipurpose Internet Mail Extension) type of the

response document. Setting this header is so common that there is a special method in

HttpServletResponse for it: setContentType. MIME types are of the form maintype /subtype

for officially registered types and of the form maintype /x-subtype for unregistered types. Most

servlets specify text/html; they can, however, specify other types instead.

In addition to a basic MIME type, the Content-Type header can also designate a specific

character encoding. If this is not specified, the default is ISO-8859_1 (Latin). For example, the

following instructs the browser to interpret the document as HTML in the Shift_JIS (standard

Japanese) character set.

response.setContentType("text/html; charset=Shift_JIS");

Table 2.1 lists some the most common MIME types used by servlets. RFC 1521 and RFC 1522 list

more of the common MIME types (again, see http://www.rfc-editor.org/ for a list of RFC archive

sites). However, new MIME types are registered all the time, so a dynamic list is a better place to

look. The officially registered types are listed at

http://www.isi.edu/in-notes/iana/assignments/media-types/media-types. For common

unregistered types, http://www.ltsw.se/knbase/internet/mime.htp is a good source.

Table 2.1. Common MIME Types

Type Meaning

application/msword Microsoft Word document

application/octet-stream Unrecognized or binary data

application/pdf Acrobat (.pdf) file

application/postscript PostScript file

application/vnd.lotus-notes Lotus Notes file

application/vnd.ms-excel Excel spreadsheet

application/vnd.ms-powerpoint PowerPoint presentation

application/x-gzip Gzip archive

application/x-java-archive JAR file

application/x-java-serialized-object Serialized Java object

application/x-java-vm Java bytecode (.class) file

application/zip Zip archive

audio/basic Sound file in.au or.snd format

audio/midi MIDI sound file

audio/x-aiff AIFF sound file

audio/x-wav Microsoft Windows sound file

image/gif GIF image

image/jpeg JPEG image

image/png PNG image

image/tiff TIFF image

image/x-xbitmap X Windows bitmap image

text/css HTML cascading style sheet

text/html HTML document

text/plain Plain text

text/xml XML

video/mpeg MPEG video clip

video/quicktime QuickTime video clip

Expires

This header stipulates the time at which the content should be considered out-of-date and thus no

longer be cached. A servlet might use this for a document that changes relatively frequently, to

prevent the browser from displaying a stale cached value. Furthermore, since some older

browsers support Pragma unreliably (and Cache-Control not at all), an Expires header with a

date in the past is often used to prevent browser caching.

For example, the following would instruct the browser not to cache the document for more than

10 minutes.

long currentTime = System.currentTimeMillis();

long tenMinutes = 10*60*1000; // In milliseconds

response.setDateHeader("Expires", currentTime + tenMinutes);

Also see the max-age value of the Cache-Control header.

Last-Modified

This very useful header indicates when the document was last changed. The client can then cache

the document and supply a date by an If-Modified-Since request header in later requests. This

request is treated as a conditional GET, with the document being returned only if the

Last-Modified date is later than the one specified for If-Modified-Since. Otherwise, a 304

(Not Modified) status line is returned, and the client uses the cached document. If you set this

header explicitly, use the setDateHeader method to save yourself the bother of for-matting GMT

date strings. However, in most cases you simply implement the getLastModified method (see

Core Servlets and JavaServer Pages Section 2.8) and let the standard service method handle

If-Modified-Since requests.

Location

This header, which should be included with all responses that have a status code in the 300s,

notifies the browser of the document address. The browser automatically reconnects to this

location and retrieves the new document. This header is usually set indirectly, along with a 302

status code, by the sendRedirect method of HttpServletResponse. An example is given in the

previous section (Listing 2.12).

Pragma

Supplying this header with a value of no-cache instructs HTTP 1.0 clients not to cache the

document. However, support for this header was inconsistent with HTTP 1.0 browsers, so

Expires with a date in the past is often used instead. In HTTP 1.1, Cache-Control: no-cache is

a more reliable replacement.

Refresh

This header indicates how soon (in seconds) the browser should ask for an updated page. For

example, to tell the browser to ask for a new copy in 30 seconds, you would specify a value of 30

with

response.setIntHeader("Refresh", 30)

Note that Refresh does not stipulate continual updates; it just specifies when the next update

should be. So, you have to continue to supply Refresh in all subsequent responses. This header

is extremely useful because it lets servlets return partial results quickly while still letting the client

see the complete results at a later time. For an example, see Section 7.3 of Core Servlets and

JavaServer Pages (in PDF at http://www.moreservlets.com).

Instead of having the browser just reload the current page, you can specify the page to load. You

do this by supplying a semicolon and a URL after the refresh time. For example, to tell the browser

to go to http://host/path after 5 seconds, you would do the following.

response.setHeader("Refresh", "5; URL=http://host/path/")

This setting is useful for “splash screens,” where an introductory image or message is displayed

briefly before the real page is loaded.

Note that this header is commonly set indirectly by putting

<META HTTP-EQUIV="Refresh"

 CONTENT="5; URL=http://host/path/">

in the HEAD section of the HTML page, rather than as an explicit header from the server. That

usage came about because automatic reloading or forwarding is something often desired by

authors of static HTML pages. For servlets, however, setting the header directly is easier and

clearer.

This header is not officially part of HTTP 1.1 but is an extension supported by both Netscape and

Internet Explorer.

Retry-After

This header can be used in conjunction with a 503 (Service Unavailable) response to tell the

client how soon it can repeat its request.

Set-Cookie

The Set-Cookie header specifies a cookie associated with the page. Each cookie requires a

separate Set-Cookie header. Servlets should not use response.setHeader("Set-Cookie", ...)

but instead should use the special-purpose addCookie method of HttpServletResponse. For

details, see Section 2.9 (Cookies). Technically, Set-Cookie is not part of HTTP 1.1. It was

originally a Netscape extension but is now widely supported, including in both Netscape and

Internet Explorer.

WWW-Authenticate

This header is always included with a 401 (Unauthorized) status code. It tells the browser what

authorization type (BASIC or DIGEST) and realm the client should supply in its Authorization

header. See Chapters 7 and 8 for a discussion of the various security mechanisms available to

servlets.

2.9 Cookies

Cookies are small bits of textual information that a Web server sends to a browser and that the

browser later returns unchanged when visiting the same Web site or domain. By letting the server

read information it sent the client previously, the site can provide visitors with a number of

conveniences such as presenting the site the way the visitor previously customized it or letting

identifiable visitors in without their having to reenter a password.

This section discusses how to explicitly set and read cookies from within servlets, and the next

section shows how to use the servlet session tracking API (which can use cookies behind the

scenes) to keep track of users as they move around to different pages within your site.

Benefits of Cookies

There are four typical ways in which cookies can add value to your site.

Identifying a User During an E-commerce Session

Many online stores use a “shopping cart” metaphor in which the user selects an item, adds it to

his shopping cart, then continues shopping. Since the HTTP connection is usually closed after

each page is sent, when the user selects a new item to add to the cart, how does the store know

that it is the same user who put the previous item in the cart? Persistent (keep-alive) HTTP

connections do not solve this problem, since persistent connections generally apply only to

requests made very close together in time, as when a browser asks for the images associated

with a Web page. Besides, many servers and browsers lack support for persistent connections.

Cookies, however, can solve this problem. In fact, this capability is so useful that servlets have an

API specifically for session tracking, and servlet authors don’t need to manipulate cookies directly

to take advantage of it. Session tracking is discussed in Section 2.10.

Avoiding Username and Password

Many large sites require you to register to use their services, but it is inconvenient to remember

and enter the username and password each time you visit. Cookies are a good alternative for

low-security sites. When a user registers, a cookie containing a unique user ID is sent to him.

When the client reconnects at a later date, the user ID is returned automatically, the server looks

it up, determines it belongs to a registered user, and permits access without an explicit username

and password. The site might also store the user’s address, credit card number, and so forth in a

database and use the user ID from the cookie as a key to retrieve the data. This approach

prevents the user from having to reenter the data each time.

Customizing a Site

Many “portal” sites let you customize the look of the main page. They might let you pick which

weather report you want to see, what stock and sports results you care about, how search results

should be displayed, and so forth. Since it would be inconvenient for you to have to set up your

page each time you visit their site, they use cookies to remember what you wanted. For simple

settings, the site could accomplish this customization by storing the page settings directly in the

cookies. For more complex customization, however, the site just sends the client a unique

identifier and keeps a server-side database that associates identifiers with page settings.

Focusing Advertising

Most advertiser-funded Web sites charge their advertisers much more for displaying “directed”

ads than “random” ads. Advertisers are generally willing to pay much more to have their ads

shown to people that are known to have some interest in the general product category. For

example, if you go to a search engine and do a search on “Java Servlets,” the search site can

charge an advertiser much more for showing you an ad for a servlet development environment

than for an ad for an online travel agent specializing in Indonesia. On the other hand, if the search

had been for “Java Hotels,” the situation would be reversed. Without cookies, the sites have to

show a random ad when you first arrive and haven’t yet performed a search, as well as when you

search on something that doesn’t match any ad categories. With cookies, they can identify your

interests by remembering your previous searches.

Some Problems with Cookies

Providing convenience to the user and added value to the site owner is the purpose behind

cookies. And despite much misinformation, cookies are not a serious security threat. Cookies are

never interpreted or executed in any way and thus cannot be used to insert viruses or attack your

system. Furthermore, since browsers generally only accept 20 cookies per site and 300 cookies

total, and since browsers can limit each cookie to 4 kilobytes, cookies cannot be used to fill up

someone’s disk or launch other denial-of-service attacks.

However, even though cookies don’t present a serious security threat, they can present a

significant threat to privacy. First, some people don’t like the fact that search engines can

remember that they’re the user who usually does searches on certain topics. For example, they

might search for job openings or sensitive health data and don’t want some banner ad tipping off

their coworkers next time they do a search. Even worse, two sites can share data on a user by

each loading small images off the same third-party site, where that third party uses cookies and

shares the data with both original sites. The doubleclick.net service is the prime example of this

technique. (Netscape, however, provides a nice feature that lets you refuse cookies from sites

other than that to which you connected, but without disabling cookies altogether.) This trick of

associating cookies with images can even be exploited through e-mail if you use an

HTML-enabled e-mail reader that “supports” cookies and is associated with a browser. Thus,

people could send you e-mail that loads images, attach cookies to those images, then identify you

(e-mail address and all) if you subsequently visit their Web site. Boo.

A second privacy problem occurs when sites rely on cookies for overly sensitive data. For example,

some of the big online bookstores use cookies to remember users and let you order without

reentering much of your personal information. This is not a particular problem since they don’t

actually display the full credit card number and only let you send books to an address that was

specified when you did enter the credit card in full or use the username and password. As a result,

someone using your computer (or stealing your cookie file) could do no more harm than sending

a big book order to your address, where the order could be refused. However, other companies

might not be so careful, and an attacker who gained access to someone’s computer or cookie file

could get online access to valuable personal information. Even worse, incompetent sites might

embed credit card or other sensitive information directly in the cookies themselves, rather than

using innocuous identifiers that are only linked to real users on the server. This is dangerous,

since most users don’t view leaving their computer unattended in their office as being tantamount

to leaving their credit card sitting on their desk.

The point of this discussion is twofold. First, due to real and perceived privacy problems, some

users turn off cookies. So, even when you use cookies to give added value to a site, your site

shouldn’t depend on them. Second, as the author of servlets that use cookies, you should be

careful not to use cookies for particularly sensitive information, since this would open users up to

risks if somebody accessed their computer or cookie files.

The Servlet Cookie API

To send cookies to the client, a servlet should create one or more cookies with designated names

and values with new Cookie(name, value), set any optional attributes with cookie.set Xxx

(readable later by cookie.get Xxx), and insert the cookies into the response headers with

response.addCookie(cookie). To read incoming cookies, a servlet should call

request.getCookies, which returns an array of Cookie objects corresponding to the cookies the

browser has associated with your site (null if there are no cookies in the request). In most cases,

the servlet loops down this array until it finds the one whose name (getName) matches the name

it had in mind, then calls getValue on that Cookie to see the value associated with that name.

Each of these topics is discussed in more detail in the following sections.

Creating Cookies

You create a cookie by calling the Cookie constructor, which takes two strings: the cookie name

and the cookie value. Neither the name nor the value should contain white space or any of the

following characters:

 [] () = , " / ? @ : ;

If you want the browser to store the cookie on disk instead of just keeping it in memory, use

setMaxAge to specify how long (in seconds) the cookie should be valid.

Placing Cookies in the Response Headers

The cookie is inserted into a Set-Cookie HTTP response header by means of the addCookie

method of HttpServletResponse. The method is called addCookie, not setCookie, because any

previously specified Set-Cookie headers are left alone and a new header is set. Here’s an

example:

Cookie userCookie = new Cookie("user", "uid1234");

userCookie.setMaxAge(60*60*24*365); // Store cookie for 1 year

response.addCookie(userCookie);

Reading Cookies from the Client

To send cookies to the client, you create a Cookie, then use addCookie to send a Set-Cookie

HTTP response header. To read the cookies that come back from the client, you call getCookies

on the HttpServletRequest. This call returns an array of Cookie objects corresponding to the

values that came in on the Cookie HTTP request header. If the request contains no cookies,

getCookies should return null. However, Tomcat 3.x returns a zero-length array instead.

Core Warning

In Tomcat 3.x, calls to request.getCookies return a zero-length array

instead of null when there are no cookies in the request. Tomcat 4 and

most commercial servers properly return null.

Once you have this array, you typically loop down it, calling getName on each Cookie until you find

one matching the name you have in mind. You then call getValue on the matching Cookie and

finish with some processing specific to the resultant value. This is such a common process that,

at the end of this section, I present two utilities that simplify retrieving a cookie or cookie value

that matches a designated cookie name.

Using Cookie Attributes

Before adding the cookie to the outgoing headers, you can set various characteristics of the

cookie by using one of the following set Xxx methods, where Xxx is the name of the attribute you

want to specify. Each set Xxx method has a corresponding get Xxx method to retrieve the

attribute value. Except for name and value, the cookie attributes apply only to outgoing cookies

from the server to the client; they aren’t set on cookies that come from the browser to the server.

So, don’t expect these attributes to be available in the cookies you get by means of

request.getCookies.

public String getComment()

public void setComment(String comment)

These methods look up or specify a comment associated with the cookie. With version 0 cookies

(see the upcoming entry on getVersion and setVersion), the comment is used purely for

informational purposes on the server; it is not sent to the client.

public String getDomain()

public void setDomain(String domainPattern)

These methods get or set the domain to which the cookie applies. Normally, the browser returns

cookies only to the same hostname that sent them. You can use setDomain method to instruct

the browser to return them to other hosts within the same domain. To prevent servers from

setting cookies that apply to hosts outside their domain, the specified domain must meet the

following two requirements: It must start with a dot (e.g., .prenhall.com); it must contain two

dots for noncountry domains like.com,.edu, and.gov; and it must contain three dots for country

domains like.co.uk and.edu.es. For instance, cookies sent from a servlet at bali.vacations.com

would not normally get returned by the browser to pages at mexico.vacations.com. If the site

wanted this to happen, the servlets could specify cookie.setDomain(".vacations.com").

public int getMaxAge()

public void setMaxAge(int lifetime)

These methods tell how much time (in seconds) should elapse before the cookie expires. A

negative value, which is the default, indicates that the cookie will last only for the current session

(i.e., until the user quits the browser) and will not be stored on disk. See the LongLivedCookie

class (Listing 2.18), which defines a subclass of Cookie with a maximum age automatically set

one year in the future. Specifying a value of 0 instructs the browser to delete the cookie.

public String getName()

public void setName(String cookieName)

This pair of methods gets or sets the name of the cookie. The name and the value are the two

pieces you virtually always care about. However, since the name is supplied to the Cookie

constructor, you rarely need to call setName. On the other hand, getName is used on almost every

cookie received on the server. Since the getCookies method of HttpServletRequest returns an

array of Cookie objects, a common practice is to loop down the array, calling getName until you

have a particular name, then to check the value with getValue. For an encapsulation of this

process, see the getCookieValue method shown in Listing 2.17.

public String getPath()

public void setPath(String path)

These methods get or set the path to which the cookie applies. If you don’t specify a path, the

browser returns the cookie only to URLs in or below the directory containing the page that sent

the cookie. For example, if the server sent the cookie from

http://ecommerce.site.com/toys/specials.html, the browser would send the cookie back when

connecting to http://ecommerce.site.com/toys/bikes/beginners.html, but not to

http://ecommerce.site.com/cds/classical.html. The setPath method can specify something

more general. For example, someCookie.setPath("/") specifies that all pages on the server

should receive the cookie. The path specified must include the current page; that is, you may

specify a more general path than the default, but not a more specific one. So, for example, a

servlet at http://host/store/cust-service/request could specify a path of /store/ (since /store/

includes /store/cust-service/) but not a path of /store/cust-service/returns/ (since this directory

does not include /store/cust-service/).

public boolean getSecure()

public void setSecure(boolean secureFlag)

This pair of methods gets or sets the boolean value indicating whether the

cookie should only be sent over encrypted (i.e., SSL) connections. The default is false; the

cookie should apply to all connections.

public String getValue()

public void setValue(String cookieValue)

The getValue method looks up the value associated with the cookie; the setValue method

specifies it. Again, the name and the value are the two parts of a cookie that you almost always

care about, although in a few cases, a name is used as a boolean flag and its value is ignored (i.e.,

the existence of a cookie with the designated name is all that matters).

public int getVersion()

public void setVersion(int version)

These methods get and set the cookie protocol version the cookie complies with. Version 0, the

default, follows the original Netscape specification

(http://www.netscape.com/newsref/std/cookie_spec.html). Version 1, not yet widely supported,

adheres to RFC 2109 (retrieve RFCs from the archive sites listed at http://www.rfc-editor.org/).

Examples of Setting and Reading Cookies

Listing 2.15 and Figure 2-13 show the SetCookies servlet, a servlet that sets six cookies. Three

have the default expiration date, meaning that they should apply only until the user next restarts

the browser. The other three use setMaxAge to stipulate that they should apply for the next hour,

regardless of whether the user restarts the browser or reboots the computer to initiate a new

browsing session.

Figure 2-13. Result of SetCookies servlet.

Listing 2.16 shows a servlet that creates a table of all the cookies sent to it in the request. Figure

2-14 shows this servlet immediately after the SetCookies servlet is visited. Figure 2-15 shows it

within an hour of when SetCookies is visited but when the browser has been closed and restarted.

Figure 2-16 shows it within an hour of when SetCookies is visited but when the browser has been

closed and restarted.

Figure 2-14. Result of visiting the ShowCookies servlet within an

hour of visiting SetCookies (same browser session).

Figure 2-15. Result of visiting the ShowCookies servlet within an

hour of visiting SetCookies (different browser session).

Figure 2-16. Result of visiting the ShowCookies servlet more than

an hour after visiting SetCookies (different browser session).

Listing 2.15 SetCookies.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Sets six cookies: three that apply only to the current

 * session (regardless of how long that session lasts)

 * and three that persist for an hour (regardless of

 * whether the browser is restarted).

 */

public class SetCookies extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 for(int i=0; i<3; i++) {

 // Default maxAge is -1, indicating cookie

 // applies only to current browsing session.

 Cookie cookie = new Cookie("Session-Cookie-" + i,

 "Cookie-Value-S" + i);

 response.addCookie(cookie);

 cookie = new Cookie("Persistent-Cookie-" + i,

 "Cookie-Value-P" + i);

 // Cookie is valid for an hour, regardless of whether

 // user quits browser, reboots computer, or whatever.

 cookie.setMaxAge(3600);

 response.addCookie(cookie);

 }

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Setting Cookies";

 out.println

 (ServletUtilities.headWithTitle(title) +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +

 "There are six cookies associated with this page.\n" +

 "To see them, visit the\n" +

 "\n" +

 "<CODE>ShowCookies</CODE> servlet.\n" +

 "<P>\n" +

 "Three of the cookies are associated only with the\n" +

 "current session, while three are persistent.\n" +

 "Quit the browser, restart, and return to the\n" +

 "<CODE>ShowCookies</CODE> servlet to verify that\n" +

 "the three long-lived ones persist across sessions.\n" +

 "</BODY></HTML>");

 }

}

Listing 2.16 ShowCookies.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Creates a table of the cookies associated with

 * the current page.

 */

public class ShowCookies extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Active Cookies";

 out.println(ServletUtilities.headWithTitle(title) +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +

 "<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +

 "<TR BGCOLOR=\"#FFAD00\">\n" +

 " <TH>Cookie Name\n" +

 " <TH>Cookie Value");

 Cookie[] cookies = request.getCookies();

 if (cookies == null) {

 out.println("<TR><TH COLSPAN=2>No cookies");

 } else {

 Cookie cookie;

 for(int i=0; i<cookies.length; i++) {

 cookie = cookies[i];

 out.println("<TR>\n" +

 " <TD>" + cookie.getName() + "\n" +

 " <TD>" + cookie.getValue());

 }

 }

 out.println("</TABLE></BODY></HTML>");

 }

}

Basic Cookie Utilities

This section presents some simple but useful utilities for dealing with cookies.

Finding Cookies with Specified Names

Listing 2.17 shows a section of ServletUtilities.java that simplifies the retrieval of a cookie or

cookie value, given a cookie name. The getCookieValue method loops through the array of

available Cookie objects, returning the value of any Cookie whose name matches the input. If

there is no match, the designated default value is returned. So, for example, our typical approach

for dealing with cookies is as follows:

Cookie[] cookies = request.getCookies();

String color =

 ServletUtilities.getCookieValue(cookies, "color", "black");

String font =

 ServletUtilities.getCookieValue(cookies, "font", "Arial");

The getCookie method also loops through the array comparing names but returns the actual

Cookie object instead of just the value. That method is for cases when you want to do something

with the Cookie other than just read its value.

Listing 2.17 ServletUtilities.java

package moreservlets;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletUtilities {

 // Other parts of ServletUtilities shown elsewhere.

 /** Given an array of Cookies, a name, and a default value,

 * this method tries to find the value of the cookie with

 * the given name. If there is no cookie matching the name

 * in the array, then the default value is returned instead.

 */

 public static String getCookieValue(Cookie[] cookies,

 String cookieName,

 String defaultValue) {

 if (cookies != null) {

 for(int i=0; i<cookies.length; i++) {

 Cookie cookie = cookies[i];

 if (cookieName.equals(cookie.getName()))

 return(cookie.getValue());

 }

 }

 return(defaultValue);

 }

 /** Given an array of cookies and a name, this method tries

 * to find and return the cookie from the array that has

 * the given name. If there is no cookie matching the name

 * in the array, null is returned.

 */

 public static Cookie getCookie(Cookie[] cookies,

 String cookieName) {

 if (cookies != null) {

 for(int i=0; i<cookies.length; i++) {

 Cookie cookie = cookies[i];

 if (cookieName.equals(cookie.getName()))

 return(cookie);

 }

 }

 return(null);

 }

}

Creating Long-Lived Cookies

Listing 2.18 shows a small class that you can use instead of Cookie if you want your cookie to

automatically persist for a year when the client quits the browser. For an example of the use of

this class, see the customized search engine interface of Section 8.6 of Core Servlets and

JavaServer Pages (available in PDF at http://www.moreservlets.com).

Listing 2.18 LongLivedCookie.java

package moreservlets;

import javax.servlet.http.*;

/** Cookie that persists 1 year. Default Cookie doesn't

 * persist past current session.

 */

public class LongLivedCookie extends Cookie {

 public static final int SECONDS_PER_YEAR = 60*60*24*365;

 public LongLivedCookie(String name, String value) {

 super(name, value);

 setMaxAge(SECONDS_PER_YEAR);

 }

}

2.10 Session Tracking

This section briefly introduces the servlet session-tracking API, which keeps track of visitors as

they move around at your site. For additional details and examples, see Chapter 9 of Core

Servlets and JavaServer Pages (in PDF at http://www.moreservlets.com).

The Need for Session Tracking

HTTP is a “stateless” protocol: each time a client retrieves a Web page, it opens a separate

connection to the Web server. The server does not automatically maintain contextual information

about a client. Even with servers that support persistent (keep-alive) HTTP connections and keep

a socket open for multiple client requests that occur close together in time, there is no built-in

support for maintaining contextual information. This lack of context causes a number of

difficulties. For example, when clients at an online store add an item to their shopping carts, how

does the server know what’s already in the carts? Similarly, when clients decide to proceed to

checkout, how can the server determine which previously created shopping carts are theirs?

There are three typical solutions to this problem: cookies, URL rewriting, and hidden form fields.

The following subsections quickly summarize what would be required if you had to implement

session tracking yourself (without using the built-in session tracking API) each of the three ways.

Cookies

You can use HTTP cookies to store information about a shopping session, and each subsequent

connection can look up the current session and then extract information about that session from

some location on the server machine. For example, a servlet could do something like the

following:

String sessionID = makeUniqueString();

Hashtable sessionInfo = new Hashtable();

Hashtable globalTable = findTableStoringSessions();

globalTable.put(sessionID, sessionInfo);

Cookie sessionCookie = new Cookie("JSESSIONID", sessionID);

sessionCookie.setPath("/");

response.addCookie(sessionCookie);

Then, in later requests the server could use the globalTable hash table to associate a session ID

from the JSESSIONID cookie with the sessionInfo hash table of data associated with that

particular session. This is an excellent solution and is the most widely used approach for session

handling. Still, it is nice that servlets have a higher-level API that handles all this plus the

following tedious tasks:

• Extracting the cookie that stores the session identifier from the other cookies (there may

be many cookies, after all).

• Setting an appropriate expiration time for the cookie.

• Associating the hash tables with each request.

• Generating the unique session identifiers.

URL Rewriting

With this approach, the client appends some extra data on the end of each URL that identifies the

session, and the server associates that identifier with data it has stored about that session. For

example, with http://host/path/file.html;jsessionid=1234, the session information is attached as

jsessionid=1234. This is also an excellent solution and even has the advantage that it works when

browsers don’t support cookies or when the user has disabled them. However, it has most of the

same problems as cookies, namely, that the server-side program has a lot of straightforward but

tedious processing to do. In addition, you have to be very careful that every URL that references

your site and is returned to the user (even by indirect means like Location fields in server

redirects) has the extra information appended. And, if the user leaves the session and comes

back via a bookmark or link, the session information can be lost.

Hidden Form Fields

HTML forms can have an entry that looks like the following:

<INPUT TYPE="HIDDEN" NAME="session" VALUE="...">

This entry means that, when the form is submitted, the specified name and value are included in

the GET or POST data. This hidden field can be used to store information about the session but has

the major disadvantage that it only works if every page is dynamically generated by a form

submission. Thus, hidden form fields cannot support general session tracking, only tracking

within a specific series of operations.

Session Tracking in Servlets

Servlets provide an outstanding technical solution: the HttpSession API. This high-level

interface is built on top of cookies or URL rewriting. All servers are required to support session

tracking with cookies, and many have a setting that lets you globally switch to URL rewriting. In

fact, some servers use cookies if the browser supports them but automatically revert to URL

rewriting when cookies are unsupported or explicitly disabled.

Either way, the servlet author doesn’t need to bother with many of the details, doesn’t have to

explicitly manipulate cookies or information appended to the URL, and is automatically given a

convenient place to store arbitrary objects that are associated with each session.

The Session-Tracking API

Using sessions in servlets is straightforward and involves looking up the session object associated

with the current request, creating a new session object when necessary, looking up information

associated with a session, storing information in a session, and discarding completed or

abandoned sessions. Finally, if you return any URLs to the clients that reference your site and URL

rewriting is being used, you need to attach the session information to the URLs.

Looking Up the HttpSession Object Associated with the

Current Request

You look up the HttpSession object by calling the getSession method of HttpServletRequest.

Behind the scenes, the system extracts a user ID from a cookie or attached URL data, then uses

that as a key into a table of previously created HttpSession objects. But this is all done

transparently to the programmer: you just call getSession. If getSession returns null, this

means that the user is not already participating in a session, so you can create a new session.

Creating a new session in this case is so commonly done that there is an option to automatically

create a new session if one doesn’t already exist. Just pass true to getSession. Thus, your first

step usually looks like this:

HttpSession session = request.getSession(true);

If you care whether the session existed previously or is newly created, you can use isNew to

check.

Looking Up Information Associated with a Session

HttpSession objects live on the server; they’re just automatically associated with the client by a

behind-the-scenes mechanism like cookies or URL rewriting. These session objects have a built-in

data structure that lets you store any number of keys and associated values. In version 2.1 and

earlier of the servlet API, you use session.getValue("attribute") to look up a previously

stored value. The return type is Object, so you have to do a typecast to whatever more specific

type of data was associated with that attribute name in the session. The return value is null if

there is no such attribute, so you need to check for null before calling methods on objects

associated with sessions.

In versions 2.2 and 2.3 of the servlet API, getValue is deprecated in favor of getAttribute

because of the better naming match with setAttribute (in version 2.1, the match for getValue

is putValue, not setValue).

Here’s a representative example, assuming ShoppingCart is some class you’ve defined to store

information on items being purchased.

HttpSession session = request.getSession(true);

ShoppingCart cart =

 (ShoppingCart)session.getAttribute("shoppingCart");

if (cart == null) { // No cart already in session

 cart = new ShoppingCart();

 session.setAttribute("shoppingCart", cart);

}

doSomethingWith(cart);

In most cases, you have a specific attribute name in mind and want to find the value (if any)

already associated with that name. However, you can also discover all the attribute names in a

given session by calling getValueNames, which returns an array of strings. This method was your

only option for finding attribute names in version 2.1, but in servlet engines supporting versions

2.2 and 2.3 of the servlet specification, you can use getAttributeNames. That method is more

consistent in that it returns an Enumeration, just like the getHeaderNames and

getParameterNames methods of HttpServletRequest.

Although the data that was explicitly associated with a session is the part you care most about,

some other pieces of information are sometimes useful as well. Here is a summary of the methods

available in the HttpSession class.

public Object getAttribute(String name)

public Object getValue(String name) [deprecated]

These methods extract a previously stored value from a session object. They return null if no

value is associated with the given name. Use getValue only if you need to support servers that

run version 2.1 of the servlet API. Versions 2.2 and 2.3 support both methods, but getAttribute

is preferred and getValue is deprecated.

public void setAttribute(String name, Object value)

public void putValue(String name, Object value) [deprecated]

These methods associate a value with a name. Use putValue only if you need to support servers

that run version 2.1 of the servlet API. If the object supplied to setAttribute or putValue

implements the HttpSessionBindingListener interface, the object’s valueBound method is

called after it is stored in the session. Similarly, if the previous value implements

HttpSessionBindingListener, its valueUnbound method is called.

public void removeAttribute(String name)

public void removeValue(String name) [deprecated]

These methods remove any values associated with the designated name. If the value being

removed implements HttpSessionBindingListener, its valueUnbound method is called. Use

removeValue only if you need to support servers that run version 2.1 of the servlet API. In

versions 2.2 and 2.3, removeAttribute is preferred, but removeValue is still supported (albeit

deprecated) for backward compatibility.

public Enumeration getAttributeNames()

public String[] getValueNames() [deprecated]

These methods return the names of all attributes in the session. Use getValueNames only if you

need to support servers that run version 2.1 of the servlet API.

public String getId()

This method returns the unique identifier generated for each session. It is useful for debugging or

logging.

public boolean isNew()

This method returns true if the client (browser) has never seen the session, usually because it

was just created rather than being referenced by an incoming client request. It returns false for

preexisting sessions.

public long getCreationTime()

This method returns the time in milliseconds since midnight, January 1, 1970 (GMT) at which the

session was first built. To get a value useful for printing, pass the value to the Date constructor or

the setTimeInMillis method of GregorianCalendar.

public long getLastAccessedTime()

This method returns the time in milliseconds since midnight, January 1, 1970 (GMT) at which the

session was last sent from the client.

public int getMaxInactiveInterval()

public void setMaxInactiveInterval(int seconds)

These methods get or set the amount of time, in seconds, that a session should go without access

before being automatically invalidated. A negative value indicates that the session should never

time out. Note that the timeout is maintained on the server and is not the same as the cookie

expiration date, which is sent to the client. See Section 5.10 (Controlling Session Timeouts) for

instructions on changing the default session timeout interval.

public void invalidate()

This method invalidates the session and unbinds all objects associated with it. Use this method

with caution; remember that sessions are associated with users (i.e., clients), not with individual

servlets or JSP pages. So, if you invalidate a session, you might be destroying data that another

servlet or JSP page is using.

Associating Information with a Session

As discussed in the previous section, you read information associated with a session by using

getAttribute. To specify information, use setAttribute. To let your values perform side effects

when they are stored in a session, simply have the object you are associating with the session

implement the HttpSessionBindingListener interface. That way, every time setAttribute (or

putValue) is called on one of those objects, its valueBound method is called immediately

afterward.

Be aware that setAttribute replaces any previous values; if you want to remove a value without

supplying a replacement, use removeAttribute. This method triggers the valueUnbound method

of any values that implement HttpSessionBindingListener.

Following is an example of adding information to a session. You can add information in two ways:

by adding a new session attribute (as with the first bold line in the example) or by augmenting an

object that is already in the session (as in the last line of the example).

HttpSession session = request.getSession(true);

ShoppingCart cart =

 (ShoppingCart)session.getAttribute("shoppingCart");

if (cart == null) { // No cart already in session

 cart = new ShoppingCart();

 session.setAttribute("shoppingCart", cart);

}

addSomethingTo(cart);

Terminating Sessions

Sessions automatically become inactive when the amount of time between client accesses

exceeds the interval specified by getMaxInactiveInterval. When this happens, any objects

bound to the HttpSession object automatically get unbound. Then, your attached objects are

automatically notified if they implement the HttpSessionBindingListener interface.

Rather than waiting for sessions to time out, you can explicitly deactivate a session with the

session’s invalidate method.

Encoding URLs Sent to the Client

If you are using URL rewriting for session tracking and you send a URL that references your site

to the client, you need to explicitly add the session data. There are two possible places where you

might use URLs that refer to your own site.

The first is where the URLs are embedded in the Web page that the servlet generates. These URLs

should be passed through the encodeURL method of HttpServletResponse. The method

determines if URL rewriting is currently in use and appends the session information only if

necessary. The URL is returned unchanged otherwise.

Here’s an example:

String originalURL = someRelativeOrAbsoluteURL;

String encodedURL = response.encodeURL(originalURL);

out.println("...");

The second place you might use a URL that refers to your own site is in a sendRedirect call (i.e.,

placed into the Location response header). In this second situation, different rules determine

whether session information needs to be attached, so you cannot use encodeURL. Fortunately,

HttpServletResponse supplies an encodeRedirectURL method to handle that case. Here’s an

example:

String originalURL = someURL;

String encodedURL = response.encodeRedirectURL(originalURL);

response.sendRedirect(encodedURL);

Since you often don’t know if your servlet will later become part of a series of pages that use

session tracking, it is good practice to plan ahead and encode URLs that reference your own site.

A Servlet Showing Per-Client Access Counts

Listing 2.19 presents a simple servlet that shows basic information about the client’s session.

When the client connects, the servlet uses request.getSession(true) either to retrieve the

existing session or, if there was no session, to create a new one. The servlet then looks for an

attribute of type Integer called accessCount. If it cannot find such an attribute, it uses 0 as the

number of previous accesses. This value is then incremented and associated with the session by

setAttribute. Finally, the servlet prints a small HTML table showing information about the

session. Figures 2-17 and 2-18 show the servlet on the initial visit and after the page was

reloaded several times.

Figure 2-17. First visit by client to ShowSession servlet.

Figure 2-18. Eleventh visit to ShowSession servlet. Access count is

independent of number of visits by other clients.

Listing 2.19 ShowSession.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.net.*;

import java.util.*;

/** Simple example of session tracking. */

public class ShowSession extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Session Tracking Example";

 HttpSession session = request.getSession(true);

 String heading;

 Integer accessCount =

 (Integer)session.getAttribute("accessCount");

 if (accessCount == null) {

 accessCount = new Integer(0);

 heading = "Welcome, Newcomer";

 } else {

 heading = "Welcome Back";

 accessCount = new Integer(accessCount.intValue() + 1);

 }

 session.setAttribute("accessCount", accessCount);

 out.println(ServletUtilities.headWithTitle(title) +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1 ALIGN=\"CENTER\">" + heading + "</H1>\n" +

 "<H2>Information on Your Session:</H2>\n" +

 "<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +

 "<TR BGCOLOR=\"#FFAD00\">\n" +

 " <TH>Info Type<TH>Value\n" +

 "<TR>\n" +

 " <TD>ID\n" +

 " <TD>" + session.getId() + "\n" +

 "<TR>\n" +

 " <TD>Creation Time\n" +

 " <TD>" +

 new Date(session.getCreationTime()) + "\n" +

 "<TR>\n" +

 " <TD>Time of Last Access\n" +

 " <TD>" +

 new Date(session.getLastAccessedTime()) + "\n" +

 "<TR>\n" +

 " <TD>Number of Previous Accesses\n" +

 " <TD>" + accessCount + "\n" +

 "</TABLE>\n" +

 "</BODY></HTML>");

 }

 /** Handle GET and POST requests identically. */

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doGet(request, response);

 }

}

A Simplified Shopping Cart Application

Core Servlets and JavaServer Pages (available in PDF at http://www.moreservlets.com) presents

a full-fledged shopping cart example. Most of the code in that example is for automatically

building the Web pages that display the items and for the shopping cart itself. Although these

application-specific pieces can be somewhat complicated, the basic session tracking is quite

simple. This section illustrates the fundamental approach to session tracking, but without a

full-featured shopping cart.

Listing 2.20 shows an application that uses a simple ArrayList (the Java 2 platform’s

replacement for Vector) to keep track of all the items each user has previously purchased. In

addition to finding or creating the session and inserting the newly purchased item (the value of

the newItem request parameter) into it, this example outputs a bulleted list of whatever items are

in the “cart” (i.e., the ArrayList). Notice that the code that outputs this list is synchronized on

the ArrayList. This precaution is worth taking, but you should be aware that the circumstances

that make synchronization necessary are exceedingly rare. Since each user has a separate

session, the only way a race condition could occur is if the same user submits two purchases very

close together in time. Although unlikely, this is possible, so synchronization is worthwhile.

Listing 2.20 ShowItems.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.ArrayList;

import moreservlets.*;

/** Servlet that displays a list of items being ordered.

 * Accumulates them in an ArrayList with no attempt at

 * detecting repeated items. Used to demonstrate basic

 * session tracking.

 */

public class ShowItems extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 HttpSession session = request.getSession(true);

 ArrayList previousItems =

 (ArrayList)session.getAttribute("previousItems");

 if (previousItems == null) {

 previousItems = new ArrayList();

 session.setAttribute("previousItems", previousItems);

 }

 String newItem = request.getParameter("newItem");

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Items Purchased";

 out.println(ServletUtilities.headWithTitle(title) +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1>" + title + "</H1>");

 synchronized(previousItems) {

 if (newItem != null) {

 previousItems.add(newItem);

 }

 if (previousItems.size() == 0) {

 out.println("<I>No items</I>");

 } else {

 out.println("");

 for(int i=0; i<previousItems.size(); i++) {

 out.println("" + (String)previousItems.get(i));

 }

 out.println("");

 }

 }

 out.println("</BODY></HTML>");

 }

}

Listing 2.21 shows an HTML form that collects values of the newItem parameter and submits them

to the servlet. Figure 2-19 shows the result of the form; Figures 2-20 and 2-21 show the results

of the servlet before visiting the order form and after visiting the order form several times,

respectively.

Figure 2-19. Front end to the item display servlet.

Figure 2-20. The item display servlet before any purchases

are made.

Figure 2-21. The item display servlet after a few small

purchases are made.

Listing 2.21 OrderForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

 <TITLE>Order Form</TITLE>

</HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1 ALIGN="CENTER">Order Form</H1>

<FORM ACTION="/servlet/moreservlets.ShowItems">

 New Item to Order:

 <INPUT TYPE="TEXT" NAME="newItem" VALUE="yacht">

 <CENTER>

 <INPUT TYPE="SUBMIT" VALUE="Order and Show All Purchases">

 </CENTER>

</FORM>

</BODY>

</HTML>

Chapter 3. A Fast Introduction to Basic JSP

Programming

Topics in This Chapter

• Understanding the benefits of JSP
• Invoking Java code with JSP expressions, scriptlets, and declarations
• Structuring the servlet that results from a JSP page
• Including files and applets in JSP documents
• Using JavaBeans with JSP
• Creating custom JSP tag libraries
• Combining servlets and JSP: the Model View Controller (Model 2)

architecture

JavaServer Pages (JSP) technology enables you to mix regular, static HTML with
dynamically generated content. You simply write the regular HTML in the normal
manner, using familiar Web-page-building tools. You then enclose the code for
the dynamic parts in special tags, most of which start with <% and end with %>.
For example, here is a section of a JSP page that results in “Thanks for ordering
Core Web Programming” for a URL of
http://host/OrderConfirmation.jsp?title=Core+Web+Programming:

Thanks for ordering <I><%= request.getParameter("title") %></I>

Separating the static HTML from the dynamic content provides a number of
benefits over servlets alone, and the approach used in JavaServer Pages offers
several advantages over competing technologies such as ASP, PHP, or
ColdFusion. Section 3.2 gives some details on these advantages, but they
basically boil down to two facts: JSP is widely supported and thus doesn’t lock
you into a particular operating system or Web server; and JSP gives you full
access to the Java programming language and Java servlet technology for the
dynamic part, rather than requiring you to use an unfamiliar and weaker
special-purpose language.

3.1 JSP Overview

The process of making JavaServer Pages accessible on the Web is much simpler
than that for servlets. Assuming you have a Web server that supports JSP, you
give your file a.jsp extension and simply place it in any of the designated JSP
locations (which, on many servers, is any place you could put a normal Web

page): no compiling, no packages, and no user CLASSPATH settings. However,

although your personal environment doesn’t need any special settings, the
server still has to be set up with access to the servlet and JSP class files and the
Java compiler. For details, see Chapter 1 (Server Setup and Configuration).

Although what you write often looks more like a regular HTML file than like a
servlet, behind the scenes the JSP page is automatically converted to a normal
servlet, with the static HTML simply being printed to the output stream
associated with the servlet. This translation is normally done the first time the
page is requested. To ensure that the first real user doesn’t experience a
momentary delay when the JSP page is translated into a servlet and compiled,
developers can simply request the page themselves after first installing it.
Alternatively, if you deliver your applications on the same server you develop
them on, you can deliver the precompiled servlet class files in their
server-specific directories (see example locations on page 128). You can even
omit the JSP source code in such a case.

One warning about the automatic translation process is in order. If you make an
error in the dynamic portion of your JSP page, the system may not be able to
properly translate it into a servlet. If your page has such a fatal translation-time
error, the server will present an HTML error page describing the problem to the
client. Internet Explorer 5, however, typically replaces server-generated error
messages with a canned page that it considers friendlier. You will need to turn off
this “feature” when debugging JSP pages. To do so with Internet Explorer 5, go to
the Tools menu, select Internet Options, choose the Advanced tab, and make
sure the “Show friendly HTTP error messages” box is not checked.

Core Approach

When debugging JSP pages, be sure to turn off Internet Explorer ’s
“friendly” HTTP error messages.

Aside from the regular HTML, there are three main types of JSP constructs that
you embed in a page: scripting elements, directives, and actions. Scripting
elements let you specify Java code that will become part of the resultant servlet,

directives let you control the overall structure of the servlet, and actions let you
specify existing components that should be used and otherwise control the
behavior of the JSP engine. To simplify the scripting elements, you have access to

a number of predefined variables, such as request in the code snippet just

shown.

This book covers versions 1.1 and 1.2 of the JavaServer Pages specification.
Basic JSP constructs are backward-compatible with JSP 1.0, but custom tags,
Web applications, and use of the deployment descriptor (web.xml) are specific to
JSP 1.1 and later. Furthermore, JSP 1.1 did not mandate the use of Java 2; JSP
1.2 does. Consequently, if you use constructs specific to Java 2 (e.g., collections),
your JSP 1.2 code will not run on JSP 1.1-compatible servers that are running on
top of JDK 1.1. Finally, note that all JSP 1.x versions are completely incompatible
with the long-obsolete JSP 0.92. If JSP 0.92 was your only exposure to JSP, you
have a pleasant surprise in store; JSP technology has been totally revamped (and
improved) since then.

3.2 Advantages of JSP

JSP has a number of advantages over many of its alternatives. Here are a few of them.

Versus Active Server Pages (ASP) or ColdFusion

ASP is a competing technology from Microsoft. The advantages of JSP are twofold.

First, the dynamic part is written in Java, not VBScript or another ASP-specific language, so JSP

is more powerful and better suited to complex applications that require reusable components.

Second, JSP is portable to other operating systems and Web servers; you aren’t locked into

Windows and IIS. Even if ASP.NET (not yet available as of fall 2001) succeeds in addressing the

problem of developing server-side code with VBScript, you cannot expect to use ASP on multiple

servers and operating systems.

You could make the same argument when comparing JSP to the current version of ColdFusion;

with JSP you can use Java for the “real code” and are not tied to a particular server product. Note,

however, that the next release of ColdFusion (version 5.0) will be within the context of a J2EE

server, allowing developers to easily mix ColdFusion and servlet/JSP code.

Versus PHP

PHP (a recursive acronym for “PHP: Hypertext Preprocessor”) is a free, open-source,

HTML-embedded scripting language that is somewhat similar to both ASP and JSP. One

advantage of JSP is that the dynamic part is written in Java, which already has an extensive API

for networking, database access, distributed objects, and the like, whereas PHP requires learning

an entirely new, less widely used language. A second advantage is that JSP is much more widely

supported by tool and server vendors than is PHP.

Versus Pure Servlets

JSP doesn’t provide any capabilities that couldn’t, in principle, be accomplished with a servlet. In

fact, JSP documents are automatically translated into servlets behind the scenes. But it is more

convenient to write (and to modify!) regular HTML than to have a zillion println statements that

generate the HTML. Plus, by separating the presentation from the content, you can put different

people on different tasks: your Web page design experts can build the HTML by using familiar

tools and either leave places for your servlet programmers to insert the dynamic content or

invoke the dynamic content indirectly by means of XML tags.

Does this mean that you can just learn JSP and forget about servlets? By no means! JSP

developers need to know servlets for four reasons:

1. JSP pages get translated into servlets. You can’t understand how JSP works without

understanding servlets.

2. JSP consists of static HTML, special-purpose JSP tags, and Java code. What kind of Java

code? Servlet code! You can’t write that code if you don’t understand servlet

programming.

3. Some tasks are better accomplished by servlets than by JSP. JSP is good at generating

pages that consist of large sections of fairly well structured HTML or other character data.

Servlets are better for generating binary data, building pages with highly variable

structure, and performing tasks (such as redirection) that involve little or no output.

4. Some tasks are better accomplished by a combination of servlets and JSP than by either

servlets or JSP alone. See Section 3.8 (Integrating Servlets and JSP: The MVC

Architecture) for details.

Versus JavaScript

JavaScript, which is completely distinct from the Java programming language, is normally used to

generate HTML dynamically on the client, building parts of the Web page as the browser loads the

document. This is a useful capability and does not normally overlap with the capabilities of JSP

(which runs only on the server). JSP pages still include SCRIPT tags for JavaScript, just as normal

HTML pages do. In fact, JSP can even be used to dynamically generate the JavaScript that will be

sent to the client.

It is also possible to use JavaScript on the server, most notably on Netscape, IIS, and BroadVision

servers. However, Java is more powerful, flexible, reliable, and portable.

3.3 Invoking Code with JSP Scripting Elements

There are a number of different ways to generate dynamic content from JSP, as illustrated in

Figure 3-1. Each of these approaches has a legitimate place; the size and complexity of the

project is the most important factor in deciding which approach is appropriate. However, be

aware that people err on the side of placing too much code directly in the page much more often

than they err on the opposite end of the spec-trum. Although putting small amounts of Java code

directly in JSP pages works fine for simple applications, using long and complicated blocks of Java

code in JSP pages yields a result that is hard to maintain, hard to debug, and hard to divide among

different members of the development team. Nevertheless, many pages are quite simple, and the

first two approaches of Figure 3-1 (placing explicit Java code directly in the page) work quite well.

This section discusses those approaches.

Figure 3-1. Strategies for invoking dynamic code from JSP.

JSP scripting elements let you insert code into the servlet that will be generated from the JSP

page. There are three forms:

1. Expressions of the form <%= Expression %>, which are evaluated and inserted into the

servlet’s output.

2. Scriptlets of the form <% Code %>, which are inserted into the servlet’s _jspService

method (called by service).

3. Declarations of the form <%! Code %>, which are inserted into the body of the servlet class,

outside of any existing methods.

Each of these scripting elements is described in more detail in the following sections.

In many cases, a large percentage of your JSP page just consists of static HTML, known as

template text. In almost all respects, this HTML looks just like normal HTML, follows all the same

syntax rules, and is simply “passed through” to the client by the servlet created to handle the

page. Not only does the HTML look normal, it can be created by whatever tools you already are

using for building Web pages. For example, I used Macromedia’s HomeSite for most of the JSP

pages in this book.

There are two minor exceptions to the “template text is passed straight through” rule. First, if you

want to have <% in the output, you need to put <\% in the template text. Second, if you want a

comment to appear in the JSP page but not in the resultant document, use

<%-- JSP Comment --%>

HTML comments of the form

<!-- HTML Comment -->

are passed through to the resultant HTML normally.

Expressions

A JSP expression is used to insert values directly into the output. It has the following form:

<%= Java Expression %>

The expression is evaluated, converted to a string, and inserted in the page. That is, this

evaluation is performed at run time (when the page is requested) and thus has full access to

information about the request. For example, the following shows the date/time that the page was

requested.

Current time: <%= new java.util.Date() %>

Predefined Variables

To simplify these expressions, you can use a number of predefined variables (or “implicit

objects”). There is nothing magic about these variables; the system simply tells you what names

it will use for the local variables in _jspService. These implicit objects are discussed in more

detail later in this section, but for the purpose of expressions, the most important ones are:

• request, the HttpServletRequest

• response, the HttpServletResponse

• session, the HttpSession associated with the request (unless disabled with the session

attribute of the page directive—see Section 3.4)

• out, the Writer (a buffered version called JspWriter) used to send output to the client

Here is an example:

Your hostname: <%= request.getRemoteHost() %>

JSP/Servlet Correspondence

Now, I just stated that a JSP expression is evaluated and inserted into the page output. Although

this is true, it is sometimes helpful to understand in a bit more detail what is going on.

It is actually pretty simple: JSP expressions basically become print (or write) statements in the

servlet that results from the JSP page. Whereas regular HTML becomes print statements with

double quotes around the text, JSP expressions become print statements with no double quotes.

Instead of being placed in the doGet method, these print statements are placed in a new method

called _jspService that is called by service for both GET and POST requests. For instance, Listing

3.1 shows a small JSP sample that includes some static HTML and a JSP expression. Listing 3.2

shows a _jspService method that might result. Of course, different vendors will produce code in

slightly different ways, and optimizations such as reading the HTML from a static byte array are

quite common.

Also, I oversimplified the definition of the out variable; out in a JSP page is a JspWriter, so you

have to modify the slightly simpler PrintWriter that directly results from a call to getWriter. So,

don’t expect the code your server generates to look exactly like this.

Listing 3.1 Sample JSP Expression: Random Number

<H1>A Random Number</H1>

<%= Math.random() %>

Listing 3.2 Representative Resulting Servlet Code: Random

Number

public void _jspService(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 HttpSession session = request.getSession(true);

 JspWriter out = response.getWriter(); // Oversimplified a bit

 out.println("<H1>A Random Number</H1>");

 out.println(Math.random());

 ...

}

If you want to see the exact code that your server generates, you’ll have to dig around a bit to find

it. In fact, some servers delete the source code files once they are successfully compiled. But here

is a summary of the locations used by three common, free development servers.

Tomcat 4.0 Autogenerated Servlet Source Code

install_dir/work/localhost/_

(The final directory is an underscore.)

JRun 3.1 Autogenerated Servlet Source Code

install_dir/servers/default/default-app/WEB-INF/jsp

(More generally, in the WEB-INF/jsp directory of the Web application to which the JSP page

belongs.)

ServletExec 4.0 Autogenerated Servlet Source Code

install_dir/Servlets/pagecompile

(More generally, in install_dir/ServletExec Data/virtual-server-name/

web-app-name/pagecompile.)

XML Syntax for Expressions

On some servers, XML authors can use the following alternative syntax for JSP expressions:

<jsp:expression>Java Expression</jsp:expression>

However, in JSP 1.1 and earlier, servers are not required to support this alternative syntax, and

in practice few do. In JSP 1.2, servers are required to support this syntax as long as authors don’t

mix the XML version (<jsp:expression> ... </jsp:expression>) and the standard JSP version

that follows ASP syntax (<%= ... %>) in the same page. Note that XML elements, unlike HTML

ones, are case sensitive, so be sure to use jsp:expression in lower case.

Installing JSP Pages

Servlets require you to set your CLASSPATH, use packages to avoid name conflicts, install the

class files in servlet-specific locations, and use special-purpose URLs. Not so with JSP pages. JSP

pages can be placed in the same directories as normal HTML pages, images, and style sheets;

they can also be accessed through URLs of the same form as those for HTML pages, images, and

style sheets. Here are a few examples of default installation locations (i.e., locations that apply

when you aren’t using custom Web applications) and associated URLs. Where I list SomeDirectory,

you can use any directory name you like. (But you are never allowed to use WEB-INF or META-INF

as directory names. For the default Web application, you also have to avoid a directory name that

matches the URL prefix of any other Web application. For information on defining your own Web

application, see Chapter 4, “ Using and Deploying Web Applications.”)

• Tomcat Directory

install_dir/webapps/ROOT

(or install_dir/webapps/ROOT/SomeDirectory)

• JRun Directory

install_dir/servers/default/default-app

(or install_dir/servers/default/default-app/SomeDirectory)

• ServletExec Directory

install_dir/public_html

(or install_dir/public_html/SomeDirectory)

• Corresponding URLs

http://host/Hello.html

(or http://host/SomeDirectory/Hello.html)

http://host/Hello.jsp

(or http://host/SomeDirectory/Hello.jsp)

Note that, although JSP pages themselves need no special installation directories, any Java

classes called from JSP pages still need to go in the standard locations used by servlet classes

(e.g.,.../WEB-INF/classes; see Sections 1.7 and 1.9).

Example: JSP Expressions

Listing 3.3 gives an example JSP page called Expressions.jsp. I placed the file in a subdirectory

called jsp-intro, copied the entire directory from my development directory to the deployment

location just discussed, and used a base URL of http://host/jsp-intro/Expressions.jsp. Figures 3-2

and 3-3 show some typical results.

Figure 3-2. Result of Expressions.jsp using JRun 3.1 and

omitting the testParam request parameter.

Figure 3-3. Result of Expressions.jsp using ServletExec 4.0

and specifying test+value as the value of the testParam request

parameter.

Notice that I included META tags and a style sheet link in the HEAD section of the JSP page. It is

good practice to include these elements, but there are two reasons why they are often omitted

from pages generated by normal servlets.

First, with servlets, it is tedious to generate the required println statements. With JSP, however,

the format is simpler and you can make use of the code reuse options in your usual HTML building

tools.

Second, servlets cannot use the simplest form of relative URLs (ones that refer to files in the same

directory as the current page) since the servlet directories are not mapped to URLs in the same

manner as are URLs for normal Web pages. JSP pages, on the other hand, are installed in the

normal Web page hierarchy on the server, and relative URLs are resolved properly as long as the

JSP page is accessed directly by the client, rather than indirectly by means of a

RequestDispatcher. Even then, there are some techniques you can use to simplify the use of

relative URLs. For details, see Section 4.5 (Handling Relative URLs in Web Applications).

Thus, in most cases style sheets and JSP pages can be kept together in the same directory. The

source code for the style sheet, like all code shown or referenced in the book, can be found at

http://www.moreservlets.com.

Listing 3.3 Expressions.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>JSP Expressions</TITLE>

<META NAME="keywords"

 CONTENT="JSP,expressions,JavaServer Pages,servlets">

<META NAME="description"

 CONTENT="A quick example of JSP expressions.">

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H2>JSP Expressions</H2>

 Current time: <%= new java.util.Date() %>

 Server: <%= application.getServerInfo() %>

 Session ID: <%= session.getId() %>

 The <CODE>testParam</CODE> form parameter:

 <%= request.getParameter("testParam") %>

</BODY>

</HTML>

Scriptlets

If you want to do something more complex than output a simple expression, JSP scriptlets let you

insert arbitrary code into the servlet’s _jspService method (which is called by service).

Scriptlets have the following form:

<% Java Code %>

Scriptlets have access to the same automatically defined variables as do expressions (request,

response, session, out, etc.). So, for example, if you want to explicitly send output to the

resultant page, you could use the out variable, as in the following example.

<%

String queryData = request.getQueryString();

out.println("Attached GET data: " + queryData);

%>

In this particular instance, you could have accomplished the same effect more easily by using the

following JSP expression:

Attached GET data: <%= request.getQueryString() %>

In general, however, scriptlets can perform a number of tasks that cannot be accomplished with

expressions alone. These tasks include setting response headers and status codes, invoking side

effects such as writing to the server log or updating a database, or executing code that contains

loops, conditionals, or other complex constructs. For instance, the following snippet specifies that

the current page is sent to the client as plain text, not as HTML (which is the default).

<% response.setContentType("text/plain"); %>

It is important to note that you can set response headers or status codes at various places within

a JSP page, even though this capability appears to violate the rule that this type of response data

needs to be specified before any document content is sent to the client. Setting headers and

status codes is permitted because servlets that result from JSP pages use a special variety of

Writer (of type JspWriter) that partially buffers the document. This buffering behavior can be

changed, however; see Section 3.4 for a discussion of the buffer and autoflush attributes of the

page directive.

JSP/Servlet Correspondence

It is easy to understand how JSP scriptlets correspond to servlet code: the scriptlet code is just

directly inserted into the _jspService method: no strings, no print statements, no changes

whatsoever. For instance, Listing 3.4 shows a small JSP sample that includes some static HTML,

a JSP expression, and a JSP scriptlet. Listing 3.5 shows a _jspService method that might result.

Again, different vendors will produce this code in slightly different ways, and I oversimplified the

out variable (which is a JspWriter, not the slightly simpler PrintWriter that results from a call

to getWriter). So, don’t expect the code your server generates to look exactly like this.

Listing 3.4 Sample JSP Expression/Scriptlet

<H2>foo</H2>

<%= bar() %>

<% baz(); %>

Listing 3.5 Representative Resulting Servlet Code:

Expression/Scriptlet

public void _jspService(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 HttpSession session = request.getSession(true);

 JspWriter out = response.getWriter();

 out.println("<H2>foo</H2>");

 out.println(bar());

 baz();

 ...

}

Scriptlet Example

As an example of code that is too complex for a JSP expression alone, Listing 3.6 presents a JSP

page that uses the bgColor request parameter to set the background color of the page.

JSP-Styles.css is omitted so that the style sheet does not override the background color. Figures

3-4, 3-5, and 3-6 show the default result, the result for a background of C0C0C0, and the result

for papayawhip (one of the oddball X11 color names still supported for historical reasons),

respectively.

Figure 3-4. Default result of BGColor.jsp.

Figure 3-5. Result of BGColor.jsp when accessed with a bgColor

parameter having the RGB value C0C0C0.

Figure 3-6. Result of BGColor.jsp when accessed with a bgColor

parameter having the X11 color name papayawhip.

Listing 3.6 BGColor.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

 <TITLE>Color Testing</TITLE>

</HEAD>

<%

String bgColor = request.getParameter("bgColor");

if (bgColor == null) { bgColor = "WHITE"; }

%>

<BODY BGCOLOR="<%= bgColor %>">

<H2 ALIGN="CENTER">Testing a Background of "<%= bgColor %>"</H2>

</BODY>

</HTML>

Using Scriptlets to Make Parts of the JSP Page Conditional

Another use of scriptlets is to conditionally output HTML or other content that is not within any JSP

tags. The key to this approach is the fact that code inside a scriptlet gets inserted into the

resultant servlet’s _jspService method (called by service) exactly as written and that any static

HTML (template text) before or after a scriptlet gets converted to print statements. This means

that scriptlets need not contain complete Java statements and that blocks left open can affect the

static HTML or JSP outside of the scriptlets. For example, consider the following JSP fragment

containing mixed template text and scriptlets.

<% if (Math.random() < 0.5) { %>

Have a nice day!

<% } else { %>

Have a lousy day!

<% } %>

You probably find that a bit confusing. I certainly did the first few times. Neither the “have a nice

day” nor the “have a lousy day” lines are contained within a JSP tag, so it seems odd that only one

of the two becomes part of the output for any given request. But, when you think about how this

example will be converted to servlet code by the JSP engine, you get the following easily

understandable result.

if (Math.random() < 0.5) {

 out.println("Have a nice day!");

} else {

 out.println("Have a lousy day!");

}

XML and Other Special Scriptlet Syntax

There are two special constructs you should take note of. First, if you want to use the characters

%> inside a scriptlet, enter %\> instead. Second, the XML equivalent of <% Java Code %> is

<jsp:scriptlet>Java Code</jsp:scriptlet>

In JSP 1.1 and earlier, servers are not required to support this alternative syntax, and in practice

few do. In JSP 1.2, servers are required to support this syntax as long as authors don’t mix the

XML version (<jsp:scriptlet> ... </jsp:scriptlet>) and the ASP-like version (<% ... %>) in

the same page. Remember that XML elements are case sensitive; be sure to use jsp:scriptlet

in lower case.

Declarations

A JSP declaration lets you define methods or fields that get inserted into the main body of the

servlet class (outside of the _jspService method that is called by service to process the

request). A declaration has the following form:

<%! Java Code %>

Since declarations do not generate any output, they are normally used in conjunction with JSP

expressions or scriptlets. The declarations define methods or fields that are later used by

expressions or scriptlets. One caution is warranted however: do not use JSP declarations to

override the standard servlet life-cycle methods (service, doGet, init, etc.). The servlet into

which the JSP page gets translated already makes use of these methods. There is no need for

declarations to gain access to service, doGet, or doPost, since calls to service are

automatically dispatched to _jspService, which is where code resulting from expressions and

scriptlets is put. However, for initialization and cleanup, you can use jspInit and jspDestroy

—the standard init and destroy methods are guaranteed to call these two methods when in

servlets that come from JSP.

Core Approach

For initialization and cleanup in JSP pages, use JSP declarations to

override jspInit and/or jspDestroy .

Aside from overriding standard methods like jspInit and jspDestroy, the utility of JSP

declarations for defining methods is somewhat questionable. Moving the methods to separate

classes (possibly as static methods) makes them easier to write (since you are using a Java

environment, not an HTML-like one), easier to test (no need to run a server), easier to debug (no

tricks are needed to see the standard output), and easier to reuse (many different JSP pages can

use the same utility class). However, using JSP declarations to define fields, as we will see shortly,

gives you something not easily reproducible with separate utility classes: a place to store data

that is persistent between requests.

Core Approach

Consider separate helper classes instead of methods defined by means of
JSP declarations.

JSP/Servlet Correspondence

JSP declarations result in code that is placed inside the servlet class definition but outside the

_jspService method. Since fields and methods can be declared in any order, it does not matter

if the code from declarations goes at the top or bottom of the servlet. For instance, Listing 3.7

shows a small JSP snippet that includes some static HTML, a JSP declaration, and a JSP

expression. Listing 3.8 shows a servlet that might result. Note that the specific name of the

resultant servlet is not defined by the JSP specification, and in fact different servers have different

conventions. Besides, as already stated, different vendors will produce this code in slightly

different ways, and I oversimplified the out variable (which is a JspWriter, not the slightly

simpler PrintWriter that results from a call to getWriter). So, don’t expect the code your server

generates to look exactly like this.

Listing 3.7 Sample JSP Declaration

<H1>Some Heading</H1>

<%!

 private String randomHeading() {

 return("<H2>" + Math.random() + "</H2>");

 }

%>

<%= randomHeading() %>

Listing 3.8 Representative Resulting Servlet Code:

Declaration

public class xxxx implements HttpJspPage {

 private String randomHeading() {

 return("<H2>" + Math.random() + "</H2>");

 }

 public void _jspService(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 HttpSession session = request.getSession(true);

 JspWriter out = response.getWriter();

 out.println("<H1>Some Heading</H1>");

 out.println(randomHeading());

 ...

}

 ...

}

Declaration Example

In this example, a JSP fragment prints the number of times the current page has been requested

since the server was booted (or the servlet class was changed and reloaded). A hit counter in one

line of code!

<%! private int accessCount = 0; %>

Accesses to page since server reboot:

<%= ++accessCount %>

Recall that multiple client requests to the same servlet result only in multiple threads calling the

service method of a single servlet instance. They do not result in the creation of multiple servlet

instances except possibly when the servlet implements SingleThreadModel (see Section 2.3,

“ The Servlet Life Cycle ”). Thus, instance variables (fields) of a normal servlet are shared by

multiple requests, and accessCount does not have to be declared static. Now, advanced

readers might wonder if the snippet just shown is thread safe; does the code guarantee that each

visitor gets a unique count? The answer is no; in unusual situations multiple users could see the

same value. For access counts, as long as the count is correct in the long run, it does not matter

if two different users occasionally see the same count. But, for values such as session identifiers,

it is critical to have unique values. For an example similar to the previous snippet but that

guarantees thread safety, see the discussion of the isThreadSafe attribute of the page directive

in Section 3.4.

Listing 3.9 shows the full JSP page; Figure 3-7 shows a representative result. Now, before you

rush out and use this approach to track access to all your pages, a couple of cautions are in order.

First of all, you couldn’t use this for a real hit counter, since the count starts over whenever you

restart the server. So, a real hit counter would need to use jspInit and jspDestroy to read the

previous count at startup and store the old count when the server is shut down. Even then, it

would be possible for the server to crash unexpectedly (e.g., when a rolling blackout strikes

Silicon Valley). So, you would have to periodically write the hit count to disk. Finally, some

advanced servers support distributed applications whereby a cluster of servers appears to the

client as a single server. If your servlets or JSP pages might need to support distribution in this

way, plan ahead and avoid the use of fields for persistent data. Use a database instead.

Figure 3-7. Visiting AccessCounts.jsp after it has been

requested nine previous times by the same or different

clients.

Listing 3.9 AccessCounts.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>JSP Declarations</TITLE>

<META NAME="keywords"

 CONTENT="JSP,declarations,JavaServer,Pages,servlets">

<META NAME="description"

 CONTENT="A quick example of JSP declarations.">

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H1>JSP Declarations</H1>

<%! private int accessCount = 0; %>

<H2>Accesses to page since server reboot:

<%= ++accessCount %></H2>

</BODY>

</HTML>

XML and Special Declaration Syntax

As with scriptlets, if you want to output %>, enter %\> instead. Finally, note that the XML

equivalent of <%! Java Code %> is

<jsp:declaration>Java Code</jsp:declaration>

In JSP 1.1 and earlier, servers are not required to support this alternative syntax, and in practice

few do. In JSP 1.2, servers are required to support this syntax as long as authors don’t mix the

XML version (<jsp:declaration> ... </jsp:declaration>) and the standard ASP-like version

(<%! ... %>) in the same page. Remember that XML elements are case sensitive; be sure to use

jsp:declaration in lower case.

Predefined Variables

To simplify code in JSP expressions and scriptlets, you are supplied with eight automatically

defined local variables in _jspService, sometimes called implicit objects. Since JSP declarations

result in code that appears outside of the _jspService method, these variables are not accessible

in declarations. The available variables are request, response, out, session, application,

config, pageContext, and page. Details for each are given below.

• request This variable is the HttpServletRequest associated with the request; it gives

you access to the request parameters, the request type (e.g., GET or POST), and the

incoming HTTP headers (e.g., cookies).

• response This variable is the HttpServletResponse associated with the response to the

client. Since the output stream (see out) is normally buffered, it is usually legal to set

HTTP status codes and response headers in the body of JSP pages, even though the

setting of headers or status codes is not permitted in servlets once any output has been

sent to the client. If you turn buffering off, however (see the buffer attribute in Section

3.4), you must set status codes and headers before supplying any output.

• out This variable is the Writer used to send output to the client. However, to make it

easy to set response headers at various places in the JSP page, out is not the standard

PrintWriter but rather a buffered version of Writer called JspWriter. You can adjust the

buffer size through use of the buffer attribute of the page directive. The out variable is

used almost exclusively in scriptlets, since JSP expressions are automatically placed in the

output stream and thus rarely need to refer to out explicitly.

• session This variable is the HttpSession object associated with the request. Recall that

sessions are created automatically in JSP, so this variable is bound even if there is no

incoming session reference. The one exception is when you use the session attribute of

the page directive (Section 3.4) to disable session tracking. In that case, attempts to

reference the session variable cause errors at the time the JSP page is translated into a

servlet.

• application This variable is the ServletContext as obtained by getServletContext.

Servlets and JSP pages can store persistent data in the ServletContext object rather

than in instance variables. ServletContext has setAttribute and getAttribute

methods that let you store arbitrary data associated with specified keys. The difference

between storing data in instance variables and storing it in the ServletContext is that the

ServletContext is shared by all servlets in the Web application, whereas instance

variables are available only to the same servlet that stored the data.

• config This variable is the ServletConfig object for this page. The jspInit method

would use it to read initialization parameters.

• pageContext JSP introduced a class called PageContext to give a single point of access

to many of the page attributes. The pageContext variable stores the value of the

PageContext object associated with the current page. If a method or constructor needs

access to multiple page-related objects, passing pageContext is easier than passing many

separate references to out, request, response, and so forth.

• page This variable is simply a synonym for this and is not very useful. It was created as

a placeholder for the time when the scripting language could be something other than

Java.

3.4 Structuring Autogenerated Servlets: The JSP page

Directive

A JSP directive affects the overall structure of the servlet that results from the JSP page. The

following templates show the two possible forms for directives. Single quotes can be substituted

for the double quotes around the attribute values, but the quotation marks cannot be omitted

altogether. To obtain quote marks within an attribute value, precede them with a backslash,

using \’ for ’ and \" for ".

<%@ directive attribute="value" %>

<%@ directive attribute1="value1"

 attribute2="value2"

 ...

 attributeN="valueN" %>

In JSP, there are three types of directives: page, include, and taglib. The page directive lets

you control the structure of the servlet by importing classes, customizing the servlet superclass,

setting the content type, and the like. A page directive can be placed anywhere within the

document; its use is the topic of this section. The second directive, include, lets you insert a file

into the servlet class at the time the JSP file is translated into a servlet. An include directive

should be placed in the document at the point at which you want the file to be inserted; it is

discussed in Section 3.5. JSP 1.1 introduced a third directive, taglib, which is used to define

custom markup tags; it is discussed in Section 3.7.

The page directive lets you define one or more of the following case-sensitive attributes: import,

contentType, isThreadSafe, session, buffer, autoflush, extends, info, errorPage,

isErrorPage, language, and pageEncoding. These attributes are explained in the following

subsections.

The import Attribute

The import attribute of the page directive lets you specify the packages that should be imported

by the servlet into which the JSP page gets translated. As illustrated in Figure 3-8, using separate

utility classes makes your dynamic code easier to maintain, debug, and reuse, and your utility

classes are sure to use packages.

Figure 3-8. Strategies for invoking dynamic code from JSP.

In fact, all of your utility classes should be placed in packages. For one thing, packages are a good

strategy on any large project because they help protect against name conflicts. With JSP,

however, packages are absolutely required. That’s because, in the absence of packages, classes

you reference are assumed to be in the same package as the current class. For example, suppose

that a JSP page contains the following scriptlet.

<% Test t = new Test(); %>

Now, if Test is in an imported package, there is no ambiguity. But, if Test is not in a package, or

the package to which Test belongs is not explicitly imported, then the system will assume that

Test is in the same package as the autogenerated servlet. The problem is that the autogenerated

servlet’s package is not known! It is quite common for servers to create servlets whose package

is determined by the directory in which the JSP page is placed. Other servers use different

approaches. So, you simply cannot rely on packageless classes to work properly. The same

argument applies to beans (Section 3.6), since beans are just classes that follow some simple

naming and structure conventions.

Core Approach

Always put your utility classes and beans in packages.

By default, the servlet imports java.lang.*, javax.servlet.*, javax.servlet.jsp.*,

javax.servlet.http.*, and possibly some number of server-specific entries. Never write JSP

code that relies on any server-specific classes being imported automatically.

Use of the import attribute takes one of the following two forms.

<%@ page import="package.class" %>

<%@ page import="package.class1,...,package.classN" %>

For example, the following directive signifies that all classes in the java.util package should be

available to use without explicit package identifiers.

<%@ page import="java.util.*" %>

The import attribute is the only page attribute that is allowed to appear multiple times within the

same document. Although page directives can appear anywhere within the document, it is

traditional to place import statements either near the top of the document or just before the first

place that the referenced package is used.

Note that, although the JSP pages go in the normal HTML directories of the server, the classes you

write that are used by JSP pages must be placed in the special servlet directories

(e.g.,.../WEB-INF/classes; see Sections 1.7 and 1.9).

For example, Listing 3.10 presents a page that uses three classes not in the standard JSP import

list: java.util.Date, moreservlets.ServletUtilities (see Listing 2.17), and

moreservlets.LongLivedCookie (see Listing 2.18). To simplify references to these classes, the

JSP page uses

<%@ page import="java.util.*,moreservlets.*" %>

Figures 3-9 and 3-10 show some typical results.

Figure 3-9. ImportAttribute.jsp when first accessed.

Figure 3-10. ImportAttribute.jsp when accessed in a

subsequent request.

Listing 3.10 ImportAttribute.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>The import Attribute</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H2>The import Attribute</H2>

<%-- JSP page directive --%>

<%@ page import="java.util.*,moreservlets.*" %>

<%-- JSP Declaration --%>

<%!

private String randomID() {

 int num = (int)(Math.random()*10000000.0);

 return("id" + num);

}

private final String NO_VALUE = "<I>No Value</I>";

%>

<%-- JSP Scriptlet --%>

<%

Cookie[] cookies = request.getCookies();

String oldID =

 ServletUtilities.getCookieValue(cookies, "userID", NO_VALUE);

if (oldID.equals(NO_VALUE)) {

 String newID = randomID();

 Cookie cookie = new LongLivedCookie("userID", newID);

 response.addCookie(cookie);

}

%>

<%-- JSP Expressions --%>

This page was accessed on <%= new Date() %> with a userID

cookie of <%= oldID %>.

</BODY>

</HTML>

The contentType Attribute

The contentType attribute sets the Content-Type response header, indicating the MIME type of

the document being sent to the client. For more information on MIME types, see Table 2.1

(Common MIME Types) in Section 2.8 (The Server Response: HTTP Response Headers).

Use of the contentType attribute takes one of the following two forms.

<%@ page contentType="MIME-Type" %>

<%@ page contentType="MIME-Type; charset=Character-Set" %>

For example, the directive

<%@ page contentType="application/vnd.ms-excel" %>

has the same effect as the scriptlet

<% response.setContentType("application/vnd.ms-excel"); %>

The main difference between the two forms is that response.setContentType can be invoked

conditionally whereas the page directive cannot be. Setting the content type conditionally is

occasionally useful when the same content can be displayed in different forms—for an example,

see the Section “Generating Excel Spreadsheets” starting on page 254 of Core Servlets and

JavaServer Pages (available in PDF at http://www.moreservlets.com).

Unlike regular servlets, where the default MIME type is text/plain, the default for JSP pages is

text/html (with a default character set of ISO-8859-1). Thus, JSP pages that output HTML in a

Latin character set need not use contentType at all. But, pages in JSP 1.1 and earlier that output

other character sets need to use contentType even when they generate HTML. For example,

Japanese JSP pages might use the following.

<%@ page contentType="text/html; charset=Shift_JIS" %>

In JSP 1.2, however, the pageEncoding attribute (see details later in this section) can be used to

directly specify the character set.

Listing 3.11 shows a JSP page that generates tab-separated Excel output. Note that the page

directive and comment are at the bottom so that the carriage returns at the ends of the lines don’t

show up in the Excel document (remember: JSP does not ignore white space—JSP usually

generates HTML where most white space is ignored by the browser). Figure 3-11 shows the result

in Internet Explorer on a system that has Microsoft Office installed.

Figure 3-11. Excel document (Excel.jsp) in Internet Explorer.

Listing 3.11 Excel.jsp

First Last Email Address

Marty Hall hall@moreservlets.com

Larry Brown brown@corewebprogramming.com

Steve Balmer balmer@sun.com

Scott McNealy mcnealy@microsoft.com

<%@ page contentType="application/vnd.ms-excel" %>

<%-- There are tabs, not spaces, between columns. --%>

The isThreadSafe Attribute

The isThreadSafe attribute controls whether the servlet that results from the JSP page will

implement the SingleThreadModel interface (Section 2.3). Use of the isThreadSafe attribute

takes one of the following two forms.

<%@ page isThreadSafe="true" %> <%-- Default --%>

<%@ page isThreadSafe="false" %>

With normal servlets, simultaneous user requests result in multiple threads concurrently

accessing the service method of the same servlet instance. This behavior assumes that the

servlet is thread safe; that is, that the servlet synchronizes access to data in its fields so that

inconsistent values will not result from an unexpected ordering of thread execution. In some

cases (such as page access counts), you may not care if two visitors occasionally get the same

value, but in other cases (such as user IDs), identical values can spell disaster. For example, the

following snippet is not thread safe since a thread could be preempted after reading idNum but

before updating it, yielding two users with the same user ID.

<%! private static int idNum = 0; %>

<%

String userID = "userID" + idNum;

out.println("Your ID is " + userID + ".");

idNum = idNum + 1;

%>

The code should have used a synchronized block. This construct is written

synchronized(someObject) { ... }

and means that once a thread enters the block of code, no other thread can enter the same block

(or any other block marked with the same object reference) until the first thread exits. So, the

previous snippet should have been written in the following manner.

<%! private static int idNum = 0; %>

<%

synchronized(this) {

 String userID = "userID" + idNum;

 out.println("Your ID is " + userID + ".");

 idNum = idNum + 1;

}

%>

That’s the normal servlet behavior: multiple simultaneous requests are dispatched to multiple

threads that concurrently access the same servlet instance. However, if a servlet implements the

SingleThreadModel interface, the system guarantees that there will not be simultaneous access

to the same servlet instance. The system can satisfy this guarantee either by queuing all requests

and passing them to the same servlet instance or by creating a pool of instances, each of which

handles a single request at a time. The possibility of a pool of instances explains the need for the

static qualifier in the idNum field declaration in the previous examples.

You use <%@ page isThreadSafe="false" %> to indicate that your code is not thread safe and

thus that the resulting servlet should implement SingleThreadModel. The default value is true,

which means that the system assumes you made your code thread safe and it can consequently

use the higher-performance approach of multiple simultaneous threads accessing a single servlet

instance.

Explicitly synchronizing your code as in the previous snippet is preferred whenever possible. In

particular, explicit synchronization yields higher performance pages that are accessed frequently.

However, using isThreadSafe="false" is useful when the problematic code is hard to find

(perhaps it is in a class for which you have no source code) and for quick testing to see if a

problem stems from race conditions at all.

Core Note

With frequently accessed pages, you get better performance by using

explicit synchronization than by using the isThreadSafe attribute.

The session Attribute

The session attribute controls whether the page participates in HTTP sessions. Use of this

attribute takes one of the following two forms.

<%@ page session="true" %> <%-- Default --%>

<%@ page session="false" %>

A value of true (the default) indicates that the predefined variable session (of type HttpSession)

should be bound to the existing session if one exists; otherwise, a new session should be created

and bound to session. A value of false means that no sessions will be used automatically and

attempts to access the variable session will result in errors at the time the JSP page is translated

into a servlet. Turning off session tracking may save significant amounts of server memory on

high-traffic sites. Just remember that sessions are user specific, not page specific. Thus, it doesn’t

do any good to turn off session tracking for one page unless you also turn it off for related pages

that are likely to be visited in the same client session.

The buffer Attribute

The buffer attribute specifies the size of the buffer used by the out variable, which is of type

JspWriter. Use of this attribute takes one of two forms.

<%@ page buffer="sizekb" %>

<%@ page buffer="none" %>

Servers can use a larger buffer than you specify, but not a smaller one. For example, <%@ page

buffer="32kb" %> means the document content should be buffered and not sent to the client

until at least 32 kilobytes have been accumulated, the page is completed, or the output is

explicitly flushed (e.g., with response.flushBuffer). The default buffer size is server specific,

but must be at least 8 kilobytes. Be cautious about turning off buffering; doing so requires JSP

elements that set headers or status codes to appear at the top of the file, before any HTML

content.

The autoflush Attribute

The autoflush attribute controls whether the output buffer should be automatically flushed when

it is full or whether an exception should be raised when the buffer overflows. Use of this attribute

takes one of the following two forms.

<%@ page autoflush="true" %> <%-- Default --%>

<%@ page autoflush="false" %>

A value of false is illegal when buffer="none" is also used.

The extends Attribute

The extends attribute designates the superclass of the servlet that will be generated for the JSP

page and takes the following form.

<%@ page extends="package.class" %>

This attribute is normally reserved for developers or vendors that implement fundamental

changes to the way that pages operate (e.g., to add in personalization features). Ordinary

mortals should steer clear of this attribute.

The info Attribute

The info attribute defines a string that can be retrieved from the servlet by means of the

getServletInfo method. Use of info takes the following form.

<%@ page info="Some Message" %>

The errorPage Attribute

The errorPage attribute specifies a JSP page that should process any exceptions (i.e., something

of type Throwable) thrown but not caught in the current page. The designated error page must

use isErrorPage="true" (see next entry) to indicate that it permits use as an error page. The

errorPage attribute is used as follows.

<%@ page errorPage="Relative URL" %>

The exception thrown will be automatically available to the designated error page by means of the

exception variable. For an example, see Section 11.10 of Core Servlets and JavaServer Pages

(available in PDF at http://www.moreservlets.com).

Note that the errorPage attribute is used to designate page-specific error pages. To designate

error pages that apply to an entire Web application or to various categories of errors within an

application, use the error-page element in web.xml. For details, see Section 5.8 (Designating

Pages to Handle Errors).

The isErrorPage Attribute

The isErrorPage attribute indicates whether the current page can act as the error page for

another JSP page. Use of isErrorPage takes one of the following two forms:

<%@ page isErrorPage="true" %>

<%@ page isErrorPage="false" %> <%-- Default --%>

The language Attribute

At some point, the language attribute is intended to specify the underlying programming

language being used, as below.

<%@ page language="cobol" %>

For now, don’t bother with this attribute since java is both the default and the only legal choice.

The pageEncoding Attribute

The pageEncoding attribute, available only in JSP 1.2, defines the character encoding for the

page. The default value is ISO-8859-1 unless the contentType attribute of the page directive is

specified, in which case the charset entry of contentType is the default.

XML Syntax for Directives

All JSP 1.2 servers (containers) and some JSP 1.1 servers permit you to use an alternative

XML-compatible syntax for directives as long as you don’t mix the XML version and the normal

version in the same page. These constructs take the following form:

<jsp:directive.directiveType attribute="value" />

For example, the XML equivalent of

<%@ page import="java.util.*" %>

is

<jsp:directive.page import="java.util.*" />

3.5 Including Files and Applets in JSP Documents

JSP has three main capabilities for including external pieces into a JSP document.

1. The include directive. The construct lets you insert JSP code into the main page before

that main page is translated into a servlet. The included code can contain JSP constructs

such as field definitions and content-type settings that affect the main page as a whole.

This capability is discussed in the first of the following subsections.

2. The jsp:include action. Although reusing chunks of JSP code is a powerful capability,

most times you would rather sacrifice a small amount of power for the convenience of

being able to change the included documents without updating the main JSP page. The

jsp:include action lets you include the output of a page at request time. Note that

jsp:include only lets you include the output of the secondary page, not the secondary

page’s actual code as with the include directive. Consequently, the secondary page

cannot use any JSP constructs that affect the main page as a whole. Use of jsp:include

is discussed in the second subsection.

3. The jsp:plugin action. Although this chapter is primarily about server-side Java,

client-side Java in the form of Web-embedded applets continues to play a role, especially

within corporate intranets. The jsp:plugin element is used to insert applets that use the

Java Plug-In into JSP pages. This capability is discussed in the third subsection.

Including Files at Page Translation Time: The include

Directive

You use the include directive to include a file in the main JSP document at the time the document

is translated into a servlet (which is typically the first time it is accessed). The syntax is as follows:

<%@ include file="Relative URL" %>

There are two ramifications of the fact that the included file is inserted at page translation time,

not at request time as with jsp:include (see the next subsection).

First, the included file is permitted to contain JSP code such as response header settings and field

definitions that affect the main page. For example, suppose snippet.jsp contained the following

code:

<%! int accessCount = 0; %>

In such a case, you could do the following:

<%@ include file="snippet.jsp" %> <%-- Defines accessCount --%>

<%= accessCount++ %> <%-- Uses accessCount --%>

Second, if the included file changes, all the JSP files that use it may need to be updated.

Unfortunately, although servers are allowed to support a mechanism for detecting when an

included file has changed (and then recompiling the servlet), they are not required to do so. So,

you may have to update the modification dates of each JSP page that uses the included code.

Some operating systems have commands that update the modification date without your actually

editing the file (e.g., the Unix touch command), but a simple portable alternative is to include a

JSP comment in the top-level page. Update the comment whenever the included file changes. For

example, you might put the modification date of the included file in the comment, as below.

<%-- Navbar.jsp modified 3/1/00 --%>

<%@ include file="Navbar.jsp" %>

Core Warning

If you change an included JSP file, you may have to update the
modification dates of all JSP files that use it.

XML Syntax for the include Directive

The XML-compatible equivalent of

<%@ include file="..." %>

is

<jsp:directive.include file="..." />

Remember that only servlet and JSP containers (servers) that support JSP 1.2 are required to

support the XML version.

Including Pages at Request Time: The jsp:include Action

The include directive (see the previous subsection) lets you include actual JSP code into multiple

different pages. Including the code itself is sometimes a useful capability, but the include

directive requires you to update the modification date of the page whenever the included file

changes. This is a significant inconvenience. The jsp:include action includes the output of a

secondary page at the time the main page is requested. Thus, jsp:include does not require you

to update the main file when an included file changes. On the other hand, the main page has

already been translated into a servlet by request time, so the included pages cannot contain JSP

that affects the main page as a whole. Also, inclusion at page translation time is marginally faster.

These are relatively minor considerations, and jsp:include is almost always preferred.

Core Approach

For file inclusion, use jsp:include whenever possible. Reserve the

include directive for cases when the included file defines fields or
methods that the main page uses or when the included file sets response
headers of the main page.

Although the output of the included pages cannot contain JSP, the pages can be the result of

resources that use JSP to create the output. That is, the URL that refers to the included resource

is interpreted in the normal manner by the server and thus can be a servlet or JSP page. The

server runs the included page in the usual manner and places the output into the main page. This

is precisely the behavior of the include method of the RequestDispatcher class (Section 3.8),

which is what servlets use if they want to do this type of file inclusion.

The jsp:include element has two attributes, as shown in the sample below: page and flush.

The page attribute is required and designates a relative URL referencing the file to be included.

The flush attribute specifies whether the output stream of the main page should flushed before

the inclusion of the page. In JSP 1.2, flush is an optional attribute and the default value is false.

In JSP 1.1, flush is a required attribute and the only legal value is true.

<jsp:include page="Relative URL" flush="true" />

The included file automatically is given the same request parameters as the originally requested

page. If you want to augment those parameters, you can use the jsp:param element (which has

name and value attributes). For example, consider the following snippet.

<jsp:include page="/fragments/StandardHeading.jsp">

 <jsp:param name="bgColor" value="YELLOW" />

</jsp:include>

Now, suppose that the main page is invoked by means of

http://host/path/MainPage.jsp?fgColor=RED. In such a case, the main page receives "RED" for

calls to request.getParameter("fgColor") and null for calls to

request.getParameter("bgColor") (regardless of whether the bgColor attribute is accessed

before or after the inclusion of the StandardHeading.jsp page). The StandardHeading.jsp page

would receive "RED" for calls to request.getParameter("fgColor") and "YELLOW" for calls to

request.getParameter("bgColor"). If the main page receives a request parameter that is also

specified with the jsp:param element, the value from jsp:param takes precedence in the

included page.

As an example of a typical use of jsp:include, consider the simple news summary page shown

in Listing 3.12. Page developers can change the news items in the files Item1.html through

Item3.html (Listings 3.13 through 3.15) without having to update the main news page. Figure

3-12 shows the result.

Figure 3-12. Including files at request time makes it easier to

update the individual files.

Listing 3.12 WhatsNew.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>What's New at JspNews.com</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 What's New at JspNews.com</TABLE>

<P>

Here is a summary of our three most recent news stories:

 <jsp:include page="news/Item1.html" flush="true" />

 <jsp:include page="news/Item2.html" flush="true" />

 <jsp:include page="news/Item3.html" flush="true" />

</BODY>

</HTML>

Listing 3.13 Item1.html

Bill Gates acts humble. In a startling and unexpected

development, Microsoft big wig Bill Gates put on an open act of

humility yesterday.

More details...

Listing 3.14 Item2.html

Scott McNealy acts serious. In an unexpected twist,

wisecracking Sun head Scott McNealy was sober and subdued at

yesterday's meeting.

More details...

Listing 3.15 Item3.html

Larry Ellison acts conciliatory. Catching his competitors

off guard yesterday, Oracle prez Larry Ellison referred to his

rivals in friendly and respectful terms.

More details...

Including Applets for the Java Plug-In

With JSP, you don’t need any special syntax to include ordinary applets: just use the normal HTML

APPLET tag. However, except for intranets that use Netscape 6 exclusively, these applets must

use JDK 1.1 or JDK 1.02 since neither Netscape 4.x nor Internet Explorer 5.x supports the Java 2

platform (i.e., JDK 1.2–1.4). This lack of support imposes several restrictions on applets:

1. To use Swing, you must send the Swing files over the network. This process is time

consuming and fails in Internet Explorer 3 and Netscape 3.x and 4.01–4.05 (which only

support JDK 1.02), since Swing depends on JDK 1.1.

2. You cannot use Java 2D.

3. You cannot use the Java 2 collections package.

4. Your code runs more slowly, since most compilers for the Java 2 platform are significantly

improved over their 1.1 predecessors.

To address these problems, Sun developed a browser plug-in for Netscape and Internet Explorer

that lets you use the Java 2 platform in a variety of browsers. This plug-in is available at

http://java.sun.com/products/plugin/ and also comes bundled with JDK 1.2.2 and later. Since

the plug-in is quite large (several megabytes), it is not reasonable to expect users on the WWW

at large to download and install it just to run your applets. On the other hand, it is a reasonable

alternative for fast corporate intranets, especially since applets can automatically prompt

browsers that lack the plug-in to download it.

Unfortunately, however, the normal APPLET tag will not work with the plug-in, since browsers are

specifically designed to use only their built-in virtual machine when they see APPLET. Instead, you

have to use a long and messy OBJECT tag for Internet Explorer and an equally long EMBED tag for

Netscape. Furthermore, since you typically don’t know which browser type will be accessing your

page, you have to either include both OBJECT and EMBED (placing the EMBED within the COMMENT

section of OBJECT) or identify the browser type at the time of the request and conditionally build

the right tag. This process is straightforward but tedious and time consuming.

The jsp:plugin element instructs the server to build a tag appropriate for applets that use the

plug-in. This element does not add any Java capabilities to the client. How could it? JSP runs

entirely on the server; the client knows nothing about JSP. The jsp:plugin element merely

simplifies the generation of the OBJECT or EMBED tags.

Servers are permitted some leeway in exactly how they implement jsp:plugin but most simply

include both OBJECT and EMBED. To see exactly how your server translates jsp:plugin, insert into

a page a simple jsp:plugin element with type, code, width, and height attributes as in the

following example. Then, access the page from your browser and view the HTML source. You

don’t need to create an applet to perform this experiment.

Note that JRun 3.0 SP2 does not support jsp:plugin; JRun 3.1 supports it properly.

The jsp:plugin Element

The simplest way to use jsp:plugin is to supply four attributes: type, code, width, and height.

You supply a value of applet for the type attribute and use the other three attributes in exactly

the same way as with the APPLET element, with two exceptions: the attribute names are case

sensitive, and single or double quotes are always required around the attribute values. So, for

example, you could replace

<APPLET CODE="MyApplet.class"

 WIDTH=475 HEIGHT=350>

</APPLET>

with

<jsp:plugin type="applet"

 code="MyApplet.class"

 width="475" height="350">

</jsp:plugin>

The jsp:plugin element has a number of other optional attributes. Most parallel the attributes of

the APPLET element. Here is a full list.

• type For applets, this attribute should have a value of applet. However, the Java Plug-In

also permits you to embed JavaBeans components in Web pages. Use a value of bean in

such a case.

• code This attribute is used identically to the CODE attribute of APPLET, specifying the

top-level applet class file that extends Applet or JApplet.

• width This attribute is used identically to the WIDTH attribute of APPLET, specifying the

width in pixels to be reserved for the applet.

• height This attribute is used identically to the HEIGHT attribute of APPLET, specifying the

height in pixels to be reserved for the applet.

• codebase This attribute is used identically to the CODEBASE attribute of APPLET,

specifying the base directory for the applets. The code attribute is interpreted relative to

this directory. As with the APPLET element, if you omit this attribute, the directory of the

current page is used as the default. In the case of JSP, this default location is the directory

where the original JSP file resided, not the system-specific location of the servlet that

results from the JSP file.

• align This attribute is used identically to the ALIGN attribute of APPLET and IMG,

specifying the alignment of the applet within the Web page. Legal values are left, right,

top, bottom, and middle.

• hspace This attribute is used identically to the HSPACE attribute of APPLET, specifying

empty space in pixels reserved on the left and right of the applet.

• vspace This attribute is used identically to the VSPACE attribute of APPLET, specifying

empty space in pixels reserved on the top and bottom of the applet.

• archive This attribute is used identically to the ARCHIVE attribute of APPLET, specifying

a JAR file from which classes and images should be loaded.

• name This attribute is used identically to the NAME attribute of APPLET, specifying a name

to use for interapplet communication or for identifying the applet to scripting languages

like JavaScript.

• title This attribute is used identically to the very rarely used TITLE attribute of APPLET

(and virtually all other HTML elements in HTML 4.0), specifying a title that could be used

for a tool-tip or for indexing.

• jreversion This attribute identifies the version of the Java Runtime Environment (JRE)

that is required. The default is 1.1.

• iepluginurl This attribute designates a URL from which the plug-in for Internet Explorer

can be downloaded. Users who don’t already have the plug-in installed will be prompted to

download it from this location. The default value will direct the user to the Sun site, but for

intranet use you might want to direct the user to a local copy.

• nspluginurl This attribute designates a URL from which the plug-in for Netscape can be

downloaded. The default value will direct the user to the Sun site, but for intranet use you

might want to direct the user to a local copy.

The jsp:param and jsp:params Elements

The jsp:param element is used with jsp:plugin in a manner similar to the way that PARAM is

used with APPLET, specifying a name and value that are accessed from within the applet by

getParameter. There are two main differences, however. First, since jsp:param follows XML

syntax, attribute names must be lower case, attribute values must be enclosed in single or double

quotes, and the element must end with />, not just >. Second, all jsp:param entries must be

enclosed within a jsp:params element.

So, for example, you would replace

<APPLET CODE="MyApplet.class"

 WIDTH=475 HEIGHT=350>

 <PARAM NAME="PARAM1" VALUE="VALUE1">

 <PARAM NAME="PARAM2" VALUE="VALUE2">

</APPLET>

with

<jsp:plugin type="applet"

 code="MyApplet.class"

 width="475" height="350">

 <jsp:params>

 <jsp:param name="PARAM1" value="VALUE1" />

 <jsp:param name="PARAM2" value="VALUE2" />

 </jsp:params>

</jsp:plugin>

The jsp:fallback Element

The jsp:fallback element provides alternative text to browsers that do not support OBJECT or

EMBED. You use this element in almost the same way as you would use alternative text placed

within an APPLET element. So, for example, you would replace

<APPLET CODE="MyApplet.class"

 WIDTH=475 HEIGHT=350>

 Error: this example requires Java.

</APPLET>

with

<jsp:plugin type="applet"

 code="MyApplet.class"

 width="475" height="350">

 <jsp:fallback>

 Error: this example requires Java.

 </jsp:fallback>

</jsp:plugin>

A jsp:plugin Example

Listing 3.16 shows a JSP page that uses the jsp:plugin element to generate an entry for the

Java 2 Plug-In. Listings 3.17 through 3.20 show the code for the applet itself (which uses Swing

and Java 2D), and Figure 3-13 shows the result.

Figure 3-13. Result of PluginApplet.jsp in Internet Explorer

when the Java 2 Plug-In is installed.

Listing 3.16 PluginApplet.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Using jsp:plugin</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Using jsp:plugin</TABLE>

<P>

<CENTER>

<jsp:plugin type="applet"

 code="PluginApplet.class"

 width="370" height="420">

</jsp:plugin>

</CENTER>

</BODY>

</HTML>

Listing 3.17 PluginApplet.java

import javax.swing.*;

/** An applet that uses Swing and Java 2D and thus requires

 * the Java Plug-In.

 */

public class PluginApplet extends JApplet {

 public void init() {

 WindowUtilities.setNativeLookAndFeel();

 setContentPane(new TextPanel());

 }

}

Listing 3.18 TextPanel.java

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/** JPanel that places a panel with text drawn at various angles

 * in the top part of the window and a JComboBox containing

 * font choices in the bottom part.

 */

public class TextPanel extends JPanel

 implements ActionListener {

 private JComboBox fontBox;

 private DrawingPanel drawingPanel;

 public TextPanel() {

 GraphicsEnvironment env =

 GraphicsEnvironment.getLocalGraphicsEnvironment();

 String[] fontNames = env.getAvailableFontFamilyNames();

 fontBox = new JComboBox(fontNames);

 setLayout(new BorderLayout());

 JPanel fontPanel = new JPanel();

 fontPanel.add(new JLabel("Font:"));

 fontPanel.add(fontBox);

 JButton drawButton = new JButton("Draw");

 drawButton.addActionListener(this);

 fontPanel.add(drawButton);

 add(fontPanel, BorderLayout.SOUTH);

 drawingPanel = new DrawingPanel();

 fontBox.setSelectedItem("Serif");

 drawingPanel.setFontName("Serif");

 add(drawingPanel, BorderLayout.CENTER);

 }

 public void actionPerformed(ActionEvent e) {

 drawingPanel.setFontName((String)fontBox.getSelectedItem());

 drawingPanel.repaint();

 }

}

Listing 3.19 DrawingPanel.java

import java.awt.*;

import java.awt.geom.*;

import javax.swing.*;

/** A window with text drawn at an angle. The font is

 * set by means of the setFontName method.

 */

class DrawingPanel extends JPanel {

 private Ellipse2D.Double circle =

 new Ellipse2D.Double(10, 10, 350, 350);

 private GradientPaint gradient =

 new GradientPaint(0, 0, Color.red, 180, 180, Color.yellow,

 true); // true means to repeat pattern

 private Color[] colors = { Color.white, Color.black };

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D)g;

 g2d.setPaint(gradient);

 g2d.fill(circle);

 g2d.translate(185, 185);

 for (int i=0; i<16; i++) {

 g2d.rotate(Math.PI/8.0);

 g2d.setPaint(colors[i%2]);

 g2d.drawString("jsp:plugin", 0, 0);

 }

 }

 public void setFontName(String fontName) {

 setFont(new Font(fontName, Font.BOLD, 35));

 }

}

Listing 3.20 WindowUtilities.java

import javax.swing.*;

import java.awt.*;

/** A few utilities that simplify using windows in Swing. */

public class WindowUtilities {

 /** Tell system to use native look and feel, as in previous

 * releases. Metal (Java) LAF is the default otherwise.

 */

 public static void setNativeLookAndFeel() {

 try {

 UIManager.setLookAndFeel

 (UIManager.getSystemLookAndFeelClassName());

 } catch(Exception e) {

 System.out.println("Error setting native LAF: " + e);

 }

 }

 ... // See www.moreservlets.com for remaining code.

}

3.6 Using JavaBeans with JSP

This section discusses the third general strategy for inserting dynamic content in JSP pages (see

Figure 3-14): by means of JavaBeans components.

Figure 3-14. Strategies for invoking dynamic code from JSP.

The JavaBeans API provides a standard format for Java classes. Visual manipulation tools and

other programs can automatically discover information about classes that follow this format and

can then create and manipulate the classes without the user having to explicitly write any code.

Use of JavaBeans components in JSP provides three advantages over scriptlets and JSP

expressions.

1. No Java syntax. By using beans, page authors can manipulate Java objects, using only

XML-compatible syntax: no parentheses, semicolons, or curly braces. This promotes a

stronger separation between the content and the presentation and is especially useful in

large development teams that have separate Web and Java developers.

2. Simpler object sharing. The JSP bean constructs make it much easier to share objects

among multiple pages or between requests than if the equivalent explicit Java code were

used.

3. Convenient correspondence between request parameters and object

properties. The JSP bean constructs greatly simplify the process of reading request

parameters, converting from strings, and stuffing the results inside objects.

Full coverage of JavaBeans is beyond the scope of this book. If you want details, pick up one of

the many books on the subject or see the documentation and tutorials at

http://java.sun.com/products/javabeans/docs/. For the purposes of this chapter, however, all

you need to know about beans are three simple points:

1. A bean class must have a zero-argument (empty) constructor. You can satisfy

this requirement either by explicitly defining such a constructor or by omitting all

constructors, which results in an empty constructor being created automatically. The

empty constructor will be called when JSP elements create beans. In fact, as we will see in

Section 3.8 (Integrating Servlets and JSP: The MVC Architecture), it is quite common for

a servlet to create a bean and a JSP page to merely look up data from the existing bean.

In that case, the requirement that the bean have a zero-argument constructor is waived.

2. A bean class should have no public instance variables (fields). I hope you already

follow this practice and use accessor methods instead of allowing direct access to the

instance variables. Use of accessor methods lets you do three things without users of your

class changing their code: (a) impose constraints on variable values (e.g., have the

setSpeed method of your Car class disallow negative speeds); (b) change your internal

data structures (e.g., change from English units to metric units internally, but still have

getSpeedInMPH and getSpeedInKPH methods); (c) perform side effects automatically

when values change (e.g., update the user interface when setPosition is called).

3. Persistent values should be accessed through methods called getXxx and

setXxx. For example, if your Car class stores the current number of passengers, you

might have methods named getNumPassengers (which takes no arguments and returns

an int) and setNumPassengers (which takes an int and has a void return type). In such

a case, the Car class is said to have a property named numPassengers (notice the

lowercase n in the property name, but the uppercase N in the method names). If the class

has a get Xxx method but no corresponding set Xxx, the class is said to have a read-only

property named xxx.

The one exception to this naming convention is with boolean properties: they use a

method called is Xxx to look up their values. So, for example, your Car class might have

methods called isLeased (which takes no arguments and returns a boolean) and

setLeased (which takes a boolean and has a void return type), and would be said to have

a boolean property named leased (again, notice the lowercase leading letter in the

property name).

Although you can use JSP scriptlets or expressions to access arbitrary methods of a class,

standard JSP actions for accessing beans can only make use of methods that use the get

Xxx/ set Xxx or is Xxx/ set Xxx naming convention.

Basic Bean Use

The jsp:useBean action lets you load a bean to be used in the JSP page. Beans provide a very

useful capability because they let you exploit the reusability of Java classes without sacrificing the

convenience that JSP adds over servlets alone.

The simplest syntax for specifying that a bean should be used is the following.

<jsp:useBean id="name" class="package.Class" />

This statement usually means “instantiate an object of the class specified by Class, and bind it to

a variable with the name specified by id.”

So, for example, the JSP action

<jsp:useBean id="book1" class="moreservlets.Book" />

can normally be thought of as equivalent to the scriptlet

<% moreservlets.Book book1 = new moreservlets.Book(); %>

The bean class definition should be placed in the server’s class path (generally, in the same

directories where servlets can be installed), not in the directory that contains the JSP file. Thus,

on most servers, the proper location for bean classes is the.../WEB-INF/classes directory

discussed in Sections 1.7 and 1.9. With some servers, however (e.g., ServletExec), you have to

explicitly add bean classes to the server’s CLASSPATH if you are using the default servlet

directories (i.e., not using user-defined Web applications). With user-defined Web applications

(see Chapter 4), all servers permit individual bean classes to be placed in the application’s

WEB-INF/classes directory and JAR files containing bean classes to be placed in the WEB-INF/lib

directory.

Although it is convenient to think of jsp:useBean as being equivalent to building an object,

jsp:useBean has additional options that make it more powerful. As we’ll see later, you can

specify a scope attribute that associates the bean with more than just the current page. If beans

can be shared, it is useful to obtain references to existing beans, rather than always building a

new object. So, the jsp:useBean action specifies that a new object is instantiated only if there is

no existing one with the same id and scope.

Rather than using the class attribute, you are permitted to use beanName instead. The difference

is that beanName can refer either to a class or to a file containing a serialized bean object. The

value of the beanName attribute is passed to the instantiate method of java.beans.Bean.

In most cases, you want the local variable to have the same type as the object being created. In

a few cases, however, you might want the variable to be declared to have a type that is a

superclass of the actual bean type or is an interface that the bean implements. Use the type

attribute to control this declaration, as in the following example.

<jsp:useBean id="thread1" class="MyClass" type="Runnable" />

This use results in code similar to the following being inserted into the _jspService method.

Runnable thread1 = new MyClass();

Note that since jsp:useBean uses XML syntax, the format differs in three ways from HTML syntax:

the attribute names are case sensitive, either single or double quotes can be used (but one or the

other must be used), and the end of the tag is marked with />, not just >. The first two syntactic

differences apply to all JSP elements that look like jsp: xxx. The third difference applies unless

the element is a container with a separate start and end tag.

A few character sequences also require special handling in order to appear inside attribute values.

To get ' within an attribute value, use \'. Similarly, to get ", use \"; to get \, use \\; to get %>,

use %\>; and to get <%, use <\%.

Accessing Bean Properties

Once you have a bean, you can access its properties with jsp:getProperty, which takes a name

attribute that should match the id given in jsp:useBean and a property attribute that names the

property of interest. Alternatively, you could use a JSP expression and explicitly call a method on

the object that has the variable name specified with the id attribute. For example, assuming that

the Book class has a String property called title and that you’ve created an instance called

book1 by using the jsp:useBean example just given, you could insert the value of the title

property into the JSP page in either of the following two ways.

<jsp:getProperty name="book1" property="title" />

<%= book1.getTitle() %>

The first approach is preferable in this case, since the syntax is more accessible to Web page

designers who are not familiar with the Java programming language. However, direct access to

the variable is useful when you are using loops, conditional statements, and methods not

represented as properties.

If you are not familiar with the concept of bean properties, the standard interpretation of the

statement “this bean has a property of type T called foo ” is “this class has a method called

getFoo that returns something of type T, and it has another method called setFoo that takes a T

as an argument and stores it for later access by getFoo.”

Setting Bean Properties: Simple Case

To modify bean properties, you normally use jsp:setProperty. This action has several different

forms, but with the simplest form you just supply three attributes: name (which should match the

id given by jsp:useBean), property (the name of the property to change), and value (the new

value). Later in this section I present some alternate forms of jsp:setProperty that let you

automatically associate a property with a request parameter. That section also explains how to

supply values that are computed at request time (rather than fixed strings) and discusses the

type conversion conventions that let you supply string values for parameters that expect

numbers, characters, or boolean values.

An alternative to using the jsp:setProperty action is to use a scriptlet that explicitly calls

methods on the bean object. For example, given the book1 object shown earlier in this section,

you could use either of the following two forms to modify the title property.

<jsp:setProperty name="book1"

 property="title"

 value="Core Servlets and JavaServer Pages" />

<% book1.setTitle("Core Servlets and JavaServer Pages"); %>

Using jsp:setProperty has the advantage that it is more accessible to the nonprogrammer, but

direct access to the object lets you perform more complex operations such as setting the value

conditionally or calling methods other than get Xxx or set Xxx on the object.

Example: StringBean

Listing 3.21 presents a simple class called StringBean that is in the moreservlets package.

Because the class has no public instance variables (fields) and has a zero-argument constructor

since it doesn’t declare any explicit constructors, it satisfies the basic criteria for being a bean.

Since StringBean has a method called getMessage that returns a String and another method

called setMessage that takes a String as an argument, in beans terminology the class is said to

have a String property called message.

Listing 3.22 shows a JSP file that uses the StringBean class. First, an instance of StringBean is

created with the jsp:useBean action as follows.

<jsp:useBean id="stringBean" class="moreservlets.StringBean" />

After this, the message property can be inserted into the page in either of the following two ways.

<jsp:getProperty name="stringBean" property="message" />

<%= stringBean.getMessage() %>

The message property can be modified in either of the following two ways.

<jsp:setProperty name="stringBean"

 property="message"

 value="some message" />

<% stringBean.setMessage("some message"); %>

Please note that I do not recommend that you really mix the explicit Java syntax and the XML

syntax in the same page; this example is just meant to illustrate the equivalent results of the two

forms.

Figure 3-15 shows the result.

Figure 3-15. Result of StringBean.jsp.

Listing 3.21 StringBean.java

package moreservlets;

/** A simple bean that has a single String property

 * called message.

 */

public class StringBean {

 private String message = "No message specified";

 public String getMessage() {

 return(message);

 }

 public void setMessage(String message) {

 this.message = message;

 }

}

Listing 3.22 StringBean.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Using JavaBeans with JSP</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Using JavaBeans with JSP</TABLE>

<jsp:useBean id="stringBean" class="moreservlets.StringBean" />

Initial value (getProperty):

 <I><jsp:getProperty name="stringBean"

 property="message" /></I>

Initial value (JSP expression):

 <I><%= stringBean.getMessage() %></I>

<jsp:setProperty name="stringBean"

 property="message"

 value="Best string bean: Fortex" />

 Value after setting property with setProperty:

 <I><jsp:getProperty name="stringBean"

 property="message" /></I>

<% stringBean.setMessage("My favorite: Kentucky Wonder"); %>

 Value after setting property with scriptlet:

 <I><%= stringBean.getMessage() %></I>

</BODY>

</HTML>

Setting Bean Properties

You normally use jsp:setProperty to set bean properties. The simplest form of this action takes

three attributes: name (which should match the id given by jsp:useBean), property (the name

of the property to change), and value (the new value).

For example, the SaleEntry class shown in Listing 3.23 has an itemID property (a String), a

numItems property (an int), a discountCode property (a double), and two read-only properties

itemCost and totalCost (each of type double). Listing 3.24 shows a JSP file that builds an

instance of the SaleEntry class by means of:

<jsp:useBean id="entry" class="moreservlets.SaleEntry" />

The results are shown in Figure 3-16.

Figure 3-16. Result of SaleEntry1.jsp.

Once the bean is instantiated, using an input parameter to set the itemID is straightforward, as

shown below.

<jsp:setProperty

 name="entry"

 property="itemID"

 value='<%= request.getParameter("itemID") %>' />

Notice that I used a JSP expression for the value parameter. Most JSP attribute values have to be

fixed strings, but the value attribute of jsp:setProperty is permitted to be a request time

expression. If the expression uses double quotes internally, recall that single quotes can be used

instead of double quotes around attribute values and that \' and \" can be used to represent

single or double quotes within an attribute value. In any case, the point is that it is possible to use

JSP expressions here, but doing so requires the use of explicit Java code. In some applications,

avoiding such explicit code is the main reason for using beans in the first place. Besides, as the

next examples will show, the situation becomes much more complicated when the bean property

is not of type String. The next two subsections will discuss how to solve these problems.

Listing 3.23 SaleEntry.java

package moreservlets;

/** Simple bean to illustrate the various forms

 * of jsp:setProperty.

 */

public class SaleEntry {

 private String itemID = "unknown";

 private double discountCode = 1.0;

 private int numItems = 0;

 public String getItemID() {

 return(itemID);

 }

 public void setItemID(String itemID) {

 if (itemID != null) {

 this.itemID = itemID;

 } else {

 this.itemID = "unknown";

 }

 }

 public double getDiscountCode() {

 return(discountCode);

 }

 public void setDiscountCode(double discountCode) {

 this.discountCode = discountCode;

 }

 public int getNumItems() {

 return(numItems);

 }

 public void setNumItems(int numItems) {

 this.numItems = numItems;

 }

 // In real life, replace this with database lookup.

 public double getItemCost() {

 double cost;

 if (itemID.equals("a1234")) {

 cost = 12.99*getDiscountCode();

 } else {

 cost = -9999;

 }

 return(roundToPennies(cost));

 }

 private double roundToPennies(double cost) {

 return(Math.floor(cost*100)/100.0);

 }

 public double getTotalCost() {

 return(getItemCost() * getNumItems());

 }

}

Listing 3.24 SaleEntry1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Using jsp:setProperty</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Using jsp:setProperty</TABLE>

<jsp:useBean id="entry" class="moreservlets.SaleEntry" />

<jsp:setProperty

 name="entry"

 property="itemID"

 value='<%= request.getParameter("itemID") %>' />

<%

int numItemsOrdered = 1;

try {

 numItemsOrdered =

 Integer.parseInt(request.getParameter("numItems"));

} catch(NumberFormatException nfe) {}

%>

<jsp:setProperty

 name="entry"

 property="numItems"

 value="<%= numItemsOrdered %>" />

<%

double discountCode = 1.0;

try {

 String discountString =

 request.getParameter("discountCode");

 // In JDK 1.1 use Double.valueOf(discountString).doubleValue()

 discountCode =

 Double.parseDouble(discountString);

} catch(NumberFormatException nfe) {}

%>

<jsp:setProperty

 name="entry"

 property="discountCode"

 value="<%= discountCode %>" />

<TABLE ALIGN="CENTER" BORDER=1>

<TR CLASS="COLORED">

 <TH>Item ID<TH>Unit Price<TH>Number Ordered<TH>Total Price

<TR ALIGN="RIGHT">

 <TD><jsp:getProperty name="entry" property="itemID" />

 <TD>$<jsp:getProperty name="entry" property="itemCost" />

 <TD><jsp:getProperty name="entry" property="numItems" />

 <TD>$<jsp:getProperty name="entry" property="totalCost" />

</TABLE>

</BODY>

</HTML>

Associating Individual Properties with Input Parameters

Setting the itemID property is easy since its value is a String. Setting the numItems and

discountCode properties is a bit more problematic since their values must be numbers and

getParameter returns a String. Here is the somewhat cumbersome code required to set

numItems:

<%

int numItemsOrdered = 1;

try {

 numItemsOrdered =

 Integer.parseInt(request.getParameter("numItems"));

} catch(NumberFormatException nfe) {}

%>

<jsp:setProperty

 name="entry"

 property="numItems"

 value="<%= numItemsOrdered %>" />

Fortunately, JSP has a nice solution to this problem. It lets you associate a property with a request

parameter and automatically perform type conversion from strings to numbers, characters, and

boolean values. Instead of using the value attribute, you use param to name an input parameter.

The value of the named request parameter is automatically used as the value of the bean

property, and simple type conversions are performed automatically. If the specified parameter is

missing from the request, no action is taken (the system does not pass null to the associated

property). So, for example, setting the numItems property can be simplified to:

<jsp:setProperty

 name="entry"

 property="numItems"

 param="numItems" />

Listing 3.25 shows the relevant part of the JSP page reworked in this manner.

Listing 3.25 SaleEntry2.jsp

...

<jsp:useBean id="entry" class="moreservlets.SaleEntry" />

<jsp:setProperty

 name="entry"

 property="itemID"

 param="itemID" />

<jsp:setProperty

 name="entry"

 property="numItems"

 param="numItems" />

<jsp:setProperty

 name="entry"

 property="discountCode"

 param="discountCode" />

...

Converting Types Automatically

When bean properties are associated with input parameters, the system automatically performs

simple type conversions for properties that expect primitive types (byte, int, double, etc.) or

the corresponding wrapper types (Byte, Integer, Double, etc.).

Associating All Properties with Input Parameters

Associating a property with an input parameter saves you the bother of performing conversions

for many of the simple built-in types. JSP lets you take the process one step further by associating

all properties with identically named input parameters. All you have to do is to supply "*" for the

property parameter. So, for example, all three of the jsp:setProperty statements of Listing

3.25 can be replaced by the following simple line. Listing 3.26 shows the relevant part of the

page.

<jsp:setProperty name="entry" property="*" />

Although this approach is simple, three small warnings are in order. First, as with individually

associated properties, no action is taken when an input parameter is missing. In particular, the

system does not supply null as the property value. Second, automatic type conversion does not

guard against illegal values as effectively as does manual type conversion. So, you might

consider error pages when using automatic type conversion. Third, since both bean property

names and request parameters are case sensitive, the property name and request parameter

name must match exactly.

Listing 3.26 SaleEntry3.jsp

...

<jsp:useBean id="entry" class="msajsp.SaleEntry" />

<jsp:setProperty name="entry" property="*" />

...

Sharing Beans

Up to this point, I have treated the objects that were created with jsp:useBean as though they

were simply bound to local variables in the _jspService method (which is called by the service

method of the servlet that is generated from the page). Although the beans are indeed bound to

local variables, that is not the only behavior. They are also stored in one of four different locations,

depending on the value of the optional scope attribute of jsp:useBean. The scope attribute has

the following possible values:

• page This is the default value. It indicates that, in addition to being bound to a local

variable, the bean object should be placed in the PageContext object for the duration of

the current request. Storing the object there means that servlet code can access it by

calling getAttribute on the predefined pageContext variable.

• application This very useful value means that, in addition to being bound to a local

variable, the bean will be stored in the shared ServletContext available through the

predefined application variable or by a call to getServletContext(). The

ServletContext is shared by all servlets in the same Web application. Values in the

ServletContext can be retrieved by the getAttribute method. This sharing has a couple

of ramifications.

First, it provides a simple mechanism for multiple servlets and JSP pages to access the

same object. See the following subsection (Creating Beans Conditionally) for details and

an example.

Second, it lets a servlet create a bean that will be used in JSP pages, not just access one

that was previously created. This approach lets a servlet handle complex user requests by

setting up beans, storing them in the ServletContext, then forwarding the request to one

of several possible JSP pages to present results appropriate to the request data. For

details on this approach, see Section 3.8 (Integrating Servlets and JSP: The MVC

Architecture).

• session This value means that, in addition to being bound to a local variable, the bean

will be stored in the HttpSession object associated with the current request, where it can

be retrieved with getAttribute.

• request This value signifies that, in addition to being bound to a local variable, the bean

object should be placed in the ServletRequest object for the duration of the current

request, where it is available by means of the getAttribute method. Storing values in the

request object is common when using the MVC (Model 2) architecture. For details, see

Section 3.8 (Integrating Servlets and JSP: The MVC Architecture).

Creating Beans Conditionally

To make bean sharing more convenient, you can conditionally evaluate bean-related elements in

two situations.

First, a jsp:useBean element results in a new bean being instantiated only if no bean with the

same id and scope can be found. If a bean with the same id and scope is found, the preexisting

bean is simply bound to the variable referenced by id. A typecast is performed if the preexisting

bean is of a more specific type than the bean being declared, and a ClassCastException results

if this typecast is illegal.

Second, instead of

<jsp:useBean ... />

you can use

<jsp:useBean ...>statements</jsp:useBean>

The point of using the second form is that the statements between the jsp:useBean start and end

tags are executed only if a new bean is created, not if an existing bean is used. This conditional

execution is convenient for setting initial bean properties for beans that are shared by multiple

pages. Since you don’t know which page will be accessed first, you don’t know which page should

contain the initialization code. No problem: they can all contain the code, but only the page first

accessed actually executes it. For example, Listing 3.27 shows a simple bean that can be used to

record cumulative access counts to any of a set of related pages. It also stores the name of the

first page that was accessed. Since there is no way to predict which page in a set will be accessed

first, each page that uses the shared counter has statements like the following to ensure that only

the first page that is accessed sets the firstPage attribute.

<jsp:useBean id="counter"

 class="moreservlets.AccessCountBean"

 scope="application">

 <jsp:setProperty name="counter"

 property="firstPage"

 value="Current Page Name" />

</jsp:useBean>

Listing 3.28 shows the first of three pages that use this approach. The source code archive at

http://www.moreservlets.com contains the other two nearly identical pages. Figure 3-17 shows

a typical result.

Figure 3-17. Result of a user visiting SharedCounts3.jsp. The

first page visited by any user was SharedCounts2.jsp.

SharedCounts1.jsp, SharedCounts2.jsp, and

SharedCounts3.jsp were collectively visited a total of twelve

times after the server was last started but before the visit

shown in this figure.

Listing 3.27 AccessCountBean.java

package moreservlets;

/** Simple bean to illustrate sharing beans through

 * use of the scope attribute of jsp:useBean.

 */

public class AccessCountBean {

 private String firstPage;

 private int accessCount = 1;

 public String getFirstPage() {

 return(firstPage);

 }

 public void setFirstPage(String firstPage) {

 this.firstPage = firstPage;

 }

 public int getAccessCount() {

 return(accessCount);

 }

 public void setAccessCountIncrement(int increment) {

 accessCount = accessCount + increment;

 }

}

Listing 3.28 SharedCounts1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Shared Access Counts: Page 1</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Shared Access Counts: Page 1</TABLE>

<P>

<jsp:useBean id="counter"

 class="moreservlets.AccessCountBean"

 scope="application">

 <jsp:setProperty name="counter"

 property="firstPage"

 value="SharedCounts1.jsp" />

</jsp:useBean>

Of SharedCounts1.jsp (this page),

SharedCounts2.jsp, and

SharedCounts3.jsp,

<jsp:getProperty name="counter" property="firstPage" />

was the first page accessed.

<P>

Collectively, the three pages have been accessed

<jsp:getProperty name="counter" property="accessCount" />

times.

<jsp:setProperty name="counter" property="accessCountIncrement"

 value="1" />

</BODY>

</HTML>

3.7 Defining Custom JSP Tag Libraries

JSP 1.1 introduced an extremely valuable new capability: the ability to create your own JSP tags.

You define how a tag, its attributes, and its body are interpreted, then group your tags into

collections called tag libraries that can be used in any number of JSP files. The ability to define tag

libraries in this way permits Java developers to boil down complex server-side behaviors into

simple and easy-to-use elements that content developers can easily incorporate into their JSP

pages. This section introduces the basic capabilities of custom tags. New features introduced in

JSP 1.2 are covered in Chapter 11 (New Tag Library Features in JSP 1.2).

Custom tags accomplish some of the same goals as beans that are accessed with jsp:useBean

(see Figure 3-18)—encapsulating complex behaviors into simple and accessible forms. There are

several differences, however:

Figure 3-18. Strategies for invoking dynamic code from JSP.

1. Custom tags can manipulate JSP content; beans cannot.

2. Complex operations can be reduced to a significantly simpler form with custom tags than

with beans.

3. Custom tags require quite a bit more work to set up than do beans.

4. Custom tags usually define relatively self-contained behavior, whereas beans are often

defined in one servlet and then used in a different servlet or JSP page (see the following

section on integrating servlets and JSP).

5. Custom tags are available only in JSP 1.1 and later, but beans can be used in all JSP 1.x

versions.

The Components That Make Up a Tag Library

To use custom JSP tags, you need to define three separate components: the tag handler class

that defines the tag’s behavior, the tag library descriptor file that maps the XML element names

to the tag implementations, and the JSP file that uses the tag library. The rest of this subsection

gives an overview of each of these components, and the following subsections give details on how

to build these components for various styles of tags. Most people find that the first tag they write

is the hardest—the difficulty being in knowing where each component should go, not in writing

the components. So, I suggest that you start by just downloading the examples of this subsection

and getting the example tag working. After that, you can move on to the following subsections

and try some of your own tags.

The Tag Handler Class

When defining a new tag, your first task is to define a Java class that tells the system what to do

when it sees the tag. This class must implement the javax.servlet.jsp.tagext.Tag interface.

You usually accomplish this by extending the TagSupport or BodyTagSupport class.

Listing 3.29 is an example of a simple tag that just inserts “ Custom tag example

(msajsp.tags.ExampleTag) ” into the JSP page wherever the corresponding tag is used. Don’t

worry about understanding the exact behavior of this class; that will be made clear in the next

subsection. For now, just note that the class is in the moreservlets.tags package and is called

ExampleTag. Consequently, the class file needs to be placed in tags subdirectory of the

moreservlets subdirectory of whatever directory the current Web application is using for Java

class files (i.e.,.../WEB-INF/classes—see Sections 1.7 and 1.9). With Tomcat, for example, the

class file would be in install_dir/webapps/ROOT/WEB-INF/classes/moreservlets/tags/

ExampleTag.class.

Listing 3.29 ExampleTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

/** Very simple JSP tag that just inserts a string

 * ("Custom tag example...") into the output.

 * The actual name of the tag is not defined here;

 * that is given by the Tag Library Descriptor (TLD)

 * file that is referenced by the taglib directive

 * in the JSP file.

 */

public class ExampleTag extends TagSupport {

 public int doStartTag() {

 try {

 JspWriter out = pageContext.getOut();

 out.print("Custom tag example " +

 "(moreservlets.tags.ExampleTag)");

 } catch(IOException ioe) {

 System.out.println("Error in ExampleTag: " + ioe);

 }

 return(SKIP_BODY);

 }

}

The Tag Library Descriptor File

Once you have defined a tag handler, your next task is to identify the class to the server and to

associate it with a particular XML tag name. This task is accomplished by means of a tag library

descriptor file (in XML format) like the one shown in Listing 3.30. This file contains some fixed

information, an arbitrary short name for your library, a short description, and a series of tag

descriptions. The nonbold part of the listing is the same in virtually all tag library descriptors and

can be copied verbatim from the source code archive at http://www.moreservlets.com.

The format of tag descriptions is described in later sections. For now, just note that the tag

element defines the main name of the tag (really tag suffix, as will be seen shortly) and identifies

the class that handles the tag. Since the tag handler class is in the moreservlets.tags package,

the fully qualified class name of moreservlets.tags.ExampleTag is used. Note that this is a class

name, not a URL or relative path name. The class can be installed anywhere on the server that

beans or other supporting classes can be put. With Tomcat, the base location for classes in the

default Web application is install_dir/webapps/ROOT/WEB-INF/classes, so ExampleTag.class

would be in install_dir/webapps/ROOT/WEB-INF/classes/moreservlets/tags. Although it is

always a good idea to put your servlet classes in packages, a surprising feature of Tomcat is that

tag handlers are required to be in packages.

Listing 3.30 msajsp-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>

 <tlibversion>1.0</tlibversion>

 <jspversion>1.1</jspversion>

 <shortname>msajsp-tags</shortname>

 <info>

 A tag library from More Servlets and JavaServer Pages,

 http://www.moreservlets.com/.

 </info>

 <tag>

 <name>example</name>

 <tagclass>moreservlets.tags.ExampleTag</tagclass>

 <bodycontent>empty</bodycontent>

 <info>Simplest example: inserts one line of output</info>

 </tag>

 ...

</taglib>

The JSP File

Once you have a tag handler implementation and a tag library description, you are ready to write

a JSP file that makes use of the tag. Listing 3.31 gives an example. Somewhere before the first

use of your tag, you need to use the taglib directive. This directive has the following form:

<%@ taglib uri="..." prefix="..." %>

The required uri attribute can be either an absolute or relative URL referring to a tag library

descriptor file like the one shown in Listing 3.30. For now, we will use a simple relative URL

corresponding to a TLD file that is in the same directory as the JSP page that uses it. When we get

to Web applications, however (see Chapter 4), we will see that it makes more sense for larger

applications to put the TLD files in a subdirectory inside the WEB-INF directory. This configuration

makes it easier to reuse the same TLD file from JSP pages in multiple directories, and it prevents

end users from retrieving the TLD file. Furthermore, as we will see in Section 5.13 (Locating Tag

Library Descriptors), you can use the Web application deployment descriptor (i.e., web.xml) to

change the meaning of strings supplied to the uri attribute of the taglib directive. When starting

out, however, you will probably find it easiest to put the TLD file in the same directory as the JSP

page that uses it and then use a simple filename as the value of the uri attribute.

The prefix attribute, also required, specifies a prefix that will be used in front of whatever tag

name the tag library descriptor defined. For example, if the TLD file defines a tag named tag1 and

the prefix attribute has a value of test, the actual tag name would be test:tag1. This tag could

be used in either of the following two ways, depending on whether it is defined to be a container

that makes use of the tag body:

<test:tag1>Arbitrary JSP</test:tag1>

or just

<test:tag1 />

To illustrate, the descriptor file of Listing 3.30 is called msajsp-taglib.tld and resides in the

same directory as the JSP file shown in Listing 3.31 (i.e., any of the standard locations for JSP files

described in Section 3.3, not the directory where Java class files are placed). Thus, the taglib

directive in the JSP file uses a simple relative URL giving just the filename, as shown below.

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

Furthermore, since the prefix attribute is msajsp (for More Servlets and JavaServer Pages), the

rest of the JSP page uses msajsp:example to refer to the example tag defined in the descriptor

file. Figure 3-19 shows the result.

Figure 3-19. Result of SimpleExample.jsp.

Listing 3.31 SimpleExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

<TITLE><msajsp:example /></TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H1><msajsp:example /></H1>

<msajsp:example />

</BODY>

</HTML>

Defining a Basic Tag

This subsection gives details on defining simple tags without attributes or tag bodies; the tags are

thus of the form <prefix:tagname />.

A Basic Tag: Tag Handler Class

Tags that either have no body or that merely include the body verbatim should extend the

TagSupport class. This is a built-in class in the javax.servlet.jsp.tagext package that

implements the Tag interface and contains much of the standard functionality basic tags need.

Because of other classes you will use, your tag should normally import classes in the

javax.servlet.jsp and java.io packages as well. So, most tag implementations contain the

following import statements after the package declaration:

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

I recommend that you grab an example from http://www.moreservlets.com and use it as the

starting point for your own implementations.

For a tag without attributes or body, all you need to do is override the doStartTag method, which

defines code that gets called at request time at the place where the element’s start tag is found.

To generate output, the method should obtain the JspWriter (the specialized Writer available in

JSP pages through use of the predefined out variable) from the automatically defined

pageContext field by means of getOut. In addition to the getOut method, the pageContext field

(of type PageContext) has methods for obtaining other data structures associated with the

request. The most important ones are getRequest, getResponse, getServletContext, and

getSession.

Since the print method of JspWriter throws IOException, the print statements should be

inside a try/catch block. To report other types of errors to the client, you can declare that your

doStartTag method throws a JspException and then throw one when the error occurs.

If your tag does not have a body, your doStartTag should return the SKIP_BODY constant. This

instructs the system to ignore any content between the tag’s start and end tags. As we will see

shortly, SKIP_BODY is sometimes useful even when there is a tag body (e.g., if you sometimes

include it and other times omit it), but the simple tag we’re developing here will be used as a

stand-alone tag (<prefix:tagname />) and thus does not have body content.

Listing 3.32 shows a tag implementation that uses this approach to generate a random 50-digit

prime number through use of the Primes class (Listing 3.33), which is adapted from Section 7.3

(Persistent Servlet State and Auto-Reloading Pages) of Core Servlets and JavaServer Pages.

Remember that the full text of Core Servlets and JavaServer Pages is available in PDF at

http://www.moreservlets.com.

Listing 3.32 SimplePrimeTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.math.*;

import moreservlets.*;

/** Generates a prime of approximately 50 digits.

 * (50 is actually the length of the random number

 * generated -- the first prime above that number will

 * be returned.)

 */

public class SimplePrimeTag extends TagSupport {

 protected int len = 50;

 public int doStartTag() {

 try {

 JspWriter out = pageContext.getOut();

 BigInteger prime = Primes.nextPrime(Primes.random(len));

 out.print(prime);

 } catch(IOException ioe) {

 System.out.println("Error generating prime: " + ioe);

 }

 return(SKIP_BODY);

 }

}

Listing 3.33 Primes.java

package moreservlets;

import java.math.BigInteger;

/** A few utilities to generate a large random BigInteger,

 * and find the next prime number above a given BigInteger.

 */

public class Primes {

 // Note that BigInteger.ZERO and BigInteger.ONE are

 // unavailable in JDK 1.1.

 private static final BigInteger ZERO = BigInteger.ZERO;

 private static final BigInteger ONE = BigInteger.ONE;

 private static final BigInteger TWO = new BigInteger("2");

 // Likelihood of false prime is less than 1/2^ERR_VAL

 // Assumedly BigInteger uses the Miller-Rabin test or

 // equivalent, and thus is NOT fooled by Carmichael numbers.

 // See section 33.8 of Cormen et al.'s Introduction to

 // Algorithms for details.

 private static final int ERR_VAL = 100;

 public static BigInteger nextPrime(BigInteger start) {

 if (isEven(start))

 start = start.add(ONE);

 else

 start = start.add(TWO);

 if (start.isProbablePrime(ERR_VAL))

 return(start);

 else

 return(nextPrime(start));

 }

 private static boolean isEven(BigInteger n) {

 return(n.mod(TWO).equals(ZERO));

 }

 private static StringBuffer[] digits =

 { new StringBuffer("0"), new StringBuffer("1"),

 new StringBuffer("2"), new StringBuffer("3"),

 new StringBuffer("4"), new StringBuffer("5"),

 new StringBuffer("6"), new StringBuffer("7"),

 new StringBuffer("8"), new StringBuffer("9") };

 private static StringBuffer randomDigit(boolean isZeroOK) {

 int index;

 if (isZeroOK) {

 index = (int)Math.floor(Math.random() * 10);

 } else {

 index = 1 + (int)Math.floor(Math.random() * 9);

 }

 return(digits[index]);

 }

 /** Create a random big integer where every digit is

 * selected randomly (except that the first digit

 * cannot be a zero).

 */

 public static BigInteger random(int numDigits) {

 StringBuffer s = new StringBuffer("");

 for(int i=0; i<numDigits; i++) {

 if (i == 0) {

 // First digit must be non-zero.

 s.append(randomDigit(false));

 } else {

 s.append(randomDigit(true));

 }

 }

 return(new BigInteger(s.toString()));

 }

 /** Simple command-line program to test. Enter number

 * of digits, and it picks a random number of that

 * length and then prints the first 50 prime numbers

 * above that.

 */

 public static void main(String[] args) {

 int numDigits;

 try {

 numDigits = Integer.parseInt(args[0]);

 } catch (Exception e) { // No args or illegal arg.

 numDigits = 150;

 }

 BigInteger start = random(numDigits);

 for(int i=0; i<50; i++) {

 start = nextPrime(start);

 System.out.println("Prime " + i + " = " + start);

 }

 }

}

A Basic Tag: Tag Library Descriptor File

The general format of a descriptor file is almost always the same: it should contain an XML

version identifier followed by a DOCTYPE declaration followed by a taglib container element, as

shown earlier in Listing 3.10. To get started, just download a sample from the source code archive

at http://www.moreservlets.com. The important part to understand is what goes in the taglib

element: the tag element. For tags without attributes, the tag element should contain four

elements between <tag> and </tag>:

1. name, whose body defines the base tag name to which the prefix of the taglib directive

will be attached. In this case, I use
2.

<name>simplePrime</name>

to assign a base tag name of simplePrime.

3. tagclass, which gives the fully qualified class name of the tag handler. In this case, I use
4.

<tagclass>moreservlets.tags.SimplePrimeTag</tagclass>

Note that tagclass was renamed tag-class in JSP 1.2. So, if you use features specific to

JSP 1.2 and use the JSP 1.2 DOCTYPE, you should use tag-class, not tagclass.

5. bodycontent, which can be omitted, but if present should have the value empty for tags

without bodies. Tags with normal bodies that might be interpreted as normal JSP use a

value of JSP (the default value), and the rare tags whose handlers completely process the

body themselves use a value of tagdependent. For the SimplePrimeTag discussed here,

I use empty as below:
6.

<bodycontent>empty</bodycontent>

Note that bodycontent was renamed body-content in JSP 1.2. However, as with the

other new element names, you are only required to make the change if you use the JSP

1.2 DOCTYPE.

7. info, which gives a short description. Here, I use
8.

<info>Outputs a random 50-digit prime.</info>

Note that info was renamed description in JSP 1.2.

Core Note

In JSP 1.2, tagclass was renamed tag-class, bodycontent was

renamed body-content, and info was renamed description.

However, the old element names still work in JSP 1.2 servers as long as

the TLD file uses the JSP 1.1 DOCTYPE.

Listing 3.34 shows the relevant part of the TLD file.

Listing 3.34 msajsp-taglib.tld (Excerpt 1)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE ...>

<taglib>

 ...

 <tag>

 <name>simplePrime</name>

 <tagclass>moreservlets.tags.SimplePrimeTag</tagclass>

 <bodycontent>empty</bodycontent>

 <info>Outputs a random 50-digit prime.</info>

 </tag>

 ...

</taglib>

A Basic Tag: JSP File

JSP documents that make use of custom tags need to use the taglib directive, supplying a uri

attribute that gives the location of the tag library descriptor file and a prefix attribute that

specifies a short string that will be attached (along with a colon) to the main tag name.

Remember that the uri attribute can be an absolute or relative URL. When first learning, it is

easiest to use a simple relative URL corresponding to a TLD file that is in the same directory as the

JSP page that uses it. When we get to Web applications, however (see Chapter 4), we will see that

it makes more sense for larger applications to put the TLD files in a subdirectory inside the

WEB-INF directory. This configuration makes it easier to reuse the same TLD file from JSP pages

in multiple directories, and it prevents end users from retrieving the TLD file.

Furthermore, as we will see in Section 5.13 (Locating Tag Library Descriptors), you can use the

Web application deployment descriptor (i.e., web.xml) to change the meaning of strings supplied

to the uri attribute of the taglib directive. For now, however, you will probably find it easiest to

put the TLD file in the same directory as the JSP page that uses it and then use a simple filename

as the value of the uri attribute.

Listing 3.35 shows a JSP document that uses

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

to use the TLD file just shown in Listing 3.34 with a prefix of msajsp. Since the base tag name is

simplePrime, the full tag used is

<msajsp:simplePrime />

Figure 3-20 shows the result.

Figure 3-20. Result of SimplePrimeExample.jsp.

Listing 3.35 SimplePrimeExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Some 50-Digit Primes</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H1>Some 50-Digit Primes</H1>

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

 <msajsp:simplePrime />

 <msajsp:simplePrime />

 <msajsp:simplePrime />

 <msajsp:simplePrime />

</BODY>

</HTML>

Assigning Attributes to Tags

Allowing tags like

<prefix:name attribute1="value1" attribute2="value2"... />

adds significant flexibility to your tag library. This subsection explains how to add attribute

support to your tags.

Tag Attributes: Tag Handler Class

Providing support for attributes is straightforward. Use of an attribute called attribute1 simply

results in a call to a method called setAttribute1 in your class that extends TagSupport (or that

otherwise implements the Tag interface). Consequently, adding support for an attribute named

attribute1 is merely a matter of implementing the following method:

public void setAttribute1(String value1) {

 doSomethingWith(value1);

}

Note that an attribute of attributeName (lowercase a) corresponds to a method called

setAttributeName (uppercase A).

Static values (i.e., those determined at page translation time) are always supplied to the method

as type String. However, you can use rtexprvalue and type elements in the TLD file to permit

attributes of other types to be dynamically calculated. See the following subsection for details.

One of the most common things to do in the attribute handler is to simply store the attribute in a

field that will later be used by doStartTag or a similar method. For example, the following is a

section of a tag implementation that adds support for the message attribute.

private String message = "Default Message";

public void setMessage(String message) {

 this.message = message;

}

If the tag handler will be accessed from other classes, it is a good idea to provide a

getAttributeName method in addition to the setAttributeName method. Only

setAttributeName is required, however.

Listing 3.36 shows a subclass of SimplePrimeTag that adds support for the length attribute.

When such an attribute is supplied, it results in a call to setLength, which converts the input

String to an int and stores it in the len field already used by the doStartTag method in the

parent class.

Listing 3.36 PrimeTag.java

package moreservlets.tags;

/** Generates an N-digit random prime (default N = 50).

 * Extends SimplePrimeTag, adding a length attribute

 * to set the size of the prime. The doStartTag

 * method of the parent class uses the len field

 * to determine the length of the prime.

 */

public class PrimeTag extends SimplePrimeTag {

 public void setLength(String length) {

 try {

 len = Integer.parseInt(length);

 } catch(NumberFormatException nfe) {

 len = 50;

 }

 }

}

Tag Attributes: Tag Library Descriptor File

Tag attributes must be declared inside the tag element by means of an attribute element. The

attribute element has five nested elements that can appear between <attribute> and

</attribute>.

1. name, a required element that defines the case-sensitive attribute name. In this case, I

use
2.

<name>length</name>

3. required, a required element that stipulates whether the attribute must always be

supplied (true) or is optional (false) . In this case, to indicate that length is optional, I

use
4.

<required>false</required>

If required is false and the JSP page omits the attribute, no call is made to the

setAttributeName method. So, be sure to give default values to the fields that the

method sets. Omitting a required attribute results in an error at page translation time.

5. rtexprvalue, an optional element that indicates whether the attribute value can be a

JSP expression like <%= expression %> (true) or whether it must be a fixed string (false).

The default value is false, so this element is usually omitted except when you want to

allow attributes to have values determined at request time.

6. type, an optional element that designates the class to which the value should be typecast.

Designating a type is only legal when rtexprvalue is true.

7. example, an optional element that gives an example of how to use the tag. This element

is intended for development environments and has no effect on execution; it is available

only in JSP 1.2.

Listing 3.37 shows the relevant tag element within the tag library descriptor file. In addition to

supplying an attribute element to describe the length attribute, the tag element also contains

the standard name (prime), tagclass (moreservlets.tags.PrimeTag), bodycontent (empty),

and info (short description) elements. Note that if you use features specific to JSP 1.2 and the

JSP 1.2 DOCTYPE (see Chapter 11, “ New Tag Library Features in JSP 1.2 ”), you should change

tagclass, bodycontent, and info to tag-class, body-content, and description, respectively.

Listing 3.37 msajsp-taglib.tld (Excerpt 2)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE ...>

<taglib>

 ...

 <tag>

 <name>prime</name>

 <tagclass>moreservlets.tags.PrimeTag</tagclass>

 <bodycontent>empty</bodycontent>

 <info>Outputs a random N-digit prime.</info>

 <attribute>

 <name>length</name>

 <required>false</required>

 </attribute>

 </tag>

 ...

</taglib>

Tag Attributes: JSP File

Listing 3.38 shows a JSP document that uses the taglib directive to load the tag library

descriptor file and to specify a prefix of msajsp. Since the prime tag is defined to permit a length

attribute, Listing 3.38 uses

<msajsp:prime length="xxx" />

Remember that custom tags follow XML syntax, which requires attribute values to be enclosed in

either single or double quotes. Also, since the length attribute is not required, it is permissible to

just use

<msajsp:prime />

The tag handler is responsible for using a reasonable default value in such a case. Figure 3-21

shows the result of Listing 3.38.

Figure 3-21. Result of PrimeExample.jsp.

Listing 3.38 PrimeExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Some N-Digit Primes</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H1>Some N-Digit Primes</H1>

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

 20-digit: <msajsp:prime length="20" />

 40-digit: <msajsp:prime length="40" />

 80-digit: <msajsp:prime length="80" />

 Default (50-digit): <msajsp:prime />

</BODY>

</HTML>

Including the Tag Body

Up to this point, all of the custom tags you have seen ignore the tag body and thus are used as

stand-alone tags of the form

<prefix:tagname />

In this section, we see how to define tags that use their body content and are thus written in the

following manner:

<prefix:tagname>body</prefix:tagname>

Tag Bodies: Tag Handler Class

In the previous examples, the tag handlers defined a doStartTag method that returned

SKIP_BODY. To instruct the system to make use of the body that occurs between the new

element’s start and end tags, your doStartTag method should return EVAL_BODY_INCLUDE

instead. The body content can contain JSP scripting elements, directives, and actions, just like the

rest of the page. The JSP constructs are translated into servlet code at page translation time, and

that code is invoked at request time.

If you make use of a tag body, then you might want to take some action after the body as well as

before it. Use the doEndTag method to specify this action. In almost all cases, you want to

continue with the rest of the page after finishing with your tag, so the doEndTag method should

return EVAL_PAGE. If you want to abort the processing of the rest of the page, you can return

SKIP_PAGE instead.

Listing 3.39 defines a tag for a heading element that is more flexible than the standard HTML H1

through H6 elements. This new element allows a precise font size, a list of preferred font names

(the first entry that is available on the client system will be used), a foreground color, a

background color, a border, and an alignment (LEFT, CENTER, RIGHT). Only the alignment

capability is available with the H1 through H6 elements. The heading is implemented through use

of a one-cell table enclosing a SPAN element that has embedded style sheet attributes. The

doStartTag method generates the TABLE and SPAN start tags, then returns EVAL_BODY_INCLUDE

to instruct the system to include the tag body. The doEndTag method generates the and

</TABLE> tags, then returns EVAL_PAGE to continue with normal page processing. Various

setAttributeName methods are used to handle the attributes like bgColor and fontSize.

Listing 3.39 HeadingTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

/** Generates an HTML heading with the specified background

 * color, foreground color, alignment, font, and font size.

 * You can also turn on a border around it, which normally

 * just barely encloses the heading, but which can also

 * stretch wider. All attributes except the background

 * color are optional.

 */

public class HeadingTag extends TagSupport {

 private String bgColor; // The one required attribute

 private String color = null;

 private String align="CENTER";

 private String fontSize="36";

 private String fontList="Arial, Helvetica, sans-serif";

 private String border="0";

 private String width=null;

 public void setBgColor(String bgColor) {

 this.bgColor = bgColor;

 }

 public void setColor(String color) {

 this.color = color;

 }

 public void setAlign(String align) {

 this.align = align;

 }

 public void setFontSize(String fontSize) {

 this.fontSize = fontSize;

 }

 public void setFontList(String fontList) {

 this.fontList = fontList;

 }

 public void setBorder(String border) {

 this.border = border;

 }

 public void setWidth(String width) {

 this.width = width;

 }

 public int doStartTag() {

 try {

 JspWriter out = pageContext.getOut();

 out.print("<TABLE BORDER=" + border +

 " BGCOLOR=\"" + bgColor + "\"" +

 " ALIGN=\"" + align + "\"");

 if (width != null) {

 out.print(" WIDTH=\"" + width + "\"");

 }

 out.print("><TR><TH>");

 out.print("<SPAN STYLE=\"" +

 "font-size: " + fontSize + "px; " +

 "font-family: " + fontList + "; ");

 if (color != null) {

 out.println("color: " + color + ";");

 }

 out.print("\"> "); // End of

 } catch(IOException ioe) {

 System.out.println("Error in HeadingTag: " + ioe);

 }

 return(EVAL_BODY_INCLUDE); // Include tag body

 }

 public int doEndTag() {

 try {

 JspWriter out = pageContext.getOut();

 out.print("</TABLE>");

 } catch(IOException ioe) {

 System.out.println("Error in HeadingTag: " + ioe);

 }

 return(EVAL_PAGE); // Continue with rest of JSP page

 }

}

Tag Bodies: Tag Library Descriptor File

There is only one new feature in the use of the tag element for tags that use body content: the

bodycontent element should contain the value JSP as below.

<bodycontent>JSP</bodycontent>

Remember, however, that bodycontent is optional (JSP is the default value) and is mainly

intended for IDEs. The name, tagclass, info, and attribute elements are used in the same

manner as described previously. Listing 3.40 gives the relevant part of the code.

Listing 3.40 msajsp-taglib.tld (Excerpt 3)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE ...>

<taglib>

 ...

 <tag>

 <name>heading</name>

 <tagclass>moreservlets.tags.HeadingTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Outputs a 1-cell table used as a heading.</info>

 <attribute>

 <name>bgColor</name>

 <required>true</required> <!-- bgColor is required -->

 </attribute>

 <attribute>

 <name>color</name>

 <required>false</required>

 </attribute>

 <attribute>

 <name>align</name>

 <required>false</required>

 </attribute>

 <attribute>

 <name>fontSize</name>

 <required>false</required>

 </attribute>

 <attribute>

 <name>fontList</name>

 <required>false</required>

 </attribute>

 <attribute>

 <name>border</name>

 <required>false</required>

 </attribute>

 <attribute>

 <name>width</name>

 <required>false</required>

 </attribute>

 </tag>

 ...

</taglib>

Tag Bodies: JSP File

Listing 3.41 shows a document that uses the heading tag just defined. Since the bgColor

attribute was defined to be required, all uses of the tag include it. Figure 3-22 shows the result.

Figure 3-22. The custom msajsp:heading element gives you much

more succinct control over heading format than do the

standard H1 through H6 elements in HTML.

Listing 3.41 HeadingExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Some Tag-Generated Headings</TITLE>

</HEAD>

<BODY>

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

<msajsp:heading bgColor="#C0C0C0">

Default Heading

</msajsp:heading>

<P>

<msajsp:heading bgColor="BLACK" color="WHITE">

White on Black Heading

</msajsp:heading>

<P>

<msajsp:heading bgColor="#EF8429" fontSize="60" border="5">

Large Bordered Heading

</msajsp:heading>

<P>

<msajsp:heading bgColor="CYAN" width="100%">

Heading with Full-Width Background

</msajsp:heading>

<P>

<msajsp:heading bgColor="CYAN" fontSize="60"

 fontList="Brush Script MT, Times, serif">

Heading with Non-Standard Font

</msajsp:heading>

</BODY>

</HTML>

Optionally Including the Tag Body

Most tags either never make use of body content or always do so. In either case, you decide in

advance whether the body content is used. However, you are also permitted to make this decision

at request time. This subsection shows you how to use request time information to decide

whether to include the tag body.

Optional Body Inclusion: Tag Handler Class

Optionally including the tag body is a trivial exercise: just return EVAL_BODY_INCLUDE or

SKIP_BODY, depending on the value of some request time expression. The important thing to

know is how to discover that request time information, since doStartTag does not have

HttpServletRequest and HttpServletResponse arguments as do service, _jspService,

doGet, and doPost. The solution to this dilemma is to use getRequest to obtain the

HttpServletRequest from the automatically defined pageContext field of TagSupport. Strictly

speaking, the return type of getRequest is ServletRequest, so you have to do a typecast to

HttpServletRequest if you want to call a method that is not inherited from ServletRequest.

However, in this case I just use getParameter, so no typecast is required.

Listing 3.42 defines a tag that ignores its body unless a request time debug parameter is supplied.

Such a tag provides a useful capability whereby you embed debugging information directly in the

JSP page during development but activate it only when a problem occurs.

Listing 3.42 DebugTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import javax.servlet.*;

/** A tag that includes the body content only if

 * the "debug" request parameter is set.

 */

public class DebugTag extends TagSupport {

 public int doStartTag() {

 ServletRequest request = pageContext.getRequest();

 String debugFlag = request.getParameter("debug");

 if ((debugFlag != null) &&

 (!debugFlag.equalsIgnoreCase("false"))) {

 return(EVAL_BODY_INCLUDE);

 } else {

 return(SKIP_BODY);

 }

 }

}

Optional Body Inclusion: Tag Library Descriptor File

If your tag ever makes use of its body, you should provide the value JSP inside the bodycontent

element (if you use bodycontent at all). Other than that, all the elements within tag are used in

the same way as described previously. Listing 3.43 shows the entries needed for DebugTag.

Listing 3.43 msajsp-taglib.tld (Excerpt 4)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE ...>

<taglib>

 ...

 <tag>

 <name>debug</name>

 <tagclass>moreservlets.tags.DebugTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Includes body only if debug param is set.</info>

 </tag>

 ...

</taglib>

Optional Body Inclusion: JSP File

Suppose that you have an application where most of the problems that occur are due to requests

occurring close together in time, the host making the request, or session tracking. In such a case,

the time, requesting host, and session ID would be useful information to track. Listing 3.43 shows

a page that encloses debugging information between <msajsp:debug> and </msajsp:debug>.

Figures 3-23 and 3-24 show the normal result and the result when a request time debug

parameter is supplied, respectively.

Figure 3-23. The body of the msajsp:debug element is normally

ignored.

Figure 3-24. The body of the msajsp:debug element is included

when a debug request parameter is supplied.

Listing 3.44 DebugExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Using the Debug Tag</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H1>Using the Debug Tag</H1>

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

Top of regular page. Blah, blah, blah. Yadda, yadda, yadda.

<P>

<msajsp:debug>

Debug:

 Current time: <%= new java.util.Date() %>

 Requesting hostname: <%= request.getRemoteHost() %>

 Session ID: <%= session.getId() %>

</msajsp:debug>

<P>

Bottom of regular page. Blah, blah, blah. Yadda, yadda, yadda.

</BODY>

</HTML>

Manipulating the Tag Body

The msajsp:prime element ignored any body content, the msajsp:heading element used body

content, and the msajsp:debug element ignored or used it, depending on a request time

parameter. The common thread among these elements is that the body content was never

modified; it was either ignored or included verbatim (after JSP translation). This section shows

you how to process the tag body.

Tag Body Processing: Tag Handler Class

Up to this point, all of the tag handlers have extended the TagSupport class. This is a good

standard starting point, since it implements the required Tag interface and performs a number of

useful setup operations like storing the PageContext reference in the pageContext field.

However, TagSupport is not powerful enough for tag implementations that need to manipulate

their body content, and BodyTagSupport should be used instead.

BodyTagSupport extends TagSupport, so the doStartTag and doEndTag methods are used in the

same way as before. Two important new methods are defined by BodyTagSupport:

1. doAfterBody, a method that you should override to handle the manipulation of the tag

body. This method should normally return SKIP_BODY when it is done, indicating that no

further body processing should be performed.

2. getBodyContent, a method that returns an object of type BodyContent that

encapsulates information about the tag body. In tag libraries that are intended only for

JSP 1.2, you can use the bodyContent field of BodyTagSupport instead of calling

getBodyContent. Most libraries, however, are intended to run in either JSP version.

The BodyContent class has three important methods:

1. getEnclosingWriter, a method that returns the JspWriter being used by doStartTag

and doEndTag.

2. getReader, a method that returns a Reader that can read the tag’s body.

3. getString, a method that returns a String containing the entire tag body.

The ServletUtilities class (see Listing 2.10) contains a static filter method that takes a

string and replaces <, >, ", and & with <, >, ", and &, respectively. This method is useful

when servlets output strings that might contain characters that would interfere with the HTML

structure of the page in which the strings are embedded. Listing 3.45 shows a tag implementation

that gives this filtering functionality to a custom JSP tag.

Listing 3.45 FilterTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import moreservlets.*;

/** A tag that replaces <, >, ", and & with their HTML

 * character entities (<, >, ", and &).

 * After filtering, arbitrary strings can be placed

 * in either the page body or in HTML attributes.

 */

public class FilterTag extends BodyTagSupport {

 public int doAfterBody() {

 BodyContent body = getBodyContent();

 String filteredBody =

 ServletUtilities.filter(body.getString());

 try {

 JspWriter out = body.getEnclosingWriter();

 out.print(filteredBody);

 } catch(IOException ioe) {

 System.out.println("Error in FilterTag: " + ioe);

 }

 // SKIP_BODY means we're done. If we wanted to evaluate

 // and handle the body again, we'd return EVAL_BODY_TAG

 // (JSP 1.1/1.2) or EVAL_BODY_AGAIN (JSP 1.2 only)

 return(SKIP_BODY);

 }

}

Tag Body Processing: Tag Library Descriptor File

Tags that manipulate their body content should use the bodycontent element the same way as

tags that simply include it verbatim; they should supply a value of JSP. Other than that, nothing

new is required in the descriptor file, as you can see by examining Listing 3.46, which shows the

relevant portion of the TLD file.

Listing 3.46 msajsp-taglib.tld (Excerpt 5)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE ...>

<taglib>

 ...

 <tag>

 <name>filter</name>

 <tagclass>moreservlets.tags.FilterTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Replaces HTML-specific characters in body.</info>

 </tag>

 ...

</taglib>

Tag Body Processing: JSP File

Listing 3.47 shows a page that uses a table to show some sample HTML and its result. Creating

this table would be tedious in regular HTML since the table cell that shows the original HTML would

have to change all the < and > characters to < and >. This necessity is particularly onerous during

development when the sample HTML is frequently changing. Use of the <msajsp:filter> tag

greatly simplifies the process, as Listing 3.47 illustrates. Figure 3-25 shows the result.

Figure 3-25. The msajsp:filter element lets you insert text

without worrying about it containing special HTML characters.

Listing 3.47 FilterExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>HTML Logical Character Styles</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H1>HTML Logical Character Styles</H1>

Physical character styles (B, I, etc.) are rendered consistently

in different browsers. Logical character styles, however,

may be rendered differently by different browsers.

Here's how your browser

(<%= request.getHeader("User-Agent") %>)

renders the HTML 4.0 logical character styles:

<P>

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

<TABLE BORDER=1 ALIGN="CENTER">

<TR CLASS="COLORED"><TH>Example<TH>Result

<TR>

<TD><PRE><msajsp:filter>

Some emphasized text.

Some strongly emphasized text.

<CODE>Some code.</CODE>

<SAMP>Some sample text.</SAMP>

<KBD>Some keyboard text.</KBD>

<DFN>A term being defined.</DFN>

<VAR>A variable.</VAR>

<CITE>A citation or reference.</CITE>

</msajsp:filter></PRE>

<TD>

Some emphasized text.

Some strongly emphasized text.

<CODE>Some code.</CODE>

<SAMP>Some sample text.</SAMP>

<KBD>Some keyboard text.</KBD>

<DFN>A term being defined.</DFN>

<VAR>A variable.</VAR>

<CITE>A citation or reference.</CITE>

</TABLE>

</BODY>

</HTML>

Including or Manipulating the Tag Body Multiple Times

Rather than just including or processing the body of the tag a single time, you sometimes want to

do so more than once. The ability to support multiple body inclusion lets you define a variety of

iteration tags that repeat JSP fragments a variable number of times, repeat them until a certain

condition occurs, and so forth. This subsection shows you how to build such tags.

Multiple Body Actions: the Tag Handler Class

Tags that process the body content multiple times should start by extending BodyTagSupport and

implementing doStartTag, doEndTag, and, most importantly, doAfterBody as before. The

difference lies in the return value of doAfterBody. If this method returns EVAL_BODY_TAG, then

the tag body is evaluated again, resulting in a new call to doAfterBody. This process continues

until doAfterBody returns SKIP_BODY. In JSP 1.2, the EVAL_BODY_TAG constant is deprecated and

replaced with EVAL_BODY_AGAIN. The two constants have the same value, but EVAL_BODY_AGAIN

is a clearer name. So, if your tag library is designed to be used only in JSP 1.2 containers (e.g.,

it uses some features specific to JSP 1.2 as described in Chapter 11), you should use

EVAL_BODY_AGAIN. Most tag libraries, however, are designed to run in either JSP version and thus

use EVAL_BODY_TAG.

Core Note

EVAL_BODY_TAG is renamed EVAL_BODY_AGAIN in JSP 1.2.

Listing 3.48 defines a tag that repeats the body content the number of times specified by the reps

attribute. Since the body content can contain JSP (which is converted into servlet code at page

translation time but is invoked at request time), each repetition does not necessarily result in the

same output to the client.

Listing 3.48 RepeatTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

/** A tag that repeats the body the specified

 * number of times.

 */

public class RepeatTag extends BodyTagSupport {

 private int reps;

 public void setReps(String repeats) {

 try {

 reps = Integer.parseInt(repeats);

 } catch(NumberFormatException nfe) {

 reps = 1;

 }

 }

 public int doAfterBody() {

 if (reps-- >= 1) {

 BodyContent body = getBodyContent();

 try {

 JspWriter out = body.getEnclosingWriter();

 out.println(body.getString());

 body.clearBody(); // Clear for next evaluation

 } catch(IOException ioe) {

 System.out.println("Error in RepeatTag: " + ioe);

 }

 // Replace EVAL_BODY_TAG with EVAL_BODY_AGAIN in JSP 1.2.

 return(EVAL_BODY_TAG);

 } else {

 return(SKIP_BODY);

 }

 }

}

Multiple Body Actions: the Tag Library Descriptor File

Listing 3.49 shows the relevant section of the TLD file that gives the name msajsp:repeat to the

tag just defined. To accommodate request time values in the reps attribute, the file uses an

rtexprvalue element (enclosing a value of true) within the attribute element.

Listing 3.49 msajsp-taglib.tld (Excerpt 6)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE ...>

<taglib>

 ...

 <tag>

 <name>repeat</name>

 <tagclass>moreservlets.tags.RepeatTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>Repeats body the specified number of times.</info>

 <attribute>

 <name>reps</name>

 <required>true</required>

 <!-- rtexprvalue indicates whether attribute

 can be a JSP expression. -->

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>

 ...

</taglib>

Multiple Body Actions: the JSP File

Listing 3.50 shows a JSP document that creates a numbered list of prime numbers. The number

of primes in the list is taken from the request time repeats parameter. Figure 3-26 shows one

possible result.

Figure 3-26. Result of RepeatExample.jsp when accessed with

a repeats parameter of 10.

Listing 3.50 RepeatExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Some 40-Digit Primes</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H1>Some 40-Digit Primes</H1>

Each entry in the following list is the first prime number

higher than a randomly selected 40-digit number.

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

<!-- Repeats N times. A null reps value means repeat once. -->

<msajsp:repeat reps='<%= request.getParameter("repeats") %>'>

 <msajsp:prime length="40" />

</msajsp:repeat>

</BODY>

</HTML>

Using Nested Tags

Although Listing 3.50 places the msajsp:prime element within the msajsp:repeat element, the

two elements are independent of each other. The first generates a prime number regardless of

where it is used, and the second repeats the enclosed content regardless of whether that content

uses an msajsp:prime element.

Some tags, however, depend on a particular nesting. For example, in standard HTML, the TD and

TH elements can only appear within TR, which in turn can only appear within TABLE. The color and

alignment settings of TABLE are inherited by TR, and the values of TR affect how TD and TH behave.

So, the nested elements can-not act in isolation even when nested properly. Similarly, the tag

library descriptor file makes use of a number of elements like taglib, tag, attribute, and

required where a strict nesting hierarchy is imposed.

This subsection shows you how to define tags that depend on a particular nesting order and where

the behavior of certain tags depends on values supplied by earlier ones.

Nested Tags: the Tag Handler Classes

Class definitions for nested tags can extend either TagSupport or BodyTagSupport, depending on

whether they need to manipulate their body content (these extend BodyTagSupport) or, more

commonly, just ignore it or include it verbatim (these extend TagSupport).

Although nested tags use the standard tag handler classes, they use two new techniques within

those classes. First, nested tags can use findAncestorWithClass to find the tag in which they

are nested. This method takes a reference to the current class (e.g., this) and the Class object

of the enclosing class (e.g., EnclosingTag.class) as arguments. If no enclosing class is found,

the method in the nested class can throw a JspTagException that reports the problem. Second,

if one tag wants to store data that a later tag will use, it can place that data in the instance of the

enclosing tag. The definition of the enclosing tag should provide methods for storing and

accessing this data.

Suppose that we want to define a set of tags that would be used like this:

<msajsp:if>

 <msajsp:condition><%= someExpression %></msajsp:condition>

 <msajsp:then>JSP to include if condition is true</msajsp:then>

 <msajsp:else>JSP to include if condition is false</msajsp:else>

</msajsp:if>

To accomplish this task, the first step is to define an IfTag class to handle the msajsp:if tag.

This handler should have methods to specify and check whether the condition is true or false

(setCondition and getCondition). The handler should also have methods to designate and

check whether the condition has ever been explicitly set (setHasCondition and

getHasCondition), since we want to disallow msajsp:if tags that contain no msajsp:condition

entry. Listing 3.51 shows the code for IfTag.

The second step is to define a tag handler for msajsp:condition. This class, called

IfConditionTag, defines a doStartTag method that merely checks whether the tag appears

within IfTag. It returns EVAL_BODY_TAG (EVAL_BODY_BUFFERED in tag libraries that are specific to

JSP 1.2) if so and throws an exception if not. The handler’s doAfterBody method looks up the

body content (getBodyContent), converts it to a String (getString), and compares that to

"true". This approach means that an explicit value of true can be substituted for a JSP

expression like <%= expression %> if, during initial page development, you want to temporarily

designate that the then portion should always be used. Using a comparison to "true" also means

that any other value will be considered false. Once this comparison is performed, the result is

stored in the enclosing tag by means of the setCondition method of IfTag. The code for

IfConditionTag is shown in Listing 3.52.

Listing 3.51 If Tag.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import javax.servlet.*;

/** A tag that acts like an if/then/else. */

public class IfTag extends TagSupport {

 private boolean condition;

 private boolean hasCondition = false;

 public void setCondition(boolean condition) {

 this.condition = condition;

 hasCondition = true;

 }

 public boolean getCondition() {

 return(condition);

 }

 public void setHasCondition(boolean flag) {

 this.hasCondition = flag;

 }

 /** Has the condition field been explicitly set? */

 public boolean hasCondition() {

 return(hasCondition);

 }

 public int doStartTag() {

 return(EVAL_BODY_INCLUDE);

 }

}

Listing 3.52 IfConditionTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import javax.servlet.*;

/** The condition part of an if tag. */

public class IfConditionTag extends BodyTagSupport {

 public int doStartTag() throws JspTagException {

 IfTag parent =

 (IfTag)findAncestorWithClass(this, IfTag.class);

 if (parent == null) {

 throw new JspTagException("condition not inside if");

 }

 // If your tag library is intended to be used ONLY

 // in JSP 1.2, replace EVAL_BODY_TAG with

 // EVAL_BODY_BUFFERED.

 return(EVAL_BODY_TAG);

 }

 public int doAfterBody() {

 IfTag parent =

 (IfTag)findAncestorWithClass(this, IfTag.class);

 String bodyString = getBodyContent().getString();

 if (bodyString.trim().equals("true")) {

 parent.setCondition(true);

 } else {

 parent.setCondition(false);

 }

 return(SKIP_BODY);

 }

}

The third step is to define a class to handle the msajsp:then tag. The doStartTag method of this

class verifies that it is inside IfTag and also checks that an explicit condition has been set (i.e.,

that the IfConditionTag has already appeared within the IfTag). The doAfterBody method

checks for the condition in the IfTag class, and, if it is true, looks up the body content and prints

it. Listing 3.53 shows the code.

The final step in defining tag handlers is to define a class for msajsp:else. This class is very

similar to the one that handles the then part of the tag, except that this handler only prints the

tag body from doAfterBody if the condition from the surrounding IfTag is false. The code is

shown in Listing 3.54.

Listing 3.53 If ThenTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import javax.servlet.*;

/** The then part of an if tag. */

public class IfThenTag extends BodyTagSupport {

 public int doStartTag() throws JspTagException {

 IfTag parent =

 (IfTag)findAncestorWithClass(this, IfTag.class);

 if (parent == null) {

 throw new JspTagException("then not inside if");

 } else if (!parent.hasCondition()) {

 String warning =

 "condition tag must come before then tag";

 throw new JspTagException(warning);

 }

 // If your tag library is intended to be used ONLY

 // in JSP 1.2, replace EVAL_BODY_TAG with

 // EVAL_BODY_BUFFERED.

 return(EVAL_BODY_TAG);

 }

 public int doAfterBody() {

 IfTag parent =

 (IfTag)findAncestorWithClass(this, IfTag.class);

 if (parent.getCondition()) {

 try {

 BodyContent body = getBodyContent();

 JspWriter out = body.getEnclosingWriter();

 out.print(body.getString());

 } catch(IOException ioe) {

 System.out.println("Error in IfThenTag: " + ioe);

 }

 }

 return(SKIP_BODY);

 }

}

Listing 3.54 IfElseTag.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import javax.servlet.*;

/** The else part of an if tag. */

public class IfElseTag extends BodyTagSupport {

 public int doStartTag() throws JspTagException {

 IfTag parent =

 (IfTag)findAncestorWithClass(this, IfTag.class);

 if (parent == null) {

 throw new JspTagException("else not inside if");

 } else if (!parent.hasCondition()) {

 String warning =

 "condition tag must come before else tag";

 throw new JspTagException(warning);

 }

 // If your tag library is intended to be used ONLY

 // in JSP 1.2, replace EVAL_BODY_TAG with

 // EVAL_BODY_BUFFERED.

 return(EVAL_BODY_TAG);

 }

 public int doAfterBody() {

 IfTag parent =

 (IfTag)findAncestorWithClass(this, IfTag.class);

 if (!parent.getCondition()) {

 try {

 BodyContent body = getBodyContent();

 JspWriter out = body.getEnclosingWriter();

 out.print(body.getString());

 } catch(IOException ioe) {

 System.out.println("Error in IfElseTag: " + ioe);

 }

 }

 return(SKIP_BODY);

 }

}

Nested Tags: the Tag Library Descriptor File

Even though there is an explicit required nesting structure for the tags just defined, the tags must

be declared separately in the TLD file. This means that nesting validation is performed only at

request time, not at page translation time. In JSP 1.1, you could instruct the system to do some

validation at page translation time by using a TagExtraInfo class. This class has a

getVariableInfo method that you can use to check whether attributes exist and where they are

used. Once you have defined a subclass of TagExtraInfo, you associate it with your tag in the tag

library descriptor file by means of the teiclass element (tei-class in JSP 1.2), which is used

just like tagclass. In practice, however, TagExtraInfo is a bit cumbersome to use. Fortunately,

JSP 1.2 introduced a very useful new class for this purpose: TagLibraryValidator. See Chapter

11 (New Tag Library Features in JSP 1.2) for information on using this class.

Listing 3.55 msajsp-taglib.tld (Excerpt 7)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE ...>

<taglib>

 ...

 <tag>

 <name>if</name>

 <tagclass>moreservlets.tags.IfTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>if/condition/then/else tag.</info>

 </tag>

 <tag>

 <name>condition</name>

 <tagclass>moreservlets.tags.IfConditionTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>condition part of if/condition/then/else tag.</info>

 </tag>

 <tag>

 <name>then</name>

 <tagclass>moreservlets.tags.IfThenTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>then part of if/condition/then/else tag.</info>

 </tag>

 <tag>

 <name>else</name>

 <tagclass>moreservlets.tags.IfElseTag</tagclass>

 <bodycontent>JSP</bodycontent>

 <info>else part of if/condition/then/else tag.</info>

 </tag>

 ...

</taglib>

Nested Tags: the JSP File

Listing 3.56 shows a page that uses the msajsp:if tag three different ways. In the first instance,

a value of true is hardcoded for the condition. In the second instance, a parameter from the HTTP

request is used for the condition, and in the third case, a random number is generated and

compared to a fixed cutoff. Figure 3-27 shows a typical result.

Figure 3-27. Result of IfExample.jsp.

Listing 3.56 IfExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>If Tag Example</TITLE>

<LINK REL=STYLESHEET

 HREF="JSP-Styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H1>If Tag Example</H1>

<%@ taglib uri="msajsp-taglib.tld" prefix="msajsp" %>

<msajsp:if>

 <msajsp:condition>true</msajsp:condition>

 <msajsp:then>Condition is true</msajsp:then>

 <msajsp:else>Condition is false</msajsp:else>

</msajsp:if>

<P>

<msajsp:if>

 <msajsp:condition><%= request.isSecure() %></msajsp:condition>

 <msajsp:then>Request is using SSL (https)</msajsp:then>

 <msajsp:else>Request is not using SSL</msajsp:else>

</msajsp:if>

<P>

Some coin tosses:

<msajsp:repeat reps="10">

 <msajsp:if>

 <msajsp:condition><%= Math.random() < 0.5 %></msajsp:condition>

 <msajsp:then>Heads
</msajsp:then>

 <msajsp:else>Tails
</msajsp:else>

 </msajsp:if>

</msajsp:repeat>

</BODY>

</HTML>

3.8 Integrating Servlets and JSP: The MVC

Architecture

Servlets are great when your application requires a lot of real programming to accomplish its task.

Servlets can manipulate HTTP status codes and headers, use cookies, track sessions, save

information between requests, compress pages, access databases, generate GIF images

on-the-fly, and perform many other tasks flexibly and efficiently. But, generating HTML with

servlets can be tedious and can yield a result that is hard to modify.

That’s where JSP comes in; it lets you separate much of the presentation from the dynamic

content. That way, you can write the HTML in the normal manner, even using HTML-specific tools

and putting your Web content developers to work on your JSP documents. JSP expressions,

scriptlets, and declarations let you insert simple Java code into the servlet that results from the

JSP page, and directives let you control the overall layout of the page. For more complex

requirements, you can wrap up Java code inside beans or define your own JSP tags.

Great. We have everything we need, right? Well, no, not quite. The assumption behind a JSP

document is that it provides a single overall presentation. What if you want to give totally

different results depending on the data that you receive? Beans and custom tags (see Figure

3-28), although extremely powerful and flexible, don’t overcome the limitation that the JSP page

defines a relatively fixed top-level page appearance. The solution is to use both servlets and

JavaServer Pages. If you have a complicated application that may require several substantially

different presentations, a servlet can handle the initial request, partially process the data, set up

beans, and then forward the results to one of a number of different JSP pages, depending on the

circumstances. This approach is known as the Model View Controller (MVC) or Model 2

architecture. For code that supports a formalization of this approach, see the Apache Struts

Framework at http://jakarta.apache.org/struts/.

Figure 3-28. Strategies for invoking dynamic code from JSP.

Forwarding Requests

The key to letting servlets forward requests or include external content is to use a

RequestDispatcher. You obtain a RequestDispatcher by calling the getRequestDispatcher

method of ServletContext, supplying a URL relative to the server root. For example, to obtain a

RequestDispatcher associated with http://yourhost/presentations/presentation1.jsp, you

would do the following:

String url = "/presentations/presentation1.jsp";

RequestDispatcher dispatcher =

 getServletContext().getRequestDispatcher(url);

Once you have a RequestDispatcher, you use forward to completely transfer control to the

associated URL and you use include to output the associated URL’s content. In both cases, you

supply the HttpServletRequest and HttpServletResponse as arguments. Both methods throw

ServletException and IOException. For example, Listing 3.57 shows a portion of a servlet that

forwards the request to one of three different JSP pages, depending on the value of the

operation parameter. To avoid repeating the getRequestDispatcher call, I use a utility method

called gotoPage that takes the URL, the HttpServletRequest, and the HttpServletResponse;

gets a RequestDispatcher; and then calls forward on it.

Listing 3.57 Request Forwarding Example

public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String operation = request.getParameter("operation");

 if (operation == null) {

 operation = "unknown";

 }

 if (operation.equals("operation1")) {

 gotoPage("/operations/presentation1.jsp",

 request, response);

 } else if (operation.equals("operation2")) {

 gotoPage("/operations/presentation2.jsp",

 request, response);

 } else {

 gotoPage("/operations/unknownRequestHandler.jsp",

 request, response);

 }

}

private void gotoPage(String address,

 HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 RequestDispatcher dispatcher =

 getServletContext().getRequestDispatcher(address);

 dispatcher.forward(request, response);

}

Using Static Resources

In most cases, you forward requests to a JSP page or another servlet. In some cases, however,

you might want to send the request to a static HTML page. In an e-commerce site, for example,

requests that indicate that the user does not have a valid account name might be forwarded to an

account application page that uses HTML forms to gather the requisite information. With GET

requests, forwarding requests to a static HTML page is perfectly legal and requires no special

syntax; just supply the address of the HTML page as the argument to getRequestDispatcher.

However, since forwarded requests use the same request method as the original request, POST

requests cannot be forwarded to normal HTML pages. The solution to this problem is to simply

rename the HTML page to have a.jsp extension. Renaming somefile.html to somefile.jsp does not

change its output for GET requests, but somefile.html cannot handle POST requests, whereas

somefile.jsp gives an identical response for both GET and POST.

Supplying Information to the Destination Pages

A servlet can store data for JSP pages in three main places: in the HttpServletRequest, in the

HttpSession, and in the ServletContext. These storage locations correspond to the three

nondefault values of the scope attribute of jsp:useBean: that is, request, session, and

application.

1. Storing data that servlet looked up and that JSP page will use only in this

request. The servlet would create and store data as follows:
2.

3. SomeClass value = new SomeClass(...);

request.setAttribute("key", value);

Then, the servlet would forward to a JSP page that uses the following to retrieve the data:

<jsp:useBean id="key" class="SomeClass"

 scope="request" />

4. Storing data that servlet looked up and that JSP page will use in this request and

in later requests from same client. The servlet would create and store data as

follows:
5.

6. SomeClass value = new SomeClass(...);

7. HttpSession session = request.getSession(true);

session.setAttribute("key", value);

Then, the servlet would forward to a JSP page that uses the following to retrieve the data:

<jsp:useBean id="key" class="SomeClass"

 scope="session" />

8. Storing data that servlet looked up and that JSP page will use in this request and

in later requests from any client. The servlet would create and store data as follows:
9.

10. SomeClass value = new SomeClass(...);

getServletContext().setAttribute("key", value);

Then, the servlet would forward to a JSP page that uses the following to retrieve the data:

<jsp:useBean id="key" class="SomeClass"

 scope="application" />

Interpreting Relative URLs in the Destination Page

Although a servlet can forward the request to an arbitrary location on the same server, the

process is quite different from that of using the sendRedirect method of HttpServletResponse.

First, sendRedirect requires the client to reconnect to the new resource, whereas the forward

method of RequestDispatcher is handled completely on the server. Second, sendRedirect does

not automatically preserve all of the request data; forward does. Third, sendRedirect results in

a different final URL, whereas with forward, the URL of the original servlet is maintained.

This final point means that if the destination page uses relative URLs for images or style sheets,

it needs to make them relative to the server root, not to the destination page’s actual location. For

example, consider the following style sheet entry:

<LINK REL=STYLESHEET

 HREF="my-styles.css"

 TYPE="text/css">

If the JSP page containing this entry is accessed by means of a forwarded request,

my-styles.css will be interpreted relative to the URL of the originating servlet, not relative to the

JSP page itself, almost certainly resulting in an error. Section 4.5 (Handling Relative URLs in Web

Applications) discusses several approaches to this problem. One simple solution, however, is to

give the full server path to the style sheet file, as follows.

<LINK REL=STYLESHEET

 HREF="/path/my-styles.css"

 TYPE="text/css">

The same approach is required for addresses used in and .

Using Alternative Means to Get a RequestDispatcher

Servers that support version 2.2 or 2.3 of the servlet specification have two additional ways of

obtaining a RequestDispatcher besides the getRequestDispatcher method of

ServletContext.

First, since most servers let you register explicit names for servlets or JSP pages, it makes sense

to access them by name rather than by path. Use the getNamedDispatcher method of

ServletContext for this task.

Second, you might want to access a resource by a path relative to the current servlet’s location,

rather than relative to the server root. This approach is not common when servlets are accessed

in the standard manner (http://host/servlet/ServletName), because JSP files would not be

accessible by means of http://host/servlet/... since that URL is reserved especially for servlets.

However, it is common to register servlets under another path (see Section 5.3, “Assigning

Names and Custom URLs”), and in such a case you can use the getRequestDispatcher method

of HttpServletRequest rather than the one from ServletContext. For example, if the

originating servlet is at http://host/travel/TopLevel,

getServletContext().getRequestDispatcher("/travel/cruises.jsp")

could be replaced by

request.getRequestDispatcher("cruises.jsp");

Example: An Online Travel Agent

Consider the case of an online travel agent that has a quick-search page, as shown in Figure 3-29

and Listing 3.58. Users need to enter their email address and password to associate the request

with their previously established customer account. Each request also includes a trip origin, trip

destination, start date, and end date. However, the action that will result will vary substantially in

accordance with the action requested. For example, pressing the “Book Flights” button should

show a list of available flights on the dates specified, ordered by price (see Figure 3-30). The

user’s real name, frequent flyer information, and credit card number should be used to generate

the page. On the other hand, selecting “Edit Account” should show any previously entered

customer information, letting the user modify values or add entries. Likewise, the actions

resulting from choosing “Rent Cars” or “Find Hotels” will share much of the same customer data

but will have a totally different presentation.

Figure 3-29. Front end to travel servlet (see Listing 3.58).

Figure 3-30. Result of travel servlet (Listing 3.59) dispatching

request to BookFlights.jsp (Listing 3.60).

To accomplish the desired behavior, the front end (Listing 3.58) submits the request to the

top-level travel servlet shown in Listing 3.59. This servlet looks up the customer information (see

http://www.moreservlets.com for the actual code used, but this would be replaced by a database

lookup in real life), puts it in the HttpSession object associating the value (of type

moreservlets.TravelCustomer) with the name customer, and then forwards the request to a

different JSP page corresponding to each of the possible actions. The destination page (see

Listing 3.60 and the result in Figure 3-30) looks up the customer information by means of

<jsp:useBean id="customer"

 class="moreservlets.TravelCustomer"

 scope="session" />

and then uses jsp:getProperty to insert customer information into various parts of the page.

Listing 3.58 quick-search.html (Excerpt)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

 <TITLE>Online Travel Quick Search</TITLE>

 <LINK REL=STYLESHEET

 HREF="travel-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H1>Online Travel Quick Search</H1>

<FORM ACTION="/servlet/moreservlets.Travel" METHOD="POST">

<CENTER>

Email address: <INPUT TYPE="TEXT" NAME="emailAddress">

Password: <INPUT TYPE="PASSWORD" NAME="password" SIZE=10>

...

<TABLE CELLSPACING=1>

<TR>

 <TH> <IMG SRC="airplane.gif" WIDTH=100 HEIGHT=29

 ALIGN="TOP" ALT="Book Flight">

 ...

<TR>

 <TH><SMALL>

 <INPUT TYPE="SUBMIT" NAME="flights" VALUE="Book Flight">

 </SMALL>

 ...

</TABLE>

</CENTER>

</FORM>

...

</BODY>

</HTML>

Listing 3.59 Travel.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Top-level travel-processing servlet. This servlet sets up

 * the customer data as a bean, then forwards the request

 * to the airline booking page, the rental car reservation

 * page, the hotel page, the existing account modification

 * page, or the new account page.

 */

public class Travel extends HttpServlet {

 private TravelCustomer[] travelData;

 public void init() {

 travelData = TravelData.getTravelData();

 }

 /** Since password is being sent, use POST only. However,

 * the use of POST means that you cannot forward

 * the request to a static HTML page, since the forwarded

 * request uses the same request method as the original

 * one, and static pages cannot handle POST. Solution:

 * have the "static" page be a JSP file that contains

 * HTML only. That's what accounts.jsp is. The other

 * JSP files really need to be dynamically generated,

 * since they make use of the customer data.

 */

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String emailAddress = request.getParameter("emailAddress");

 String password = request.getParameter("password");

 TravelCustomer customer =

 TravelCustomer.findCustomer(emailAddress, travelData);

 if ((customer == null) || (password == null) ||

 (!password.equals(customer.getPassword()))) {

 gotoPage("/jsp-intro/travel/accounts.jsp",

 request, response);

 }

 // The methods that use the following parameters will

 // check for missing or malformed values.

 customer.setStartDate(request.getParameter("startDate"));

 customer.setEndDate(request.getParameter("endDate"));

 customer.setOrigin(request.getParameter("origin"));

 customer.setDestination(request.getParameter

 ("destination"));

 HttpSession session = request.getSession(true);

 session.setAttribute("customer", customer);

 if (request.getParameter("flights") != null) {

 gotoPage("/jsp-intro/travel/BookFlights.jsp",

 request, response);

 } else if (request.getParameter("cars") != null) {

 gotoPage("/jsp-intro/travel/RentCars.jsp",

 request, response);

 } else if (request.getParameter("hotels") != null) {

 gotoPage("/jsp-intro/travel/FindHotels.jsp",

 request, response);

 } else if (request.getParameter("account") != null) {

 gotoPage("/jsp-intro/travel/EditAccounts.jsp",

 request, response);

 } else {

 gotoPage("/jsp-intro/travel/IllegalRequest.jsp",

 request, response);

 }

 }

 private void gotoPage(String address,

 HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 RequestDispatcher dispatcher =

 getServletContext().getRequestDispatcher(address);

 dispatcher.forward(request, response);

 }

}

Listing 3.60 BookFlights.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

 <TITLE>Best Available Flights</TITLE>

 <LINK REL=STYLESHEET

 HREF="/jsp-intro/travel/travel-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<H1>Best Available Flights</H1>

<CENTER>

<jsp:useBean id="customer"

 class="moreservlets.TravelCustomer"

 scope="session" />

Finding flights for

<jsp:getProperty name="customer" property="fullName" />

<P>

<jsp:getProperty name="customer" property="flights" />

<P>
<HR>

<FORM ACTION="/servlet/BookFlight">

<jsp:getProperty name="customer"

 property="frequentFlyerTable" />

<P>

Credit Card:

<jsp:getProperty name="customer" property="creditCard" />

<P>

<INPUT TYPE="SUBMIT" NAME="holdButton" VALUE="Hold for 24 Hrs">

<P>

<INPUT TYPE="SUBMIT" NAME="bookItButton" VALUE="Book It!">

</FORM>

</CENTER>

</BODY>

</HTML>

You should pay careful attention to the TravelCustomer class (shown partially in Listing 3.61,

with the complete code available at http://www.moreservlets.com). In particular, note that the

class spends a considerable amount of effort making the customer information accessible as plain

strings or even HTML-formatted strings through simple properties. Every task that requires any

substantial amount of programming is spun off into the bean, rather than being performed in the

JSP page itself. This is typical of servlet/JSP integration—the use of JSP does not entirely obviate

the need to format data as strings or HTML in Java code. Significant up-front effort to make the

data conveniently available to JSP more than pays for itself when multiple JSP pages access the

same type of data. Other supporting classes (Frequent-FlyerInfo.java, TravelData.java, etc.), JSP

pages (RentCars.jsp, FindHotels.jsp, etc.), and the travel-styles.css style sheet can be found at

http://www.moreservlets.com.

Listing 3.61 TravelCustomer.java

package moreservlets;

import java.util.*;

import java.text.*;

/** Describes a travel services customer. Implemented

 * as a bean with some methods that return data in HTML

 * format, suitable for access from JSP.

 */

public class TravelCustomer {

 private String emailAddress, password, firstName, lastName;

 private String creditCardName, creditCardNumber;

 private String phoneNumber, homeAddress;

 private String startDate, endDate;

 private String origin, destination;

 private FrequentFlyerInfo[] frequentFlyerData;

 private RentalCarInfo[] rentalCarData;

 private HotelInfo[] hotelData;

 public TravelCustomer(String emailAddress,

 String password,

 String firstName,

 String lastName,

 String creditCardName,

 String creditCardNumber,

 String phoneNumber,

 String homeAddress,

 FrequentFlyerInfo[] frequentFlyerData,

 RentalCarInfo[] rentalCarData,

 HotelInfo[] hotelData) {

 setEmailAddress(emailAddress);

 setPassword(password);

 setFirstName(firstName);

 setLastName(lastName);

 setCreditCardName(creditCardName);

 setCreditCardNumber(creditCardNumber);

 setPhoneNumber(phoneNumber);

 setHomeAddress(homeAddress);

 setStartDate(startDate);

 setEndDate(endDate);

 setFrequentFlyerData(frequentFlyerData);

 setRentalCarData(rentalCarData);

 setHotelData(hotelData);

 }

 public String getEmailAddress() {

 return(emailAddress);

 }

 public void setEmailAddress(String emailAddress) {

 this.emailAddress = emailAddress;

 }

 // See http://www.moreservlets.com for missing code.

 public String getFrequentFlyerTable() {

 FrequentFlyerInfo[] frequentFlyerData =

 getFrequentFlyerData();

 if (frequentFlyerData.length == 0) {

 return("<I>No frequent flyer data recorded.</I>");

 } else {

 String table =

 "<TABLE>\n" +

 " <TR><TH>Airline<TH>Frequent Flyer Number\n";

 for(int i=0; i<frequentFlyerData.length; i++) {

 FrequentFlyerInfo info = frequentFlyerData[i];

 table = table +

 "<TR ALIGN=\"CENTER\">" +

 "<TD>" + info.getAirlineName() +

 "<TD>" + info.getFrequentFlyerNumber() + "\n";

 }

 table = table + "</TABLE>\n";

 return(table);

 }

 }

 // This would be replaced by a database lookup

 // in a real application.

 public String getFlights() {

 String flightOrigin =

 replaceIfMissing(getOrigin(), "Nowhere");

 String flightDestination =

 replaceIfMissing(getDestination(), "Nowhere");

 Date today = new Date();

 DateFormat formatter =

 DateFormat.getDateInstance(DateFormat.MEDIUM);

 String dateString = formatter.format(today);

 String flightStartDate =

 replaceIfMissing(getStartDate(), dateString);

 String flightEndDate =

 replaceIfMissing(getEndDate(), dateString);

 String [][] flights =

 { { "Java Airways", "1522", "455.95", "Java, Indonesia",

 "Sun Microsystems", "9:00", "3:15" },

 { "Servlet Express", "2622", "505.95", "New Atlanta",

 "New Atlanta", "9:30", "4:15" },

 { "Geek Airlines", "3.14159", "675.00", "JHU",

 "MIT", "10:02:37", "2:22:19" } };

 String flightString = "";

 for(int i=0; i<flights.length; i++) {

 String[] flightInfo = flights[i];

 flightString =

 flightString + getFlightDescription(flightInfo[0],

 flightInfo[1],

 flightInfo[2],

 flightInfo[3],

 flightInfo[4],

 flightInfo[5],

 flightInfo[6],

 flightOrigin,

 flightDestination,

 flightStartDate,

 flightEndDate);

 }

 return(flightString);

 }

 private String getFlightDescription(String airline,

 String flightNum,

 String price,

 String stop1,

 String stop2,

 String time1,

 String time2,

 String flightOrigin,

 String flightDestination,

 String flightStartDate,

 String flightEndDate) {

 String flight =

 "<P>
\n" +

 "<TABLE WIDTH=\"100%\"><TR><TH CLASS=\"COLORED\">\n" +

 "" + airline + " Flight " + flightNum +

 " ($" + price + ")</TABLE>
\n" +

 "Outgoing: Leaves " + flightOrigin +

 " at " + time1 + " AM on " + flightStartDate +

 ", arriving in " + flightDestination +

 " at " + time2 + " PM (1 stop -- " + stop1 + ").\n" +

 "
\n" +

 "Return: Leaves " + flightDestination +

 " at " + time1 + " AM on " + flightEndDate +

 ", arriving in " + flightOrigin +

 " at " + time2 + " PM (1 stop -- " + stop2 + ").\n";

 return(flight);

 }

 private String replaceIfMissing(String value,

 String defaultValue) {

 if ((value != null) && (value.length() > 0)) {

 return(value);

 } else {

 return(defaultValue);

 }

 }

 public static TravelCustomer findCustomer

 (String emailAddress,

 TravelCustomer[] customers) {

 if (emailAddress == null) {

 return(null);

 }

 for(int i=0; i<customers.length; i++) {

 String custEmail = customers[i].getEmailAddress();

 if (emailAddress.equalsIgnoreCase(custEmail)) {

 return(customers[i]);

 }

 }

 return(null);

 }

}

Forwarding Requests from JSP Pages

The most common request-forwarding scenario is that the request first comes to a servlet and the

servlet forwards the request to a JSP page. The reason a servlet usually handles the original

request is that checking request parameters and setting up beans requires a lot of programming,

and it is more convenient to do this programming in a servlet than in a JSP document. The reason

that the destination page is usually a JSP document is that JSP simplifies the process of creating

the HTML content.

However, just because this is the usual approach doesn’t mean that it is the only way of doing

things. It is certainly possible for the destination page to be a servlet. Similarly, it is quite possible

for a JSP page to forward requests elsewhere. For example, a request might go to a JSP page that

normally presents results of a certain type and that forwards the request elsewhere only when it

receives unexpected values.

Sending requests to servlets instead of JSP pages requires no changes whatsoever in the use of

the RequestDispatcher. However, there is special syntactic support for forwarding requests

from JSP pages. In JSP, the jsp:forward action is simpler and easier to use than wrapping up

RequestDispatcher code in a scriptlet. This action takes the following form:

<jsp:forward page="Relative URL" />

The page attribute is allowed to contain JSP expressions so that the destination can be computed

at request time. For example, the following code sends about half the visitors to

http://host/examples/page1.jsp and the others to http://host/examples/page2.jsp.

<% String destination;

 if (Math.random() > 0.5) {

 destination = "/examples/page1.jsp";

 } else {

 destination = "/examples/page2.jsp";

 }

%>

<jsp:forward page="<%= destination %>" />

The jsp:forward action, like jsp:include, can make use of jsp:param elements to supply extra

request parameters to the destination page. For details, see the discussion of jsp:include in

Section 3.5.

Part II: Web Applications

Part II Web Applications

Chapter 4 Using and Deploying Web Applications

Chapter 5 Controlling Web Application Behavior with web.xml

Chapter 6 A Sample Web Application: An Online Boat Shop

Chapter 4. Using and Deploying Web

Applications

Topics in This Chapter

• Registering Web applications with the server

• Organizing Web applications

• Deploying applications in WAR files

• Recording Web application dependencies on shared libraries

• Dealing with relative URLs

• Sharing data among Web applications

Web applications (or “Web apps”) let you bundle a set of servlets, JSP pages, tag libraries, HTML

documents, images, style sheets, and other Web content into a single collection that can be used

on any server compatible with servlet version 2.2 or later (JSP 1.1 or later). When designed

carefully, Web apps can be moved from server to server or placed at different locations on the

same server, all without making any changes to any of the servlets, JSP pages, or HTML files in

the application.

This capability lets you move complex applications around with a minimum of effort, streamlining

application reuse. In addition, since each Web app has its own directory structure, sessions,

ServletContext, and class loader, using a Web app simplifies even the initial development

because it reduces the amount of coordination needed among various parts of your overall

system.

4.1 Registering Web Applications

With servlets 2.2 and later (JSP 1.1 and later), Web applications are portable. Regardless of the

server, you store files in the same directory structure and access them with URLs in identical

formats. For example, Figure 4-1 summarizes the directory structure and URLs that would be

used for a simple Web application called webapp1. This section will illustrate how to install and

execute this simple Web application on different platforms.

Figure 4-1. Structure of the webapp1 Web application.

Although Web applications themselves are completely portable, the registration process is server

specific. For example, to move the webapp1 application from server to server, you don’t have to

modify anything inside any of the directories shown in Figure 4-1. However, the location in which

the top-level directory (webapp1 in this case) is placed will vary from server to server. Similarly,

you use a server-specific process to tell the system that URLs that begin with

http://host/webapp1/ should apply to the Web application. In general, you will need to read your

server’s documentation to get details on the registration process. I’ll present a few brief examples

here, then give explicit details for Tomcat, JRun, and ServletExec in the following subsections.

My usual strategy is to build Web applications in my personal development environment and

periodically copy them to various deployment directories for testing on different servers. I never

place my development directory directly within a server’s deployment directory—doing so makes

it hard to deploy on multiple servers, hard to develop while a Web application is executing, and

hard to organize the files. I recommend you avoid this approach as well; instead, use a separate

development directory and deploy by means of one of the strategies outlined in Section 1.8

(Establish a Simplified Deployment Method). The simplest approach is to keep a shortcut

(Windows) or symbolic link (Unix/Linux) to the deployment directories of various servers and

simply copy the entire development directory whenever you want to deploy. For example, on

Windows you can use the right mouse button to drag the development folder onto the shortcut,

release the button, and select Copy.

To illustrate the registration process, the iPlanet Server 6.0 provides you with two choices for

creating Web applications. First, you can edit iPlanet’s web-apps.xml file (not web.xml!) and

insert a web-app element with attributes dir (the directory containing the Web app files) and uri

(the URL prefix that designates the Web application). Second, you can create a Web Archive

(WAR) file and then use the wdeploy command-line program to deploy it. WAR files are simply

JAR files that contain a Web application directory and use.war instead of.jar for file extensions.

See Section 4.3 for a discussion of creating and using WAR files.

With the Resin server from Caucho, you use a web-app element within web.xml and supply

app-dir (directory) and id (URL prefix) attributes. Resin even lets you use regular expressions in

the id. So, for example, you can automatically give users their own Web apps that are accessed

with URLs of the form http://hostname/~username/.

With the BEA WebLogic 6 Server, you have two choices. First, you can place a directory (see

Section 4.2) containing a Web application into the config/domain/applications directory, and the

server will automatically assign the Web application a URL prefix that matches the directory name.

Second, you can create a WAR file (see Section 4.3) and use the Web Applications entry of the

Administration Console to deploy it.

Registering a Web Application with Tomcat

With Tomcat 4, creating a Web application consists simply of creating the appropriate directory

structure and restarting the server. For extra control over the process, you can modify

install_dir/conf/server.xml (a Tomcat-specific file) to refer to the Web application. The following

steps walk you through what is required to create a Web app that is accessed by means of URLs

that start with http://host/webapp1/. These examples are taken from Tomcat 4.0, but the

process for Tomcat 3 is very similar.

1. Create a simple directory called webapp1. Since this is your personal development

directory, it can be located at any place you find convenient. Once you have a webapp1

directory, place a simple JSP page called HelloWebApp.jsp (Listing 4.1) in it. Put a simple

servlet called HelloWebApp.class (compiled from Listing 4.2) in the WEB-INF/classes

subdirectory. Section 4.2 gives details on the directory structure of a Web application, but

for now just note that the JSP pages, HTML documents, images, and other regular Web

documents go in the top-level directory of the Web app, whereas servlets are placed in the

WEB-INF/classes subdirectory.

You can also use subdirectories relative to those locations, although recall that a servlet in

a subdirectory must use a package name that matches the directory name.

Finally, although Tomcat doesn’t actually require it, it is a good idea to include a web.xml

file in the WEB-INF directory. The web.xml file, called the deployment descriptor, is

completely portable across servers. We’ll see some uses for this deployment descriptor

later in this chapter, and Chapter 5 (Controlling Web Application Behavior with web.xml)

will discuss it in detail. For now, however, just copy the existing web.xml file from

install_dir/webapps/ROOT/WEB-INF or use the version that is online under Chapter 4 of

the source code archive at http://www.moreservlets.com. In fact, for purposes of testing

Web application deployment, you might want to start by simply downloading the entire

webapp1 directory from http://www.moreservlets.com.

2. Copy that directory to install_dir/webapps. For example, suppose that you are

running Tomcat version 4.0, and it is installed in C:\jakarta-tomcat-4.0. You would then

copy the webapp1 directory to the webapps directory, resulting in

C:\jakarta-tomcat-4.0\webapps\ webapp1\HelloWebApp.jsp,

C:\jakarta-tomcat-4.0\webapps\webapp1\ WEB-INF\classes\HelloWebApp.class, and

C:\jakarta-tomcat-4.0\ webapps\webapp1\WEB-INF\web.xml. You could also wrap the

directory inside a WAR file (Section 4.3) and simply drop the WAR file into

C:\jakarta-tomcat-4.0\webapps.

3. Optional: add a Context entry to install_dir/conf/server.xml. If you want your

Web application to have a URL prefix that exactly matches the directory name and you are

satisfied with the default Tomcat settings for Web applications, you can omit this step. But,

if you want a bit more control over the Web app registration process, you can supply a

Context element in install_dir/conf/server.xml. If you do edit server.xml, be sure to make

a backup copy first; a small syntax error in server.xml can completely prevent Tomcat

from running.

The Context element has several possible attributes that are documented at

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config/context.html. For instance, you

can decide whether to use cookies or URL rewriting for session tracking, you can enable or

disable servlet reloading (i.e., monitoring of classes for changes and reloading servlets

whose class file changes on disk), and you can set debugging levels. However, for basic

Web apps, you just need to deal with the two required attributes: path (the URL prefix)

and docBase (the base installation directory of the Web application, relative to

install_dir/webapps). This entry should look like the following snippet. See Listing 4.3 for

more detail.

<Context path="/webapp1" docBase="webapp1" />

Note that you should not use /examples as the URL prefix; Tomcat already uses that prefix

for a sample Web application.

Core Warning

Do not use /examples as the URL prefix of a Web application in Tomcat.

4. Restart the server. I keep a shortcut to install_dir/bin/startup.bat

(install_dir/bin/startup.sh on Unix) and install_dir/bin/shutdown.bat

(install_dir/bin/shutdown.sh on Unix) in my development directory. I recommend you do

the same. Thus, restarting the server involves simply double-clicking the shutdown link

and then double-clicking the startup link.

5. Access the JSP page and the servlet. The URL

http://hostname/webapp1/HelloWebApp.jsp invokes the JSP page (Figure 4-2), and

http://hostname/webapp1/servlet/HelloWebApp invokes the servlet (Figure 4-3). During

development, you probably use localhost for the host name. These URLs assume that you

have modified the Tomcat configuration file (install_dir/conf/server.xml) to use port 80 as

recommended in Chapter 1 (Server Setup and Configuration). If you haven’t made this

change, use http://hostname:8080/webapp1/HelloWebApp.jsp and

http://hostname:8080/webapp1/servlet/HelloWebApp.

Figure 4-2. Invoking a JSP page that is in a Web

application.

Figure 4-3. Invoking a servlet that is in a Web

application.

Listing 4.1 HelloWebApp.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD><TITLE>JSP: Hello Web App</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1>JSP: Hello Web App</H1>

</BODY>

</HTML>

Listing 4.2 HelloWebApp.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWebApp extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 String title = "Servlet: Hello Web App";

 out.println(docType +

 "<HTML>\n" +

 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1>" + title + "</H1>\n" +

 "</BODY></HTML>");

 }

}

Listing 4.3 Partial server.xml for Tomcat 4

<?xml version="1.0" encoding="ISO-8859-1"?>

<Server>

 <!-- ... -->

 <!-- Having the URL prefix (path) match the actual directory

 (docBase) is a convenience, not a requirement. -->

 <Context path="/webapp1" docBase="webapp1" />

</Server>

Registering a Web Application with JRun

Registering a Web app with JRun 3.1 involves nine simple steps. The process is nearly identical to

other versions of JRun.

1. Create the directory. Use the directory structure illustrated in Figure 4-1: a webapp1

directory containing HelloWebApp.jsp, WEB-INF/classes/HelloWebApp.class, and

WEB-INF/web.xml.

2. Copy the entire webapp1 directory to install_dir/servers/default. The

install_dir/servers/default directory is the standard location for Web applications in JRun.

Again, I recommend that you simplify the process of copying the directory by using one of

the methods described in Section 1.8 (Establish a Simplified Deployment Method). The

easiest approach is to make a shortcut or symbolic link from your development directory

to install_dir/servers/default and then simply copy the webapp1 directory onto the

shortcut whenever you redeploy. You can also deploy using WAR files (Section 4.3).

3. Start the JRun Management Console. You can invoke the Console either by selecting

JRun Management Console from the JRun menu (on Microsoft Windows, this is available

by means of Start, Programs, JRun) or by opening http://hostname:8000/. Either way,

the JRun Admin Server has to be running first.

4. Click on JRun Default Server. This entry is in the left-hand pane, as shown in Figure

4-4.

Figure 4-4. JRun Web application setup screen.

5. Click on Web Applications. This item is in the bottom of the list that is created when

you select the default server from the previous step. Again, see Figure 4-4.

6. Click on Create an Application. This entry is in the right-hand pane that is created

when you select Web Applications from the previous step. If you deploy using WAR files

(see Section 4.3) instead of an unpacked directory, choose Deploy an Application instead.

7. Specify the directory name and URL prefix. To tell the system that the files are in the

directory webapp1, specify webapp1 for the Application Name entry. To designate a URL

prefix of /webapp1, put /webapp1 in the Application URL textfield. Note that you do not

have to modify the Application Root Dir entry; that is done automatically when you enter

the directory name. Press the Create button when done. See Figure 4-5.

Figure 4-5. JRun Web application creation screen. You

only need to fill in the Application Name and Application

Root Dir entries.

8. Restart the server. From the JRun Management Console, click on JRun Default Server

and then press the Restart Server button. Assuming JRun is not running as a Windows NT

or Windows 2000 service, you can also double-click the JRun Default Server icon from the

taskbar and then press Restart. See Figure 4-6.

Figure 4-6. You must restart JRun for a newly created

Web app to take effect.

9. Access the JSP page and the servlet. The URL

http://hostname/webapp1/HelloWebApp.jsp invokes the JSP page (Figure 4-2), and

http://hostname/webapp1/servlet/HelloWebApp invokes the servlet (Figure 4-3). During

development, you probably use localhost for the host name. These are exactly the same

URLs and results as with Tomcat and ServletExec. This approach assumes that you have

modified JRun to use port 80 as recommended in Chapter 1 (Server Setup and

Configuration). If you haven’t made this change, use

http://hostname:8100/webapp1/HelloWebApp.jsp and

http://hostname:8100/webapp1/servlet/HelloWebApp.

Registering a Web Application with ServletExec

The process of registering Web applications is particularly simple with ServletExec 4. To make a

Web app with a prefix webapp1, just create a directory called webapp1 with the structure

described in the previous two subsections. Drop this directory into install_dir/webapps/default,

restart the server, and access resources in the Web app with URLs that begin with

http://hostname/webapp1/. You can also drop WAR files (Section 4.3) in the same directory; the

name of the WAR file (minus the.war extension) automatically is used as the URL prefix.

For more control over the process or to add a Web application when the server is already running,

perform the following steps. Note that, using this approach, you do not need to restart the server

after registering the Web app.

1. Create a simple directory called webapp1. Use the structure summarized in Figure

4-1: place a simple JSP page called HelloWebApp.jsp (Listing 4.1) in the top-level

directory and put a simple servlet called AppTest.class (compiled from Listing 4.2) in the

WEB-INF/classes subdirectory. Section 4.2 gives details on the directory structure of a

Web app, but for now just note that the JSP pages, HTML documents, images, and other

regular Web documents go in the top-level directory of the Web app, whereas servlets are

placed in the WEB-INF/classes subdirectory. You can also use subdirectories relative to

those locations, although recall that a servlet in a subdirectory must use a package name

that matches the directory name. Later in this chapter (and throughout Chapter 5), we’ll

see uses for the web.xml file that goes in the WEB-INF directory. For now, however, you

can omit this file and let ServletExec create one automatically, or you can copy a simple

example from http://www.moreservlets.com. In fact, you can simply download the entire

webapp1 directory from the Web site.

2. Optional: copy that directory to install_dir/webapps/default. ServletExec allows

you to store your Web application directory at any place on the system, so it is possible to

simply tell ServletExec where the existing webapp1 directory is located. However, I find it

convenient to keep separate development and deployment copies of my Web applications.

That way, I can develop continually but only deploy periodically. Since

install_dir/webapps/default is the standard location for ServletExec Web applications,

that’s a good location for your deployment directories.

3. Go to the ServletExec Web app management interface. Access the ServletExec

administration interface by means of the URL http://hostname and select Manage under

the Web Applications heading. During development, you probably use localhost for the

host name. See Figure 4-7. This assumes that you have modified ServletExec to use port

80 as recommended in Chapter 1 (Server Setup and Configuration). If you haven’t made

this change, use http://hostname:8080.

Figure 4-7. ServletExec interface for managing Web

applications.

4. Enter the Web app name, URL prefix, and directory location. From the previous

user interface, select Add Web Application (see Figure 4-7). This results in an interface

(Figure 4-8) with text fields for the Web application configuration information. It is

traditional, but not required, to use the same name (e.g., webapp1) for the Web app name,

the URL prefix, and the main directory that contains the Web application.

Figure 4-8. ServletExec interface for adding new Web

applications.

5. Add the Web application. After entering the information from Item 4, select Add Web

Application. See Figure 4-8.

6. Access the JSP page and the servlet. The URL

http://hostname/webapp1/HelloWebApp.jsp invokes the JSP page (Figure 4-2), and

http://hostname/webapp1/servlet/HelloWebApp invokes the servlet (Figure 4-3). During

development, you probably use localhost for the host name. These are exactly the same

URLs and results as with Tomcat and JRun. This assumes that you have modified

ServletExec to use port 80 as recommended in Chapter 1 (Server Setup and

Configuration). If you haven’t made this change, use

http://hostname:8080/webapp1/HelloWebApp.jsp and

http://hostname:8080/webapp1/servlet/HelloWebApp.

4.2 Structure of a Web Application

The process of registering a Web application is not standardized; it frequently involves

server-specific configuration files or user interfaces. However, the Web application itself has a

completely standardized format and is totally portable across all Web or application servers that

support version 2.2 or later of the servlet specification. The top-level directory of a Web

application is simply a directory with a name of your choosing. Within that directory, certain types

of content go in designated locations. This section provides details on the type of content that is

placed in various locations; it also gives a sample Web application layout.

Locations for Various File Types

Quick summary: JSP pages and other normal Web documents go in the top-level directory,

unbundled Java classes go in the WEB-INF/classes directory, JAR files go in WEB-INF/lib, and the

web.xml file goes in WEB-INF. Figure 4-9 shows a representative example. For details or a more

explicit sample hierarchy, check out the following subsections.

Figure 4-9. A representative Web application.

JSP Pages

JSP pages should be placed in the top-level Web application directory or in a subdirectory with

any name other than WEB-INF or META-INF. Servers are prohibited from serving files from

WEB-INF or META-INF to the user. When you register a Web application (see Section 4.1), you tell

the server the URL prefix that designates the Web app and define where the Web app directory is

located. It is common, but by no means mandatory, to use the name of the main Web application

directory as the URL prefix. Once you register a prefix, JSP pages are then accessed with URLs of

the form http://hostname/webAppPrefix/filename.jsp (if the pages are in the top-level directory

of the Web application) or http://hostname/webAppPrefix/subdirectory/filename.jsp (if the

pages are in a subdirectory).

It depends on the server whether a default file such as index.jsp can be accessed with a URL that

specifies only a directory (e.g., http://hostname/webAppPrefix/) without the developer first

making an entry in the Web app’s WEB-INF/web.xml file. If you want index.jsp to be the default

filename, I strongly recommend that you make an explicit welcome-file-list entry in your Web

app’s web.xml file. For example, the following web.xml entry specifies that if a URL gives a

directory name but no filename, the server should try index.jsp first and index.html second. If

neither is found, the result is server specific (e.g., a directory listing).

<welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

</welcome-file-list>

For details, see Section 5.7 (Specifying Welcome Pages).

HTML Documents, Images, and Other Regular Web Content

As far as the servlet and JSP engine is concerned, HTML files, GIF and JPEG images, style sheets,

and other Web documents follow exactly the same rules as do JSP pages. They are placed in

exactly the same locations and accessed with URLs of exactly the same form. In deployment

scenarios, however, a servlet or JSP engine such as JRun, ServletExec, Tomcat, or Resin is often

plugged into a regular Web server like Microsoft IIS, Apache, or older versions of the Netscape

Web server. In such a case, the regular Web server usually serves regular Web pages more

quickly than does the servlet and JSP engine. So, if your static Web documents are accessed

extremely frequently, you are faced with a portability vs. performance trade-off. Putting the

static documents in the Web application hierarchy lets you move the servlets, the JSP pages, and

the static documents from server to server with a minimum of changes. Putting the static

resources in the regular Web server’s hierarchy increases performance but requires

server-specific changes when you move the Web app to another server. Fortunately, this issue is

important only for the highest-traffic pages.

It depends on the server whether a default file such as index.html can be accessed with a URL

that specifies only a directory (e.g., http://hostname/webAppPrefix/>) without the developer

first making an entry in the Web app’s WEB-INF/web.xml file. If you want index.html to be the

default filename, I recommend that you make an explicit welcome-file-list entry in web.xml.

For details, see Section 5.7 (Specifying Welcome Pages).

Servlets, Beans, and Helper Classes (Unbundled)

Servlets and other.class files are placed either in WEB-INF/classes or in a subdirectory of

WEB-INF/classes that matches their package name. During development, don’t forget that your

CLASSPATH should include the classes directory. The server already knows about this location, but

your development environment does not. In order to compile servlets that are in packages, the

compiler needs to know the location of the top-level directory of your package hierarchy. See

Section 1.6 (Set Up Your Development Environment) for details.

The default way to access servlets is with URLs of the form

http://hostname/webAppPrefix/servlet/ServletName or

http://hostname/webAppPrefix/servlet/packageName.ServletName. To designate a different

URL, you use the servlet-mapping element in the web.xml deployment descriptor file that is

located within the WEB-INF directory of the Web application. See Section 5.3 (Assigning Names

and Custom URLs) for details.

Servlets, Beans, and Helper Classes (Bundled in JAR Files)

If the servlets or other.class files are bundled inside JAR files, then the JAR files should be placed

in WEB-INF/lib. If the classes are in packages, then within the JAR file they should be in a

directory that matches their package name.

Deployment Descriptor

The deployment descriptor file, web.xml, should be placed in the WEB-INF subdirectory of the

main Web application directory. For details on using web.xml, see Chapter 5 (Controlling Web

Application Behavior with web.xml). Note that a few servers (e.g., Tomcat) have a global

web.xml file that applies to all Web applications. That file is entirely server specific; the only

standard web.xml file is the per-application one that is placed within the WEB-INF directory of the

Web app.

Tag Library Descriptor Files

TLD files can be placed almost anywhere within the Web application. However, I recommend that

you put them in a tlds directory within WEB-INF. Grouping them in a common directory (e.g., tlds)

simplifies their management. Placing that directory within WEB-INF prevents end users from

retrieving them. JSP pages, however, can access TLD files that are in WEB-INF. They just use a

taglib element as follows

<%@ taglib uri="/WEB-INF/tlds/myTaglibFile.tld"...%>

Since it is the server, not the client, that accesses the TLD file in this case, the prohibition that

content inside of WEB-INF is not Web accessible does not apply.

WAR Manifest File

When you create a WAR file (see Section 4.3), a MANIFEST.MF file is placed in the META-INF

subdirectory. Normally, the jar utility automatically creates MANIFEST.MF and places it in the

META-INF directory, and you ignore it if you unpack the WAR file. Occasionally, however, you

modify MANIFEST.MF explicitly (see Section 4.4), so it is useful to know where it is stored.

Sample Hierarchy

Suppose you have a Web application that is in a directory named widgetStore and is registered

(see Section 4.1) with the URL prefix /widgetStore. Following is one possible structure for the

Web app.

widgetStore/orders.jsp

widgetStore/specials.html

These files would be accessed with the URLs http://hostname/widgetStore/orders.jsp and

http://hostname/widgetStore/specials.html, respectively.

widgetStore/info/company-profile.jsp

widgetStore/info/contacts.html

These files would be accessed with the URLs

http://hostname/widgetStore/info/company-profile.jsp and

http://hostname/widgetStore/info/contacts.html, respectively.

widgetStore/founder.jpg

Since the orders.jsp and specials.html files are in the same directory as this file, they would use

a simple relative URL to refer to the image, as below.

Since company-profile.jsp and contacts.html are in a lower-level directory, they would use a

relative URL that contains “..”, as below.

But what if you want to support the flexibility of moving a JSP page to a different directory without

changing the URL that refers to the image? Or what if a servlet wants to refer to this image? This

is slightly more complicated; see Section 4.5 (Handling Relative URLs in Web Applications) for a

discussion of the problem and its solutions.

widgetStore/images/button1.gif

Since the orders.jsp and specials.html files are in the parent directory of this file, they would refer

to the image by using a relative URL that contains the directory name, as below.

Since company-profile.jsp and contacts.html are in a sibling directory, they would use a relative

URL that contains “..” and the directory name, as below.

Again, if you want to be able to move the JSP page without changing the image URL or if you want

to refer to the image from a servlet, things are a bit complicated. See Section 4.5 (Handling

Relative URLs in Web Applications) for a discussion of the problem and its solutions.

widgetStore/WEB-INF/tlds/widget-taglib.tld

This tag library descriptor file would be referenced from a JSP page by use of a taglib element

as follows.

<%@ taglib uri="/WEB-INF/tlds/widget-taglib.tld"...%>

Note that the JSP page that uses this TLD file can be located anywhere within the widgetStore

Web app directory. Note, too, that there is no potential problem regarding relative URLs as there

is with images (as mentioned in the previous two subsections). Also note that it is legal

(recommended, in fact) to place the tlds directory within the WEB-INF directory, even though the

WEB-INF directory is not accessible to Web clients. It is legal because the server, not the client,

retrieves the TLD file.

widgetStore/WEB-INF/web.xml

This is the deployment descriptor. It is not accessible by Web clients; it is used only by the server

itself. See Chapter 5 (Controlling Web Application Behavior with web.xml) for details on its use.

widgetStore/WEB-INF/classes/CheckoutServlet.class

This packageless servlet would be accessed either with the URL

http://hostname/widgetStore/servlet/CheckoutServlet or with a custom URL that starts with

http://hostname/widgetStore/. The web.xml file would define the custom URL; see Section 5.3

(Assigning Names and Custom URLs) for details.

widgetStore/WEB-INF/classes/cart/ShowCart.class

This servlet from the cart package would be accessed either with the URL

http://hostname/widgetStore/servlet/cart.ShowCart or with a custom URL that starts with

http://hostname/widgetStore/. Again, the web.xml file would define the custom URL. Remember

that dots, not slashes, separate package names from class names in URLs that refer to servlets.

So be sure to use http://hostname/widgetStore/servlet/cart.ShowCart, not

http://hostname/widgetStore/servlet/cart/ShowCart.

widgetStore/WEB-INF/lib/Utils.jar

The Utils.jar file could contain utility classes used by the servlets and by various JSP pages. If the

classes are in packages, they should be in subdirectories within the JAR file, and the servlets or

JSP pages that use them must utilize import statements.

4.3 Deploying Web Applications in WAR Files

WAR (Web ARchive) files provide a convenient way of bundling Web apps in a single file. Having

a single large file instead of many small files makes it easier to transfer the Web application from

server to server.

A WAR file is really just a JAR file with a.war extension, and you use the normal jar command to

create it. For example, to bundle the entire widgetStore Web app into a WAR file named

widgetStore.war, you would just change directory to the widgetStore directory and execute the

following command.

jar cvf widgetStore.war *

For simple WAR files, that’s it! However, in version 2.3 of the servlet API, you can create WAR files

that designate that they need shared but nonstandard libraries installed on the server. This topic

is covered in Section 4.4.

Of course, you can use other jar options (e.g., to digitally sign classes) with WAR files just as you

can with regular JAR files. For details, see

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/jar.html (Windows) or

http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/jar.html (Unix/Linux).

Finally, remember that you have to follow slightly different procedures to register Web apps that

are contained in WAR files than you do to deploy unbundled Web applications. For details, see

Section 4.1 (Registering Web Applications).

4.4 Recording Dependencies on Server Libraries

With servlet and JSP engines (or “containers”) supporting the servlet 2.2 and JSP 1.1 API, there

is no portable way to designate that a Web app depends on some shared library that is not part

of the servlet or JSP API itself. You have to either copy the library’s JAR file into the WEB-INF/lib

directory of each and every Web application, or you have to make server-specific changes that

lack mechanisms for verification.

With servlet version 2.3 (JSP version 1.2), you can use the META-INF/MANI-FEST.MF file to

express dependencies on shared libraries. Compliant containers are required to detect when

these dependencies are unfulfilled and provide a warning. Note that although support for these

dependencies is a new capability in servlet version 2.3, the actual method of expressing the

dependencies is the standard one for the Java 2 Platform Standard Edition, as described at

http://java.sun.com/j2se/1.3/docs/guide/extensions/versioning.html. Furthermore, although

the method for expressing dependencies is now standardized, the way to actually implement

shared libraries is nonstandard. For example, with Tomcat 4, individual class files placed in

install_dir/classes and JAR files placed in install_dir/lib are made available to all Web applications.

Other servers might use an entirely different approach or might completely disallow code sharing

across Web applications.

Creating a Manifest File

The MANIFEST.MF file is created automatically by the jar utility. Unless you are using shared

libraries, you normally ignore this file altogether. Even if you do want to customize the manifest

file so that you can use shared libraries more portably, you rarely edit it directly. Instead, you

typically create a text file with a subset of manifest file entries and then use the m option to tell jar

to add the contents of the text file to the autogenerated manifest file. For example, suppose that

you have a file called myAppdependencies.txt that is in the top-level directory of your Web

application. You can create a WAR file called myApp.war by changing directory to the top-level

Web application directory and then issuing the following jar command.

jar cvmf myAppDependencies.txt myApp.war *

There are two small problems with this approach, however. First, myAppDependencies.txt is

actually part of the WAR file. This inclusion is unnecessary and may confuse the deployer who

sees an unneeded file mixed in with index.jsp and other top-level Web files. Second, the WAR file

itself (myApp.war) is created in the top-level directory of the Web application. It is slightly more

convenient to place the WAR file one directory level up from there, so that configuration and

archive files are kept distinct from the Web application contents. Both of these minor problems

can be solved by use of the C option to jar, which instructs jar to change directories before

adding files to the archive. You place myAppDependencies.txt one level up from the main Web

application directory (myApp in the following example), change directory to the location

containing myAppDependencies.txt, and issue the following jar command:

jar cvmf myAppDependencies.txt myApp.war -C myApp *

This way, the dependency file and the WAR file itself are located in the directory that contains the

top-level Web application directory (myApp), not in myApp itself. Note that it is not legal to go to

the parent directory of myApp and then use a directory name when specifying the files, as below.

jar cvmf myAppDependencies.txt myApp.war myApp/* // Wrong!

The reason this fails is that the name myApp incorrectly becomes part of all of the WAR entries

except for MANIFEST.MF.

Contents of the Manifest File

OK, ok. So you know how to use jar to create manifest files. But what do you put in the manifest

file that lets you specify dependencies on shared libraries? There are four main entries that you

need, each of which consists of a single plain-text line of the form “ Entry: value ”.

• Extension-List. This entry designates one or more names of your choosing, separated

by spaces. The names will be used in the rest of the manifest file to identify the library of

interest. For example, suppose that several of your Web applications use JavaMail to send

email. Rather than repeating the JavaMail JAR file in each and every Web application, you

might use a server-specific mechanism to make it available to all Web applications. Then,

your dependency file would contain a line like the following.

•

Extension-List: javaMail

• name-Extension-Name. This entry designates the standard name for the library of

interest. You cannot choose an arbitrary name here; you must supply the name exactly as

it is given in the Extension-Name entry of the JAR file that contains the actual library of

interest. For most standard extensions, the package name is used as the extension name.

Note that the leading name must match whatever you specified for Extension-List. So,

if the standard JavaMail JAR file uses an Extension-Name of javax.mail, the first two

entries in your dependency file would look like the following.

•

• Extension-List: javaMail

javaMail-Extension-Name: javax.mail

• name-Specification-Version. This entry gives the minimum required specification

version of the library of interest. When the server finds an installed library, it compares the

listed Specification-Version to the minimum specified here. For example, if your Web

apps require JavaMail version 1.2 or later, your dependency file might start as follows.

•

• Extension-List: javaMail

• javaMail-Extension-Name: javax.mail

javaMail-Specification-Version: 1.2

• name-Implementation-URL. This entry lets you specify the location where the server

can find the JAR file. Note, however, that it is unclear how many servers (if any) will

automatically download the JAR file when necessary, rather than simply generating an

error message. Combining all four entries results in a dependency file like the following.

•

• Extension-List: javaMail

• javaMail-Extension-Name: javax.mail

• javaMail-Specification-Version: 1.2

javaMail-Implementation-URL: http://somehost.com/javaMail.jar

Although these are the four most important entries, there are a number of other possible entries.

For details, see http://java.sun.com/j2se/1.3/docs/guide/extensions/versioning.html. For

information on JavaMail, see http://java.sun.com/products/javamail/.

4.5 Handling Relative URLs in Web Applications

Suppose you have an image that you want displayed in a JSP page. If the image is used only by

that particular JSP page, you can place the image and the JSP page in the same directory; the JSP

page can then use a simple relative URL to name the image, as below:

If there are lots of different images, it is usually convenient to group them in a subdirectory. But

each URL remains simple:

So far, so good. But what if the same image is used by JSP or HTML pages that are scattered

throughout your application? Copying the image lots of places would be wasteful and would make

updating the image difficult. And even that wouldn’t solve all your problems. For example, what

if you have a servlet that uses an image? After all, you can’t just use

out.println(""); // Fails!

because the browser would treat the image location as relative to the servlet’s URL. But the

default URL of a servlet is http://host/webAppPrefix/servlet/ServletName. Thus, the browser

would resolve the relative URL MyImage.gif to http://host/webAppPrefix/servlet/MyImage.gif.

That, of course, will fail since servlet is not really the name of a directory; it is just an artifact of

the default URL mapping. You have precisely the same problem when using the MVC architecture

(see Section 3.8) where a RequestDispatcher forwards the request from a servlet to a JSP page.

The browser only knows about the URL of the original servlet and thus treats image URLs as

relative to that location.

If you aren’t using Web applications, you can solve all these problems the same way: by using a

URL that is relative to the server’s root directory, not relative to the location of the file that uses

the image. For example, you could put the images in a directory called images that is in the root

directory. Then, a JSP page could use

and a servlet could do

out.println("");

Unfortunately, however, this trick fails when you use Web applications. If a JSP page uses an

image URL of

the browser will request the image from the main server root, not from the base location of the

Web application.

Exactly the same problem occurs with style sheets, applet class files, and even simple hypertext

links that use URLs that begin with slashes. Note, however, that this problem does not occur in

situations where the server resolves the URLs, only in cases where the browser does so. So, for

example, it is perfectly safe for a JSP page that is in a Web app to do

<%@ taglib uri="/tlds/SomeFile.tld"... %>

The server will correctly treat that URL as referring to the tlds directory within the Web application.

Similarly, there is no problem using URLs that begin with / in locations passed to the

getRequestDispatcher method of ServletContext; the server resolves them with respect to

the Web application’s root directory, not the overall server root.

Core Approach

URLs that are returned to the browser need to be handled specially. URLs
that are handled by the server need not be.

There are three possible solutions to this dilemma. The first is the most commonly used but the

least flexible. I recommend option (2) or (3).

1. Use the Web application name in the URL. For example, you could create a

subdirectory called images within your Web application, and a JSP page could refer to an

image with the following URL.

This would work both for regular JSP pages and JSP pages that are invoked by means of

a RequestDispatcher. Servlets could use the same basic strategy. However, this

approach has one serious drawback: if you change the URL prefix of the Web application,

you have to change a large number of JSP pages and servlets. This restriction is

unacceptable in many situations; you want to be able to change the Web application’s URL

prefix without changing any of the files within the Web app.

2. Assign URLs that are at the top level of the Web application. For example, suppose

you had a servlet named WithdrawServlet that was in the banking package of a Web

application named financial. The default URL to invoke that servlet would be

http://host/financial/servlet/banking.WithdrawServlet. Thus, the servlet would suffer

from the problems just discussed when using images, style sheets, and so forth. But,

there is no requirement that you use the default URL. In fact, many people feel that you

should avoid default URLs in deployment scenarios. Instead, you can use the web.xml file

to assign a URL that does not contain the servlet “subdirectory” (see Section 5.3,

“ Assigning Names and Custom URLs ”). For example, Listing 4.4 shows a web.xml file that

could be used to change the URL from

http://host/financial/servlet/banking.WithdrawServlet to http://host/financial/Withdraw.

Now, since the URL does not contain a “subdirectory” named servlet, the servlet can use

simple relative URLs that contain only the filename or the subdirectory and the file, but

without using a /. For instance, if the Web application contained an image called Cash.jpg,

you could place it in the Web app’s images directory and the servlet could use
3.

out.println("");

Listing 4.4 web.xml that assigns top-level URL

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <servlet>

 <servlet-name>WithdrawServlet</servlet-name>

 <servlet-class>banking.WithdrawServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>WithdrawServlet</servlet-name>

 <url-pattern>Withdraw</url-pattern>

 </servlet-mapping>

</web-app>

3. Use getContextPath. The most general solution is to explicitly add the Web application

name to the front of each URL that begins with /. However, instead of hardcoding the

name, you can use the getContextPath method of HttpServletRequest to determine

the name at execution time. For example, a JSP page could do the following.
4.

5. <% String prefix = request.getContextPath();

6. String url = prefix + "/images/MyImage.jpg"; %>

<IMG SRC="<%= url %>" ...>

If you have a number of URLs of this nature, you can make use of the BASE element to

standardize the location to which relative URLs are resolved. For example:

<HEAD>

<BASE HREF="<%= request.getContextPath() %>">

<TITLE>...</TITLE>

</HEAD>

The use of getContextPath is so generally applicable that it is worth capturing some of

this functionality in a reusable utility. Listing 4.5 presents one such utility that not only

modifies regular URLs, but also handles URLs that are to be used for session tracking that

is based on URL rewriting.

Listing 4.5 AppUtils.java

package moreservlets;

import javax.servlet.http.*;

/** A small set of utilities to simplify the use of URLs in

 * Web applications.

*/

public class AppUtils {

/** For use in URLs referenced by JSP pages or servlets, where

 * you want to avoid hardcoding the Web app name. Replace

 * <PRE><XMP>

 *

 * with the following two lines:

 * <% String imageURL = webAppURL("/images/foo.gif",

 * request); %>

 * <IMG SRC="<%= imageURL %>"...>

 *

 * </XMP></PRE>

 */

 public static String webAppURL(String origURL,

 HttpServletRequest request) {

 return(request.getContextPath() + origURL);

 }

 /** For use when you want to support session tracking with

 * URL encoding and you are putting a URL

 * beginning with a slash into a page from a Web app.

 */

 public static String encodeURL(String origURL,

 HttpServletRequest request,

 HttpServletResponse response) {

 return(response.encodeURL(webAppURL(origURL, request)));

 }

 /** For use when you want to support session tracking with

 * URL encoding and you are using sendRedirect to send a URL

 * beginning with a slash to the client.

 */

 public static String encodeRedirectURL

 (String origURL,

 HttpServletRequest request,

 HttpServletResponse response) {

 return(response.encodeRedirectURL

 (webAppURL(origURL, request)));

 }

}

4.6 Sharing Data Among Web Applications

One of the major purposes of Web applications is to keep data separate. Each Web application

maintains its own table of sessions and its own servlet context. Each Web application also uses its

own class loader; this behavior eliminates problems with name conflicts but means that static

methods and fields can’t be used to share data among applications. However, it is still possible to

share data with cookies or by using ServletContext objects that are associated with specific

URLs. These two approaches are summarized below.

• Cookies. Cookies are maintained by the browser, not by the server. Consequently,

cookies can be shared across multiple Web applications as long as they are set to apply to

any path on the server. By default, the browser sends cookies only to URLs that have the

same prefix as the one from which it first received the cookies. For example, if the server

sends a cookie from the page associated with http://host/path1/ SomeFile.jsp, the

browser sends the cookie back to http://host/path1/ SomeOtherFile.jsp and

http://host/path1/path2/Anything, but not to http://host/path3/Anything. Since Web

applications always have unique URL prefixes, this behavior means that default-style

cookies will never be shared between two different Web applications.

However, as described in Section 2.9 (Cookies), you can use the setPath method of the

Cookie class to change this behavior. Supplying a value of "/", as shown below, instructs

the browser to send the cookie to all URLs at the host from which the original cookie was

received.

Cookie c = new Cookie("name", "value");

c.setMaxAge(...);

c.setPath("/");

response.addCookie(c);

• ServletContext objects associated with a specific URL. In a servlet, you obtain the

Web application’s servlet context by calling the getServletContext method of the servlet

itself (inherited from GenericServlet). In a JSP page, you use the predefined

application variable. Either way, you get the servlet context associated with the servlet

or JSP page that is making the request. However, you can also call the getContext

method of ServletContext to obtain a servlet context—not necessarily your

own—associated with a particular URL. This approach is illustrated below.

•

• ServletContext myContext = getServletContext();

• String url = "/someWebAppPrefix";

• ServletContext otherContext = myContext.getContext(url);
Object someData = otherContext.getAttribute("someKey");

Neither of these two data-sharing approaches is perfect.

The drawback to cookies is that only limited data can be stored in them. Each cookie value is a

string, and the length of each value is limited to 4 kilobytes. So, robust data sharing requires a

database: you use the cookie value as a key into the database and store the real data in the

database.

One drawback to sharing servlet contexts is that you have to know the URL prefix that the other

Web application is using. You normally want the freedom to change a Web application’s prefix

without changing any associated code. Use of the getContext method restricts this flexibility. A

second drawback is that, for security reasons, servers are permitted to prohibit access to the

ServletContext of certain Web applications. Calls to getContext return null in such a case. For

example, in Tomcat you can use a value of false for the crossContext attribute of the Context

or DefaultContext element (specified in install_dir/conf/server.xml) to indicate that a Web

application should run in a security-conscious environment and prohibit access to its

ServletContext.

These two data-sharing approaches are illustrated by the SetSharedInfo and ShowSharedInfo

servlets shown in Listings 4.6 and 4.7. The SetSharedInfo servlet creates custom entries in the

session object and the servlet context. It also sets two cookies: one with the default path,

indicating that the cookie should apply only to URLs with the same URL prefix as the original

request, and one with a path of "/", indicating that the cookie should apply to all URLs on the host.

Finally, the SetSharedInfo servlet redirects the client to the ShowSharedInfo servlet, which

displays the names of all session attributes, all attributes in the current servlet context, all

attributes in the servlet context that applies to URLs with the prefix /shareTest1, and all cookies.

Listing 4.6 SetSharedInfo.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Puts some data into the session, the servlet context, and

 * two cookies. Then redirects the user to the servlet

 * that displays info on sessions, the servlet context,

 * and cookies.

 */

public class SetSharedInfo extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 HttpSession session = request.getSession(true);

 session.setAttribute("sessionTest", "Session Entry One");

 ServletContext context = getServletContext();

 context.setAttribute("servletContextTest",

 "Servlet Context Entry One");

 Cookie c1 = new Cookie("cookieTest1", "Cookie One");

 c1.setMaxAge(3600); // One hour

 response.addCookie(c1); // Default path

 Cookie c2 = new Cookie("cookieTest2", "Cookie Two");

 c2.setMaxAge(3600); // One hour

 c2.setPath("/"); // Explicit path: all URLs

 response.addCookie(c2);

 String url = request.getContextPath() +

 "/servlet/moreservlets.ShowSharedInfo";

 // In case session tracking is based on URL rewriting.

 url = response.encodeRedirectURL(url);

 response.sendRedirect(url);

 }

}

Listing 4.7 ShowSharedInfo.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Summarizes information on sessions, the servlet

 * context and cookies. Illustrates that sessions

 * and the servlet context are separate for each Web app

 * but that cookies are shared as long as their path is

 * set appropriately.

 */

public class ShowSharedInfo extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Shared Info";

 out.println(ServletUtilities.headWithTitle(title) +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +

 "\n" +

 " Session:");

 HttpSession session = request.getSession(true);

 Enumeration attributes = session.getAttributeNames();

 out.println(getAttributeList(attributes));

 out.println(" Current Servlet Context:");

 ServletContext application = getServletContext();

 attributes = application.getAttributeNames();

 out.println(getAttributeList(attributes));

 out.println(" Servlet Context of /shareTest1:");

 application = application.getContext("/shareTest1");

 attributes = application.getAttributeNames();

 out.println(getAttributeList(attributes));

 out.println(" Cookies:");

 Cookie[] cookies = request.getCookies();

 if ((cookies == null) || (cookies.length == 0)) {

 out.println(" No cookies found.");

 } else {

 Cookie cookie;

 for(int i=0; i<cookies.length; i++) {

 cookie = cookies[i];

 out.println(" " + cookie.getName());

 }

 }

 out.println(" \n" +

 "\n" +

 "</BODY></HTML>");

 }

 private String getAttributeList(Enumeration attributes) {

 StringBuffer list = new StringBuffer(" \n");

 if (!attributes.hasMoreElements()) {

 list.append(" No attributes found.");

 } else {

 while(attributes.hasMoreElements()) {

 list.append(" ");

 list.append(attributes.nextElement());

 list.append("\n");

 }

 }

 list.append(" ");

 return(list.toString());

 }

}

Figure 4-10 shows the result after the user visits the SetSharedInfo and ShowSharedInfo

servlets from within the Web application that is assigned /shareTest1 as a URL prefix. The

ShowSharedInfo servlet sees:

Figure 4-10. Result of visiting the SetSharedInfo and ShowSharedInfo

servlets from within the same Web application.

• The custom session attribute.

• The custom (explicitly created by the SetSharedInfo servlet) and standard

(automatically created by the server) attributes that are contained in the default servlet

context.

• The custom and standard attributes that are contained in the servlet context that is found

by means of getContext("/shareTest1"), which in this case is the same as the default

servlet context.

• The two explicitly created cookies and the system-created cookie used behind the scenes

by the session tracking API.

Figure 4-11 shows the result when the user later visits an identical copy of the ShowSharedInfo

servlet that is installed in a Web application that has /shareTest2 as the URL prefix. The servlet

sees:

Figure 4-11. Result of visiting the SetSharedInfo servlet in one

Web application and the ShowSharedInfo servlet in a different Web

application.

• The standard attributes that are contained in the default servlet context.

• The custom and standard attributes that are contained in the servlet context that is found

by means of getContext("/shareTest1"), which in this case is different from the default

servlet context.

• Two cookies: the explicitly created one that has its path set to "/" an d the system-created

one used behind the scenes for session tracking (which also uses a custom path of "/").

The servlet does not see:

• Any attributes in its session object.

• Any custom attributes contained in the default servlet context.

• The explicitly created cookie that uses the default path.

Chapter 5. Controlling Web Application Behavior

with web.xml

Topics in This Chapter

• Customizing URLs

• Turning off default URLs

• Initializing servlets and JSP pages

• Preloading servlets and JSP pages

• Declaring filters for servlets and JSP pages

• Designating welcome pages and error pages

• Restricting access to Web resources

• Controlling session timeouts

• Documenting Web applications

• Specifying MIME types

• Locating tag library descriptors

• Declaring event listeners

• Accessing J2EE resources

This chapter describes the makeup of the deployment descriptor file that is placed in WEB-

INF/web.xml within each Web application. I’ll summarize all the legal elements here; for the

formal specification see http://java.sun.com/dtd/web-app_2_3.dtd (for version 2.3 of the servlet

API) or http://java.sun.com/j2ee/dtds/web-app_2_2.dtd (for version 2.2).

Most of the servlet and JSP examples in this chapter assume that they are part of a Web

application named deployDemo. For details on how to set up and register Web applications, please

see Chapter 4 (Using and Deploying Web Applications).

5.1 Defining the Header and Root Elements

The deployment descriptor, like all XML files, must begin with an XML header. This header

declares the version of XML that is in effect and gives the character encoding for the file.

A DOCTYPE declaration must appear immediately after the header. This declaration tells the server

the version of the servlet specification (e.g., 2.2 or 2.3) that applies and specifies the Document

Type Definition (DTD) that governs the syntax of the rest of the file.

The top- level (root) element for all deployment descriptors is web-app. Remember that XML

elements, unlike HTML elements, are case sensitive. Consequently, Web-App and WEB-APP are not

legal; you must use web-app in lower case.

Core Warning

XML elements are case sensitive.

Thus, the web.xml file should be structured as follows for Web apps that will run in servlet 2.2

containers (servers) or that will run in 2.3 containers but not make use of the new web.xml

capabilities (e.g., filter or listener declarations) introduced in version 2.3.

 <?xml version="1.0" encoding="ISO-8859-1"?> <!DOCTYPE web-app PUBLIC "-//Sun

Microsystems, Inc.//DTD Web Application 2.2//EN" "http://java.sun.com/j2ee/dtds/

web-app_2_2.dtd"> <web-app>

<!-- Other elements go here. All are optional. --> </web-app>

Rather than typing in this template by hand, you can (and should) download an example from

http://www.moreservlets.com or copy and edit the version that comes in the default Web

application of whatever server you use. However, note that the web.xml file that is distributed

with Allaire JRun 3 (e.g., in install_dir/servers/default/default-app/WEB-INF for JRun 3.0 or the

samples directory for JRun 3.1) incorrectly omits the XML header and DOCTYPE line. As a result,

although JRun accepts properly formatted web.xml files from other servers, other servers might

not accept the web.xml file from JRun 3. So, if you use JRun 3, be sure to insert the header and

DOCTYPE lines.

Core Warning

The web.xml file that is distributed with JRun 3 is illegal; it is missing the
XML header and DOCTYPE declaration.

If you want to use servlet/JSP filters, application life-cycle listeners, or other features specific to

servlets 2.3, you must use the servlet 2.3 DTD, as shown in the web.xml file below. Of course,

you must also use a server that supports this version of the specification—version 4 of Tomcat,

JRun, or ServletExec, for example. Just be aware that your Web application will not run in servers

that support only version 2.2 of the servlet API (e.g., version 3 of Tomcat, JRun, or ServletExec).

 <?xml

version="1.0" encoding="ISO-8859-1"?> <!DOCTYPE web-app PUBLIC "-//Sun Microsystems,

Inc./

/DTD Web Application

2.3//EN" "http://java.sun.com/dtd/web-

app_2_3.dtd"> <web-app> <!-- Other elements go here. All are optional. --> </web-app>

5.2 The Order of Elements within the Deployment

Descriptor

Not only are XML elements case sensitive, they are also sensitive to the order in which they

appear within other elements. For example, the XML header must be the first entry in the file, the

DOCTYPE declaration must be second, and the web-app element must be third. Within the web-

app element, the order of the elements also matters. Servers are not required to enforce this

ordering, but they are permitted to, and some do so in practice, completely refusing to run Web

applications that contain elements that are out of order. This means that web.xml files that use

nonstandard element ordering are not portable.

Core Approach

Be sure to correctly order the elements that appear within web-app .

The following list gives the required ordering of all legal elements that can appear directly within

the web- app element. For example, the list shows that any servlet elements must appear

before any servlet-mapping elements. If there are any mime-mapping elements, they must go

after all servlet and servlet-mapping elements but before welcome-file- list. Remember

that all these elements are optional. So, you can omit any element but you cannot place it in a

nonstandard location.

• icon. The icon element designates the location of either one or two image files that an

IDE or GUI tool can use to represent the Web application. For details, see Section 5.11

(Documenting Web Applications).

• display-name. The display-name element provides a name that GUI tools might use to

label this particular Web application. See Section 5.11.

• description. The description element gives explanatory text about the Web

application. See Section 5.11.

• distributable. The distributable element tells the system that it is safe to distribute

the Web application across multiple servers. See Section 5.15 .

• context- param. The context-param element declares application-wide initialization

parameters. For details, see Section 5.5 (Initializing and Preloading Servlets and JSP

Pages).

• filter. The filter element associates a name with a class that implements the

javax.servlet.Filter interface. For details, see Section 5.6 (Declaring Filters).

• filter-mapping. Once you have named a filter, you associate it with one or more

servlets or JSP pages by means of the filter-mapping element. See Section 5.6.

• listener. Version 2.3 of the servlet API added support for event listeners that are

notified when the session or servlet context is created, modified, or destroyed. The

listener element designates the event listener class. See Section 5.14 for details.

• servlet. Before you assign initialization parameters or custom URLs to servlets or JSP

pages, you must first name the servlet or JSP page. You use the servlet element for that

purpose. For details, see Section 5.3.

• servlet-mapping. Servers typically provide a default URL for servlets:

http://host/webAppPrefix/servlet/ServletName. However, you often change this URL so

that the servlet can access initialization parameters (Section 5.5) or more easily handle

relative URLs (Section 4.5). When you do change the default URL, you use the servlet-

mapping element to do so. See Section 5.3.

• session- config. If a session has not been accessed for a certain period of time, the

server can throw it away to save memory. You can explicitly set the timeout for individual

session objects by using the setMaxInactiveInterval method of HttpSession, or you

can use the session-config element to designate a default timeout. For details, see

Section 5.10.

• mime-mapping. If your Web application has unusual files that you want to guarantee are

assigned certain MIME types, the mime-mapping element can provide this guarantee. For

more information, see Section 5.12.

• welcome-file-list. The welcome-file-list element instructs the server what file to

use when the server receives URLs that refer to a directory name but not a filename. See

Section 5.7 for details.

• error-page. The error-page element lets you designate the pages that will be displayed

when certain HTTP status codes are returned or when certain types of exceptions are

thrown. For details, see Section 5.8.

• taglib. The taglib element assigns aliases to Tag Library Descriptor files. This

capability lets you change the location of the TLD files without editing the JSP pages that

use those files. See Section 5.13 for more information.

• resource-env-ref. The resource-env-ref element declares an administered object

associated with a resource. See Section 5.15.

• resource-ref. The resource-ref element declares an external resource used with a

resource factory. See Section 5.15.

• security-constraint. The security- constraint element lets you designate URLs

that should be protected. It goes hand-in-hand with the login-config element. See

Section 5.9 for details.

• login-config. You use the login-config element to specify how the server should

authorize users who attempt to access protected pages. It goes hand-in-hand with the

security-constraint element. See Section 5.9 for details.

• security-role. The security- role element gives a list of security roles that will

appear in the role- name subelements of the security-role-ref element inside the

servlet element. Declaring the roles separately could make it easier for advanced IDEs to

manipulate security information. See Section 5.9 for details.

• env- entry. The env-entry element declares the Web application’s environment entry.

See Section 5.15.

• ejb- ref. The ejb-ref element declares a reference to the home of an enterprise bean.

See Section 5.15 .

• ejb-local- ref. The ejb-local-ref element declares a reference to the local home of

an enterprise bean. See Section 5.15.

5.3 Assigning Names and Custom URLs

One of the most common tasks that you perform in web.xml is giving names and custom URLs to

your servlets or JSP pages. You use the servlet element to assign names; you use the

servlet-mapping element to associate custom URLs with the name just assigned.

Assigning Names

In order to provide initialization parameters, define a custom URL, or assign a security role to a

servlet or JSP page, you must first give the servlet or page a name. You assign a name by means

of the servlet element. The most common format includes servlet-name and servlet- class

subelements (inside the web-app element), as follows.

 <servlet> <servlet-name>Test</servlet-

name> <servlet-class>moreservlets.TestServlet</servlet-class> </servlet>

This means that the servlet at WEB-INF/classes/moreservlets/TestServlet is now known by the

registered name Test. Giving a servlet a name has two major implications. First, initialization

parameters, custom URL patterns, and other customizations refer to the servlet by the registered

name, not by the class name. Second, the name can be used in the URL instead of the class name.

Thus, with the definition just given, the URL http://host/webAppPrefix/servlet/Test can be used

in lieu of http://host/webAppPrefix/servlet/moreservlets.TestServlet.

Remember: not only are XML elements case sensitive, but the order in which you define them

also matters. For example, all servlet elements within the web-app element must come before

any of the servlet-mapping elements that are introduced in the next subsection, but before the

filter or documentation-related elements (if any) that are discussed in Sections 5.6 and 5.11.

Similarly, the servlet-name subelement of servlet must come before servlet-class. Section

5.2 (The Order of Elements within the Deployment Descriptor) describes the required ordering in

detail.

Core Approach

Be sure to properly order the elements within the web-app element of

web.xml. In particular, the servlet element must come before

servlet-mapping .

For example, Listing 5.1 shows a simple servlet called TestServlet that resides in the

moreservlets package. Since the servlet is part of a Web application rooted in a directory named

deployDemo, Test Servlet.class is placed in deployDemo/WEBINF/classes/moreservlets. Listing

5.2 shows a portion of the web.xml file that would be placed in deployDemo/WEB-INF/. This

web.xml file uses the servlet-name and servlet-class elements to associate the name Test

with TestServlet.class.

Figures 5-1 and 5-2 show the results when TestServlet is invoked by means of the default URL

and the registered name, respectively.

Figure 5-1. TestServlet when invoked with the default URL.

Figure 5-2. TestServlet when invoked with the registered name.

Listing 5.1 TestServlet.java

 package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet used to illustrate servlet naming

 * and custom URLs.

 */

public class TestServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String uri = request.getRequestURI();

 out.println(ServletUtilities.headWithTitle("Test Servlet") +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H2>URI: " + uri + "</H2>\n" +

 "</BODY></HTML>");

 }

}

Listing 5.2 web.xml (Excerpt showing servlet name)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <servlet>

 <servlet-name>Test</servlet-name>

 <servlet-class>moreservlets.TestServlet</servlet-class>

 </servlet>

 <!-- ... -->

</web-app>

Defining Custom URLs

Most servers have a default URL for servlets:

http://host/webAppPrefix/servlet/packageName.ServletName. Although it is convenient to use

this URL during development, you often want a different URL for deployment. For instance, you

might want a URL that appears in the top level of the Web application (e.g.,

http://host/webAppPrefix/AnyName), without the servlet entry in the URL. A URL at the top level

simplifies the use of relative URLs, as described in Section 4.5 (Handling Relative URLs in Web

Applications). Besides, top-level URLs are shorter and simply look better to many developers than

the long and cumbersome default URLs.

In fact, sometimes you are required to use a custom URL. For example, you might turn off the

default URL mapping so as to better enforce security restrictions or to prevent users from

accidentally accessing servlets that have no init parameters. This idea is discussed further in

Section 5.4 (Disabling the Invoker Servlet). If you disable the default URL, how do you access the

servlet? Only by using a custom URL.

To assign a custom URL, you use the servlet-mapping element along with its servlet-name and

url-pattern subelements. The servlet-name element provides an arbitrary name with which to

refer to the servlet; url-pattern describes a URL relative to the Web application root. The value

of the url-pattern element must begin with a slash (/).

Here is a simple web.xml excerpt that lets you use the URL http://host/webAppPrefix/UrlTest

instead of either http://host/webAppPrefix/servlet/Test or

http://host/webAppPrefix/servlet/moreservlets.TestServlet. Figure 5-3 shows a typical result.

Remember that you still need the XML header, the DOCTYPE declaration, and the enclosing

web-app element as described in Section 5.1 (Defining the Header and Root Elements).

Furthermore, recall that the order in which XML elements appears is not arbitrary. In particular,

you are required to put all the servlet elements before any of the servlet-mapping elements.

For a complete breakdown of the required ordering of elements within web-app, see Section 5.2

(The Order of Elements within the Deployment Descriptor).

Figure 5-3. TestServlet invoked with a URL pattern.

<servlet>

 <servlet-name>Test</servlet-name>

 <servlet-class>moreservlets.TestServlet</servlet-class>

</servlet>

<!-- ... -->

<servlet-mapping>

 <servlet-name>Test</servlet-name>

 <url-pattern>/UrlTest</url-pattern>

</servlet-mapping>

The URL pattern can also include wildcards. For example, the following snippet instructs the

server to send to all requests beginning with the Web app’s URL prefix (see Section 4.1,

“ Registering Web Applications ”) and ending with.asp to the servlet named BashMS.

<servlet>

 <servlet-name>BashMS</servlet-name>

 <servlet-class>msUtils.ASPTranslator</servlet-class>

</servlet>

<!-- ... -->

<servlet-mapping>

 <servlet-name>BashMS</servlet-name>

 <url-pattern>/*.asp</url-pattern>

</servlet-mapping>

Naming JSP Pages

Since JSP pages get translated into servlets, it is natural to expect that you can name JSP pages

just as you can name servlets. After all, JSP pages might benefit from initialization parameters,

security settings, or custom URLs, just as regular servlets do. Although it is true that JSP pages

are really servlets behind the scenes, there is one key difference: you don’t know the actual class

name of JSP pages (since the system picks the name). So, to name JSP pages, you substitute the

jsp-file element for the servlet-class element, as follows.

<servlet>

 <servlet-name>PageName</servlet-name>

 <jsp-file>/TestPage.jsp</jsp-file>

</servlet>

You name JSP pages for exactly the same reason that you name servlets: to provide a name to

use with customization settings (e.g., initialization parameters and security settings) and so that

you can change the URL that invokes the JSP page (e.g., so that multiple URLs get handled by the

same page or to remove the.jsp extension from the URL). However, when setting initialization

parameters, remember that JSP pages read initialization parameters by using the jspInit

method, not the init method. See Section 5.5 (Initializing and Preloading Servlets and JSP Pages)

for details.

For example, Listing 5.3 is a simple JSP page named TestPage.jsp that just prints out the local

part of the URL used to invoke it. TestPage.jsp is placed in the top level of the deployDemo

directory. Listing 5.4 shows a portion of the web.xml file (i.e., deployDemo/WEB-INF/web.xml)

used to assign a registered name of PageName and then to associate that registered name with

URLs of the form http://host/webAppPrefix/UrlTest2/anything. Figures 5-4 through 5-6 show the

results for the URLs http://localhost/deployDemo/TestPage.jsp (the real name),

http://localhost/deployDemo/servlet/PageName (the registered servlet name), and

http://localhost/deployDemo/UrlTest2/foo/bar/baz.html (a URL matching url-pattern),

respectively.

Figure 5-4. TestPage.jsp invoked with the normal URL.

Figure 5-5. TestPage.jsp invoked with the registered servlet

name.

Figure 5-6. TestPage.jsp invoked with a URL that matches the

designated url-pattern.

Listing 5.3 TestPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD><TITLE>JSP Test Page</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H2>URI: <%= request.getRequestURI() %></H2>

</BODY></HTML>

Listing 5.4 web.xml (Excerpt illustrating the naming of JSP

pages)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <servlet>

 <servlet-name>PageName</servlet-name>

 <jsp-file>/TestPage.jsp</jsp-file>

 </servlet>

 <!-- ... -->

 <servlet-mapping>

 <servlet-name>PageName</servlet-name>

 <url-pattern>/UrlTest2/*</url-pattern>

 </servlet-mapping>

 <!-- ... -->

</web-app>

5.4 Disabling the Invoker Servlet

One reason for setting up a custom URL for a servlet or JSP page is so that you can register

initialization parameters to be read from the init (servlets) or jspInit (JSP pages) methods.

However, as discussed in Section 5.5 (Initializing and Preloading Servlets and JSP Pages), the

initialization parameters are available only when the servlet or JSP page is accessed by means of

a custom URL pattern or a registered name, not when it is accessed with the default URL of

http://host/webAppPrefix/servlet/ServletName. Consequently, you might want to turn off the

default URL so that nobody accidentally calls the uninitialized servlet. This process is sometimes

known as disabling the invoker servlet, since most servers have a standard servlet that is

registered with the default servlet URLs and simply invokes the real servlet that the URL refers to.

There are two main approaches for disabling the default URL:

• Remapping the /servlet/ pattern in each Web application.

• Globally turning off the invoker servlet.

It is important to note that, although remapping the /servlet/ pattern in each Web application is

more work than disabling the invoker servlet in one fell swoop, remapping can be done in a

completely portable manner. In contrast, the process for globally disabling the invoker servlet is

completely machine specific, and in fact some servers (e.g., ServletExec) have no such option.

The first following subsection discusses the per-Web-application strategy of remapping the

/servlet/ URL pattern. The next two subsections provide details on globally disabling the invoker

servlet in Tomcat and JRun.

Remapping the /servlet/ URL Pattern

It is quite straightforward to disable processing of URLs that begin with

http://host/webAppPrefix/servlet/ in a particular Web application. All you need to do is create an

error message servlet and use the url-pattern element discussed in the previous section to

direct all matching requests to that servlet. Simply use

<url-pattern>/servlet/*</url-pattern>

as the pattern within the servlet-mapping element.

For example, Listing 5.5 shows a portion of the deployment descriptor that associates the

SorryServlet servlet (Listing 5.6) with all URLs that begin with

http://host/webAppPrefix/servlet/. Figures 5-7 and 5-8 illustrate attempts to access the

TestServlet servlet (Listing 5.1 in Section 5.3) before (Figure 5-7) and after (Figure 5-8) the

web.xml entries of Listing 5.5 are made.

Figure 5-7. Successful attempt to invoke the TestServlet servlet

by means of the default URL. The invoker servlet is enabled.

Figure 5-8. Unsuccessful attempt to invoke the TestServlet

servlet by means of the default URL. The invoker servlet is

disabled.

All compliant servers yield the results of Figures 5-7 and 5-8. However, ServletExec 4.0 has a bug

whereby mappings of the /servlet/* pattern are ignored (other mappings work fine).

Furthermore, since ServletExec has no global method of disabling the invoker servlet, in version

4.0 you are left with no alternative but to leave the invoker servlet enabled. The problem is

resolved in ServletExec version 4.1.

Core Warning

You cannot disable the invoker servlet in ServletExec 4.0.

Listing 5.5 web.xml (Excerpt showing how to disable default

URLs)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <servlet>

 <servlet-name>Sorry</servlet-name>

 <servlet-class>moreservlets.SorryServlet</servlet-class>

 </servlet>

 <!-- ... -->

 <servlet-mapping>

 <servlet-name>Sorry</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- ... -->

</web-app>

Listing 5.6 SorryServlet.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet used to give error messages to

 * users who try to access default servlet URLs

 * (i.e., http://host/webAppPrefix/servlet/ServletName)

 * in Web applications that have disabled this

 * behavior.

 */

public class SorryServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "Invoker Servlet Disabled.";

 out.println(ServletUtilities.headWithTitle(title) +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H2>" + title + "</H2>\n" +

 "Sorry, access to servlets by means of\n" +

 "URLs that begin with\n" +

 "http://host/webAppPrefix/servlet/\n" +

 "has been disabled.\n" +

 "</BODY></HTML>");

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doGet(request, response);

 }

}

Globally Disabling the Invoker: Tomcat

The method you use to turn off the default URL in Tomcat 4 is quite different from the approach

used in Tomcat 3. The following two subsections summarize the two approaches.

Disabling the Invoker: Tomcat 4

Tomcat 4 turns off the invoker servlet in the same way that I turned it off in the previous section:

by means of a url-mapping element in web.xml. The difference is that Tomcat uses a

server-specific global web.xml file that is stored in install_dir/conf, whereas I used the standard

web.xml file that is stored in the WEB-INF directory of each Web application.

Thus, to turn off the invoker servlet in Tomcat 4, you simply comment out the /servlet/* URL

mapping entry in install_dir/conf/web.xml, as shown below.

<!--

<servlet-mapping>

 <servlet-name>invoker</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

</servlet-mapping>

-->

Again, note that this entry is in the Tomcat-specific web.xml file that is stored in install_dir/conf,

not the standard web.xml file that is stored in the WEB-INF directory of each Web application.

Figures 5-9 and 5-10 show the results when the TestServlet (Listing 5.1 from the previous

section) is invoked with the default URL and with the registered servlet name in a version of

Tomcat that has the invoker servlet disabled. Both URLs are of the form

http://host/webAppPrefix/servlet/something, and both fail. Figure 5-11 shows the result when

the explicit URL pattern is used; this request succeeds.

Figure 5-9. TestServlet when invoked with the default URL in a

server that has globally disabled the invoker servlet.

Figure 5-10. TestServlet when invoked with a registered name in

a server that has globally disabled the invoker servlet.

Figure 5-11. TestServlet when invoked with a custom URL in a

server that has globally disabled the invoker servlet.

Disabling the Invoker: Tomcat 3

In version 3 of Apache Tomcat, you globally disable the default servlet URL by commenting out

the InvokerInterceptor entry in install_dir/conf/server.xml. For example, following is a section

of a server.xml file that prohibits use of the default servlet URL.

<!--

<RequestInterceptor

 className="org.apache.tomcat.request.InvokerInterceptor"

 debug="0" prefix="/servlet/" />

-->

With this entry commented out, Tomcat 3 gives the same results as shown in Figures 5-9 through

5-11.

Globally Disabling the Invoker: JRun

In JRun 3.1, you disable the invoker servlet by editing install_dir/lib/global.properties and

inserting a # at the beginning of the line that defines the invoker, thus commenting out the line.

This is illustrated below.

webapp.servlet-mapping./servlet=invoker

With these settings, JRun gives about the same results as shown in Figures 5-9 through 5-11; the

only minor difference is that it gives 500 (Internal Server Error) messages for the first two cases

instead of the 404 (Not Found) messages that Tomcat gives.

5.5 Initializing and Preloading Servlets and JSP Pages

This section discusses methods for controlling the startup behavior of servlets and JSP pages. In

particular, it explains how you can assign initialization parameters and how you can change the

point in the server life cycle at which servlets and JSP pages are loaded.

Assigning Servlet Initialization Parameters

You provide servlets with initialization parameters by means of the init-param element, which

has param-name and param-value subelements. For instance, in the following example, if the

InitServlet servlet is accessed by means of its registered name (InitTest), it could call

getServletConfig().getInitParameter("param1") from its init method to get "Value 1"

and getServletConfig().getInitParameter("param2") to get "2".

<servlet>

 <servlet-name>InitTest</servlet-name>

 <servlet-class>myPackage.InitServlet</servlet-class>

 <init-param>

 <param-name>param1</param-name>

 <param-value>Value 1</param-value>

 </init-param>

 <init-param>

 <param-name>param2</param-name>

 <param-value>2</param-value>

 </init-param>

</servlet>

There are a few common gotchas that are worth keeping in mind when dealing with initialization

parameters:

• Return values. The return value of getInitParameter is always a String. So, for

instance, in the previous example you might use Integer.parseInt on param2 to obtain

an int.

• Initialization in JSP. JSP pages use jspInit, not init. JSP pages also require use of the

jsp-file element in place of servletclass, as described in Section 5.3 (Assigning

Names and Custom URLs). Initializing JSP pages is discussed in the next subsection.

• Default URLs. Initialization parameters are only available when servlets are accessed

by means of their registered names or through custom URL patterns associated with their

registered names. So, in this example, the param1 and param2 init parameters would be

available when you used the URL http://host/webAppPrefix/servlet/InitTest, but not when

you used the URL http://host/webAppPrefix/servlet/myPackage.InitServlet.

Core Warning

Initialization parameters are not available in servlets that are accessed
by their default URL.

For example, Listing 5.7 shows a simple servlet called InitServlet that uses the init method to

set the firstName and emailAddress fields. Listing 5.8 shows the web.xml file that assigns the

name InitTest to the servlet. Figures 5-12 and 5-13 show the results when the servlet is

accessed with the registered name (correct) and the original name (incorrect), respectively.

Figure 5-12. The InitServlet when correctly accessed with its

registered name.

Figure 5-13. The InitServlet when incorrectly accessed with the

default URL.

Listing 5.7 InitServlet.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Simple servlet used to illustrate servlet

 * initialization parameters.

 */

public class InitServlet extends HttpServlet {

 private String firstName, emailAddress;

 public void init() {

 ServletConfig config = getServletConfig();

 firstName = config.getInitParameter("firstName");

 emailAddress = config.getInitParameter("emailAddress");

 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String uri = request.getRequestURI();

 out.println(ServletUtilities.headWithTitle("Init Servlet") +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H2>Init Parameters:</H2>\n" +

 "\n" +

 "First name: " + firstName + "\n" +

 "Email address: " + emailAddress + "\n" +

 "\n" +

 "</BODY></HTML>");

 }

}

Listing 5.8 web.xml (Excerpt illustrating initialization

parameters)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <servlet>

 <servlet-name>InitTest</servlet-name>

 <servlet-class>moreservlets.InitServlet</servlet-class>

 <init-param>

 <param-name>firstName</param-name>

 <param-value>Larry</param-value>

 </init-param>

 <init-param>

 <param-name>emailAddress</param-name>

 <param-value>ellison@microsoft.com</param-value>

 </init-param>

 </servlet>

 <!-- ... -->

</web-app>

Assigning JSP Initialization Parameters

Providing initialization parameters to JSP pages differs in three ways from providing them to

servlets.

1. You use jsp-file instead of servlet-class. So, the servlet element of the

WEB-INF/web.xml file would look something like this:
2.

3. <servlet>

4. <servlet-name>PageName</servlet-name>

5. <jsp-file>/RealPage.jsp</jsp-file>

6. <init-param>

7. <param-name>...</param-name>

8. <param-value>...</param-value>

9. </init-param>

10. ...

</servlet>

11. You almost always assign an explicit URL pattern. With servlets, it is moderately

common to use the default URL that starts with http://host/webAppPrefix/servlet/; you

just have to remember to use the registered name instead of the original name. This is

technically legal with JSP pages also. For example, with the example just shown in item 1,

you could use a URL of http://host/webAppPrefix/servlet/PageName to access the version

of RealPage.jsp that has access to initialization parameters. But, many users dislike URLs

that appear to refer to regular servlets when used for JSP pages. Furthermore, if the JSP

page is in a directory for which the server provides a directory listing (e.g., a directory with

neither an index.html nor an index.jsp file), the user might get a link to the JSP page, click

on it, and thus accidentally invoke the uninitialized page. So, a good strategy is to use

url-pattern (Section 5.3) to associate the original URL of the JSP page with the

registered servlet name. That way, clients can use the normal name for the JSP page but

still invoke the customized version. For example, given the servlet definition from item 1,

you might use the following servlet-mapping definition:
12.

13. <servlet-mapping>

14. <servlet-name>PageName</servlet-name>

15. <url-pattern>/RealPage.jsp</url-pattern>

</servlet-mapping>

16. The JSP page uses jspInit, not init. The servlet that is automatically built from a JSP

page may already be using the init method. Consequently, it is illegal to use a JSP

declaration to provide an init method. You must name the method jspInit instead.

To illustrate the process of initializing JSP pages, Listing 5.9 shows a JSP page called InitPage.jsp

that contains a jspInit method and is placed at the top level of the deployDemo Web page

hierarchy. Normally, a URL of http://localhost/deployDemo/InitPage.jsp would invoke a version

of the page that has no access to initialization parameters and would thus show null for the

firstName and emailAddress variables. However, the web.xml file (Listing 5.10) assigns a

registered name and then associates that registered name with the URL pattern /InitPage.jsp. As

Figure 5-14 shows, the result is that the normal URL for the JSP page now invokes the version of

the page that has access to the initialization parameters.

Figure 5-14. Mapping a JSP page’s original URL to the

registered servlet name prevents users from accidentally

accessing the uninitialized version.

Listing 5.9 InitPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD><TITLE>JSP Init Test</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H2>Init Parameters:</H2>

 First name: <%= firstName %>

 Email address: <%= emailAddress %>

</BODY></HTML>

<%!

private String firstName, emailAddress;

public void jspInit() {

 ServletConfig config = getServletConfig();

 firstName = config.getInitParameter("firstName");

 emailAddress = config.getInitParameter("emailAddress");

}

%>

Listing 5.10 web.xml (Excerpt showing init params for JSP

pages)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <servlet>

 <servlet-name>InitPage</servlet-name>

 <jsp-file>/InitPage.jsp</jsp-file>

 <init-param>

 <param-name>firstName</param-name>

 <param-value>Bill</param-value>

 </init-param>

 <init-param>

 <param-name>emailAddress</param-name>

 <param-value>gates@oracle.com</param-value>

 </init-param>

 </servlet>

 <!-- ... -->

 <servlet-mapping>

 <servlet-name>InitPage</servlet-name>

 <url-pattern>/InitPage.jsp</url-pattern>

 </servlet-mapping>

 <!-- ... -->

</web-app>

Supplying Application-Wide Initialization Parameters

Normally, you assign initialization parameters to individual servlets or JSP pages. The designated

servlet or JSP page reads the parameters by means of the getInitParameter method of

ServletConfig . However, in some situations you want to supply system-wide initialization

parameters that can be read by any servlet or JSP page by means of the getInitParameter

method of ServletContext .

You use the context-param element to declare these system-wide initialization values. The

context-param element should contain param-name, param-value, and, optionally,

description subelements, as below.

<context-param>

 <param-name>support-email</param-name>

 <param-value>blackhole@mycompany.com</param-value>

</context-param>

Recall that, to ensure portability, the elements within web.xml must be declared in the proper

order. Complete details are given in Section 5.2 (The Order of Elements within the Deployment

Descriptor). Here, however, just note that the context-param element must appear after any

documentation-related elements (icon, display-name, and description —see Section 5.11)

and before any filter (Section 5.6), filter-mapping (Section 5.6), listener (Section 5.14),

or servlet (Section 5.3) elements.

Loading Servlets When the Server Starts

Suppose that a servlet or JSP page has an init (servlet) or jspInit (JSP) method that takes a

long time to execute. For example, suppose that the init or jspInit method looks up constants

from a database or ResourceBundle. In such a case, the default behavior of loading the servlet

at the time of the first client request results in a significant delay for that first client. So, you can

use the load-on-startup subelement of servlet to stipulate that the server load the servlet

when the server first starts. Here is an example.

<servlet>

 <servlet-name>...</servlet-name>

 <servlet-class>...</servlet-class> <!-- Or jsp-file -->

 <load-on-startup />

</servlet>

Rather than using an empty load-on-startup element, you can supply an integer for the

element body. The idea is that the server should load lower-numbered servlets or JSP pages

before higher-numbered ones. For example, the following servlet entries (placed within the

web-app element in the web.xml file that goes in the WEB-INF directory of your Web application)

would instruct the server to first load and initialize SearchServlet, then load and initialize the

servlet resulting from the index.jsp file that is in the Web app’s results directory.

<servlet>

 <servlet-name>Search</servlet-name>

 <servlet-class>myPackage.SearchServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet>

 <servlet-name>Results</servlet-name>

 <jsp-file>/results/index.jsp</jsp-file>

 <load-on-startup>2</load-on-startup>

</servlet>

5.6 Declaring Filters

Servlet version 2.3 introduced the concept of filters. Although filters are supported by all servers

that support version 2.3 of the servlet API, you must use the version 2.3 DTD in web.xml in order

to use the filter-related elements. For details on the DTD, see Section 5.1 (Defining the Header

and Root Elements).

Core Note

Filters and the filter-related elements in web.xml are available only in
servers that support the Java servlet API version 2.3. Even with
compliant servers, you must use the version 2.3 DTD.

Filters are discussed in detail in Chapter 9, but the basic idea is that filters can intercept and

modify the request coming into or the response going out of a servlet or JSP page. Before a

servlet or JSP page is executed, the doFilter method of the first associated filter is executed.

When that filter calls doFilter on its FilterChain object, the next filter in the chain is executed.

If there is no other filter, the servlet or JSP page itself is executed. Filters have full access to the

incoming ServletRequest object, so they can check the client’s hostname, look for incoming

cookies, and so forth. To access the output of the servlet or JSP page, a filter can wrap the

response object inside a stand-in object that, for example, accumulates the output into a buffer.

After the call to the doFilter method of the FilterChain object, the filter can examine the buffer,

modify it if necessary, and then pass it on to the client.

For example, Listing 5.11 defines a simple filter that intercepts requests and prints a report on the

standard output (available with most servers when you run them on your desktop during

development) whenever the associated servlet or JSP page is accessed.

Listing 5.11 ReportFilter.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Simple filter that prints a report on the standard output

 * whenever the associated servlet or JSP page is accessed.

 */

public class ReportFilter implements Filter {

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws ServletException, IOException {

 HttpServletRequest req = (HttpServletRequest)request;

 System.out.println(req.getRemoteHost() +

 " tried to access " +

 req.getRequestURL() +

 " on " + new Date() + ".");

 chain.doFilter(request,response);

 }

 public void init(FilterConfig config)

 throws ServletException {

 }

 public void destroy() {}

}

Once you have created a filter, you declare it in the web.xml file by using the filter element

along with the filter-name (arbitrary name), filter-class (fully qualified class name), and,

optionally, init-params subelements. Remember that the order in which elements appear within

the web-app element of web.xml is not arbitrary; servers are allowed (but not required) to

enforce the expected ordering, and in practice some servers do so. Complete ordering

requirements are given in Section 5.2 (The Order of Elements within the Deployment Descriptor),

but note here that all filter elements must come before any filter-mapping elements, which

in turn must come before any servlet or servlet-mapping elements.

Core Warning

Be sure to put all your filter and filter-mapping elements before any

servlet and servlet-mapping elements in web.xml.

For instance, given the ReportFilter class just shown, you could make the following filter

declaration in web.xml. It associates the name Reporter with the actual class ReportFilter

(which is in the moreservlets package).

<filter>

 <filter-name>Reporter</filter-name>

 <filter-class>moreservlets.ReportFilter</filter-class>

</filter>

Once you have named a filter, you associate it with one or more servlets or JSP pages by means

of the filter-mapping element. You have two choices in this regard.

First, you can use filter-name and servlet-name subelements to associate the filter with a

specific servlet name (which must be declared with a servlet element later in the same web.xml

file). For example, the following snippet instructs the system to run the filter named Reporter

whenever the servlet or JSP page named SomeServletName is accessed by means of a custom

URL.

<filter-mapping>

 <filter-name>Reporter</filter-name>

 <servlet-name>SomeServletName</servlet-name>

</filter-mapping>

Second, you can use the filter-name and url-pattern subelements to associate the filter with

groups of servlets, JSP pages, or static content. For example, the following snippet instructs the

system to run the filter named Reporter when any URL in the Web application is accessed.

<filter-mapping>

 <filter-name>Reporter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

For example, Listing 5.12 shows a portion of a web.xml file that associates the ReportFilter

filter with the servlet named PageName. The name PageName, in turn, is associated with a JSP file

named TestPage.jsp and URLs that begin with the pattern http://host/webAppPrefix/UrlTest2/.

The source code for TestPage.jsp and a discussion of the naming of JSP pages were given earlier

in Section 5.3 (Assigning Names and Custom URLs). In fact, the servlet and servlet-name

entries in Listing 5.12 are taken unchanged from that section. Given these web.xml entries, you

see debugging reports in the standard output of the following sort (line breaks added for

readability).

audit.irs.gov tried to access

http://mycompany.com/deployDemo/UrlTest2/business/tax-plan.html

on Tue Dec 25 13:12:29 EDT 2001.

Listing 5.12 web.xml (Excerpt showing filter usage)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <filter>

 <filter-name>Reporter</filter-name>

 <filter-class>moreservlets.ReportFilter</filter-class>

 </filter>

 <!-- ... -->

 <filter-mapping>

 <filter-name>Reporter</filter-name>

 <servlet-name>PageName</servlet-name>

 </filter-mapping>

 <!-- ... -->

 <servlet>

 <servlet-name>PageName</servlet-name>

 <jsp-file>/TestPage.jsp</jsp-file>

 </servlet>

 <!-- ... -->

 <servlet-mapping>

 <servlet-name>PageName</servlet-name>

 <url-pattern>/UrlTest2/*</url-pattern>

 </servlet-mapping>

 <!-- ... -->

</web-app>

5.7 Specifying Welcome Pages

Suppose a user supplies a URL like http://host/webAppPrefix/directoryName/ that contains a

directory name but no filename. What happens? Does the user get a directory listing? An error?

The contents of a standard file? If so, which one—index.html, index.jsp, default.html, default.htm,

or what?

The welcome-file-list element, along with its subsidiary welcome-file element, resolves this

ambiguity. For example, the following web.xml entry specifies that if a URL gives a directory

name but no filename, the server should try index.jsp first and index.html second. If neither is

found, the result is server specific (e.g., a directory listing).

<welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

</welcome-file-list>

Although many servers follow this behavior by default, they are not required to do so. As a result,

it is good practice to explicitly use welcome-file-list to ensure portability.

Core Approach

Make welcome-file-list a standard entry in your web.xml files.

5.8 Designating Pages to Handle Errors

Now, I realize that you never make any mistakes when developing servlets and JSP pages and

that all of your pages are so clear that no rational person could be confused by them. Still,

however, the world is full of irrational people, and users could supply illegal parameters, use

incorrect URLs, or fail to provide values for required form fields. Besides, other developers might

not be as careful as you are, and they should have some tools to overcome their deficiencies.

The error-page element is used to handle problems. It has two possible subelements:

error-code and exception-type. The first of these, error-code, designates what URL to use

when a designated HTTP error code occurs. (If you aren’t familiar with HTTP error codes, they are

discussed in Chapter 6 of Core Servlets and JavaServer Pages, which is available in PDF in its

entirety at http://www.moreservlets.com.) The second of these subelements, exception-type,

designates what URL to use when a designated Java exception is thrown but not caught. Both

error-code and exception-type use the location element to designate the URL. This URL must

begin with / . The page at the place designated by location can access information about the

error by looking up two special-purpose attributes of the HttpServletRequest object:

javax.servlet.error.status_code and javax.servlet.error.message.

Recall that it is important to declare the web-app subelements in the proper order within web.xml.

Section 5.2 (The Order of Elements within the Deployment Descriptor) gives complete details on

the required ordering. For now, however, just remember that error-page comes near the end of

the web.xml file, after servlet, servlet-name, and welcome-file-list.

The error-code Element

To better understand the value of the error-code element, consider what happens at most sites

when you type the filename incorrectly. You typically get a 404 error message that tells you that

the file can’t be found but provides little useful information. On the other hand, try typing

unknown filenames at www.microsoft.com, www.ibm.com, or especially www.bea.com. There,

you get useful messages that provide alternative places to look for the page of interest. Providing

such useful error pages is a valuable addition to your Web application. In fact,

http://www.plinko.net/404/ has an entire site devoted to the topic of 404 error pages. This site

includes examples of the best, worst, and funniest 404 pages from around the world.

Listing 5.13 shows a JSP page that could be returned to clients that provide unknown filenames.

Listing 5.14 shows the web.xml file that designates Listing 5.13 as the page that gets displayed

when a 404 error code is returned. Figure 5-15 shows a typical result. Note that the URL displayed

in the browser remains the one supplied by the client; the error page is a behind-the-scenes

implementation technique.

Figure 5-15. Use of helpful 404 messages can enhance the

usability of your site.

Finally, remember that the default configuration of Internet Explorer version 5, in clear violation

of the HTTP spec, ignores server-generated error messages and displays its own standard error

message instead. Fix this by going to the Tools menu, selecting Internet Options, clicking on

Advanced, then deselecting Show Friendly HTTP Error Messages.

Core Warning

In the default configuration, Internet Explorer improperly ignores
servergenerated error messages.

Listing 5.13 NotFound.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD><TITLE>404: Not Found</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H2>Error!</H2>

I'm sorry, but I cannot find a page that matches

<%= request.getRequestURI() %> on the system. Maybe you should

try one of the following:

 Go to the server's home page.

 Search for relevant pages.

 <FORM ACTION="http://www.google.com/search">

 <CENTER>

 Keywords: <INPUT TYPE="TEXT" NAME="q">

 <INPUT TYPE="SUBMIT" VALUE="Search">

 </CENTER>

 </FORM>

 Admire a random multiple of 404:

 <%= 404*((int)(1000*Math.random())) %>.

 Try a <A HREF="http://www.plinko.net/404/rndindex.asp"

 TARGET="_blank">

 random 404 error message. From the amazing and

 amusing plinko.net

 404 archive.

</BODY></HTML>

Listing 5.14 web.xml (Excerpt designating error pages for

HTTP error codes)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <error-page>

 <error-code>404</error-code>

 <location>/NotFound.jsp</location>

 </error-page>

 <!-- ... -->

</web-app>

The exception-type Element

The error-code element handles the case when a request results in a particular HTTP status code.

But what about the equally common case when the servlet or JSP page returns 200 but generates

a runtime exception? That’s the situation handled by the exception-type element. You only

need to supply two things: a fully qualified exception class and a location, as below:

<error-page>

 <exception-type>packageName.className</exception-type>

 <location>/SomeURL</location>

</error-page>

Then, if any servlet or JSP page in the Web application generates an uncaught exception of the

specified type, the designated URL is used. The exception type can be a standard one like

javax.ServletException or java.lang.OutOfMemoryError, or it can be an exception specific to

your application.

For instance, Listing 5.15 shows an exception class named DumbDeveloperException that might

be used to flag particularly knuckle-headed mistakes by clueless programmers (not that you have

any of those types on your development team). The class also contains a static method called

dangerousComputation that sometimes generates this type of exception. Listing 5.16 shows a

JSP page that calls dangerousComputation on random integer values. When the exception is

thrown, DDE.jsp (Listing 5.17) is displayed to the client, as designated by the exception-type

entry shown in the web.xml version of Listing 5.18. Figures 5-16 and 5-17 show lucky and

unlucky results, respectively.

Figure 5-16. Fortuitous results of RiskyPage.jsp.

Figure 5-17. Unlucky results of RiskyPage.jsp.

Listing 5.15 DumbDeveloperException.java

package moreservlets;

/** Exception used to flag particularly onerous

 programmer blunders. Used to illustrate the

 exception-type web.xml element.

 */

public class DumbDeveloperException extends Exception {

 public DumbDeveloperException() {

 super("Duh. What was I *thinking*?");

 }

 public static int dangerousComputation(int n)

 throws DumbDeveloperException {

 if (n < 5) {

 return(n + 10);

 } else {

 throw(new DumbDeveloperException());

 }

 }

}

Listing 5.16 RiskyPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD><TITLE>Risky JSP Page</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H2>Risky Calculations</H2>

<%@ page import="moreservlets.*" %>

<% int n = ((int)(10 * Math.random())); %>

 n: <%= n %>

 dangerousComputation(n):

 <%= DumbDeveloperException.dangerousComputation(n) %>

</BODY></HTML>

Listing 5.17 DDE.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD><TITLE>Dumb</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H2>Dumb Developer</H2>

We're brain dead. Consider using our competitors.

</BODY></HTML>

Listing 5.18 web.xml (Excerpt designating error pages for

exceptions)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <servlet>...</servlet>

 <!-- ... -->

 <error-page>

 <exception-type>

 moreservlets.DumbDeveloperException

 </exception-type>

 <location>/DDE.jsp</location>

 </error-page>

 <!-- ... -->

</web-app>

5.9 Providing Security

Use of the server’s built-in capabilities to manage security is discussed in Chapter 7 (Declarative

Security). This section summarizes the web.xml elements that relate to this topic.

Designating the Authorization Method

You use the login-config element to specify how the server should authorize users who attempt

to access protected pages. It contains three possible subelements: auth-method, realm-name,

and form-login-config. The login-config element should appear near the end of the web.xml

deployment descriptor, immediately after the security-constraint element discussed in the

next subsection. For complete details on the ordering of elements within web.xml, see Section 5.2.

For details and examples on the use of the login-config element, see Chapter 7 (Declarative

Security).

auth-method

This subelement of login-config lists the specific authentication mechanism that the server

should use. Legal values are BASIC, DIGEST, FORM, and CLIENT-CERT. Servers are only required to

support BASIC and FORM.

BASIC specifies that standard HTTP authentication should be used, in which the server checks for

an Authorization header, returning a 401 status code and a WWW-Authenticate header if the

header is missing. This causes the client to pop up a dialog box that is used to populate the

Authorization header. Details of this process are discussed in Section 7.3 (BASIC

Authentication). Note that this mechanism provides little or no security against attackers who are

snooping on the Internet connection (e.g., by running a packet sniffer on the client’s subnet)

since the username and password are sent with the easily reversible base64 encoding. All

compliant servers are required to support BASIC authentication.

DIGEST indicates that the client should transmit the username and password using the encrypted

Digest Authentication form. This provides more security against network intercepts than does

BASIC authentication, but the encryption can be reversed more easily than the method used in

SSL (HTTPS). The point is somewhat moot, however, since few browsers currently support Digest

Authentication, and consequently servlet containers are not required to support it.

FORM specifies that the server should check for a reserved session cookie and should redirect

users who do not have it to a designated login page. That page should contain a normal HTML

form to gather the username and password. After logging in, users are tracked by means of the

reserved session-level cookie. Although in and of itself, FORM authentication is no more secure

against network snooping than is BASIC authentication, additional protection such as SSL or

network-level security (e.g., IPSEC or VPN) can be layered on top if necessary. All compliant

servers are required to support FORM authentication.

CLIENT-CERT stipulates that the server must use HTTPS (HTTP over SSL) and authenticate users

by means of their Public Key Certificate. This provides strong security against network intercept,

but only J2EE-compliant servers are required to support it.

realm-name

This element applies only when the auth-method is BASIC. It designates the name of the security

realm that is used by the browser in the title of the dialog box and as part of the Authorization

header.

form-login-config

This element applies only when the auth-method is FORM. It designates two pages: the page that

contains the HTML form that collects the username and password (by means of the

form-login-page subelement), and the page that should be used to indicate failed

authentication (by means of the form-error-page subelement). As discussed in Chapter 7, the

HTML form given by the form-login-page must have an ACTION attribute of j_security_check,

a username textfield named j_username, and a password field named j_password.

For example, Listing 5.19 instructs the server to use form-based authentication. A page named

login.jsp in the top-level directory of the Web app should collect the username and password, and

failed login attempts should be reported by a page named login-error.jsp in the same directory.

Listing 5.19 web.xml (Excerpt showing login-config)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <security-constraint>...</security-constraint>

 <login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/login.jsp</form-login-page>

 <form-error-page>/login-error.jsp</form-error-page>

 </form-login-config>

 </login-config>

 <!-- ... -->

</web-app>

Restricting Access to Web Resources

So, you can tell the server which authentication method to use. “Big deal,” you say, “that’s not

much use unless I can designate the URLs that ought to be protected.” Right. Designating these

URLs and describing the protection they should have is the purpose of the security-constraint

element. This element should come immediately before login-config in web.xml. It contains

four possible subelements: web-resource-collection, auth-constraint,

user-data-constraint, and display-name. Each of these is described in the following

subsections.

web-resource-collection

This element identifies the resources that should be protected. All security-constraint

elements must contain at least one web-resource-collection entry. This element consists of a

web-resource-name element that gives an arbitrary identifying name, a url-pattern element

that identifies the URLs that should be protected, an optional http-method element that

designates the HTTP commands to which the protection applies (GET, POST, etc.; the default is all

methods), and an optional description element that provides documentation. For example, the

following web-resource-collection entry (within a security-constraint element) designates

that all documents in the proprietary directory of the Web application should be protected.

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Proprietary</web-resource-name>

 <url-pattern>/proprietary/*</url-pattern>

 </web-resource-collection>

 <!-- ... -->

</security-constraint>

It is important to note that the url-pattern applies only to clients that access the resources

directly. In particular, it does not apply to pages that are accessed through the MVC architecture

with a RequestDispatcher or by the similar means of jsp:forward. This asymmetry is good if

used properly. For example, with the MVC architecture a servlet looks up data, places it in beans,

and forwards the request to a JSP page that extracts the data from the beans and displays it (see

Section 3.8). You want to ensure that the JSP page is never accessed directly but instead is

accessed only through the servlet that sets up the beans the page will use. The url-pattern and

auth-constraint (see next subsection) elements can provide this guarantee by declaring that

no user is permitted direct access to the JSP page. But, this asymmetric behavior can catch

developers off guard and allow them to accidentally provide unrestricted access to resources that

should be protected.

Core Warning

These protections apply only to direct client access. The security model

does not apply to pages accessed by means of a RequestDispatcher or

jsp:forward .

auth-constraint

Whereas the web-resource-collection element designates which URLs should be protected,

the auth-constraint element designates which users should have access to protected resources.

It should contain one or more role-name elements identifying the class of users that have access

and, optionally, a description element describing the role. For instance, the following part of the

security-constraint element in web.xml states that only users who are designated as either

Administrators or Big Kahunas (or both) should have access to the designated resource.

<security-constraint>

 <web-resource-collection>...</web-resource-collection>

 <auth-constraint>

 <role-name>administrator</role-name>

 <role-name>kahuna</role-name>

 </auth-constraint>

</security-constraint>

It is important to realize that this is the point at which the portable portion of the process ends.

How a server determines which users are in which roles and how it stores user passwords is

completely system dependent. See Section 7.1 (Form-Based Authentication) for information on

the approaches used by Tomcat, JRun, and ServletExec.

For example, Tomcat uses install_dir/conf/tomcat-users.xml to associate usernames with role

names and passwords, as in the example below that designates users joe (with password

bigshot) and jane (with password enaj) as belonging to the administrator and/or kahuna

roles.

<tomcat-users>

 <user name="joe"

 password="bigshot" roles="administrator,kahuna" />

 <user name="jane"

 password="enaj" roles="kahuna" />

 <!-- ... -->

</tomcat-users>

Core Warning

Container-managed security requires a significant server-specific
component. In particular, you must use nonportable methods to
associate passwords with usernames and to map usernames to role
names.

user-data-constraint

This optional element indicates which transport-level protections should be used when the

associated resource is accessed. It must contain a transport-guarantee subelement (with legal

values NONE, INTEGRAL, or CONFIDENTIAL) and may optionally contain a description element. A

value of NONE (the default) for transport-guarantee puts no restrictions on the commu-nication

protocol used. A value of INTEGRAL means that the communication must be of a variety that

prevents data from being changed in transit without detection. A value of CONFIDENTIAL means

that the data must be transmitted in a way that prevents anyone who intercepts it from reading

it. Although in principle (and in future HTTP versions) there may be a distinction between

INTEGRAL and CONFIDENTIAL, in current practice they both simply mandate the use of SSL. For

example, the following instructs the server to only permit HTTPS connections to the associated

resource:

<security-constraint>

 <!-- ... -->

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

</security-constraint>

display-name

This rarely used subelement of security-constraint gives a name to the security constraint

entry that might be used by a GUI tool.

Assigning Role Names

Up to this point, the discussion has focused on security that was completely managed by the

container (server). Servlets and JSP pages, however, can also manage their own security. For

details, see Chapter 8 (Programmatic Security).

For example, the container might let users from either the bigwig or bigcheese role access a

page showing executive perks but permit only the bigwig users to modify the page’s parameters.

One common way to accomplish this more fine-grained control is to call the isUserInRole

method of HttpServletRequest and modify access accordingly (for an example, see Section

8.2).

The security-role-ref subelement of servlet provides an alias for a security role name that

appears in the server-specific password file. For instance, suppose a servlet was written to call

request.isUserInRole("boss") but is then used in a server whose password file calls the role

manager instead of boss. The following would permit the servlet to use either name.

<servlet>

 <!-- ... -->

 <security-role-ref>

 <role-name>boss</role-name> <!-- New alias -->

 <role-link>manager</role-link> <!-- Real name -->

 </security-role-ref>

</servlet>

You can also use a security-role element within web-app to provide a global list of all security

roles that will appear in the role-name elements. Declaring the roles separately could make it

easier for advanced IDEs to manipulate security information.

5.10 Controlling Session Timeouts

If a session has not been accessed for a certain period of time, the server can throw it away to

save memory. You can explicitly set the timeout for individual session objects by using the

setMaxInactiveInterval method of HttpSession. If you do not use this method, the default

timeout is server specific. However, the session-config and session-timeout elements can be

used to give an explicit timeout that will apply on all servers. The units are minutes, so the

following example sets the default session timeout to three hours (180 minutes).

<session-config>

 <session-timeout>180</session-timeout>

</session-config>

5.11 Documenting Web Applications

More and more development environments are starting to provide explicit support for servlets

and JSP. Examples include Borland JBuilder Enterprise Edition, Macromedia UltraDev, Allaire JRun

Studio, and IBM VisualAge for Java.

A number of the web.xml elements are designed not for the server, but for the visual

development environment. These include icon, display-name, and description.

Recall that it is important to declare the web-app subelements in the proper order within web.xml.

Section 5.2 (The Order of Elements within the Deployment Descriptor) gives complete details on

the required ordering. For now, however, just remember that icon, display-name, and

description are the first three legal elements within the web-app element of web.xml.

icon

The icon element designates the location of either one or two image files that the GUI tool can

use to represent the Web application. A 16 × 1 6 GIF or JPEG image can be specified with the

small-icon element, and a 32 × 32 image can be specified with large-icon. Here is an

example:

<icon>

 <small-icon>/images/small-book.gif</small-icon>

 <large-icon>/images/tome.jpg</large-icon>

</icon>

display-name

The display-name element provides a name that the GUI tools might use to label this particular

Web application. Here is an example.

<display-name>Rare Books</display-name>

description

The description element provides explanatory text, as below.

<description>

This Web application represents the store developed for

rare-books.com, an online bookstore specializing in rare

and limited-edition books.

</description>

5.12 Associating Files with MIME Types

Servers typically have a way for Webmasters to associate file extensions with media types. So,

for example, a file named mom.jpg would automatically be given a MIME type of image/jpeg.

However, suppose that your Web application has unusual files that you want to guarantee are

assigned a certain MIME type when sent to clients. The mime-mapping element, with extension

and mime-type subelements, can provide this guarantee. For example, the following code

instructs the server to assign a MIME type of application/x-fubar to all files that end in.foo.

<mime-mapping>

 <extension>foo</extension>

 <mime-type>application/x-fubar</mime-type>

</mime-mapping>

Or, perhaps your Web application wants to override standard mappings. For instance, the

following would tell the server to designate.ps files as plain text (text/plain) rather than as

PostScript (application/postscript) when sending them to clients.

<mime-mapping>

 <extension>ps</extension>

 <mime-type>text/plain</mime-type>

</mime-mapping>

For more information on MIME types, see Table 2.1 on page 88.

5.13 Locating Tag Library Descriptors

The JSP taglib element has a required uri attribute that gives the location of a Tag Library

Descriptor (TLD) file relative to the Web application root. The actual name of the TLD file might

change when a new version of the tag library is released, but you might want to avoid changing

all the existing JSP pages. Furthermore, you might want to use a short uri to keep the taglib

elements concise. That’s where the deployment descriptor’s taglib element comes in. It

contains two subelements: taglib-uri and taglib-location. The taglib-uri element should

exactly match whatever is used for the uri attribute of the JSP taglib element. The

taglib-location element gives the real location of the TLD file. For example, suppose that you

place the file chart-tags-1.3beta.tld in yourWebApp/WEB-INF/tlds. Now, suppose that web.xml

contains the following within the web-app element.

<taglib>

 <taglib-uri>/charts.tld</taglib-uri>

 <taglib-location>

 /WEB-INF/tlds/chart-tags-1.3beta.tld

 </taglib-location>

</taglib>

Given this specification, JSP pages can now make use of the tag library by means of the following

simplified form.

<% taglib uri="/charts.tld" prefix="somePrefix" %>

5.14 Designating Application Event Listeners

Application event listeners are classes that are notified when the servlet context or a session

object is created or modified. They are new in version 2.3 of the servlet specification and are

discussed in detail in Chapter 10 (The Application Events Framework). Here, though, I just want

to briefly illustrate the use of the web.xml elements that are used to register a listener with the

Web application.

Registering a listener involves simply placing a listener element inside the web-app element of

web.xml. Inside the listener element, a listener-class element lists the fully qualified class

name of the listener, as below.

<listener>

 <listener-class>package.ListenerClass</listener-class>

</listener>

Although the structure of the listener element is simple, don’t forget that you have to properly

order the subelements inside the web-app element. The listener element goes immediately

before all the servlet elements and immediately after any filter-mapping elements.

Furthermore, since application life-cycle listeners are new in version 2.3 of the servlet

specification, you have to use the 2.3 version of the web.xml DTD, not the 2.2 version.

For example, Listing 5.20 shows a simple listener called ContextReporter that prints a message

on the standard output whenever the Web application’s ServletContext is created (e.g., the

Web application is loaded) or destroyed (e.g., the server is shut down). Listing 5.21 shows the

portion of the web.xml file that is required for registration of the listener.

Listing 5.20 ContextReporter.java

package moreservlets;

import javax.servlet.*;

import java.util.*;

/** Simple listener that prints a report on the standard output

 * when the ServletContext is created or destroyed.

 */

public class ContextReporter implements ServletContextListener {

 public void contextInitialized(ServletContextEvent event) {

 System.out.println("Context created on " +

 new Date() + ".");

 }

 public void contextDestroyed(ServletContextEvent event) {

 System.out.println("Context destroyed on " +

 new Date() + ".");

 }

}

Listing 5.21 web.xml (Excerpt declaring a listener)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <filter-mapping>...</filter-mapping>

 <listener>

 <listener-class>moreservlets.ContextReporter</listener-class>

 </listener>

 <servlet>...</servlet>

 <!-- ... -->

</web-app>

5.15 J2EE Elements

This section describes the web.xml elements that are used for Web applications that are part of

a J2EE environment. I’ll provide a brief summary here; for details, see Chapter 5 of the Java 2

Platform Enterprise Edition version 1.3 specification at

http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf.

distributable

The distributable element indicates that the Web application is programmed in such a way that

servers that support clustering can safely distribute the Web application across multiple servers.

For example, a distributable application must use only Serializable objects as attributes of its

HttpSession objects and must avoid the use of instance variables (fields) for implementing

persistence. The distributable element appears directly after the description element

(Section 5.11) and contains no subelements or data—it is simply a flag (as below).

<distributable />

resource-env-ref

The resource-env-ref element declares an administered object associated with a resource. It

consists of an optional description element, a resource-env-ref-name element (a JNDI name

relative to the java:comp/env context), and a resource-env-type element (the fully qualified

class designating the type of the resource), as below.

<resource-env-ref>

 <resource-env-ref-name>

 jms/StockQueue

 </resource-env-ref-name>

 <resource-env-ref-type>

 javax.jms.Queue

 </resource-env-ref-type>

</resource-env-ref>

resource-ref

The resource-ref element declares an external resource used with a resource factory. It

consists of an optional description element, a res-ref-name element (the resource manager

connection-factory reference name), a res-type element (the fully qualified class name of the

factory type), a res-auth element (the type of authentication used— Application or

Container), and an optional res-sharing-scope element (a specification of the shareability of

connections obtained from the resource— Shareable or Unshareable). Here is an example.

<resource-ref>

 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope

</resource-ref>

env-entry

The env-entry element declares the Web application’s environment entry. It consists of an

optional description element, an env-entry-name element (a JNDI name relative to the

java:comp/env context), an env-entry-value element (the entry value), and an

env-entry-type element (the fully qualified class name of a type in the java.lang package—

java.lang.Boolean, java.lang.String, etc.). Here is an example.

<env-entry>

 <env-entry-name>minAmount</env-entry-name>

 <env-entry-value>100.00</env-entry-value>

 <env-entry-type>java.lang.Double</env-entry-type>

</env-entry>

ejb-ref

The ejb-ref element declares a reference to the home of an enterprise bean. It consists of an

optional description element, an ejb-ref-name element (the name of the EJB reference

relative to java:comp/env), an ejb-ref-type element (the type of the bean— Entity or

Session), a home element (the fully qualified name of the bean’s home interface), a remote

element (the fully qualified name of the bean’s remote interface), and an optional ejb-link

element (the name of another bean to which the current bean is linked).

ejb-local-ref

The ejb-local-ref element declares a reference to the local home of an enterprise bean. It has

the same attributes and is used in the same way as the ejb-ref element, with the exception that

local-home is used in place of home.

Chapter 6. A Sample Web Application: An Online

Boat Shop

Topics in This Chapter

• Defining and using a larger Web application

• The interaction among components in a Web application

• Using sessions for per-user data

• Using the servlet context for multiuser data

• Managing information that is accessed by multiple servlets and JSP pages

• Eliminating dependencies on the Web application name

Many people find it helpful to see a variety of individual capabilities brought together in a single

example. This chapter walks you through a small application (an online boat shop) that contains

many of the different components discussed up to this point in the book. In particular, it

illustrates:

• Web application definition, structure, and use

• The web.xml file

• The use of relative URLs by servlets and JSP pages at various locations within the Web

application

• Custom tags that are used by JSP pages in various directories

• Shared beans

• Session tracking

• The use of the ServletContext to share data among multiple pages

• The MVC architecture applied within a Web application

• The elimination of any dependency on the Web application name

6.1 General Configuration Files

Registering a Web application (designating the location of the top-level directory and specifying

a URL prefix) is a completely server-specific process. For information on the registration process,

see Section 4.1 (Registering Web Applications). Here, I’ll just show the settings necessary for

Tomcat.

Listing 6.1 presents the relevant part of the Tomcat server.xml file. Recall that, if you use the

default Web application settings, it is only necessary to edit server.xml in Tomcat 3. In Tomcat 4,

just drop the boats directory into install_dir/webapps.

Listing 6.1 install_dir/conf/server.xml for Tomcat (partial)

<?xml version="1.0" encoding="ISO-8859-1"?>

<Server>

 ...

 <Context path="/boats" docBase="boats" />

</Server>

Listing 6.2 shows the complete web.xml file. Recall from Section 5.2 (The Order of Elements

within the Deployment Descriptor) that it is important to arrange the web.xml elements within

web-app in the proper order. Also, because the boats application does not use filters, life-cycle

event handlers, or other new features, it uses the servlet 2.2 DTD to maximize portability.

This version of web.xml specifies the following behaviors:

• The ShowItem servlet can be accessed with the URL http://host/boats/DisplayItem

instead of the default URL of http://host/boats/servlet/moreservlets.ShowItem.

• Similarly, the ShowPurchases servlet can be accessed with the URL

http://host/boats/DisplayPurchases instead of

http://host/boats/servlet/moreservlets.ShowPurchases.

• The file index.jsp (if it exists) should be used as the default filename for URLs that name

a directory but not a file. If index.jsp is not found, index.html should be used. If neither is

found, the result is server specific.

For more information on using the web.xml file, see Chapter 5 (Controlling Web Application

Behavior with web.xml).

Listing 6.2 boats/WEB-INF/web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <!-- Register names for the ShowItem and ShowPurchases

 servlets. These names will be used with servlet-mapping

 to set custom URLs.

 -->

 <servlet>

 <servlet-name>ShowItem</servlet-name>

 <servlet-class>moreservlets.ShowItem</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>ShowPurchases</servlet-name>

 <servlet-class>moreservlets.ShowPurchases</servlet-class>

 </servlet>

 <!-- Set the URL http://host/webAppName/DisplayPurchases

 to invoke the servlet that would otherwise be

 available with the URL

 http://host/webAppName/servlet/moreservlets.ShowPurchases

 -->

 <servlet-mapping>

 <servlet-name>ShowPurchases</servlet-name>

 <url-pattern>/DisplayPurchases</url-pattern>

 </servlet-mapping>

 <!-- Set the URL http://host/webAppName/DisplayItem

 to invoke the servlet that would otherwise be

 available with the URL

 http://host/webAppName/servlet/moreservlets.ShowItem

 -->

 <servlet-mapping>

 <servlet-name>ShowItem</servlet-name>

 <url-pattern>/DisplayItem</url-pattern>

 </servlet-mapping>

 <!-- If URL gives a directory but no filename, try index.jsp

 first and index.html second. If neither is found,

 the result is server specific (e.g., a directory

 listing).

 -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

</web-app>

6.2 The Top-Level Page

Listing 6.3 shows index.jsp, the top-level page for the boat store. The result is shown in Figure

6-1. There are a couple of things to note about this page.

Figure 6-1. Result of index.jsp.

First, since the style sheet app-styles.css is also in the top-level boats directory, the LINK element

in the HEAD of the page can simply use the style sheet filename for the HREF attribute. See the

source code archive at http://www.moreservlets.com if you want the source for app-styles.css.

Similarly, the hypertext links to the yachts, tankers, and carriers JSP pages require only a simple

filename within the HREF attribute. One of the goals of a Web application is that it require no

modifications when it is moved from server to server or when the URL prefix is changed. Section

4.5 (Handling Relative URLs in Web Applications) gives details on handling relative URLs so that

they don’t need modifications when the URL prefix changes, but the approach is trivial for URLs

that refer to files in the same directory—just use the filename.

Second, since the yacht image is in the boats/images/ directory, the IMG element uses a URL of

images/yacht.jpg.

Third, the taglib element uses a uri of /WEB-INF/tlds/count-taglib.tld. Although this URL begins

with a slash, it refers to the /tlds subdirectory of the WEB-INF directory within the boats directory,

not to the tlds directory of the server’s top-level WEB-INF directory. The reason for this behavior

is that the URL is resolved by the server, not sent to the client, and the server resolves this type

of URL within the Web application. See Listings 6.4 through 6.6 for the tag library definition and

the tag library descriptor file.

Finally, as Listings 6.4 and 6.5 show, the count tag uses the servlet context to store the access

count. As illustrated in Section 4.6 (Sharing Data Among Web Applications), each Web application

has its own servlet context. Thus, servlets and JSP pages in other Web apps do not interfere with

the access count, even if they use the same tag library.

Listings 6.4 and 6.5 give the source code for the custom tag used to keep the access count for this

page and the other pages on the boats site. Listing 6.6 shows the tag library descriptor file that

associates the CounterTag code with the base tag name of count.

Listing 6.3 boats/index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Boats</TITLE>

<LINK REL=STYLESHEET

 HREF="app-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Boats!</TABLE>

<P>

Looking for a hole in the water into which to pour your money?

You've come to the right place. We offer a wide selection of

reasonably priced boats for everyday use.

<IMG SRC="images/yacht.jpg" WIDTH=240 HEIGHT=367

 ALIGN="RIGHT" ALT="Base-model yacht">

<H2>Yachts</H2>

Starting at a mere 72 million, these entry-level models are

perfect for the cost-conscious buyer.

Click here for details.

<H2>Oil Tankers</H2>

Looking for something a bit bigger and sturdier? These

roomy models come complete with large swimming pools.

Click here for details.

<H2>Aircraft Carriers</H2>

Concerned about security? These high-tech models come

equipped with the latest anti-theft devices.

Click here for details.

<P>

<%@ taglib uri="/WEB-INF/tlds/count-taglib.tld" prefix="boats" %>

<boats:count />

</BODY>

</HTML>

Listing 6.4

boats/WEB-INF/classes/moreservlets/CounterTag.java[*] [*]

package moreservlets;

import javax.servlet.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import java.text.*;

/** Tag that outputs a Web-app-specific hit count.

 * For boats example.

 * <P>

 * The actual name of the tag is not defined here;

 * that is given by the Tag Library Descriptor (TLD)

 * file that is referenced by the taglib directive

 * in the JSP file.

 */

public class CounterTag extends TagSupport {

 public int doStartTag() {

 try {

 ServletContext application =

 pageContext.getServletContext();

 Count count = (Count)application.getAttribute("count");

 if (count == null) {

 count = new Count();

 application.setAttribute("count", count);

 }

 DateFormat formatter =

 DateFormat.getDateInstance(DateFormat.MEDIUM);

 JspWriter out = pageContext.getOut();

 out.println("<BR CLEAR=\"ALL\">
<HR>");

 out.println("This site has received " +

 count.getCount() + " hits since " +

 formatter.format(count.getStartDate()) +

 ".");

 count.incrementCount();

 } catch(IOException ioe) {

 System.out.println("Error in CounterTag: " + ioe);

 }

 return(SKIP_BODY);

 }

}

[*] Technically, only the.class file needs to go in this directory. The only requirement for the source code is that it go in a directory

matching the package name (moreservlets).

Listing 6.5

boats/WEB-INF/classes/moreservlets/Count.java[*] [*]

package moreservlets;

import java.util.Date;

/** Simple bean used by CounterTag. For boats example. */

public class Count {

 private int count = 1;

 private Date startDate = new Date();

 public int getCount() {

 return(count);

 }

 public void incrementCount() {

 count++;

 }

 public Date getStartDate() {

 return(startDate);

 }

}

[*] Technically, only the.class file needs to go in this directory.

Listing 6.6 boats/WEB-INF/tlds/count-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>

 <tlibversion>1.0</tlibversion>

 <jspversion>1.1</jspversion>

 <shortname>Counts</shortname>

 <info>

 A tag library for counters. From More Servlets and

 JavaServer Pages, http://www.moreservlets.com.

 </info>

 <tag>

 <name>count</name>

 <tagclass>moreservlets.CounterTag</tagclass>

 <bodycontent>empty</bodycontent>

 <info>Hit count</info>

 </tag>

</taglib>

6.3 The Second-Level Pages

The top-level page introduces the site and gives links to each of the three second-level pages that

describe specific varieties of boats: yachts (Listing 6.7, Figure 6-2), oil tankers (Listing 6.8,

Figure 6-3), and aircraft carriers (Listing 6.9, Figure 6-4). Note that simple relative URLs are used

for the style sheet and for the servlet with which the form communicates when the user asks for

details. Note also that the custom tag maintains the count from the top-level page. That’s

because the servlet context is shared by all pages in the Web app.

Figure 6-2. Result of yachts.jsp.

Figure 6-3. Result of tankers.jsp.

Figure 6-4. Result of carriers.jsp.

Once the user chooses a particular model and asks for more information on it, the item display

servlet is invoked. Since the web.xml file (Listing 6.2) registers this servlet with the URL suffix

DisplayItem, a simple relative URL can be used for the ACTION attribute of the FORM element. As

described in Section 4.5 (Handling Relative URLs in Web Applications), this capability is important

because it permits the servlet to use simple relative URLs either directly or by means of JSP pages

to which it forwards the request. That means that the Web application name can be changed

without necessitating changes to these JSP pages. See the following subsection for details on the

item display servlet.

Listing 6.7 boats/yachts.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Yachts</TITLE>

<LINK REL=STYLESHEET

 HREF="app-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Yachts</TABLE>

<P>

Luxurious models for the <S>wasteful</S>

wealthy buyer.

<H2>Available Models</H2>

Choose a model to see a picture along with price and

availability information.

<FORM ACTION="DisplayItem">

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="BM1">

Base Model -- Includes 4-car garage

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="MR1">

Mid Range -- Has 15 bedrooms and a helipad

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="HE1">

High End -- Free tropical island nation included

<P>

<CENTER>

<INPUT TYPE="SUBMIT" VALUE="Get Details">

</CENTER>

</FORM>

<%-- Note the lack of "boats" at the front of URI below --%>

<%@ taglib uri="/WEB-INF/tlds/count-taglib.tld" prefix="boats" %>

<boats:count />

</BODY>

</HTML>

Listing 6.8 boats/tankers.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Oil Tankers</TITLE>

<LINK REL=STYLESHEET

 HREF="app-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Oil Tankers</TABLE>

<P>

Stable and roomy models for the <S>uninformed</S>

innovative buyer.

<H2>Available Models</H2>

Choose a model to see a picture along with price and

availability information.

<FORM ACTION="DisplayItem">

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="Valdez">

Valdez -- Slightly damaged model available at discount

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="BigBertha">

Big Bertha -- Includes 10 million gallon swimming pool

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="EcoDisaster">

ED I -- For those who don't mind political incorrectness

<P>

<CENTER>

<INPUT TYPE="SUBMIT" VALUE="Get Details">

</CENTER>

</FORM>

<%-- Note the lack of "boats" at the front of URI below --%>

<%@ taglib uri="/WEB-INF/tlds/count-taglib.tld" prefix="boats" %>

<boats:count />

</BODY>

</HTML>

Listing 6.9 boats/carriers.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Aircraft Carriers</TITLE>

<LINK REL=STYLESHEET

 HREF="app-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Aircraft Carriers</TABLE>

<P>

High-security models for the <S>paranoid</S> careful buyer.

<H2>Available Models</H2>

Choose a model to see a picture along with price and

availability information.

<FORM ACTION="DisplayItem">

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="SafeT-1A">

SafeT-1A -- Our Most Popular Model

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="SafeT-1B">

SafeT-1B -- 1000-man crew included

<INPUT TYPE="RADIO" NAME="itemNum" VALUE="Lubber-1">

Land Lubber I -- Land-based replica; no water to worry about!

<P>

<CENTER>

<INPUT TYPE="SUBMIT" VALUE="Get Details">

</CENTER>

</FORM>

<%-- Note the lack of "boats" at the front of URI below --%>

<%@ taglib uri="/WEB-INF/tlds/count-taglib.tld" prefix="boats" %>

<boats:count />

</BODY>

</HTML>

6.4 The Item Display Servlet

Since prices, descriptions, and pictures of sale items can change, you don’t want to create item

description pages by hand. Instead, pages of this sort should be automatically generated. In real

life, the data source would probably be a database that is accessed with JDBC (see Chapter 18 of

Core Servlets and JavaServer Pages, available in PDF at http://www.moreservlets.com). In this

case, a simple data file is used so that the example is short and so that you can run the it without

a database.

The item display servlet uses the MVC architecture (see Section 3.8) to display information. First,

the servlet (Listing 6.10) reads the itemNum request parameter. If the item number is found, the

servlet uses the number as a key into the table of ships (Listing 6.13, a subclass of the more

general table shown in Listing 6.14) and creates a SimpleItem object (Listing 6.15) from the

result. The servlet then places the SimpleItem in the request object and forwards the request to

the ShowItem.jsp page (Listing 6.11, Figure 6-5). The ShowItem.jsp page uses jsp:useBean

(Section 3.6) to access the SimpleItem object, then uses that object to look up the item’s

description, its cost, and the location of an image file that illustrates it. If, however, the item

number is missing, the ShowItem servlet sends the request to Miss-ingItem.jsp (Listing 6.12,

Figure 6-6).

Figure 6-5. Result of the ShowItem servlet when model SafeT-1A is

selected. The servlet is invoked with the registered name

(DisplayItem) and forwards the request to ShowItem.jsp.

Figure 6-6. Result of the ShowItem servlet when no model number

is selected. The servlet is invoked with the registered name

(DisplayItem) and forwards the request to MissingItem.jsp.

Note the importance of using the web.xml file to give the servlet a URL at the top level of the Web

app (e.g., http://host/boats/DisplayItem), rather than using the default URL (e.g.,

http://host/boats/servlet/moreservlets.ShowItem). Because of this simplification, the JSP page

need not call getContextPath before using relative URLs. See Section 4.5 (Handling Relative

URLs in Web Applications) for details.

Listing 6.10

boats/WEB-INF/classes/moreservlets/ShowItem.java[*] [*]

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Servlet that looks up information on an item that is for

 * sale. Uses the MVC architecture, with either

 * MissingItem.jsp or ShowItem.jsp doing the presentation.

 * Used in the boats Web app.

 */

public class ShowItem extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String itemNum = request.getParameter("itemNum");

 String destination;

 if (itemNum == null) {

 destination = "/MissingItem.jsp";

 } else {

 destination = "/ShowItem.jsp";

 ItemTable shipTable = ShipTable.getShipTable();

 SimpleItem item = shipTable.getItem(itemNum);

 request.setAttribute("item", item);

 }

 RequestDispatcher dispatcher =

 getServletContext().getRequestDispatcher(destination);

 dispatcher.forward(request, response);

 }

}

[*] Technically, only the.class file needs to go in this directory.

Listing 6.11 boats/ShowItem.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<jsp:useBean id="item"

 class="moreservlets.SimpleItem"

 scope="request" />

<TITLE><jsp:getProperty name="item" property="itemNum" /></TITLE>

<LINK REL=STYLESHEET

 HREF="app-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 <jsp:getProperty name="item" property="itemNum" /></TABLE>

<P>

<IMG SRC="<jsp:getProperty name='item' property='imageURL' />"

 ALIGN="RIGHT">

<H3>Item Number</H2>

<jsp:getProperty name="item" property="itemNum" />

<H3>Description</H2>

<jsp:getProperty name="item" property="description" />

<H3>Cost</H2>

<jsp:getProperty name="item" property="costString" />.

A real bargain!

<H3>Ordering</H2>

<FORM ACTION="DisplayPurchases">

 <INPUT TYPE="HIDDEN" NAME="itemNum"

 VALUE="<jsp:getProperty name='item'

 property='itemNum' />">

 <INPUT TYPE="SUBMIT" VALUE="Submit Order">

</FORM>

<%-- Note the lack of "boats" at the front of URI below --%>

<%@ taglib uri="/WEB-INF/tlds/count-taglib.tld" prefix="boats" %>

<boats:count />

</BODY>

</HTML>

Listing 6.12 boats/MissingItem.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Missing Item Number</TITLE>

<LINK REL=STYLESHEET

 HREF="app-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Missing Item Number</TABLE>

<P>

<H2>Error</H2>

You must supply an item number!

<%-- Note the lack of "boats" at the front of URI below --%>

<%@ taglib uri="/WEB-INF/tlds/count-taglib.tld" prefix="boats" %>

<boats:count />

</BODY>

</HTML>

Listing 6.13

boats/WEB-INF/classes/moreservlets/ShipTable.java[*] [*]

package moreservlets;

/** A small collection of ships. Used in the boats Web app. */

public class ShipTable {

 private static SimpleItem[] ships =

 { // Yachts

 new SimpleItem

 ("BM1",

 "Base model yacht. Features sauna, two kitchens, " +

 "and four-car garage. Perfect entry-level " +

 "yacht for the first-time buyer.",

 "images/yacht.jpg",

 72678922.99),

 new SimpleItem

 ("MR1",

 "Mid-range yacht. Features helipad, bowling alley, " +

 "and 15 bedrooms. Trade up from a BM1 " +

 "today!.",

 "images/yacht.jpg",

 145357845.98),

 new SimpleItem

 ("HE1",

 "High-end yacht. Features onboard 18-hole golf " +

 "course, onboard polo grounds, and ski jump. " +

 "Bonus: for a limited time only, a mid-sized " +

 "tropical island country will be included at " +

 "no extra cost.",

 "images/yacht.jpg",

 7267892299.00),

 // Oil Tankers

 new SimpleItem

 ("Valdez",

 "Slightly damaged former Alaskan touring boat. " +

 "Special price won't last long!",

 "images/tanker.jpg",

 9.95),

 new SimpleItem

 ("BigBertha",

 "Tired of cramped quarters on your boat? " +

 "This roomy model has plenty of space to stretch " +

 "your legs. 10 million gallon onboard " +

 "swimming pool included!",

 "images/tanker.jpg",

 20000000.00),

 new SimpleItem

 ("EcoDisaster",

 "OK, ok, so this model is not exactly politically " +

 "correct. But you're not one to pass up " +

 "a bargain just because of a few " +

 "<S>Greenpeace</S> pesky demonstrators, " +

 "are you?.",

 "images/tanker.jpg",

 100000000),

 // Aircraft Carriers

 new SimpleItem

 ("SafeT-1A",

 "A safe and secure boat, perfect for family " +

 "vacations. Note: no crew provided. If crew " +

 "is desired, please see model SafeT-1B.",

 "images/carrier.jpg",

 3167492481.99),

 new SimpleItem

 ("SafeT-1B",

 "Just like the 1A model, but we provide the crew. " +

 "Note: You must pay the one million dollar " +

 "annual salary for the crew.",

 "images/carrier.jpg",

 3267492481.99),

 new SimpleItem

 ("Lubber-1",

 "All the comfort of the other models, but without " +

 "the danger. Realistic simulation provides " +

 "continuous water sounds. Note: " +

 "currently located in Siberia. Shipping and " +

 "handling not included.",

 "images/carrier.jpg",

 152.99)

 };

 private static ItemTable shipTable =

 new ItemTable(ships);

 public static ItemTable getShipTable() {

 return(shipTable);

 }

}

[*] Technically, only the.class file needs to go in this directory.

Listing 6.14

boats/WEB-INF/classes/moreservlets/ItemTable.java[*] [*]

package moreservlets;

import java.util.HashMap;

/** Small class that puts an array of items into a

 * hash table, making the item number the key.

 * Used in the boats Web app example.

 */

public class ItemTable {

 private HashMap itemMap = new HashMap();

 public ItemTable(SimpleItem[] items) {

 if (items != null) {

 SimpleItem item;

 for(int i=0; i<items.length; i++) {

 item = items[i];

 itemMap.put(item.getItemNum(), item);

 }

 }

 }

 public SimpleItem getItem(String itemNum) {

 return((SimpleItem)itemMap.get(itemNum));

 }

}

[*] Technically, only the.class file needs to go in this directory.

Listing 6.15

boats/WEB-INF/classes/moreservlets/SimpleItem.java[*] [*]

package moreservlets;

import java.text.*;

/** An item that is for sale. Used in the boats Web app. */

public class SimpleItem {

 private String itemNum = "Missing item number";

 private String description = "Missing description";

 private String imageURL = "Missing image URL";

 private double cost;

 private NumberFormat formatter =

 NumberFormat.getCurrencyInstance();

 public SimpleItem(String itemNum,

 String description,

 String imageURL,

 double cost) {

 setItemNum(itemNum);

 setDescription(description);

 setImageURL(imageURL);

 setCost(cost);

 }

 public SimpleItem() {}

 public String getItemNum() {

 return(itemNum);

 }

 private void setItemNum(String itemNum) {

 this.itemNum = itemNum;

 }

 public String getDescription() {

 return(description);

 }

 private void setDescription(String description) {

 this.description = description;

 }

 public String getImageURL() {

 return(imageURL);

 }

 private void setImageURL(String imageURL) {

 this.imageURL = imageURL;

 }

 public double getCost() {

 return(cost);

 }

 private void setCost(double cost) {

 this.cost = cost;

 }

 public String getCostString() {

 return(formatter.format(getCost()));

 }

}

[*] Technically, only the.class file needs to go in this directory.

6.5 The Purchase Display Page

Section 9.4 of Core Servlets and JavaServer Pages gives detailed code for creating and using a

shopping cart. (Remember that Core Servlets and JavaServer Pages is available in its entirety in

PDF at http://www.moreservlets.com.) Here, I use a much more simplified “cart” to illustrate how

session tracking fits in with Web applications. When a user presses the Submit Order button from

one of the item display pages of the previous subsection, the item number is sent to the

ShowPurchases servlet of Listing 6.16 (by means of the registered name of DisplayPurchases).

This servlet looks up the item associated with the item number, puts the item into an ItemList

(Listing 6.17), and forwards the request to the sucker.jsp page (Listing 6.18) to display all the

items being purchased by that client in this session. See Figure 6-7 for a typical result.

Figure 6-7. The ShowPurchases servlet after the client makes three

small acquisitions. The servlet is invoked with the registered

name (DisplayPurchases) and uses the sucker.jsp page to present

the results.

Listing 6.16

boats/WEB-INF/classes/moreservlets/ShowPurchases.java[

] []

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** A simple servlet that shows a table of purchases. */

public class ShowPurchases extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String itemNum = request.getParameter("itemNum");

 ItemTable shipTable = ShipTable.getShipTable();

 SimpleItem item = shipTable.getItem(itemNum);

 HttpSession session = request.getSession(true);

 ItemList previousItems =

 (ItemList)session.getAttribute("items");

 if (previousItems == null) {

 previousItems = new ItemList();

 session.setAttribute("items", previousItems);

 }

 previousItems.setNewItem(item);

 RequestDispatcher dispatcher =

 getServletContext().getRequestDispatcher("/sucker.jsp");

 dispatcher.forward(request, response);

 }

}

[*] Technically, only the.class file needs to go in this directory.

Note that the ItemList class (Listing 6.17) uses an ArrayList, not a Vector. Version 2.3 of the

servlet API mandates the use of the Java 2 platform, so this usage does not limit portability.

Listing 6.17

boats/WEB-INF/classes/moreservlets/ItemList.java[*] [*]

package moreservlets;

import java.util.*;

/** Very simple pseudo shopping cart. Maintains a list

 * of items and can format them in an HTML table.

 * Used in the boats Web app example to show that

 * each Web app maintains its own set of sessions.

 */

public class ItemList {

 private ArrayList items = new ArrayList();

 public synchronized void setNewItem(SimpleItem newItem) {

 if (newItem != null) {

 items.add(newItem);

 }

 }

 public synchronized String getItemTable() {

 if (items.size() == 0) {

 return("<H3>No items...</H3>");

 }

 String tableString =

 "<TABLE BORDER=1>\n" +

 " <TR CLASS=\"COLORED\">\n" +

 " <TH>Item Number\n" +

 " <TH>Description\n" +

 " <TH>Cost\n";

 for(int i=0; i<items.size(); i++) {

 SimpleItem item = (SimpleItem)items.get(i);

 tableString +=

 " <TR><TD>" + item.getItemNum() + "\n" +

 " <TD>" + item.getDescription() + "\n" +

 " <TD>" + item.getCostString() + "\n";

 }

 tableString += "</TABLE>";

 return(tableString);

 }

 public synchronized String toString() {

 return("[Item List: " + items.size() + " entries.]");

 }

}

[*] Technically, only the.class file needs to go in this directory.

Listing 6.18 boats/sucker.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>There's one of these born every minute...</TITLE>

<LINK REL=STYLESHEET

 HREF="app-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Thanks for Ordering</TABLE>

<H2>Your Purchases</H2>

<jsp:useBean id="items"

 class="moreservlets.ItemList"

 scope="session" />

<jsp:getProperty name="items" property="itemTable" />

<%-- Note the lack of "boats" at the front of URI below --%>

<%@ taglib uri="/WEB-INF/tlds/count-taglib.tld" prefix="boats" %>

<boats:count />

</BODY>

</HTML>

Part III: Web Application Security

Part III Web Application Security

Chapter 7 Declarative Security

Chapter 8 Programmatic Security

Chapter 7. Declarative Security

Topics in This Chapter

• Understanding the major aspects of Web application security

• Authenticating users with HTML forms

• Using BASIC HTTP authentication

• Defining passwords in Tomcat, JRun, and ServletExec

• Designating protected resources with the security-constraint element

• Using login-config to specify the authentication method

• Mandating the use of SSL

• Configuring Tomcat to use SSL

There are two major aspects to securing Web applications:

1. Preventing unauthorized users from accessing sensitive data. This process

involves access restriction (identifying which resources need protection and who should

have access to them) and authentication (identifying users to determine if they are one of

the authorized ones). Simple authentication involves the user entering a username and

password in an HTML form or a dialog box; stronger authentication involves the use of

X509 certificates sent by the client to the server. This aspect applies to virtually all secure

applications. Even intranets at locations with physical access controls usually require

some sort of user authentication.

2. Preventing attackers from stealing network data while it is in transit. This

process involves the use of Secure Sockets Layer (SSL) to encrypt the traffic between the

browser and the server. This capability is generally reserved for particularly sensitive

applications or particularly sensitive pages within a larger application. After all, unless the

attackers are on your local subnet, it is exceedingly difficult for them to gain access to your

network traffic.

These two security aspects are mostly independent. The approaches to access restriction are the

same regardless of whether or not you use SSL. With the exception of client certificates (which

apply only to SSL), the approaches to authentication are also identical whether or not you use

SSL.

Within the Web application framework, there are two general approaches to this type of security:

1. Declarative security. With declarative security, the topic of this chapter, none of the

individual servlets or JSP pages need any security-aware code. Instead, both of the major

security aspects are handled by the server.

To prevent unauthorized access, you use the Web application deployment descriptor

(web.xml) to declare that certain URLs need protection. You also designate the

authentication method that the server should use to identify users. At request time, the

server automatically prompts users for usernames and passwords when they try to access

restricted resources, automatically checks the results against a predefined set of

usernames and passwords, and automatically keeps track of which users have previously

been authenticated. This process is completely transparent to the servlets and JSP pages.

To safeguard network data, you use the deployment descriptor to stipulate that certain

URLs should only be accessible with SSL. If users try to use a regular HTTP connection to

access one of these URLs, the server automatically redirects them to the HTTPS (SSL)

equivalent.

2. Programmatic security. With programmatic security, the topic of the next chapter,

protected servlets and JSP pages at least partially manage their own security.

To prevent unauthorized access, each servlet or JSP page must either authenticate the

user or verify that the user has been authenticated previously.

To safeguard network data, each servlet or JSP page has to check the network protocol

used to access it. If users try to use a regular HTTP connection to access one of these URLs,

the servlet or JSP page must manually redirect them to the HTTPS (SSL) equivalent.

7.1 Form-Based Authentication

The most common type of declarative security uses regular HTML forms. The developer uses the

deployment descriptor to identify the protected resources and to designate a page that has a form

to collect usernames and passwords. A user who attempts to access protected resources is

redirected to the page containing the form. When the form is submitted, the server checks the

username and password against a list of usernames, passwords and roles. If the login is

successful and the user belongs to a role that is permitted access to the page, the user is granted

access to the page originally requested. If the login is unsuccessful, the user is sent to a

designated error page. Behind the scenes, the system uses some variation of session tracking to

remember which users have already been validated.

The whole process is automatic: redirection to the login page, checking of user names and

passwords, redirection back to the original resource, and tracking of already authenticated users

are all performed by the container (server) in a manner that is completely transparent to the

individual resources. However, there is one major caveat: the servlet specification explicitly says

that form-based authentication is not guaranteed to work when the server is set to perform

session tracking based on URL rewriting instead of cookies (the default session tracking

mechanism).

Core Warning

Depending on your server, form-based authentication might fail when
you use URL rewriting as the basis of session tracking.

This type of access restriction and authentication is completely independent of the protection of

the network traffic. You can stipulate that SSL be used for all, some, or none of your application;

but doing so does not change the way you restrict access or authenticate users. Nor does the use

of SSL require your individual servlets or JSP pages to participate in the security process;

redirection to the URL that uses SSL and encryption/decryption of the network traffic are all

performed by the server in a manner that is transparent to the servlets and JSP pages.

Seven basic steps are required to set up your system to use this type of form-based security. I’ll

summarize the steps here, then give details on each step in the following subsections. All the

steps except for the first are standardized and portable across all servers that support version 2.2

or later of the servlet API. Section 7.2 illustrates the concepts with a small application.

1. Set up usernames, passwords, and roles. In this step, you designate a list of users

and associate each with a password and one or more abstract roles (e.g., normal user or

administrator). This is a completely server-specific process. In general, you’ll have to read

your server’s documentation, but I’ll summarize the process for Tomcat, JRun, and

ServletExec.

2. Tell the server that you are using form-based authentication. Designate the

locations of the login and login-failure page. This process uses the web.xml

login-config element with an auth-method subelement of FORM and a

form-login-config subelement that gives the locations of the two pages.

3. Create a login page. This page must have a form with an ACTION of j_security_check,

a METHOD of POST, a textfield named j_username, and a password field named

j_password.

4. Create a page to report failed login attempts. This page can simply say something

like “username and password not found” and perhaps give a link back to the login page.

5. Specify which URLs should be password protected. For this step, you use the

security-constraint element of web.xml. This element, in turn, uses

web-resource-collection and auth-constraint subelements. The first of these

(web-resource-collection) designates the URL patterns to which access should be

restricted, and the second (auth-constraint) specifies the abstract roles that should

have access to the resources at the given URLs.

6. Specify which URLs should be available only with SSL. If your server supports SSL,

you can stipulate that certain resources are available only through encrypted HTTPS (SSL)

connections. You use the user-data-constraint subelement of security-constraint

for this purpose.

7. Turn off the invoker servlet. If your application restricts access to servlets, the access

restrictions are placed on the custom URLs that you associate with the servlets. But, most

servers have a default servlet URL: http://host/webAppPrefix/servlet/ServletName. To

prevent users from bypassing the security settings, disable default servlet URLs of this

form. To disable these URLs, use the servlet-mapping element with a url-pattern

subelement that designates a pattern of /servlet/*.

Details follow.

Setting Up Usernames, Passwords, and Roles

When a user attempts to access a protected resource in an application that is using form-based

authentication, the system uses an HTML form to ask for a username and password, verifies that

the password matches the user, determines what abstract roles (regular user, administrator,

executive, etc.) that user belongs to, and sees whether any of those roles has permission to

access the resource. If so, the server redirects the user to the originally requested page. If not,

the server redirects the user to an error page.

The good news regarding this process is that the server (container) does a lot of the work for you.

The bad news is that the task of associating users with passwords and logical roles is server

specific. So, although you would not have to change the web.xml file or any of the actual servlet

and JSP code to move a secure Web application from system to system, you would still have to

make custom changes on each system to set up the users and passwords.

In general, you will have to read your server’s documentation to determine how to assign

passwords and role membership to users. However, I’ll summarize the process for Tomcat, JRun,

and ServletExec.

Setting Passwords with Tomcat

Tomcat permits advanced developers to configure custom username and password management

schemes (e.g., by accessing a database, looking in the Unix /etc/passwd file, checking the

Windows NT/2000 User Account settings, or making a Kerberos call). For details, see

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/realm-howto.html. However, this

configuration is a lot of work, so Tomcat also provides a default mechanism. With this mechanism,

Tomcat stores usernames, passwords, and roles in install_dir/ conf/tomcat-users.xml. This file

should contain an XML header followed by a tomcat-users element containing any number of

user elements. Each user element should have three attributes: name (the username), password

(the plain text password), and roles (a comma-separated list of logical role names). Listing 7.1

presents a simple example that defines four users (valjean, bishop, javert, thenardier), each

of whom belongs to two logical roles.

Listing 7.1 install_dir/conf/tomcat-users.xml (Sample)

<?xml version="1.0" encoding="ISO-8859-1"?>

<tomcat-users>

 <user name="valjean" password="forgiven"

 roles="lowStatus,nobleSpirited" />

 <user name="bishop" password="mercy"

 roles="lowStatus,nobleSpirited" />

 <user name="javert" password="strict"

 roles="highStatus,meanSpirited" />

 <user name="thenardier" password="grab"

 roles="lowStatus,meanSpirited" />

</tomcat-users>

Note that the default Tomcat strategy of storing unencrypted passwords is a poor one. First, an

intruder that gains access to the server’s file system can obtain all the passwords. Second, even

system administrators who are authorized to access server resources should not be able to obtain

user’s passwords. In fact, since many users reuse passwords on multiple systems, passwords

should never be stored in clear text. Instead, they should be encrypted with an algorithm that

cannot easily be reversed. Then, when a user supplies a password, it is encrypted and the

encrypted version is compared with the stored encrypted password. Nevertheless, the default

Tomcat approach makes it easy to set up and test secure Web applications. Just keep in mind that

for real applications you’ll want to replace the simple file-based password scheme with something

more robust (e.g., a database or a system call to Kerberos or the Windows NT/2000 User Account

system).

Setting Passwords with JRun

JRun, like Tomcat, permits developers to customize the username and password management

scheme. For details, see Chapter 39 (Web Application Authentication) of

http://www.allaire.com/documents/jr31/devapp.pdf. Also like Tomcat, JRun provides a

file-based default mechanism. Unlike Tomcat, however, JRun encrypts the passwords before

storing them in the file. This approach makes the default JRun strategy usable even in real-world

applications.

With the default mechanism, JRun stores usernames, encrypted passwords, and roles in

install_dir/lib/users.properties. This file contains entries of three types: user.username entries

that associate a password with a user; group.groupname entries that group users together; and

role.rolename entries that place users and/ or groups into logical roles. Encrypted passwords

can be obtained from an existing Unix-based password or .htaccess file or by using the

PropertyFileAuthentication class supplied with JRun. To use this class, temporarily set your

CLASSPATH (not the server’s CLASSPATH) to include install_dir/lib/jrun.jar and install_dir/lib/

ext/servlet.jar, change directory to install_dir/lib, and add a user at a time with the -add flag, as

below. For real applications you would probably set up the server to automate this process.

java allaire.jrun.security.PropertyFileAuthentication valjean grace

After adding the users, edit the file to assign the roles. Listing 7.2 shows an example that sets up

the same users, passwords, and roles as in the previous Tomcat example (Listing 7.1).

Listing 7.2 install_dir/lib/users.properties (Sample)

user.valjean=vaPoR2yIzbfdI

user.bishop=bic5wknlJ8QFE

user.javert=jaLULvqM82wfk

user.thenardier=thvwKJbcM0s7o

role.lowStatus=valjean,thenardier

role.highStatus=bishop,javert

role.nobleSpirited=valjean,bishop

role.meanSpirited=javert,thenardier

Setting Passwords with ServletExec

The process of setting up usernames, passwords, and roles is particularly simple with ServletExec.

Simply open the administrator home page and select Users within the Web Applications heading

(Figure 7-1). From there, you can interactively enter usernames, passwords, and roles (Figure

7-2). Voila!

Figure 7-1. ServletExec user editing interface.

Figure 7-2. Adding a user, password, and role in ServletExec.

With the free desktop debugger version, ServletExec stores the usernames and passwords in

plain text in install_dir/ServletExec Data/users.properties. The passwords are encrypted in the

deployment version.

Telling the Server You Are Using Form-Based Authentication;

Designating Locations of Login and Login-Failure Pages

You use the login-config element in the deployment descriptor (web.xml) to control the

authentication method. Recall from Chapters 4 and 5 that this file goes in the WEB-INF directory

of your Web application. Although a few servers support nonstandard web.xml files (e.g., Tomcat

has one in install_dir/conf that provides defaults for multiple Web applications), those files are

entirely server specific. I am addressing only the standard version that goes in the Web

application’s WEB-INF directory.

To use form-based authentication, supply a value of FORM for the auth-method subelement and

use the form-login-config subelement to give the locations of the login (form-login-page)

and login-failure (form-error-page) pages. In the next sections I’ll explain exactly what these

two files should contain. But for now, note that nothing mandates that they use dynamic content.

Thus, these pages can consist of either JSP or ordinary HTML.

For example, Listing 7.3 shows part of a web.xml file that stipulates that the container use

form-based authentication. Unauthenticated users who attempt to access protected resources

will be redirected to http://host/webAppPrefix/login.jsp. If they log in successfully, they will be

returned to whatever resource they first attempted to access. If their login attempt fails, they will

be redirected to http://host/webAppPrefix/login-error.html.

Listing 7.3 web.xml (Excerpt designating form-based

authentication)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <!-- ... -->

 <security-constraint>...</security-constraint>

 <login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/login.jsp</form-login-page>

 <form-error-page>/login-error.html</form-error-page>

 </form-login-config>

 </login-config>

 <!-- ... -->

</web-app>

Creating the Login Page

OK, so the login-config element tells the server to use form-based authentication and to

redirect unauthenticated users to a designated page. Fine. But what should you put in that page?

The answer is surprisingly simple: all the login page requires is a form with an ACTION of

j_security_check, a textfield named j_username, and a password field named j_password.

And, since using GET defeats the whole point of password fields (protecting the password from

prying eyes looking over the user’s shoulder), all forms that have password fields should use a

METHOD of POST. Note that j_security_check is a “magic” name; you don’t preface it with a slash

even if your login page is in a subdirectory of the main Web application directory. Listing 7.4 gives

an example.

Listing 7.4 login.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML><HEAD><TITLE>...</TITLE></HEAD>

<BODY>

...

<FORM ACTION="j_security_check" METHOD="POST">

<TABLE>

<TR><TD>User name: <INPUT TYPE="TEXT" NAME="j_username">

<TR><TD>Password: <INPUT TYPE="PASSWORD" NAME="j_password">

<TR><TH><INPUT TYPE="SUBMIT" VALUE="Log In">

</TABLE>

</FORM>

...

</BODY></HTML>

OK, that was the page for logging in. What about a page for logging out? The session should time

out eventually, but what if users want to log out immediately without closing the browser? Well,

the servlet specification says that invalidating the HttpSession should log out users and cause

them to be reauthenticated the next time they try to access a protected resource. So, in principle

you should be able to create a logout page by making servlet or JSP page that looks up the

session and calls invalidate on it. In practice, however, not all servers support this process.

Fortunately, changing users is simple: you just visit the login page a second time. This is in

contrast to BASIC authentication (Section 7.3), where neither logging out nor changing your

username is supported without the user quitting and restarting the browser.

Creating the Page to Report Failed Login Attempts

The main login page must contain a form with a special-purpose ACTION (j_security_check), a

textfield with a special name (j_username), and a password field with yet another reserved name

(j_password). So, what is required to be in the login-failure page? Nothing! This page is arbitrary;

it can contain a link to an unrestricted section of the Web application, a link to the login page, or

a simple “login failed” message.

Specifying URLs That Should Be Password Protected

The login-config element tells the server which authentication method to use. Good, but how

do you designate the specific URLs to which access should be restricted? Designating restricted

URLs and describing the protection they should have is the purpose of the security-constraint

element.

The security-constraint element should come immediately before login-config in web.xml

and contains four possible subelements: display-name (an optional element giving a name for

IDEs to use), web-resource-collection (a required element that specifies the URLs that should

be protected), auth-constraint (an optional element that designates the abstract roles that

should have access to the URLs), and user-data-constraint (an optional element that specifies

whether SSL is required). Note that multiple web-resource-collection entries are permitted

within security-constraint.

For a quick example of the use of security-constraint, Listing 7.5 instructs the server to

require passwords for all URLs of the form http://host/webAppPrefix/sensitive/blah. Users who

supply passwords and belong to the administrator or executive logical roles should be granted

access; all others should be denied access. The rest of this subsection provides details on the

web-resource-collection, auth-constraint, and display-name elements. The role of

user-data-constraint is explained in the next subsection (Specifying URLs That Should Be

Available Only with SSL).

Listing 7.5 web.xml (Excerpt specifying protected URLs)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <!-- ... -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Sensitive</web-resource-name>

 <url-pattern>/sensitive/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>administrator</role-name>

 <role-name>executive</role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>...</login-config>

 <!-- ... -->

</web-app>

display-name

This rarely used optional subelement of security-constraint gives a name to the security

constraint entry. This name might be used by an IDE or other graphical tool.

web-resource-collection

This subelement of security-constraint identifies the resources that should be protected. Each

security-constraint element must contain one or more web-resource-collection entries;

all other security-constraint subelements are optional. The web-resource-collection

element consists of a web-resource-name element that gives an arbitrary identifying name, a

url-pattern element that identifies the URLs that should be protected, an optional http-method

element that designates the HTTP commands to which the protection applies (GET, POST, etc.; the

default is all methods), and an optional description element providing documentation. For

example, the following web-resource-collection entries (within a security-constraint

element) specify that password protection should be applied to all documents in the proprietary

directory (and subdirectories thereof) and to the delete-account.jsp page in the admin directory.

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Proprietary</web-resource-name>

 <url-pattern>/proprietary/*</url-pattern>

 </web-resource-collection>

 <web-resource-collection>

 <web-resource-name>Account Deletion</web-resource-name>

 <url-pattern>/admin/delete-account.jsp</url-pattern>

 </web-resource-collection>

 <!-- ... -->

</security-constraint>

It is important to note that the url-pattern applies only to clients that access the resources

directly. In particular, it does not apply to pages that are accessed through the MVC architecture

with a RequestDispatcher (Section 3.8) or by the similar means of jsp:forward or jsp:include

(Section 3.5). This asymmetry is good if used properly. For example, with the MVC architecture

a servlet looks up data, places it in beans, and forwards the request to a JSP page that extracts

the data from the beans and displays it. You want to ensure that the JSP page is never accessed

directly but instead is accessed only through the servlet that sets up the beans the page will use.

The url-pattern and auth-constraint (see next subsection) elements can provide this

guarantee by declaring that no user is permitted direct access to the JSP page. But, this

asymmetric behavior can catch developers off guard and allow them to accidentally provide

unrestricted access to resources that should be protected.

Core Warning

These protections apply only to direct client access. The security model

does not apply to pages accessed by means of a RequestDispatcher ,

jsp:forward , or jsp:include .

auth-constraint

Whereas the web-resource-collection element designates the URLs that should be protected,

the auth-constraint element designates the users that should have access to protected

resources. It should contain one or more role-name elements identifying the class of users that

have access and, optionally, a description element describing the role. For instance, the

following part of the security-constraint element in web.xml states that only users who are

designated as either Administrators or Big Kahunas (or both) should have access to the

designated resource.

<security-constraint>

 <web-resource-collection>...</web-resource-collection>

 <auth-constraint>

 <role-name>administrator</role-name>

 <role-name>kahuna</role-name>

 </auth-constraint>

</security-constraint>

If you want all authenticated users to have access to a resource, use * as the role-name.

Technically, the auth-constraint element is optional. Omitting it means that no roles have

access. Although at first glance it appears pointless to deny access to all users, remember that

these security restrictions apply only to direct client access. So, for example, suppose you had a

JSP snippet that is intended to be inserted into another file with jsp:include (Section 3.5). Or,

suppose you have a JSP page that is the forwarding destination of a servlet that is using a

RequestDispatcher as part of the MVC architecture (Section 3.8). In both cases, users should be

prohibited from directly accessing the JSP page. A security-constraint element with no

auth-constraint would enforce this restriction nicely.

Specifying URLs That Should Be Available Only with SSL

Suppose your servlet or JSP page collects credit card numbers. User authentication keeps out

unauthorized users but does nothing to protect the network traffic. So, for instance, an attacker

that runs a packet sniffer on the end user’s local area network could see that user’s credit card

number. This scenario is exactly what SSL protects against—it encrypts the traffic between the

browser and the server.

Use of SSL does not change the basic way that form-based authentication works. Regardless of

whether you are using SSL, you use the login-config element to indicate that you are using

form-based authentication and to identify the login and login-failure pages. With or without SSL,

you designate the protected resources with the url-pattern subelement of

web-resource-collection. None of your servlets or JSP pages need to be modified or moved to

different locations when you enable or disable SSL. That’s the beauty of declarative security.

The user-data-constraint subelement of security-constraint can mandate that certain

resources be accessed only with SSL. So, for example, attempts to access

https://host/webAppPrefix/specialURL are handled normally, whereas attempts to access

http://host/webAppPrefix/specialURL are redirected to the https URL. This behavior does not

mean that you cannot supply an explicit https URL for a hypertext link or the ACTION of a form;

it just means that you aren’t required to. You can stick with the simpler and more easily

maintained relative URLs and still be assured that certain URLs will only be accessed with SSL.

The user-data-constraint element, if used, must contain a transport-guarantee subelement

(with legal values NONE, INTEGRAL, or CONFIDENTIAL) and can optionally contain a description

element. A value of NONE for transport-guarantee puts no restrictions on the communication

protocol used. Since NONE is the default, there is little point in using user-data-constraint or

transport-guarantee if you specify NONE. A value of INTEGRAL means that the communication

must be of a variety that prevents data from being changed in transit without detection. A value

of CONFIDENTIAL means that the data must be transmitted in a way that prevents anyone who

intercepts it from reading it. Although in principle (and perhaps in future HTTP versions) there

may be a distinction between INTEGRAL and CONFIDENTIAL, in current practice they both simply

mandate the use of SSL.

For example, the following instructs the server to permit only https connections to the associated

resource:

<security-constraint>

 <!-- ... -->

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

</security-constraint>

In addition to simply requiring SSL, the servlet API provides a way to stipulate that users must

authenticate themselves with client certificates. You supply a value of CLIENT-CERT for the

auth-method subelement of login-config (see “ Specifying URLs That Should Be Password

Protected ” earlier in this section). However, only servers that have full J2EE support are required

to support this capability.

Now, although the method of prohibiting non-SSL access is standardized, servers that are

compliant with the servlet 2.3 and JSP 1.2 specifications are not required to support SSL. So, Web

applications that use a transport-guarantee of CONFIDENTIAL (or, equivalently, INTEGRAL) are

not necessarily portable. For example, JRun and ServletExec are usually used as plugins in Web

servers like iPlanet/ Netscape or IIS. In this scenario, the network traffic between the client and

the Web server is encrypted with SSL, but the local traffic from the Web server to the servlet/ JSP

container is not encrypted. Consequently, a CONFIDENTIAL transport-guarantee will fail.

Tomcat, however, can be set up to use SSL directly. Details on this process are given in Section

7.5. Some server plugins maintain SSL even on the local connection between the main Web

server and the servlet/JSP engine; for example, the BEA WebLogic plugin for IIS, Apache, and

Netscape Enterprise Server does so. Furthermore, integrated application servers like the

standalone version of WebLogic have no “separate” servlet and JSP engine, so SSL works exactly

as described here. Nevertheless, it is important to realize that these features, although useful,

are not mandated by the servlet and JSP specifications.

Core Warning

Web applications that rely on SSL are not necessarily portable.

Turning Off the Invoker Servlet

When you restrict access to certain resources, you do so by specifying the URL patterns to which

the restrictions apply. This pattern, in turn, matches a pattern that you set with the

servlet-mapping web.xml element (see Section 5.3, “ Assigning Names and Custom URLs ”).

However, most servers use an “invoker servlet” that provides a default URL for servlets:

http://host/webAppPrefix/servlet/ServletName. You need to make sure that users don’t access

protected servlets with this URL, thus bypassing the access restrictions that were set by the

url-pattern subelement of web-resource-collection.

For example, suppose that you use security-constraint, web-resource-collection, and

url-pattern to say that the URL /admin/DeclareChapter11 should be protected. You also use the

auth-constraint and role-name elements to say that only users in the director role can access

this URL. Next, you use the servlet and servlet-mapping elements to say that the servlet

BankruptcyServlet.class in the disaster package should correspond to /admin/

DeclareChapter11. Now, the security restrictions are in force when clients use the URL

http://host/webAppPrefix/admin/DeclareChapter11. No restrictions apply to

http://host/webAppPrefix/servlet/disaster.BankruptcyServlet. Oops.

Section 5.4 (Disabling the Invoker Servlet) discusses server-specific approaches to turning off

the invoker. The most portable approach, however, is to simply remap the /servlet pattern in your

Web application so that all requests that include the pattern are sent to the same servlet. To

remap the pattern, you first create a simple servlet that prints an error message or redirects

users to the top-level page. Then, you use the servlet and servlet-mapping elements (Section

5.3) to send requests that include the /servlet pattern to that servlet. Listing 7.6 gives a brief

example.

Listing 7.6 web.xml (Excerpt redirecting requests from

default servlet

URLs to an error-message servlet)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <!-- ... -->

 <servlet>

 <servlet-name>Error</servlet-name>

 <servlet-class>somePackage.ErrorServlet</servlet-class>

 </servlet>

 <!-- ... -->

 <servlet-mapping>

 <servlet-name>Error</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- ... -->

</web-app>

7.2 Example: Form-Based Authentication

In this section I’ll work through a small Web site for a fictional company called hot-dot-com.com.

I’ll start by showing the home page, then list the web.xml file, summarize the various protection

mechanisms, show the password file, present the login and login-failure pages, and give the code

for each of the protected resources.

The Home Page

Listing 7.7 shows the top-level home page for the Web application. The application is registered

with a URL prefix of /hotdotcom so the home page can be accessed with the URL

http://host/hotdotcom/index.jsp as shown in Figure 7-3. If you’ve forgotten how to assign URL

prefixes to Web applications, review Section 4.1 (Registering Web Applications).

Figure 7-3. Home page for hot-dot-com.com.

Now, the main home page has no security protections and consequently does not absolutely

require an entry in web.xml. However, many users expect URLs that list a directory but no file to

invoke the default file from that directory. So, I put a welcome-file-list entry in web.xml (see

Listing 7.8 in the next section) to ensure that http://host/hotdotcom/ would invoke index.jsp.

Listing 7.7 index.jsp (Top-level home page)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>hot-dot-com.com!</TITLE>

<LINK REL=STYLESHEET

 HREF="company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">hot-dot-com.com!</TABLE>

<P>

<H3>Welcome to the ultimate dot-com company!</H3>

Please select one of the following:

 Investing.

 Guaranteed growth for your hard-earned dollars!

 Business Model.

 New economy strategy!

 History.

 Fascinating company history.

</BODY>

</HTML>

The Deployment Descriptor

Listing 7.8 shows the complete deployment descriptor used with the hotdotcom Web application.

Recall that the order of the subelements within the web-app element of web.xml is not

arbitrary—you must use the standard ordering. For details, see Section 5.2 (The Order of

Elements within the Deployment Descriptor).

The hotdotcom deployment descriptor specifies several things:

• URLs that give a directory but no filename result in the server first trying to use index.jsp

and next trying index.html. If neither file is available, the result is server specific (e.g., a

directory listing).

• URLs that use the default servlet mapping (i.e.,

http://host/hotdotcom/servlet/ServletName) are redirected to the main home page.

• Requests to http://host/hotdotcom/ssl/buy-stock.jsp are redirected to

https://host/hotdotcom/ssl/buy-stock.jsp. Requests directly to

https://host/hotdotcom/ssl/buy-stock.jsp require no redirection. Similarly, requests to

http://host/hotdotcom/ssl/FinalizePurchase are redirected to

https://host/hotdotcom/ssl/FinalizePurchase. See Section 7.5 for information on setting

up Tomcat to use SSL.

• URLs in the investing directory can be accessed only by users in the registered-user or

administrator roles.

• The delete-account.jsp page in the admin directory can be accessed only by users in the

administrator role.

• Requests for restricted resources by unauthenticated users are redirected to the login.jsp

page in the admin directory. Users who are authenticated successfully get sent to the page

they tried to access originally. Users who fail authentication are sent to the login-error.jsp

page in the admin directory.

Listing 7.8 WEB-INF/web.xml (Complete version for

hot-dot-com.com)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <!-- Give name to FinalizePurchaseServlet. This servlet

 will later be mapped to the URL /ssl/FinalizePurchase

 (by means of servlet-mapping and url-pattern).

 Then, that URL will be designated as one requiring

 SSL (by means of security-constraint and

 transport-guarantee). -->

 <servlet>

 <servlet-name>

 FinalizePurchaseServlet

 </servlet-name>

 <servlet-class>

 hotdotcom.FinalizePurchaseServlet

 </servlet-class>

 </servlet>

 <!-- A servlet that redirects users to the home page. -->

 <servlet>

 <servlet-name>Redirector</servlet-name>

 <servlet-class>hotdotcom.RedirectorServlet</servlet-class>

 </servlet>

 <!-- Associate previously named servlet with custom URL. -->

 <servlet-mapping>

 <servlet-name>

 FinalizePurchaseServlet

 </servlet-name>

 <url-pattern>

 /ssl/FinalizePurchase

 </url-pattern>

 </servlet-mapping>

 <!-- Turn off invoker. Send requests to index.jsp. -->

 <servlet-mapping>

 <servlet-name>Redirector</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- If URL gives a directory but no filename, try index.jsp

 first and index.html second. If neither is found,

 the result is server-specific (e.g., a directory

 listing). -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

 <!-- Protect everything within the "investing" directory. -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Investing</web-resource-name>

 <url-pattern>/investing/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>registered-user</role-name>

 <role-name>administrator</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- URLs of the form http://host/webAppPrefix/ssl/blah

 require SSL and are thus redirected to

 https://host/webAppPrefix/ssl/blah. -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Purchase</web-resource-name>

 <url-pattern>/ssl/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>registered-user</role-name>

 </auth-constraint>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

 <!-- Only users in the administrator role can access

 the delete-account.jsp page within the admin

 directory. -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Account Deletion</web-resource-name>

 <url-pattern>/admin/delete-account.jsp</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>administrator</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- Tell the server to use form-based authentication. -->

 <login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/admin/login.jsp</form-login-page>

 <form-error-page>/admin/login-error.jsp</form-error-page>

 </form-login-config>

 </login-config>

</web-app>

The Password File

With form-based authentication, the server (container) performs a lot of the work for you. That’s

good. However, shifting so much work to the server means that there is a server-specific

component: the assignment of passwords and roles to individual users (see Section 7.1).

Listing 7.9 shows the password file used by Tomcat for this Web application. It defines four users:

john (in the registered-user role), jane (also in the registered-user role), juan (in the

administrator role), and juana (in the registered-user and administrator roles).

Listing 7.9 install_dir/conf/tomcat-users.xml (First four

users)

<?xml version="1.0" encoding="ISO-8859-1"?>

<tomcat-users>

 <user name="john" password="nhoj"

 roles="registered-user" />

 <user name="jane" password="enaj"

 roles="registered-user" />

 <user name="juan" password="nauj"

 roles="administrator" />

 <user name="juana" password="anauj"

 roles="administrator,registered-user" />

</tomcat-users>

The Login and Login-Failure Pages

This Web application uses form-based authentication. Attempts by not-yet-authenticated users

to access any password-protected resource will be sent to the login.jsp page in the admin

directory. This page, shown in Listing 7.10, collects the username in a field named j_username

and the password in a field named j_password. The results are sent by POST to a resource called

j_security_check. Successful login attempts are redirected to the page that was originally

requested. Failed attempts are redirected to the login-error.jsp page in the admin directory

(Listing 7.11).

Listing 7.10 admin/login.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Log In</TITLE>

<LINK REL=STYLESHEET

 HREF="../company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Log In</TABLE>

<P>

<H3>Sorry, you must log in before accessing this resource.</H3>

<FORM ACTION="j_security_check" METHOD="POST">

<TABLE>

<TR><TD>User name: <INPUT TYPE="TEXT" NAME="j_username">

<TR><TD>Password: <INPUT TYPE="PASSWORD" NAME="j_password">

<TR><TH><INPUT TYPE="SUBMIT" VALUE="Log In">

</TABLE>

</FORM>

</BODY>

</HTML>

Listing 7.11 admin/login-error.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Begone!</TITLE>

<LINK REL=STYLESHEET

 HREF="../company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Begone!</TABLE>

<H3>Begone, ye unauthorized peon.</H3>

</BODY>

</HTML>

The investing Directory

The web.xml file for the hotdotcom Web application (Listing 7.8) specifies that all URLs that begin

with http://host/hotdotcom/investing/ should be password protected, accessible only to users in

the registered-user role. So, the first attempt by any user to access the home page of the

investing directory (Listing 7.12) results in the login form shown earlier in Listing 7.10. Figure 7-4

shows the initial result, Figure 7-5 shows the result of an unsuccessful login attempt, and Figure

7-6 shows the investing home page—the result of a successful login.

Figure 7-4. Users who are not yet authenticated get

redirected to the login page when they attempt to access the

investing page.

Figure 7-5. Failed login attempts result in the login-error.jsp

page. Internet Explorer users have to turn off “friendly” HTTP

error messages (under Tools, Internet Options, Advanced) to

see the real error page instead of a default error page.

Figure 7-6. Successful login attempts result in redirection

back to the originally requested page.

Once authenticated, a user can browse other pages and return to a protected page without

reauthentication. The system uses some variation of session tracking to remember which users

have previously been authenticated.

Listing 7.12 investing/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Investing</TITLE>

<LINK REL=STYLESHEET

 HREF="../company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Investing</TABLE>

<H3><I>hot-dot-com.com</I> welcomes the discriminating investor!

</H3>

Please choose one of the following:

 Buy stock.

 Astronomic growth rates!

 Check account status.

 See how much you've already earned!

</BODY>

</HTML>

The ssl Directory

The stock purchase page (Listings 7.13 and 7.14) submits data to the purchase finalization

servlet (Listing 7.15) which, in turn, dispatches to the confirmation page (Listing 7.16).

Note that the purchase finalization servlet is not really in the ssl directory; it is in

WEB-INF/classes/hotdotcom. However, the deployment descriptor (Listing 7.8) uses

servlet-mapping to assign a URL that makes the servlet appear (to the client) to be in the ssl

directory. This mapping serves two purposes.

First, it lets the HTML form of Listing 7.13 use a simple relative URL to refer to the servlet. This is

convenient because absolute URLs require modification every time your hostname or URL prefix

changes. However, if you use this approach, it is important that both the original form and the

servlet it talks to are accessed with SSL. If the original form used a relative URL for the ACTION

and was accessed with a normal HTTP connection, the browser would first submit the data by

HTTP and then get redirected to HTTPS. Too late: an attacker with access to the network traffic

could have obtained the data from the initial HTTP request. On the other hand, if the ACTION of a

form is an absolute URL that uses https, it is not necessary for the original form to be accessed

with SSL.

Second, using servlet-mapping in this way guarantees that SSL will be used to access the

servlet, even if the user tries to bypass the HTML form and access the servlet URL directly. This

guarantee is in effect because the transport-guarantee element (with a value of CONFIDENTIAL)

applies to the pattern /ssl/*. Figures 7-7 through 7-9 show the results.

Figure 7-7. Warning when user first accesses

FinalizePurchaseServlet when Tomcat is using a self-signed

certificate. Self-signed certificates result in warnings and are

for test purposes only. See Section 7.5 for details on creating

them for use with Tomcat and for information on suppressing

warnings for future requests.

Figure 7-8. The stock purchase page must be accessed with

SSL. Since the form’s ACTION uses a simple relative URL, the

initial form submission uses the same protocol as the request

for the form itself. If you were concerned about overloading

your SSL server (HTTPS connections are much slower than

HTTP connections), you could access the form with a non-SSL

connection and then supply an absolute URL specifying https

for the form’s ACTION. This approach, although slightly more

efficient, is significantly harder to maintain.

Figure 7-9. To protect the credit card number in transit, you

must use SSL to access the FinalizePurchase servlet. Although

FinalizePurchaseServlet dispatches to sucker.jsp, no web.xml entry

is needed for that JSP page. Access restrictions apply to the

client’s URL, not to the behind-the-scenes file locations.

Listing 7.13 ssl/buy-stock.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Purchase</TITLE>

<LINK REL=STYLESHEET

 HREF="../company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Purchase</TABLE>

<P>

<H3><I>hot-dot-com.com</I> congratulates you on a wise

investment!</H3>

<jsp:useBean id="stock" class="hotdotcom.StockInfo" />

 Current stock value:

 <jsp:getProperty name="stock" property="currentValue" />

 Predicted value in one year:

 <jsp:getProperty name="stock" property="futureValue" />

<FORM ACTION="FinalizePurchase" METHOD="POST">

 <DL>

 <DT>Number of shares:

 <DD><INPUT TYPE="RADIO" NAME="numShares" VALUE="1000">

 1000

 <DD><INPUT TYPE="RADIO" NAME="numShares" VALUE="10000">

 10000

 <DD><INPUT TYPE="RADIO" NAME="numShares" VALUE="100000"

 CHECKED>

 100000

 </DL>

 Full name: <INPUT TYPE="TEXT" NAME="fullName">

 Credit card number: <INPUT TYPE="TEXT" NAME="cardNum"><P>

 <CENTER><INPUT TYPE="SUBMIT" VALUE="Confirm Purchase"></CENTER>

</FORM>

</BODY>

</HTML>

Listing 7.14 WEB-INF/classes/hotdotcom/StockInfo.java

(Bean used by buy-stock.jsp)

package hotdotcom;

public class StockInfo {

 public String getCurrentValue() {

 return("$2.00");

 }

 public String getFutureValue() {

 return("$200.00");

 }

}

Listing 7.15

WEB-INF/classes/hotdotcom/FinalizePurchaseServlet.java

package hotdotcom;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Servlet that reads credit card information,

 * performs a stock purchase, and displays confirmation page.

 */

public class FinalizePurchaseServlet extends HttpServlet {

 /** Use doPost for non-SSL access to prevent

 * credit card number from showing up in URL.

 */

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String fullName = request.getParameter("fullName");

 String cardNum = request.getParameter("cardNum");

 confirmPurchase(fullName, cardNum);

 String destination = "/investing/sucker.jsp";

 RequestDispatcher dispatcher =

 getServletContext().getRequestDispatcher(destination);

 dispatcher.forward(request, response);

 }

 /** doGet calls doPost. Servlets that are

 * redirected to through SSL must have doGet.

 */

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doPost(request, response);

 }

 private void confirmPurchase(String fullName,

 String cardNum) {

 // Details removed to protect the guilty.

 }

}

Listing 7.16 investing/sucker.jsp (Dispatched to from

FinalizePurchaseServlet.java)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Thanks!</TITLE>

<LINK REL=STYLESHEET

 HREF="../company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Thanks!</TABLE>

<H3><I>hot-dot-com.com</I> thanks you for your purchase.</H3>

You'll be thanking yourself soon!

</BODY>

</HTML>

Listing 7.17 investing/account-status.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Account Status</TITLE>

<LINK REL=STYLESHEET

 HREF="../company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Account Status</TABLE>

<P>

<H3>Your stock is basically worthless now.</H3>

But, hey, that makes this a buying opportunity.

Why don't you buy

some more?

</BODY>

</HTML>

Figure 7-10. Selecting the Account Status link on the investing

home page does not result in reauthentication, even if the

user has accessed other pages since being authenticated. The

system uses a variation of session tracking to remember

which users have already been authenticated.

The admin Directory

URLs in the admin directory are not uniformly protected as are URLs in the investing directory. I

already discussed the login and login-failure pages (Listings 7.10 and 7.11, Figures 7-4 and 7-5).

This just leaves the Delete Account page (Listing 7.18). This page has been designated as

accessible only to users in the administrator role. So, when users that are only in the

registered-user role attempt to access the page, they are denied permission (see Figure 7-11).

Note that the permission-denied page of Figure 7-11 is generated automatically by the server and

applies to authenticated users whose roles do not match any of the required ones—it is not the

same as the login error page that applies to users who cannot be authenticated.

Figure 7-11. When John and Jane attempt to access the Delete

Account page, they are denied (even though they are

authenticated). That’s because they belong to the registered-user

role and the web.xml file stipulates that only users in the

administrator role should be able to access this page.

A user in the administrator role can access the page without difficulty (Figure 7-12).

Figure 7-12. Once authenticated, Juan or Juana (in the

administrator role) can access the Delete Account page.

Listing 7.18 admin/delete-account.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Delete Account</TITLE>

<LINK REL=STYLESHEET

 HREF="../company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Delete Account</TABLE>

<P>

<FORM ACTION="confirm-deletion.jsp">

 Username: <INPUT TYPE="TEXT" NAME="userName">

 <CENTER><INPUT TYPE="SUBMIT" VALUE="Confirm Deletion"></CENTER>

</FORM>

</BODY>

</HTML>

The Redirector Servlet

Web applications that have protected servlets should always disable the invoker servlet so that

users cannot bypass security by using http://host/webAppPrefix/servlet/ServletName when the

access restrictions are assigned to a custom servlet URL. In the hotdotcom application, I used the

servlet and servlet-mapping elements to register the RedirectorServlet with requests to

http://host/hotdotcom/servlet/anything. This servlet, shown in Listing 7.19, simply redirects all

such requests to the application’s home page.

Listing 7.19

WEB-INF/classes/hotdotcom/RedirectorServlet.java

package hotdotcom;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Servlet that simply redirects users to the

 * Web application home page. Registered with the

 * default servlet URL to prevent access to servlets

 * through URLs that have no security settings.

 */

public class RedirectorServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.sendRedirect(request.getContextPath());

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doGet(request, response);

 }

}

Unprotected Pages

The fact that some pages in a Web application have access restrictions does not imply that all

pages in the application need such restrictions. Resources that have no access restrictions need

no special handling regarding security. There are two points to keep in mind, however.

First, if you use default pages such as index.jsp or index.html, you should have an explicit

welcome-file-list entry in web.xml. Without a welcome-file-list entry, servers are not

required to use those files as the default file when a user supplies a URL that gives only a directory.

See Section 5.7 (Specifying Welcome Pages) for details on the welcome-file-list element.

Second, you should use relative URLs to refer to images or style sheets so that your pages don’t

need modification if the Web application’s URL prefix changes. For more information, see Section

4.5 (Handling Relative URLs in Web Applications).

Listings 7.20 and 7.21 (Figures 7-13 and 7-14) give two examples.

Figure 7-13. The hotdotcom business model.

Figure 7-14. The distinguished hotdotcom heritage.

Listing 7.20 business/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Business Model</TITLE>

<LINK REL=STYLESHEET

 HREF="../company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Business Model</TABLE>

<P>

<H3>Who needs a business model?</H3>

Hey, this is the new economy. We don't need a real business

model, do we?

<P>

OK, ok, if you insist:

 Start a dot-com.

 Have an IPO.

 Get a bunch of suckers to work for peanuts

 plus stock options.

 Retire.

Isn't that what many other dot-coms did?

</BODY>

</HTML>

Listing 7.21 history/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>History</TITLE>

<LINK REL=STYLESHEET

 HREF="../company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">History</TABLE>

<P>

<H3>None yet...</H3>

</BODY>

</HTML>

7.3 BASIC Authentication

The most common type of container-managed security is built on form-based authentication,

discussed in Section 7.1. There, the server automatically redirects unauthenticated users to an

HTML form, checks their username and password, determines which logical roles they are in, and

sees whether any of those roles is permitted to access the resource in question. Then, it uses a

variation of session tracking to remember the users that have already been authenticated.

This approach has the advantage that the login form can have the same look and feel as the rest

of the Web site. However, it has a few disadvantages. For example, if the client’s browser does

not support cookies, session tracking would have to be performed with URL rewriting. Or, the

server might be configured to always use URL rewriting. The servlet specification explicitly states

that form-based authentication is not guaranteed to work in such a case.

So, another approach is to use the standard HTTP BASIC security. With BASIC security, the

browser uses a dialog box instead of an HTML form to collect the username and password. Then,

the Authorization request header is used to remember which users have already been

authenticated. As with form-based security, you must use SSL if you are concerned with

protecting the network traffic. However, doing so neither changes the way BASIC authentication

is set up nor necessitates changes in the individual servlets or JSP pages.

There is also DIGEST security and security based on client certificates. However, few browsers or

servers support DIGEST, and only fully J2EE-compliant servers are required to support client

certificates. For more information on client certificates, see Section 8.5 (Using Programmatic

Security with SSL).

Compared to form-based authentication, the two main disadvantages of BASIC authentication

are that the input dialog looks glaringly different than the rest of your application and that it is

very difficult to log in as a different user once you are authenticated. In fact, once authenticated,

you have to quit the browser and restart if you want to log in as a different user! Now, in principle

it is possible to write a “relogin” servlet that sends a 401 (Unauthorized) status code and a

WWW-Authenticate header containing the appropriate realm. But, that is hardly “declarative”

security!

Use of BASIC security involves five steps, as shown below. Each of the steps except for the second

is identical to the corresponding step used in form-based authentication.

1. Set up usernames, passwords, and roles. In this step, you designate a list of users

and associate each with a password and one or more abstract roles (e.g., normal user,

administrator, etc.). This is a completely server-specific process.

2. Tell the server that you are using BASIC authentication. Designate the realm

name. This process uses the web.xml login-config element with an auth-method

subelement of BASIC and a realm-name subelement that specifies the realm (which is

generally used as part of the title of the dialog box that the browser opens).

3. Specify which URLs should be password protected. For this step, you use the

security-constraint element of web.xml. This element, in turn, uses

web-resource-collection and auth-constraint subelements. The first of these

designates the URL patterns to which access should be restricted, and the second specifies

the abstract roles that should have access to the resources at the given URLs.

4. Specify which URLs should be available only with SSL. If your server supports SSL,

you can stipulate that certain resources are available only through encrypted https (SSL)

connections. You use the user-data-constraint subelement of security-constraint

for this purpose.

5. Turn off the invoker servlet. If your application restricts access to servlets, the access

restrictions are placed only on the custom URL that you associate with the servlet. To

prevent users from bypassing the security settings, disable default servlet URLs of the

form http://host/webAppPrefix/servlet/ServletName. To disable these URLs, use the

servlet-mapping element with a url-pattern subelement that designates a pattern of

/servlet/*.

Details on these steps are given in the following sections.

Setting Up Usernames, Passwords, and Roles

This step is exactly the same when BASIC authentication is used as when form-based

authentication is used. See Section 7.1 for details. For a quick summary, recall that this process

is completely server specific. Tomcat uses install_dir/conf/tomcat-users.xml to store this

information, JRun uses install_dir/lib/users.properties, and ServletExec has an interactive user

interface to enable you to specify the information.

Telling the Server You Are Using BASIC Authentication;

Designating Realm

You use the login-config element in the deployment descriptor to control the authentication

method. To use BASIC authentication, supply a value of BASIC for the auth-method subelement

and use the realm-name subelement to designate the realm that will be used by the browser in

the popup dialog box and in the Authorization request header. Listing 7.22 gives an example.

Listing 7.22 web.xml (Excerpt designating BASIC

authentication)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <!-- ... -->

 <security-constraint>...</security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Some Name</realm-name>

 </login-config>

 <!-- ... -->

</web-app>

Specifying URLs That Should Be Password Protected

You designate password-protected resources in the same manner with BASIC authentication as

you do with form-based authentication. See Section 7.1 for details. For a quick summary, you use

the security-constraint element to specify restricted URLs and the roles that should have

access to them. The security-constraint element should come immediately before

login-config in web.xml and contains four possible subelements: display-name (an optional

element giving a name for IDEs to use), web-resource-collection (a required element that

specifies the URLs that should be protected), auth-constraint (an optional element that

designates the abstract roles that should have access to the URLs), and user-data-constraint

(an optional element that specifies whether SSL is required). Multiple web-resource-collection

entries are permitted within security-constraint.

Specifying URLs That Should Be Available Only with SSL

You designate SSL-only resources in the same manner with BASIC authentication as you do with

form-based authentication. See Section 7.1 for details. To summarize: use the

user-data-constraint subelement of security-constraint with a transport-guarantee

subelement specifying INTEGRAL or CONFIDENTIAL.

In addition to simply requiring SSL, the servlet API provides a way for stipulating that users must

authenticate themselves with client certificates. You supply a value of CLIENT-CERT for the

auth-method subelement of login-config (see “ Specifying URLs That Should Be Password

Protected ” in Section 7.1). However, only application servers that have full J2EE support are

required to support this capability.

7.4 Example: BASIC Authentication

In Section 7.2, I showed the external Web site for a fictional company named hot-dot-com.com.

In this section, I’ll show their intranet. Since applications that use form-based authentication vary

only slightly from those that use BASIC authentication, I’ll just concentrate on the differences

here. I’ll start by showing the home page, then list the web.xml file, summarize the various

protection mechanisms, show the password file, and give the code for each of the protected

resources.

The Home Page

Listing 7.23 shows the top-level home page for the Web application. The application is registered

with a URL prefix of /hotdotcom-internal so the home page can be accessed with the URL

http://host/hotdotcom-internal/index.jsp as shown in Figure 7-15. If you’ve forgotten how to

assign URL prefixes to Web applications, review Section 4.1 (Registering Web Applications).

Figure 7-15. Home page for the hot-dot-com.com intranet.

Now, the main home page has no security protections and consequently does not absolutely

require an entry in web.xml. However, many users expect URLs that list a directory but no file to

invoke the default file from that directory. So, I put a welcome-file-list entry in web.xml (see

Listing 7.24 in the next section) to ensure that http://host/hotdotcom-internal/ invokes

index.jsp.

Listing 7.23 index.jsp (Top-level home page)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>hot-dot-com.com!</TITLE>

<LINK REL=STYLESHEET

 HREF="company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">hot-dot-com.com!</TABLE>

<P>

<H3>Welcome to the hot-dot-com intranet</H3>

Please select one of the following:

 Financial Plan.

 Available to all employees.

 Business Plan.

 Available only to corporate executives.

 Employee Compensation Plans.

 Available to all employees.

</BODY>

</HTML>

The Deployment Descriptor

Listing 7.24 shows the complete deployment descriptor used with the hotdotcom-internal Web

application. Again, remember that the order of the subelements within the web-app element of

web.xml is not arbitrary—you must use the standard ordering. For details, see Section 5.2 (The

Order of Elements within the Deployment Descriptor).

The deployment descriptor specifies several things:

• URLs that give a directory but no filename result in the server first trying to use index.jsp

and next trying index.html. If neither file is available, the result is server specific (e.g., a

directory listing).

• URLs that use the default servlet mapping (i.e.,

http://host/hotdotcom/servlet/ServletName) are redirected to the main home page.

• The financial-plan.html page can be accessed only by company employees or executives.

• The business-plan.html page can be accessed only by company executives.

Listing 7.24 WEB-INF/web.xml (Complete version for

hot-dot-com.com intranet)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <!-- A servlet that redirects users to the home page. -->

 <servlet>

 <servlet-name>Redirector</servlet-name>

 <servlet-class>hotdotcom.RedirectorServlet</servlet-class>

 </servlet>

 <!-- Turn off invoker. Send requests to index.jsp. -->

 <servlet-mapping>

 <servlet-name>Redirector</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- If URL gives a directory but no filename, try index.jsp

 first and index.html second. If neither is found,

 the result is server specific (e.g., a directory

 listing). -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

 <!-- Protect financial plan. Employees or executives. -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Financial Plan</web-resource-name>

 <url-pattern>/financial-plan.html</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>employee</role-name>

 <role-name>executive</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- Protect business plan. Executives only. -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Business Plan</web-resource-name>

 <url-pattern>/business-plan.html</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>executive</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- Tell the server to use BASIC authentication. -->

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Intranet</realm-name>

 </login-config>

</web-app>

The Password File

Password files are not specific to Web applications; they are general to the server. Listing 7.25

shows the password file used by Tomcat for this Web application. It defines three new users:

gates and ellison in the employee role and mcnealy in the executive role.

Listing 7.25 install_dir/conf/tomcat-users.xml (Three new

users)

<?xml version="1.0" encoding="ISO-8859-1"?>

<tomcat-users>

 <user name="john" password="nhoj"

 roles="registered-user" />

 <user name="jane" password="enaj"

 roles="registered-user" />

 <user name="juan" password="nauj"

 roles="administrator" />

 <user name="juana" password="anauj"

 roles="administrator,registered-user" />

 <user name="gates" password="llib"

 roles="employee" />

 <user name="ellison" password="yrral"

 roles="employee" />

 <user name="mcnealy" password="ttocs"

 roles="executive" />

</tomcat-users>

The Financial Plan

Listing 7.26 shows the first of the protected pages at the hotdotcom-internal site. Figure 7-16

shows the dialog box presented by Netscape to unauthenticated users who attempt to access the

page. Figures 7-17 and 7-18 show unsuccessful and successful login attempts, respectively.

Figure 7-16. Unauthenticated users who attempt to access

protected resources are presented with a dialog box.

Figure 7-17. A failed login attempt.

Figure 7-18. A successful login attempt.

Listing 7.26 financial-plan.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Financial Plan</TITLE>

<LINK REL=STYLESHEET

 HREF="company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Financial Plan</TABLE>

<P>

<H3>Steps:</H3>

 Make lots of money.

 Increase value of stock options.

 Make more money.

 Increase stock option value further.

</BODY>

</HTML>

The Business Plan

The financial plan of the previous section is available to all employees and executives. The

business plan (Listing 7.27), in contrast, is available only to executives. Thus, it is possible for an

authenticated user to be denied access to it. Figure 7-19 shows this result. OK, so you have

access to more than one username/password combination. You were authenticated as a user with

restricted privileges. You now want to log in as a user with additional privileges. How do you do

so? Unfortunately, the answer is: quit the browser and restart. Boo. That’s one of the downsides

of BASIC authentication.

Figure 7-19. Attempt to access the business plan by an

authenticated user who is not in the executive role. This result is

different from that of failed authentication, which is shown in

Figure 7-17.

Figure 7-20 shows the result after the browser is restarted and the client logs in as a user in the

executive role (mcnealy in this case).

Figure 7-20. Attempt to access the business plan by an

authenticated user who is in the executive role.

Listing 7.27 business-plan.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Business Plan</TITLE>

<LINK REL=STYLESHEET

 HREF="company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Business Plan</TABLE>

<P>

<H3>Steps:</H3>

 Inflate name recognition by buying meaningless ads

 on high-profile TV shows.

 Decrease employee pay by promising stock options instead.

 Increase executive pay with lots of perks and bonuses.

 Get bought out before anyone notices we have no

 business plan.

</BODY>

</HTML>

The Redirector Servlet

As it currently stands, the hotdotcom-internal application has no protected servlets. So, it is not

absolutely necessary to disable the invoker servlet and redirect requests that are sent to

http://host/hotdotcom-internal/servlet/something. However, it is a good idea to plan ahead and

disable the invoker servlet as a matter of course in all Web applications that have restricted

resources.

This application uses the same redirector servlet (Listing 7.19) and url-pattern entry in

web.xml (Listing 7.24) as does the external hotdotcom application.

7.5 Configuring Tomcat to Use SSL

Servlet and JSP containers are not required to support SSL, even in fully J2EE-compliant

application servers or with version 2.3 of the servlet specification. Of the three servers that are

free for development use and are most commonly discussed throughout the book (Tomcat, JRun,

and ServletExec), only Tomcat can directly support SSL. With JRun and ServletExec, traffic

between the client and the Web server can be encrypted with SSL, but local communication

between the Web server and the JRun or ServletExec plugin does not use SSL. So, Web

applications that rely on SSL are not necessarily portable.

Nevertheless, SSL is extremely useful, and many applications make use of it. For example, many

application servers are self-contained; they do not have a servlet/JSP plugin that is separate from

the main Web server. In addition, some server plugins use SSL even for the communication

between the Web server and the plugin. The BEA WebLogic plugin and IBM WebSphere support

this very useful capability, for example.

Even with Tomcat, the default configuration lacks SSL support; you have to install some extra

packages to add this support. This section summarizes the steps necessary to do so. For more

details, see http://jakarta.apache.org/tomcat/tomcat-4.0-doc/ssl-howto.html.

1. Download the Java Secure Socket Extension (JSSE). Obtain it from

http://java.sun.com/products/jsse/index-102.html. Note that this step is unnecessary if

you are using JDK 1.4 or later; JSSE is integrated into the JDK in such case.

2. Put the JSSE JAR files in Tomcat’s CLASSPATH. JSSE consists of three JAR files:

jcert.jar, jnet.jar, and jsse.jar. The server needs access to all of them. The easiest way to

accomplish this step is to put the JAR files into jdk_install_dir/jre/lib/ext, thereby making

JSSE an installed extension. Note that the Tomcat documentation describes another

approach: setting the JSSE_HOME environment variable. As of Tomcat 4.0, this approach

fails because of a bug in the way Tomcat processes the variable (Tomcat erroneously looks

for jsse.jar in JSSE_HOME instead of JSSE_HOME/lib).

3. Create a self-signed public key certificate. SSL-based servers use X509 certificates

to validate to clients that they are who they claim to be. This prevents attackers from

hacking DNS servers to redirect SSL requests to their site. For real-world use, the

certificate needs to be signed by a trusted authority like Verisign. For testing purposes,

however, a self-signed certificate is sufficient. To generate one that will be valid for two

years (730 days), execute the following:
4.

keytool -genkey -alias tomcat -keyalg RSA -validity 730

The system will prompt you for a variety of information starting with your first and last

name. For a server certificate, this should be the server’s name, not your name! For

example, with a server that will be accessed from multiple machines, respond with the

hostname (www.yourcompany.com) or the IP address (207.46.230.220) when asked

“What is your first and last name?” For a development server that will run on your desktop,

use localhost. Remember that, for deployment purposes, self-signed certificates are not

sufficient. You would need to get your certificate signed by a trusted Certificate Authority.

You can use certificates from keytool for this purpose also; it just requires a lot more

work. For testing purposes, however, self-signed certificates are just as good as trusted

ones.

Core Approach

Supply the server ’s hostname or IP address when asked for your first
and last name. Use localhost for a desktop development server.

The system will also prompt you for your organization, your location, a keystore password,

and a key password. Be sure to use the same value for both passwords. The system will

then create a file called.keystore in your home directory (e.g., /home/username on Unix

or C:\Documents and Settings\username on Windows 2000). You can also use the

-keystore argument to change where this file is created.

For more details on keytool (including information on creating trusted certificates that

are signed by a standard Certificate Authority), see

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html.

4. Copy the keystore file to the Tomcat installation directory. Copy the.keystore file

just created from your home directory to tomcat_install_dir.

5. Uncomment and edit the SSL connector entry in

tomcat_install_dir/conf/server.xml. Look for a commented-out Connector element

that encloses a Factory element referring to the SSLServerSocketFactory class.

Remove the enclosing comment tags (<!-... -->). Change the port from 8443 to the

default SSL value of 443. Add a keystoreFile attribute to Factory designating the name

of the keystore file. Add a keystorePass attribute to Factory designating the password.

Here is an example (class names shortened and line breaks added for readability).
6.

7. <Connector className="...http.HttpConnector"

8. port="443" minProcessors="5"

9. maxProcessors="75" enableLookups="true"

10. acceptCount="10" debug="0"

11. scheme="https" secure="true">

12. <Factory className="...net.SSLServerSocketFactory"

13. clientAuth="false" protocol="TLS"

14. keystoreFile=".keystore"

15. keystorePass="your-password"/>

</Connector>

6. Change the main connector entry in tomcat_install_dir/conf/server.xml to use

port 443 for SSL redirects. Use the redirectPort attribute to specify this. Here is an

example.
7.

8. <Connector className="...http.HttpConnector"

9. port="80" minProcessors="5" maxProcessors="75"

10. enableLookups="true" redirectPort="443"

11. acceptCount="10" debug="0"

 connectionTimeout="60000"/>

7. Restart the server.

8. Access https://localhost/. (Note that this URL starts with https, not http.) With

Netscape, you should see initial warnings like those of Figures 7-21 through 7-25. Once

you have accepted the certificate, you should see the Tomcat home page (Figure 7-26).

With Internet Explorer, you will see an initial warning like that of Figure 7-27. For future

requests, you can suppress the warnings by viewing and importing the certificate (Figures

7-28 and 7-29).

Figure 7-21. First new-certificate window supplied by

Netscape.

Figure 7-22. Second new-certificate window supplied by

Netscape. Self-signed certificates are for testing

purposes only.

Figure 7-23. Third new-certificate window supplied by

Netscape. By choosing to accept the certificate

permanently you suppress future warnings.

Figure 7-24. Fourth new-certificate window supplied by

Netscape.

Figure 7-25. Fifth new-certificate window supplied by

Netscape.

Figure 7-26. A successful attempt to access the Tomcat

home page using SSL.

Figure 7-27. New-certificate page for Internet Explorer.

View and import the certificate to suppress future

warnings. Again, self-signed certificates would not be

trusted in real-world applications; they are for testing

purposes only.

Figure 7-28. Result of choosing View Certificate in

Internet Explorer’s new-certificate page.

Figure 7-29. Importing self-signed certificates in

Internet Explorer lets you suppress warnings that the

certificate comes from a company that you have not

chosen to trust.

Chapter 8. Programmatic Security

Topics in This Chapter

• Combining container-managed and programmatic security

• Using the isUserInRole method

• Using the getRemoteUser method

• Using the getUserPrincipal method

• Programmatically controlling all aspects of security

• Using SSL with programmatic security

Chapter 7 introduced two fundamental aspects of Web application security:

1. Preventing unauthorized users from accessing sensitive data. This process

involves access restriction (identifying which resources need protection and who should

have access to them) and authentication (identifying the user to determine if they are one

of the authorized ones). This aspect applies to virtually all secure applications; even

intranets at locations with physical access controls usually require some sort of user

authentication.

2. Preventing attackers from stealing network data while it is in transit. This

process involves the use of Secure Sockets Layer (SSL) to encrypt the traffic between the

browser and the server. This capability is generally reserved for particularly sensitive

applications or particularly sensitive pages within a larger application.

There are two general strategies for implementing these security aspects: declarative security

and programmatic security.

With declarative security, the topic of the previous chapter, none of the individual servlets or JSP

pages need any security-aware code. Instead, both of the major security aspects are handled by

the server. To prevent unauthorized access, you use the Web application deployment descriptor

(web.xml) to declare that certain URLs need protection. You also designate the authentication

method that the server should use to identify users. At request time, the server automatically

prompts users for usernames and passwords when they try to access restricted resources,

automatically checks the results against a predefined set of usernames and passwords, and

automatically keeps track of which users have previously been authenticated. This process is

completely transparent to the servlets and JSP pages. To safeguard network data, you use the

deployment descriptor to stipulate that certain URLs should only be accessible with SSL. If users

try to use a regular HTTP connection to access one of these URLs, the server automatically

redirects them to the HTTPS (SSL) equivalent.

Declarative security is all well and good. In fact, it is by far the most common approach to Web

application security. But, what if you want your servlets to be completely independent of any

server-specific settings such as password files? Or, what if you want to let users in various roles

access a particular resource but customize the data depending on the role that they are in? Or,

what if you want to authenticate users other than by requiring an exact match from a fixed set of

usernames and passwords? That’s where programmatic security comes in.

With programmatic security, the topic of this chapter, protected servlets and JSP pages at least

partially manage their own security. To prevent unauthorized access, each servlet or JSP page

must either authenticate the user or verify that the user has been authenticated previously. Even

after the servlet or JSP page grants access to a user, it can still customize the results for different

individual users or categories of users. To safeguard network data, each servlet or JSP page has

to check the network protocol used to access it. If users try to use a regular HTTP connection to

access one of these URLs, the servlet or JSP page must manually redirect them to the HTTPS (SSL)

equivalent.

8.1 Combining Container-Managed and Programmatic

Security

Declarative security is very convenient: you set up usernames, passwords, access mechanisms

(HTML forms vs. BASIC authentication) and transport-layer requirements (SSL vs. normal HTTP),

all without putting any security-related code in any of the individual servlets or JSP pages.

However, declarative security provides only two levels of access for each resource: allowed and

denied. Declarative security provides no options to permit resources to customize their output

depending on the username or role of the client that accesses them.

It would be nice to provide this customization without giving up the convenience of

container-managed security for the usernames, passwords, and roles as would be required if a

servlet or JSP page completely managed its own security (as in Section 8.3). To support this type

of hybrid security, the servlet specification provides three methods in HttpServletRequest:

• isUserInRole. This method determines if the currently authenticated user belongs to a

specified role. For example, given the usernames, passwords, and roles of Listings 7.1 and

7.2 (Section 7.1), if the client has successfully logged in as user valjean, the following

two expressions would return true.

•

• request.isUserInRole("lowStatus")

request.isUserInRole("nobleSpirited")

Tests for all other roles would return false. If no user is currently authenticated (e.g., if

authorization failed or if isUserInRole is called from an unrestricted page and the user

has not yet accessed a restricted page), isUserIn Role returns false. In addition to the

standard security roles given in the password file, you can use the security-role-ref

element to define aliases for the standard roles. See the next subsection for details.

• getRemoteUser. This method returns the name of the current user. For example, if the

client has successfully logged in as user valjean, request.getRemoteUser() would

return "valjean". If no user is currently authenticated (e.g., if authorization failed or if

isUserInRole is called from an unrestricted page and the user has not yet accessed a

restricted page), getRemoteUser returns null.

• getUserPrincipal. This method returns the current username wrapped inside a

java.security.Principal object. The Principal object contains little information

beyond the username (available with the getName method). So, the main reason for using

getUserPrincipal in lieu of getRemoteUser is to be compatible with preexisting security

code (the Principal class is not specific to the servlet and JSP API and has been part of

the Java platform since version 1.1). If no user is currently authenticated,

getUserPrincipal returns null.

It is important to note that this type of programmatic security does not negate the benefits of

container-managed security. With this approach, you can still set up usernames, passwords, and

roles by using your server’s mechanisms. You still use the login-config element to tell the

server whether you are using form-based or BASIC authentication. If you choose form-based

authentication, you still use an HTML form with an ACTION of j_security_check, a textfield

named j_username, and a password field named j_password. Unauthenticated users are still

automatically sent to the page containing this form, and the server still automatically keeps track

of which users have been authenticated. You still use the security-constraint element to

designate the URLs to which the access restrictions apply. You still use the

user-data-constraint element to specify that certain URLs require SSL. For details on all of

these topics, see Section 7.1.

Security Role References

The security-role-ref subelement of servlet lets you define servlet-specific synonyms for

existing role names. This element should contain three possible subelements: description

(optional descriptive text), role-name (the new synonym), and role-link (the existing security

role).

For instance, suppose that you are creating an online bookstore and your server’s password file

stipulates that user marty is in role author. However, you want to reuse a servlet of type

BookInfo (in the catalog package) that was created elsewhere. The problem is that this servlet

calls the role writer, not author. Rather than modifying the password file, you can use

security-role-ref to provide writer as an alias for author.

Suppose further that you have a servlet of class EmployeeData (in the hr package) that provides

one type of information to a goodguy and another type to a meanie. You want to use this servlet

with the password file defined in Listings 7.1 and 7.2 (Section 7.1) that assign users to the

nobleSpirited and meanSpirited roles. To accomplish this task, you can use

security-role-ref to say that isUserInRole("goodguy") should return true for the same

users that isUserInRole("nobleSpirited") already would. Similarly, you can use

security-role-ref to say that isUserInRole("meanie") should return true for the same users

that isUserInRole("meanSpirited") would.

Listing 8.1 shows a deployment descriptor that accomplishes both of these tasks.

Listing 8.1 web.xml (Excerpt illustrating security role aliases)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <!-- ... -->

 <servlet>

 <servlet-name>BookInformation</servlet-name>

 <servlet-class>catalog.BookInfo</servlet-class>

 <security-role-ref>

 <role-name>writer</role-name> <!-- New alias. -->

 <role-link>author</role-link> <!-- Preexisting role. -->

 </security-role-ref>

 </servlet>

 <servlet>

 <servlet-name>EmployeeInformation</servlet-name>

 <servlet-class>hr.EmployeeData</servlet-class>

 <security-role-ref>

 <role-name>goodguy</role-name> <!-- New. -->

 <role-link>nobleSpirited</role-link> <!-- Preexisting. -->

 </security-role-ref>

 <security-role-ref>

 <role-name>meanie</role-name> <!-- New. -->

 <role-link>meanSpirited</role-link> <!-- Preexisting. -->

 </security-role-ref>

 </servlet>

 <!-- ... -->

 <security-constraint>...</security-constraint>

 <login-config>...</login-config>

 <!-- ... -->

</web-app>

8.2 Example: Combining Container-Managed and

Programmatic Security

Listing 8.2 presents a JSP page that augments the internal Web site for hot-dot-com.com that is

introduced in Section 7.4. The page shows plans for employee pay. Because of entries in web.xml

(Listing 8.3), the page can be accessed only by users in the employee or executive roles.

Although both groups can access the page, they see substantially different results. In particular,

the planned pay scales for executives is hidden from the normal employees.

Figure 8-1 shows the page when it is accessed by user gates or ellison (both in the employee

role; see Listing 7.25). Figure 8-2 shows the page when it is accessed by user mcnealy (in the

executive role). Remember that BASIC security provides no simple mechanism for changing

your username once you are validated (see Section 7.3). So, for example, switching from user

gates to user mcnealy requires you to quit and restart your browser.

Figure 8-1. The employee-pay.jsp page when accessed by a

user who is in the employee role.

Figure 8-2. The employee-pay.jsp page when accessed by a

user who is in the executive role.

Listing 8.2 employee-pay.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Compensation Plans</TITLE>

<LINK REL=STYLESHEET

 HREF="company-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Compensation Plans</TABLE>

<P>

Due to temporary financial difficulties, we are scaling

back our very generous plans for salary increases. Don't

worry, though: your valuable stock options more than

compensate for any small drops in direct salary.

<H3>Regular Employees</H3>

Pay for median-level employee (Master's degree, eight year's

experience):

 2002: $50,000.

 2003: $30,000.

 2004: $25,000.

 2005: $20,000.

<% if (request.isUserInRole("executive")) { %>

<H3>Executives</H3>

Median pay for corporate executives:

 2002: $500,000.

 2003: $600,000.

 2004: $700,000.

 2005: $800,000.

<% } %>

</BODY>

</HTML>

Listing 8.3 web.xml (For augmented hotdotcom intranet)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

 <!-- A servlet that redirects users to the home page. -->

 <servlet>

 <servlet-name>Redirector</servlet-name>

 <servlet-class>hotdotcom.RedirectorServlet</servlet-class>

 </servlet>

 <!-- Turn off invoker. Send requests to index.jsp. -->

 <servlet-mapping>

 <servlet-name>Redirector</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- If URL gives a directory but no filename, try index.jsp

 first and index.html second. If neither is found,

 the result is server specific (e.g., a directory

 listing). -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

 <!-- Protect financial plan. Employees or executives. -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Financial Plan</web-resource-name>

 <url-pattern>/financial-plan.html</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>employee</role-name>

 <role-name>executive</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- Protect business plan. Executives only. -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Business Plan</web-resource-name>

 <url-pattern>/business-plan.html</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>executive</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- Protect compensation plan. Employees or executives. -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Compensation Plan</web-resource-name>

 <url-pattern>/employee-pay.jsp</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>employee</role-name>

 <role-name>executive</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- Tell the server to use BASIC authentication. -->

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Intranet</realm-name>

 </login-config>

</web-app>

8.3 Handling All Security Programmatically

Declarative security (Chapter 7) offers a number of advantages to the developer. Chief among

them is the fact that individual servlets and JSP pages need no security-conscious code: the

container (server) handles authentication in a manner that is completely transparent to the

individual resources. For example, you can switch from form-based authentication to BASIC

authentication or from regular HTTP connections to encrypted HTTPS connections, all without any

changes to the individual servlets or JSP pages.

Even when you want a bit more control than just “access allowed” or “access denied,” it is

convenient to let the server maintain and process the usernames and passwords, as discussed in

Section 8.1.

However, the convenience of container-managed security comes at a price: it requires a

server-specific component. The method for setting up usernames, passwords, and user roles is

not standardized and thus is not portable across different servers. In most situations, this

disadvantage is outweighed by the faster and simpler servlet and JSP development process that

results from leaving some or all of the authorization tasks to the server. In some cases, however,

you might want a servlet or JSP page to be entirely self-contained with no dependencies on

server-specific settings or even web.xml entries. Although this approach requires a lot more work,

it means that the servlet or JSP page can be ported from server to server with much less effort

than with container-managed security. Furthermore, it lets the servlet or JSP page use username

and password schemes other than an exact match to a preconfigured list.

HTTP supports two varieties of authentication: BASIC and DIGEST. Few browsers support DIGEST,

so I’ll concentrate on BASIC here.

Here is a summary of the steps involved for BASIC authorization.

1. Check whether there is an Authorization request header. If there is no such

header, go to Step 5.

2. Get the encoded username/password string. If there is an Authorization header,

it should have the following form:
3.

Authorization: Basic encodedData

Skip over the word Basic —the remaining part is the username and password represented

in base64 encoding.

3. Reverse the base64 encoding of the username/password string. Use the

decodeBuffer method of the BASE64Decoder class. This method call results in a string of

the form username:password. The BASE64Decoder class is bundled with the JDK; in JDK

1.3 it can be found in the sun.misc package in jdk_install_dir/jre/lib/rt.jar.

4. Check the username and password. The most common approach is to use a database

or a file to obtain the real usernames and passwords. For simple cases, it is also possible

to place the password information directly in the servlet. In such a case, remember that

access to the servlet source code or class file provides access to the passwords. If the

incoming username and password match one of the reference username/password pairs,

return the page. If not, go to Step 5. With this approach you can provide your own

definition of “match.” With container-managed security, you cannot.

5. When authentication fails, send the appropriate response to the client. Return a

401 (Unauthorized) response code and a header of the following form:
6.

WWW-Authenticate: BASIC realm="some-name"

This response instructs the browser to pop up a dialog box telling the user to enter a name

and password for some-name, then to reconnect with that username and password

embedded in a single base64 string inside the Authorization header.

If you care about the details, base64 encoding is explained in RFC 1521. To retrieve RFCs, start

at http://www.rfc-editor.org/ to get a current list of the RFC archive sites. However, there are

probably only two things you need to know about base64 encoding.

First, it is not intended to provide security, since the encoding can be easily reversed. So, base64

encoding does not obviate the need for SSL (see Section 7.5) to thwart attackers who might be

able to snoop on your network connection (no easy task unless they are on your local subnet).

SSL, or Secure Sockets Layer, is a variation of HTTP where the entire stream is encrypted. It is

supported by many commercial servers and is generally invoked by use of https in the URL

instead of http. Servlets can run on SSL servers just as easily as on standard servers, and the

encryption and decryption are handled transparently before the servlets are invoked. See

Sections 7.1 and 8.6 for examples.

The second point you should know about base64 encoding is that Sun provides the

sun.misc.BASE64Decoder class, distributed with JDK 1.1 and later, to decode strings that were

encoded with base64. In JDK 1.3 it can be found in the sun.misc package in

jdk_install_dir/jre/lib/rt.jar. Just be aware that classes in the sun package hierarchy are not part

of the official language specification and thus are not guaranteed to appear in all implementations.

So, if you use this decoder class, make sure that you explicitly include the class file when you

distribute your application. One possible approach is to make the class available to all Web

applications on your server and then to explicitly record the fact that your applications depend on

it. For details on this process, see Section 4.4 (Recording Dependencies on Server Libraries).

8.4 Example: Handling All Security Programmatically

Listing 8.4 shows a servlet that generates hot stock recommendations. If it were made freely

available on the Web, it would put half the financial advisors out of business. So, it needs to be

password protected, available only to people who have paid the very reasonable $2000 access

fee.

Furthermore, the servlet needs to be as portable as possible because ISPs keep shutting it down

(they claim fraud, but no doubt they are really being pressured by the financial services

companies that the servlet outperforms). So, it uses complete programmatic security and is

entirely self-contained: absolutely no changes or server-specific customizations are required to

move the servlet from system to system.

Finally, requiring an exact match against a static list of usernames and passwords (as is required

in container-managed security) is too limiting for this application. So, the servlet uses a custom

algorithm (see the areEqualReversed method) for determining if an incoming username and

password are legal.

Figure 8-3 shows what happens when the user first tries to access the servlet. Figure 8-4 shows

the result of a failed authorization attempt; Figure 8-5 shows what happens if the user gives up

at that point. Figure 8-6 shows the result of successful authorization.

Figure 8-3. When the browser first receives the 401 (Unauthorized)

status code, it opens a dialog box to collect the username and

password.

Figure 8-4. When the browser receives the 401 (Unauthorized)

status code on later attempts, it indicates that authorization

failed. Netscape 6 and Internet Explorer indicate

authorization failure by showing the original dialog box with

the previously entered username and an empty password

field.

Figure 8-5. Result of cancelled authorization attempt with

Tomcat—Tomcat returns an error page along with the 401

(Unauthorized) status code. JRun and ServletExec omit the error

page in this case.

Figure 8-6. Result of successful authorization attempt. Invest

now!

Listing 8.4 StockTip.java

package stocks;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import sun.misc.BASE64Decoder;

/** Servlet that gives very hot stock tips. So hot that

 * only authorized users (presumably ones who have paid

 * the steep financial advisory fee) can access the servlet.

 */

public class StockTip extends HttpServlet {

 /** Denies access to all users except those who know

 * the secret username/password combination.

 */

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String authorization = request.getHeader("Authorization");

 if (authorization == null) {

 askForPassword(response);

 } else {

 // Authorization headers looks like "Basic blahblah",

 // where blahblah is the base64 encoded username and

 // password. We want the part after "Basic ".

 String userInfo = authorization.substring(6).trim();

 BASE64Decoder decoder = new BASE64Decoder();

 String nameAndPassword =

 new String(decoder.decodeBuffer(userInfo));

 // Decoded part looks like "username:password".

 int index = nameAndPassword.indexOf(":");

 String user = nameAndPassword.substring(0, index);

 String password = nameAndPassword.substring(index+1);

 // High security: username must be reverse of password.

 if (areEqualReversed(user, password)) {

 showStock(request, response);

 } else {

 askForPassword(response);

 }

 }

 }

 // Show a Web page giving the symbol of the next hot stock.

 private void showStock(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 out.println(docType +

 "<HTML>\n" +

 "<HEAD><TITLE>Hot Stock Tip!</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1>Today's Hot Stock:");

 for(int i=0; i<3; i++) {

 out.print(randomLetter());

 }

 out.println("</H1>\n" +

 "</BODY></HTML>");

 }

 // If no Authorization header was supplied in the request.

 private void askForPassword(HttpServletResponse response) {

 response.setStatus(response.SC_UNAUTHORIZED); // I.e., 401

 response.setHeader("WWW-Authenticate",

 "BASIC realm=\"Insider-Trading\"");

 }

 // Returns true if s1 is the reverse of s2.

 // Empty strings don't count.

 private boolean areEqualReversed(String s1, String s2) {

 s2 = (new StringBuffer(s2)).reverse().toString();

 return((s1.length() > 0) && s1.equals(s2));

 }

 private final String ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 // Returns a random number from 0 to n-1 inclusive.

 private int randomInt(int n) {

 return((int)(Math.random() * n));

 }

 // A random letter from the alphabet.

 private char randomLetter() {

 return(ALPHABET.charAt(randomInt(ALPHABET.length())));

 }

}

8.5 Using Programmatic Security with SSL

SSL can be used with security that is entirely servlet managed, just as it can be with

container-managed security (see Section 7.1). As is typical with servlet-managed security, this

approach is more portable but requires significantly more effort.

The use of SSL in programmatic security may require one or more of the following capabilities not

needed in normal programmatic security.

• Determining if SSL is in use.

• Redirecting non-SSL requests.

• Discovering the number of bits in the key.

• Looking up the encryption algorithm.

• Accessing client X509 certificates.

Details on these capabilities follow.

Determining If SSL Is in Use

The ServletRequest interface provides two methods that let you find out if SSL is in use. The

getScheme method returns "http" for regular requests and "https" for SSL requests. The

isSecure method returns false for regular requests and true for SSL requests.

Redirecting Non-SSL Requests

With container-managed security, you can use the transport-guarantee subelement of

user-data-constraint to ensure that the server redirects regular (http) requests to the SSL

(https) equivalent. See Section 7.1 for details.

In programmatic security, you might want to explicitly do what the server automatically does with

container-managed security. Once you have a URL, redirection is straightforward: use

response.sendRedirect (Section 2.7).

The difficulty is in generating the URL in the first place. Unfortunately, there is no built-in method

that says “give me the complete incoming URL with http changed to https.” So, you have to call

request.getRequestURL to get the main URL, change http to https manually, then tack on any

form data by using request.getQueryString. You pass that result to response.sendRedirect.

Even this tedious manual approach runs some portability risks. For example: what if the server is

running SSL on a port other than 443 (the default SSL port)? In such a case, the approach

outlined here redirects to the wrong port. Unfortunately, there is no general solution to this

problem; you simply have to know something about how the server is configured in order to

redirect to a nonstandard SSL port. However, since you have to know that the server supports

SSL in the first place, this additional burden is not too onerous.

Discovering the Number of Bits in the Key

Suppose that you have a servlet or JSP page that lets authorized users access your company’s

financial records. You might want to ensure that the most sensitive data is only sent to users that

have the strongest (128-bit) level of encryption. Users whose browsers use comparatively weak

40-bit keys should be denied access. To accomplish this task, you need to be able to discover the

level of encryption being used.

In version 2.3 of the servlet API, SSL requests automatically result in an attribute named

javax.servlet.request.key_size being placed in the request object. You can access it by

calling request.getAttribute with the specified name. The value is an Integer that tells you

the length of the encryption key. However, since the return type of getAttribute is Object, you

have to perform a typecast to Integer. In version 2.2 and earlier, there was no portable way to

determine the key size. So, be sure to check if the result is null in order to handle non-SSL

requests and SSL requests in servers compatible only with version 2.2 of the servlet API. Here is

a simple example.

String keyAttribute = "javax.servlet.request.key_size";

Integer keySize =

 (Integer)request.getAttribute(keyAttribute);

if (keySize == null) { ... }

Looking Up the Encryption Algorithm

In version 2.3 of the servlet API, SSL requests also result in an attribute named

javax.servlet.request.cipher_suite being placed in the request object. You can access it by

calling request.getAttribute with the specified name. The value is a String that describes the

encryption algorithm being used. However, since the return type of getAttribute is Object, you

have to perform a typecast to String. Be sure to check if the result is null in order to handle

non-SSL requests and SSL requests in servers compatible only with version 2.2 of the servlet API.

Here is a simple example.

String cipherAttribute = "javax.servlet.request.cipher_suite";

String cipherSuite =

 (String)request.getAttribute(cipherAttribute);

if (cipherSuite == null) { ... }

Accessing Client X509 Certificates

Rather than using a simple username and password, some browsers permit users to authenticate

themselves with X509 certificates. X509 certificates are discussed in RFC 1421. To retrieve RFCs,

start at http://www.rfc-editor.org/ to get a current list of the RFC archive sites.

If the client authenticates himself with an X509 certificate, that certificate is available by means

of the javax.servlet.request.X509Certificate attribute of the request object. This attribute

is available in both version 2.2 and 2.3 of the servlet API. The value is an object of type

java.security.cert.X509Certificate that contains exhaustive information about the

certificate. However, since the return type of getAttribute is Object, you have to perform a

typecast to X509Certificate. Be sure to check if the result is null in order to handle non-SSL

requests and SSL requests that include no certificate. A simple example follows.

String certAttribute = "javax.servlet.request.X509Certificate";

X509Certificate certificate =

 (X509Certificate)request.getAttribute(certAttribute);

if (certificate == null) { ... }

Once you have an X509 certificate, you can look up the issuer’s distinguished name, the serial

number, the raw signature value, the public key, and a number of other pieces of information. For

details, see http://java.sun.com/j2se/1.3/docs/api/java/security/cert/X509Certificate.html.

8.6 Example: Programmatic Security and SSL

Listing 8.5 presents a servlet that redirects non-SSL requests to a URL that is identical to the URL

of the original request except that http is changed to https. When an SSL request is received, the

servlet presents a page that displays information on the URL, query data, key size, encryption

algorithm, and client certificate. Figures 8-7 and 8-8 show the results.

Figure 8-7. New-certificate page for Internet Explorer. View

and import the certificate to suppress future warnings. For

details on creating self-signed certificates for use with

Tomcat, see Section 7.5. Again, self-signed certificates would

not be trusted in real-world applications; they are for testing

purposes only.

Figure 8-8. Result of the SecurityInfo servlet.

In a real application, make sure that you redirect users when they access the servlet or JSP page

that contains the form that collects the data. Once users submit sensitive data to an ordinary

non-SSL URL, it is too late to redirect the request: attackers with access to the network traffic

could have already obtained the data.

Listing 8.5 SecurityInfo.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.security.cert.*; // For X509Certificate

/** Servlet that prints information on SSL requests. Non-SSL

 * requests get redirected to SSL.

 */

public class SecurityInfo extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 // Redirect non-SSL requests to the SSL equivalent.

 if (request.getScheme().equalsIgnoreCase("http")) {

 String origURL = request.getRequestURL().toString();

 String newURL = httpsURL(origURL);

 String formData = request.getQueryString();

 if (formData != null) {

 newURL = newURL + "?" + formData;

 }

 response.sendRedirect(newURL);

 } else {

 String currentURL = request.getRequestURL().toString();

 String formData = request.getQueryString();

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 String title = "Security Info";

 out.println

 (docType +

 "<HTML>\n" +

 "<HEAD><TITLE>" + title +

 "</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1>" + title + "</H1>\n" +

 "\n" +

 " URL: " + currentURL + "\n" +

 " Data: " + formData);

 boolean isSecure = request.isSecure();

 if (isSecure) {

 String keyAttribute =

 "javax.servlet.request.key_size";

 // Available only with servlets 2.3

 Integer keySize =

 (Integer)request.getAttribute(keyAttribute);

 String sizeString =

 replaceNull(keySize, "Unknown");

 String cipherAttribute =

 "javax.servlet.request.cipher_suite";

 // Available only with servlets 2.3

 String cipherSuite =

 (String)request.getAttribute(cipherAttribute);

 String cipherString =

 replaceNull(cipherSuite, "Unknown");

 String certAttribute =

 "javax.servlet.request.X509Certificate";

 // Available with servlets 2.2 and 2.3

 X509Certificate certificate =

 (X509Certificate)request.getAttribute(certAttribute);

 String certificateString =

 replaceNull(certificate, "None");

 out.println

 (" SSL: true\n" +

 " \n" +

 " Key Size: " + sizeString + "\n" +

 " Cipher Suite: " + cipherString + "\n" +

 " Client Certificate: " +

 certificateString + "\n" +

 " ");

 }

 out.println

 ("\n" +

 "</BODY></HTML>");

 }

 }

 // Given http://blah, return https://blah.

 private String httpsURL(String origURL) {

 int index = origURL.indexOf(":");

 StringBuffer newURL = new StringBuffer(origURL);

 newURL.insert(index, 's');

 return(newURL.toString());

 }

 // If the first argument is null, return the second argument.

 // Otherwise, convert first argument to a String and

 // return that String.

 private String replaceNull(Object obj, String fallback) {

 if (obj == null) {

 return(fallback);

 } else {

 return(obj.toString());

 }

 }

}

Part IV: Major New Servlet and JSP Capabilities

Part IV Major New Servlet and JSP Capabilities

Chapter 9 Servlet and JSP Filters

Chapter 10 The Application Events Framework

Chapter 9. Servlet and JSP Filters

Topics in This Chapter

• Designing basic filters

• Reading request data

• Accessing the servlet context

• Initializing filters

• Blocking the servlet or JSP response

• Modifying the servlet or JSP response

• Using filters for debugging and logging

• Using filters to monitor site access

• Using filters to replace strings

• Using filters to compress the response

Perhaps the single most important new capability in version 2.3 of the servlet API is the ability to

define filters for servlets and JSP pages. Filters provide a powerful and standard alternative to the

nonstandard “servlet chaining” supported by some early servers.

A filter is a program that runs on the server before the servlet or JSP page with which it is

associated. A filter can be attached to one or more servlets or JSP pages and can examine the

request information going into these resources. After doing so, it can choose among the following

options.

• Invoke the resource (i.e., the servlet or JSP page) in the normal manner.

• Invoke the resource with modified request information.

• Invoke the resource but modify the response before sending it to the client.

• Prevent the resource from being invoked and instead redirect to a different resource,

return a particular status code, or generate replacement output.

This capability provides several important benefits.

First, it lets you encapsulate common behavior in a modular and reusable manner. Do you have

30 different servlets or JSP pages that need to compress their content to decrease download time?

No problem: make a single compression filter (Section 9.1) and apply it to all 30 resources.

Second, it lets you separate high-level access decisions from presentation code. This is

particularly valuable with JSP, where you usually want to keep the page almost entirely focused

on presentation, not business logic. For example, do you want to block access from certain sites

without modifying the individual pages to which these access restrictions apply? No problem:

create an access restriction filter (Section 9.8) and apply it to as many or few pages as you like.

Finally, filters let you apply wholesale changes to many different resources. Do you have a bunch

of existing resources that should remain unchanged except that the company name should be

changed? No problem: make a string replacement filter (Section 9.10) and apply it wherever

appropriate.

Remember, however, that filters work only in servers that are compliant with version 2.3 of the

servlet specification. If your Web application needs to support older servers, you cannot use

filters.

Core Warning

Filters fail in servers that are compliant only with version

2.2 or earlier versions of the servlet specification.

9.1 Creating Basic Filters

Creating a filter involves five basic steps:

1. Create a class that implements the Filter interface. Your class will need three

methods: doFilter, init, and destroy. The doFilter method contains the main filtering

code (see Step 2), the init method performs setup operations, and the destroy method

does cleanup.

2. Put the filtering behavior in the doFilter method. The first argument to the

doFilter method is a ServletRequest object. This object gives your filter full access to

the incoming information, including form data, cookies, and HTTP request headers. The

second argument is a ServletResponse; it is mostly ignored in simple filters. The final

argument is a FilterChain; it is used to invoke the servlet or JSP page as described in the

next step.

3. Call the doFilter method of the FilterChain object. The doFilter method of the

Filter interface takes a FilterChain object as one of its arguments. When you call the

doFilter method of that object, the next associated filter is invoked. If no other filter is

associated with the servlet or JSP page, then the servlet or page itself is invoked.

4. Register the filter with the appropriate servlets and JSP pages. Use the filter

and filter-mapping elements in the deployment descriptor (web.xml).

5. Disable the invoker servlet. Prevent users from bypassing filter settings by using

default servlet URLs.

Details follow.

Create a Class That Implements the Filter Interface

All filters must implement javax.servlet.Filter. This interface comprises three methods:

doFilter, init, and destroy.

public void doFilter(ServletRequest request,

 ServletResponse response, FilterChain chain)

 throws ServletException, IOException

The doFilter method is executed each time a filter is invoked (i.e., once for each request for a

servlet or JSP page with which the filter is associated). It is this method that contains the bulk of

the filtering logic.

The first argument is the ServletRequest associated with the incoming request. For simple filters,

most of your filter logic is based on this object. Cast the object to HttpServletRequest if you are

dealing with HTTP requests and you need access to methods such as getHeader or getCookies

that are unavailable in ServletRequest.

The second argument is the ServletResponse. You often ignore this argument, but there are two

cases when you use it. First, if you want to completely block access to the associated servlet or

JSP page, you can call response.getWriter and send a response directly to the client. Section

9.7 gives details; Section 9.8 gives an example. Second, if you want to modify the output of the

associated servlet or JSP page, you can wrap the response inside an object that collects all output

sent to it. Then, after the servlet or JSP page is invoked, the filter can examine the output, modify

it if appropriate, and then send it to the client. See Section 9.9 for details.

The final argument to doFilter is a FilterChain object. You call doFilter on this object to

invoke the next filter that is associated with the servlet or JSP page. In no other filters are in effect,

then the call to doFilter invokes the servlet or JSP page itself.

public void init(FilterConfig config)

 throws ServletException

The init method is executed only when the filter is first initialized. It is not executed each time

the filter is invoked. For simple filters you can provide an empty body to this method, but there

are two common reasons for using init. First, the FilterConfig object provides access to the

servlet context and to the name of the filter that is assigned in the web.xml file. So, it is common

to use init to store the FilterConfig object in a field so that the doFilter method can access

the servlet context or the filter name. This process is described in Section 9.3. Second, the

FilterConfig object has a getInitParameter method that lets you access filter initialization

parameters that are assigned in the deployment descriptor (web.xml). Use of initialization

parameters is described in Section 9.5.

public void destroy()

This method is called when a server is permanently finished with a given filter object (e.g., when

the server is being shut down). Most filters simply provide an empty body for this method, but it

can be used for cleanup tasks like closing files or database connection pools that are used by the

filter.

Put the Filtering Behavior in the doFilter Method

The doFilter method is the key part of most filters. Each time a filter is invoked, doFilter is

executed. With most filters, the steps that doFilter performs are based on the incoming

information. So, you will probably make use of the ServletRequest that is supplied as the first

argument to doFilter. This object is frequently typecast to HttpServletRequest to provide

access to the more specialized methods of that class.

Call the doFilter Method of the FilterChain Object

The doFilter method of the Filter interface takes a FilterChain object as its third argument.

When you call the doFilter method of that object, the next associated filter is invoked. This

process normally continues until the last filter in the chain is invoked. When the final filter calls

the doFilter method of its FilterChain object, the servlet or page itself is invoked.

However, any filter in the chain can interrupt the process by omitting the call to the doFilter

method of its FilterChain. In such a case, the servlet of JSP page is never invoked and the filter

is responsible for providing output to the client. For details, see Section 9.7 (Blocking the

Response).

Register the Filter with the Appropriate Servlets and JSP

Pages

Version 2.3 of the deployment descriptor introduced two elements for use with filters: filter and

filter-mapping. The filter element registers a filtering object with the system. The

filter-mapping element specifies the URLs to which the filtering object applies.

The filter Element

The filter element goes near the top of deployment descriptor (web.xml), before any

filter-mapping, servlet, or servlet-mapping elements. (For more information on the use of

the deployment descriptor, see Chapters 4 and 5. For details on the required ordering of elements

within the deployment descriptor, see Section 5.2.) The filter element contains six possible

subelements:

• icon. This is an optional element that declares an image file that an IDE can use.

• filter-name. This is a required element that assigns a name of your choosing to the

filter.

• display-name. This is an optional element that provides a short name for use by IDEs.

• description. This is another optional element that gives information for IDEs. It

provides textual documentation.

• filter-class. This is a required element that specifies the fully qualified name of the filter

implementation class.

• init-param. This is an optional element that defines initialization parameters that can be

read with the getInitParameter method of FilterConfig. A single filter element can

contain multiple initparam elements.

Remember that filters were first introduced in version 2.3 of the servlet specification. So, your

web.xml file must use version 2.3 of the DTD. Here is a simple example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <filter>

 <filter-name>MyFilter</filter-name>

 <filter-class>myPackage.FilterClass</filter-class>

 </filter>

 <!-- ... -->

 <filter-mapping>...</filter-mapping>

</web-app>

The filter-mapping Element

The filter-mapping element goes in the web.xml file after the filter element but before the

servlet element. It contains three possible subelements:

• filter-name. This required element must match the name you gave to the filter when

you declared it with the filter element.

• url-pattern. This element declares a pattern starting with a slash (/) that designates the

URLs to which the filter applies. You must supply url-pattern or servlet-name in all

filter-mapping elements. You cannot provide multiple url-pattern entries with a single

filter-mapping element, however. If you want the filter to apply to multiple patterns,

repeat the entire filter-mapping element.

• servlet-name. This element gives a name that must match a name given to a servlet or

JSP page by means of the servlet element. For details on the servlet element, see

Section 5.3 (Assigning Names and Custom URLs). You cannot provide multiple

servlet-name elements entries with a single filter-mapping element. If you want the

filter to apply to multiple servlet names, repeat the entire filter-mapping element.

Here is a simple example.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <filter>

 <filter-name>MyFilter</filter-name>

 <filter-class>myPackage.FilterClass</filter-class>

 </filter>

 <!-- ... -->

 <filter-mapping>

 <filter-name>MyFilter</filter-name>

 <url-pattern>/someDirectory/SomePage.jsp</url-pattern>

 </filter-mapping>

</web-app>

Disable the Invoker Servlet

When you apply filters to resources, you do so by specifying the URL pattern or servlet name to

which the filters apply. If you supply a servlet name, that name must match a name given in the

servlet element of web.xml. If you use a URL pattern that applies to a servlet, the pattern must

match a pattern that you specified with the servlet-mapping web.xml element (see Section 5.3,

“ Assigning Names and Custom URLs ”). However, most servers use an “invoker servlet” that

provides a default URL for servlets: http://host/webAppPrefix/servlet/ServletName. You need to

make sure that users don’t access servlets with this URL, thus bypassing the filter settings.

For example, suppose that you use filter and filter-mapping to say that the filter named

SomeFilter applies to the servlet named SomeServlet, as below.

<filter>

 <filter-name>SomeFilter</filter-name>

 <filter-class>somePackage.SomeFilterClass</filter-class>

</filter>

<!-- ... -->

<filter-mapping>

 <filter-name>SomeFilter</filter-name>

 <servlet-name>SomeServlet</servlet-name>

</filter-mapping>

Next, you use servlet and servlet-mapping to stipulate that the URL

http://host/webAppPrefix/Blah should invoke SomeServlet, as below.

<servlet>

 <servlet-name>SomeServlet</servlet-name>

 <servlet-class>somePackage.SomeServletClass</servlet-class>

</servlet>

<!-- ... -->

<servlet-mapping>

 <servlet-name>SomeServlet</servlet-name>

 <url-pattern>/Blah</url-pattern>

</servlet-mapping>

Now, the filter is invoked when clients use the URL http://host/webAppPrefix/Blah. No filters

apply to http://host/webAppPrefix/servlet/somePackage.SomeServletClass. Oops.

Section 5.4 (Disabling the Invoker Servlet) discusses server-specific approaches to turning off

the invoker. The most portable approach, however, is to simply remap the /servlet pattern in your

Web application so that all requests that include the pattern are sent to the same servlet. To

remap the pattern, you first create a simple servlet that prints an error message or redirects

users to the top-level page. Then, you use the servlet and servlet-mapping elements (Section

5.3) to send requests that include the /servlet pattern to that servlet. Listing 9.1 gives a brief

example.

Listing 9.1 web.xml (Excerpt that redirects default servlet

URLs)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <servlet>

 <servlet-name>Error</servlet-name>

 <servlet-class>somePackage.ErrorServlet</servlet-class>

 </servlet>

 <!-- ... -->

 <servlet-mapping>

 <servlet-name>Error</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- ... -->

</web-app>

9.2 Example: A Reporting Filter

Just to warm up, let’s try a simple filter that merely prints a message to standard output

whenever the associated servlet or JSP page is invoked. To accomplish this task, the filter has the

following capabilities.

1. A class that implements the Filter interface. This class is called ReportFilter and

is shown in Listing 9.2. The class provides empty bodies for the init and destroy

methods.

2. Filtering behavior in the doFilter method. Each time a servlet or JSP page

associated with this filter is invoked, the doFilter method generates a printout that lists

the requesting host and the URL that was invoked. Since the getRequestURL method is in

HttpServletRequest, not ServletRequest, I cast the ServletRequest object to

HttpServletRequest.

3. A call to the doFilter method of the FilterChain. After printing the report, the filter

calls the doFilter method of the FilterChain to invoke the servlet or JSP page (or the

next filter in the chain if there was one).

4. Registration with the Web application home page and the servlet that displays

the daily special. First, the filter element associates the name Reporter with the

class moreservlets. filters.ReportFilter. Then, the filter-mapping element uses a

url-pattern of /index.jsp to associate the filter with the home page. Finally, the

filter-mapping element uses a servlet-name of TodaysSpecial to associate the filter

with the daily special servlet (the name TodaysSpecial is declared in the servlet

element). See Listing 9.3.

5. Disablement of the invoker servlet. First, I created a RedirectorServlet (Listing

9.6) that redirects all requests that it receives to the Web application home page. Next, I

used the servlet and servlet-mapping elements (Listing 9.3) to specify that all URLs

that begin with http://host/webAppPrefix/servlet/ should invoke the RedirectorServlet.

Given these settings, the filter is invoked each time a client requests the Web application home

page (Listing 9.4, Figure 9-1) or the daily special servlet (Listing 9.5, Figure 9-2).

Figure 9-1. Home page for filter company. After the page is

deployed on an external server and the reporting filter is

attached, each client access results in a printout akin to

“purchasing.sun.com tried to access

http://www.filtersrus.com/filters/index.jsp on Fri Oct 26

13:19:14 EDT 2001.”

Figure 9-2. Page advertising a special sale. After the page is

deployed on an external server and the reporting filter is

attached, each client access results in a printout akin to

“admin.microsoft.com tried to access

http://www.filtersrus.com/filters/TodaysSpecial on Fri Oct

26 13:21:56 EDT 2001.”

Listing 9.2 ReportFilter.java

package moreservlets.filters;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*; // For Date class

/** Simple filter that prints a report on the standard output

 * each time an associated servlet or JSP page is accessed.

 */

public class ReportFilter implements Filter {

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws ServletException, IOException {

 HttpServletRequest req = (HttpServletRequest)request;

 System.out.println(req.getRemoteHost() +

 " tried to access " +

 req.getRequestURL() +

 " on " + new Date() + ".");

 chain.doFilter(request,response);

 }

 public void init(FilterConfig config)

 throws ServletException {

 }

 public void destroy() {}

}

Listing 9.3 web.xml (Excerpt for reporting filter)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- Register the name "Reporter" for ReportFilter. -->

 <filter>

 <filter-name>Reporter</filter-name>

 <filter-class>

 moreservlets.filters.ReportFilter

 </filter-class>

 </filter>

 <!-- ... -->

 <!-- Apply the Reporter filter to home page. -->

 <filter-mapping>

 <filter-name>Reporter</filter-name>

 <url-pattern>/index.jsp</url-pattern>

 </filter-mapping>

 <!-- Also apply the Reporter filter to the servlet named

 "TodaysSpecial".

 -->

 <filter-mapping>

 <filter-name>Reporter</filter-name>

 <servlet-name>TodaysSpecial</servlet-name>

 </filter-mapping>

 <!-- ... -->

 <!-- Give a name to the Today's Special servlet so that filters

 can be applied to it.

 -->

 <servlet>

 <servlet-name>TodaysSpecial</servlet-name>

 <servlet-class>

 moreservlets.TodaysSpecialServlet

 </servlet-class>

 </servlet>

 <!-- ... -->

 <!-- Make /TodaysSpecial invoke the servlet

 named TodaysSpecial (i.e., moreservlets.TodaysSpecial).

 -->

 <servlet-mapping>

 <servlet-name>TodaysSpecial</servlet-name>

 <url-pattern>/TodaysSpecial</url-pattern>

 </servlet-mapping>

 <!-- Turn off invoker. Send requests to index.jsp. -->

 <servlet-mapping>

 <servlet-name>Redirector</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- ... -->

</web-app>

Listing 9.4 index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Filters 'R' Us</TITLE>

<LINK REL=STYLESHEET

 HREF="filter-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<CENTER>

<TABLE BORDER=5>

 <TR><TH CLASS="TITLE">Filters 'R' Us</TABLE>

<P>

<TABLE>

 <TR>

 <TH>

 <TH>

 <TH>

</TABLE>

<H3>We specialize in the following:</H3>

 Air filters

 Coffee filters

 Pump filters

 Camera lens filters

 Image filters for Adobe Photoshop

 Web content filters

 Kalman filters

 Servlet and JSP filters

Check out Today's Special.

</CENTER>

</BODY>

</HTML>

Listing 9.5 TodaysSpecialServlet.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Sample servlet used to test the simple filters. */

public class TodaysSpecialServlet extends HttpServlet {

 private String title, picture;

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 updateSpecials();

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 out.println

 (docType +

 "<HTML>\n" +

 "<HEAD><TITLE>Today's Special</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"WHITE\">\n" +

 "<CENTER>\n" +

 "<H1>Today's Special: " + title + "s!</H1>\n" +

 "<IMG SRC=\"images/" + picture + "\"\n" +

 " ALT=\"" + title + "\">\n" +

 "<BR CLEAR=\"ALL\">\n" +

 "Special deal: for only twice the price, you can\n" +

 "<I>buy one, get one free!</I>.\n" +

 "</BODY></HTML>");

 }

// Rotate among the three available filter images.

 private void updateSpecials() {

 double num = Math.random();

 if (num < 0.333) {

 title = "Air Filter";

 picture = "air-filter.jpg";

 } else if (num < 0.666) {

 title = "Coffee Filter";

 picture = "coffee-filter.gif";

 } else {

 title = "Pump Filter";

 picture = "pump-filter.jpg";

 }

 }

}

Listing 9.6 RedirectorServlet.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Servlet that simply redirects users to the

 * Web application home page. Registered with the

 * default servlet URL to prevent clients from

 * using http://host/webAppPrefix/servlet/ServletName

 * to bypass filters or security settings that

 * are associated with custom URLs.

 */

public class RedirectorServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.sendRedirect(request.getContextPath());

 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 doGet(request, response);

 }

}

9.3 Accessing the Servlet Context from Filters

The ReportFilter of the previous section prints a report on the standard output whenever the

designated servlet or JSP page is invoked. A report on the standard output is fine during

development—when you run a server on your desktop you typically have a window that displays

the standard output. During deployment, however, you are unlikely to have access to this window.

So, a natural enhancement is to write the reports into the servlet log file instead of to the

standard output.

The servlet API provides two log methods: one that takes a simple String and another that takes

a String and a Throwable. These two methods are available from either the GenericServlet or

ServletContext classes. Check your server’s documentation for the exact location of the log files

that these methods use. The problem is that the doFilter method executes before the servlet or

JSP page with which it is associated. So, you don’t have access to the servlet instance and thus

can’t call the log methods that are inherited from GenericServlet. Furthermore, the API

provides no simple way to access the ServletContext from the doFilter method. The only

filter-related class that has a method to access the ServletContext is FilterConfig with its

getServletContext method. A FilterConfig object is passed to the init method but is not

automatically stored in a location that is available to doFilter.

So, you have to store the FilterConfig yourself. Simply create a field of type FilterConfig,

then override init to assign its argument to that field. Since you typically use the FilterConfig

object only to access the ServletContext and the filter name, you can store the ServletContext

and name in fields as well. Here is a simple example:

public class SomeFilter implements Filter {

 protected FilterConfig config;

 private ServletContext context;

 private String filterName;

 public void init(FilterConfig config)

 throws ServletException {

 this.config = config; // In case it is needed by subclass.

 context = config.getServletContext();

 filterName = config.getFilterName();

 }

 // doFilter and destroy methods...

}

9.4 Example: A Logging Filter

Let’s update the ReportFilter (Listing 9.2) so that messages go in the log file instead of to the

standard output. To accomplish this task, the filter has the following capabilities.

1. A class that implements the Filter interface. This class is called LogFilter and is

shown in Listing 9.7. The init method of this class stores the FilterConfig,

ServletContext, and filter name in fields of the filter. The class provides an empty body

for the destroy method.

2. Filtering behavior in the doFilter method. There are two differences between this

behavior and that of the ReportFilter: the report is placed in the log file instead of the

standard output and the report includes the name of the filter.

3. A call to the doFilter method of the FilterChain. After printing the report, the filter

calls the doFilter method of the FilterChain to invoke the next filter in the chain (or the

servlet or JSP page if there are no more filters).

4. Registration with all URLs. First, the filter element associates the name LogFilter

with the class moreservlets.filters. LogFilter. Next, the filter-mapping element

uses a url-pattern of /* to associate the filter with all URLs in the Web application. See

Listing 9.8.

5. Disablement of the invoker servlet. This operation is shown in Section 9.2 and is not

repeated here.

After the Web application is deployed on an external server and the logging filter is attached, a

client request for the Web application home page results in an entry in the log file like

“audits.irs.gov tried to access http://www.filtersrus.com/filters/ index.jsp on Fri Oct 26 15:16:15

EDT 2001. (Reported by Logger.)”

Listing 9.7 LogFilter.java

package moreservlets.filters;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*; // For Date class

/** Simple filter that prints a report in the log file

 * whenever the associated servlets or JSP pages

 * are accessed.

 */

public class LogFilter implements Filter {

 protected FilterConfig config;

 private ServletContext context;

 private String filterName;

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws ServletException, IOException {

 HttpServletRequest req = (HttpServletRequest)request;

 context.log(req.getRemoteHost() +

 " tried to access " +

 req.getRequestURL() +

 " on " + new Date() + ". " +

 "(Reported by " + filterName + ".)");

 chain.doFilter(request,response);

 }

 public void init(FilterConfig config)

 throws ServletException {

 this.config = config; // In case it is needed by subclass.

 context = config.getServletContext();

 filterName = config.getFilterName();

 }

 public void destroy() {}

}

Listing 9.8 web.xml (Excerpt for logging filter)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Register the name "Logger" for LogFilter. -->

 <filter>

 <filter-name>Logger</filter-name>

 <filter-class>

 moreservlets.filters.LogFilter

 </filter-class>

 </filter>

 <!-- ... -->

 <!-- Apply the Logger filter to all servlets and

 JSP pages.

 -->

 <filter-mapping>

 <filter-name>Logger</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

 <!-- ... -->

</web-app>

9.5 Using Filter Initialization Parameters

With servlets and JSP pages, you can customize the initialization behavior by supply initialization

parameters. For details, see Section 5.5 (Initializing and Preloading Servlets and JSP Pages). The

reason this capability is useful is that there are three distinct groups that might want to customize

the behavior of servlets or JSP pages:

1. Developers. They customize the behavior by changing the code of the servlet or JSP

page itself.

2. End users. They customize the behavior by entering values in HTML forms.

3. Deployers. This third group is the one served by initialization parameters. Members of

this group are people who take existing Web applications (or individual servlets or JSP

pages) and deploy them in a customized environment. They are not necessarily

developers, so it is not realistic to expect them to modify the servlet and JSP code. Besides,

you often omit the source code when distributing servlets. So, developers need a standard

way to allow deployers to change servlet and JSP behavior.

If these capabilities are useful for servlets and JSP pages, you would expect them to also be useful

for the filters that apply to servlets and JSP page. Indeed they are. However, since filters execute

before the servlets or JSP pages to which they are attached, it is not normally possible for end

users to customize filter behavior. Nevertheless, it is still useful to permit deployers (not just

developers) to customize filter behavior by providing initialization parameters. This behavior is

accomplished with the following steps.

1. Define initialization parameters. Use the init-param subelement of filter in

web.xml along with param-name and param-value subelements, as follows.
2.

3. <filter>

4. <filter-name>SomeFilter</filter-name>

5. <filter-class>somePackage.SomeFilterClass</filter-class>

6. <init-param>

7. <param-name>param1</param-name>

8. <param-value>value1</param-value>

9. </init-param>

10. <init-param>

11. <param-name>param2</param-name>

12. <param-value>value2</param-value>

13. </init-param>

</filter>

2. Read the initialization parameters. Call the getInitParameter method of

FilterConfig from the init method of your filter, as follows.
3.

4. public void init(FilterConfig config)

5. throws ServletException {

6. String val1 = config.getInitParameter("param1");

7. String val2 = config.getInitParameter("param2");

8. ...

}

3. Parse the initialization parameters. Like servlet and JSP initialization parameters,

each filter initialization value is of type String. So, if you want a value of another type,

you have to convert it yourself. For example, you would use Integer.parseInt to turn

the String "7" into the int 7. When parsing, don’t forget to check for missing and

malformed data. Missing initialization parameters result in null being returned from

getInitParameter. Even if the parameters exist, you should consider the possibility that

the deployer formatted the value improperly. For example, when converting a String to

an int, you should enclose the Integer.parseInt call within a try/catch block that

catches NumberFormatException. This handles null and incorrectly formatted values in

one fell swoop.

9.6 Example: An Access Time Filter

The LogFilter of Section 9.4 prints an entry in the log file every time the associated servlet or

JSP page is accessed. Suppose you want to modify it so that it only notes accesses that occur at

unusual times. Since “unusual” is situation dependent, the servlet should provide default values

for the abnormal time ranges and let deployers override these values by supplying initialization

parameters. To implement this functionality, the filter has the following capabilities.

1. A class that implements the Filter interface. This class is called LateAccessFilter

and is shown in Listing 9.9. The init method of this class reads the startTime and

endTime initialization parameters. It attempts to parse these values as type int, using

default values if the parameters are null or not formatted as integers. It then stores the

start and end times, the FilterConfig, the ServletContext, and the filter name in fields

of the filter. Finally, LateAccessFilter provides an empty body for the destroy method.

2. Filtering behavior in the doFilter method. This method looks up the current time,

sees if it is within the range given by the start and end times, and prints a log entry if so.

3. A call to the doFilter method of the FilterChain. After printing the report, the filter

calls the doFilter method of the FilterChain to invoke the next filter in the chain (or the

servlet or JSP page if there are no more filters).

4. Registration with the Web application home page; definition of initialization

parameters. First, the filter element associates the name LateAccessFilter with

the class moreservlets.filters.LateAccessFilter. The filter element also includes

two init-param subelements: one that defines the startTime parameter and another

that defines endTime. Since the people that will be accessing the filtersRus home page are

programmers, an abnormal range is considered to be between 2:00 a.m. and 10:00 a.m.

Finally, the filter-mapping element uses a url-pattern of /index.jsp to associate the

filter with the Web application home page. See Listing 9.10.

5. Disablement of the invoker servlet. This operation is shown in Section 9.2 and is not

repeated here.

After the Web application is deployed on an external server and the logging filter is attached, a

client request for the Web application home page results in an entry in the log file like “WARNING:

hacker6.filtersrus.com accessed http://www.filtersrus.com/filters/index.jsp on Oct 30, 2001

9:22:09 AM.”

Listing 9.9 LateAccessFilter.java

package moreservlets.filters;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

import java.text.*;

/** Filter that keeps track of accesses that occur

 * at unusual hours.

 */

public class LateAccessFilter implements Filter {

 private FilterConfig config;

 private ServletContext context;

 private int startTime, endTime;

 private DateFormat formatter;

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws ServletException, IOException {

 HttpServletRequest req = (HttpServletRequest)request;

 GregorianCalendar calendar = new GregorianCalendar();

 int currentTime = calendar.get(calendar.HOUR_OF_DAY);

 if (isUnusualTime(currentTime, startTime, endTime)) {

 context.log("WARNING: " +

 req.getRemoteHost() +

 " accessed " +

 req.getRequestURL() +

 " on " +

 formatter.format(calendar.getTime()));

 }

 chain.doFilter(request,response);

 }

 public void init(FilterConfig config)

 throws ServletException {

 this.config = config;

 context = config.getServletContext();

 formatter =

 DateFormat.getDateTimeInstance(DateFormat.MEDIUM,

 DateFormat.MEDIUM);

 try {

 startTime =

 Integer.parseInt(config.getInitParameter("startTime"));

 endTime =

 Integer.parseInt(config.getInitParameter("endTime"));

 } catch(NumberFormatException nfe) { // Malformed or null

 // Default: access at or after 10 p.m. but before 6 a.m.

 // is considered unusual.

 startTime = 22; // 10:00 p.m.

 endTime = 6; // 6:00 a.m.

 }

 }

 public void destroy() {}

 // Is the current time between the start and end

 // times that are marked as abnormal access times?

 private boolean isUnusualTime(int currentTime,

 int startTime,

 int endTime) {

 // If the start time is less than the end time (i.e.,

 // they are two times on the same day), then the

 // current time is considered unusual if it is

 // between the start and end times.

 if (startTime < endTime) {

 return((currentTime >= startTime) &&

 (currentTime < endTime));

 }

 // If the start time is greater than or equal to the

 // end time (i.e., the start time is on one day and

 // the end time is on the next day), then the current

 // time is considered unusual if it is NOT between

 // the end and start times.

 else {

 return(!isUnusualTime(currentTime, endTime, startTime));

 }

 }

}

Listing 9.10 web.xml (Excerpt for access time filter)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Register the name "LateAccessFilter" for

 moreservlets.filter.LateAccessFilter.

 Supply two initialization parameters:

 startTime and endTime.

 -->

 <filter>

 <filter-name>LateAccessFilter</filter-name>

 <filter-class>

 moreservlets.filters.LateAccessFilter

 </filter-class>

 <init-param>

 <param-name>startTime</param-name>

 <param-value>2</param-value>

 </init-param>

 <init-param>

 <param-name>endTime</param-name>

 <param-value>10</param-value>

 </init-param>

 </filter>

 <!-- ... -->

 <!-- Apply LateAccessFilter to the home page. -->

 <filter-mapping>

 <filter-name>LateAccessFilter</filter-name>

 <url-pattern>/index.jsp</url-pattern>

 </filter-mapping>

 <!-- ... -->

</web-app>

9.7 Blocking the Response

Up to now, all the filters discussed have concluded their doFilter methods by calling the

doFilter method of the FilterChain object. This approach is the normal one—the call to

doFilter invokes the next resource in the chain (another filter or the actual servlet or JSP page).

But what if your filter detects an unusual situation and wants to prevent the original resource

from being invoked? How can it block the normal response? The answer is quite simple: just omit

the call to the doFilter method of the FilterChain object. Instead, the filter can redirect the

user to a different page (e.g., with a call to response.sendRedirect) or generate the response

itself (e.g., by calling getWriter on the response and sending output, just as with a regular

servlet). Just remember that the first two arguments to the filter’s main doFilter method are

declared to be of type ServletRequest and ServletResponse. So, if you want to use methods

specific to HTTP, cast these arguments to HttpServletRequest and HttpServletResponse,

respectively. Here is a brief example:

public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws ServletException, IOException {

 HttpServletRequest req = (HttpServletRequest)request;

 HttpServletResponse res = (HttpServletResponse)response;

 if (isUnusualCondition(req)) {

 res.sendRedirect("http://www.somesite.com");

 } else {

 chain.doFilter(req,res);

 }

}

9.8 Example: A Prohibited-Site Filter

Suppose you have a competitor that you want to ban from your site. For example, this competing

company might have a service that accesses your site, removes advertisements and information

that identify your organization, and displays them to their customers. Or, they might have links

to your site that are in framed pages, thus making it appear that your page is part of their site.

You’d like to prevent them from accessing certain pages at your site. However, every time their

Web hosting company boots them off, they simply change domain names and register with

another ISP. So, you want the ability to easily change the domain names that should be banned.

The solution is to make a filter that uses initialization parameters to obtain a list of banned sites.

Requests originating or referred from these sites result in a warning message. Other requests

proceed normally. To implement this functionality, the filter has the following capabilities.

1. A class that implements the Filter interface. This class is called

BannedAccessFilter and is shown in Listing 9.11. The init method of this class first

obtains a list of sites from an initialization parameter called bannedSites. The filter parses

the entries in the resultant String with a StringTokenizer and stores each individual site

name in a HashMap that is accessible through an instance variable (i.e., field) of the filter.

Finally, BannedAccessFilter provides an empty body for the destroy method.

2. Filtering behavior in the doFilter method. This method looks up the requesting and

referring hosts by using the getRemoteHost method of ServletRequest and parsing the

Referer HTTP request header, respectively.

3. A conditional call to the doFilter method of the FilterChain. The filter checks to

see if the requesting or referring host is listed in the HashMap of banned sites. If so, it calls

the showWarning method, which sends a custom response to the client. If not, the filter

calls doFilter on the FilterChain object to let the request proceed normally.

4. Registration with the daily special servlet; definition of initialization

parameters. First, the filter element associates the name BannedAccessFilter with

the class moreservlets.filters.BannedAccessFilter. The filter element also

includes an init-param subelement that specifies the prohibited sites (separated by white

space). Since the resource that the competing sites abuse is the servlet that shows the

daily special, the filter-mapping element uses a servlet-name of TodaysSpecial. The

servlet element assigns the name TodaysSpecial to

more-servlets.TodaysSpecialServlet. See Listing 9.12.

5. Disablement of the invoker servlet. This operation is shown in Section 9.2 and is not

repeated here.

Listing 9.13 shows a very simple page that contains little but a link to the daily special servlet.

When that page is hosted on a normal site (Figure 9-3), the link results in the expected output

(Figure 9-4). But, when the page that contains the link is hosted on a banned site (Figure 9-5),

the link results only in a warning page (Figure 9-6)— access to the real servlet is blocked.

Figure 9-3. A page that links to the daily special servlet. This

version is hosted on the desktop development server.

Figure 9-4. You can successfully follow the link from the page

of Figure 9-3. The BannedAccessFilter does not prohibit access from

localhost.

Figure 9-5. A page that links to the daily special servlet. This

version is hosted on www.moreservlets.com.

Figure 9-6. You cannot successfully follow the link from the

page of Figure 9-5. The BannedAccessFilter prohibits access from

www.moreservlets.com (an unscrupulous competitor to

filtersRus.com).

Listing 9.11 BannedAccessFilter.java

package moreservlets.filters;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

import java.net.*;

/** Filter that refuses access to anyone connecting directly

 * from or following a link from a banned site.

 */

public class BannedAccessFilter implements Filter {

 private HashSet bannedSiteTable;

 /** Deny access if the request comes from a banned site

 * or is referred here by a banned site.

 */

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws ServletException, IOException {

 HttpServletRequest req = (HttpServletRequest)request;

 String requestingHost = req.getRemoteHost();

 String referringHost =

 getReferringHost(req.getHeader("Referer"));

 String bannedSite = null;

 boolean isBanned = false;

 if (bannedSiteTable.contains(requestingHost)) {

 bannedSite = requestingHost;

 isBanned = true;

 } else if (bannedSiteTable.contains(referringHost)) {

 bannedSite = referringHost;

 isBanned = true;

 }

 if (isBanned) {

 showWarning(response, bannedSite);

 } else {

 chain.doFilter(request,response);

 }

 }

 /** Create a table of banned sites based on initialization

 * parameters. Remember that version 2.3 of the servlet

 * API mandates the use of the Java 2 Platform. Thus,

 * it is safe to use HashSet (which determines whether

 * a given key exists) rather than the clumsier

 * Hashtable (which has a value for each key).

 */

 public void init(FilterConfig config)

 throws ServletException {

 bannedSiteTable = new HashSet();

 String bannedSites =

 config.getInitParameter("bannedSites");

 // Default token set: white space.

 StringTokenizer tok = new StringTokenizer(bannedSites);

 while(tok.hasMoreTokens()) {

 String bannedSite = tok.nextToken();

 bannedSiteTable.add(bannedSite);

 System.out.println("Banned " + bannedSite);

 }

 }

 public void destroy() {}

 private String getReferringHost(String refererringURLString) {

 try {

 URL referringURL = new URL(refererringURLString);

 return(referringURL.getHost());

 } catch(MalformedURLException mue) { // Malformed or null

 return(null);

 }

 }

 // Replacement response that is returned to users

 // who are from or referred here by a banned site.

 private void showWarning(ServletResponse response,

 String bannedSite)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 out.println

 (docType +

 "<HTML>\n" +

 "<HEAD><TITLE>Access Prohibited</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"WHITE\">\n" +

 "<H1>Access Prohibited</H1>\n" +

 "Sorry, access from or via " + bannedSite + "\n" +

 "is not allowed.\n" +

 "</BODY></HTML>");

 }

}

Listing 9.12 web.xml (Excerpt for prohibited-site filter)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Register the name "BannedAccessFilter" for

 moreservlets.filter.BannedAccessFilter.

 Supply an initialization parameter:

 bannedSites.

 -->

 <filter>

 <filter-name>BannedAccessFilter</filter-name>

 <filter-class>

 moreservlets.filters.BannedAccessFilter

 </filter-class>

 <init-param>

 <param-name>bannedSites</param-name>

 <param-value>

 www.competingsite.com

 www.bettersite.com

 www.moreservlets.com

 </param-value>

 </init-param>

 </filter>

 <!-- ... -->

 <!-- Apply BannedAccessFilter to the servlet named

 "TodaysSpecial".

 -->

 <filter-mapping>

 <filter-name>BannedAccessFilter</filter-name>

 <servlet-name>TodaysSpecial</servlet-name>

 </filter-mapping>

 <!-- ... -->

 <!-- Give a name to the Today's Special servlet so that filters

 can be applied to it.

 -->

 <servlet>

 <servlet-name>TodaysSpecial</servlet-name>

 <servlet-class>

 moreservlets.TodaysSpecialServlet

 </servlet-class>

 </servlet>

 <!-- ... -->

 <!-- Make /TodaysSpecial invoke the servlet

 named TodaysSpecial (i.e., moreservlets.TodaysSpecial).

 -->

 <servlet-mapping>

 <servlet-name>TodaysSpecial</servlet-name>

 <url-pattern>/TodaysSpecial</url-pattern>

 </servlet-mapping>

 <!-- Turn off invoker. Send requests to index.jsp. -->

 <servlet-mapping>

 <servlet-name>Redirector</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- ... -->

</web-app>

Listing 9.13 linker.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Link to Filter Company</TITLE>

</HEAD>

<BODY>

<H2 ALIGN="CENTER">Link to Filter Company</H2>

Click here

to see the daily special at filtersRus.com.

</BODY>

</HTML>

9.9 Modifying the Response

OK, so filters can block access to resources or invoke them normally. But what if filters want to

change the response that a resource generates? There don’t appear to be any methods that

provide access to the response that a resource generates. The second argument to doFilter (the

ServletResponse) gives the filter a way to send new output to a client, but it doesn’t give the

filter access to the output of the servlet or JSP page. How could it? When the doFilter method is

first invoked, the servlet or JSP page hasn’t even executed yet. Once you call the doFilter

method of the FilterChain object, it appears to be too late to modify the response—data has

already been sent to the client. Hmm, a quandary.

The solution is to change the response object that is passed to the doFilter method of the

FilterChain object. You typically create a version that buffers up all the output that the servlet

or JSP page generates. The servlet 2.3 API provides a useful resource for this purpose: the

HttpServletResponseWrapper class. Use of this class involves five steps:

1. Create a response wrapper. Extend

javax.servlet.http.HttpServletResponseWrapper.

2. Provide a PrintWriter that buffers output. Override the getWriter method to return

a PrintWriter that saves everything sent to it and stores that result in a field that can be

accessed later.

3. Pass that wrapper to doFilter. This call is legal because

HttpServletResponseWrapper implements HttpServletResponse.

4. Extract and modify the output. After the call to the doFilter method of the

FilterChain, the output of the original resource is available to you through whatever

mechanism you provided in Step 2. You can modify or replace it as appropriate for your

application.

5. Send the modified output to the client. Since the original resource no longer sends

output to the client (the output is stored in your response wrapper instead), you have to

send the output. So, your filter needs to obtain the PrintWriter or OutputStream from

the original response object and pass the modified output to that stream.

A Reusable Response Wrapper

Listing 9.14 presents a wrapper that can be used in most applications where you want filters to

modify a resource’s output. The CharArrayWrapper class overrides the getWriter method to

return a PrintWriter that accumulates everything in a big char array. This result is available to

the developer through the toCharArray (the raw char[]) or toString (a String derived from

the char[]) method.

Sections 9.10 and 9.11 give two examples of use of this class.

Listing 9.14 CharArrayWrapper.java

package moreservlets.filters;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** A response wrapper that takes everything the client

 * would normally output and saves it in one big

 * character array.

 */

public class CharArrayWrapper

 extends HttpServletResponseWrapper {

 private CharArrayWriter charWriter;

 /** Initializes wrapper.

 * <P>

 * First, this constructor calls the parent

 * constructor. That call is crucial so that the response

 * is stored and thus setHeader, setStatus, addCookie,

 * and so forth work normally.

 * <P>

 * Second, this constructor creates a CharArrayWriter

 * that will be used to accumulate the response.

 */

 public CharArrayWrapper(HttpServletResponse response) {

 super(response);

 charWriter = new CharArrayWriter();

 }

 /** When servlets or JSP pages ask for the Writer,

 * don't give them the real one. Instead, give them

 * a version that writes into the character array.

 * The filter needs to send the contents of the

 * array to the client (perhaps after modifying it).

 */

 public PrintWriter getWriter() {

 return(new PrintWriter(charWriter));

 }

 /** Get a String representation of the entire buffer.

 * <P>

 * Be sure not to call this method multiple times

 * on the same wrapper. The API for CharArrayWriter

 * does not guarantee that it "remembers" the previous

 * value, so the call is likely to make a new String

 * every time.

 */

 public String toString() {

 return(charWriter.toString());

 }

 /** Get the underlying character array. */

 public char[] toCharArray() {

 return(charWriter.toCharArray());

 }

}

9.10 Example: A Replacement Filter

This section presents one common application of the CharArrayWrapper shown in the previous

section: a filter that changes all occurrences of a target string to some replacement string.

A Generic Replacement Filter

Listing 9.15 presents a filter that wraps the response in a CharArrayWrapper, passes that

wrapper to the doFilter method of the FilterChain object, extracts a String that represents

all of the resource’s output, replaces all occurrences of a target string with a replacement string,

and sends that modified result to the client.

There are two things to note about this filter. First, it is an abstract class. To use it, you must

create a subclass that provides implementations of the getTargetString and

getReplacementString methods. The next subsection has an example of this process. Second, it

uses a small utility class (Listing 9.16) to do the actual string substitution. If you are fortunate

enough to be using JDK 1.4, you can use the new regular expression package instead of the

low-level and cumbersome methods in the String and StringTokenizer classes. For details, see

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html and

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html. Just remember that use of

this package limits portability; the servlet 2.3 specification mandates the Java 2 Platform but

does not specify any particular JDK version within that general umbrella.

Listing 9.15 ReplaceFilter.java

package moreservlets.filters;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Filter that replaces all occurrences of a given

 * string with a replacement. This is an abstract class:

 * you <I>must</I> override the getTargetString and

 * getReplacementString methods in a subclass. The

 * first of these methods specifies the string in

 * the response that should be replaced. The second

 * of these specifies the string that should replace

 * each occurrence of the target string.

 */

public abstract class ReplaceFilter implements Filter {

 private FilterConfig config;

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws ServletException, IOException {

 CharArrayWrapper responseWrapper =

 new CharArrayWrapper((HttpServletResponse)response);

 // Invoke resource, accumulating output in the wrapper.

 chain.doFilter(request,responseWrapper);

 // Turn entire output into one big String.

 String responseString = responseWrapper.toString();

 // In output, replace all occurrences of target string

 // with replacement string.

 responseString =

 FilterUtils.replace(responseString,

 getTargetString(),

 getReplacementString());

 // Update the Content-Length header.

 updateHeaders(response, responseString);

 PrintWriter out = response.getWriter();

 out.write(responseString);

 }

 /** Store the FilterConfig object in case subclasses

 * want it.

 */

 public void init(FilterConfig config)

 throws ServletException {

 this.config = config;

 }

 protected FilterConfig getFilterConfig() {

 return(config);

 }

 public void destroy() {}

 /** The string that needs replacement.

 * Override this method in your subclass.

 */

 public abstract String getTargetString();

 /** The string that replaces the target.

 * Override this method in your subclass.

 */

 public abstract String getReplacementString();

 /** Updates the response headers. This simple version just sets

 * the Content-Length header, assuming that we are using a

 * character set that uses 1 byte per character. For other

 * character sets, override this method to use different logic

 * or to give up on persistent HTTP connections. In this latter

 * case, have this method set the Connection header to "close".

 */

 public void updateHeaders(ServletResponse response,

 String responseString) {

 response.setContentLength(responseString.length());

 }

}

Listing 9.16 FilterUtils.java

package moreservlets.filters;

/** Small utility to assist with response wrappers that

 * return strings.

 */

public class FilterUtils {

 /** Change all occurrences of orig in mainString to

 * replacement.

 */

 public static String replace(String mainString,

 String orig,

 String replacement) {

 String result = "";

 int oldIndex = 0;

 int index = 0;

 int origLength = orig.length();

 while((index = mainString.indexOf(orig, oldIndex))

 != -1) {

 result = result +

 mainString.substring(oldIndex, index) +

 replacement;

 oldIndex = index + origLength;

 }

 result = result + mainString.substring(oldIndex);

 return(result);

 }

}

A Specific Replacement Filter

Oh no! A competitor bought out filtersRus.com. All the Web pages that refer to the company

name are now obsolete. But, the developers hate to change all their Web pages since another

takeover could occur anytime (this company is a hot commodity, after all). No problem— Listing

9.17 presents a filter that replaces all occurrences of filtersRus.com with weBefilters.com. Figure

9-7 shows a page (Listing 9.19) that promotes the filtersRus.com site name. Figure 9-8 shows the

page after the filter is applied.

Figure 9-7. A page that promotes the filtersRus.com site.

Figure 9-8. The page that promotes the filtersRus.com site

after its output is modified by the ReplaceSiteNameFilter.

To implement this functionality, the filter has the following capabilities.

1. A class that implements the Filter interface. This class is called

ReplaceSiteNameFilter and is shown in Listing 9.17. It extends the generic

ReplaceFilter of Listing 9.15. The inherited init method stores the FilterConfig

object in a field in case subclasses need access to the servlet context or filter name. The

parent class also provides an empty body for the destroy method.

2. A wrapped response object. The doFilter method, inherited from ReplaceFilter,

wraps the ServletResponse object in a CharArrayWrapper and passes that wrapper to

the doFilter method of the FilterChain object. After this call completes, all other filters

and the final resource have executed and the output is inside the wrapper. So, the original

doFilter extracts a String that represents all of the resource’s output and replaces all

occurrences of the target string with the replacement string. Finally, doFilter sends that

modified result to the client by supplying the entire String to the write method of the

PrintWriter that is associated with the original response.

3. Registration with the JSP page that promotes filtersRus.com. First, the filter

element of web.xml (Listing 9.18) associates the name ReplaceSiteNameFilter with the

class moreservlets.filters.ReplaceSiteNameFilter. Next, the filter-mapping

element uses a url-pattern of /plugSite/page2.jsp (see Listing 9.19) so that the filter

fires each time that JSP page is requested.

4. Disablement of the invoker servlet. This operation is shown in Section 9.2 and is not

repeated here.

Listing 9.17 ReplaceSiteNameFilter.java

package moreservlets.filters;

public class ReplaceSiteNameFilter extends ReplaceFilter {

 public String getTargetString() {

 return("filtersRus.com");

 }

 public String getReplacementString() {

 return("weBefilters.com");

 }

}

Listing 9.18 web.xml (Excerpt for site name replacement

filter)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Register the name "ReplaceSiteNameFilter" for

 moreservlets.filters.ReplaceSiteNameFilter.

 -->

 <filter>

 <filter-name>ReplaceSiteNameFilter</filter-name>

 <filter-class>

 moreservlets.filters.ReplaceSiteNameFilter

 </filter-class>

 </filter>

 <!-- ... -->

 <!-- Apply ReplaceSiteNameFilter to page2.jsp page

 in the plugSite directory

 -->

 <filter-mapping>

 <filter-name>ReplaceSiteNameFilter</filter-name>

 <url-pattern>/plugSite/page2.jsp</url-pattern>

 </filter-mapping>

 <!-- ... -->

</web-app>

Listing 9.19 page1.jsp (Identical to page2.jsp)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>filtersRus.com</TITLE>

<LINK REL=STYLESHEET

 HREF="../filter-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<CENTER>

<TABLE BORDER=5>

 <TR><TH CLASS="TITLE">filtersRus.com</TABLE>

<P>

<TABLE>

 <TR>

 <TH><IMG SRC="../images/air-filter.jpg"

 ALT="Air Filter">

 <TH><IMG SRC="../images/coffee-filter.gif"

 ALT="Coffee Filter">

 <TH><IMG SRC="../images/pump-filter.jpg"

 ALT="Pump Filter">

</TABLE>

<H3>filtersRus.com specializes in the following:</H3>

 Air filters

 Coffee filters

 Pump filters

 Camera lens filters

 Image filters for Adobe Photoshop

 Web content filters

 Kalman filters

 Servlet and JSP filters

Check out Today's Special.

</CENTER>

</BODY>

</HTML>

9.11 Example: A Compression Filter

Several recent browsers can handle gzipped content, automatically uncompressing documents

that have gzip as the value of the Content-Encoding response header and then treating the

result as though it were the original document. Sending such compressed content can be a real

time saver because the time required to compress the document on the server and then

uncompress it on the client is typically dwarfed by the savings in download time, especially when

dialup connections are used. For example, Listing 9.21 shows a servlet that has very long,

repetitive, plain text output: a ripe candidate for compression. If gzip could be applied, it could

compress the output by a factor of over 300!

However, although most browsers support this type of encoding, a fair number do not. Sending

compressed content to browsers that don’t support gzip encoding results in a totally garbled

result. Browsers that support content encoding include most versions of Netscape for Unix, most

versions of Internet Explorer for Windows, and Netscape 4.7 and later for Windows. So, this

compression cannot be done blindly—it is only valid for clients that use the Accept-Encoding

request header to specify that they support gzip.

A compression filter can use the CharArrayWrapper of Section 9.9 to compress content when the

browser supports such a capability. Accomplishing this task requires the following:

1. A class that implements the Filter interface. This class is called

CompressionFilter and is shown in Listing 9.20. The init method stores the

FilterConfig object in a field in case subclasses need access to the servlet context or

filter name. The body of the destroy method is left empty.

2. A wrapped response object. The doFilter method wraps the ServletResponse

object in a CharArrayWrapper and passes that wrapper to the doFilter method of the

FilterChain object. After this call completes, all other filters and the final resource have

executed and the output is inside the wrapper. So, the original doFilter extracts a

character array that represents all of the resource’s output. If the client indicates that it

supports compression (i.e., has gzip as one of the values of its Accept-Encoding header),

the filter attaches a GZIPOutputStream to a ByteArrayOutputStream, copies the

character array into that stream, and sets the Content-Encoding response header to

gzip. If the client does not support gzip, the unmodified character array is copied to the

ByteArrayOutputStream. Finally, doFilter sends that result to the client by writing the

entire byte array (possibly compressed) to the OutputStream that is associated with the

original response.

3. Registration with long servlet. First, the filter element of web.xml (Listing 9.22)

associates the name CompressionFilter with the class

moreservlets.filters.CompressionFilter. Next, the filter-mapping element uses a

servlet-name of LongServlet so that the filter fires each time that long servlet (Listing

9.21) is requested. The servlet and servlet-mapping elements assign the name

LongServlet to the servlet and specify the URL that corresponds to the servlet.

4. Disablement of the invoker servlet. This operation is shown in Section 9.2 and is not

repeated here.

When the filter is attached, the body of the servlet is reduced three hundred times and the time

to access the servlet on a 28.8K modem is reduced by more than a factor of ten (more than 50

seconds uncompressed; less than 5 seconds compressed). A huge savings! However, two small

warnings are in order here.

First, there is a saying in the software industry that there are three kinds of lies: lies, darn lies,

and benchmarks. The point of this maxim is that people always rig benchmarks to show their

point in the most favorable light possible. I did the same thing by using a servlet with long simple

output and using a slow modem connection. So, I’m not promising that you will always get a

tenfold performance gain. But, it is a simple matter to attach or detach the compression filter.

That’s the beauty of filters. Try it yourself and see how much it buys you in typical usage

conditions.

Second, although the specification does not officially mandate that you set response headers

before calling the doFilter method of the FilterChain, some servers (e.g., ServletExec 4.1)

require you to do so. This is to prevent you from attempting to set a response header after a

resource has sent content to the client. So, for portability, be sure to set response headers before

calling chain.doFilter.

Core Warning

If your filter sets response headers, be sure it does so

before calling the doFilter method of the FilterChain object.

Figure 9-9. The LongServlet. The content is more than three

hundred times smaller when gzip is used, resulting in more

than a tenfold speedup when the servlet is accessed with a

28.8K modem.

Listing 9.20 CompressionFilter.java

package moreservlets.filters;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.zip.*;

/** Filter that compresses output with gzip

 * (assuming that browser supports gzip).

 */

public class CompressionFilter implements Filter {

 private FilterConfig config;

 /** If browser does not support gzip, invoke resource

 * normally. If browser <I>does</I> support gzip,

 * set the Content-Encoding response header and

 * invoke resource with a wrapped response that

 * collects all the output. Extract the output

 * and write it into a gzipped byte array. Finally,

 * write that array to the client's output stream.

 */

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws ServletException, IOException {

 HttpServletRequest req = (HttpServletRequest)request;

 HttpServletResponse res = (HttpServletResponse)response;

 if (!isGzipSupported(req)) {

 // Invoke resource normally.

 chain.doFilter(req,res);

 } else {

 // Tell browser we are sending it gzipped data.

 res.setHeader("Content-Encoding", "gzip");

 // Invoke resource, accumulating output in the wrapper.

 CharArrayWrapper responseWrapper =

 new CharArrayWrapper(res);

 chain.doFilter(req,responseWrapper);

 // Get character array representing output.

 char[] responseChars = responseWrapper.toCharArray();

 // Make a writer that compresses data and puts

 // it into a byte array.

 ByteArrayOutputStream byteStream =

 new ByteArrayOutputStream();

 GZIPOutputStream zipOut =

 new GZIPOutputStream(byteStream);

 OutputStreamWriter tempOut =

 new OutputStreamWriter(zipOut);

 // Compress original output and put it into byte array.

 tempOut.write(responseChars);

 // Gzip streams must be explicitly closed.

 tempOut.close();

 // Update the Content-Length header.

 res.setContentLength(byteStream.size());

 // Send compressed result to client.

 OutputStream realOut = res.getOutputStream();

 byteStream.writeTo(realOut);

 }

 }

 /** Store the FilterConfig object in case subclasses

 * want it.

 */

 public void init(FilterConfig config)

 throws ServletException {

 this.config = config;

 }

 protected FilterConfig getFilterConfig() {

 return(config);

 }

 public void destroy() {}

 private boolean isGzipSupported(HttpServletRequest req) {

 String browserEncodings =

 req.getHeader("Accept-Encoding");

 return((browserEncodings != null) &&

 (browserEncodings.indexOf("gzip") != -1));

 }

}

Listing 9.21 LongServlet.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Servlet with long output. Used to test

 * the effect of the compression filter of Chapter 9.

 */

public class LongServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 String title = "Long Page";

 out.println

 (docType +

 "<HTML>\n" +

 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n");

 String line = "Blah, blah, blah, blah, blah. " +

 "Yadda, yadda, yadda, yadda.";

 for(int i=0; i<10000; i++) {

 out.println(line);

 }

 out.println("</BODY></HTML>");

 }

}

Listing 9.22 web.xml (Excerpt for compression filter)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Register the name "CompressionFilter" for

 moreservlets.filters.CompressionFilter.

 -->

 <filter>

 <filter-name>CompressionFilter</filter-name>

 <filter-class>

 moreservlets.filters.CompressionFilter

 </filter-class>

 </filter>

 <!-- ... -->

 <!-- Apply CompressionFilter to the servlet named

 "LongServlet".

 -->

 <filter-mapping>

 <filter-name>CompressionFilter</filter-name>

 <servlet-name>LongServlet</servlet-name>

 </filter-mapping>

 <!-- ... -->

 <!-- Give a name to the servlet that generates long

 (but very exciting!) output.

 -->

 <servlet>

 <servlet-name>LongServlet</servlet-name>

 <servlet-class>moreservlets.LongServlet</servlet-class>

 </servlet>

 <!-- ... -->

 <!-- Make /LongServlet invoke the servlet

 named LongServlet (i.e., moreservlets.LongServlet).

 -->

 <servlet-mapping>

 <servlet-name>LongServlet</servlet-name>

 <url-pattern>/LongServlet</url-pattern>

 </servlet-mapping>

 <!-- Turn off invoker. Send requests to index.jsp. -->

 <servlet-mapping>

 <servlet-name>Redirector</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- ... -->

</web-app>

9.12 The Complete Filter Deployment Descriptor

The previous sections showed various excerpts of the web.xml file for filtersRus.com. This section

shows the file in its entirety.

Listing 9.23 web.xml (Complete version for filter examples)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- Order matters in web.xml! For the elements

 used in this example, this order is required:

 filter

 filter-mapping

 servlet

 servlet-mapping

 welcome-file-list

 -->

 <!-- Register the name "Reporter" for ReportFilter. -->

 <filter>

 <filter-name>Reporter</filter-name>

 <filter-class>

 moreservlets.filters.ReportFilter

 </filter-class>

 </filter>

 <!-- Register the name "Logger" for LogFilter. -->

 <filter>

 <filter-name>Logger</filter-name>

 <filter-class>

 moreservlets.filters.LogFilter

 </filter-class>

 </filter>

 <!-- Register the name "LateAccessFilter" for

 moreservlets.filter.LateAccessFilter.

 Supply two initialization parameters:

 startTime and endTime.

 -->

 <filter>

 <filter-name>LateAccessFilter</filter-name>

 <filter-class>

 moreservlets.filters.LateAccessFilter

 </filter-class>

 <init-param>

 <param-name>startTime</param-name>

 <param-value>2</param-value>

 </init-param>

 <init-param>

 <param-name>endTime</param-name>

 <param-value>10</param-value>

 </init-param>

 </filter>

 <!-- Register the name "BannedAccessFilter" for

 moreservlets.filter.BannedAccessFilter.

 Supply an initialization parameter:

 bannedSites.

 -->

 <filter>

 <filter-name>BannedAccessFilter</filter-name>

 <filter-class>

 moreservlets.filters.BannedAccessFilter

 </filter-class>

 <init-param>

 <param-name>bannedSites</param-name>

 <param-value>

 www.competingsite.com

 www.bettersite.com

 www.moreservlets.com

 </param-value>

 </init-param>

 </filter>

 <!-- Register the name "ReplaceSiteNameFilter" for

 moreservlets.filters.ReplaceSiteNameFilter.

 -->

 <filter>

 <filter-name>ReplaceSiteNameFilter</filter-name>

 <filter-class>

 moreservlets.filters.ReplaceSiteNameFilter

 </filter-class>

 </filter>

 <!-- Register the name "CompressionFilter" for

 moreservlets.filters.CompressionFilter.

 -->

 <filter>

 <filter-name>CompressionFilter</filter-name>

 <filter-class>

 moreservlets.filters.CompressionFilter

 </filter-class>

 </filter>

 <!-- Apply the Reporter filter to the servlet named

 "TodaysSpecial".

 -->

 <filter-mapping>

 <filter-name>Reporter</filter-name>

 <servlet-name>TodaysSpecial</servlet-name>

 </filter-mapping>

 <!-- Also apply the Reporter filter to home page. -->

 <filter-mapping>

 <filter-name>Reporter</filter-name>

 <url-pattern>/index.jsp</url-pattern>

 </filter-mapping>

 <!-- Apply the Logger filter to all servlets and

 JSP pages.

 -->

 <filter-mapping>

 <filter-name>Logger</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

 <!-- Apply LateAccessFilter to the home page. -->

 <filter-mapping>

 <filter-name>LateAccessFilter</filter-name>

 <url-pattern>/index.jsp</url-pattern>

 </filter-mapping>

 <!-- Apply BannedAccessFilter to the servlet named

 "TodaysSpecial".

 -->

 <filter-mapping>

 <filter-name>BannedAccessFilter</filter-name>

 <servlet-name>TodaysSpecial</servlet-name>

 </filter-mapping>

 <!-- Apply ReplaceSiteNameFilter to page2.jsp page

 in the plugSite directory

 -->

 <filter-mapping>

 <filter-name>ReplaceSiteNameFilter</filter-name>

 <url-pattern>/plugSite/page2.jsp</url-pattern>

 </filter-mapping>

 <!-- Apply CompressionFilter to the servlet named

 "LongServlet".

 -->

 <filter-mapping>

 <filter-name>CompressionFilter</filter-name>

 <servlet-name>LongServlet</servlet-name>

 </filter-mapping>

 <!-- Give a name to the Today's Special servlet so that filters

 can be applied to it.

 -->

 <servlet>

 <servlet-name>TodaysSpecial</servlet-name>

 <servlet-class>

 moreservlets.TodaysSpecialServlet

 </servlet-class>

 </servlet>

 <!-- Give a name to the servlet that redirects users

 to the home page.

 -->

 <servlet>

 <servlet-name>Redirector</servlet-name>

 <servlet-class>moreservlets.RedirectorServlet</servlet-class>

 </servlet>

 <!-- Give a name to the servlet that generates long

 (but very exciting!) output.

 -->

 <servlet>

 <servlet-name>LongServlet</servlet-name>

 <servlet-class>moreservlets.LongServlet</servlet-class>

 </servlet>

 <!-- Make /TodaysSpecial invoke the servlet

 named TodaysSpecial (i.e., moreservlets.TodaysSpecial).

 -->

 <servlet-mapping>

 <servlet-name>TodaysSpecial</servlet-name>

 <url-pattern>/TodaysSpecial</url-pattern>

 </servlet-mapping>

 <!-- Make /LongServlet invoke the servlet

 named LongServlet (i.e., moreservlets.LongServlet).

 -->

 <servlet-mapping>

 <servlet-name>LongServlet</servlet-name>

 <url-pattern>/LongServlet</url-pattern>

 </servlet-mapping>

 <!-- Turn off invoker. Send requests to index.jsp. -->

 <servlet-mapping>

 <servlet-name>Redirector</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- If URL gives a directory but no filename, try index.jsp

 first and index.html second. If neither is found,

 the result is server specific (e.g., a directory

 listing). Order of elements in web.xml matters.

 welcome-file-list needs to come after servlet but

 before error-page.

 -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

</web-app>

Chapter 10. The Application Events Framework

Topics in This Chapter

• Understanding the general event-handling strategy

• Monitoring servlet context initialization and shutdown

• Setting application-wide values

• Detecting changes in attributes of the servlet context

• Recognizing creation and destruction of HTTP sessions

• Analyzing overall session usage

• Watching for changes in session attributes

• Tracking purchases at an e-commerce site

• Using multiple cooperating listeners

• Packaging listeners in JSP tag libraries

Developers have many tools at their disposal for handling the life cycle of individual servlets or

JSP pages. The servlet init method (Section 2.3) fires when a servlet is first instantiated. JSP

pages use the nearly identical jspInit method (Section 3.3). Both methods can use initialization

parameters that are specified with the initparam subelement of the web.xml servlet element

(Section 5.5). Requests are handled with service and _jspService, and destruction is handled

with destroy and jspDestroy.

This is all fine for individual resources. But what if you want to respond to major events in the life

cycle of the Web application itself? What if you want to create appli-cation-wide connection pools,

locate resources, or set up shared network connections? For example, suppose you want to

record the email address of the support group at your company, an address that will be used by

many different servlets and JSP pages. Sure, you can use the following to store the information:

context.setAttribute("supportAddress", "balmer@microsoft.com");

Better yet, you could use the web.xml context-param element (Section 5.5) to designate the

address, then read it with the getInitParameter method of ServletContext. Fine. But which

servlet or JSP page should perform this task? Or you could read the address from a database. Fine.

But which servlet or JSP page should establish the database connection? There is no good answer

to this question; you don’t know which resources will be accessed first, so the code that performs

these tasks would have to be repeated many different places. You want more global control than

any one servlet or JSP page can provide. That’s where application life-cycle event listeners come

in.

There are four kinds of event listeners that respond to Web application life-cycle events.

• Servlet context listeners. These listeners are notified when the servlet context (i.e.,

the Web application) is initialized and destroyed.

• Servlet context attribute listeners. These listeners are notified when attributes are

added to, removed from, or replaced in the servlet context.

• Session listeners. These listeners are notified when session objects are created,

invalidated, or timed out.

• Session attribute listeners. These listeners are notified when attributes are added to,

removed from, or replaced in any session.

Using these listeners involves six basic steps. I’ll give a general outline here, then provide

listener-specific details in the following sections.

1. Implement the appropriate interface. Use ServletContextListener,

ServletContextAttributeListener, HttpSessionListener, or

HttpSessionAttributeListener. The first two interfaces are in the javax.servlet

package; the second two are in javax.servlet.http.

2. Override the methods needed to respond to the events of interest. Provide empty

bodies for the other methods in the interface. For example, the ServletContextListener

interface defines two methods: contextInitialized (the Web application was just

loaded and the servlet context was initialized) and contextDestroyed (the Web

application is being shut down and the servlet context is about to be destroyed). If you

wanted to define an application-wide servlet context entry, you could provide a real

implementation for contextInitialized and an empty body for contextDestroyed.

3. Obtain access to the important Web application objects. There are six important

objects that you are likely to use in your event-handling methods: the servlet context, the

name of the servlet context attribute that changed, the value of the servlet context

attribute that changed, the session object, the name of the session attribute that changed,

and the value of the session attribute that changed.

4. Use these objects. This process is application specific, but there are some common

themes. For example, with the servlet context, you are most likely to read initialization

parameters (getInitParameter), store data for later access (setAttribute), and read

previously stored data (getAttribute).

5. Declare the listener. You do this with the listener and listener-class elements of

the general Web application deployment descriptor (web.xml) or of a tag library descriptor

file.

6. Provide any needed initialization parameters. Servlet context listeners commonly

read context initialization parameters to use as the basis of data that is made available to

all servlets and JSP pages. You use the context-param web.xml element to provide the

names and values of these initialization parameters.

If servlet and JSP filters are the most important new feature in version 2.3 of the servlet

specification, then application life-cycle events are the second most important new capability.

Remember, however, that these event listeners work only in servers that are compliant with

version 2.3 of the servlet specification. If your Web application needs to support older servers,

you cannot use life-cycle listeners.

Core Warning

Application life-cycle listeners fail in servers that are

compliant only with version 2.2 or earlier versions of the servlet
specification.

10.1 Monitoring Creation and Destruction of the

Servlet Context

The ServletContextListener class responds to the initialization and destruction of the servlet

context. These events correspond to the creation and shutdown of the Web application itself. The

ServletContextListener is most commonly used to set up application-wide resources like

database connection pools and to read the initial values of application-wide data that will be used

by multiple servlets and JSP pages. Using the listener involves the following six steps.

1. Implement the ServletContextListener interface. This interface is in the

javax.servlet package.

2. Override contextInitialized and contextDestroyed. The first of these

(contextInitialized) is triggered when the Web application is first loaded and the

servlet context is created. The two most common tasks performed by this method are

creating application-wide data (often by reading context initialization parameters) and

storing that data in an easily accessible location (often in attributes of the servlet context).

The second method (contextDestroyed) is triggered when the Web application is being

shut down and the servlet context is about to be destroyed. The most common task

performed by this method is the releasing of resources. For example, contextDestroyed

can be used to close database connections associated with a now-obsolete connection

pool. However, since the servlet context will be destroyed (and garbage collected if the

server itself continues to execute), there is no need to use contextDestroyed to remove

normal objects from servlet context attributes.

3. Obtain a reference to the servlet context. The contextInitialized and

contextDestroyed methods each take a ServletContextEvent as an argument. The

ServletContextEvent class has a getServletContext method that returns the servlet

context.

4. Use the servlet context. You read initialization parameters with getInitParameter,

store data with setAttribute, and make log file entries with log.

5. Declare the listener. Use the listener and listener-class elements to simply list

the fully qualified name of the listener class, as below.
6.

7. <listener>

8. <listener-class>somePackage.SomeListener</listener-class>

</listener>

For now, assume that this declaration goes in the web.xml file (immediately before the

servlet element). However, in Section 10.5 you’ll see that if you package listeners with

tag libraries, you can use the identical declaration within the TLD (tag library descriptor)

file of the tag library.

6. Provide any needed initialization parameters. Once you have a reference to the

servlet context (see Step 3), you can use the getInitParameter method to read context

initialization parameters as the basis of data that will be made available to all servlets and

JSP pages. You use the context-param web.xml element to provide the names and values

of these initialization parameters, as follows.
7.

8. <context-param>

9. <param-name>name</param-name>

10. <param-value>value</param-value>

</context-param>

10.2 Example: Initializing Commonly Used Data

Suppose that you are developing a Web site for a dot-com company that is a hot commodity. So

hot, in fact, that it is constantly being bought out by larger companies. As a result, the company

name keeps changing. Rather than changing zillions of separate servlets and JSP pages each time

you change the company name, you could read the company name when the Web application is

loaded, store the value in the servlet context, and design all your servlets and JSP pages to read

the name from this location. To prevent confusion among customers, the site can also

prominently display the former company name, initializing and using it in a manner similar to the

current company name.

The following steps summarize a listener that accomplishes this task.

1. Implement the ServletContextListener interface. Listing 10.1 shows a class

(InitialCompanyNameListener) that implements this interface.

2. Override contextInitialized and contextDestroyed. The

InitialCompanyNameListener class uses contextInitialized to read the current and

former company names and store them in the servlet context. Since the

contextDestroyed method is not needed, an empty body is supplied.

3. Obtain a reference to the servlet context. The contextInitialized method calls

getServletContext on the ServletContextEvent argument and stores the result in the

context local variable.

4. Use the servlet context. The listener needs to read the companyName and

formerCompanyName initialization parameters and store them in a globally accessible

location. So, it calls getInitParameter on the context variable, checks for missing values,

and uses setAttribute to store the result in the servlet context.

5. Declare the listener. The listener is declared in the deployment descriptor with the

listener and listener-class elements, as below.
6.

7. <listener>

8. <listener-class>

9. moreservlets.listeners.InitialCompanyNameListener

10. </listener-class>

</listener>

The web.xml file is shown in Listing 10.2.

6. Provide any needed initialization parameters. The companyName and

formerCompanyName init parameters are defined in web.xml (Listing 10.2) as follows.
7.

8. <context-param>

9. <param-name>companyName</param-name>

10. <param-value>not-dot-com.com</param-value>

11. </context-param>

12. <context-param>

13. <param-name>formerCompanyName</param-name>

14. <param-value>hot-dot-com.com</param-value>

</context-param>

Listings 10.3 and 10.4 present two JSP pages that use the predefined application variable (i.e.,

the servlet context) to access the companyName and formerCompanyName attributes. Figures 10-1

and 10-2 show the results. See Section 3.3 for a full list of the predefined JSP variables (request,

response, application, etc.).

Figure 10-1. Home page for the company with the frequently

changing name.

Figure 10-2. Informational page for the company with the

frequently changing name.

Listing 10.1 InitialCompanyNameListener.java

package moreservlets.listeners;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Listener that looks up the name of the company when

 * the Web application is first loaded. Stores this

 * name in the companyName servlet context attribute.

 * Various servlets and JSP pages will extract it

 * from that location.

 * <P>

 * Also looks up and stores the former company name and

 * stores it in the formerCompanyName attribute.

 */

public class InitialCompanyNameListener

 implements ServletContextListener {

 private static final String DEFAULT_NAME =

 "MISSING-COMPANY-NAME";

/** Looks up the companyName and formerCompanyName

 * init parameters and puts them into the servlet context.

 */

 public void contextInitialized(ServletContextEvent event) {

 ServletContext context = event.getServletContext();

 setInitialAttribute(context,

 "companyName",

 DEFAULT_NAME);

 setInitialAttribute(context,

 "formerCompanyName",

 "");

 }

 public void contextDestroyed(ServletContextEvent event) {}

 // Looks for a servlet context init parameter with a given name.

 // If it finds it, it puts the value into a servlet context

 // attribute with the same name. If the init parameter is missing,

 // it puts a default value into the servlet context attribute.

 private void setInitialAttribute(ServletContext context,

 String initParamName,

 String defaultValue) {

 String initialValue =

 context.getInitParameter(initParamName);

 if (initialValue != null) {

 context.setAttribute(initParamName, initialValue);

 } else {

 context.setAttribute(initParamName, defaultValue);

 }

 }

 /** Static method that returns the servlet context

 * attribute named "companyName" if it is available.

 * Returns a default value if the attribute is unavailable.

 */

public static String getCompanyName(ServletContext context) {

 String name =

 (String)context.getAttribute("companyName");

 if (name == null) {

 name = DEFAULT_NAME;

 }

 return(name);

 }

 /** Static method that returns the servlet context

 * attribute named "formerCompanyName" if it is available.

 * Returns an empty string if the attribute is

 * unavailable.

 */

 public static String getFormerCompanyName

 (ServletContext context) {

 String name =

 (String)context.getAttribute("formerCompanyName");

 if (name == null) {

 name = "";

 }

 return(name);

 }

}

Listing 10.2 web.xml (Excerpt for initial company name

listener)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- Since the company name changes so frequently,

 supply it as a servlet context parameter instead

 of embedding it into lots of different servlets and

 JSP pages. The InitialCompanyNameListener will

 read this value and store it in the servlet context. -->

 <context-param>

 <param-name>companyName</param-name>

 <param-value>not-dot-com.com</param-value>

 </context-param>

 <!-- Also store the previous company name. -->

 <context-param>

 <param-name>formerCompanyName</param-name>

 <param-value>hot-dot-com.com</param-value>

 </context-param>

 <!-- ... -->

 <!-- Register the listener that sets up the

 initial company name. -->

 <listener>

 <listener-class>

 moreservlets.listeners.InitialCompanyNameListener

 </listener-class>

 </listener>

 <!-- ... -->

<!-- If URL gives a directory but no filename, try index.jsp

 first and index.html second. If neither is found,

 the result is server specific (e.g., a directory

 listing). Order of elements in web.xml matters.

 welcome-file-list needs to come after servlet but

 before error-page.

 -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

 <!-- ... -->

</web-app>

Listing 10.3 index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<%@ page import="moreservlets.listeners.*" %>

<%

String companyName =

 InitialCompanyNameListener.getCompanyName(application);

String formerCompanyName =

 InitialCompanyNameListener.getFormerCompanyName(application);

String formerCompanyDescription = "";

if (!formerCompanyName.equals("")) {

 formerCompanyDescription =

 "(formerly " + formerCompanyName + ")";

}

%>

<TITLE><%= companyName %></TITLE>

<LINK REL=STYLESHEET

 HREF="events-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 <%= companyName %>

 <%= formerCompanyDescription %>

</TABLE>

<P>

Welcome to the home page of <%= companyName %>

<%= formerCompanyDescription %>

<P>

<%= companyName %> is a high-flying, fast-growing,

big-potential company. A perfect choice for your

retirement portfolio!

<P>

Click here for more information.

</BODY>

</HTML>

Listing 10.4 company-info.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<%@ page import="moreservlets.listeners.*" %>

<%

String companyName =

 InitialCompanyNameListener.getCompanyName(application);

String formerCompanyName =

 InitialCompanyNameListener.getFormerCompanyName(application);

String formerCompanyDescription = "";

if (!formerCompanyName.equals("")) {

 formerCompanyDescription =

 "(formerly " + formerCompanyName + ")";

}

%>

<TITLE><%= companyName %></TITLE>

<LINK REL=STYLESHEET

 HREF="events-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 <%= companyName %>

 <%= formerCompanyDescription %>

</TABLE>

<P>

Learn more about <%= companyName %>

<%= formerCompanyDescription %>

 <%= companyName %> products

 <%= companyName %> services

 <%= companyName %> history

 investing in <%= companyName %>

 contacting <%= companyName %>

</BODY>

</HTML>

10.3 Detecting Changes in Servlet Context Attributes

OK, when the Web application is loaded, you can set up initial values of resources and store

references to them in the servlet context. But what if you want to be notified whenever these

resources change? For example, what if the value of resource B depends on the value of resource

A? If resource A changes, you need to automatically update the value of resource B. Handling this

situation is the job of servlet context attribute listeners. Using them involves the following steps.

1. Implement the ServletContextAttributeListener interface. This interface is in the

javax.servlet package.

2. Override attributeAdded, attributeReplaced, and attributeRemoved. The

attributeAdded method is triggered when a new attribute is added to the servlet context.

When a new value is assigned to an existing servlet context attribute, attributeAdded is

triggered with the new value and attributeReplaced is triggered with the old value (i.e.,

the value being replaced). The attributeRemoved method is triggered when a servlet

context attribute is removed altogether.

3. Obtain references to the attribute name, attribute value, and servlet

context. Each of the three ServletContextAttributeListener methods takes a

ServletContextAttributeEvent as an argument. The ServletContextAttributeEvent

class has three useful methods: getName (the name of the attribute that was changed),

getValue (the value of the changed attribute—the new value for attributeAdded and the

previous value for attributeReplaced and attributeRemoved), and

getServletContext (the servlet context).

4. Use the objects. You normally compare the attribute name to a stored name to see if it

is the one you are monitoring. The attribute value is used in an application-specific

manner. The servlet context is usually used to read previously stored attributes

(getAttribute), store new or changed attributes (setAttribute), and make entries in

the log file (log).

5. Declare the listener. Use the listener and listener-class elements to simply list

the fully qualified name of the listener class, as below.
6.

7. <listener>

8. <listener-class>somePackage.SomeListener</listener-class>

</listener>

For now, assume that this declaration goes in the web.xml file immediately before any

servlet elements. However, in Section 10.5 you’ll see that if you package listeners with

tag libraries, you can use the identical declaration within the TLD (tag library descriptor)

file of the tag library.

The following section gives an example.

10.4 Example: Monitoring Changes to Commonly Used

Data

Section 10.2 shows how to read the current and former company names when the Web

application is loaded and how to make use of those values in JSP pages. But what if you want to

change the company name during the execution of the Web application? It is reasonable to expect

a routine that makes this change to modify the companyName servlet context attribute. After all,

in this context, that’s what it means to change the company name. It is not reasonable, however,

to expect that routine to modify (or even know about) the formerCompanyName attribute. But, if

the company name changes, the former company name must change as well. Enter servlet

context attribute listeners!

The following steps summarize a listener that automatically updates the former company name

whenever the current company name changes.

1. Implement the ServletContextAttributeListener interface. Listing 10.5 shows a

class (ChangedCompanyNameListener) that implements this interface.

2. Override attributeAdded, attributeReplaced, and attributeRemoved. The

attributeReplaced method is used to detect modification to context attributes. Empty

bodies are supplied for the attributeAdded and attributeRemoved methods.

3. Obtain references to the attribute name, attribute value, and servlet

context. The attributeReplaced method calls getName and getValue on its

ServletContextAttributeEvent argument to obtain the name and value of the modified

attribute. The method also calls getServletContext on its argument to get a reference to

the servlet context.

4. Use the objects. The attribute name is compared to "companyName". If the name

matches, the attribute value is used as the new value of the formerCompanyName servlet

context attribute.

5. Declare the listener. The listener is declared in the deployment descriptor with the

listener and listener-class elements, as below.
6.

7. <listener>

8. <listener-class>

9. moreservlets.listeners.ChangedCompanyNameListener

10. </listener-class>

</listener>

The web.xml file is shown in Listing 10.6.

Listing 10.7 presents a JSP page containing a form that displays the current company name, lets

users enter a new name, and submits the new name to the ChangeCompanyName servlet (Listing

10.8). Since changing the company name is a privileged operation, access to the form and the

servlet should be restricted.

So, the form is placed in the admin directory and the servlet and servlet-mapping elements

are used to assign the servlet a URL that also starts with /admin. See Section 5.3 (Assigning

Names and Custom URLs) for details on servlet and servlet-mapping; see the deployment

descriptor in Listing 10.6 for the usage in this example.

Next, the security-constraint element is used to stipulate that only authenticated users in the

ceo role can access the admin directory. Then, the login-config element is used to specify that

form-based authentication be used, with login.jsp (Listing 10.9) collecting usernames and

passwords and login-error.jsp (Listing 10.10) displaying messages to users who failed

authentication. Listing 10.11 shows a Tomcat-specific password file used to designate a user who

is in the ceo role. See Section 7.1 (Form-Based Authentication) for details on these types of

security settings; see the deployment descriptor in Listing 10.6 for the usage in this example.

Figures 10-3 through 10-8 show the results of logging in, changing the company name, and

revisiting the pages that display the current and former company names.

Figure 10-3. Only users who are in the ceo role can access the

form that changes the company name.

Figure 10-4. A failed login attempt.

Figure 10-5. The form to change the company name when the

page is accessed by an authenticated user who is in the ceo

role.

Figure 10-6. The name change confirmation page.

Figure 10-7. When the company name changes, the company

home page (Listing 10.3) is automatically updated.

Figure 10-8. When the company name changes, the company

information page (Listing 10.4) is also updated automatically.

Listing 10.5 ChangedCompanyNameListener.java

package moreservlets.listeners;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Listener that monitors changes in the company

 * name (which is stored in the companyName attribute

 * of the servlet context).

 */

public class ChangedCompanyNameListener

 implements ServletContextAttributeListener {

 /** When the companyName attribute changes, put

 * the previous value into the formerCompanyName

 * attribute.

 */

 public void attributeReplaced

 (ServletContextAttributeEvent event) {

 if (event.getName().equals("companyName")) {

 String oldName = (String)event.getValue();

 ServletContext context = event.getServletContext();

 context.setAttribute("formerCompanyName", oldName);

 }

 }

 public void attributeAdded

 (ServletContextAttributeEvent event) {}

 public void attributeRemoved

 (ServletContextAttributeEvent event) {}

}

Listing 10.6 web.xml (Excerpt for changed company name

listener)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Register the listener that monitors changes to

 the company name.

 -->

 <listener>

 <listener-class>

 moreservlets.listeners.ChangedCompanyNameListener

 </listener-class>

 </listener>

 <!-- ... -->

 <!-- Assign the name ChangeCompanyName to

 moreservlets.ChangeCompanyName. -->

 <servlet>

 <servlet-name>ChangeCompanyName</servlet-name>

 <servlet-class>moreservlets.ChangeCompanyName</servlet-class>

 </servlet>

 <!-- Give a name to the servlet that redirects users

 to the home page.

 -->

 <servlet>

 <servlet-name>Redirector</servlet-name>

 <servlet-class>moreservlets.RedirectorServlet</servlet-class>

 </servlet>

 <!-- Assign the URL /admin/ChangeCompanyName to the

 servlet that is named ChangeCompanyName.

 -->

 <servlet-mapping>

 <servlet-name>ChangeCompanyName</servlet-name>

 <url-pattern>/admin/ChangeCompanyName</url-pattern>

 </servlet-mapping>

 <!-- Turn off invoker. Send requests to index.jsp. -->

 <servlet-mapping>

 <servlet-name>Redirector</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- ... -->

 <!-- Protect everything within the "admin" directory.

 Direct client access to this directory requires

 authentication.

 -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Admin</web-resource-name>

 <url-pattern>/admin/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>ceo</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- Tell the server to use form-based authentication. -->

 <login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/admin/login.jsp</form-login-page>

 <form-error-page>/admin/login-error.jsp</form-error-page>

 </form-login-config>

 </login-config>

</web-app>

Listing 10.7 change-company-name.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<%@ page import="moreservlets.listeners.*" %>

<%

String companyName =

 InitialCompanyNameListener.getCompanyName(application);

%>

<TITLE>Changing Company Name</TITLE>

<LINK REL=STYLESHEET

 HREF="../events-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Changing Company Name

</TABLE>

<P>

<FORM ACTION="ChangeCompanyName">

New name:

<INPUT TYPE="TEXT" NAME="newName" VALUE="<%= companyName %>">

<P>

<CENTER><INPUT TYPE="SUBMIT" VALUE="Submit Change"></CENTER>

</FORM>

</BODY>

</HTML>

Listing 10.8 ChangeCompanyName.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Servlet that changes the company name. The web.xml

 * file specifies that only authenticated users in the

 * ceo role can access the servlet. A servlet context

 * attribute listener updates the former company name

 * when this servlet (or any other program) changes

 * the current company name.

 */

public class ChangeCompanyName extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 boolean isNameChanged = false;

 String newName = request.getParameter("newName");

 if ((newName != null) && (!newName.equals(""))) {

 isNameChanged = true;

 getServletContext().setAttribute("companyName",

 newName);

 }

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 String title = "Company Name";

 out.println

 (docType +

 "<HTML>\n" +

 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H2 ALIGN=\"CENTER\">" + title + "</H2>");

 if (isNameChanged) {

 out.println("Company name changed to " + newName + ".");

 } else {

 out.println("Company name not changed.");

 }

 out.println("</BODY></HTML>");

 }

}

Listing 10.9 login.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Log In</TITLE>

<LINK REL=STYLESHEET

 HREF="../events-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Log In</TABLE>

<P>

<H3>Sorry, you must log in before accessing this resource.</H3>

<FORM ACTION="j_security_check" METHOD="POST">

<TABLE>

<TR><TD>User name: <INPUT TYPE="TEXT" NAME="j_username">

<TR><TD>Password: <INPUT TYPE="PASSWORD" NAME="j_password">

<TR><TH><INPUT TYPE="SUBMIT" VALUE="Log In">

</TABLE>

</FORM>

</BODY>

</HTML>

Listing 10.10 login-error.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Begone!</TITLE>

<LINK REL=STYLESHEET

 HREF="../events-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Begone!</TABLE>

<H3>Begone, ye unauthorized peon.</H3>

</BODY>

</HTML>

Listing 10.11 tomcat-users.xml (Excerpt for events examples)

<?xml version="1.0" encoding="ISO-8859-1"?>

<tomcat-users>

 <!-- ... -->

 <user name="gerstner" password="lou"

 roles="ceo" />

</tomcat-users>

10.5 Packaging Listeners with Tag Libraries

JSP tag libraries (Section 3.7, Chapter 11) provide a great way of encapsulating content that will

be accessed by multiple JSP pages. But what if that content depends on life-cycle event listeners?

If the listener and listener-class elements of web.xml were the only option for declaring

listeners, tag library maintenance would be much more difficult. Normally, the user of a tag

library can deploy it by simply dropping a JAR file in WEB-INF/lib and putting a TLD file in

WEB-INF. Users of the tag libraries need no knowledge of the individual classes within the library,

only of the tags that the library defines. But if the tag libraries used listeners, users of the libraries

would need to discover the name of the listener classes and make web.xml entries for each one.

This would be significantly more work.

Fortunately, the JSP 1.2 specification lets you put the listener declarations in the tag library

descriptor file instead of in the deployment descriptor. But, wait! Event listeners need to run when

the Web application is first loaded, not just the first time a JSP page that uses a custom library is

accessed. How does the system handle this? The answer is that, when the Web application is

loaded, the system automatically searches WEB-INF and its subdirectories for files with.tld

extensions and uses all listener declarations that it finds. This means that your TLD files must be

in the WEB-INF directory or a subdirectory thereof. In fact, although few servers enforce the

restriction, the JSP 1.2 specification requires all TLD files to be in WEB-INF anyhow. Besides,

putting the TLD files in WEB-INF is a good strategy to prevent users from retrieving them. So, you

should make WEB-INF the standard TLD file location, regardless of whether your libraries use

event handlers.

Core Approach

Always put your TLD files in the WEB-INF directory or a

subdirectory thereof.

Unfortunately, there is a problem with this approach: Tomcat 4.0 improperly ignores TLD files at

Web application startup time unless there is also a taglib entry in web.xml of the following form:

<taglib>

 <taglib-uri>/someName.tld</taglib-uri>

 <taglib-location>/WEB-INF/realName.tld</taglib-location>

</taglib>

As discussed in Section 5.13 (Locating Tag Library Descriptors), this entry is a good idea when the

name of your tag library changes frequently. However, the JSP 1.2 specification does not require

its use, and servers such as ServletExec 4.1 properly handle listener declarations in TLD files

when there is no such entry. Nevertheless, Tomcat 4.0 requires it.

Core Warning

Tomcat 4.0 only reads listener declarations from TLD files

that have taglib entries in web.xml.

Since listener declarations are a new capability in version 1.2 of the JSP specification, you must

use the JSP 1.2 format of the tag library descriptor file. This format differs in two ways from the

JSP 1.1 format.

First, the DOCTYPE declaration must use the JSP 1.2 Document Type Definition (DTD), not the 1.1

one. Here is the JSP 1.2 version:

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

Here is the JSP 1.1 version:

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

Second, a number of elements within the TLD file have changed their names slightly. In particular,

hyphens were added to the tlibversion, jspversion, shortname, tagclass, and bodycontent

elements. Also, the info element was renamed to description. These changes are summarized

in Table 10.1.

Table 10.1. Changes in tag library element names. You must use the new element

names if you use the 1.2 DTD (which is required if you use new capabilities such

as listeners).

JSP 1.2 Name JSP 1.1 Name

tlib-version tlibversion

jsp-version jspversion

short-name shortname

description info

tag-class tagclass

body-content bodycontent

Given the changes to the DOCTYPE declaration and the element names, Listing 10.12 shows the

template for a TLD file in JSP 1.2. For comparison, Listing 10.13 shows the JSP 1.1 template.

Listing 10.12 JSP 1.2 Tag Library Descriptor (Template)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>some-name</short-name>

 <description>

 Tag library documentation.

 </description>

<taglib>

 <!-- listener elements, if any, each of the following form:

 <listener>

 <listener-class>somePackage.SomeListener</listener-class>

 </listener>

 -->

 <tag>

 <name>tagName</name>

 <tag-class>somePackage.SomeTag</tag-class>

 <body-content>...</body-content>

 <description>Tag documentation.</description>

 </tag>

 <!-- Other tag elements, if any. -->

</taglib>

Listing 10.13 JSP 1.1 Tag Library Descriptor (Template)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>

 <tlibversion>1.0</tlibversion>

 <jspversion>1.1</jspversion>

 <shortname>some-name</shortname>

 <info>

 Tag library documentation.

 </info>

 <taglib>

 <tag>

 <name>tagName</name>

 <tagclass>somePackage.SomeTag</tagclass>

 <bodycontent>...</bodycontent>

 <info>Tag documentation.</info>

 </tag>

 <!-- Other tag elements, if any. -->

 </taglib>

10.6 Example: Packaging the Company Name

Listeners

The listeners shown in Sections 10.2 and 10.4 are very effective in keeping track of the current

and former company names. However, the pages that display the names (index.jsp, Listing 10.3

and company-info.jsp, Listing 10.4) are a bit difficult to read and maintain. This difficulty is due

to the need for checking if the former company name is missing before trying to display it, a test

that results in quite a bit of explicit Java code in the JSP page. A perfect job for a simple custom

tag!

Listings 10.14 and 10.15 show custom tags that print out the current and former company names,

respectively. The first tag simply prints the current company name. The second tag uses a

fullDescription attribute to decide whether to simply print the former company name (e.g.,

some-company.com) or the company name inside parentheses (e.g., (formerly

some-company.com)). Listing 10.16 shows the TLD file for this library: the listener elements of

Sections 10.2 and 10.4 are moved out of the web.xml file and into the TLD file, which is then

placed in the WEB-INF directory. Listing 10.17 shows the web.xml file: the previous listener

elements are removed, and a taglib entry is added that makes it easier to update the name of

the TLD file and lets the listeners be detected at Web application startup time by Tomcat 4.0.

Finally, Listings 10.18 and 10.19 show the company home page (see Listing 10.3) and company

information page (see Listing 10.4) reworked with the new custom tags. Note that for the uri

attribute of the taglib directive, these pages use "/company-name-taglib.tld" (the alias

defined with the web.xml taglib element), not "/WEB-INF/company-name-taglib.tld" (the

real location). Figures 10-9 and 10-10 show the results—identical to those shown earlier in

Figures 10-1 and 10-2.

Figure 10-9. Reworking the company home page to use

custom tags results in an identical appearance (compare

Figure 10-1) but yields JSP code that is significantly easier to

read and maintain.

Figure 10-10. Reworking the company information page to

use custom tags results in an identical appearance (compare

Figure 10-2) but yields JSP code that is significantly easier to

read and maintain.

Listing 10.14 CompanyNameTag.java

package moreservlets.tags;

import javax.servlet.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import moreservlets.listeners.*;

/** The InitialCompanyNameListener class has static

 * methods that permit access to the current and former

 * company names. But, using these methods in JSP requires

 * explicit Java code, and creating beans that provided

 * the information would have yielded a cumbersome result.

 * So, we simply move the code into a custom tag.

 */

public class CompanyNameTag extends TagSupport {

 public int doStartTag() {

 try {

 ServletContext context = pageContext.getServletContext();

 String companyName =

 InitialCompanyNameListener.getCompanyName(context);

 JspWriter out = pageContext.getOut();

 out.print(companyName);

 } catch(IOException ioe) {

 System.out.println("Error printing company name.");

 }

 return(SKIP_BODY);

 }

}

Listing 10.15 FormerCompanyNameTag.java

package moreservlets.tags;

import javax.servlet.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import moreservlets.listeners.*;

/** The InitialCompanyNameListener class has static

 * methods that permit access to the current and former

 * company names. But, using these methods in JSP requires

 * explicit Java code, and creating beans that provided

 * the information would have yielded a cumbersome result.

 * So, we simply move the code into a custom tag.

 */

public class FormerCompanyNameTag extends TagSupport {

 private boolean useFullDescription = false;

 public int doStartTag() {

 try {

 ServletContext context = pageContext.getServletContext();

 String formerCompanyName =

 InitialCompanyNameListener.getFormerCompanyName(context);

 JspWriter out = pageContext.getOut();

 if (useFullDescription) {

 String formerCompanyDescription = "";

 if (!formerCompanyName.equals("")) {

 formerCompanyDescription =

 "(formerly " + formerCompanyName + ")";

 }

 out.print(formerCompanyDescription);

 } else {

 out.print(formerCompanyName);

 }

 } catch(IOException ioe) {

 System.out.println("Error printing former company name.");

 }

 return(SKIP_BODY);

 }

 /** If the user supplies a fullDescription attribute

 * with the value "true" (upper, lower, or mixed case),

 * set the useFullDescription instance variable to true.

 * Otherwise, leave it false.

 */

 public void setFullDescription(String flag) {

 if (flag.equalsIgnoreCase("true")) {

 useFullDescription = true;

 }

 }

 /** Servers are permitted to reuse tag instances

 * once a request is finished. So, this resets

 * the useFullDescription field. This method

 * is automatically called after the system is

 * finished using the tag.

 */

 public void release() {

 useFullDescription = false;

 }

}

Listing 10.16 company-name-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<!-- a tag library descriptor -->

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>company-name-tags</short-name>

 <description>

 A tag library to print out the ever-changing current

 and former company names (which are monitored by event

 listeners).

 </description>

 <!-- Register the listener that sets up the

 initial company name. -->

 <listener>

 <listener-class>

 moreservlets.listeners.InitialCompanyNameListener

 </listener-class>

 </listener>

 <!-- Register the listener that monitors changes to

 the company name.

 -->

 <listener>

 <listener-class>

 moreservlets.listeners.ChangedCompanyNameListener

 </listener-class>

 </listener>

 <!-- Define a tag that prints out the current name. -->

 <tag>

 <name>companyName</name>

 <tag-class>moreservlets.tags.CompanyNameTag</tag-class>

 <body-content>empty</body-content>

 <description>The current company name</description>

 </tag>

 <!-- Define a tag that prints out the previous name. -->

 <tag>

 <name>formerCompanyName</name>

 <tag-class>moreservlets.tags.FormerCompanyNameTag</tag-class>

 <body-content>empty</body-content>

 <description>The previous company name</description>

 <attribute>

 <name>fullDescription</name>

 <required>false</required>

 </attribute>

 </tag>

</taglib>

Listing 10.17 web.xml (Excerpt for custom tags)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Removed declarations for initial and changed company

 name listeners. They are now in TLD file. -->

 <!-- ... -->

 <!-- Register the company-name tag library. -->

 <taglib>

 <taglib-uri>

 /company-name-taglib.tld

 </taglib-uri>

 <taglib-location>

 /WEB-INF/company-name-taglib.tld

 </taglib-location>

 </taglib>

 <!-- ... -->

</web-app>

Listing 10.18 index2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<%@ taglib uri="/company-name-taglib.tld" prefix="msajsp" %>

<TITLE><msajsp:companyName/></TITLE>

<LINK REL=STYLESHEET

 HREF="events-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 <msajsp:companyName/>

 <msajsp:formerCompanyName fullDescription="true"/>

</TABLE>

<P>

Welcome to the home page of <msajsp:companyName/>

<msajsp:formerCompanyName fullDescription="true"/>

<P>

<msajsp:companyName/> is a high-flying, fast-growing,

big-potential company. A perfect choice for your

retirement portfolio!

<P>

Click here for more information.

</BODY>

</HTML>

Listing 10.19 company-info2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<%@ taglib uri="/company-name-taglib.tld" prefix="msajsp" %>

<TITLE><msajsp:companyName/></TITLE>

<LINK REL=STYLESHEET

 HREF="events-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 <msajsp:companyName/>

 <msajsp:formerCompanyName fullDescription="true"/>

</TABLE>

<P>

Learn more about <msajsp:companyName/>

<msajsp:formerCompanyName fullDescription="true"/>

 <msajsp:companyName/> products

 <msajsp:companyName/> services

 <msajsp:companyName/> history

 investing in <msajsp:companyName/>

 contacting <msajsp:companyName/>

</BODY>

</HTML>

10.7 Recognizing Session Creation and Destruction

Classes that implement the ServletContextListener and ServletContextAttributeListener

interfaces respond to changes in the servlet context, which is shared by all servlets and JSP pages

in the Web application. But, with session tracking (Section 2.10), data is stored in per-user

HttpSession objects, not in the servlet context. What if you want to monitor changes to this

user-specific data? That’s the job of the HttpSessionListener and

HttpSessionAttributeListener interfaces. This section discusses HttpSessionListener, the

listener that is notified when a session is created or destroyed (either deliberately with

invalidate or by timing out). Section 10.9 discusses HttpSessionAttributeListener, the

listener that is notified when session attributes are added, replaced, or removed.

Using HttpSessionListener involves the following steps.

1. Implement the HttpSessionListener interface. This interface is in the

javax.servlet.http package.

2. Override sessionCreated and sessionDestroyed. The first of these (sessionCreated)

is triggered when a new session is created. The second method (sessionDestroyed) is

triggered when a a session is destroyed. This destruction could be due to an explicit call to

the invalidate method or because the elapsed time since the last client access exceeds

the session timeout.

3. Obtain a reference to the session and possibly to the servlet context. Each of the

two HttpSessionListener methods takes an HttpSessionEvent as an argument. The

HttpSessionEvent class has a getSession method that provides access to the session

object. You almost always want this reference; you occasionally also want a reference to

the servlet context. If so, first obtain the session object and then call getServletContext

on it.

4. Use the objects. Surprisingly, one of the only methods you usually call on the session

object is the setAttribute method. You do this in sessionCreated if you want to

guarantee that all sessions have a certain attribute. Wait! What about getAttribute ?

Nope; you don’t use it. In sessionCreated, there is nothing in the session yet, so

getAttribute is pointless. In addition, all attributes are removed before

sessionDestroyed is called, so calling getAttribute is also pointless there. If you want

to clean up attributes that are left in sessions that time out, you use the

attributeRemoved method of HttpSessionAttributeListener (Section 10.9).

Consequently, sessionDestroyed is mostly reserved for listeners that are simply keeping

track of the number of sessions in use.

5. Declare the listener. In the web.xml or TLD file, use the listener and

listener-class elements to simply list the fully qualified name of the listener class, as

below.
6.

7. <listener>

8. <listener-class>somePackage.SomeListener</listener-class>

</listener>

10.8 Example: A Listener That Counts Sessions

Session tracking can significantly increase the server’s memory load. For example, if a site that

uses session tracking has 1,000 unique visitors per hour and the server uses a two-hour session

timeout, the system will have approximately 2,000 sessions in memory at any one time.

Reducing the timeout to one hour would cut the session memory requirements in half but would

risk having active sessions prematurely time out. You need to track typical usage before you can

decide on the appropriate solution.

So, you need a listener that will keep track of how many sessions are created, how many are

destroyed, and how many are in memory at any one time. Assuming that you have no explicit

calls to invalidate, the session destructions correspond to expired timeouts.

The following steps summarize a listener that accomplishes this task.

1. Implement the HttpSessionListener interface. Listing 10.20 shows a class

(SessionCounter) that implements this interface.

2. Override sessionCreated and sessionDestroyed. The first of these (sessionCreated)

increments two counters: totalSessionCount and currentSessionCount. If the current

count is greater than the previous maximum count, the method also increments the

maxSessionCount variable. The second method (sessionDestroyed) decrements the

currentSessionCount variable.

3. Obtain and use the servlet context. In this application, no specific use is made of the

session object. The only thing that matters is the fact that a session was created or

destroyed, not any details about the session itself. But, the session counts have to be

placed in a location that is easily accessible to servlets and JSP pages that will display the

counts. So, the first time sessionCreated is called, it obtains the session object, calls

getServletContext on it, and then calls setAttribute to store the listener object in the

servlet context.

4. Declare the listener. Listing 10.21 shows the web.xml file. It declares the listener with

the listener and listener-class elements, as below.
5.

6. <listener>

7. <listener-class>

8. moreservlets.listeners.SessionCounter

9. </listener-class>

</listener>

Listing 10.22 shows a JSP page that displays the session counts. Figure 10-11 shows a typical

result.

Figure 10-11. The SessionCounter listener keeps track of the

sessions used in the Web application.

In order to test session creation and timeout, I made three temporary changes.

First, I disabled cookies in my browser. Since my servers are set to use cookies for session

tracking, this had the result of making each request be a new session. See the following

subsection for information on disabling cookies in Netscape and Internet Explorer.

Second, I created an HTML page (Listing 10.23, Figure 10-12) that used frames with four rows

and four columns to request the same JSP page (Listing 10.24) 16 times. In an environment that

has cookies disabled, a request for the framed page results in 16 new sessions being created on

the server (recall that JSP pages perform session tracking automatically unless the session

attribute of the page directive is set to false —see Section 3.4).

Figure 10-12. Session management was tested with a

frame-based page that was invoked after cookies were

disabled. So, each request resulted in 16 different sessions.

Third, I chose an extremely low session timeout: two minutes. This saved me from waiting for

hours to test the session-counting listener. Changing the default session timeout is discussed in

Section 5.10, but it simply amounts to creating a session-config entry in web.xml, as follows.

<session-config>

 <session-timeout>2</session-timeout>

</session-config>

Listing 10.20 SessionCounter.java

package moreservlets.listeners;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Listener that keeps track of the number of sessions

 * that the Web application is currently using and has

 * ever used in its life cycle.

 */

public class SessionCounter implements HttpSessionListener {

 private int totalSessionCount = 0;

 private int currentSessionCount = 0;

 private int maxSessionCount = 0;

 private ServletContext context = null;

 public void sessionCreated(HttpSessionEvent event) {

 totalSessionCount++;

 currentSessionCount++;

 if (currentSessionCount > maxSessionCount) {

 maxSessionCount = currentSessionCount;

 }

 if (context == null) {

 storeInServletContext(event);

 }

 }

 public void sessionDestroyed(HttpSessionEvent event) {

 currentSessionCount--;

 }

 /** The total number of sessions created. */

 public int getTotalSessionCount() {

 return(totalSessionCount);

 }

 /** The number of sessions currently in memory. */

 public int getCurrentSessionCount() {

 return(currentSessionCount);

 }

 /** The largest number of sessions ever in memory

 * at any one time.

 */

 public int getMaxSessionCount() {

 return(maxSessionCount);

 }

 // Register self in the servlet context so that

 // servlets and JSP pages can access the session counts.

 private void storeInServletContext(HttpSessionEvent event) {

 HttpSession session = event.getSession();

 context = session.getServletContext();

 context.setAttribute("sessionCounter", this);

 }

}

Listing 10.21 web.xml (Excerpt for session counting listener)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Register the session counting event listener. -->

 <listener>

 <listener-class>

 moreservlets.listeners.SessionCounter

 </listener-class>

 </listener>

 <!-- ... -->

 <!-- Set the default session timeout to two minutes. -->

 <session-config>

 <session-timeout>2</session-timeout>

 </session-config>

 <!-- ... -->

</web-app>

Listing 10.22 session-counts.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Session Info</TITLE>

<LINK REL=STYLESHEET

 HREF="events-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Session Info</TABLE>

<P>

<jsp:useBean class="moreservlets.listeners.SessionCounter"

 id="sessionCounter" scope="application" />

Total number of sessions in the life of this

 Web application:

 <jsp:getProperty name="sessionCounter"

 property="totalSessionCount" />.

Number of sessions currently in memory:

 <jsp:getProperty name="sessionCounter"

 property="currentSessionCount" />.

Maximum number of sessions that have ever been in

 memory at any one time:

 <jsp:getProperty name="sessionCounter"

 property="maxSessionCount" />.

</BODY>

</HTML>

Listing 10.23 make-sessions.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">

<HTML>

<HEAD>

 <TITLE>Session Testing...</TITLE>

</HEAD>

<FRAMESET ROWS="*,*,*,*" COLS="*,*,*,*">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <NOFRAMES><BODY>

 This example requires a frame-capable browser.

 </BODY></NOFRAMES>

</FRAMESET>

</HTML>

Listing 10.24 test.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<!-- The purpose of this page is to force the system

 to create a session. -->

<HTML>

<HEAD><TITLE>Test</TITLE></HEAD>

<%@ page import="moreservlets.*" %>

<BODY BGCOLOR="<%= ColorUtils.randomColor() %>">

</BODY></HTML>

Listing 10.25 ColorUtils.java

package moreservlets;

/** Small utility to generate random HTML color names. */

public class ColorUtils {

 // The official HTML color names.

 private static String[] htmlColorNames =

 { "AQUA", "BLACK", "BLUE", "FUCHSIA", "GRAY", "GREEN",

 "LIME", "MAROON", "NAVY", "OLIVE", "PURPLE", "RED",

 "SILVER", "TEAL", "WHITE", "YELLOW" };

 public static String randomColor() {

 int index = randomInt(htmlColorNames.length);

 return(htmlColorNames[index]);

 }

 // Returns a random number from 0 to n-1 inclusive.

 private static int randomInt(int n) {

 return((int)(Math.random() * n));

 }

}

Disabling Cookies

Figures 10-13 through 10-15 summarize the approach to disabling cookies in Netscape 4,

Netscape 6, and Internet Explorer 5. As discussed in the previous subsection, temporarily

disabling cookies is useful for testing session usage.

Figure 10-13. To disable cookies in Netscape 4, choose the

Edit menu, then Preferences, then Advanced. Select “Disable

cookies.” Reset the browser after you are done testing; my

preferred setting is “Accept only cookies that get sent back to

the originating server.”

Figure 10-14. To disable cookies in Netscape 6, choose the

Edit menu, then Preferences, then Privacy and Security, then

Cookies. Select “Disable cookies.” Reset the browser after

you are done testing; my preferred setting is “Enable cookies

for the originating web site only.”

Figure 10-15. To disable cookies in Internet Explorer 5,

choose the Tools menu, then Internet Options, then Security,

then Custom Level. Since the goal here is to generate multiple

sessions, you only need to disable per-session cookies. When

done testing, reset the browser by changing the setting back

to Enable.

10.9 Watching for Changes in Session Attributes

OK, so HttpSessionListener lets you detect when a session is created or destroyed. But, since

session attributes are removed before session destruction, this listener does not let you clean up

attributes that are in destroyed sessions. That’s the job of the HttpSessionAttributeListener

interface. Use of this interface involves the following steps.

1. Implement the HttpSessionAttributeListener interface. This interface is in the

javax.servlet.http package.

2. Override attributeAdded, attributeReplaced, and attributeRemoved. The

attributeAdded method is triggered when a new attribute is added to a session. When a

new value is assigned to an existing session attribute, attributeAdded is triggered with

the new value and attributeReplaced is triggered with the old value (i.e., the value

being replaced). The attributeRemoved method is triggered when a session attribute is

removed altogether. This removal can be due to an explicit programmer call to

removeAttribute, but is more commonly due to the system remov-ing all attributes of

sessions that are about to be deleted because their timeout expired.

3. Obtain references to the attribute name, attribute value, session, and servlet

context. Each of the three HttpSessionAttributeListener methods takes an

HttpSessionBindingEvent as an argument. The HttpSessionBindingEvent class has

three useful methods: getName (the name of the attribute that was changed), getValue

(the value of the changed attribute—the new value for attributeAdded and the previous

value for attributeReplaced and attributeRemoved), and getSession (the

HttpSession object). If you also want access to the servlet context, first obtain the

session and then call getServletContext on it.

4. Use the objects. The attribute name is usually compared to a stored name to see if it is

the one you are monitoring. The attribute value is used in an application-specific manner.

The session is usually used to read previously stored attributes (getAttribute) or to store

new or changed attributes (setAttribute).

5. Declare the listener. In the web.xml or TLD file, use the listener and

listener-class elements to simply list the fully qualified name of the listener class, as

below.
6.

7. <listener>

8. <listener-class>somePackage.SomeListener</listener-class>

</listener>

10.10 Example: Monitoring Yacht Orders

You’re “promoted” to sales manager. (OK, ok, so that is too horrible a fate to contemplate. All

right then, you are asked to help the sales manager.) You want to track buying patterns for a

specific item (a yacht, in this case). Of course, you could try to find all servlets and JSP pages that

process orders and change each one to record yacht purchases. That’s an awful lot of work for

what sounds like a simple request, though. Pretty hard to maintain, anyhow.

A much better option is to create a session attribute listener that monitors the attributes

corresponding to order reservations or purchases and that records the information in the log file

for later perusal by the sales manager.

The following steps summarize a listener that accomplishes this task.

1. Implement the HttpSessionAttributeListener interface. Listing 10.26 shows a

class (YachtWatcher) that implements this interface.

2. Override attributeAdded, attributeReplaced, and attributeRemoved. The first of

these (attributeAdded) is used to log the fact that a yacht was reserved (tentative) or

purchased (permanent). The other two methods are used to print retractions of order

reservations (but not purchases—all sales are final).

3. Obtain references to the attribute name, attribute value, session, and servlet

context. Each of the three methods calls getName and getValue on its

HttpSessionBindingEvent argument to obtain the name and value of the modified

attribute. The methods also call getServletContext on the session object (obtained with

getSession) to get a reference to the servlet context.

4. Use the objects. The attribute name is compared to "orderedItem" (attribute addition,

replacement, and removal) and "purchasedItem" (attribute addition only). If the name

matches, then the attribute value is compared to "yacht". If that comparison also

succeeds, then the log method of the servlet context is called.

5. Declare the listener. Listing 10.27 shows the web.xml file. It declares the listener with

the listener and listener-class elements, as below.
6.

7. <listener>

8. <listener-class>

9. moreservlets.listeners.YachtWatcher

10. </listener-class>

</listener>

Listings 10.28 and 10.29 show a servlet that handles orders and an HTML form that sends it data,

respectively. Figures 10-16 through 10-19 show the results. Listing 10.30 shows a portion of the

resultant log file.

Figure 10-16. The order form that sends data to the order

handling servlet (Listing 10.28). That servlet adds, replaces,

and removes values in the orderedItem and purchasedItem session

attributes, which in turn triggers the yacht-watching listener

(Listing 10.26).

Figure 10-17. Result of reserving an order for a yacht. The

yacht-watching listener makes an entry in the log file (Listing

10.30) saying that a customer ordered a yacht.

Figure 10-18. Result of cancelling an order. If the user had

previously reserved an order for a yacht, the yacht-watching

listener makes an entry in the log file (Listing 10.30) saying

that a customer replaced a yacht order with something else.

Figure 10-19. Result of purchasing a yacht. The

yacht-watching listener makes an entry in the log file (Listing

10.30) saying that a customer purchased a yacht.

Listing 10.26 YachtWatcher.java

package moreservlets.listeners;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Listener that keeps track of yacht purchases by monitoring

 * the orderedItem and purchasedItem session attributes.

 */

public class YachtWatcher

 implements HttpSessionAttributeListener {

 private String orderAttributeName = "orderedItem";

 private String purchaseAttributeName = "purchasedItem";

 private String itemName = "yacht";

 /** Checks for initial ordering and final purchase of

 * yacht. Records "Customer ordered a yacht" if the

 * orderedItem attribute matches "yacht".

 * Records "Customer finalized purchase of a yacht" if the

 * purchasedItem attribute matches "yacht".

 */

 public void attributeAdded(HttpSessionBindingEvent event) {

 checkAttribute(event, orderAttributeName, itemName,

 " ordered a ");

 checkAttribute(event, purchaseAttributeName, itemName,

 " finalized purchase of a ");

 }

 /** Checks for order cancellation: was an order for "yacht"

 * cancelled? Records "Customer cancelled an order for

 * a yacht" if the orderedItem attribute matches "yacht".

 */

 public void attributeRemoved(HttpSessionBindingEvent event) {

 checkAttribute(event, orderAttributeName, itemName,

 " cancelled an order for a ");

 }

 /** Checks for item replacement: was "yacht" replaced

 * by some other item? Records "Customer changed to a new

 * item instead of a yacht" if the orderedItem attribute

 * matches "yacht".

 */

 public void attributeReplaced(HttpSessionBindingEvent event) {

 checkAttribute(event, orderAttributeName, itemName,

 " changed to a new item instead of a ");

 }

 private void checkAttribute(HttpSessionBindingEvent event,

 String orderAttributeName,

 String keyItemName,

 String message) {

 String currentAttributeName = event.getName();

 String currentItemName = (String)event.getValue();

 if (currentAttributeName.equals(orderAttributeName) &&

 currentItemName.equals(keyItemName)) {

 ServletContext context =

 event.getSession().getServletContext();

 context.log("Customer" + message + keyItemName + ".");

 }

 }

}

Listing 10.27 web.xml (Excerpt for yacht-watching listener)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Register the yacht-watching event listener. -->

 <listener>

 <listener-class>

 moreservlets.listeners.YachtWatcher

 </listener-class>

 </listener>

 <!-- ... -->

<!-- Assign the name OrderHandlingServlet to

 moreservlets.OrderHandlingServlet. -->

 <servlet>

 <servlet-name>OrderHandlingServlet</servlet-name>

 <servlet-class>

 moreservlets.OrderHandlingServlet

 </servlet-class>

 </servlet>

 <!-- ... -->

<!-- Assign the URL /HandleOrders to the

 servlet that is named OrderHandlingServlet.

-->

 <servlet-mapping>

 <servlet-name>OrderHandlingServlet</servlet-name>

 <url-pattern>/HandleOrders</url-pattern>

 </servlet-mapping>

 <!-- ... -->

</web-app>

Listing 10.28 OrderHandlingServlet.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Servlet that handles submissions from the order form. If the

 * user selects the "Reserve Order" button, the selected item

 * is put into the orderedItem attribute. If the user selects

 * the "Cancel Order" button, the orderedItem attribute is

 * deleted. If the user selects the "Purchase Item" button,

 * the selected item is put into the purchasedItem attribute.

 */

public class OrderHandlingServlet extends HttpServlet {

 private String title, picture;

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 HttpSession session = request.getSession(true);

 String itemName = request.getParameter("itemName");

 if ((itemName == null) || (itemName.equals(""))) {

 itemName = "MISSING ITEM";

 }

 String message;

 if (request.getParameter("order") != null) {

 session.setAttribute("orderedItem", itemName);

 message = "Thanks for ordering " + itemName + ".";

 } else if (request.getParameter("cancel") != null) {

 session.removeAttribute("orderedItem");

 message = "Thanks for nothing.";

 } else {

 session.setAttribute("purchasedItem", itemName);

 message = "Thanks for purchasing " + itemName + ".";

 }

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 out.println

 (docType +

 "<HTML>\n" +

 "<HEAD><TITLE>" + message + "</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H2 ALIGN=\"CENTER\">" + message + "</H2>\n" +

 "</BODY></HTML>");

 }

}

Listing 10.29 orders.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Orders</TITLE>

<LINK REL=STYLESHEET

 HREF="events-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">Orders

</TABLE>

<P>

Choose a valuable item below.

<P>

Select "Reserve Order" to hold the order for 30 days. Due to

unprecedented demand, you can only reserve a single item:

selecting another item will replace the previous choice.

<P>

Select "Purchase Item" to finalize your purchase. After

finalizing a purchase, you can reserve a new item.

<FORM ACTION="HandleOrders">

<DL>

 <DT>Item:

 <DD><INPUT TYPE="RADIO" NAME="itemName" VALUE="yacht">Yacht

 <DD><INPUT TYPE="RADIO" NAME="itemName" VALUE="chalet">Chalet

 <DD><INPUT TYPE="RADIO" NAME="itemName" VALUE="car">Lamborghini

 <DD><INPUT TYPE="RADIO" NAME="itemName" VALUE="msajsp" CHECKED>

 <I>More Servlets and JavaServer Pages</I>

 <DD><INPUT TYPE="RADIO" NAME="itemName" VALUE="csajsp">

 <I>Core Servlets and JavaServer Pages</I>

</DL>

<CENTER>

<INPUT TYPE="SUBMIT" NAME="order" VALUE="Reserve Order">

<INPUT TYPE="SUBMIT" NAME="cancel" VALUE="Cancel Order">

<INPUT TYPE="SUBMIT" NAME="purchase" VALUE="Purchase Item">

</CENTER>

</FORM>

</BODY>

</HTML>

Listing 10.30 Sample Log File Entries

2001-11-07 11:50:59 Customer ordered a yacht.

2001-11-07 11:51:06 Customer changed to a new item instead of a

yacht.

2001-11-07 11:52:37 Customer cancelled an order for a yacht.

2001-11-07 11:53:05 Customer finalized purchase of a yacht.

2001-11-07 11:53:35 Customer ordered a yacht.

2001-11-07 11:53:50 Customer cancelled an order for a yacht.

2001-11-07 11:54:20 Customer changed to a new item instead of a

yacht.

2001-11-07 11:54:27 Customer changed to a new item instead of a

yacht.

2001-11-07 11:54:42 Customer cancelled an order for a yacht.

2001-11-07 11:54:44 Customer ordered a yacht.

2001-11-07 11:54:47 Customer changed to a new item instead of a

yacht.

10.11 Using Multiple Cooperating Listeners

Now, the listeners discussed in this chapter are all well and good. There are plenty of applications

where one of them is useful. However, there are also plenty of applications where no single

listener can, in isolation, accomplish the necessary tasks. Multiple listeners need to work

together.

For example, suppose that your yacht-watching listener was so successful that you are asked to

expand it. Rather than tracking buying patterns of a fixed item such as a yacht, you should track

orders for the current daily special to let management discover if their specials are effective.

Accomplishing this task requires three listeners to cooperate: a ServletContextListener to set

up application-wide information about the session attributes that store daily specials, a

ServletContextAttributeListener to monitor changes to the attributes that store the

information, and an HttpSessionAttributeListener to keep a running count of orders for the

daily special.

The three listeners are described in more detail in the following subsections.

Tracking Orders for the Daily Special

As the first step in creating an order-tracking system, you need a servlet context listener to read

initialization parameters that specify which session attributes correspond to orders and which

items are the current daily specials. These values should be stored in the servlet context so other

resources can determine what the daily specials are. Listing 10.31 shows this listener.

Second, you need a session attribute listener to keep a running count of orders for the daily

special. The count will be incremented every time a designated attribute name is added with any

of the daily specials as its value. The count will be decremented every time a designated attribute

is replaced or removed and the previous value is one of the daily specials. Listing 10.32 shows this

listener.

Listing 10.33 shows the deployment descriptor that registers the two listeners and sets up the

servlet context initialization parameters that designate the names of order-related session

attributes and the names of the daily specials.

Listing 10.34 shows a JSP page that prints the current order count. Figures 10-20 through 10-22

show some typical results.

Figure 10-20. Initial result of track-daily-specials.jsp.

Figure 10-21. Ordering the daily special.

Figure 10-22. Result of track-daily-specials.jsp after several

clients placed orders.

Listing 10.31 DailySpecialRegistrar.java

package moreservlets.listeners;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Listener that records how to detect orders

 * of the daily special. It reads a list of attribute

 * names from an init parameter: these correspond to

 * session attributes that are used to record orders.

 * It also reads a list of item names: these correspond

 * to the names of the daily specials. Other listeners

 * will watch to see if any daily special names appear

 * as values of attributes that are hereby designated

 * to refer to orders.

 */

public class DailySpecialRegistrar

 implements ServletContextListener {

 /** When the Web application is loaded, record the

 * attribute names that correspond to orders and

 * the attribute values that are the daily specials.

 * Also set to zero the count of daily specials that have

 * been ordered.

 */

 public void contextInitialized(ServletContextEvent event) {

 ServletContext context = event.getServletContext();

 addContextEntry(context, "order-attribute-names");

 addContextEntry(context, "daily-special-item-names");

 context.setAttribute("dailySpecialCount", new Integer(0));

 }

 public void contextDestroyed(ServletContextEvent event) {}

 /** Read the designated context initialization parameter,

 * put the values into an ArrayList, and store the

 * list in the ServletContext with an attribute name

 * that is identical to the initialization parameter name.

 */

 private void addContextEntry(ServletContext context,

 String initParamName) {

 ArrayList paramValues = new ArrayList();

 String attributeNames =

 context.getInitParameter(initParamName);

 if (attributeNames != null) {

 StringTokenizer tok = new StringTokenizer(attributeNames);

 String value;

 while(tok.hasMoreTokens()) {

 value = tok.nextToken();

 paramValues.add(value);

 }

 context.setAttribute(initParamName, paramValues);

 }

 }

 /** Returns a string containing the daily special

 * names. For insertion inside an HTML text area.

 */

 public static String dailySpecials(ServletContext context) {

 String attributeName = "daily-special-item-names";

 ArrayList itemNames =

 (ArrayList)context.getAttribute(attributeName);

 String itemString = "";

 for(int i=0; i<itemNames.size(); i++) {

 itemString = itemString + (String)itemNames.get(i) + "\n";

 }

 return(itemString);

 }

 /** Returns a UL list containing the daily special

 * names. For insertion within the body of a JSP page.

 */

 public static String specialsList(ServletContext context) {

 String attributeName = "daily-special-item-names";

 ArrayList itemNames =

 (ArrayList)context.getAttribute(attributeName);

 String itemString = "\n";

 for(int i=0; i<itemNames.size(); i++) {

 itemString = itemString + "" +

 (String)itemNames.get(i) + "\n";

 }

 itemString = itemString + "";

 return(itemString);

 }

}

Listing 10.32 DailySpecialWatcher.java

package moreservlets.listeners;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Listener that keeps track of orders of the

 * current daily special.

 */

public class DailySpecialWatcher

 implements HttpSessionAttributeListener {

 private static int dailySpecialCount = 0;

 /** If the name of the session attribute that was added

 * matches one of the stored order-attribute-names AND

 * the value of the attribute matches one of the

 * stored daily-special-item-names, then increment

 * the count of daily specials ordered.

 */

 public void attributeAdded(HttpSessionBindingEvent event) {

 checkForSpecials(event, 1);

 }

 /** If the name of the session attribute that was removed

 * matches one of the stored order-attribute-names AND

 * the value of the attribute matches one of the

 * stored daily-special-item-names, then decrement

 * the count of daily specials ordered.

 */

 public void attributeRemoved(HttpSessionBindingEvent event) {

 checkForSpecials(event, -1);

 }

 /** If the name of the session attribute that was replaced

 * matches one of the stored order-attribute-names AND

 * the value of the attribute matches one of the

 * stored daily-special-item-names, then increment

 * the count of daily specials ordered. Note that the

 * value here is the old value (the one being replaced);

 * the attributeAdded method will handle the new value

 * (the replacement).

 */

 public void attributeReplaced(HttpSessionBindingEvent event) {

 checkForSpecials(event, -1);

 }

 // Check whether the attribute that was just added or removed

 // matches one of the stored order-attribute-names AND

 // the value of the attribute matches one of the

 // stored daily-special-item-names. If so, add the delta

 // (+1 or -1) to the count of daily specials ordered.

 private void checkForSpecials(HttpSessionBindingEvent event,

 int delta) {

 ServletContext context =

 event.getSession().getServletContext();

 ArrayList attributeNames =

 getList(context, "order-attribute-names");

 ArrayList itemNames =

 getList(context, "daily-special-item-names");

 synchronized(attributeNames) {

 for(int i=0; i<attributeNames.size(); i++) {

 String attributeName = (String)attributeNames.get(i);

 for(int j=0; j<itemNames.size(); j++) {

 String itemName = (String)itemNames.get(j);

 if (attributeName.equals(event.getName()) &&

 itemName.equals((String)event.getValue())) {

 dailySpecialCount = dailySpecialCount + delta;

 }

 }

 }

 }

 context.setAttribute("dailySpecialCount",

 new Integer(dailySpecialCount));

 }

 // Get either the order-attribute-names or

 // daily-special-item-names list.

 private ArrayList getList(ServletContext context,

 String attributeName) {

 ArrayList list =

 (ArrayList)context.getAttribute(attributeName);

 return(list);

 }

 /** Reset the count of daily specials that have

 * been ordered. This operation is normally performed

 * only when the daily special changes.

 */

 public static void resetDailySpecialCount() {

 dailySpecialCount = 0;

 }

}

Listing 10.33 web.xml (Excerpt for tracking daily special

orders)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Register the listener that sets up the entries

 that will be used to monitor orders for the daily

 special. -->

 <listener>

 <listener-class>

 moreservlets.listeners.DailySpecialRegistrar

 </listener-class>

 </listener>

 <!-- Register the listener that counts orders for the daily

 special. -->

 <listener>

 <listener-class>

 moreservlets.listeners.DailySpecialWatcher

 </listener-class>

 </listener>

 <!-- ... -->

</web-app>

Listing 10.34 track-daily-specials.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Tracking Daily Special Orders</TITLE>

<LINK REL=STYLESHEET

 HREF="events-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<CENTER>

<TABLE BORDER=5>

 <TR><TH CLASS="TITLE">Tracking Daily Special Orders

</TABLE>

<H2>Current Specials:</H2>

<%@ page import="moreservlets.listeners.*" %>

<%= DailySpecialRegistrar.specialsList(application) %>

<H2>Number of Orders:

<%= application.getAttribute("dailySpecialCount") %>

</H2>

</CENTER>

</BODY>

</HTML>

Resetting the Daily Special Order Count

The two listeners shown in the previous subsection are sufficient if you restart the server every

time you change the daily specials.

However, if you change the daily specials while the server is running, you need a servlet context

attribute listener to detect changes in the attribute that stores the names of the daily specials. In

particular, when the daily specials change, you need to reset the running count of orders for the

specials. Listing 10.35 shows this listener.

Listing 10.36 shows a JSP page that displays the current daily specials in a text area. It lets the

user change the values and send them to a servlet (Listing 10.37) that records the changes in the

servlet context. The JSP page is in the admin directory and the servlet is assigned a URL

beginning with /admin (see the web.xml file in Listing 10.38), so the security restrictions

discussed in Section 10.4 apply.

When an authorized user changes the names of the daily specials, the order count is reset.

Figures 10-23 through 10-27 show some representative results.

Figure 10-23. Requests by unauthenticated users for

change-daily-specials.jsp get sent to the login page (Listing

10.9).

Figure 10-24. Users who fail authentication are shown the

login-failure page (Listing 10.10).

Figure 10-25. Users who pass authentication and are in the

designated role (ceo) are shown the form for changing the

daily specials (Listing 10.36). The current daily specials are

displayed as the initial value of the text area.

Figure 10-26. Result of submitting the form for changing daily

specials after yacht and chalet are entered in the text area.

Figure 10-27. When the daily specials are changed, the servlet

context attribute listener (Listing 10.35) resets the order

count.

Listing 10.35 ChangedDailySpecialListener.java

package moreservlets.listeners;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/** Listener that monitors changes to the names

 * of the daily specials (which are stored in

 * the daily-special-item-names attribute of

 * the servlet context). If the names change, the

 * listener resets the running count of the number

 * of daily specials being ordered.

 */

public class ChangedDailySpecialListener

 implements ServletContextAttributeListener {

 /** When the daily specials change, reset the

 * order counts.

 */

 public void attributeReplaced

 (ServletContextAttributeEvent event) {

 if (event.getName().equals("daily-special-item-names")) {

 ServletContext context = event.getServletContext();

 context.setAttribute("dailySpecialCount",

 new Integer(0));

 DailySpecialWatcher.resetDailySpecialCount();

 }

 }

 public void attributeAdded

 (ServletContextAttributeEvent event) {}

 public void attributeRemoved

 (ServletContextAttributeEvent event) {}

}

Listing 10.36 change-daily-specials.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Changing Daily Specials</TITLE>

<LINK REL=STYLESHEET

 HREF="../events-styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<CENTER>

<TABLE BORDER=5>

 <TR><TH CLASS="TITLE">Changing Daily Specials

</TABLE>

<P>

<FORM ACTION="ChangeDailySpecial">

New specials:

<%@ page import="moreservlets.listeners.*" %>

<TEXTAREA NAME="newSpecials" ROWS=4 COLS=30>

<%= DailySpecialRegistrar.dailySpecials(application) %>

</TEXTAREA>

<P>

<INPUT TYPE="SUBMIT" VALUE="Submit Change">

</FORM>

</CENTER>

</BODY>

</HTML>

Listing 10.37 ChangeDailySpecial.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Servlet that changes the daily specials. The web.xml

 * file specifies that only authenticated users in the

 * ceo role can access the servlet. A servlet context

 * attribute listener resets the count of daily special

 * orders when this servlet (or any other program) changes

 * the daily specials.

 */

public class ChangeDailySpecial extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String dailySpecialNames =

 request.getParameter("newSpecials");

 if ((dailySpecialNames == null) ||

 (dailySpecialNames.equals(""))) {

 dailySpecialNames = "MISSING-VALUE";

 }

 ArrayList specials = new ArrayList();

 StringTokenizer tok =

 new StringTokenizer(dailySpecialNames);

 while(tok.hasMoreTokens()) {

 specials.add(tok.nextToken());

 }

 ServletContext context = getServletContext();

 context.setAttribute("daily-special-item-names",

 specials);

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String docType =

 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

 "Transitional//EN\">\n";

 String title = "New Daily Specials";

 out.println

 (docType +

 "<HTML>\n" +

 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +

 "<BODY BGCOLOR=\"#FDF5E6\">\n" +

 "<H2 ALIGN=\"CENTER\">" + title + "</H2>\n" +

 "");

 String special;

 for(int i=0; i<specials.size(); i++) {

 special = (String)specials.get(i);

 out.println("" + special);

 }

 out.println("\n" +

 "</BODY></HTML>");

 }

}

Listing 10.38 web.xml (Excerpt for resetting order counts)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Register the listener that resets the order counts

 when the names of the daily specials change. -->

 <listener>

 <listener-class>

 moreservlets.listeners.ChangedDailySpecialListener

 </listener-class>

 </listener>

 <!-- ... -->

 <!-- Assign the name ChangeDailySpecial to

 moreservlets.ChangeDailySpecial. -->

 <servlet>

 <servlet-name>ChangeDailySpecial</servlet-name>

 <servlet-class>

 moreservlets.ChangeDailySpecial

 </servlet-class>

 </servlet>

 <!-- ... -->

 <!-- Assign the URL /admin/ChangeDailySpecial to the

 servlet that is named ChangeDailySpecial.

 -->

 <servlet-mapping>

 <servlet-name>ChangeDailySpecial</servlet-name>

 <url-pattern>/admin/ChangeDailySpecial</url-pattern>

 </servlet-mapping>

 <!-- ... -->

</web-app>

10.12 The Complete Events Deployment Descriptor

The previous sections showed various excerpts of the web.xml file for the application events

examples. This section shows the file in its entirety.

Listing 10.39 web.xml (Complete version for events

examples)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- Order matters in web.xml! For the elements

 used in this example, this order is required:

 context-param

 listener

 servlet

 servlet-mapping

 session-config

 welcome-file-list

 taglib

 security-constraint

 login-config

 -->

 <!-- Since the company name changes so frequently,

 supply it as a servlet context parameter instead

 of embedding it into lots of different servlets and

 JSP pages. The InitialCompanyNameListener will

 read this value and store it in the servlet context. -->

 <context-param>

 <param-name>companyName</param-name>

 <param-value>not-dot-com.com</param-value>

 </context-param>

 <!-- Also store the previous company name. -->

 <context-param>

 <param-name>formerCompanyName</param-name>

 <param-value>hot-dot-com.com</param-value>

 </context-param>

 <!-- Declare the names of the session attributes that

 are used to store items that customers are

 purchasing. The daily special listener will

 track changes to the values of these attributes. -->

 <context-param>

 <param-name>order-attribute-names</param-name>

 <param-value>

 orderedItem

 purchasedItem

 </param-value>

 </context-param>

 <!-- The item names of the current daily specials. -->

 <context-param>

 <param-name>daily-special-item-names</param-name>

 <param-value>

 chalet

 car

 </param-value>

 </context-param>

 <!-- Register the listener that sets up the

 initial company name. -->

<!-- Listener declaration moved to tag library...

 <listener>

 <listener-class>

 moreservlets.listeners.InitialCompanyNameListener

 </listener-class>

 </listener>

-->

 <!-- Register the listener that monitors changes to

 the company name.

 -->

<!-- Listener declaration moved to tag library...

 <listener>

 <listener-class>

 moreservlets.listeners.ChangedCompanyNameListener

 </listener-class>

 </listener>

-->

 <!-- Register the session counting event listener. -->

 <listener>

 <listener-class>

 moreservlets.listeners.SessionCounter

 </listener-class>

 </listener>

 <!-- Register the yacht-watching event listener. -->

 <listener>

 <listener-class>

 moreservlets.listeners.YachtWatcher

 </listener-class>

 </listener>

 <!-- Register the listener that sets up the entries

 that will be used to monitor orders for the daily

 special. -->

 <listener>

 <listener-class>

 moreservlets.listeners.DailySpecialRegistrar

 </listener-class>

 </listener>

 <!-- Register the listener that counts orders for the daily

 special. -->

 <listener>

 <listener-class>

 moreservlets.listeners.DailySpecialWatcher

 </listener-class>

 </listener>

 <!-- Register the listener that resets the order counts

 when the names of the daily specials change. -->

 <listener>

 <listener-class>

 moreservlets.listeners.ChangedDailySpecialListener

 </listener-class>

 </listener>

 <!-- Assign the name ChangeCompanyName to

 moreservlets.ChangeCompanyName. -->

 <servlet>

 <servlet-name>ChangeCompanyName</servlet-name>

 <servlet-class>moreservlets.ChangeCompanyName</servlet-class>

 </servlet>

 <!-- Assign the name OrderHandlingServlet to

 moreservlets.OrderHandlingServlet. -->

 <servlet>

 <servlet-name>OrderHandlingServlet</servlet-name>

 <servlet-class>

 moreservlets.OrderHandlingServlet

 </servlet-class>

 </servlet>

 <!-- Assign the name ChangeDailySpecial to

 moreservlets.ChangeDailySpecial. -->

 <servlet>

 <servlet-name>ChangeDailySpecial</servlet-name>

 <servlet-class>

 moreservlets.ChangeDailySpecial

 </servlet-class>

 </servlet>

 <!-- Give a name to the servlet that redirects users

 to the home page.

 -->

 <servlet>

 <servlet-name>Redirector</servlet-name>

 <servlet-class>moreservlets.RedirectorServlet</servlet-class>

 </servlet>

 <!-- Assign the URL /admin/ChangeCompanyName to the

 servlet that is named ChangeCompanyName.

 -->

 <servlet-mapping>

 <servlet-name>ChangeCompanyName</servlet-name>

 <url-pattern>/admin/ChangeCompanyName</url-pattern>

 </servlet-mapping>

 <!-- Assign the URL /HandleOrders to the

 servlet that is named OrderHandlingServlet.

 -->

 <servlet-mapping>

 <servlet-name>OrderHandlingServlet</servlet-name>

 <url-pattern>/HandleOrders</url-pattern>

 </servlet-mapping>

 <!-- Assign the URL /admin/ChangeDailySpecial to the

 servlet that is named ChangeDailySpecial.

 -->

 <servlet-mapping>

 <servlet-name>ChangeDailySpecial</servlet-name>

 <url-pattern>/admin/ChangeDailySpecial</url-pattern>

 </servlet-mapping>

 <!-- Turn off invoker. Send requests to index.jsp. -->

 <servlet-mapping>

 <servlet-name>Redirector</servlet-name>

 <url-pattern>/servlet/*</url-pattern>

 </servlet-mapping>

 <!-- Set the default session timeout to two minutes. -->

 <session-config>

 <session-timeout>2</session-timeout>

 </session-config>

 <!-- If URL gives a directory but no filename, try index.jsp

 first and index.html second. If neither is found,

 the result is server specific (e.g., a directory

 listing). Order of elements in web.xml matters.

 welcome-file-list needs to come after servlet but

 before error-page.

 -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

 <!-- Register the company-name tag library. -->

 <taglib>

 <taglib-uri>

 /company-name-taglib.tld

 </taglib-uri>

 <taglib-location>

 /WEB-INF/company-name-taglib.tld

 </taglib-location>

 </taglib>

 <!-- Protect everything within the "admin" directory.

 Direct client access to this directory requires

 authentication.

 -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Admin</web-resource-name>

 <url-pattern>/admin/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>ceo</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- Tell the server to use form-based authentication. -->

 <login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/admin/login.jsp</form-login-page>

 <form-error-page>/admin/login-error.jsp</form-error-page>

 </form-login-config>

 </login-config>

</web-app>

Part V: New Tag Library Capabilities

Part V New Tag Library Capabilities

Chapter 11 New Tag Library Features in JSP 1.2

Chapter 12 The JSP Standard Tag Library

Chapter 11. New Tag Library Features in JSP 1.2

Topics in This Chapter

• Converting TLD files to the new format

• Bundling life-cycle event listeners with tag libraries

• Checking custom tag syntax with TagLibraryValidator

• Using the Simple API for XML (SAX) in validators

• Handling errors with the TryCatchFinally interface

• Changing names of method return values

• Looping without creating BodyContent

• Declaring scripting variables in the TLD file

Section 3.7 (Defining Custom JSP Tag Libraries) describes the creation and use of tag libraries in

JSP 1.1. You do not need to modify JSP 1.1 tag libraries to make them work in JSP 1.2; they are

totally compatible. However, JSP 1.2 has a number of new capabilities that are unavailable in JSP

1.1. Tag libraries that use these new capabilities must use a slightly different format for the TLD

file. This chapter first describes that new format and then explains the use of each of the new

capabilities. The following list gives a brief summary; details are provided in the following

sections.

• New TLD format. The DOCTYPE definition has changed, some existing elements have

been renamed (mostly by the addition of dashes), and several new elements have been

introduced.

• Ability to bundle listeners with tag libraries. The servlet 2.3 specification introduced

application life-cycle listeners. The JSP 1.2 specification added the ability to bundle these

listeners with tag libraries.

• TagLibraryValidator for translation-time syntax checking. JSP 1.2 permits you to

create a class that, at page translation time, can read an entire JSP file (represented in

XML) and check that the custom tags are used properly.

• TryCatchFinally interface. JSP 1.2 introduced a new interface with two methods:

doCatch and doFinally. These methods help tags handle uncaught exceptions that occur

in any of the tag life-cycle methods or during the processing of the tag body.

• New return values. In JSP 1.1, EVAL_BODY_TAG was used in two distinct situations. In

JSP 1.2, the constant is replaced with EVAL_BODY_BUFFERED and EVAL_BODY_AGAIN to

better differentiate the two cases.

• Looping without creating BodyContent. In JSP 1.1, iteration-related tags extended

BodyTagSupport and returned EVAL_BODY_TAG from doAfterBody to indicate that the tag

body should be reevaluated and made available in a BodyContent object. In JSP 1.2, you

can extend TagSupport and return EVAL_BODY_AGAIN to indicate that the body should be

reevaluated and sent to the client with no intervening BodyContent. This yields an

implementation that is easier to read and more efficient.

• The variable element for introducing scripting variables. Instead of declaring

variables only in the TagExtraInfo class, JSP 1.2 lets you declare them in the TLD file.

11.1 Using the New Tag Library Descriptor Format

Tag libraries that make use of any new JSP 1.2 capabilities must use a new format for their tag

library descriptor (TLD) files. However, libraries that are compatible with JSP 1.1 are allowed to

use the JSP 1.1 TLD format.

TLD files in JSP 1.2 differ in the following ways from JSP 1.1 TLD files:

• The DOCTYPE declaration has changed.

• Several elements have been renamed.

• New elements have been added.

Each of these changes is described in one of the following subsections. The final subsection gives

a side-by-side comparison of the JSP 1.2 and 1.1 TLD file formats.

New DOCTYPE Declaration

Tag library descriptor files start with an XML header, then have a DOCTYPE declaration and a

taglib element. The XML header is unchanged from JSP 1.1 to 1.2, but for the DOCTYPE

declaration, you now use:

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

In JSP 1.1 you used:

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

Listing 11.1 briefly outlines the resultant file.

Listing 11.1 JSP 1.2 TLD File (Excerpt 1)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <!-- ... -->

</taglib>

Renamed Elements

Within the taglib element in JSP 1.2, dashes were added to the tlibversion, jspversion, and

shortname elements, yielding tlib-version, jsp-version, and short-name, respectively. The

tlib-version element indicates the version number of the tag library (an arbitrary number),

jsp-version indicates the JSP version needed (1.2), and short-name defines a name that IDEs

can use to refer to the library (no spaces are allowed because IDEs might use short-name as the

default tag prefix). The JSP 1.1 info element (used for documentation) was renamed to

description.

Within the tag element, dashes were added to tagclass, teiclass, and bodycontent elements,

yielding tag-class, tei-class, and body-content, respectively. The tag-class element gives

the fully qualified name of the tag implementation class, tei-class defines a TagExtraInfo class

for validation (this is optional; see Section 11.3 for a new and better alternative), and

bodycontent provides IDEs a hint as to whether the tag is empty (i.e., uses no separate end tag)

or uses a tag body between its start and end tags. The JSP 1.1 info element (used for

documentation) was renamed to description.

Listing 11.2 gives a brief outline of a typical TLD file. Remember that the order of elements within

XML files is not arbitrary. You must use the elements in the order shown here.

Listing 11.2 JSP 1.2 TLD File (Excerpt 2)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>some-number</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>some-name</short-name>

 <description>Tag library documentation.</description>

 <tag>

 <name>tag-name</name>

 <tag-class>somePackage.SomeTag</tag-class>

 <body-content>empty, JSP, or tagdependent</body-content>

 <description>Tag documentation.</description>

 </tag>

 <!-- Other tag elements, if any. -->

</taglib>

New Elements

Within the taglib element, five new elements were added: display-name, small-icon,

large-icon, validator, and listener. All are optional.

The first three of these supply information for IDEs and other authoring tools. If used, they must

appear in the order listed here and must be placed immediately before the description element

within taglib. The display-name element gives a short name that the IDEs can present to the

author; it differs from short-name in that it can contain white space (short-name cannot) and is

used only for identification, not as a preferred prefix in a taglib directive (as short-name could

be). The small-icon element gives the location of a 16 × 16 GIF or JPEG image that can be used

by the IDE. The large-icon element gives the location of a 32 × 32 image, also in GIF or JPEG

format.

The validator element declares a TagLibraryValidator class to be used for page

translation-time syntax checking. Its use is discussed in Section 11.3. This element, if used, must

appear in the taglib element after description but before listener (if used) and tag.

The listener element declares an application life-cycle event listener that will be loaded when

the Web application is loaded (not when the tag library is first used!). Use of the listener

element is discussed in Section 11.2; use of life-cycle listeners in general is described in Chapter

10. The listener element, if used, must be the last element before tag.

There were also five new elements that can appear within the tag element: display-name,

small-icon, large-icon, variable, and example. All are optional. The first three

(display-name, small-icon, and large-icon) are used for IDE documentation in the same way

as just described for the taglib element. The elements, if used, must appear after body-content

but before description. The variable element is used to introduce scripting variables. It must

appear after description but before attribute; its use is described in Section 11.8. Finally, the

example element gives a simple textual example of the use of the tag. If used, the example

element must be the last subelement within tag.

Summary

Table 11.1 summarizes the first-, second-, and third-level elements in tag library descriptor files,

listed in the order in which they must be used. Items in bold indicate changes from JSP 1.1.

Elements marked with an asterisk are optional.

Table 11.1. Tag library descriptor format.

JSP 1.1 JSP 1.2

<?xml version="1.0"

 encoding="ISO-8859-1" ?>

<?xml version="1.0"

 encoding="ISO-8859-1" ?>

JSP 1.2 DOCTYPE declaration JSP 1.1 DOCTYPE declaration

taglib

 tlib-version

 jsp-version

 short-name

 uri*

 display-name*

 small-icon*

 large-icon*

 description*

 validator*

 validator-class

 init-param*

 description*

taglib

 tlibversion

 jspversion

 shortname

 uri*

 info*

listener*

 listener-class

tag

 name

 tag-class

 tei-class*

 body-content*

 display-name*

 small-icon*

tag

 name

 tagclass

 teiclass*

 bodycontent*

 large-icon*

 description*

 variable*

 attribute*

 example*

 info*

 attribute*

11.2 Bundling Listeners with Tag Libraries

Application life-cycle event listeners are described in Chapter 10. They provide a powerful new

capability that lets you respond to the creation and deletion of the servlet context and

HttpSession objects and lets you monitor changes in servlet context and session attributes. In

most cases, listeners are declared with the listener element of the deployment descriptor

(web.xml).

However, suppose that the behavior of a tag library depends upon an event listener. In such a

case, you would want to be certain that the listeners were available in all Web applications that

used the tag library.

If the listener and listener-class elements of web.xml were the only option for declaring

listeners, tag library maintenance would be difficult. Normally, the user of a tag library deploys it

by simply dropping a JAR file in WEB-INF/lib and putting a TLD file in WEB-INF. Users of the tag

libraries need no knowledge of the individual classes within the library, only of the tags that the

library defines. But if the tag libraries used listeners, users of the libraries would need to discover

the name of the listener classes and make web.xml entries for each one. This would be less

flexible and harder to maintain.

Fortunately, the JSP 1.2 specification lets you put the listener declarations in the tag library

descriptor file instead of in the deployment descriptor. “Hold on!” you say, “Event listeners need

to run when the Web application is first loaded, not just the first time a JSP page that uses a

custom library is accessed. I thought TLD files were only loaded the first time a user requests a

page that refers to it. How can this work?” Good question. JSP 1.2 introduced a new TLD search

mechanism to handle this situation. When a Web application is loaded, the system automatically

searches WEB-INF and its subdirectories for files with.tld extensions and uses all listener

declarations that it finds in them. This means that your TLD files must be in the WEB-INF directory

or a subdirectory thereof. In fact, although few servers enforce the restriction, the JSP 1.2

specification requires all TLD files to be in WEB-INF anyhow. Besides, putting the TLD files in

WEB-INF is a good strategy to prevent users from retrieving them. So, you should make WEB-INF

the standard TLD file location, regardless of whether your libraries use event handlers.

Core Approach

Always put your TLD files in the WEB-INF directory or a

subdirectory thereof.

Unfortunately, there is a problem with this approach: Tomcat 4.0 ignores TLD files at Web

application startup time unless there is a taglib entry in web.xml of the following form:

<taglib>

 <taglib-uri>/someName.tld</taglib-uri>

 <taglib-location>/WEB-INF/realName.tld</taglib-location>

</taglib>

As discussed in Section 5.13 (Locating Tag Library Descriptors), this entry is a good idea when the

name of your tag library changes frequently. However, the JSP 1.2 specification does not require

its use, and servers such as ServletExec 4.1 properly handle listener declarations in TLD files

when there is no such entry. Nevertheless, Tomcat 4.0 requires it.

Core Warning

Tomcat 4.0 reads listener declarations only from TLD files

that have taglib entries in web.xml.

Tracking Active Sessions

At busy sites, a significant portion of the server’s memory can be spent storing HttpSession

objects. You might like to track session usage so that you can decide if you should lower the

session timeout, increase the server’s memory allotment, or even use a database instead of the

servlet session API.

Listing 11.3 shows a session listener that keeps a running count of the number of sessions in

memory. The count is incremented each time a session is created; it is decremented whenever a

session is destroyed (regardless of whether the session destruction is from an explicit call to

invalidate or from timing out).

Listing 11.4 gives a custom tag that simply prints the count of active sessions. Listing 11.5

presents a related tag that prints a large, red warning if the number of sessions in memory

exceeds a predefined maximum. Nothing is printed if the number of active sessions is within

bounds.

Since it doesn’t make sense to use these tags unless the listener is in effect, the TLD file that

declares the tags (Listing 11.6) also declares the listener. Finally, an alias for the TLD file is

created with the taglib element of the web.xml deployment descriptor (Listing 11.7) to ensure

that Tomcat will read the TLD file when the Web application is loaded and to allow developers to

change the name of the TLD file without modifying the JSP pages that use it.

Listing 11.8 shows a JSP page that uses both of the custom tags. Figures 11-1 and 11-2 show the

results when the number of sessions is below and above the predefined limit, respectively.

Figure 11-1. When the number of sessions in memory is less

than the limit, the sessionCountWarning tag does not generate any

output.

Figure 11-2. When the number of sessions in memory exceeds

the limit, the sessionCountWarning tag generates a warning.

Listing 11.3 ActiveSessionCounter.java

package moreservlets.listeners;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Listener that keeps track of the number of sessions

 * that the Web application is currently using.

 */

public class ActiveSessionCounter

 implements HttpSessionListener {

 private static int sessionCount = 0;

 private static int sessionLimit = 1000;

 private ServletContext context = null;

 /** Each time a session is created, increment the

 * running count. If the count exceeds the limit,

 * print a warning in the log file.

 */

 public void sessionCreated(HttpSessionEvent event) {

 sessionCount++;

 if (context == null) {

 recordServletContext(event);

 }

 String warning = getSessionCountWarning();

 if (warning != null) {

 context.log(warning);

 }

 }

 /** Each time a session is destroyed, decrement the

 * running count. A session can be destroyed when a

 * servlet makes an explicit call to invalidate, but it

 * is more commonly destroyed by the system when the time

 * since the last client access exceeds a limit.

 */

 public void sessionDestroyed(HttpSessionEvent event) {

 sessionCount--;

 }

 /** The number of sessions currently in memory. */

 public static int getSessionCount() {

 return(sessionCount);

 }

 /** The limit on the session count. If the number of

 * sessions in memory exceeds this value, a warning

 * should be issued.

 */

 public static int getSessionLimit() {

 return(sessionLimit);

 }

 /** If the number of active sessions is over the limit,

 * this returns a warning string. Otherwise, it returns

 * null.

 */

 public static String getSessionCountWarning() {

 String warning = null;

 if (sessionCount > sessionLimit) {

 warning = "WARNING: the number of sessions in memory " +

 "(" + sessionCount + ") exceeds the limit " +

 "(" + sessionLimit + "). Date/time: " +

 new Date();

 }

 return(warning);

 }

 private void recordServletContext(HttpSessionEvent event) {

 HttpSession session = event.getSession();

 context = session.getServletContext();

 }

}

Listing 11.4 SessionCountTag.java

package moreservlets.tags;

import javax.servlet.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import moreservlets.listeners.*;

/** Prints out the number of active sessions. */

public class SessionCountTag extends TagSupport {

 public int doStartTag() {

 try {

 JspWriter out = pageContext.getOut();

 out.print(ActiveSessionCounter.getSessionCount());

 } catch(IOException ioe) {

 System.out.println("Error printing session count.");

 }

 return(SKIP_BODY);

 }

}

Listing 11.5 SessionCountWarningTag.java

package moreservlets.tags;

import javax.servlet.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

import moreservlets.listeners.*;

/** If the number of active sessions is above the limit,

 * this prints a warning. Otherwise, it does nothing.

 */

public class SessionCountWarningTag extends TagSupport {

 public int doStartTag() {

 try {

 String warning =

 ActiveSessionCounter.getSessionCountWarning();

 if (warning != null) {

 JspWriter out = pageContext.getOut();

 out.println("<H1>");

 out.println(warning);

 out.println("</H1>");

 }

 } catch(IOException ioe) {

 System.out.println("Error printing session warning.");

 }

 return(SKIP_BODY);

 }

}

Listing 11.6 session-count-taglib-0.9-beta.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>0.9</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>company-name-tags</short-name>

 <description>

 A tag library that lets you print out the number of

 sessions currently in memory and/or a warning about

 the session count exceeding the limit.

 The tlib-version number and the TLD filename are intended

 to suggest that this tag library is in development. In

 such a situation, you want to use the web.xml taglib

 element to define an alias for the TLD filename. You

 would want to do so even if you weren't trying

 to accommodate Tomcat 4.0, which only reads listener

 declarations from TLD files that are declared that way.

 </description>

 <!-- Register the listener that records the counts. -->

 <listener>

 <listener-class>

 moreservlets.listeners.ActiveSessionCounter

 </listener-class>

 </listener>

 <!-- Define a tag that prints out the session count. -->

 <tag>

 <name>sessionCount</name>

 <tag-class>

 moreservlets.tags.SessionCountTag

 </tag-class>

 <body-content>empty</body-content>

 <description>The number of active sessions.</description>

 </tag>

 <!-- Define a tag that prints out an optional

 session-count warning. -->

 <tag>

 <name>sessionCountWarning</name>

 <tag-class>

 moreservlets.tags.SessionCountWarningTag

 </tag-class>

 <body-content>empty</body-content>

 <description>

 If the number of sessions exceeds the limit,

 this prints a warning. Otherwise, it does nothing.

 </description>

 </tag>

</taglib>

Listing 11.7 web.xml (For session-counting tags)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- If URL gives a directory but no filename, try index.jsp

 first and index.html second. If neither is found,

 the result is server specific (e.g., a directory

 listing). Order of elements in web.xml matters.

 welcome-file-list needs to come after servlet but

 before error-page.

 -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

 <!-- Register the company-name tag library. Declare an alias

 for the TLD filename since the tag library is under

 development and thus the TLD filename might change.

 You don't want to change all the JSP files each time

 the TLD file changes. Besides, Tomcat 4.0 won't pick

 up listener declarations from TLD files unless they

 are declared this way.

 -->

 <taglib>

 <taglib-uri>

 /session-count-taglib.tld

 </taglib-uri>

 <taglib-location>

 /WEB-INF/session-count-taglib-0.9-beta.tld

 </taglib-location>

 </taglib>

</web-app>

Listing 11.8 index.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>VIP</TITLE>

<LINK REL=STYLESHEET

 HREF="styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Very Important Page

</TABLE>

<P>

Blah, blah, blah.

<P>

Yadda, yadda, yadda.

<HR>

<!-- Note that the uri refers to the location defined by

 the taglib element of web.xml, not to the real

 location of the TLD file. -->

<%@ taglib uri="/session-count-taglib.tld" prefix="counts" %>

Number of sessions in memory: <counts:sessionCount/>

<counts:sessionCountWarning/>

</BODY>

</HTML>

Testing Session Counts

On a development system, it is often difficult to test session usage because few (if any) outside

users are accessing the server. So, it is helpful to generate sessions manually. The simplest way

to do this is to disable cookies in your browser and access a framed page that loads the same JSP

page multiple times. For details on the process, see Section 10.7 (Recognizing Session Creation

and Destruction).

To test the session-counting page shown earlier in this section, I used the same JSP page as in

Section 10.7 —a blank page with a randomized background color (Listing 11.9; uses the utility

class of Listing 11.10). Listing 11.11 shows a frame-based page that, each time it is loaded, loads

49 copies of the JSP page. Figure 11-3 shows a typical result.

Figure 11-3. The page used to force the system to create new

sessions.

Listing 11.9 test.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<!-- The purpose of this page is to force the system

 to create a session. -->

<HTML>

<HEAD><TITLE>Test</TITLE></HEAD>

<%@ page import="moreservlets.*" %>

<BODY BGCOLOR="<%= ColorUtils.randomColor() %>">

</BODY></HTML>

Listing 11.10 ColorUtils.java

package moreservlets;

/** Small utility to generate random HTML color names. */

public class ColorUtils {

 // The official HTML color names.

 private static String[] htmlColorNames =

 { "AQUA", "BLACK", "BLUE", "FUCHSIA", "GRAY", "GREEN",

 "LIME", "MAROON", "NAVY", "OLIVE", "PURPLE", "RED",

 "SILVER", "TEAL", "WHITE", "YELLOW" };

 public static String randomColor() {

 int index = randomInt(htmlColorNames.length);

 return(htmlColorNames[index]);

 }

 // Returns a random number from 0 to n-1 inclusive.

 private static int randomInt(int n) {

 return((int)(Math.random() * n));

 }

}

Listing 11.11 make-sessions.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">

<HTML>

<HEAD>

 <TITLE>Session Testing...</TITLE>

</HEAD>

<!-- Load the same JSP page 49 times. If cookies are

 disabled and the server is using cookies for session

 tracking (the default), loading this HTML page causes

 the system to create 49 new sessions. -->

<FRAMESET ROWS="*,*,*,*,*,*,*" COLS="*,*,*,*,*,*,*">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp"><FRAME SRC="test.jsp">

 <FRAME SRC="test.jsp">

 <NOFRAMES><BODY>

 This example requires a frame-capable browser.

 </BODY></NOFRAMES>

</FRAMESET>

</HTML>

11.3 Checking Syntax with TagLibraryValidator

Your tag handlers (i.e., classes that implement the Tag interface, usually by extending

TagSupport or BodyTagSupport) can handle some simple usage errors at request time. For

instance, if your tag has an attribute that expects an integer, the associated set Xxx method

should convert the incoming String to an int by putting the call to Integer.parseInt within a

try/catch block to handle situations where a malformed value is supplied. In addition to these

request time checks, the system will automatically do simple syntax checking at page translation

time based on information supplied in the TLD file. For example, if you misspell an attribute or

omit one that is listed as required, the system will flag these errors when the JSP page is

translated into a servlet.

Both of these approaches are fine for simple cases; neither is sufficient for complicated situations.

For example, suppose the TLD file lists two attributes as optional, but it doesn’t make sense to use

one without the other. How do you enforce that both are supplied or both are omitted? In principle,

your tag handler could enforce these restrictions, but doing so would make the code significantly

more complicated. Besides, errors of this type should be recognized at page translation time; if

you can catch them at page translation time, why slow down request time execution by checking

for them? Other syntax errors simply cannot be detected by tag handlers. For example, suppose

that a certain tag must always contain one of two possible subelements or cannot contain a

certain subelement. The nested tags can discover their enclosing tags with

findAncestorWithClass (see Section 3.7), but how does the enclosing tag enforce which nested

tags it contains?

JSP 1.1 provides a TagExtraInfo class that lets you perform some of these checks. However,

TagExtraInfo is difficult to use and limited in capability. So, JSP 1.2 introduced a new class called

TagLibraryValidator that lets you perform arbitrary page translation-time syntax checks. This

class has a validate method indirectly giving you an InputStream that lets you read the entire

JSP page (represented in XML format), so you have full access to all available translation-time

information about the page. In most cases you don’t read the input directly from the input stream.

Instead, you use an XML-based API like SAX, DOM, or JDOM to look at the various XML elements

(start tags, end tags, tag attributes, and tag bodies) of the file. In such a situation, the HTML

content is represented as the body of a jsp:text element and is usually ignored by the validator.

Using a validator consists of the following steps.

1. Create a subclass of TagLibraryValidator. Note that TagLibraryValidator is in the

javax.servlet.jsp.tagext package.

2. Override the validate method. This method takes three arguments: two strings giving

the prefix and uri declared in the taglib directive of the JSP page using the tag library,

and a PageData object. Call getInputStream on the PageData object to obtain a stream

that lets you read the XML representation of the JSP page. This stream is typically passed

to an XML parser, and your validate method deals with the XML elements, not the raw

characters. If the syntax checks out properly, return null from validate. If there are

errors, return an array of ValidationMessage objects, each of which is built by calling the

ValidationMessage constructor with the ID of the tag (usually null since servers are not

required to give IDs to tags) and a String describing the problem. Here is a simplified

example:
3.

4. public ValidationMessage[] validate(String prefix,

5. String uri,

6. PageData page) {

7. InputStream stream = page.getInputStream();

8. BookOrder[] orders = findBookOrders(stream);

9. for(int i=0; i<orders.length; i++) {

10. String title = orders[i].getTitle();

11. int numOrdered = orders[i].getNumOrdered();

12. if (title.equals("More Servlets and JavaServer Pages") &&

13. (numOrdered < 100)) {

14. String message = "Too few copies of MSAJSP ordered!";

15. ValidationMessage[] errors =

16. { new ValidationMessage(null, message) };

17. return(errors);

18. }

19. }

20. return(null);

}

3. Optionally override other methods. You read validator initialization parameters

(supplied in the TLD file with the init-param subelement of validator) with

getInitParameters. You can set initialization parameters with setInitParameters. If

you store persistent values in fields of your validator, use release to reset the

fields—validator instances, like tag instances, can be reused by servers.

4. Declare the validator in the TLD file. Use the validator element with a

validator-class subelement and optionally one or more init-param subelements and a

description element. The validator element goes after description but before

listener and tag in the TLD file. Here is a simplified example:
5.

6. <?xml version="1.0" encoding="ISO-8859-1" ?>

7. <!DOCTYPE ...>

8. <taglib>

9. <tlib-version>...</tlib-version>

10. <jsp-version>1.2</jsp-version>

11. <short-name>...</short-name>

12. <description>...</description>

13. <validator>

14. <validator-class>

15. somePackage.SomeValidatorClass

16. </validator-class>

17. </validator>

18. <tag>...</tag>

</taglib>

5. Try JSP pages that use the tag library. First, deploy your Web application. Second,

see if you get errors when the JSP pages are translated. If you use load-on-startup (see

Section 5.5, “ Initializing and Preloading Servlets and JSP Pages ”), the JSP page is

translated into a servlet when the server is loaded. Otherwise, it is translated the first time

it is accessed. If the validate method returns null, no action is taken. If validate

returns a nonempty array, the server makes the error messages available in some

server-specific manner.

Remember, however, that each JSP page is only translated into a servlet once. Unless the

JSP page is modified, it doesn’t get retranslated even if the server is restarted. This means

that, during development, you have to be sure to modify your JSP pages whenever you

want to test a change in your validator. It is also possible to delete the servlet that resulted

from the JSP page, but that servlet is stored in a server-specific location. I usually just add

and then delete a space in the JSP page, then redeploy it.

Core Warning

Tag library validators are only triggered when the

associated JSP pages are translated into servlets. So, if you modify a
validator, be sure to modify and redeploy the JSP pages that it applies to.

Example: Tracing the Tag Structure

To become acquainted with validators, let’s make a validator that simply discovers all of the start

and end tags, tag attributes, and tag bodies. It will print a summary to standard output and

always return null to indicate that no syntax errors were found. I’ll show a more interesting

validator in the next subsection.

Even this simple task would be a lot of work if we had to parse the JSP page ourselves. Fortunately,

since the page is represented in XML, we can use an XML parser and one of the standardized APIs

like SAX, DOM, or JDOM. I’ll use the Apache Xerces parser and the SAX API in this example. I’ll

also use the Java API for XML Parsing (JAXP) so that I can switch from the Apache parser to

another SAX-compliant parser by changing only a single property value. If you aren’t familiar with

SAX and JAXP, Section 11.4 summarizes their use.

Accomplishing this task involves the following steps.

1. Creation of a subclass of TagLibraryValidator. Listing 11.12 shows a class called

SAXValidator that extends TagLibraryValidator.

2. Overriding of the validate method. I take the third argument to validate (the

PageData object), call getInputStream, and pass that to the SAX InputSource

constructor. I then tell SAX to parse the JSP document using that InputSource and a

handler called PrintHandler (Listing 11.13). This handler simply prints to standard

output the start tags (with attributes), the end tags, and the first word of each tag body.

Again, see Section 11.4 if you are unfamiliar with the SAX API.

3. Declaration of the validator in the TLD file. Listing 11.14 shows an updated version

of the TLD file for the session-counting example, with a validator entry added.

4. Try JSP pages that use the tag library. Listing 11.15 shows the standard output that

results when index.jsp (shown earlier in Listing 11.8 and Figures 11-1 and 11-2) is

accessed.

Listing 11.12 SAXValidator.java

import javax.servlet.jsp.tagext.*;

import javax.xml.parsers.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

/** A "validator" that really just prints out an outline

 * of the JSP page (in its XML representation). The

 * validate method always returns null, so the page is

 * always considered valid.

 */

public class SAXValidator extends TagLibraryValidator {

 /** Print an outline of the XML representation of

 * the JSP page.

 */

 public ValidationMessage[] validate(String prefix,

 String uri,

 PageData page) {

 String jaxpPropertyName =

 "javax.xml.parsers.SAXParserFactory";

 // Pass the parser factory in on the command line with

 // -D to override the use of the Apache parser.

 if (System.getProperty(jaxpPropertyName) == null) {

 String apacheXercesPropertyValue =

 "org.apache.xerces.jaxp.SAXParserFactoryImpl";

 System.setProperty(jaxpPropertyName,

 apacheXercesPropertyValue);

 }

 DefaultHandler handler = new PrintHandler();

 SAXParserFactory factory = SAXParserFactory.newInstance();

 try {

 SAXParser parser = factory.newSAXParser();

 InputSource source =

 new InputSource(page.getInputStream());

 parser.parse(source, handler);

 } catch(Exception e) {

 String errorMessage =

 "SAX parse error: " + e;

 System.err.println(errorMessage);

 e.printStackTrace();

 }

 return(null);

 }

}

Listing 11.13 PrintHandler.java

package moreservlets;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import java.util.StringTokenizer;

/** A SAX handler that prints out the start tags, end tags,

 * and first word of tag body. Indents two spaces

 * for each nesting level.

 */

public class PrintHandler extends DefaultHandler {

 private int indentation = 0;

 /** When you see a start tag, print it out and then increase

 * indentation by two spaces. If the element has

 * attributes, place them in parens after the element name.

 */

 public void startElement(String namespaceUri,

 String localName,

 String qualifiedName,

 Attributes attributes)

 throws SAXException {

 indent(indentation);

 System.out.print("<" + qualifiedName);

 int numAttributes = attributes.getLength();

 // For <someTag> just print out "<someTag>". But for

 // <someTag att1="Val1" att2="Val2"> (or variations

 // that have extra white space), print out

 // <someTag att1="Val1" att2="Val2">.

 if (numAttributes > 0) {

 for(int i=0; i<numAttributes; i++) {

 System.out.print(" ");

 System.out.print(attributes.getQName(i) + "=\"" +

 attributes.getValue(i) + "\"");

 }

 }

 System.out.println(">");

 indentation = indentation + 2;

 }

 /** When you see the end tag, print it out and decrease

 * indentation level by 2.

 */

 public void endElement(String namespaceUri,

 String localName,

 String qualifiedName)

 throws SAXException {

 indentation = indentation - 2;

 indent(indentation);

 System.out.println("</" + qualifiedName + ">");

 }

 /** Print out the first word of each tag body. */

 public void characters(char[] chars,

 int startIndex,

 int length) {

 String data = new String(chars, startIndex, length);

 // White space makes up default StringTokenizer delimiters

 StringTokenizer tok = new StringTokenizer(data);

 if (tok.hasMoreTokens()) {

 indent(indentation);

 System.out.print(tok.nextToken());

 if (tok.hasMoreTokens()) {

 System.out.println("...");

 } else {

 System.out.println();

 }

 }

 }

 private void indent(int indentation) {

 for(int i=0; i<indentation; i++) {

 System.out.print(" ");

 }

 }

}

Listing 11.14 session-count-taglib-0.9-beta.tld (Updated)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>0.9</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>company-name-tags</short-name>

 <description>

 A tag library that lets you print out the number of

 sessions currently in memory and/or a warning about

 the session count exceeding the limit.

 The tlib-version number and the TLD filename are intended

 to suggest that this tag library is in development. In

 such a situation, you want to use the web.xml taglib

 element to define an alias for the TLD filename. You

 would want to do so even if you weren't trying

 to accommodate Tomcat 4.0, which only reads listener

 declarations from TLD files that are declared that way.

 </description>

 <!-- Declare a validator to do translation-time checking

 of custom tag syntax. -->

 <validator>

 <validator-class>moreservlets.SAXValidator</validator-class>

 </validator>

 <!-- Register the listener that records the counts. -->

 <listener>

 <listener-class>

 moreservlets.listeners.ActiveSessionCounter

 </listener-class>

 </listener>

 <!-- Define a tag that prints out the session count. -->

 <tag>

 <name>sessionCount</name>

 <tag-class>

 moreservlets.tags.SessionCountTag

 </tag-class>

 <body-content>empty</body-content>

 <description>The number of active sessions.</description>

 </tag>

 <!-- Define a tag that prints out an optional

 session-count warning. -->

 <tag>

 <name>sessionCountWarning</name>

 <tag-class>

 moreservlets.tags.SessionCountWarningTag

 </tag-class>

 <body-content>empty</body-content>

 <description>

 If the number of sessions exceeds the limit,

 this prints a warning. Otherwise, it does nothing.

 </description>

 </tag>

</taglib>

Listing 11.15 Validator output (for index.jsp — Listing 11.8)

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"

 version="1.2"

 xmlns:counts="/session-count-taglib.tld">

 <jsp:text>

 <!DOCTYPE...

 </jsp:text>

 <jsp:text>

 Number...

 </jsp:text>

 <counts:sessionCount>

 </counts:sessionCount>

 <jsp:text>

 </jsp:text>

 <counts:sessionCountWarning>

 </counts:sessionCountWarning>

 <jsp:text>

 </BODY>...

 </jsp:text>

</jsp:root>

Example: Enforcing Tag Nesting Order

The previous subsection showed how to make a simple validator that uses SAX to discover the

various tags in the page. Now let’s do something with those tags. Listings 11.16 and 11.17 show

two simple tags: OuterTag and InnerTag. OuterTag should not contain other OuterTag instances,

and InnerTag should only appear within OuterTag. Developing a validator to enforce these

restrictions involves the following steps.

1. Creation of a subclass of TagLibraryValidator. Listing 11.18 shows a class called

NestingValidator that extends TagLibraryValidator.

2. Overriding of the validate method. I take the third argument to validate (the

PageData object), call getInputStream, and pass that to the SAX InputSource

constructor. I then tell SAX to parse the JSP document using that InputSource and a

handler called NestingHandler (Listing 11.19). The NestingHandler class throws an

exception in two situations: if it finds the outer tag when an existing outer tag instance is

open and if it finds the inner tag when an existing outer tag instance is not open. The main

validator returns null if the handler throws no exceptions. If the handler throws an

exception, a 1-element ValidationMessage array is returned that contains a

ValidationMessage describing the error.

3. Declaration of the validator in the TLD file. Listing 11.20 shows a TLD file that gives

tag names to the two tag handlers and declares the validator.

4. Try JSP pages that use the tag library. Listings 11.21 and 11.22 show two JSP pages

that correctly follow the rules that the outer tag cannot be nested and that the inner tag

must appear directly or indirectly within the outer tag. Figures 11-4 and 11-5 show the

results— the validator does not affect the output in any way. Listing 11.23 shows a JSP

page that incorrectly attempts to use the inner tag when it is not nested within the outer

tag. Figures 11-6 and 11-7 show the results in Tomcat 4.0 and ServletExec 4.1,

respectively—the normal output is blocked since the JSP page was not successfully

translated into a servlet. Listing 11.24 shows a JSP page that incorrectly attempts to nest

the outer tag. Figure 11-8 shows the result in Tomcat 4.0.

Figure 11-4. Result of nesting-test1.jsp. Tags are nested

properly, so output is normal.

Figure 11-5. Result of nesting-test2.jsp. Tags are nested

properly, so output is normal.

Figure 11-6. Result of nesting-test3.jsp. Tags are nested

improperly, so normal output is prevented—at page

translation time, the normal servlet is replaced by one

that gives an error message. This output is from Tomcat

4.0.

Figure 11-7. The result of nesting-test3.jsp when

accessed on ServletExec 4.1.

Figure 11-8. Result of nesting-test4.jsp. Tags are nested

improperly, so normal output is prevented—at page

translation time, the normal servlet is replaced by one

that gives an error message. This output is from Tomcat

4.0.

Listing 11.16 OuterTag.java

package moreservlets.tags;

import javax.servlet.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

/** Prints out a simple message. A TagLibraryValidator will

 * enforce a nesting order for tags associated with this class.

 */

public class OuterTag extends TagSupport {

 public int doStartTag() {

 try {

 JspWriter out = pageContext.getOut();

 out.print("OuterTag");

 } catch(IOException ioe) {

 System.out.println("Error printing OuterTag.");

 }

 return(EVAL_BODY_INCLUDE);

 }

}

Listing 11.17 InnerTag.java

package moreservlets.tags;

import javax.servlet.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

/** Prints out a simple message. A TagLibraryValidator will

 * enforce a nesting order for tags associated with this class.

 */

public class InnerTag extends TagSupport {

 public int doStartTag() {

 try {

 JspWriter out = pageContext.getOut();

 out.print("InnerTag");

 } catch(IOException ioe) {

 System.out.println("Error printing InnerTag.");

 }

 return(EVAL_BODY_INCLUDE);

 }

}

Listing 11.18 NestingValidator.java

package moreservlets;

import javax.servlet.jsp.tagext.*;

import javax.xml.parsers.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

/** A validator that verifies that tags follow

 * proper nesting order.

 */

public class NestingValidator extends TagLibraryValidator {

 public ValidationMessage[] validate(String prefix,

 String uri,

 PageData page) {

 String jaxpPropertyName =

 "javax.xml.parsers.SAXParserFactory";

 // Pass the parser factory in on the command line with

 // -D to override the use of the Apache parser.

 if (System.getProperty(jaxpPropertyName) == null) {

 String apacheXercesPropertyValue =

 "org.apache.xerces.jaxp.SAXParserFactoryImpl";

 System.setProperty(jaxpPropertyName,

 apacheXercesPropertyValue);

 }

 DefaultHandler handler = new NestingHandler();

 SAXParserFactory factory = SAXParserFactory.newInstance();

 try {

 SAXParser parser = factory.newSAXParser();

 InputSource source =

 new InputSource(page.getInputStream());

 parser.parse(source, handler);

 return(null);

 } catch(Exception e) {

 String errorMessage = e.getMessage();

 // The first argument to the ValidationMessage

 // constructor can be a tag ID. Since tag IDs

 // are not universally supported, use null for

 // portability. The important part is the second

 // argument: the error message.

 ValidationMessage[] messages =

 { new ValidationMessage(null, errorMessage) };

 return(messages);

 }

 }

}

Listing 11.19 NestingHandler.java

package moreservlets;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import java.util.StringTokenizer;

/** A SAX handler that returns an exception if either of

 * the following two situations occurs:

 *

 * The designated outer tag is directly or indirectly

 * nested within the outer tag (i.e., itself).

 * The designated inner tag is <I>not</I> directly

 * or indirectly nested within the outer tag.

 *

 */

public class NestingHandler extends DefaultHandler {

 private String outerTagName = "outerTag";

 private String innerTagName = "innerTag";

 private boolean inOuterTag = false;

 public void startElement(String namespaceUri,

 String localName,

 String qualifiedName,

 Attributes attributes)

 throws SAXException {

 String tagName = mainTagName(qualifiedName);

 if (tagName.equals(outerTagName)) {

 if (inOuterTag) {

 throw new SAXException("\nCannot nest " + outerTagName);

 }

 inOuterTag = true;

 } else if (tagName.equals(innerTagName) && !inOuterTag) {

 throw new SAXException("\n" + innerTagName +

 " can only appear within " +

 outerTagName);

 }

 }

 public void endElement(String namespaceUri,

 String localName,

 String qualifiedName)

 throws SAXException {

 String tagName = mainTagName(qualifiedName);

 if (tagName.equals(outerTagName)) {

 inOuterTag = false;

 }

 }

 private String mainTagName(String qualifiedName) {

 StringTokenizer tok =

 new StringTokenizer(qualifiedName, ":");

 tok.nextToken();

 return(tok.nextToken());

 }

}

Listing 11.20 nested-tag-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>nested-tags</short-name>

 <description>

 A tag library that has two tags: outerTag and innerTag.

 A TagLibraryValidator will enforce the following

 nesting rules:

 1) innerTag can only appear inside outerTag. It can

 be nested, however.

 2) outerTag cannot be nested within other outerTag

 instances.

 </description>

 <!-- Declare a validator to do translation-time checking

 of custom tag syntax. -->

 <validator>

 <validator-class>

 moreservlets.NestingValidator

 </validator-class>

 </validator>

 <!-- Define the outerTag tag. -->

 <tag>

 <name>outerTag</name>

 <tag-class>

 moreservlets.tags.OuterTag

 </tag-class>

 <body-content>JSP</body-content>

 <description>

 A simple tag: cannot be nested within other outerTag

 instances.

 </description>

 </tag>

 <!-- Define the innerTag tag. -->

 <tag>

 <name>innerTag</name>

 <tag-class>

 moreservlets.tags.InnerTag

 </tag-class>

 <body-content>JSP</body-content>

 <description>

 A simple tag: can only appear within outerTag.

 </description>

 </tag>

</taglib>

Listing 11.21 nesting-test1.jsp (Proper tag nesting)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Nested Tags: Test 1</TITLE>

<LINK REL=STYLESHEET

 HREF="styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Nested Tags: Test 1

</TABLE>

<%@ taglib uri="/WEB-INF/nested-tag-taglib.tld" prefix="test" %>

<PRE>

<test:outerTag>

 <test:innerTag/>

 <test:innerTag/>

 <test:innerTag/>

</test:outerTag>

<test:outerTag/>

</PRE>

</BODY>

</HTML>

Listing 11.22 nesting-test2.jsp (Proper tag nesting)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Nested Tags: Test 2</TITLE>

<LINK REL=STYLESHEET

 HREF="styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Nested Tags: Test 2

</TABLE>

<%@ taglib uri="/WEB-INF/nested-tag-taglib.tld" prefix="test" %>

<PRE>

<test:outerTag>

 <test:innerTag>

 <test:innerTag/>

 </test:innerTag>

 <test:innerTag>

 <test:innerTag>

 <test:innerTag/>

 </test:innerTag>

 </test:innerTag>

</test:outerTag>

<test:outerTag/>

</PRE>

</BODY>

</HTML>

Listing 11.23 nesting-test3.jsp (Improper tag nesting)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Nested Tags: Test 3</TITLE>

<LINK REL=STYLESHEET

 HREF="styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Nested Tags: Test 3

</TABLE>

<%@ taglib uri="/WEB-INF/nested-tag-taglib.tld" prefix="test" %>

<PRE>

<test:innerTag/>

</PRE>

</BODY>

</HTML>

Listing 11.24 nesting-test4.jsp (Improper tag nesting)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Nested Tags: Test 4</TITLE>

<LINK REL=STYLESHEET

 HREF="styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Nested Tags: Test 4

</TABLE>

<%@ taglib uri="/WEB-INF/nested-tag-taglib.tld" prefix="test" %>

<PRE>

<test:outerTag>

 <test:outerTag/>

</test:outerTag>

</PRE>

</BODY>

</HTML>

11.4 Aside: Parsing XML with SAX 2.0

The validate method of TagLibraryValidator gives you a PageData object from which you can

obtain an InputStream that is associated with the XML version of the JSP page. You are unlikely

to want to read directly from that stream to try to validate proper usage of your custom tags: the

input streams and readers in the java.io package are too low level to be effective for this usage.

Instead, you will probably want to use an XML parser to do the low-level work for you. The

validators of Section 11.3 used the SAX 2.0 API, so I’ll summarize its use here. More detail on SAX

can be found at http://www.saxproject.org/. For information on DOM and other XML-related APIs,

see http://www.w3.org/XML/, one of the many XML and Java texts such as Java & XML 2nd

Edition (O’Reilly 2001), or the SAX, DOM, and XSLT summary in Chapter 23 of Core Web

Programming 2nd Edition (Prentice Hall and Sun Microsystems Press 2001).

SAX processing is a lot like writing custom tag handlers: you write methods to handle the start tag,

end tag, and tag body. The major difference is that SAX handlers are not associated with specific

tags—the same handler fires for all tags. So, with SAX you have to repeatedly check which tag

you are working with. Of course, this capability is exactly what makes SAX so useful for checking

that different tags are interacting properly.

Installation and Setup

SAX is not a standard part of either Java 2 Standard Edition or the servlet and JSP APIs. So, your

first step is to download the appropriate classes and configure them for use in your programs.

Here is a summary of what is required.

1. Download a SAX-compliant parser. The parser provides the Java classes that follow

the SAX 2 API as specified by the WWW Consortium. You can obtain a list of XML parsers

in Java at http://www.xml.com/pub/rg/Java_Parsers. I use the Apache Xerces-J parser in

this book. See http://xml.apache.org/xerces-j/. This parser comes with the complete SAX

API in Javadoc format.

2. Download the Java API for XML Processing (JAXP). This API provides a small layer

on top of SAX that lets you plug in different vendor’s parsers without making any changes

to your basic code. See http://java.sun.com/xml/.

3. Tell your development environment and the server about the SAX classes. In the

case of Apache Xerces, the SAX classes are in xerces_install_dir/ xerces.jar. So, for

example, to set up your development environment on Windows 98, you would do
4.

set CLASSPATH=xerces_install_dir\xerces.jar;%CLASSPATH%

To tell the server about the SAX classes, you would either copy the JAR file to the Web

application’s lib directory, unpack the JAR file (using jar -xvf) into the server’s classes

directory, or put the JAR file in a shared location (if your server supports such a

capability—see Section 4.4, “ Recording Dependencies on Server Libraries ”).

4. Set your CLASSPATH to include the JAXP classes. These classes are in

jaxp_install_dir/jaxp.jar. For example, to set up your development environment on

Unix/Linux with the C shell, you would do
5.

setenv CLASSPATH jaxp_install_dir/jaxp.jar:$CLASSPATH

To tell the server about the JAXP classes, see the preceding step.

5. Bookmark the SAX API. You can browse the official API at

http://www.saxproject.org/apidoc/index.html, but the API that comes with Apache

Xerces is easier to use because it is on your local system and is integrated with the DOM

and JAXP APIs. More information on SAX can be found at http://www.saxproject.org/.

Parsing

With SAX processing, there are two high-level tasks: creating a content handler and invoking the

parser with the designated content handler. The following list summarizes the detailed steps

needed to accomplish these tasks.

1. Tell the system which parser you want to use. This can be done in a number of ways:

through the javax.xml.parsers.SAXParserFactory system property, through

jre_dir/lib/ jaxp.properties, through the J2EE Services API and the class specified in

META-INF/services/ javax.xml.parsers.SAXParserFactory, or with a system-dependent

default parser. The system property is the easiest method. For example, the following

code permits deployers to specify the parser in the server startup script with the -D option

to java, and uses the Apache Xerces parser otherwise.
2.

3. String jaxpPropertyName =

4. "javax.xml.parsers.SAXParserFactory";

5. if (System.getProperty(jaxpPropertyName) == null) {

6. String apacheXercesPropertyValue =

7. "org.apache.xerces.jaxp.SAXParserFactoryImpl";

8. System.setProperty(jaxpPropertyName,

9. apacheXercesPropertyValue);

10. }

...

2. Create a parser instance. First make an instance of a parser factory, then use that to

create a parser object.

3.

4. SAXParserFactory factory = SAXParserFactory.newInstance();

SAXParser parser = factory.newSAXParser();

Note that you can use the setNamespaceAware and setValidating methods on the

SAXParserFactory to make the parser namespace aware and validating, respectively.

3. Create a content handler to respond to parsing events. This handler is typically a

subclass of DefaultHandler. You override any or all of the following placeholders.

o startDocument, endDocument Use these methods to respond to the start and end

of the document; they take no arguments.

o startElement, endElement Use these methods to respond to the start and end

tags of an element. The startElement method takes four arguments: the

namespace URI (a String; empty if no namespace), the namespace or prefix (a

String; empty if no namespace), the fully qualified element name (a String; i.e.,

"prefix:mainName" if there is a namespace; "mainName" otherwise), and an

Attributes object representing the attributes of the start tag. The endElement

method takes the same arguments except for the attributes (since end tags are not

permitted attributes).

o characters, ignoreableWhitespace Use these methods to respond to the tag

body. They take three arguments: a char array, a start index, and an end index. A

common approach is to turn the relevant part of the character array into a String

by passing all three arguments to the String constructor. Non-white-space data is

always reported to the characters method. White space is always reported to the

ignoreableWhitespace method when the parser is run in validating mode but can

be reported to either method otherwise.

4. Invoke the parser with the designated content handler. You invoke the parser by

calling the parse method, supplying an input stream, URI (represented as a string), or

org.xml.sax.InputSource along with the content handler. Note that InputSource has a

simple constructor that accepts an InputStream. Use this constructor to turn the

InputStream of the TagLibraryValidator validate method into an InputSource.
5.

parser.parse(new InputSource(validatorStream), handler);

The content handler does the rest.

11.5 Handling Exceptions with the TryCatchFinally

Interface

In JSP 1.1, you can trap exceptions that occur in each of your tag handling methods (doStartTag,

doEndTag, etc.). But, what happens if an exception occurs during the processing of the body of

the tag? What if you want to respond to exceptions in doStartTag, doEndTag, and doAfterBody

the same way and don’t want to repeat your code?

JSP 1.2 answers these questions by providing a new interface called TryCatchFinally with two

methods:

• doCatch(Throwable t)

• doFinally()

If your tag implements this interface and an exception occurs during any of the tag life-cycle

methods or during the processing of the tag body, the system calls the doCatch method.

Regardless of whether an exception occurs, the system calls the doFinally method when done

executing the tag. Note, however, that this exception-handling behavior applies only to the tag

life-cycle methods and the processing of the tag body. It does not apply to the setXxx

attribute-setting methods.

Core Warning

The TryCatchFinally interface does not apply to the

methods that set the tag attributes.

To illustrate this new exception-handling behavior, Listing 11.25 shows a tag that implements

TryCatchFinally. The tag doesn’t actually output anything: it just prints a message to standard

output when doStartTag, doEndTag, doCatch, and doFinally are called. Listing 11.26 shows the

TLD file that declares the tag; no new syntax or entries are needed.

Listing 11.27 shows a JSP page that uses the new tag wrapped around a body that sometimes

throws an exception (see Listing 11.28). Figure 11-9 shows the result when none of the tags

throws an exception. Listing 11.29 shows the corresponding output— doStartTag, doEndTag,

and doFinally are invoked but doCatch is not. Figure 11-10 shows the result when the second

invocation of the tag throws an exception—the tag body generates no output but the page

processing continues normally. Listing 11.30 shows the corresponding output— doStartTag,

doEndTag, and doFinally are invoked each time and doCatch is invoked only in the case when

the tag body threw the exception.

Figure 11-9. One possible result of catchTest.jsp.

Figure 11-10. Another possible result of catchTest.jsp.

Listing 11.25 CatchTag.java

package moreservlets.tags;

import javax.servlet.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

/** Tag that traces the life cycle of tags that

 * implement the TryCatchFinally interface.

 */

public class CatchTag extends TagSupport

 implements TryCatchFinally {

 public int doStartTag() {

 System.out.println("CatchTag: start");

 return(EVAL_BODY_INCLUDE);

 }

 public int doEndTag() {

 System.out.println("CatchTag: end");

 return(EVAL_PAGE);

 }

 public void doCatch(Throwable throwable) {

 System.out.println("CatchTag: doCatch: " +

 throwable.getMessage());

 }

 public void doFinally() {

 System.out.print("CatchTag: doFinally\n");

 }

}

Listing 11.26 catch-tag-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>catch-tags</short-name>

 <description>

 A tag library that uses a simple tag to illustrate

 the behavior of the TryCatchFinally interface.

 From More Servlets and JavaServer Pages,

 http://www.moreservlets.com/.

 </description>

 <!-- Define the catchTag tag. -->

 <tag>

 <name>catchTag</name>

 <tag-class>

 moreservlets.tags.CatchTag

 </tag-class>

 <body-content>JSP</body-content>

 <description>

 Implements the TryCatchFinally interface and

 prints simple tag life-cycle information to the

 standard output.

 </description>

 </tag>

</taglib>

Listing 11.27 catchTest.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Some Random Numbers</TITLE>

<LINK REL=STYLESHEET

 HREF="styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Some Random Numbers

</TABLE>

<%@ taglib uri="/WEB-INF/catch-tag-taglib.tld" prefix="msajsp" %>

 <msajsp:catchTag>

 <%= moreservlets.Utils.dangerousMethod() %>

 </msajsp:catchTag>

 <msajsp:catchTag>

 <%= moreservlets.Utils.dangerousMethod() %>

 </msajsp:catchTag>

 <msajsp:catchTag>

 <%= moreservlets.Utils.dangerousMethod() %>

 </msajsp:catchTag>

 <msajsp:catchTag>

 <%= moreservlets.Utils.dangerousMethod() %>

 </msajsp:catchTag>

 <msajsp:catchTag>

 <%= moreservlets.Utils.dangerousMethod() %>

 </msajsp:catchTag>

</BODY>

</HTML>

Listing 11.28 Utils.java

package moreservlets;

public class Utils {

 public static String dangerousMethod() throws Exception {

 double num = Math.random();

 if (num < 0.8) {

 return("Random num: " + num);

 } else {

 throw(new Exception("No intelligent life here."));

 }

 }

}

Listing 11.29 Output of catchTest.jsp corresponding to Figure

11-9

CatchTag: start

CatchTag: end

CatchTag: doFinally

CatchTag: start

CatchTag: end

CatchTag: doFinally

CatchTag: start

CatchTag: end

CatchTag: doFinally

CatchTag: start

CatchTag: end

CatchTag: doFinally

CatchTag: start

CatchTag: end

CatchTag: doFinally

Listing 11.30 Listing 11.30 Output of catchTest.jsp

corresponding to Figure 11-10

CatchTag: start

CatchTag: end

CatchTag: doFinally

CatchTag: start

CatchTag: doCatch: No intelligent life here.

CatchTag: doFinally

CatchTag: start

CatchTag: end

CatchTag: doFinally

CatchTag: start

CatchTag: end

CatchTag: doFinally

CatchTag: start

CatchTag: end

CatchTag: doFinally

11.6 New Names for Return Values

In JSP 1.1, the EVAL_BODY_TAG constant was used in two totally different situations. First, it was

returned from the doStartTag method of TagSupport or BodyTagSupport to indicate that the tag

body should be made available in doAfterBody. The default doStartTag method of

BodyTagSupport returned this value. Second, it was returned from the doAfterBody method of

TagSupport or BodyTagSupport to indicate that the body should be reevaluated.

This dual use of EVAL_BODY_TAG was confusing because it indicated a single evaluation in the first

case and multiple evaluations (as in iterative tags) in the second case. To better differentiate the

two situations, in JSP 1.2 you return EVAL_BODY_BUFFERED from doStartTag to indicate that the

tag body should be made available in doAfterBody. You return EVAL_BODY_AGAIN from

doAfterBody when you want to reevaluate the body.

11.7 Looping Without Generating BodyContent

In JSP 1.1, the only way to make an iterative tag is to return EVAL_BODY_TAG from the

doAfterBody method, thus instructing the system to reevaluate the tag body. If the doStartTag

returns EVAL_BODY_TAG, the system copies the tag body into a BodyContent object and invokes

doAfterBody. The BodyTagSupport class overrides doStartTag to automatically return

EVAL_BODY_TAG, so you only need to write doAfterBody when using BodyTagSupport. The

problem with this approach is that doAfterBody must manually generate the tag body’s output by

extracting it from the BodyContent object in which the system wraps the body. This is fine if you

actually want to manipulate the body. But, if you merely want to iterate, you must use the

somewhat clumsy BodyContent object and the system must repeatedly copy the tag body.

JSP 1.2 provides a solution that is both simpler and more efficient. If a tag implements

IterationTag, doStartTag can return EVAL_BODY_INCLUDE to instruct the system to output the

tag body without first copying it. Then, if the doAfterBody method returns EVAL_BODY_AGAIN, the

process is repeated. Since the TagSupport class now implements IterationTag, simple iterative

tags in JSP 1.2 need not use BodyTagSupport at all.

The following two subsections present simple examples that contrast the JSP 1.1 and JSP 1.2

approaches.

JSP 1.1 Loop Tag

Listing 11.31 shows a simple iterative tag that uses the JSP 1.1 approach. It extends the

BodyTagSupport class, overrides doAfterBody, extracts the tag body from the BodyContent

object, and outputs it to the client. The doAfterBody method returns EVAL_BODY_TAG to indicate

that looping should continue; it returns SKIP_BODY when done.

Listing 11.32 shows a TLD file that declares the tag; Listing 11.33 shows a JSP page that uses the

tag, supplying a request-time form parameter (repeats) to dictate how many repetitions should

be executed. Figure 11-11 shows the result.

Figure 11-11. Result of repeat-test1.jsp when the user

supplies a repeats parameter of 25.

Listing 11.31 RepeatTag1.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

/** A tag that repeats the body the specified

 * number of times. JSP 1.1 version.

 */

public class RepeatTag1 extends BodyTagSupport {

 private int reps;

 public void setReps(String repeats) {

 try {

 reps = Integer.parseInt(repeats);

 } catch(NumberFormatException nfe) {

 reps = 1;

 }

 }

 public int doAfterBody() {

 if (reps-- >= 1) {

 BodyContent body = getBodyContent();

 try {

 JspWriter out = body.getEnclosingWriter();

 out.println(body.getString());

 body.clearBody(); // Clear for next evaluation

 } catch(IOException ioe) {

 System.out.println("Error in RepeatTag1: " + ioe);

 }

 return(EVAL_BODY_TAG);

 } else {

 return(SKIP_BODY);

 }

 }

}

Listing 11.32 repeat-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>repeat-tags</short-name>

 <description>

 A tag library that has two tags: repeatTag1 and repeatTag2.

 These are JSP 1.1 and JSP 1.2 versions of simple

 looping tags.

 </description>

 <!-- An iterative tag. JSP 1.1 version. -->

 <tag>

 <name>repeat1</name>

 <tag-class>moreservlets.tags.RepeatTag1</tag-class>

 <body-content>JSP</body-content>

 <description>

 Repeats body the specified number of times.

 </description>

 <attribute>

 <name>reps</name>

 <required>true</required>

 <!-- rtexprvalue indicates whether attribute

 can be a JSP expression. -->

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>

 <!-- An iterative tag. JSP 1.2 version. -->

 <tag>

 <name>repeat2</name>

 <tag-class>moreservlets.tags.RepeatTag2</tag-class>

 <body-content>JSP</body-content>

 <description>

 Repeats body the specified number of times.

 </description>

 <attribute>

 <name>reps</name>

 <required>true</required>

 <!-- rtexprvalue indicates whether attribute

 can be a JSP expression. -->

 <rtexprvalue>true</rtexprvalue>

 </attribute>

 </tag>

</taglib>

Listing 11.33 repeat-test1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Some Random Numbers</TITLE>

<LINK REL=STYLESHEET

 HREF="styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Some Random Numbers

</TABLE>

<P>

<%@ taglib uri="/WEB-INF/repeat-taglib.tld" prefix="msajsp" %>

<msajsp:repeat1 reps='<%= request.getParameter("repeats") %>'>

 <%= Math.random() %>

</msajsp:repeat1>

</BODY>

</HTML>

JSP 1.2 Loop Tag

Listing 11.34 shows a simple iterative tag that uses the JSP 1.2 approach. It extends the

TagSupport class, overrides doStartTag to return EVAL_BODY_INCLUDE, and overrides

doAfterBody to either return EVAL_BODY_AGAIN (keep looping) or SKIP_BODY (done). No

BodyContent: no need for the programmer to extract it, and no need for the system to waste time

and memory copying the tag body into it.

Listing 11.35 shows a JSP page that uses the tag, supplying a request-time form parameter

(repeats) to dictate how many repetitions should be executed. Figure 11-12 shows the result.

Figure 11-12. Result of repeat-test2.jsp when the user

supplies a repeats parameter of 25.

Listing 11.34 RepeatTag2.java

package moreservlets.tags;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

/** A tag that repeats the body the specified

 * number of times. JSP 1.2 version.

 */

public class RepeatTag2 extends TagSupport {

 private int reps;

 public void setReps(String repeats) {

 try {

 reps = Integer.parseInt(repeats);

 } catch(NumberFormatException nfe) {

 reps = 1;

 }

 }

 public int doStartTag() {

 if (reps >= 1) {

 return(EVAL_BODY_INCLUDE);

 } else {

 return(SKIP_BODY);

 }

 }

 public int doAfterBody() {

 if (reps-- > 1) {

 return(EVAL_BODY_AGAIN);

 } else {

 return(SKIP_BODY);

 }

 }

}

Listing 11.35 repeat-test2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Some Random Numbers</TITLE>

<LINK REL=STYLESHEET

 HREF="styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Some Random Numbers

</TABLE>

<P>

<%@ taglib uri="/WEB-INF/repeat-taglib.tld" prefix="msajsp" %>

<msajsp:repeat2 reps='<%= request.getParameter("repeats") %>'>

 <%= Math.random() %>

</msajsp:repeat2>

</BODY>

</HTML>

11.8 Introducing Scripting Variables in the TLD File

In JSP 1.1, you override the getVariableInfo method of a TagExtraInfo class to declare

scripting variables that your tag will introduce. The getVariableInfo method returns an array of

VariableInfo objects. The VariableInfo constructor, in turn, takes four arguments:

• The variable name (a String).

• The variable’s type (a String representing a fully qualified class name or a class listed in

the current page’s import statements).

• A boolean indicating whether the variable should be declared (almost always true; this

option supports future scripting in other languages).

• An int indicating the variable’s scope (NESTED —available between the tag’s start and end

tags, AT_BEGIN —available anytime after the tag’s start tag, or AT_END —available

anytime after the tag’s end tag).

Rather than burying this information within the TagExtraInfo class, in JSP 1.2 you can declare it

directly in the TLD file. To do this, use the variable subelement of tag. This new element has five

possible subelements:

• name-given: the variable name.

• name-from-attribute: the name of an attribute whose translation-time value will give

the variable’s name. You must supply either name-given or name-from-attribute.

• variable-class: the variable’s type. This element is optional; java.lang.String is the

default.

• declare: whether the variable is declared. This element is optional; true is the default.

• scope: the variable’s scope. This element is optional; NESTED is the default.

• description: brief documentation on the variable.

The variable element appears within tag after description but before attribute. For example,

Listing 11.36 shows a TLD file that declares a simple nested String variable named

emailAddress.

Listing 11.36 sample-taglib.tld (Excerpt)

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>some-name</short-name>

 <description>Tag library documentation.</description>

 <tag>

 <name>tag-name</name>

 <tag-class>somePackage.SomeTagClass</tag-class>

 <tei-class>somePackage.SomeTEIClass</tei-class>

 <body-content>JSP</body-content>

 <description>Tag documentation.</description>

 <variable>

 <name-given>emailAddress</name-given>

 </variable>

 </tag>

</taglib>

Chapter 12. The JSP Standard Tag Library

Topics in This Chapter

• Downloading and installing the standard JSP tag library

• Reading attributes without using Java syntax

• Accessing bean properties without using Java syntax

• Looping an explicit number of times

• Iterating over various data structures

• Checking iteration status

• Iterating with string-based tokens

• Evaluating expressions conditionally

• Using the expression language to set attributes

The JSR-052 Expert Group, operating under the Java Community Process, is developing a

standard tag library for JSP 1.2 and later. This library, the JSP Standard Tag Library (JSTL),

provides standard iteration, conditional-evaluation, and expression-language tags. It also

provides simplified access to attributes of the PageContext, HttpServletRequest, HttpSession,

and ServletContext objects as well as shorthand methods for accessing bean properties. The

availability of JSTL is an important addition to JSP technology because it prevents the

proliferation of incompatible tag libraries to perform some of the most common JSP tasks.

However, despite more than 18 months of effort by the JSR-052 group, as of the end of 2001 JSTL

was still not finalized. So, this chapter describes the 12/2001 version of the library (Early Access

release 1.2). There are certain to be at least minor changes to the library before the final release,

so this chapter should be viewed as a general guide to the use of JSTL, not a definitive reference.

As the chapter progresses, I’ll alert you to the parts that are most likely to change and point you

to online references that will give the final documentation when it becomes available. For updated

information, see http://www.moreservlets.com.

Core Warning

The standard tag library was not finalized when this book

went to press. The final version is certain to differ in at least minor ways
from the version described here.

12.1 Using JSTL: An Overview

The standard tag library consists of two sublibraries. Each of the two sublibraries contains tags for

general looping, iterating over the elements in a variety of data structures, evaluating items

conditionally, and setting attributes or scripting variables.

The jr and jx Libraries

The first thing to understand about JSTL is that it consists of two nearly identical libraries. The

first, the “jr” library, permits request time expressions as the values of its attributes. That is, it

specifies rtexprvalue="true" in the attribute definitions of the TLD file. The second library, the

“jx” library, uses a shorthand expression language to access page attributes and bean properties.

In this library, “ $ ” indicates access to an attribute and “ . ” indicates access to a bean property.

So, for example, $customer.name refers to the result of the getName method applied to the object

stored in the attribute named customer.

In general, the jr library is better when your JSP page directly computes values. The jx library is

usually better when you use the MVC architecture (Section 3.8) wherein a servlet computes all

the important values, stores them in an attribute, and forwards the request to a JSP page that

merely extracts and displays the values. However, many situations fall into a gray area between

these two extremes. In such cases, the choice of libraries is mostly a matter of taste.

Core Approach

The jr library is usually better when your JSP pages

directly compute values. The jx library is usually better when your JSP
pages simply access existing attributes (as is the case when you use the
MVC architecture).

For example, JSTL defines an if tag that conditionally outputs some result. Suppose that a

servlet has stored a value of type Employee in a PageContext attribute named employee and has

then forwarded the request to a JSP page. In such a case, the jr library would use the if tag as

follows to conditionally output the email address.

<% Employee employee =

 (Employee)pageContext.getAttribute("employee"); %>

<jr:if test='<%= employee.getName().equals("andreesen") %>'>

 Andreesen's email: <%= employee.getEmailAddress() %>

</jr:if>

Don’t worry about the details of this code; the if tag is discussed in Section 12.6 (Evaluating

Items Conditionally). Just note the use of a JSP scriptlet to access the attribute and the use of JSP

expressions to access methods of the object stored in the attribute. The jx library would use the

following code instead:

<jx:if test='$employee.name == "andreesen"'>

 Andreesen's email: <jx:expr value="$employee.emailAddress"/>

</jx:if>

Again, don’t worry about the details of this code. Just note that $employee is used to access the

attribute named employee, .name is used to access the name bean property (i.e., the result of the

getName method), and .emailAddress is used to access the emailAddress bean property (i.e.,

the result of the getEmailAddress method).

Now, I said that the dollar sign provided access to “attributes” from within jx code. Attributes of

what? Well, by default the system first looks in the PageContext object (i.e., the pageContext

predefined variable), then the HttpServletRequest object (i.e., the request predefined

variable), then the HttpSession object (i.e., the session predefined variable), then the

ServletContext object (i.e., the application predefined variable). But, you can also use

qualifiers to change where the system looks. Here is a summary:

• $name. Look for the attribute in the PageContext object, the HttpServletRequest object,

the HttpSession object, the ServletContext object. Use the first match found.

• $page:name. Look only in the PageContext object for the attribute named name.

• $request:name. Look only in the HttpServletRequest object for the attribute named

name.

• $session:name. Look only in the HttpSession object for the attribute named name.

• $app:name. Look only in the ServletContext object for the attribute named name.

• $header:name. Call HttpServletRequest.getHeader(name).

• $param:name. Call ServletRequest.getParameter(name).

• $paramvalues:name. Call ServletRequest.getParameterValues(name).

The forEach Iteration Tag

The single most important tag in JSTL is forEach. It provides the ability to loop a specific number

of times or to iterate down a data structure. Details are given in Section 12.3 (Looping with the

forEach Tag), but here is a quick summary.

• Looping a specific number of times (jr library). Use the var, begin, end, and,

optionally, step attributes. The iteration count is stored in the PageContext attribute

named by var. Access the attribute with a JSP expression. For example:

•

• <jr:forEach var="name" begin="x" end="y" step="z">

• Blah, blah <%= pageContext.getAttribute("name") %>

</jr:forEach>

• Looping a specific number of times (jx library). Use the same basic syntax as with

the jr library, but access the attribute with the expr tag. For example:

•

• <jx:forEach var="name" begin="x" end="y" step="z">

• Blah, blah <jx:expr value="$name"/>

</jx:forEach>

• Looping down a data structure (jr library). Use the var and items attributes. The

items attribute specifies an array, Collection, Iterator, Enumeration, Map, ResultSet,

or comma-separated String. It is also legal to use begin, end, and step so that only some

of the items are accessed. Use a JSP expression to define the items and to access the

attribute within the loop. For example:

•

• <jr:forEach var="name"

• items="<%= expression %>">

• Blah, blah <%= pageContext.getAttribute("name") %>

</jr:forEach>

• Looping down a data structure (jx library). Use the same basic syntax as with the jr

library, but define the items by giving the name of an existing attribute and access the

attribute with the expr tag. For example:

•

• <jx:forEach var="name"

• items="$existing-attribute-name">

• Blah, blah <jx:expr value="$name"/>

</jx:forEach>

The forTokens Iteration Tag

The forTokens tag lets you iterate down a String, using characters of your choice as delimiters

between tokens. Details are given in Section 12.5 (Looping with the forTokens Tag), but here is

a quick summary.

• Looping down a String (jr library). Use the items attribute to specify the String and

the delims attribute to specify the delimiters. The var attribute gives the name of the

attribute that will store each token. Use a JSP expression to access the attribute from

within the loop. For example:

•

• <jr:forTokens var="name"

• items="string"

• delims="characters">

• Blah, blah <%= pageContext.getAttribute("name") %>

</jr:forTokens>

• Looping down a String (jx library). Use the same basic syntax as with the jr library,

but access the attribute with the expr tag. For example:

•

• <jx:forTokens var="name"

• items="string"

• delims="characters">

• Blah, blah <jx:expr value="$name"/>

</jx:forTokens>

Conditional Evaluation Tags

The if and choose tags let you output different content depending on the results of various tests.

Details are given in Section 12.6 (Evaluating Items Conditionally), but here is a quick summary.

• The if tag (jr library). Use a JSP expression for the test attribute; if the result is true

or Boolean.TRUE, the contents of the tag are evaluated. For example:

•

• <jr:if test="<% expression %>">

• Blah, blah.

</jr:if>

• The if tag (jx library). Use the same basic syntax as with the jr library, but specify the

test by accessing an existing attribute and comparing it to another value using one of a

small set of relational operators. For example:

•

• <jx:if test="$attribute.beanProperty == 'value'">

• Blah, blah.

</jx:if>

• The choose tag (jr library). Use nested when tags; the contents of the first one whose

test attribute evaluates to true or Boolean.TRUE is used. If no when tag succeeds and

there is an otherwise tag, its contents are used. Use JSP expressions to specify each of

the tests. For example:

•

• <jr:choose>

• <jr:when test="<% expression1 %>">Blah, blah</jr:when>

• <jr:when test="<% expression2 %>">Blah, blah</jr:when>

• ...

• <jr:when test="<% expressionN %>">Blah, blah</jr:when>

• <jr:otherwise>Blah, blah</jr:otherwise>

</jr:choose>

• The choose tag (jx library). Use the same basic syntax as with the jr library, but

specify the tests as with the jx version of the if tag. For example:

•

• <jx:choose>

• <jx:when test="$att.prop1 == 'val1'">Blah, blah</jx:when>

• <jx:when test="$att.prop2 == 'val2'">Blah, blah</jx:when>

• ...

• <jx:when test="$att.propN == 'valN'">Blah, blah</jx:when>

• <jx:otherwise>Blah, blah</jx:otherwise>

</jx:choose>

Expression Language Support Tags

The set, expr, and declare tags let you define attributes, evaluate expressions, and declare

scripting variables. The first two tags are available only in the jx library; declare is technically

available in either library but is primarily used with jx. Details are given in Section 12.7 (Using the

Expression Language), but here is a quick summary.

• The set tag. This tag defines an attribute. Use var to specify the attribute; use value to

specify the value. Recall that in the jx library $attribute .beanProperty means that the

system should call the getBeanProperty method of the object referenced by the attribute

named attribute . You can also omit the value attribute and put the value between the

start and end tags. For example:

•

<jx:set var="name" value="$attribute.beanProperty"/>

• The expr tag. This tag returns a value. Use the value attribute to access existing

attributes and bean properties with the jx library’s shorthand notation. If you use a

default attribute, its value is used if exceptions are thrown when the system attempts to

access the main value. For example:

•

<jx:expr value="$attribute.beanProperty" default="value"/>

• The declare tag. This tag declares a scripting variable that can be accessed by JSP

expressions and scriptlets. Use id to give the name of the variable; its initial value will be

the attribute of the same name. Use type to give the fully qualified class name of the

variable’s type. For example:

•

<jx:declare id="name" type="package.Class"/>

12.2 Installing and Configuring JSTL

Before you can use the standard tag library, you must perform the following seven steps.

1. Download the JSTL files.

2. Access the JSTL documentation.

3. Make the JSTL classes available to the server.

4. Put the JSTL TLD files in the WEB-INF directory.

5. Create aliases for the TLD file locations.

6. Define the expression language in web.xml.

7. Download and install an XML parser.

The following subsections give details on each of these steps.

Downloading the JSTL Files

The home page for JSTL is http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html. There

should be a prominent link on that page specifying where to obtain the JSTL code. When this book

went to press, that link referred to

http://jakarta.apache.org/builds/jakarta-taglibs/releases/standard/, but that URL is subject to

change. In addition, the book’s home page at http://www.moreservlets.com maintains

up-to-date listings of the URLs. The code should come in the form of a zip or tar file and should

contain three key pieces of data:

• A JAR file containing the necessary class files. As of release EA 1.2 of JSTL, this file was

called jsptl.jar. Note that this name is jsptl.jar, not jstl.jar—they changed the official name

from JSPTL to JSTL but have not (yet) updated the filenames.

• The tag library descriptor file for the jr portion of the library. As of release EA 1.2 of JSTL,

this file was called jsptl-jr.tld.

• The tag library descriptor file for the jx portion of the library. As of release EA 1.2 of JSTL,

this file was called jsptl-jx.tld.

The file that you download might also contain documentation and examples.

Accessing the JSTL Documentation

When this book went to press, JSTL was not yet standardized. So, it is crucial that you read the

latest version of the documentation and check for additions and changes. For the latest version,

see http://jakarta.apache.org/taglibs/doc/standard-doc/index.html or the book’s home page at

http://www.moreservlets.com.

Making the JSTL Classes Available to the Server

The most portable approach to installing the JSTL classes is to put the appropriate JAR file (e.g.,

jsptl.jar) in the WEB-INF/lib directory of each Web application that will use JSTL. The only

disadvantage of this approach is that the JAR file has to be copied many times if multiple Web

applications use JSTL. This wastes space and can cause maintenance problems if JSTL continues

to evolve. So, you might consider using a server-specific mechanism for sharing classes among

Web applications, but having each application register its dependence on the classes. For details

on this process, see Section 4.4 (Recording Dependencies on Server Libraries).

Putting the JSTL TLD Files in the WEB-INF Directory

Tag library descriptor files must be placed in your Web application’s WEB-INF directory or in a

subdirectory thereof. I normally place the two TLD files in WEB-INF/ jsptl-tlds/, but no specific

subdirectory is required.

Creating Aliases for the TLD File Locations

My convention is to put the JSTL tag library descriptor files in WEB-INF/jsptl-tlds/ jsptl-jr.tld and

WEB-INF/jsptl-tlds/jsptl-jx.tld. However, the specification requires no particular location beyond

the general requirement that all TLD files go in WEB-INF or a subdirectory of WEB-INF. This

presents a problem: if the locations of the TLD files are not standardized, how do you ensure that

pages that use JSTL are portable? After all, each page that uses JSTL has to specify the location

of the TLD file. The solution is to use the taglib element of web.xml to define standard aliases for

the real TLD file locations, then to use the aliases in all the JSP pages that use JSTL. As of the end

of 2001, the standard aliases were http://java.sun.com/jsptl/ea/jr (for the jr library) and

http://java.sun.com/jsptl/ea/jx (for the jx library). It is expected that, when the final version of

JSTL is released, jsptl will change to jstl and the ea part of the URL will be removed. So, for

example, to use the jr library you would put the following element in the web.xml file.

<taglib>

 <taglib-uri>

 http://java.sun.com/jsptl/ea/jr

 </taglib-uri>

 <taglib-location>

 /WEB-INF/jsptl-tlds/jsptl-jr.tld

 </taglib-location>

</taglib>

Then, a JSP page that uses the jr JSTL library would use the following directive.

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

Listing 12.1 shows a representative deployment descriptor.

Listing 12.1 web.xml (Excerpt for JSTL TLD aliases)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- ... -->

 <!-- Register jr JSTL TLD file. -->

 <taglib>

 <taglib-uri>

 http://java.sun.com/jsptl/ea/jr

 </taglib-uri>

 <taglib-location>

 /WEB-INF/jsptl-tlds/jsptl-jr.tld

 </taglib-location>

 </taglib>

 <!-- Register jx JSTL TLD file. -->

 <taglib>

 <taglib-uri>

 http://java.sun.com/jsptl/ea/jx

 </taglib-uri>

 <taglib-location>

 /WEB-INF/jsptl-tlds/jsptl-jx.tld

 </taglib-location>

 </taglib>

</web-app>

Defining the Expression Language in web.xml

The EA 1.2 version of JSTL supports experimentation with different languages for use in the jx

library. The final version is expected to use a superset of SPEL: the Simplest Possible Expression

Language. In the meantime, no expression language is predefined; you must use the

javax.servlet.jsptl.ExpressionEvaluatorClass servlet context parameter to tell the

system which expression language you want. To use SPEL, specify a value of

org.apache.taglibs.jsptl.lang.spel.Evaluator.

Listing 12.2 shows a representative web.xml file.

Listing 12.2 web.xml (Excerpt for defining expression

language)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- Use the SPEL for expressions. -->

 <context-param>

 <param-name>

 javax.servlet.jsptl.ExpressionEvaluatorClass

 </param-name>

 <param-value>

 org.apache.taglibs.jsptl.lang.spel.Evaluator

 </param-value>

 </context-param>

 <!-- ... -->

</web-app>

Downloading and Installing an XML Parser

JSTL requires an XML parser that supports SAX and DOM. Since neither the servlet 2.3 API nor the

JSP 1.2 API requires an XML parser, you might have to install one yourself. Even if your server

already includes an XML parser, to guarantee portability you should include the XML parser with

the JSTL JAR and TLD files when you distribute your Web application. For details on downloading

and installing a parser, see the Installation and Configuration subsection of Section 11.4 (Aside:

Parsing XML with SAX 2.0). Note that, for the purposes of JSTL, you need only install the parser;

you never have to explicitly use it in any of your code.

12.3 Looping with the forEach Tag

Perhaps the single most important tag in JSTL is forEach. It provides the ability to loop with

explicit numeric values or to iterate down an array, Collection, Iterator, Enumeration, Map,

ResultSet, or comma-separated String. The forEach tag also lets you access an

IteratorTagStatus object that provides a variety of information about the loop status.

The forEach tag has six available attributes: var, begin, end, step, items, and status. The

following list summarizes their use; the following subsections give details and examples.

• var. The iteration variable. When you loop with explicit numeric values, the variable

contains the value of the loop index. When you iterate over data structures, the variable

contains the individual value from within the data structure.

• begin. When you loop with explicit numeric values, this attribute gives the initial value of

the loop index. When you loop down a data structure, this attribute gives the index of the

first item that should be accessed.

• end. When you loop with explicit numeric values, this attribute gives the final value of the

loop index. When you loop down a data structure, this attribute gives the index of the last

item that should be accessed.

• step. This attribute gives the size of the loop index increment.

• items. This attribute supplies the value of the data structure to iterate over. It is not used

when you loop with explicit numeric values.

• status. This attribute gives the name of a variable that will hold an IteratorTagStatus

object that provides details on the loop status.

Looping with Explicit Numeric Values

The simplest type of loop is one in which you specify only var, begin, and end attributes. The var

attribute defines the loop index variable; begin and end give the initial and final values of the

variable.

With the jr library, you access the loop index by retrieving the PageContext attribute named by

the var attribute. For example, the following code outputs a bulleted list containing the numbers

1 through 10.

<jr:forEach var="i" begin="1" end="10">

 <%= pageContext.getAttribute("i") %>

</jr:forEach>

With the jx library, you can access attributes by using a dollar sign followed by the attribute name.

To simply output an attribute, you use the expr tag along with its value attribute. So, for

example, the following jx code outputs the same bulleted list as the jr code just shown.

<jx:forEach var="i" begin="1" end="10">

 <jx:expr value="$i"/>

</jx:forEach>

Listing 12.3 shows a JSP page that uses the jr code; Figure 12-1 shows the result. Listing 12.4

shows a JSP page that uses the jx code; Figure 12-2 shows the result. Listing 12.5 shows the

deployment descriptor that both pages require.

Figure 12-1. Result of simple-loop-jr.jsp.

Figure 12-2. Result of simple-loop-jx.jsp.

Listing 12.3 simple-loop-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Simple Loop: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Simple Loop: "jr" Version

</TABLE>

<P>

<!-- Note that the uri refers to the location defined by

 the taglib element of web.xml, not to the real

 location of the TLD file. -->

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<jr:forEach var="i" begin="1" end="10">

 <%= pageContext.getAttribute("i") %>

</jr:forEach>

</BODY>

</HTML>

Listing 12.4 simple-loop-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Simple Loop: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Simple Loop: "jx" Version

</TABLE>

<P>

<!-- Note that the uri refers to the location defined by

 the taglib element of web.xml, not to the real

 location of the TLD file. -->

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:forEach var="i" begin="1" end="10">

 <jx:expr value="$i"/>

</jx:forEach>

</BODY>

</HTML>

Listing 12.5 web.xml (Excerpt for simple-loop examples)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- Use the SPEL for expressions. -->

 <context-param>

 <param-name>

 javax.servlet.jsptl.ExpressionEvaluatorClass

 </param-name>

 <param-value>

 org.apache.taglibs.jsptl.lang.spel.Evaluator

 </param-value>

 </context-param>

 <!-- If URL gives a directory but no filename, try index.jsp

 first and index.html second. If neither is found, the

 result is server specific (e.g., a directory listing).

 Order of elements in web.xml matters. welcome-file-list

 needs to come after servlet but before error-page.

 -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

 <!-- Register jr JSTL TLD file. -->

 <taglib>

 <taglib-uri>

 http://java.sun.com/jsptl/ea/jr

 </taglib-uri>

 <taglib-location>

 /WEB-INF/jsptl-tlds/jsptl-jr.tld

 </taglib-location>

 </taglib>

 <!-- Register jx JSTL TLD file. -->

 <taglib>

 <taglib-uri>

 http://java.sun.com/jsptl/ea/jx

 </taglib-uri>

 <taglib-location>

 /WEB-INF/jsptl-tlds/jsptl-jx.tld

 </taglib-location>

 </taglib>

</web-app>

Looping with a Designated Step Size

The forEach tag permits you to use the step attribute to specify how much the loop index will

increase each time around the loop. For example, suppose that you want to generate a bulleted

list that shows the number of seconds every minute from zero until the session timeout.

With the jr library, this task is straightforward. Simply supply the value of

session.getMaxInactiveInterval for the end attribute and 60 for the step attribute, as shown

in the following example.

<jr:forEach var="seconds"

 begin="0"

 end="<%= session.getMaxInactiveInterval() %>"

 step="60">

 <%= pageContext.getAttribute("seconds") %> seconds.

</jr:forEach>

 Timeout exceeded.

With the jx library, however, there is a problem. The end attribute does not permit a JSP

expression. Furthermore, since session is an implicit object (predefined variable), not an

attribute of PageContext, you cannot use the $ notation to access it. (However, the JSR-052

group is considering providing simplified access to the implicit objects in the final version of JSTL.)

Now, as we will see in Section 12.7 (Using the Expression Language), the jx library’s set tag can

be used to assign an attribute based on a JSP expression. However, that approach is not

satisfactory since one of the purposes of the jx library is to avoid explicit Java code in the JSP page.

So, I create a custom JSP tag that does nothing but store the PageContext object in the

pageContext attribute of the PageContext object (i.e., of itself!). After this custom tag is used,

the PageContext object can be accessed in the jx library with $pageContext. The various implicit

objects can be accessed with $pageContext.request (i.e., by calling getRequest on the

PageContext object), $pageContext.response (i.e., by calling getResponse on the

PageContext object), $pageContext.session (i.e., by calling getSession on the PageContext

object), etc. So, after this custom tag is used, the following jx code yields the same result as the

jr code just shown.

<jx:forEach var="seconds"

 begin="0"

 end="$pageContext.session.maxInactiveInterval"

 step="60">

 <jx:expr value="$seconds"/> seconds.

</jx:forEach>

 Timeout exceeded.

Listing 12.6 shows a JSP page that uses the jr code; Figure 12-3 shows the result. Listing 12.7

shows a JSP page that uses the new custom tag and the jx code; Figure 12-4 shows the result.

Listings 12.8 and 12.9 show the custom tag and associated TLD file for a tag that stores the

PageContext object in the pageContext attribute. Listing 12.5 (shown on page 633) presents the

deployment descriptor that both pages require.

Figure 12-3. Result of inactive-interval-loop-jr.jsp.

Figure 12-4. Result of inactive-interval-loop-jx.jsp.

Listing 12.6 inactive-interval-loop-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Session Timeout: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Session Timeout: "jr" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<jr:forEach var="seconds"

 begin="0"

 end="<%= session.getMaxInactiveInterval() %>"

 step="60">

 <%= pageContext.getAttribute("seconds") %> seconds.

</jr:forEach>

 Timeout exceeded.

</BODY>

</HTML>

Listing 12.7 inactive-interval-loop-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Session Timeout: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Session Timeout: "jx" Version

</TABLE>

<P>

<%@ taglib uri="/WEB-INF/store-page-context.tld" prefix="init" %>

<init:storePageContext/>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:forEach var="seconds"

 begin="0"

 end="$pageContext.session.maxInactiveInterval"

 step="60">

 <jx:expr value="$seconds"/> seconds.

</jx:forEach>

 Timeout exceeded.

</BODY>

</HTML>

Listing 12.8 StorePageContextTag.java

package moreservlets.tags;

import javax.servlet.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

/** Stores the PageContext reference in an attribute

 * of the PageContext. The reason for doing this is to

 * make it easier for JSTL jx tags to access the request,

 * response, pageContext, etc.

 */

public class StorePageContextTag extends TagSupport {

 public int doStartTag() {

 pageContext.setAttribute("pageContext", pageContext);

 return(SKIP_BODY);

 }

}

Listing 12.9 store-page-context.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>store-page-context</short-name>

 <description>

 An extremely simple tag that simply stores a reference

 to the PageContext object in a PageContext attribute.

 This setting is performed because the JSTL jx library

 makes it easy to access attributes but does not make it

 easy to access scripting variables like request, response,

 pageContext, etc.

 </description>

 <!-- Define a tag the stores the pageContext attribute. -->

 <tag>

 <name>storePageContext</name>

 <tag-class>

 moreservlets.tags.StorePageContextTag

 </tag-class>

 <body-content>empty</body-content>

 <description>Store PageContext in attribute.</description>

 </tag>

</taglib>

Looping Down Arrays

The previous examples used the begin and end attributes of forEach to specify explicit numeric

values for looping. Even more useful is the ability to iterate over a data structure. To do this, you

supply an array, Collection, Iterator, Enumeration, Map, ResultSet, or comma-separated

String as the value of the items attribute. The var attribute gives the name of the PageContext

attribute that will store each individual item from the data structure. It is also legal to use begin,

end, and step so that only some of the items are accessed.

For example, the following jr code creates a table of the cookies that were sent by the client on

the current request.

<TABLE BORDER="1" ALIGN="CENTER">

 <TR><TH CLASS="HEADING">Cookie Name

 <TH CLASS="HEADING">Cookie Value

<jr:forEach var="cookie"

 items="<%= request.getCookies() %>">

 <% Cookie cookie =

 (Cookie)pageContext.getAttribute("cookie"); %>

 <TR><TD><%= cookie.getName() %>

 <TD><%= cookie.getValue() %>

</jr:forEach>

</TABLE>

Given the custom tag that stores the PageContext object in the pageContext attribute (see

Listings 12.8 and 12.9), the following jx code has the same effect as the jr code just shown. Recall

that “ $ ” is used to access attributes and “ . ” is used to access bean properties. So, for example,

$pageContext.request.cookies means that the system should retrieve the object stored in the

pageContext attribute (i.e., the PageContext object itself), call getRequest on it, then call

getCookies on that result.

<TABLE BORDER="1" ALIGN="CENTER">

 <TR><TH CLASS="HEADING">Cookie Name

 <TH CLASS="HEADING">Cookie Value

<jx:forEach var="cookie"

 items="$pageContext.request.cookies">

 <TR><TD><jx:expr value="$cookie.name"/>

 <TD><jx:expr value="$cookie.value"/>

</jx:forEach>

</TABLE>

Listing 12.10 shows a JSP page that uses the jr code; Figure 12-5 shows the result after a

cookie-setting servlet (Listing 12.12) is accessed. Listing 12.11 shows a JSP page that uses the jx

code; Figure 12-6 shows the result after the cookie-setting servlet (Listing 12.12) is accessed.

Listing 12.13 shows the deployment descriptor needed by the JSP pages and the cookie-setting

servlet.

Figure 12-5. Result of cookie-loop-jr.jsp after the DefineCookies

servlet (Listing 12.12) is visited.

Figure 12-6. Result of cookie-loop-jx.jsp after the DefineCookies

servlet (Listing 12.12) is visited.

Note that both pages fail if no cookies are sent. We don’t yet have the tools to fix this problem;

however, in Section 12.7 (Using the Expression Language), you’ll see how to use the expr

element to supply default values for missing items. Also, in Section 12.6 (Evaluating Items

Conditionally) you’ll see how to do general conditional evaluation.

Listing 12.10 cookie-loop-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Cookies: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Cookies: "jr" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<TABLE BORDER="1" ALIGN="CENTER">

 <TR><TH CLASS="HEADING">Cookie Name

 <TH CLASS="HEADING">Cookie Value

<jr:forEach var="cookie"

 items="<%= request.getCookies() %>">

 <% Cookie cookie =

 (Cookie)pageContext.getAttribute("cookie"); %>

 <TR><TD><%= cookie.getName() %>

 <TD><%= cookie.getValue() %>

</jr:forEach>

</TABLE>

</BODY>

</HTML>

Listing 12.11 cookie-loop-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Cookies: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Cookies: "jx" Version

</TABLE>

<P>

<%@ taglib uri="/WEB-INF/store-page-context.tld" prefix="init" %>

<init:storePageContext/>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<TABLE BORDER="1" ALIGN="CENTER">

 <TR><TH CLASS="HEADING">Cookie Name

 <TH CLASS="HEADING">Cookie Value

<jx:forEach var="cookie"

 items="$pageContext.request.cookies">

 <TR><TD><jx:expr value="$cookie.name"/>

 <TD><jx:expr value="$cookie.value"/>

</jx:forEach>

</TABLE>

</BODY>

</HTML>

Listing 12.12 DefineCookies.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Defines a few cookies, then redirects the user

 * to the cookie-displaying page.

 */

public class DefineCookies extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 for(int i=0; i<5; i++) {

 Cookie c = new Cookie("cookie" + i, "value" + i);

 response.addCookie(c);

 }

 String cookieDisplayPage =

 request.getContextPath() + "/forEach/cookie-loop-jr.jsp";

 response.sendRedirect(cookieDisplayPage);

 }

}

Listing 12.13 web.xml (Excerpt for cookie-displaying pages)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- Use the SPEL for expressions. -->

 <context-param>

 <param-name>

 javax.servlet.jsptl.ExpressionEvaluatorClass

 </param-name>

 <param-value>

 org.apache.taglibs.jsptl.lang.spel.Evaluator

 </param-value>

 </context-param>

 <!-- Give a name to the moreservlets.DefineCookies servlet

 so that a custom URL can later be assigned.

 -->

 <servlet>

 <servlet-name>DefineCookies</servlet-name>

 <servlet-class>moreservlets.DefineCookies</servlet-class>

 </servlet>

 <!-- Register the URL /forEach/DefineCookies with the

 DefineCookies servlet. This prevents the servlet

 from needing to define a path of "/" for the cookies.

 Instead, the servlet (which sets the cookies) and the

 JSP pages (which display the cookies) have the same

 URL prefix, so no special settings are needed.

 -->

 <servlet-mapping>

 <servlet-name>DefineCookies</servlet-name>

 <url-pattern>/forEach/DefineCookies</url-pattern>

 </servlet-mapping>

 <!-- ... -->

 <!-- Register jr JSTL TLD file. -->

 <taglib>

 <taglib-uri>

 http://java.sun.com/jsptl/ea/jr

 </taglib-uri>

 <taglib-location>

 /WEB-INF/jsptl-tlds/jsptl-jr.tld

 </taglib-location>

 </taglib>

 <!-- Register jx JSTL TLD file. -->

 <taglib>

 <taglib-uri>

 http://java.sun.com/jsptl/ea/jx

 </taglib-uri>

 <taglib-location>

 /WEB-INF/jsptl-tlds/jsptl-jx.tld

 </taglib-location>

 </taglib>

</web-app>

Looping Down Enumerations

You iterate over a java.util.Enumeration object in exactly the same manner as you iterate

over an array: you define the iteration variable with the var attribute of forEach and supply the

object with the items attribute.

For example, the getHeaderNames method of HttpServletRequest returns an Enumeration of

the request headers sent by the client. So, the following jr code will create a table of the names

and values of all headers in the request.

<TABLE BORDER="1" ALIGN="CENTER">

 <TR><TH CLASS="HEADING">Header Name

 <TH CLASS="HEADING">Header Value

<jr:forEach var="header"

 items="<%= request.getHeaderNames() %>">

 <% String header =

 (String)pageContext.getAttribute("header"); %>

 <TR><TD><%= header %>

 <TD><%= request.getHeader(header) %>

</jr:forEach>

</TABLE>

Once again, however, we have a problem performing the same task with the jx library. Given the

custom tag that defines the pageContext attribute, the Enumeration itself can be accessed with

$pageContext.request.headerNames. However, once you have a header name, how do you get

a header value? There is no bean property (i.e., zero-argument getXxx method) that gives you a

header value, and the jx library provides no way to specify arguments to methods without using

Java code. You’re stuck: you have to write a special-purpose custom tag or use scripting

expressions. Use of the jx library does not always negate the need for explicit Java code.

Even after you resign yourself to using scripting expressions with the jx library, you’d like to

minimize their use. A good way to do this is to use the declare tag. This element is described in

Section 12.7, but the gist of it is that declare provides a bridge between jx tags and scripting

elements by copying the value of an attribute into a scripting variable. The following jx code uses

declare to create the same request header table as the previous jr code.

<TABLE BORDER="1" ALIGN="CENTER">

 <TR><TH CLASS="HEADING">Header Name

 <TH CLASS="HEADING">Header Value

<jx:forEach var="headerName"

 items="$pageContext.request.headerNames">

 <TR><TD><jx:expr value="$headerName"/>

 <TD><jx:declare id="headerName" type="java.lang.String"/>

 <%= request.getHeader(headerName) %>

</jx:forEach>

</TABLE>

Listing 12.14 shows a JSP page that uses the jr code; Figure 12-7 shows the result. Listing 12.15

shows a JSP page that uses the jx code; Figure 12-8 shows the result.

Figure 12-7. Result of header-loop-jr.jsp.

Figure 12-8. Result of header-loop-jx.jsp.

Listing 12.14 header-loop-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Headers: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Headers: "jr" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<TABLE BORDER="1" ALIGN="CENTER">

 <TR><TH CLASS="HEADING">Header Name

 <TH CLASS="HEADING">Header Value

<jr:forEach var="header"

 items="<%= request.getHeaderNames() %>">

 <% String header =

 (String)pageContext.getAttribute("header"); %>

 <TR><TD><%= header %>

 <TD><%= request.getHeader(header) %>

</jr:forEach>

</TABLE>

</BODY>

</HTML>

Listing 12.15 header-loop-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Headers: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Headers: "jx" Version

</TABLE>

<P>

<%@ taglib uri="/WEB-INF/store-page-context.tld" prefix="init" %>

<init:storePageContext/>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<TABLE BORDER="1" ALIGN="CENTER">

 <TR><TH CLASS="HEADING">Header Name

 <TH CLASS="HEADING">Header Value

<jx:forEach var="headerName"

 items="$pageContext.request.headerNames">

 <TR><TD><jx:expr value="$headerName"/>

 <TD><jx:declare id="headerName" type="java.lang.String"/>

 <%= request.getHeader(headerName) %>

</jx:forEach>

</TABLE>

</BODY>

</HTML>

Looping Down Entries in a String

In addition to the standard collection data structures (array, Enumeration, Collection, etc.),

the standard tag library lets you loop down comma-delimited strings.

For example, the following jr code makes a bulleted list of countries. Note that, since the items

attribute can contain objects of various types, you have to use explicit double quotes within the

attribute value to designate a String. The easiest way to do this is to use single quotes around

the overall value.

<jr:forEach var="country"

 items='"Australia,Canada,Japan,Philippines,USA"'>

 <%= pageContext.getAttribute("country") %>

</jr:forEach>

The following jx code yields the same result. Since the items attribute cannot accept request time

expressions, there is no need to use an extra set of quote marks.

<jx:forEach var="country"

 items="Australia,Canada,Japan,Philippines,USA">

 <jx:expr value="$country"/>

</jx:forEach>

Listing 12.16 shows a JSP page that uses the jr code; Figure 12-9 shows the result. Listing 12.17

shows a JSP page that uses the jx code; Figure 12-10 shows the result.

Figure 12-9. Result of string-loop-jr.jsp.

Figure 12-10. Result of string-loop-jx.jsp.

Listing 12.16 string-loop-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>String: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Strings: "jr" Version

</TABLE>

<P>

<H3>Marty has given servlet and JSP short courses in:</H3>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<jr:forEach var="country"

 items='"Australia,Canada,Japan,Philippines,USA"'>

 <%= pageContext.getAttribute("country") %>

</jr:forEach>

For more details or to schedule a short course at <I>your</I>

company, see

http://courses.coreservlets.com.

</BODY>

</HTML>

Listing 12.17 string-loop-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>String: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Strings: "jx" Version

</TABLE>

<P>

<H3>Marty has given servlet and JSP short courses in:</H3>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:forEach var="country"

 items="Australia,Canada,Japan,Philippines,USA">

 <jx:expr value="$country"/>

</jx:forEach>

For more details or to schedule a short course at <I>your</I>

company, see

http://courses.coreservlets.com.

</BODY>

</HTML>

Looping Down Multiple Data Types

The items attribute of forEach can specify an array, Collection, Iterator, Enumeration, Map,

ResultSet, or comma-separated String. For all cases except Map and ResultSet, the value of

the iteration variable is obvious: it is the appropriate entry from the data structure.

Since a Map consists of both names and values, however, what does the iteration variable return?

The answer is that it returns a Map.Entry object. The Map.Entry interface, in turn, defines

getKey and getValue methods.

The value of the iteration variable when you loop over a ResultSet is even more surprising: it is

the ResultSet itself! The reason that this approach is useful is that the system maintains a cursor

that refers to the current row of the ResultSet. That cursor is updated each time around the loop.

OK, so I’ve repeatedly claimed that the real strength of the jx library is when it is used to access

attributes that are set in a servlet that forwards the request to the JSP page. Let’s test this theory

out in a relatively realistic MVC scenario. Listing 12.18 (Figure 12-11) shows an HTML form that

collects a variety of data from a user. When the form is submitted, the data is sent to the

ShowData servlet (Listing 12.19). This servlet creates an array (the values of the

computerLanguages request parameter), an Enumeration (a StringTokenizer created from the

values of the spokenLanguages request parameter), a Collection (an ArrayList giving

predefined favorite foods), a Map (a HashMap giving predefined usernames and passwords), and

a comma-delimited String (usernames of people on probation for bad behavior). The servlet

stores all of these values in request attributes and then forwards the request to a jr (Listing 12.20)

or jx (Listing 12.21) page to display the results (Figures 12-12 and 12-13). Listing 12.22 shows

the deployment descriptor.

Figure 12-11. Result of data-form.html. Data, when submitted,

is sent to the ShowData servlet (Listing 12.19). The servlet, in

turn, forwards the request to either show-data-jr.jsp (Listing

12.20, Figure 12-12) or show-data-jx.jsp (Listing 12.21,

Figure 12-13).

Figure 12-12. Result of the ShowData servlet when it forwards the

request to show-data-jr.jsp.

Figure 12-13. Result of the ShowData servlet when it forwards the

request to show-data-jx.jsp.

In this case, the jx version is considerably less complicated than the jr version: no scripting

expressions are needed, and the code is significantly more concise.

Listing 12.18 data-form.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Languages</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<CENTER>

<TABLE BORDER=5>

 <TR><TH CLASS="TITLE">

 Languages</TABLE>

<P>

<FORM ACTION="ShowData">

<H3>Select the computer languages you know:</H3>

<INPUT TYPE="CHECKBOX" NAME="computerLanguages"

 value="Java">Java

<INPUT TYPE="CHECKBOX" NAME="computerLanguages"

 value="C++">C++

<INPUT TYPE="CHECKBOX" NAME="computerLanguages"

 value="Common Lisp">Common Lisp

<INPUT TYPE="CHECKBOX" NAME="computerLanguages"

 value="Smalltalk">Smalltalk

<INPUT TYPE="CHECKBOX" NAME="computerLanguages"

 value="Visual Basic">Visual Basic

<H3>Enter the spoken languages you know:</H3>

<TEXTAREA NAME="spokenLanguages" ROWS=5 COLS=20></TEXTAREA>

<H3>Choose the jr or jx output version:</H3>

<INPUT TYPE="RADIO" NAME="outputVersion" VALUE="jr" CHECKED>jr

<INPUT TYPE="RADIO" NAME="outputVersion" VALUE="jx">jx

<P>

<INPUT TYPE="SUBMIT">

</FORM>

</CENTER>

</BODY>

</HTML>

Listing 12.19 ShowData.java

package moreservlets;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Servlet that sets up a variety of data structures,

 * then forwards the request to a JSP page that

 * uses JSTL to display the values in the

 * data structures.

 */

public class ShowData extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String[] computerLanguages =

 request.getParameterValues("computerLanguages");

 if (computerLanguages == null) {

 computerLanguages = new String[0];

 }

 request.setAttribute("computerLanguages",

 computerLanguages);

 String spokenLanguages =

 request.getParameter("spokenLanguages");

 if (spokenLanguages == null) {

 spokenLanguages = "";

 }

 request.setAttribute("spokenLanguages",

 new StringTokenizer(spokenLanguages));

 ArrayList favoriteFoods = getFavoriteFoods();

 request.setAttribute("favoriteFoods", favoriteFoods);

 HashMap passwords = getPasswords();

 request.setAttribute("passwords", passwords);

 String bannedUsers = "bill,larry,scott";

 request.setAttribute("bannedUsers", bannedUsers);

 String outputVersion =

 request.getParameter("outputVersion");

 String outputPage = "/forEach/show-data-jx.jsp";

 if ("jr".equals(outputVersion)) {

 outputPage = "/forEach/show-data-jr.jsp";

 }

 gotoPage(outputPage, request, response);

 }

 private void gotoPage(String address,

 HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 RequestDispatcher dispatcher =

 getServletContext().getRequestDispatcher(address);

 dispatcher.forward(request, response);

 }

 private ArrayList getFavoriteFoods() {

 ArrayList foods = new ArrayList();

 foods.add("Tacos al pastor");

 foods.add("Pan-fried dumplings");

 foods.add("Bulgogi");

 foods.add("Strawberries");

 foods.add("Chocolate");

 return(foods);

 }

 private HashMap getPasswords() {

 HashMap passwords = new HashMap();

 passwords.put("bill", "setag");

 passwords.put("larry", "nosille");

 passwords.put("scott", "ylaencm");

 passwords.put("lou", "rentsreg");

 passwords.put("greg", "hcneod");

 return(passwords);

 }

}

Listing 12.20 show-data-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Data Display: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<CENTER>

<TABLE BORDER=5>

 <TR><TH CLASS="TITLE">

 Data Display: "jr" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<TABLE BORDER=1>

<TR>

<TH CLASS="HEADING">Computer
Languages

<TH CLASS="HEADING">Spoken
Languages

<TH CLASS="HEADING">Favorite
Foods

<TH CLASS="HEADING">Passwords

<TH CLASS="HEADING">Banned
Users

<TR>

<TD>

<jr:forEach var="lang"

 items='<%= request.getAttribute("computerLanguages") %>'>

 <%= pageContext.getAttribute("lang") %>

</jr:forEach>

<CENTER><SMALL>(From Array)</SMALL></CENTER>

<TD>

<jr:forEach var="lang"

 items='<%= request.getAttribute("spokenLanguages") %>'>

 <%= pageContext.getAttribute("lang") %>

</jr:forEach>

<CENTER><SMALL>(From Enumeration)</SMALL></CENTER>

<TD>

<jr:forEach var="food"

 items='<%= request.getAttribute("favoriteFoods") %>'>

 <%= pageContext.getAttribute("food") %>

</jr:forEach>

<CENTER><SMALL>(From Collection)</SMALL></CENTER>

<TD>

<TABLE BORDER=1>

 <TR><TH>Username

 <TH>Password

<jr:forEach var="user"

 items='<%= request.getAttribute("passwords") %>'>

 <% java.util.Map.Entry user =

 (java.util.Map.Entry)pageContext.getAttribute("user"); %>

 <TR><TD><%= user.getKey() %>

 <TD><%= user.getValue() %>

</jr:forEach>

</TABLE>

<CENTER><SMALL>(From Map)</SMALL></CENTER>

<TD>

<jr:forEach var="user"

 items='<%= request.getAttribute("bannedUsers") %>'>

 <%= pageContext.getAttribute("user") %>

</jr:forEach>

<CENTER><SMALL>(From String)</SMALL></CENTER>

</TABLE>

</CENTER>

</BODY>

</HTML>

Listing 12.21 show-data-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Data Display: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<CENTER>

<TABLE BORDER=5>

 <TR><TH CLASS="TITLE">

 Data Display: "jx" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<TABLE BORDER=1>

<TR>

<TH CLASS="HEADING">Computer
Languages

<TH CLASS="HEADING">Spoken
Languages

<TH CLASS="HEADING">Favorite
Foods

<TH CLASS="HEADING">Passwords

<TH CLASS="HEADING">Banned
Users

<TR>

<TD>

<jx:forEach var="lang" items="$computerLanguages">

 <jx:expr value="$lang"/>

</jx:forEach>

<CENTER><SMALL>(From Array)</SMALL></CENTER>

<TD>

<jx:forEach var="lang" items="$spokenLanguages">

 <jx:expr value="$lang"/>

</jx:forEach>

<CENTER><SMALL>(From Enumeration)</SMALL></CENTER>

<TD>

<jx:forEach var="food" items="$favoriteFoods">

 <jx:expr value="$food"/>

</jx:forEach>

<CENTER><SMALL>(From Collection)</SMALL></CENTER>

<TD>

<TABLE BORDER=1>

 <TR><TH>Username

 <TH>Password

<jx:forEach var="user" items="$passwords">

 <TR><TD><jx:expr value="$user.key"/>

 <TD><jx:expr value="$user.value"/>

</jx:forEach>

</TABLE>

<CENTER><SMALL>(From Map)</SMALL></CENTER>

<TD>

<jx:forEach var="user" items="$bannedUsers">

 <jx:expr value="$user"/>

</jx:forEach>

<CENTER><SMALL>(From String)</SMALL></CENTER>

</TABLE>

</CENTER>

</BODY>

</HTML>

Listing 12.22 web.xml (Excerpt for the data-displaying pages)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <!-- Use the SPEL for expressions. -->

 <context-param>

 <param-name>

 javax.servlet.jsptl.ExpressionEvaluatorClass

 </param-name>

 <param-value>

 org.apache.taglibs.jsptl.lang.spel.Evaluator

 </param-value>

 </context-param>

 <!-- ... -->

 <!-- Give a name to the moreservlets.ShowData servlet

 so that a custom URL can later be assigned.

 -->

 <servlet>

 <servlet-name>ShowData</servlet-name>

 <servlet-class>moreservlets.ShowData</servlet-class>

 </servlet>

 <!-- ... -->

 <!-- Register the URL /forEach/ShowData with the

 ShowData servlet. This lets the HTML form use

 a simple relative URL to invoke the servlet.

 -->

 <servlet-mapping>

 <servlet-name>ShowData</servlet-name>

 <url-pattern>/forEach/ShowData</url-pattern>

 </servlet-mapping>

 <!-- ... -->

 <!-- Register jr JSTL TLD file. -->

 <taglib>

 <taglib-uri>

 http://java.sun.com/jsptl/ea/jr

 </taglib-uri>

 <taglib-location>

 /WEB-INF/jsptl-tlds/jsptl-jr.tld

 </taglib-location>

 </taglib>

 <!-- Register jx JSTL TLD file. -->

 <taglib>

 <taglib-uri>

 http://java.sun.com/jsptl/ea/jx

 </taglib-uri>

 <taglib-location>

 /WEB-INF/jsptl-tlds/jsptl-jx.tld

 </taglib-location>

 </taglib>

</web-app>

12.4 Accessing the Loop Status

The forEach tag defines an optional status attribute that specifies the name of an attribute

referring to an IteratorTagStatus object. This object provides details about the loop status. In

particular, the IteratorTagStatus object has the following bean properties.

• current. The current object, the same as you could obtain from the iteration variable

that the var attribute specifies. This property corresponds to the getCurrent method and

is of type Object.

• index. The actual zero-based index of the current item within its data structure. This

property corresponds to the getIndex method and is of type int.

• count. The iteration number. This value starts at 1 and increases by 1 each time around

the loop, regardless of the values of the begin, end, or step attributes. This property

corresponds to the getCount method and is of type int.

• first. A flag indicating whether the current item is the first in the iteration. Since this is

a boolean property, it corresponds to the isFirst (not getFirst !) method.

• last. A flag indicating whether the current item is the last in the iteration. Since this is a

boolean property, it corresponds to the isLast (not getLast) method.

• beginSpecified. A flag indicating whether the begin attribute was specified explicitly.

Since this is a boolean property, it corresponds to the isBeginSpecified (not

getBeginSpecified) method.

• begin. The value of the begin attribute or –1 if begin is not specified. This property

corresponds to the getBegin method and is of type int.

• endSpecified. A flag indicating whether the end attribute was specified explicitly. Since

this is a boolean property, it corresponds to the isEndSpecified (not getEndSpecified)

method.

• end. The value of the end attribute or –1 if end is not specified. This property corresponds

to the getBegin method and is of type int.

• stepSpecified. A flag indicating whether the step attribute was specified explicitly.

Since this is a boolean property, it corresponds to the isStepSpecified (not

getStepSpecified) method.

• step. The value of the step attribute or –1 if step is not specified. This property

corresponds to the getStep method and is of type int.

Listing 12.23 shows the jr version of a page that loops down a comma-delimited String and

displays status information each time around the loop. Figure 12-14 shows the result. Listing

12.24 (Figure 12-15) shows the jx equivalent.

Figure 12-14. Result of status-loop-jr.jsp.

Figure 12-15. Result of status-loop-jx.jsp.

Listing 12.23 status-loop-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Loop Status: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Loop Status: "jr" Version

</TABLE>

<P>

<TABLE BORDER=1>

<TR><TH CLASS="HEADING">Current
Item

 <TH CLASS="HEADING">Index

 <TH CLASS="HEADING">Count

 <TH CLASS="HEADING">First?

 <TH CLASS="HEADING">Last?

 <TH CLASS="HEADING"><CODE>begin</CODE>
Specified?

 <TH CLASS="HEADING"><CODE>begin</CODE>

 <TH CLASS="HEADING"><CODE>end</CODE>
Specified?

 <TH CLASS="HEADING"><CODE>end</CODE>

 <TH CLASS="HEADING"><CODE>step</CODE>
Specified?

 <TH CLASS="HEADING"><CODE>step</CODE>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<jr:forEach status="status" begin="1" step="2"

 items='"a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z"'>

 <%@ page import="javax.servlet.jsptl.*" %>

 <% IteratorTagStatus status =

 (IteratorTagStatus)pageContext.getAttribute("status"); %>

 <TR><TD><%= status.getCurrent() %>

 <TD><%= status.getIndex() %>

 <TD><%= status.getCount() %>

 <TD><%= status.isFirst() %>

 <TD><%= status.isLast() %>

 <TD><%= status.isBeginSpecified() %>

 <TD><%= status.getBegin() %>

 <TD><%= status.isEndSpecified() %>

 <TD><%= status.getEnd() %>

 <TD><%= status.isStepSpecified() %>

 <TD><%= status.getStep() %>

</jr:forEach>

</TABLE>

</BODY>

</HTML>

Listing 12.24 status-loop-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Loop Status: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Loop Status: "jx" Version

</TABLE>

<P>

<TABLE BORDER=1>

<TR><TH CLASS="HEADING">Current
Item

 <TH CLASS="HEADING">Index

 <TH CLASS="HEADING">Count

 <TH CLASS="HEADING">First?

 <TH CLASS="HEADING">Last?

 <TH CLASS="HEADING"><CODE>begin</CODE>
Specified?

 <TH CLASS="HEADING"><CODE>begin</CODE>

 <TH CLASS="HEADING"><CODE>end</CODE>
Specified?

 <TH CLASS="HEADING"><CODE>end</CODE>

 <TH CLASS="HEADING"><CODE>step</CODE>
Specified?

 <TH CLASS="HEADING"><CODE>step</CODE>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:forEach status="status" begin="1" step="2"

 items="a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z">

 <TR><TD><jx:expr value="$status.current"/>

 <TD><jx:expr value="$status.index"/>

 <TD><jx:expr value="$status.count"/>

 <TD><jx:expr value="$status.first"/>

 <TD><jx:expr value="$status.last"/>

 <TD><jx:expr value="$status.beginSpecified"/>

 <TD><jx:expr value="$status.begin"/>

 <TD><jx:expr value="$status.endSpecified"/>

 <TD><jx:expr value="$status.end"/>

 <TD><jx:expr value="$status.stepSpecified"/>

 <TD><jx:expr value="$status.step"/>

</jx:forEach>

</TABLE>

</BODY>

</HTML>

12.5 Looping with the forTokens Tag

The forEach tag lets you loop down comma-delimited strings. But, what if the tokens are

delimited by something other than a comma? Or, what if more than one character can separate

the tokens? Enter the forTokens tag. In addition to the six attributes available in forEach (var,

begin, end, step, items, status), forTokens has a delims attribute. This attribute specifies the

delimiters, just as with the second argument to the StringTokenizer constructor.

Hmm, forTokens sounds an awfully lot like forEach. Were the JSTL developers able to leverage

the forEach code when developing forTokens ? Yes! And you can too. JSTL provides a class

called IteratorTagSupport that lets you create custom tags that extend the behavior of the

forEach tag.

A Simple Token Loop

The following jr code treats parentheses as delimiters and creates a bulleted list of colors.

<jr:forTokens var="color"

 items="(red (orange) yellow)(green)((blue) violet)"

 delims="()">

 <%= pageContext.getAttribute("color") %>

</jr:forTokens>

Here is the jx equivalent:

<jx:forTokens var="color"

 items="(red (orange) yellow)(green)((blue) violet)"

 delims="()">

 <jx:expr value="$color"/>

</jx:forTokens>

Listing 12.25 shows a JSP page that uses the jr code; Figure 12-16 shows the result. Listing 12.26

shows a JSP page that uses the jx code; Figure 12-17 shows the result.

Figure 12-16. Result of simple-token-loop-jr.jsp.

Figure 12-17. Result of simple-token-loop-jx.jsp.

Listing 12.25 simple-token-loop-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Token Loop: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Token Loop: "jr" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<jr:forTokens var="color"

 items="(red (orange) yellow)(green)((blue) violet)"

 delims="()">

 <%= pageContext.getAttribute("color") %>

</jr:forTokens>

</BODY>

</HTML>

Listing 12.26 simple-token-loop-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Token Loop: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Token Loop: "jx" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:forTokens var="color"

 items="(red (orange) yellow)(green)((blue) violet)"

 delims="()">

 <jx:expr value="$color"/>

</jx:forTokens>

</BODY>

</HTML>

Nested Token Loops

One of the nice things about the forTokens tag is that it makes it easy to create nested loops. For

example, the following jr code creates two bulleted lists: the first giving colors and the second

giving numbers. The two sets of items are separated by parentheses. Within each set, individual

items are separated by commas.

<jr:forTokens var="entry"

 items="(purple,cyan,black,green)(pi,e,7,6.02 x 10^23)"

 delims="()">

 <jr:forTokens var="subentry"

 items='<%= (String)pageContext.getAttribute("entry") %>'

 delims=",">

 <%= pageContext.getAttribute("subentry") %>

 </jr:forTokens>

 <HR>

</jr:forTokens>

Here is the jx equivalent:

<jx:forTokens var="entry"

 items="(purple,cyan,black,green)(pi,e,7,6.02 x 10^23)"

 delims="()">

 <jx:forTokens var="subentry" items="$entry" delims=",">

 <jx:expr value="$subentry"/>

 </jx:forTokens>

 <HR>

</jx:forTokens>

Listing 12.27 shows a JSP page that uses the jr code; Figure 12-18 shows the result. Listing 12.28

shows a JSP page that uses the jx code; Figure 12-19 shows the result.

Figure 12-18. Result of nested-token-loop-jr.jsp.

Figure 12-19. Result of nested-token-loop-jx.jsp.

Listing 12.27 nested-token-loop-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Nested Token Loop: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Nested Token Loop: "jr" Version

</TABLE>

<H3>Favorite Colors and Numbers:</H3>

<HR>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<jr:forTokens var="entry"

 items="(purple,cyan,black,green)(pi,e,7,6.02 x 10^23)"

 delims="()">

 <jr:forTokens var="subentry"

 items='<%= (String)pageContext.getAttribute("entry") %>'

 delims=",">

 <%= pageContext.getAttribute("subentry") %>

 </jr:forTokens>

 <HR>

</jr:forTokens>

</BODY>

</HTML>

Listing 12.28 nested-token-loop-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Nested Token Loop: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Nested Token Loop: "jx" Version

</TABLE>

<H3>Favorite Colors and Numbers:</H3>

<HR>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:forTokens var="entry"

 items="(purple,cyan,black,green)(pi,e,7,6.02 x 10^23)"

 delims="()">

 <jx:forTokens var="subentry" items="$entry" delims=",">

 <jx:expr value="$subentry"/>

 </jx:forTokens>

 <HR>

</jx:forTokens>

</BODY>

</HTML>

12.6 Evaluating Items Conditionally

JSTL provides two main tags for performing conditional evaluation: if and choose. The if tag

evaluates its body only when a specified test condition is true. There is no “else” condition—the

content is either included or omitted with no alternative content. The following list summarizes

the use of if; the following subsections give details and examples.

• The if tag in the jr library. Use a JSP expression for the test attribute; if the result is

true or Boolean.TRUE, the contents of the tag are evaluated. For example:

•

• <jr:if test="<% expression %>">

• HTML or JSP content.

</jr:if>

• The if tag in the jx library. Use the same basic syntax as with the jr library, but specify

the test by accessing an existing attribute and comparing it to another value using one of

a small set of relational operators (==, !=, <, >, <=, or >=). For example:

•

• <jx:if test="$attribute.beanProperty == 'value'">

• HTML or JSP content.

</jx:if>

Whereas the if tag provides a single option that is either evaluated or ignored, the choose tag

lets you specify several different options with nested when tags. The content of the first option

whose test condition is true is evaluated. You can use the otherwise tag to provide default

content when no test is true. The following list summarizes the use of choose; the following

subsections give details and examples.

• The choose tag in the jr library. Use nested when tags; the contents of the first one

whose test attribute evaluates to true or Boolean.TRUE is used. If no when tag succeeds

and there is an otherwise tag, its contents are used. Use JSP expressions to specify each

of the tests. For example:

•

• <jr:choose>

• <jr:when test="<% expression1 %>">Content1</jr:when>

• <jr:when test="<% expression2 %>">Content2</jr:when>

• ...

• <jr:when test="<% expressionN %>">ContentN</jr:when>

• <jr:otherwise>Default Content</jr:otherwise>

</jr:choose>

• The choose tag in the jx library. Use the same basic syntax as with the jr library, but

specify the tests by accessing an existing attribute and comparing it to another value

using one of a small set of relational operators (==, !=, <, >, <=, or >=). For example:

•

• <jx:choose>

• <jx:when test="$att.prop1 == 'val1'">Content1</jx:when>

• <jx:when test="$att.prop2 == 'val2'">Content2</jx:when>

• ...

• <jx:when test="$att.propN == 'valN'">ContentN</jx:when>

• <jx:otherwise>Default Content</jx:otherwise>

</jx:choose>

The if Tag

With the if tag, you simply specify a condition with the test attribute. If it is true (i.e., is the

boolean value true or the Boolean value Boolean.TRUE), the content between the start and end

tags is evaluated. Otherwise, the tag body is ignored.

For example, the following jr library code prints a bulleted list of the numbers from 1 to 10. If the

number is greater than 7, a notation to that effect is placed after the number.

<jr:forEach var="i" begin="1" end="10">

 <% Integer i = (Integer)pageContext.getAttribute("i"); %>

 <%= i %>

 <jr:if test="<%= i.intValue() > 7 %>">

 (greater than 7)

 </jr:if>

</jr:forEach>

The jx library follows a similar procedure. The difference is that the test attribute uses existing

attributes and one of the following predefined comparisons: ==, !=, <, >, <=, or >=. It is important

to realize that these operators do not behave the same as their Java equivalents. In particular, all

of the operators support String arguments. For example, the == operator uses the equals

method when both arguments are of type String but does not generate an exception when either

argument is null. Similarly, >, <, etc., can be applied to strings as well as numbers. If the

arguments are both strings, the result is that of the compareTo method of the String class.

Core Warning

The relational operators of the jx library work differently

than they do in standard Java code. In particular, all of them can be used
to compare String objects.

For example, the following jx code generates the same list as the jr code just shown.

<jx:forEach var="i" begin="1" end="10">

 <jx:expr value="$i"/>

 <jx:if test="$i > 7">

 (greater than 7)

 </jx:if>

</jx:forEach>

Listing 12.29 shows a JSP page that uses the jr code; Figure 12-20 shows the result. Listing 12.30

shows a JSP page that uses the jx code; Figure 12-21 shows the result.

Figure 12-20. Result of if-jr.jsp.

Figure 12-21. Result of if-jx.jsp.

Listing 12.29 if-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>If: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 If: "jr" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<jr:forEach var="i" begin="1" end="10">

 <% Integer i = (Integer)pageContext.getAttribute("i"); %>

 <%= i %>

 <jr:if test="<%= i.intValue() > 7 %>">

 (greater than 7)

 </jr:if>

</jr:forEach>

</BODY>

</HTML>

Listing 12.30 if-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>If: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 If: "jx" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:forEach var="i" begin="1" end="10">

 <jx:expr value="$i"/>

 <jx:if test="$i > 7">

 (greater than 7)

 </jx:if>

</jx:forEach>

</BODY>

</HTML>

The choose, when, and otherwise Tags

With the choose tag, you supply a set of possible results by using nested when tags. Each when tag

uses the test attribute in the same manner as with the if tag. The body of the first when tag

whose condition is true (i.e., is the boolean value true or the Boolean value Boolean.TRUE) is

evaluated. If no when tag is true and there is an otherwise tag, its body is evaluated.

For example, the following jr code generates a bulleted list of numbers. If the number is less than

four, it is marked as “small.” If the number is greater than or equal to four but less than eight, it

is marked as “medium.” If the number is greater than eight, it is marked as “large.”

<jr:forEach var="i" begin="1" end="10">

 <% Integer i = (Integer)pageContext.getAttribute("i"); %>

 <%= i %>

 <jr:choose>

 <jr:when test="<%= i.intValue() < 4 %>">

 (small)

 </jr:when>

 <jr:when test="<%= i.intValue() < 8 %>">

 (medium)

 </jr:when>

 <jr:otherwise>

 (large)

 </jr:otherwise>

 </jr:choose>

</jr:forEach>

Here is the jx equivalent: shorthand tests are used instead of explicit JSP expressions, yielding a

more concise and readable result.

<jx:forEach var="i" begin="1" end="10">

 <jx:expr value="$i"/>

 <jx:choose>

 <jx:when test="$i < 4">

 (small)

 </jx:when>

 <jx:when test="$i < 8">

 (medium)

 </jx:when>

 <jx:otherwise>

 (large)

 </jx:otherwise>

 </jx:choose>

</jx:forEach>

Listing 12.31 shows a JSP page that uses the jr code; Figure 12-22 shows the result. Listing 12.32

shows a JSP page that uses the jx code; Figure 12-23 shows the result.

Figure 12-22. Result of choose-jr.jsp.

Figure 12-23. Result of choose-jx.jsp.

Listing 12.31 choose-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Choose: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Choose: "jr" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<jr:forEach var="i" begin="1" end="10">

 <% Integer i = (Integer)pageContext.getAttribute("i"); %>

 <%= i %>

 <jr:choose>

 <jr:when test="<%= i.intValue() < 4 %>">

 (small)

 </jr:when>

 <jr:when test="<%= i.intValue() < 8 %>">

 (medium)

 </jr:when>

 <jr:otherwise>

 (large)

 </jr:otherwise>

 </jr:choose>

</jr:forEach>

</BODY>

</HTML>

Listing 12.32 choose-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Choose: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Choose: "jx" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:forEach var="i" begin="1" end="10">

 <jx:expr value="$i"/>

 <jx:choose>

 <jx:when test="$i < 4">

 (small)

 </jx:when>

 <jx:when test="$i < 8">

 (medium)

 </jx:when>

 <jx:otherwise>

 (large)

 </jx:otherwise>

 </jx:choose>

</jx:forEach>

</BODY>

</HTML>

The Use of the set Tag with the choose Tag

In the previous example, the jx version of choose yielded more succinct code than did the jr

version because the tests were performed on an attribute that was set by the forEach tag. When

the tests are based on explicit computations, however, the jx code is more complicated.

For example, here is some jr code that prints out the results of ten coin tosses.

<jr:forEach var="i" begin="1" end="10">

 <% double d = Math.random(); %>

 <jr:choose>

 <jr:when test="<%= d < 0.49 %>">

 Heads.

 </jr:when>

 <jr:when test="<%= d < 0.98 %>">

 Tails.

 </jr:when>

 <jr:otherwise>

 Coin landed on edge!

 </jr:otherwise>

 </jr:choose>

</jr:forEach>

How would you perform the equivalent tasks in the jx library? The test attribute of the when tag

does not accept a JSP expression. Sure, you could use a scriptlet to explicitly store the result of

the call to Math.random in a PageContext attribute, but that results in so much scripting code

that it negates any advantage that the jx library might have had. Instead, you can use the set tag

to evaluate a JSP expression and automatically store the result in a PageContext attribute. The

set tag is described in Section 12.7, but the gist is that you can supply a value either with the

value attribute or by enclosing the value between the start and end tags of set. The result is

placed in the PageContext attribute named by the var attribute of set. Given this behavior of set,

the following jx code yields the same result as the previous jr example.

<jx:forEach var="i" begin="1" end="10">

 <jx:set var="d"><%= Math.random() %></jx:set>

 <jx:choose>

 <jx:when test="$d < '0.49'">

 Heads.

 </jx:when>

 <jx:when test="$d < '0.98'">

 Tails.

 </jx:when>

 <jx:otherwise>

 Coin landed on edge!

 </jx:otherwise>

 </jx:choose>

</jx:forEach>

Listing 12.33 shows a JSP page that uses the jr code; Figure 12-24 shows the result. Listing 12.34

shows a JSP page that uses the jx code; Figure 12-25 shows the result.

Figure 12-24. Result of coin-toss-jr.jsp.

Figure 12-25. Result of coin-toss-jx.jsp.

Listing 12.33 coin-toss-jr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Coin Toss: "jr" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Coin Toss: "jr" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jr" prefix="jr" %>

<jr:forEach var="i" begin="1" end="10">

 <% double d = Math.random(); %>

 <jr:choose>

 <jr:when test="<%= d < 0.49 %>">

 Heads.

 </jr:when>

 <jr:when test="<%= d < 0.98 %>">

 Tails.

 </jr:when>

 <jr:otherwise>

 Coin landed on edge!

 </jr:otherwise>

 </jr:choose>

</jr:forEach>

</BODY>

</HTML>

Listing 12.34 coin-toss-jx.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Coin Toss: "jx" Version</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Coin Toss: "jx" Version

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:forEach var="i" begin="1" end="10">

 <jx:set var="d"><%= Math.random() %></jx:set>

 <jx:choose>

 <jx:when test="$d < '0.49'">

 Heads.

 </jx:when>

 <jx:when test="$d < '0.98'">

 Tails.

 </jx:when>

 <jx:otherwise>

 Coin landed on edge!

 </jx:otherwise>

 </jx:choose>

</jx:forEach>

</BODY>

</HTML>

12.7 Using the Expression Language

The set, expr, and declare tags let you use shorthand notation to define attributes, evaluate

expressions, and declare scripting variables. The first two tags are available only in the jx library;

declare is technically available in either library but is primarily used with jx. Details and

examples are provided in the following subsections, but here is a quick summary.

• set. This tag defines a PageContext attribute. Use var to specify the name of the

attribute; use value to specify its value. When using the value attribute, recall that in the

jx library $attribute .beanProperty means that the system should call the

getBeanProperty method of the object referenced by the attribute named attribute .

You can also omit the value attribute and put the value between the start and end tags.

For example:

•

<jx:set var="name" value="$attribute.beanProperty"/>

• expr. This tag returns a value. Use the value attribute to access existing attributes and

bean properties with the jx library’s shorthand notation. If you use a default attribute, its

value is used if exceptions are thrown when the system attempts to access the main value.

For example:

•

<jx:expr value="$attribute.beanProperty" default="value"/>

• declare. This tag provides a bridge between the jx library and scripting code. It declares

a scripting variable (i.e., a local variable in _jspService) that can be accessed by JSP

expressions and scriptlets. Use id to give the name of the variable; its initial value will be

the attribute of the same name. Use type to give the fully qualified class name of the

variable’s type. For example:

•

<jx:declare id="name" type="package.Class"/>

The set Tag

The set tag defines a PageContext attribute with a name that is specified with the var attribute.

The set tag has two main purposes.

First, set can be used to evaluate a JSP expression and store its result in an attribute. This use of

set applies to situations in which you cannot entirely avoid explicit scripting expressions but you

still want to primarily use the jx library. With this usage, the value is placed inside the tag body.

For example, in the coin-toss example of the previous section, the following code was used to

store the result of Math.random in a PageContext attribute named d.

<jx:set var="d"><%= Math.random() %></jx:set>

Second, set can be used to store intermediate results. For example, the results of long and

complicated expressions can be stored in meaningfully named attributes, thus simplifying the

expr tags that use the values. With this usage, the value is specified with the value attribute. For

example, the following code uses set to establish the count, index, and letter attributes.

<jx:forEach status="status" begin="1" step="2"

 items="a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z">

 <jx:set var="count" value="$status.count"/>

 <jx:set var="index" value="$status.index"/>

 <jx:set var="letter" value="$status.current"/>

 Item <jx:expr value="$count"/>

 Index: <jx:expr value="$index"/>

 Letter: <jx:expr value="$letter"/>

</jx:forEach>

Listing 12.35 shows a JSP page that uses this set code; Figure 12-26 shows the result.

Figure 12-26. Result of set.jsp.

Listing 12.35 set.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Setting PageContext Attributes</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Setting PageContext Attributes

</TABLE>

<P>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:forEach status="status" begin="1" step="2"

 items="a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z">

 <jx:set var="count" value="$status.count"/>

 <jx:set var="index" value="$status.index"/>

 <jx:set var="letter" value="$status.current"/>

 Item <jx:expr value="$count"/>

 Index: <jx:expr value="$index"/>

 Letter: <jx:expr value="$letter"/>

</jx:forEach>

</BODY>

</HTML>

The expr Tag

The expr tag normally returns the value specified in its value attribute; I use expr in virtually

every jx example in this chapter. However, what happens if value specifies an attribute that does

not exist? The result is an error, not simply null. In most cases, this behavior is not a problem:

you know the attribute exists because it is specified by an enclosing forEach or forTokens tag,

an earlier set tag, or the servlet that forwarded the request to the JSP page. However, suppose

that you use the param scoping qualifier to read request parameters with the $param:paramName

shorthand format? In such a case, you cannot be sure whether the request parameter exists or

not: it is supplied by the end user. Similarly, if you use the header scoping qualifier to read a

request header, you cannot know in advance whether or not the specified header will exist. In

both cases, you get an error, not null, if you try to use the value when it is unavailable.

To handle this problem, the expr tag has a default attribute. Its value is used if an exception

occurs when the system tries to compute the value given in the value attribute. For example, the

following code uses the alertLevel request parameter to decide what heading to generate. If the

alertLevel parameter is not in the request, a default heading is generated. If expr had not been

used and $param:alertLevel was used directly in the tests, an error would have resulted when

alertLevel was not a request parameter.

<jx:set var="level">

 <jx:expr value="$param:alertLevel" default="low"/>

</jx:set>

<jx:choose>

 <jx:when test="$level == 'high'"><H1>Code Red!</H1></jx:when>

 <jx:when test="$level == 'medium'"><H1>Code Blue</H1></jx:when>

 <jx:otherwise><H2>Code White</H2></jx:otherwise>

</jx:choose>

Listing 12.36 shows a JSP page that uses this expr code; Figures 12-27 through 12-29 show the

results when the alertLevel request parameter is high, medium, and missing, respectively.

Figure 12-27. Result of expr.jsp when invoked with an alertLevel

request parameter of high.

Figure 12-28. Result of expr.jsp when invoked with an alertLevel

request parameter of medium.

Figure 12-29. Result of expr.jsp when invoked with no request

parameters.

Listing 12.36 expr.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<TITLE>Expressions with Defaults</TITLE>

<LINK REL=STYLESHEET

 HREF="../styles.css"

 TYPE="text/css">

</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">

 <TR><TH CLASS="TITLE">

 Expressions with Defaults

</TABLE>

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:set var="level">

 <jx:expr value="$param:alertLevel" default="low"/>

</jx:set>

<jx:choose>

 <jx:when test="$level == 'high'"><H1>Code Red!</H1></jx:when>

 <jx:when test="$level == 'medium'"><H1>Code Blue</H1></jx:when>

 <jx:otherwise><H2>Code White</H2></jx:otherwise>

</jx:choose>

</BODY>

</HTML>

The declare Tag

The jx library is preferred by developers who want to minimize the amount of explicit scripting

code in their JSP pages. In fact, JSTL provides a TagLibraryValidator (see Section 11.3) called

ScriptFreeTLV that you can use to verify that certain pages contain no scripting code

whatsoever.

However, despite the ability to access attributes and bean properties with shorthand notation,

you cannot always avoid the use of scripting elements. When scripting code is necessary, some

developers prefer to simply switch to the jr library. Others prefer to stick with jx but keep the

scripting code to a minimum. The declare tag is designed for this latter situation. It copies the

value of an existing attribute into a scripting variable (i.e., a local variable in the _jspService

method) that has the same name. This variable can then be accessed by scripting code.

For example, Listing 12.37 shows a very short JSP page that reads the url request parameter and

redirects the user to the specified page. It uses the jx library to take advantage of two capabilities:

the param scoping qualifier to simplify access to the request parameter and the default attribute

of expr to simplify the situation when the url parameter is missing. However, since the call to

sendRedirect requires explicit scripting code, the declare tag copies the value from the url

PageContext attribute into a String variable named url. Figure 12-30 shows the result when the

page is accessed without a url request parameter. Figure 12-31 shows the result when url is

part of the request data.

Figure 12-30. Result of declare.jsp when no url request

parameter is supplied

(http://localhost/jsptl/expressions/declare.jsp).

Figure 12-31. Result of declare.jsp when a url request

parameter is supplied

(http://localhost/jsptl/expressions/declare.jsp?url=http://

courses.coreservlets.com).

Listing 12.37 declare.jsp

<%@ taglib uri="http://java.sun.com/jsptl/ea/jx" prefix="jx" %>

<jx:set var="url">

 <jx:expr value="$param:url"

 default="http://java.sun.com/products/jsp/"/>

</jx:set>

<jx:declare id="url" type="java.lang.String"/>

<% response.sendRedirect(url); %>

Appendix Server Organization and Structure

Topics in This Appendix

• Downloading server software

• Accessing servlet and JSP documentation

• Locating servlet JAR files

• Starting and stopping the server

• Storing files for use in the default Web application

• Storing files for use in custom Web applications

This appendix summarizes the various files and directories used by Tomcat, JRun, and

ServletExec. It also reminds you where to get the server software and documentation.

Download Sites

• Tomcat.

http://jakarta.apache.org/builds/jakarta-tomcat-4.0/release/

• JRun.

http://www.macromedia.com/software/jrun/

• ServletExec.

http://www.newatlanta.com/download.jsp

• API documentation.

http://java.sun.com/products/jsp/download.html

Starting and Stopping the Server

• Tomcat.

In your development directory, make shortcuts to install_dir/bin/ startup.bat and

install_dir/bin/shutdown.bat. Double click them to start and stop the server. Use

startup.sh and shutdown.sh on Unix/ Linux.

• JRun.

Go to the Start menu, select Programs, select JRun, right-click on the JRun Default Server

icon, and select Copy. Then go to your development directory, right-click in the window,

and select Paste Shortcut. If desired, repeat the process for the JRun Admin Server and

JRun Management Console. Double click the default server icon to start JRun. To stop JRun,

click on the icon in the taskbar and select Stop.

• ServletExec.

In your development directory, make shortcut to install_dir/ StartSED.bat. Double click it

to start the server. There is no separate shutdown file; to stop ServletExec, just go to

http://localhost/ and click on the Shutdown link in the General category on the left-hand

side. Or, just close the popup window that shows the ServletExec output.

Servlet JAR File Locations

This location needs to be added to the CLASSPATH of your development environment or IDE.

• Tomcat.

install_dir/common/lib/servlet.jar

• JRun.

install_dir/lib/ext/servlet.jar

• ServletExec.

install_dir/ServletExecDebugger.jar

Locations for Files in the Default Web Application

This section summarizes where you place files when you are not using custom Web applications

(i.e., when first testing things out). Note that the URLs cited assume that you have changed your

server’s port to 80 as described in Section 1.3.

Individual Classes that Do Not Use Packages

• Tomcat.

install_dir/webapps/ROOT/WEB-INF/classes

• JRun.

install_dir/servers/default/default-app/WEB-INF/classes

• ServletExec.

install_dir/Servlets

• Corresponding URL.

http://host/servlet/ServletName

Individual Classes That Use Packages

• Tomcat.

install_dir/webapps/ROOT/WEB-INF/classes/packageName

• JRun.

install_dir/servers/default/default-app/WEB-INF/classes/

packageName

• ServletExec Directory.

install_dir/Servlets/packageName

• Corresponding URL.

http://host/servlet/packageName.ServletName

Classes That Are Bundled in JAR Files

• Tomcat.

install_dir/webapps/ROOT/WEB-INF/lib

• JRun.

install_dir/servers/default/default-app/WEB-INF/lib

• ServletExec.

install_dir/Servlets

• Corresponding URLs (Servlets).

http://host/servlet/ServletName

http://host/servlet/packageName.ServletName

HTML and JSP Pages (No Subdirectories)

Images, style sheets, and other Web content go in the same places.

• Tomcat.

install_dir/webapps/ROOT

• JRun.

install_dir/servers/default/default-app

• ServletExec.

install_dir/public_html

• Corresponding URLs.

http://host/SomeFile.html

http://host/SomeFile.jsp

HTML and JSP Pages (In Subdirectories)

Images, style sheets, and other Web content go in the same places.

• Tomcat.

install_dir/webapps/ROOT/someDirectory

• JRun.

install_dir/servers/default/default-app/someDirectory

• ServletExec.

install_dir/public_html/someDirectory

• Corresponding URLs.

http://host/someDirectory/SomeFile.html

http://host/someDirectory/SomeFile.jsp

Locations for Files in Custom Web Applications

Autodeploy Directories

These directories are where you drop WAR files or directories containing Web applications. Once

you restart the server, you automatically get a custom Web application whose URL prefix matches

the main name of the WAR file (minus the.war extension) or the directory name. For lots more

control over Web application deployment, see Section 4.1 (Registering Web Applications).

• Tomcat.

install_dir/webapps

• JRun. (No autodeployment prior to version 4)

install_dir/servers/default

• ServletExec.

install_dir/webapps/default

Locations for Files Within Web Applications

The following figure summarizes where you place different types of files within each of your Web

applications. Again, the URLs cited assume that you have customized the server to use port 80 as

described in Section 1.3.

