Made_For v ANAQOFLY

r"'i"llWI LEY JAVA" OPEN SOURCE LIBRARY

Mastering

JXTA

Building Java’
Peer-to-Peer
Applications

Joseph D. Gradecki

Mastering JXTA: Building Java Peer-to-Peer Applications
by Joseph D. Gradecki (Author), Joe Gradecki
Paperback: 552 pages ;

Publisher: John Wiley & Sons;

ISBN: 0471250848

Mastering JX

Building Java Peer-to-Peer Applicati

Joseph D. Grade

Mastering JXTA

Building Java Peer-to-Peer Applications

Mastering JX

Building Java Peer-to-Peer Applicati

Joseph D. Grade

Publisher: Robert Ipsen Copyeditor: Elizabeth Welch

Editor: Robert M. Elliott Proofreader: Nancy Sixsmith
Managing Editor: John Atkins Compositor: Gina Rexrode
Book Packaging: Ryan Publishing Group, Inc. Technical Editor: Stan Ng

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where Wiley Publishing, Inc., is aware of a claim, the product names appear in initial capital
or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

This book is printed on acid-free paper.
Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspointe Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-
4447, email: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this book and specifically disclaim any implied warranties of mer-
chantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suit-
able for your situation. You should consult with a professional where appropriate. Neither the pub-
lisher nor author shall be liable for any loss of profit or any other commercial damages, including but
not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Depart-
ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax
(317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:
ISBN: 0-471-25084-8

Printed in the United States of America

109 8 76 54321

. contents B

Chapter 8 Peer Information Protocol 123
An Overview of the PIP 123

PIP Query Messages 124

PIP Response Messages 124

Java Binding of the PIP 126

Requesting Peer Information 127

Building a Listener 127

Viewing the Information Returned 128

Summary 129

Chapter 9 Peer Endpoint Protocol 131
An Overview of the Peer Endpoint Protocol 131

Endpoint Service 132

Sending a Message 133

Endpoint Protocols 133

Java Binding of the Peer Endpoint Protocol 134

Summary 136

Chapter 10 Pipe Binding Protocol 137
Overview of the Pipe Binding Protocol 137

Pipe Advertisements 138

Pipe Binding Query Messages 138

Java Binding 140

Creating a Pipe 141

Receiving Information 142

Building the Pipe 143

Advertising the Pipe 143

Discovering an Input Pipe 144

Summary 144

Chapter 11 Rendezvous Protocol 145
Rendezvous Advertisements 146

Message Propagation 146

The Java Binding 147

Dynamic Rendezvous Service Implementation 147

Finding Rendezvous Peers Dynamically 148

Connecting to Rendezvous Peers 148

Disconnecting from a Rendezvous Peer 149

Summary 150

Chapter 12 Developing a JXTA Application 151
The Basic Structure for JXTA Applications 152

Connecting to the JXTA Network 153

Viewing Peer Group Information 154

Viewing Peer Group Advertisement 155

Bl Contents

Chapter 13

Building a Peer to Offer Services 157
Obtaining Group Services 162
Building and Publishing the Module Class Advertisement 163
Building the Pipe Advertisement 164
Building and Publishing the Module Specification Advertisement 166
Waiting for Messages 167
Putting It All Together 168

Building a Peer for Using Services 169
Code for the Receiver Peer 170
Getting Services 175
Finding the Advertisement through Discovery 175
Building an Output Pipe 176
Sending a Message through a Pipe 177
Application Basics 177

Creating a New Peer Group 178
Creating a Peer Group ID 178
Creating a Module Implementation Advertisement 179
Creating a Group Advertisement 180
Creating a New Peer Group 180

A Peer that Discovers and Joins a New Peer Group 187

Creating a Secure Peer Group 192
Using a Membership Service Implementation 192
Changing the Default Class Implementation Advertisement 193
Code for a Secure Peer Group 194
A Secure Peer Group Advertisement 201
Becoming Authenticated 202
New Class Implementation Advertisement Details 204
Peer Group Advertisement Details 205
authenticateMe() Method Details 206
Client for the Secure Peer Group 207

Summary 207

JXTA Pipes 209

Publishing and Discovering Pipes 210
Publishing 210
Discovery 210

Unicast Pipes 214
Unicast Pipes on a Local Peer 214
Remote Peers 216

UnicastSecure Pipes 218

Propagate Pipes 218

Bidirectional Pipes 225
The Bidirectional Pipe Code 225
The Bidirectional Pipe Discovery Code 229

Reliable Pipes 234
Sender Code 237
The Receiver Code 242

Summary 242

. Contents BN

Part lIl JXTA Implementation

Chapter 14 Content Sharing and the Content Management Service (CMS) 243

Overview of the CMS 243
Implementing the CMS in Peers 245
Initializing the CMS 250
Sharing Content 250
Viewing the Shared Content List 251
Searching For and Getting Content 251
Summary 254
Chapter 15 Implementing Security 255
JXTA Security Toolkit 255
Building Keys 256
Secure Membership Service 263
Building a New Membership Service 264
Changing the Peer Group Creator Code 275
Secure Transport 277
JxtaUnicastSecure Pipes 277
Separately Encrypted Data 279
Summary 300
Chapter 16 Peer Monitoring and Metering 301
Finding Peers in a Group 301
Building the Peer Discovery Listener 301
Interpreting Events 302
The Discovery Code 304
Local Peers versus Remote Peers 305
Obtaining Information about a Peer 307
A Sample Application for Discovering Peers 309
Explaining the Code 315
Code Output 316
Summary 317
Chapter 17 Configuring NAT and Firewall Peers 319
The JXTA Network Topology 319
Running a Peer Behind a Firewall/NAT 320
Communication Peer Configuration 320
Gateway Configuration 323
The Discovery Peer Configuration 324
Using the Configurator’s Debug Option 326
Building a Router/Rendezvous Peer 327

Summary 330

xii | [

Chapter 18 Using Endpoints for Low-Level Communication 331
The Endpoint Service 331
Code for the Endpoint Receiving Peer 334
Code for the Endpoint Sending Peer 337
Summary 341
Chapter 19 Building a Generic Framework for Distributed Computing 343
Master Code 344
Worker Code 349
Setup 355
Work 355
Computational Code 356
Summary 358
Chapter 20 Building an Encrypted, Highly Available Storage System 359
System Architecture 359
Our Example 361
Database Schema 362
Message Schema 362
Executing the System 363
DatabasePeer 366
DatabasePeer Connectivity 372
Setup 374
Publishing a Data Input Pipe 375
Publishing a Query Bidirectional Pipe 375
Processing Input 375
BusinessPeer 377
Setup 383
Discovery 384
Processing Input 384
GatheringPeers 385
ClientPeer 386
Setup 393
Pipe Discovery 394
The Query Request 395
The Image Request 395
Summary 396
Part IV JXTA Reference
Appendix A Installing JXTA and Compiling JXTA Applications 397
Installing JXTA 397
Easy Install 397

Installing on a Windows System 398

Appendix B

xiii

Installing on a Linux System 399
JXTA Libraries 399
Stable Builds 400
Daily Builds 401
Compiling the Examples 401
Windows 401
Linux 402
Running the Examples 402
Windows 402
Linux 403
JBuilder Compiling and Execution 403
Adding a New JBuilder Project 404
JXTA API 407
Class Advertisement 407
Field Summary 408
Constructor Summary 408
Method Summary 408
Example 408
Class AdvertisementFactory 408
Method Summary 408
Class AuthenticationCredential 409
Constructor Summary 410
Method Summary 410
Example 410
Class Codat 411
Field Summary 411
Constructor Summary 411
Method Summary 411
Example 411
Class CodatID 412
Constructor Summary 412
Method Summary 412
Example 412
Interface Credential 412
Method Summary 412
Class DiscoveryEvent 413
Constructor Summary 413
Method Summary 413
Example 413
Interface DiscoveryListener 413
Method Summary 414
Example 414
Class DiscoveryQueryMsg 414
Field Summary 414
Constructor Summary 414
Method Summary 414

xiv

Class DiscoveryResponseMsg 415
Field Summary 415
Constructor Summary 415
Method Summary 415
Example 416

Interface DiscoveryService 416
Field Summary 416
Method Summary 417
Example 418

Interface Document 418
Method Summary 418
Example 418

Interface Element 419
Method Summary 419
Example 419

Interface EndpointAddress 419
Method Summary 419
Example 420

Class EndpointAdvertisement 420
Constructor Summary 420
Method Summary 420

Interface EndpointFilterListener 421
Method Summary 421

Interface EndpointProtocol 421
Method Summary 421
Example 422

Interface EndpointService 422
Method Summary 422
Example 423

Interface GenericResolver 424
Method Summary 424

Class ID 424
Field Summary 424
Constructor Summary 424
Method Summary 425

Class IDFactory 425
Method Summary 425
Example 426

Interface InputPipe 426
Method Summary 426
Example 426

Class JxtaError 427
Field Summary 427
Constructor Summary 427

Method Summary 427

. contents QIBY

Class MembershipService 427
Constructor Summary 427
Method Summary 427
Example 428

Interface Message 428
Method Summary 429
Example 430

Class MessageElement 430
Constructor Summary 430
Method Summary 430
Example 431

Class MimeMediaType 431
Constructor Summary 431
Method Summary 432
Example 432

Class ModuleClassAdvertisement 432
Constructor Summary 433
Method Summary 433
Example 433

Class ModuleClassID 434
Constructor Summary 434
Method Summary 434

Class ModuleImplAdvertisment 434
Constructor Summary 434
Method Summary 434
Example 435

Class ModuleSpecAdvertisement 435
Constructor Summary 436
Method Summary 436
Example 437

Class ModuleSpecID 437
Constructor Summary 437
Method Summary 437
Example 437

Interface OutputPipe 438
Method Summary 438
Example 438

Class PeerAdvertisement 438
Constructor Summary 438
Method Summary 438
Example 439

Interface PeerGroup 439
Constructor Summary 440
Method Summary 440

Example 442

Xvi

Class PeerGroupAdvertisement

Constructor Summary
Method Summary
Example

Class PeerGroupFactory
Constructor Summary
Method Summary
Example

Class PeerGroupID
Field Summary
Constructor Summary
Example

Class PeerID
Constructor Summary
Method Summary
Example

Class PeerInfoEvent
Constructor Summary
Method Summary
Example

Interface PeerInfoListener
Method Summary

Class PeerInfoQueryMessage

Constructor Summary
Method Summary
Example

Class PeerInfoResponseMessage

Constructor Summary
Method Summary

Class PipeAdvertisement
Field Summary
Constructor Summary
Method Summary
Example

Class PipelD
Constructor Summary
Method Summary
Example

Class PipeMsgEvent
Constructor Summary
Method Summary
Example

Interface PipeMsgListener
Example

442
442
442
443
443
443
443
444
444
444
444
444
445
445
445
445
445
445
445
446
446
446
446
446
446
447
447
447
447
448
448
449
449
449
450
450
450
450
450
450
451
451
451
451

Appendix C
Appendix D
Appendix E

xvii

Interface PipeService 452
Field Summary 452
Method Summary 452
Example 452

Interface QueryHandler 453
Method Summary 453

Interface RendezvousListener 453
Method Summary 453

Interface RendezVousService 453
Method Summary 453

Class ResolverResponseMsg 455
Field Summary 455
Constructor Summary 455
Method Summary 455

Interface ResolverService 455
Method Summary 456

Interface StructuredDocument 456
Method Summary 456

Class StructuredDocumentFactory 456
Method Summary 456
Example 457

Interface StructuredTextDocument 457
Method Summary 457
Example 458

Interface TextDocument 458
Method Summary 458

Interface TextElement 458
Method Summary 458
Example 458

Current Add-on JXTA Services 459

Latest JXTA Projects 463

JXTA Resources 467

Mailing Lists 467
Discuss Mailing List 467
Announce Mailing List 467
Dev Mailing List 468
User Mailing List 468

JXTA Tutorials 468

OpenP2P 468

Sun.com 468

i Contents

Appendix F

Appendix G

JXTA Bindings 469
Java 469
Java ME (JXME) 470
jxta-c 471
jxtaPerl 471
jxtapy 472
jxtaruby 472
pocketJXTA 473
Other Peer-to-Peer Implementations and Toolkits 475
IBM BabbleNet 475
Intel 476
Microsoft .NET and P2P 476
The Peer-to-Peer Trusted Library 476
The Bluetooth P2P Toolkit 477
Other Tools 477
Index 479

I would like to acknowledge several folks. First, Tim Ryan for every-
thing he does to support the writing of this book and his friendship. Sec-
ond, Liz Welch for her diligent editing of this manuscript. Third, Stan Ng
for his technical editing and keeping me straight on the use of the JXTA
software.

Joseph D. Gradecki is a software engineer at Comprehensive Software
Systems, where he works on its SABIL product, an enterprise-level
securities processing system. He has built numerous dynamic enterprise
applications using Java, C++, servlets, JSPs, Resin, MySQL, BroadVision,
XML, and other technologies.

Joe has also built many P2P distributed computing systems in a variety of
languages, including Java/JXTA, C/C++, and Linda. He holds Bachelor’s
and Master’s degrees in Computer Science, and is currently pursuing a
Ph.D. in Computer Science. Joe also regularly teaches Java and OOP
courses at Colorado Technical University.

Introduction

inherently client-server systems. Web developers spend a lot of time

building powerful sites that serve information and services to the thou-
sands of browser clients that visit them. But peer-to-peer (P2P) applications
like KaZaA, Napster, and SETI have demonstrated the true power of the Inter-
net: the millions of information stores—common PCs—sitting idle on desks
around the world. Peer-to-peer technologies harness the CPUs and storage
devices of these PCs to produce huge data stores, communications systems,
and processing engines.

Many of us tend to think of the Internet, and most other networks, as

Due to a lack of standards and toolKkits, early P2P application developers spent
much of their time reinventing the wheel—building the same system “plumb-
ing” for each new app they wrote. Developers at Sun created the JXTA specifi-
cation to solve this problem. The specification is a basic building block from
which developers can produce applications that

m Allow sharing of resources between peers without a central server
m Use idle cycles of desktop machines for solving complex problems

m Expose Web services to be used by other peers

What's In This Book

This book contains a complete discussion of the latest JXTA specification and
the Java binding. As with any new technology, a number of components form

xxiii

) (\"MIll Introduction

the foundation of the specification. This book explains each of the core com-
ponents and protocols of JXTA, and includes comprehensive examples to back
up the concepts. Some of the concepts discussed in this book are

Peers—An application, executing on a computer, that has the ability to
communicate with similar peer applications

Peer groups—A logical grouping of peers

Modules—Code that is made available by a peer or peer group for use by
another peer or peer group.

Pipes—Communication channels created between peers
Services—Predefined functionality that can be utilized by peers

Advertisements—XML-based messages used to publish information
between peers

Following a complete discussion of the specification, this book provides many
code examples and full P2P applications written in Java. After reading Master-
ing JXTA, you will have a foundation in P2P programming and, more impor-
tant, you will have several examples and full-blown applications to use as a
springboard for your own creations. One of the major examples in this book
builds a framework for distributed computations using JXTA. Using a generic
work class, you can build P2P applications that will pass computational work
to be done to peers and accumulate the results. Another example will show you
how to build a comprehensive, three-tier storage system; this system allows
data to be sent from client peers to business peers to database peers. The data-
base peer connects to a MySQL database to store the data.

One of the major goals of this book is demonstrating how to develop P2P appli-
cations by stepping you through the process of building a comprehensive appli-
cation framework that you can reuse to develop your own applications.

You can find the code in this book at www.wiley.com/compbooks/gradecki. The
code for each chapter is located in a separate file so that you can quickly find
what you need. The JXTA Java Reference Implementation can be found at
www.jxta.org. You will also need the Java SDK, which you can find at
www.javasoft.com.

Who Should Read This Book

This book assumes that you are new to JXTA and P2P concepts, but have pro-
gramming experience with Java. To quickly understand some of the more com-
plex examples in this book, you will need to be familiar with Java interface
implementation, anonymous inner classes, and callbacks.

Book Organization ¢4

If you want to know how to build sophisticated, Java-based, peer-to-peer appli-
cations, then this book is for you.

Book Organization

This book is organized into three parts. Part I is a comprehensive overview of
P2P, the JXTA specification, and the JXTA architecture and its components.
Part II discusses the JXTA protocols, which are the core of the specification;
you must understand the protocols in order to build robust P2P applications
using a binding language. Finally, Part III takes all of the concepts learned in
Parts I and II and applies them to many small examples and two large applica-
tions: a distributed computational engine and a robust storage service. Let’s
take a look at each of the chapters making up the three parts of the book.

Part I: JXTA Overview

Chapter 1: Introduction to Peer-to-Peer

This chapter provides the uninitiated with a comprehensive overview of what
P2P is, where it came from, and how it’s been used. We look to the past in order
to understand that the concepts of a P2P network are really quite old. Next, we
examine the various architectures that can be created when a P2P system is
developed. Finally, we look into the more common P2P systems—such as
Usenet, Napster, Gnutella, Instant Messaging, and distributed.net—to under-
stand what you can do with peer-to-peer.

Chapter 2: An Overview of JXTA

This chapter is the fundamental chapter in the book. We describe the JXTA sys-
tem, starting with its short history. Then we examine the JXTA architecture,
which consists of three layers: the core layer, the services layer, and the appli-
cation layer. We describe each of the layers in detail, and explain the compo-
nents needed in each layer. The layers rely on several JXTA technologies, which
are described next. These technologies are

m Peer

m Group

m Advertisement
m Protocols

m Pipes

XXVi

Introduction

m Services

m Rendezvous peers

Finally, we include an overview of how you can use JXTA in networks that
have firewalls and peers that use a NAT address. Because XML is used through-
out JXTA, an overview of XML is also provided for those who are new to that
technology.

Chapter 3: JXTA Shell

One of the easiest ways to experience the JXTA system is through the JXTA
shell. The JXTA shell is an interactive application that allows a command-line
interface to the JXTA network; it is modeled after a Unix shell, and includes a
number of commands for manipulating the shell presence on the network.
Some of the commands we discuss are whoami, peers, env, share, and search,
among many others. We provide a comprehensive overview of the shell and
how to use it on the network. We cover all of the commands in the shell, along
with helpful examples, and conclude with a discussion on writing shell scripts
and user-defined classes.

Chapter 4: Using myJXTA

In order to further explain the code necessary to write JXTA P2P applications,
this chapter focuses on the InstantP2P application, which you can download
from the JXTA project web site. We examine major features of this application,
including

m Chatting with InstantP2P in a group
m Using one-to-one chatting
m Searching for files in a group

m Sharing your own files

We discuss each of these features as well as the code used to implement them.

Chapter 5: JXTA Advertisements

One of the core concepts in JXTA is that of the advertisement. All resources,
such as peers, groups, pipes, and services, rely on the advertisement to repre-
sent themselves on the JXTA network. This chapter provides a complete view
of the JXTA advertisement based on the latest specification. For each of the dif-
ferent advertisements—including peer, peer group, module class, module spec-
ification, module implementation, pipe, peer info, and rendezvous—we offer
complete descriptions, along with discussions of how the advertisements are
created and used within the network.

xxvii
Part 11: JXTA Protocols

Chapter 6: Peer Discovery Protocol

This chapter provides a detailed view of the Peer Discovery Protocol (PDP),
which is used for all discovery of advertisements from peers. A peer uses the
PDP for resource queries, and will receive zero or more responses. In this chap-
ter, we describe the messages received from a query as well as how to perform
a PDP query. In addition, we briefly discuss how the protocol was implemented,
and the features available for those peers that want to build and use their own
discovery mechanism.

Chapter 7: Peer Resolver Protocol

The Peer Resolver Protocol is a generic query protocol designed to allow peers
to query either specific peers or peers within a peer group. In this chapter, we
examine the protocol specification and how it is used to implement a number
of the JXTA protocols. We also cover the message formats and how to use the
protocol. At the end of the chapter, you'll find a discussion of how the protocol
is implemented.

Chapter 8: Peer Information Protocol

In any peer-to-peer environment, information about peers must be readily avail-
able. The Peer Information Protocol is a powerful mechanism for obtaining
information about a peer once it has been discovered. In this chapter, we exam-
ine the protocol. As in the other protocol chapters, we cover the query and
response messages, along with specific implementation details.

Chapter 9: Peer Endpoint Protocol

The JXTA network is designed to allow for routing between peers. There are
times when one peer needs to send a message to another peer and they are not
“directly” connected. In these situations, a relay peer will be used. In this chap-
ter, we dive into the details behind the Peer Endpoint Protocol. We cover all of
the query and response messages as well as implementation details.

Chapter 10: Pipe Binding Protocol

When peers want to communicate by sending more than advertisements, a pipe
is necessary. The Pipe Binding Protocol provides the details behind pipes, end-
points, and transport mechanisms. In this chapter, we discuss all of these con-
cepts and examine the various messages being transferred between peers.

xxviii Introduction

Chapter 11: Rendezvous Protocol

The Rendezvous Protocol allows for the propagation of messages within a P2P
system. In this chapter, we cover the Rendezvous Protocol, which is used by
both the Peer Resolver and Pipe Binding Protocols.

Chapter 12: Developing a JXTA Application

This chapter provides the details behind building JXTA P2P applications. Using
the information gathered from the first two parts of the book, this chapter
guides you through the development of both command-line and GUI-based Java
applications. You will learn how to build JXTA P2P applications using a simple-
to-understand skeleton. We expand the skeleton to include creating and joining
peer groups with both secure and non-secure membership rules.

Chapter 13: JXTA Pipes

One of the primary reasons to build a P2P system is to facilitate the transfer of
information between the peers. The peers and services are made known to each
other through advertisements, and information is transfer through a pipe. The
concept is the same as that found in the Unix system, in which a pipe connects
two commands. In this chapter, we explain the pipes used in JXTA, and illus-
trate with examples.

Part I1I: JXTA Implementation

Chapter 14: Content Sharing and the Content Management
Service (CMS)

The Content Management Service (CMS) is a perfect example of an add-on to
the JXTA network using a service. This software allows for easy sharing,
access, and retrieval of all kinds of content in the JXTA networks. As you’'ll
learn in this chapter, by using simple commands peers can implement the CMS
and instantly be able to share content with other peers.

Chapter 15: Implementing Security

As noted in Chapter 12, the level of security provided in the default Java bind-
ing for JXTA is weak. Most of the security found in JXTA is located in the
JXTACryptoSuite, which we discuss in detail. The default weak authentication
code for group membership is expanded to include much stronger algorithms.
Finally, we address the issue of security along the network transport.

Book Organization [¢0¢

Chapter 16: Peer Monitoring and Metering

As peers are developed and deployed, the issue of monitoring and metering will
arise. In this chapter, each of these issues are addressed. On the topic of moni-
toring, we present code that allows a P2P system to keep track of the peers in
the group, when they joined the group, when they left the group, and when sud-
den peer death occurs.

Chapter 17: Configuring NAT and Firewall Peers

Of particular importance to enterprise systems is how to handle firewall and
Network Address Translation (NAT). In this chapter, we explain how to config-
ure peers that use a NAT address and/or exist behind a firewall. We present
code that you can use to build a simple peer to be used as a gateway or ren-
dezvous peer.

Chapter 18: Using Endpoints for Low-level Communication

Under the high-level pipe component is a lower-level mechanism for communi-
cating between peers. Endpoints represent portals into and out of individual
peers and can be used as a low-level communication channel. This chapter will
explore endpoints and present code for using them in peers.

Chapter 19: Building a Generic Framework for Distributed
Computing

This chapter builds an application like SETI or distributed.net using the JXTA
framework. We examine the process of building a framework system, in which
computationally complex algorithms can be distributed to peers on the net-
works that choose to subscribe.

Chapter 20: Building an Encrypted, High-Availability Storage
System

Imagine building an encrypted remote storage service in which clients can sign
up and store vital records. In this chapter, we build such a system, and explore
topics such as using replication among peers and handling integration with
backend databases.

XXX
Part IV: JXTA Reference

Appendix A: Installing JXTA and Compiling JXTA Applications

Appendix A provides a guide for installing and using the JXTA system. Infor-
mation covered in the appendix includes

Finding JXTA

Finding the ancillary installs you need
Downloading the files

Installing on Windows

Installing on Linux

Installing on Solaris

Obtaining daily builds for the latest code

Appendix B: JXTA API

Appendix B provides a complete listing of the current JXTA API, along with
descriptions.

Appendix C: Current Add-on JXTA Services

Since JXTA is a core technology, a number of complementary systems have
been developed that can be “bolted” onto a P2P system. In this appendix, we
look at some of those services and their current status.

Appendix D: Latest JXTA Projects

Anyone who has taken the time to look at the JXTA web site will find a number
of projects. This chapter details the most important of those projects and how
services provided by the projects can be utilized in other applications.

Appendix E: JXTA Resources

Appendix E covers the latest information about the Project JXTA web site, and
provides listings of other web sites that can be used for resource purposes. We
also include a number of mailing lists aimed at developers who want to remain
in the loop of JXTA development.

Book Organization [+eq

Appendix F: JXTA Bindings

Appendix F covers the current language bindings of the JXTA specification.
While Java was the first, a number of other bindings have been created using
most of the recent and popular languages.

Appendix G: Other Peer-to-Peer Implementations and Toolkits

In this appendix, we examine some of the other P2P implementations and
toolkits. We discuss both commercial and open-source systems.

Mastering JXTA

Building Java Peer-to-Peer Applications

Introduction to Peer-to-Peer

dream about a day when computers around the world would be linked

together to share resources in a peer-to-peer fashion. In 1962, one of
those early dreamers, J.C.R. Licklider of MIT, wrote a now-famous series of
memos in which he described an “Intergalactic Network” of interconnected
computers. His vision led to the creation of the Network Control Program
(NCP), the first “host-host” networking protocol and the precursor to TCP/IP.

The early developers of ARPANET and the Internet allowed themselves to

The host-host concept—which we now call peer-to-peer—was crucial in devel-
oping the Internet. Every computer on the network was an equal: Each com-
puter could access the resources of any other computer on the network while
making its own resources available. Communication among hosts was also
equal: No computer was seen as a client or component of another, and all com-
puters shared more-or-less equal bandwidth access to one another.

Several events have conspired to change the Internet landscape from primarily
peer-to-peer to the now more familiar client-server architecture. The Internet
has gradually become more commercial, and corporations build firewalls
around their information to control access. Millions of people “log on” to the
Internet using desktop computers that cannot match the power of the servers
that form the backbone of the Internet. And many popular Internet applications
and services, including the World Wide Web and FTP, are based on a client-
server architecture.

2 Chapter 1 Introduction to Peer-to-Peer

In the last few years, however, peer-to-peer (P2P) technology has once again
had a profound effect on the Internet and the distribution of information and
resources. P2P is being aggressively hyped in the media, but there are a wide
variety of opinions as to what exactly P2P is:

m (Clay Shirky (Internet consultant, writer, and speaker) once said that “P2P
is a class of applications that takes advantage of resources—storage,
cycles, content, human presence—available at the edges of the Internet.”

m Li Gong of Sun Microsystems wrote that “The term peer-to-peer network-
ing is applied to a wide range of technologies that greatly increase the uti-
lization of information, bandwidth, and computing resources in the
Internet. Frequently, these P2P technologies adopt a network-based com-
puting style that neither excludes nor inherently depends on centralized
control points.”

m Ed Dumbill of XML.com said, “P2P is whoever says they're P2P.”

Right now Mr. Dumbill’s definition seems to be winning the popular vote. One
of the purposes of this chapter is to help you formulate your own answer to the
question, “What is P2P?” The next section begins our discussion of peer-to-peer
technology with a quick review of network topologies. In the final section, we
look at Napster, Morpheus, instant messaging, and Usenet from a P2P perspec-
tive; and then discuss some of the legal, technical, and security issues that have
arisen from the use of these and similar applications.

What Is a Peer-to-Peer Architecture?

If we take a moment to consider the Internet itself, we will see that there are
millions of computers connected in the network at any given time. All of the
computers are theoretically connected to one another, and information stored
on any of the systems can be accessed. As a whole, the topology or layout of the
computers on the Internet is a grouping of machines spread out in various loca-
tions. Within each of the groups or subnets, computers will be visible to other
computers on the subnet and sometimes to the outside Internet.

Some of the computers will be servers and host information. The machines at
Yahoo! that serve up contents are web servers. Browsing to Yahoo! on your
local computer turns the machine into a client. This type of client-server inter-
action is happening for hundreds of thousands of computers at the same time.
While a client machine is browsing to Yahoo!, it could also be sharing a local
drive with group members. In this situation, the machine will become a server
to any client that tries to access files on the local drive.

What Is a Peer-to-Peer Architecture? 3

In most peer-to-peer systems, the division between a server and a client is
blurred. The computer itself might be connected to other computers using a
token-ring topology, but a peer-to-peer system might have a completely differ-
ent architecture. The peers could all be communicating with a central server,
like Napster.

In most cases, peers will be connected to one another over the Internet
using either the TCP or HTTP protocol. As you probably already know, TCP/IP
is the fundamental protocol for transferring information over the Internet.
The HTTP protocol is built on top of TCP/IP and allows communication
between computers using port 80. HTTP is very popular for peer-to-peer
systems because most organizations keep port 80 clear on their firewalls for
web browser traffic.

Several network topologies can be used for connecting P2P systems. In this
section, we discuss the major P2P network topologies in order to explain how
information can be transmitted between peers effectively.

The Hierarchical Topology

One of the most common topologies is the hierarchy. Every time you type a
website URL into your browser, you are using a system called DNS, or Domain
Name Server. This system is set up in a hierarchy, with root servers at the very
top levels. The hierarchy topology looks like Figure 1.1. For several years now,
critics have called for an overhaul of the DNS architecture because the root
servers represent a single point of failure. However, because the entire system
is based on replication and the chance of the DNS system going down is very
small, no real work has occurred in this area.

Leaf Nodes

Figure 1.1 The hierarchy network topology.

4 Chapter 1 Introduction to Peer-to-Peer

The Ring Topology

Token Ring is a network topology that uses the concept of passing a single
token around to the computers connected in a ring pattern. When a machine
receives the token, it can send information out onto the network. The ring
topology isn’t used much anymore for common networks, but does provide an
interesting pattern for load-balancing a single-server system or hierarchy. The
top rung of a hierarchy topology could actually be a ring of servers that balance
the network requests. Figure 1.2 shows what a ring topology looks like.

O Node 1
'
Node 5 O\ ./O Node 3

O/ Token

Figure 1.2 The ring network topology.

The Client-Server, or Centralized, Topology

By far the most common topology is the client-server, or centralized, topology.
The terminology of client-server has been with us for many years; more
recently, the term centralized has been used to describe a system in which a
single computer, the server, makes services available over the network. Client
machines contact the server when the services are needed. Obviously, the more
clients in the system, the larger the server must be. At some point, the server
will need to be replicated in order to handle the traffic volume from all clients.
Figure 1.3 shows an example of the centralized topology.

Server

AN

O

Clients

O O

Figure 1.3 The client-server, or centralized, network topology.

The Decentralized Topology

The decentralized topology is a network topology that comes closest to being
truly peer-to-peer. There is no central authority, only individual computers that

What Is a Peer-to-Peer Architecture? 5

are able to connect and communicate with any of the other computers on the
network. When a packet of information starts its travels on the Internet, it is
basically traveling through a decentralized topology. Information within the
packet itself tells each computer where to send the packet next. Figure 1.4
shows an example of a decentralized network topology. Basically, all of the
peers in the system act as both clients and servers, handling query requests and
downloads while also making media searches and download request them-
selves. The KaZaA and Gnutella applications use this decentralized topology for
their P2P systems.

Figure 1.4 The decentralized network topology.

The Hybrid Topology

In the hybrid topology shown in Figure 1.5, we have an example of a situation
where the individual computers are considered clients when they need infor-
mation. The client that needs information will contact a central server (the cen-
tralized servers are distributed in the example shown in Figure 1.5) to obtain
the “name” of another client where the requested information is stored. The
requesting client will then contact the client with the information directly. With
the hybrid, a computer can be either a client or a server. This is the topology
used for the Napster system—individual peers contact a localized server for
searching and proceed to contact peers directly for media downloading.

Q\/O\\Q

Q/O
Centralized
Servers

Q-0—0
O O

Figure 1.5 The hybrid network topology.

6 Chapter 1 Introduction to Peer-to-Peer

Examples of Peer-to-Peer Systems

This section describes several well-known peer-to-peer applications. We briefly
examine how each one shares resources and services so that by the end of this
section you'll have a clearer idea of what functional, real-world P2P really
means.

Napster

Napster is the software that thrust the peer-to-peer concept into the limelight.
As you probably know, Napster was developed to allow the sharing of MP3
music files created from CDs and other sources. Later in the chapter, we briefly
discuss why Napster isn’t the peer-to-peer powerhouse it once was, but for now
let’s look at how Napster works:

1. A prospective user downloads the Napster peer software from a Napster
primary or mirror web site.

2. Once installed and launched, the peer software attempts to connect to a
central Napster server, where the user is required to choose a username
and password.

3. The user can have the peer software search his or her local hard drive for
MP3 files to share with others. If this option is selected, the user’s hard
drive will be searched and the names of any media files will be transferred
to the central server. Note that only the filenames are transferred.

4. The user can search for media in the Napster network. The peer software
will transfer the search string to the central server, which will return a list
of files found and connection information about the peer computers where
the files reside, including the username, the IP address, the port to connect
to, the connection speed, and the file size.

5. The Napster peer making the request will attempt to directly contact the
Napster peer on the remote computer where the target file resides. At this
point, the central server is no longer involved in the file transfer.

For Napster, the central server is just a large database containing a list of all
files found in all clients in the network. The system worked very well, and many
of the peers who had a fast connection to the Internet were typically slammed
with file requests. If your system was being swamped with requests to down-
load files, you could set a limit to allow only N number of active downloads at
any one time. If a new download request came into the peer, the peer would
respond with a message indicating that the download request was added to the
queue. The queue would automatically keep track of all download requests and
move them into an active state as older download requests finished.

Examples of Peer-to-Peer Systems 7

From this explanation, it is clear that the Napster system uses a hybrid topol-
ogy. Without the centralized server, all of the peers in the system would have
media to share and also want to search for media, but they wouldn’t know
about one another. The centralized server is responsible for keeping a database
of all peers and what they have to share available to all peers in the network.

Gnutella

As Napster became successful, other P2P products such as Gnutella were cre-
ated to enable information sharing. One feature that distinguishes Gnutella is
that it uses the HTTP protocol to transfer information. HTTP is used by web
browsers to contact web servers, so in a sense a Gnutella peer is actually a
transparent web site “server” with links for each of the pieces of media being
shared. A Gnutella peer contacts a Gnutella “server” in much the same way that
a standard web browser contacts a web server.

The topology for Gnutella is decentralized, and there is no centralized author-
ity. So, if there is no central authority, how does a peer obtain a list of the media
files available in the network?

The real key to Gnutella is its search capability. With no central server, the
peers need to be able to determine what files are available in a fashion that is
both quick and effective. The search mechanism works by creating a search
packet with a max hops value that indicates the maximum number of times the
search packet will be propagated in the Gnutella network before it is returned
to the peer that originated it. So, if a packet has a max hops value of 3, the
packet will be allowed to be propagated throughout the Gnutella network a
maximum of three peers away from its peer of origin. As each peer receives the
packet, it decrements an internal counter. When the internal counter reaches
zero, the search packet is no longer forwarded to other peers.

When a peer requests a search, the search packet is sent to all the peers that the
requesting peer knows about. Those peers will immediately send all media file
descriptions matching the search string in the packet back to the requesting peer;
the peers will then forward the search packet to all the peers they know about.

The search process does have a problem in that you can never be sure your
search packet reaches a peer that has the information you want. Further, the
process of broadcasting the search packet to all known peers has a predictable
consequence of using high bandwidth. If you increase the maximum hops
allowed for the search, you might find your information, but there will also be a
penalty in search time. In addition, when the search result is sent back to the
originator, it must pass back through the same sequence of peers it initially
traveled. Figure 1.6 shows an example of passing a search request between
three sites.

8 Chapter 1 Introduction to Peer-to-Peer

5) Look up source

2) Record Request

Figure 1.6 The Gnutella search process.

In this example, Site A is requesting all files that match the phrase Rush. Site A
sends the search packet to Site B. Site B creates a list of the items requested by
Site A (assigning a unique request number to the search packet), sends any
matches it has locally back to Site A, and then forwards the search packet to
Site C. If Site C has any matching files, the results will not be directly sent to
Site A, but instead to Site B. When Site B receives the results from Site C, it
checks its list, sees that Site A originally requested the information, and for-
wards it to Site A.

Morpheus/KaZaA

Another file-sharing system, called Morpheus, was developed by MusicCity to
replace a central server system with a decentralized system. Morpheus is based
on FastTrack’s P2P Stack, also used in the KaZaA file-sharing system. Morpheus
and KaZaA aren’t limited in their sharing of file types. You will find audio, video,
images, documents, and even software in the two applications’ networks. The
two systems have improved the technologies involved in file download and
search on a decentralized system by allowing for file restarts during download
and by keeping lists of multiple peers who have the same file available.

Although the peers are basically decentralized, a central server is still used for
providing username/password functionality and maintaining the overall net-
work. In addition, the systems use a pure hybrid topology, as shown earlier.
When a peer logs on, it is associated with a peer hub. These peer hubs are
responsible for maintaining a list of the media files on their peers, and assisting

Examples of Peer-to-Peer Systems 9

in the search requests between peers and peer hubs. If you are a peer on the net-
work, and you have high bandwidth and a good deal of CPU power, your peer
can be elected a peer hub automatically; however, you can select an option to
not become a peer hub.

The hub peers are very important to the overall efficiency of the P2P network.
Individual peers don’t need to send requests to every peer in the network or
worry about a max hops value—they send requests to their hub peer. The hub
peer can quickly answer requests with information about media residing on the
other peers in the hub. At the same time, the hub peers can contact other hub
peers to find even more results. The amount of network traffic involved in a
search is drastically reduced.

Media is transferred between peers on a purely peer-to-peer basis with no inter-
mediary peers propagating them. The files are transferred using HTTP in order
to reach peers behind firewalls. It should be noted that all transfers display the
IP address of the machines involved in the transfer.

Usenet

One of the oldest peer-to-peer systems, Usenet is based on a hybrid topology in
which server nodes will be contacted for information from clients, and the
server nodes will communicate with one another to ensure widespread distrib-
ution of information. The server nodes in Usenet are really the peers in the net-
work. They have information to share and also request updates as needed from
other peers. For the most part, the server nodes will all contain the same infor-
mation if they choose to keep all newsgroups. Figure 1.7 shows an example of
how the server nodes communicate to keep one another up-to-date.

Need 45, 78
Have 4, 66, 99
- Send 5, 8, 18

Figure 1.7 The Usenet server message-sharing process.

10 Chapter 1 Introduction to Peer-to-Peer

Client applications will connect to the server peers to obtain a listing of title
messages available. When a message is selected, the actual data behind the title
will be sent. It is obvious from this description that the developers of Usenet
built an early prototype of a peer-to-peer system.

Instant Messaging

Instant messaging systems, such as AOL Instant Message (AIM) and Yahoo!
Instant Message, typically work in a topology in which central servers are used
to coordinate your group of connections. When you log into an instant messag-
ing service, the server will keep a temporary list of your contacts. The server
will check to see if any of your contacts is currently logged into the system. If
so, the IP and port information for the instant messaging client on the contact
will be provided to your client, and your client information will be provided to
the contact. From that point on, all communication between you and the con-
tact will be in a peer-to-peer fashion.

Extreme Peer-to-Peer: Distributed
Computational Engines

Several years ago, a tremendous piece of software was created that
revolutionized the way Grand Challenge and computationally complex
problems were solved. This software follows the traditional habit of building
larger and larger supercomputers to solve problems. While distributed.net
(www.distributed.net) wasn'’t the first system to use the idle CPU cycles of
machines on a network, they are certainly the biggest. Using client software
that runs as a background process in a “nice” mode, distributed.net has
announced its intention to break RSA Labs’ 56-bit secret-key code in response
to a challenge put forth by RSA Labs.

When installed, the client software contacts a central server and requests pack-
ets of encrypted data that it will attempt to decrypt using a brute-force algo-
rithm. When those packets have been processed, the results are sent to the
central authority and a new set of packets is retrieved.

The resulting computation power and magnitude of machines involved is enor-
mous. For example, there are on average 33,000 participants active on any
given day. All of those participants have a minimum of one computer, and some
are using entire labs. The participants are working through 92,141,082 keys per
second, which equates to roughly .01% of the entire keyspace every day.

When the popularity of distributed.net rose, another group decided to use the
same principle in the search for extraterrestrials. SETI@home (which stands
for Search for Extraterrestrial Intelligence) produced a client that works in
much the same way. The client receives signal data from the SETI installation,

11

and applies an algorithm to the information. The results are sent back to a cen-
tral server, and more data is retrieved for processing. Figure 1.8 shows the
transfer part of the system, which can be loosely called a peer-to-peer network.

SETI@Home
Server

w Backend
w DB/Processing
SETI
Website

Reports,

Stats

Figure 1.8 A traffic example within SETI.

Warnings

While peer-to-peer systems offer great benefits in resource distribution, com-
munication, and problem solving, developers and users alike should be aware
of unresolved issues involved in using them. In this section, we briefly discuss
four broad issues to raise your awareness level and spur your own conversa-
tions and research.

Workplace Policies

Recently, there was a case in which a university system administrator installed
a distributed computational engine on some of the computers under his con-
trol. When the university found out, he was charged with theft. In effect, he had
stolen both CPU utilization and bandwidth of those computers. While there is
much argument over the dollar figures provided by the university, you must be
careful about how machines in your care are used.

The company I work for has a strict policy: No peer-to-peer systems or software
shall operate on company computers. Before using a peer-to-peer system at
work, check with those who make and enforce the policy.

Intellectual Property

One of the major faults commonly associated with the Internet is that it enables
users to inappropriately distribute copyrighted material quickly and on a global
basis. This issue has caused many heated arguments among consumers,

12 Chapter 1 Introduction to Peer-to-Peer

distributors, copyright owners, artists, civil libertarians, and others; but it all
comes down to what the law says about intellectual property. If you buy some-
thing and offer it for sale or give it away, there is usually no problem because
the property has been transferred to another individual (one notable exception
to this is software that is typically licensed, not purchased). If you buy some-
thing and make a copy of it, and then you offer that copy for sale or give it away,
you are no longer transferring the property you purchased—instead, you are
transferring a copy and keeping the original. The law says this is theft, and this
is ultimately why Napster failed. Be careful what you offer to other peers in a
peer-to-peer system.

Bandwidth Costs

Peer-to-peer applications eat bandwidth for lunch, and as we all know, there are
no free lunches. In many cases, a peer-to-peer application will be in violation of
an ISP’s service agreement because it can act as a server. ISPs put these policies
in place to guard their precious bandwidth.

In addition to the bandwidth costs, there is a real concern for peer-to-peer sys-
tems that use broadcast mechanisms to locate other peers. As messages propa-
gate across the Internet, more and more “garbage” broadcast packets are
bouncing off the infrastructure. There have even been cases of denial of service
occurring because of the volume of broadcast messages occurring on a net-
work. In some cases, it might be preferable for peer-to-peer applications to
operate on private networks with a limited connection to the “outside world.”

Security

Internet applications are known for security holes. What kind of access does a
remote peer have to your computer when it makes a request to the peer soft-
ware you are running? Do you really know what information is gathered and
sent to some remote server? What about the application itself? Is it secure?
Buggy? Does it contain a Trojan horse? Most recently, it was released that the
KaZaA client contained a stealth application designed to use the spare CPU
cycles of the machine it was installed on. The stealth nature of the application
allowed it to process work undetected by the computer’s owner. These are all
questions and situations that you must ask when using peer-to-peer software.
And as a developer, you have a responsibility to ensure that the peer-to-peer
applications you create are secure.

. summary Qi

Summary

This chapter has enumerated several clear and not-so-clear examples of peer-
to-peer applications. Most of the applications, which allow the sharing of infor-
mation over the Internet, have had a profound effect on society. Sometimes, the
effect is to challenge the norm, and in other cases, it provides the ability to get
more work done through increased communication. Throughout this book, we
will learn about the tools available and necessary to build peer-to-peer systems.

An Overview of JXTA

source model by Sun Microsystems under the direction of Bill Joy and

JXTA is a peer-to-peer platform specification developed in the Apache open-
Mike Clary. Some of the basic goals of the platform are

Peers should be able to discover one another.

Peers should self-organize into peer groups.

Peers should advertise and discover network resources.
Peers should communicate with one another.

Peers should monitor one another.

The platform should not require the use of any particular computer lan-
guage or operating system.

The platform should not require the use of any particular network trans-
port or topology.

m The platform should not require the use of any particular authentication,
security, or encryption model.

The overriding tenet for JXTA was to create a platform with enough standard-
ized functionality to enable open-source and commercial developers to create
interoperable services and applications. To facilitate this tenet as well as the
other goals, the platform was not created based on one software language over
another. The platform was created through a design process, and the result was
a specification that describes the major points of the system and provides
implementation information.

16 Chapter 2 An Overview of JXTA

The entire JXTA system is modeled using a small number of protocols for han-
dling JXTA services. The protocols can be implemented using any language,
thus allowing heterogeneous devices to exist and communicate with one
another in a huge peer-to-peer system. Currently, there are six protocols in the
system:

Peer Resolver Protocol (PRP)—Used to send a query to any number of
other peers and to receive a response.

Peer Discovery Protocol (PDP)—Used to advertise content and discover
content.

Peer Information Protocol (PIP)—Used to obtain peer status
information.

Pipe Binding Protocol (PBP)—Used to create a communication path
between peers.

Peer Endpoint Protocol (PEP)—Used to find a route from one peer to
another.

Rendezvous Protocol (RVP)—Used to propagate messages in the
network.

In Figure 2.1, the six different protocols are shown in their relationships to each
other. The illustration further shows how a Java reference implementation can
be built between the Java JRE and an application.

Application

Peer Discovery Protocol | | Pipe Binding Protocol Peer Information Protocol

Dependency

Peer Endpoint Protocol Rendezvous Protocol

Java JRE

\/

Figure 2.1 JXTA specification protocols hierarchy.

These six protocols are all that is needed for individual peers to exist in a
decentralized peer-to-peer environment that is self-forming and that has no
need for a centralized server. Peers have the ability to exist on private networks
behind firewalls, and can be assigned Internet addressable IP addresses or an

The JXTA Architecture 17

address through the Network Address Translation process. Network assump-
tions in the protocols were kept to a minimum to allow implementations on a
variety of transport mechanisms. The protocols allow peers to

m Advertise content they would like to share

m Discover content they are interested in

m Form and join peer groups, both public and private

m Assist in the routing and forwarding of messages transparently

The protocols and the entire JXTA specification do not specify languages that
must be used for implementation. As one would expect, Sun chose to do the
mitial reference implementation in Java.

By using Java as the first implementation language for JXTA, Sun has made the toolkit
available to a large audience on many different platforms. You can find the current
binding on the JXTA website; Appendix A contains full installation instructions.

The JXTA Architecture

In order for the JXTA protocols to work together to form a complete system, an
architecture must be in place. Figure 2.2 shows the architecture defined for the
JXTA specification.

Application Sun
la JXTA Community Applications JXTA
yer L
Applications
Services * Indexing
layer JXTA Community Services : g_tlearé:::lng
Services te sharing [Commands

layer

Security

Figure 2.2 The JXTA peer-to-peer architecture.

The Core Layer

The core layer is where the code for implementing the protocols is found. The
protocols provide the functionality for peers, peer groups, security, and moni-
toring; as well as all the message-passing and network protocols.

18 Chapter 2 An Overview of JXTA

Sitting over the protocols is a universal peer group called the WorldPeerGroup.
When a peer starts executing, it will automatically become part of the World-
PeerGroup, and will have access to peer group functionality or services already
implemented. This functionality allows the peer to perform discoveries, join
and create other peer groups, and exchange messages using pipes.

The Services Layer

A service is a functionality, built on top of the core layer, that uses the proto-
cols to accomplish a given task. The services layer can be divided into two
areas: essential and convenient. To illustrate this difference, consider two ser-
vices: a service that provides membership and a service that translates mes-
sages from AOL Instant Messenger (AIM) to MSN Messenger. The membership
service is an essential service in a peer-to-peer environment. In the JXTA archi-
tecture, all peers automatically join a default group called the NetPeerGroup.
This peer group provides basic services, but not all peers will want to be part of
the big umbrella group at all times. By using a membership function, peers can
join smaller private groups, and interact only with other known peers. On the
other hand, the instant messaging translator service is a convenient service
because a peer does not have the inherent need to translate messages between
AIM and MSN.

All of the services that could be created will allow peer-to-peer applications to
be written more quickly and, more important, allow the sharing of code the
likes of which haven’t been seen. In fact, the entire Microsoft .NET system is
based on the concept of having services available so they don’t have to be rein-
vented by every company that needs them.

The Application Layer

The application layer is where you come into the picture as the developer of
peer-to-peer applications that will be used by others in the Internet community.
The application layer hosts code that pulls individual peers together for a com-
mon piece of functionality—for instance, to perform the computational model-
ing of a new virus or to decipher an encrypted code.

One of the important points to remember is that the line between the layers in
the architecture is not rigid. If you develop a peer that provides functionality,
one peer might see your peer’s functionality as a service that fits into a niche
needed by the peer, but another might see it as a complete application without
pulling in other pieces. For the JXTA specification and related bindings to be
successful, developers need to fill out the application layer.

Major JXTA Technologies 19

Major JXTA Technologies

This section is an overview of the major technologies and concepts used in
JXTA. We discuss these technologies in greater depth throughout the remainder
of the book.

IDs

As you would expect in a peer-to-peer system, the resources of the system have
to be referenced in some manner. A simple name isn't enough because
resources could have identical names. There could easily be two peer groups
called “Home Office” or 1,000 files named me.jpg. JXTA solves this problem
with a JXTA ID, also referred to as a URN, which is a unique string used for the
identification of six types of resources:

m Peers

m Peer groups
m Pipes

m Content

m Module classes

m Module specifications

String Format

The JXTA ID consists of three parts. It is important to note that the URN and
JXTA portions of the ID are not case-sensitive, but the data portion of the ID is
case-sensitive.

m Namespace identifier—jxta
m Format specifier—urn

m [D—unique value

The entire ID can be specified by using the following Augmented Backus-Naur
Form shown in Listing 2.1.

<JXTAURN> ::= "urn:" <JXTANS> ":" <JXTAIDVAL>

<JXTANS> "jxta"

<JXTAIDVAL> ::= <JXTAFMT> "-" <JXTAIDUNIQ>

Listing 2.1 The JXTA URN specification. (continues)

20 Chapter 2 An Overview of JXTA

<JXTAFMT> ::= 1 * <URN chars>

<JXTAIDUNIQ> ::= 1 * <URN chars>

<URN chars> ::= <trans> | "%" <hex> <hex>

<trans> ::= <upper> | <lower> | <number> | <other> |
<reserved>

<upper> se= |IA|I | |IB|I | |Ic|l | IIDII | IIEII | IIFII | IIGII | IIHII |
|II|I | |IJ|I | |IK|I | |IL|I | |IMII | IINII | lloll | IIPII |
|IQ|I | |IR|I | ||s|| | ||T|| | ||U|| | IIVII | llwll | IIXII |
n Y n | n A n

<10wer> 2= |Ia|l | |Ib|l | llcll | "d" | Ilell | Ilfll | Ilgll | Ilhll |
|Ii|l | |Ij " | |Ik|l | |Il|l | |Im|l | |In|l | |Io|l | |Ip|l |
|Iq|l | |Ir|l | |IS|I | |It|l | |Iull | IIVII | llwll | llxll |
n y n | n z n

<heX> 2= <number> | "A" | IIBII | Ilcll | IIDII | IIEII | IIFII |
|la|l | |Ib|l | |Ic|l | |Id|l | |Ie|l | |If|l

<number> 1= n 0 " | n 1 " | " 2 " | " 3 " | " 4 " | " 5 " I " 6 " I " 7 " I
n 8 n | n 9 n

<Other> 2= " (" | ") " | ||+|| | " , " | n_mn | " . "
" . " | n_n | |I@|I | " ; " | |I$|I |
u_u | oy | [t | woan

<]’_'eSe]’_'Ved> s:= ll%ll | ll/ll | ll?ll | ll#ll

Listing 2.1 The JXTA URN specification. (continued)
Examples

The peer IDs in Figure 2.3 are valid JXTA IDs, created and displayed using the
program in Listing 2.2. This program will come in handy later when we create
advertisements to publish new resources and services.

PeerGrouplD is: urn:pdacuuid-22A4394EDATE41 EEQAFABGITET95B37302

FeerlD is: urmjaudid-2 244 394EDATES1EESAFAREITETA5B3TIADAIEDFEE1 197 42E4990FALF 1 BACABIEZ02
CodatlD is: urnjxtauuid-22A4394EDATE41EESAFARGITETY5B3795B1 01 2F51FDO438803EAY 7327 50EARDZ0T

=10l x|

ModuleClassDis: urmnpdauuid-ACFIBSEF CFFE4TADAAIFE01 34 C7BADEEDS
ModuleSpeciDois: urnjxaulid-ACF3IBSEF CFFB4TAIAATFE01 B4CTEADEERZBECEAT CENQE4 T C2ABDAERBACEI ZAZIRTOE

PipelD is: urn:pdauuid-22A4394EDATE4TEESAFABE 7BV I5B37 9861 288F C722B42TEASET19F 2ZFCEC S04 204

Figure 2.3 Sample peer IDs.

Major JXTA Technologies

import java.io.*;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

import net.jxta.document.*;
import net.jxta.peergroup.*;
import net.jxta.exception.*;
import net.jxta.impl.peergroup.*;
import net.jxta.id.*;

import net.jxta.discovery.*;
import net.jxta.pipe.*;
import net.jxta.protocol.*;
import net.jxta.platform.*;
import net.jxta.endpoint.*;
import net.jxta.peer.*;
import net.jxta.codat.*;

public class PeerGroupIDCreator extends JFrame {

private JTextArea displayArea;

public static void main(String args[]) {

PeerGroupIDCreator myapp = new PeerGroupIDCreator();

myapp.addWindowListener (
new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit (0);

myapp.run();
public PeerGroupIDCreator() {
super ("Creator");
Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);
show();

Listing 2.2 The code for generating IDs. (continues)

21

22 Chapter 2 An Overview of JXTA

PeerGroupID myNewPeerGroupID = (PeerGroupID)
net.jxta.id.IDFactory.newPeerGroupID();
displayArea.append("PeerGroupID is: "

"\n");

+ myNewPeerGroupID +

PeerID myNewPeerID = (PeerID)
net.jxta.id.IDFactory.newPeerID (myNewPeerGrouplID);
displayArea.append("PeerID is: " + myNewPeerID + "\n");

CodatID myCodatID = (CodatID)
net.jxta.id.IDFactory.newCodatID (myNewPeerGroupID) ;
displayArea.append("CodatID is: " + myCodatID + "\n");

ModuleClassID myModuleClassID = (ModuleClassID)
net.jxta.id.IDFactory.newModuleClassID();

displayArea.append("ModuleClassID is: " + myModuleClassID
+ "\n");

ModuleSpecID myModuleSpecID = (ModuleSpecID)
net.jxta.id.IDFactory.newModuleSpecID (myModuleClassID);

displayArea.append("ModuleSpecID is: " + myModuleSpecID +
"\n");

PipeID myNewPipeID = (PipeID)
net.jxta.id.IDFactory.newPipeID (myNewPeerGrouplID) ;
displayArea.append("PipeID is: " + myNewPipeID + "\n");

public void run() {

}

Listing 2.2 The code for generating IDs. (continued)

Specific IDs

The IDs for peers, peer groups, pipes, and content are fairly self-explanatory,
but the Module Class ID and Module Spec ID deserve a little more detail. Both
of these IDs deal with a JXTA technology called a module. We discuss modules
in detail later in the chapter, so for now, consider a module to be an implemen-
tation of some named functionality.

Typically, functionality is based on a specification that describes and/or names
the desired features. JXTA has a method of publishing a specification to a peer
group, which must contain an ID called the Module Spec ID. No code—only a
specification—is involved here. When a developer creates an implementation

Major JXTA Technologies 23

based on the specification, that implementation is advertised with a Module
Impl ID. The container used for the advertisement of the implementation will
also contain the Module Spec ID of the specification being implemented. If sev-
eral implementations of the same specification exist, all of the implementation
containers will have different Module Impl IDs but the same Module Spec ID.

Well-Known IDs

There are three reserved IDs in the JXTA specification:
m NULLID

m World Peer Group ID

m Net Peer Group ID

The ABNF for these IDs is:
<JXTAJXTAURN> ::= "urn:" <JXTANS> ":" <JXTAJXTAFMT> "-"
<JXTAJXTAFMTID>
<JXTAJXTAFMT> ::= "jxta"
<JXTAJXTAFMTID> ::= <JXTANULL> | <JXTAWORLDGROUP> | <JXTANETGROUP>
<JXTANULL> = "Null"
<JXTAWORLDGROUP> ::= "WorldGroup"
<JXTANETGROUP> ::= "NetGroup"
Java Binding for IDs

Our previous discussions have focused on how the specification defines IDs. The
Java binding builds an ID based on a Universal Unique Identifier (UUID), which
is a 128-bit hexadecimal number that functions as a unique identifier for each
object. The last two hex characters of the ID define the type of ID being encoded.
The current values can be seen in the ABNF for the Java binding of IDs:

<JXTAUUIDURN> ::= "urn:" <JXTANS> ":" <JXTAUUIDFMT> "-"
<(1l*(<hex> <hex>)) <JXTAUUIDIDTYPE>

<JXTAUUIDFMT> ::= "uuid"

<JXTAUUIDIDTYPE> ::= <CODATID> | <PEERGROUPID> | <PEERID> |
<PIPEID> | <MODULECLASSID> | <MODULESPECID>

<CODATID> t:= "01"

<PEERGROUPID> s:= "02"

24 Chapter 2 An Overview of JXTA

<PEERID> s:= "03"

<PIPEID> c:= "04"

<MODULECLASSID> ::= "05"

<MODULESPECID> c:= "06"
The Peer

The most common and widely understood component of any P2P system is the
peer. A peer is simply an application, executing on a computer device, that has
the ability to communicate with other peers. For the entire system to work, it is
fundamental that the peer have the ability to communicate with other peers.
Obviously, with this definition, a wide variety of applications can be considered
P2P.

One computer system might be host to any number of peers. In fact, if you con-
sider the systems presented in the first chapter, your own computer might be
using its extra CPU cycles for distributed.net while at the “same time” perform-
ing a query on the Gnutella network. Shortly, you will be developing JXTA
peers. All of the peers will be executing on the same computer, but each will
interact in different P2P systems.

In the client-server paradigm, clients contact a central server that stores data
and delivers services. In peer-to-peer systems, all peers can be clients, servers,
or both. In file-sharing P2P systems, many peers in the network share their own
files while at the same time pulling new files from distant peers. A single peer
can function both as a “client” (to request information from other peers) and as
a “server” (to answer requests from other peers).

As you begin to dig deeper into the definition of a peer, you will discover other
characteristics, including

Peer identity—A peer needs to be known.
Peer membership—A single peer isn't much use.

Peer transport—Peers must communicate to survive.

For the purposes of JXTA, a peer “is any networked device . . . that implements
the core JXTA protocols.” This is the definition in the specification, but you
should note that a single “networked device” can have any number of JXTA
peers executing on it. The peers could all be implementing different service
code or participating in a computational complex algorithm. By using the term
networked device, the creators of JXTA are also stating that peers are not lim-
ited to computers that sit on a desk but also extend from mainframes to the
smallest PDAs and devices that we might not normally think of as “computers.”

Major JXTA Technologies 25

Some of the other capabilities and features of JXTA peers include

A JXTA peer could volunteer to implement a module specification and lend
its host computer to some task. In JXTA, any peer can implement a specifi-
cation regardless of the binding used by the peer. All of the peers that
implement the same specification are interchangeable and transparent to
the peer using the peer’s service.

Peers can—but are not required to—share content within a peer group.

Peers have the ability to discover other peers and content using all of the
network transport protocols implemented by the specification binding;
however, the peer will use the defined JXTA message format for all commu-
nications.

Peers are not required to remain on the JXTA network for any known
period. A peer that is using the services of another peer cannot be guaran-
teed that a peer will remain on the network until its services are no longer
needed.

Peers are not required to have direct communication or live directly on the
Internet. Peers may use the services of a routing or rendezvous peer for
communicating on the network.

Peer Groups

If several peers get together to share files or work on a large, computationally
intensive problem, they have formed a group. The formation of a group is usu-
ally attributed to several things:

m Membership to a shared system using a username/password
m Common transport

m Access to a centralized server

In the first case, the group is formed when peers log into a group with a prede-
termined username/password or one picked by the peer itself. In some cases,
the group is defined by one of the peers publishing the information necessary to
join. If the peer publishes its own username/password, the group would be con-
sidered private because not all peers would potentially know about the group.

In the second case, the transport system used to connect peers and exchange
information can produce a group in itself. Take, for example, Napster and
Gnutella; these two systems are unable to communicate between themselves
because the network transport is different and the format of the messages
exchanged between peers is unique. The potential to create an even larger
group of peers is lost because the individual peers don’t know how to commu-
nicate with each other. We have seen this in the instant messaging world as
well; AOL, Microsoft, and Yahoo! all have proprietary systems, and if you want

26 Chapter 2 An Overview of JXTA

to communicate with someone on each system, you must have three individual
clients.

Finally, a group is formed when all of the peers are required to log into a cen-
tralized server in order to be a part of the group. Although the log will require a
username and password, the group hasn’t been set up by an individual peer but
by the network itself.

Joining a group can provide many benefits that a single peer would have to
implement itself. The group will have features—commonly called services—
which each peer can take advantage of. The JXTA network has one umbrella
peer group called the WorldPeerGroup. Because the WorldPeerGroup is the
default group that all new peers automatically join on the JXTA network, a
JXTA peer has a number of services immediately available to it, including dis-
covery, advertisements, and pipes, among others. The current implementation
includes code for creating and joining new peer groups in a public and private
format. The public peer group doesn’t require a username or password, but a
private one does. Any peer can create either type of peer group for whatever
purpose it desires.

You might think there is a common peer group server on the network some-
where. There really isn’t, because the Java realization of the JXTA specification
has all of the default peer group functionality built in. This means that one or
more peers can be launched in a network completely cut off from the Internet
and still function. The default peer group exists by name, and its functionality
is contained within all peers by default.

Peer groups have a number of services, which have been defined as a core set
by the specification. Those services listed in the current specification are

Discovery Service—Allows searching for peer group content.
Membership Service—Allows the creation of a secure peer group.
Access Service—Permits validation of a peer.

Pipe Service—Allows creation and use of pipes.

Resolver Service—Allows queries and responses for peer services.

Monitoring Service—Enables peers to monitor other peers and groups.

Peer groups have the option of creating and implementing additional services
as desired.

Advertisements

When peers and peer groups have services that they want to make known to the
P2P network, they use an advertisement. An advertisement is an XML-based

Major JXTA Technologies 27

document that describes JXTA resource and content. All of the protocols use
advertisements to pass information. An example of a pipe advertisement is:

<?xml version="1.0" encoding="UTF-8"?>
<jxta:PipeAdvertisement>
<Name>JXTA-CH20EX1</Name>
<Id>urn:jxta:uuid-
9CCCDF5AD8154D3D87A391210404E59BE4B888209A2241A4A162A10916074A9504</1d>
<Type>JxtaUnicast</Type>
</jxta:PipeAdvertisement>

All advertisements are hierarchical in nature and will contain elements specific
to the advertisement type. Of particular importance is the ID of the resource,
which will be used to identify the resource being advertised.

Modules

Peer groups provide the basic functionality needed for a P2P system, but at
some point you will want to create additional features or services usable by all
peers. You might want to expand on the base JXTA specification and provide
better, stronger, faster resources; or you may need to provide new services,
such as a distributed storage system. A module is one of the ways the function-
ality can be provided. A module is simply a piece of functionality designed to be
“downloaded” or obtained outside the core JXTA implementation. In most
cases, a P2P group will advertise a specification that tells about the functional-
ity needed. The specification will be propagated through the JXTA network. A
peer can discover the specification and want to use the new functionality.

This might sound a little strange, considering the fact that we are talking about
software, but imagine for a moment that a peer that has some task to perform.
A developer could write code to perform the task directly in the peer, yet also
use services provided in the JXTA network. The situation could evolve like this:
The peer begins execution by first requesting data from all peers. The peer has
been programmed to execute some functionality on the incoming data, yet the
functionality as written in the peer is expensive. Therefore, it performs a key-
word search within the network to find if any peers have implemented the
desired functionality. If a module is found within the network that handles that
functionality, the peer could be programmed to use the less “expensive” func-
tionality. Granted, a fairly large and sophisticated network would be needed for
this type of scenario, but it isn’t beyond reason.

The specification doesn’t actually provide the functionality; it only supplies the
information about it. Another peer and its associated human developer can
build a service using the specification and publish an implementation adver-
tisement. The implementation advertisement tells the network that a service is
available at a specific peer that implements the functionality described in the

28 Chapter 2 An Overview of JXTA

specification. One of the goals of a P2P system is that multiple peers can have
implementations of the same specification. The implementations could be in
different languages, yet still provide the same service. This specification/imple-
mentation paradigm allows for redundancy of services so that functionality is
still available in the network when peers are overloaded or unavailable. We
cover modules in detail in Chapter 12, where we will build a specification and
its implementations.

Transport Mechanisms and Pipes

When a peer wants to communicate with other peers, it must use some sort of
network transport. The network transport is the protocol used to send infor-
mation over the wires connecting all the peers. In all cases, the peers will be
connected to a computer network. The network itself will likely be an Ethernet
system. Ethernet, a protocol that dictates how information is passed from one
network card to another, is really the barebones network transport. However,
because of the housekeeping involved, another protocol was created, called the
Transmission Control Protocol (TCP). The job of TCP is to manage the Ether-
net packets of information being sent from one machine to another. On top of
TCP is the Internet Protocol (IP). IP is primarily concerned with routing, and
describes the steps necessary to route packages across the Internet from one
machine to another. When you activate a peer call FTP, it is using TCP/IP to
transfer data from one machine to another.

It is fair to say that all P2P systems use TCP/IP as a network transport because
all of them allow peers to exist on the Internet. Without TCP/IP, Internet traffic
isn’t possible, so these protocols must exist. Now, with that out of the way, let’s
look at networks more closely to see how many of the various P2P systems are
able to operate.

For communication to occur using TCP/IP from a computer application, a set of
sockets is used. The socket on the transmitting computer binds to a socket on
the receiving computer using a port. There are many common ports on a com-
puter, including 20/21 (for FTP), 80 for (HTTP), and others. The ports below
1024 are generally reserved for system use, and those above 1024 can be used
by any application. So, when a peer wants to communicate with another peer, it
will ultimately create a socket connection to the remote peer. A port will be
specified in the connection process and communication will begin.

For simplicity’s sake, we will say that the information passed between the
machines is sent in a message. The message will contain information about the
sender and receiver, as well as the data to be transmitted. Don’t confuse this
high-level message with the low-level packets TCP/IP and Ethernet are han-
dling to make network communication possible.

Major JXTA Technologies 29

With this background knowledge, we can discuss the two primary network
transport differences between all P2P systems. Basically, these two differences
keep peers belonging to different systems from communicating with each
other. The differences are

m The high-level network protocol

m The message format

The High-Level Network Protocol

Given the fact that all communication will occur using TCP/IP, what do some
systems do above and beyond that? The answer is HTTP and security. HTTP is
a protocol, much like FTP or other Internet protocols, that defines how infor-
mation should be passed from one machine to another, and specifies which
port should be used for the communication. HTTP is the protocol used by the
World Wide Web over port 80. All common web servers bind to port 80 on the
machine they are executing. TCP/IP traffic, which arrives at port 80, will be
consumed by the web server, and the information in the traffic will be parsed
using the HTTP protocol. Because HTTP is built on top of TCP/IP, the informa-
tion will also include the IP address of the machine that originated the transfer;
this allows the web server to send a response back to the originator.

If a P2P system uses the HTTP protocol for sending information between peers,
then to all of the machines in the route from peer 1 to peer 2, the message will
look like a request from a browser to a web server. This is important to those
peers who are behind firewalls because firewalls will generally reduce the num-
ber of ports open between the outside and inside networks, but they allow
HTTP port 80. This is the primary reason for using HTTP as a network protocol
on top of TCP/IP (we will discuss this in detail later).

If a system doesn’t use HTTP, but simply relies on TCP/IP, it can choose from
any number of ports to send data to a remote peer. Whether the peers use HTTP
or not, the format of the message is also important.

The Message Format

The HTTP protocol dictates a specific format for requesting information from a
web server as well as sending the response back to the browser; however, our
peers aren’t web servers and browsers (but they probably could be if we
wanted because there is nothing within the JXTA specification to prohibit a
peer implementing the functionality necessary for either a Web server or a
browser). When a P2P system uses HTTP or just TCP/IP for information trans-
fer, a predefined message format will be used. Napster does, Gnutella does,
AIM does, and so does JXTA. The sending peer is responsible for putting its

30 Chapter 2 An Overview of JXTA

information into the correct format so that the receiving peer will be able to
find the information easily.

The primary reason all of the numerous peers in use today cannot communi-
cate with one another is the message format. If you want your AIM Instant Mes-
saging application to “see” Yahoo! peers, it will need to know the message
format to talk with Yahoo!’s central server and with the individual peers. Would-
n’t the industry be revolutionized if a specification were created that had a com-
mon message format?

Pipes

The JXTA specification takes the concept of using a pipe as its communication
mechanism from the Unix operating system and its shell. Information is put in
one end of the pipe, and it comes out at the other end. Through the pipes, mes-
sages can be sent between peers without having to know anything about the
underlying infrastructure. As long as a pipe is involved, peers don’t need to
worry about the network topology or where a peer is located on the network in
order to send messages. Pipes use the concept of an endpoint to indicate the
input and output points of communication; a channel is the connection
between the endpoints.

The Java implementation of the specification has three pipe types:
Unicast—One-way, not secure, and unreliable
Unicast secure—One-way, secure, and unreliable

Propagating—Propagating pipe, not secure, and unreliable

The unicast pipes connect one peer to another for one-way communication.
The propagating pipe connects an output pipe to multiple input pipes. We will
cover pipes in detail in Chapter 13.

Services

By far, one of the most hyped concepts in recent months is the service. The con-
cept of services in JXTA goes above and beyond the simple web service and
extends to functionality that needs to exist in a decentralized network. Pass-
word verification and authentication, purchasing systems, and money handlers
are just a few of the services needed. Because there are two primary entities in
a P2P system—the peer and the peer group—both should be expected to have
services available for all to use.

Peer Group Services

Depending on the implementation of the system, peer groups might have ser-
vices available that peers can take advantage of. Some of the more common

Major JXTA Technologies 31

services include group startup, discovery, and membership. When a new peer
group is put into existence, there are usually a number of startup activities that
have to take place in order to let other peer groups know about the new group.
Once the new peer group has been established, peers should have the ability to
not only find the peer group, but also find other peers within the group. Dis-
covery is paramount to any P2P system, and we will discuss this issue in detail
shortly. When a peer finds a new group that it would like to belong to, the peer
group should have a membership service available.

Within a JXTA peer group, a number of high-level or core services are available.
These services include the ability to propagate advertisements throughout the
network, creation of pipes, and discovery.

Peer Services

In most cases, the primary service that an individual peer will make available is
the sharing of content. A peer will let the group know what types of content it
has available for sharing. The peer will also use the services of the group to find
content it is interested in. Specialized peers can be created to provide services
that aren’t supplied by the group. For example, a peer could be created to serve
as an intermediary between a customer and a store for the purpose of credit
card validation. Customers would provide their credit card to a secure peer,
and the store could provide the order. Customers wouldn’t have to give their
credit card information to the store directly, and the store wouldn’t have to
worry about stolen cards because the intermediary peer would handle all the
details. Customers would get their merchandise, and the store would get paid.

All JXTA peers have the ability to share content with other peers. The content
is published using a peer group service, and a peer can query for content using
a discovery service. When a JXTA peer wants to provide direct paths of com-
munication, it will advertise the existence of a pipe service. Other peers can
find the pipe and communicate one-on-one as needed.

Discovery

Discovery is the process of one peer searching for another peer—in the same
peer group—that contains the desired content. In the example about the cus-
tomer, store, and clearinghouse peers, we have a situation that illustrates the
importance of discovery. Suppose a retail store creates a peer on a local P2P
network to sell encrypted data storage. Also on the network is a peer that needs
encrypted storage. These two peers must be able to discover each other’s exis-
tence before they can exchange content. The content can be an image, a text
file, or any other type of media available for sharing. In addition, peers will want
to be able to locate services created using the modules described earlier. There
are three basic discovery arenas:

32 Chapter 2 An Overview of JXTA

m Local
m Direct

= Propagated

Local

Wouldn't it be great if all a peer had to do was open the yellow pages and
instantly be able to find the service or content it needs? JXTA peers have a sort
of yellow pages functionality available through the use of a local cache of adver-
tisements. The first time a peer is executed, the local cache is generally empty,
though you can seed a peer’s cache with information about other known peers.
When a peer initiates a search, it checks its own cache first, as shown in step 1
of Figure 2.4. If the search comes up positive from the cache, that peer has the
option of connecting to the peer listed in its cache. If the necessary information
isn’t found in the local cache, a remote discovery will be attempted, as shown
in steps 2 and 3 of the illustration. As a peer performs searches and discovers
new advertisements, it will populate its cache with this information.

1) Peer1 checks local cache
for advertisement

3) Peer1 tries to contact
Peer3 which is offiine

|

Peer1

2) Peer1 Uses advertisement
to contact Peer2

Peer2

Figure 2.4 A local cache and peer contact.

Major JXTA Technologies 33

There are times when a peer’s own local cache is the only place it can search for
content—for example, when the peer doesn’t have direct access to an outside
network or the Internet, or in the event of a failure of a remote site that has the
ability to search for content. In these situations, the peer cannot use any of the
other types of discovery.

Many peers will have a local cache, whether they are directly attached to the
Internet or not. The cache has the obvious advantage of enabling quick
searches for content. However, the local peer cannot be 100 percent confident
of the status of the peer found in the local cache. The remote peer might not be
available, or the peer may no longer have the information found in the search
(some peers rotate their content). In either case, the local peer will have to
resort to a more expansive discovery.

If a peer has alocal cache and is not directly connected to the Internet, you will
need to seed its cache initially with information about peers with services or
content available. Obviously, the seeded information could become quickly out-
of-date and increasingly worthless.

To solve the problem of a stale cache, you can associate a time-to-live parame-
ter with the cached information. When the time-to-live value expires, the entity
is removed from the cache and destroyed. It is hoped that the peer will have the
ability to reseed its cache at some point.

Direct

When a peer exists on a network with other peers, the discovery process gets a
little easier. Using a number of different methods, the peer will contact each of
the peers on its network, and discover what services or content they have avail-
able. Fortunately, TCP/IP has a protocol for just this type of discovery—broad-
cast or multicast. A peer can send out a discovery request along with search
criteria in a broadcast message. All of the peers on the local network will
receive the message and respond appropriately. Figure 2.5 shows an example of
a direct discovery.

For obvious reasons, the multicast protocol works only on your local subnet
and is not allowed to traverse routers to the Internet. For discovery outside the
local network, another method must exist. The JXTA specification allows direct
discovery using the multicast or broadcast feature of the TCP/IP network pro-
tocol. For the most part, though, direct and indirect discovery processes (which
we will explain next) will occur at the same time if both the TCP and HTTP pro-
tocols are utilized under JXTA.

34 Chapter 2 An Overview of JXTA

1) Peer1 checks local cache
for advertment

Peer3

2) Peer1 tries remote
discovery to all other peers

Peer2 Peer4

Figure 2.5 The direct discovery of services.

Propagated

Discovering peers outside your local network requires the use of a rendezvous
peer. The rendezvous peer serves primarily as a place where a peer can go to
find other peers. The rendezvous peer will cache all of the peers it comes in
contact with over the course of time. It can also be used as an intermediary for
discovery operations.

A peer can contact a rendezvous peer and request that it perform a search. This
capability is a big advantage for those peers on a local network that have the
ability to get outside the network; they can use the rendezvous peer to perform
discovery outside the network. Figure 2.6 shows an example of using the ren-
dezvous peer for discovery.

If there are a number of rendezvous peers on the network, a large discovery
can take place in a short amount of time; each of the rendezvous peers will for-
ward discovery requests to one another as well as other peers. Those peers will
send the discovery request to other peers and probably even rendezvous peers.
But what happens if one peer gets a discovery request it has already seen and
forwards it to other peers who have already seen it, and so on? The answer
again is a time-to-live parameter. When a peer receives a discovery request, it
can decrement the parameter. When the parameter gets to zero, the request is
thrown out. This keeps a discovery request from living in the network forever.

Major JXTA Technologies 35

1) Peer1 checks local cache
for advertisement

» Peer3
2) Peer1 tries remote
discovery to all other peers
Peers 2 and 4 Peer4
propagate
discovery request
Peer5 Peer6 Peer7

Figure 2.6 A propagation discovery request.

But what about the case where a peer has already seen a request? By keeping a
list within the discovery-request message of peers that have already seen the
request, a peer can easily check and discard a message it has already seen. This
allows a request to exist in the network efficiently.

The JXTA specification has defined a number of protocols that are combined to
allow discovery requests to be propagated to any of the peers on the JXTA net-
work. Individual peers will obtain a discovery, check their own advertisements,
and send the query request to all the peers it knows about. Special rendezvous
peers can be used that know about many more peers than individual peers
know about. Rendezvous peers will contact other rendezvous peers, and in
short order, a query will have propagated throughout a JXTA peer group. You
should note that queries are specific to the group to which a peer currently
belongs.

36 Chapter 2 An Overview of JXTA

Handling Private Networks

As mentioned before, not all applications execute on machines that are directly
connected to the Internet. A P2P system that wants to take into consideration
the many peers existing on a private network will need to handle two situa-
tions: firewalls and NATS.

Firewalls

The job of a firewall is to restrict the TCP/IP traffic coming from the Internet
into a private network, and many times also restrict the traffic going from the
private network to the Internet. A network administrator will “lock down” all of
the ports TCP/IP traffic could use to send data. When required services such as
e-mail and possibly the web server need to be allowed access through the fire-
wall, those specific ports will be opened for traffic. Ports can also be opened
that allow traffic to go from the private network to the Internet, but not the
reverse.

Firewalls are often the reason applications such as streaming media players
don’t work within a private network. The ports used to transfer the data are typ-
ically locked down. The same thing can occur with peers in a P2P system; the
ports needed for communication are locked.

One of the ways system designers have gotten around this situation is by using
the HTTP protocol to send data through the same port a browser would use to
send a request to a web server. Because the port is already open, the firewall
doesn’t know the data isn’t destined for a web server, but instead a P2P net-
work. The remote peer is able to respond to the peer behind the firewall using
a response protocol defined in the HTTP protocol. The firewall allows the
response to go through the wall to the appropriate peer. In this type of situation,
peers outside the firewall will not be able to find the internal peer.

A relay peer solves this problem by becoming a bridge between the internal
peers and the peers on the Internet. When a peer on the Internet wants to send
a message to the internal peer, it will contact the relay peer with the message.
The peer will hold onto the message until the internal peer sends a request to
the relay peer. Now that the relay peer has the ability to send a response to the
internal peer, it will put in the message from the Internet peer. When the inter-
nal peer gets the message, it has the ability to send messages directly to the
Internet peer because it now has an address for it. Some systems do not allow
this direct connection and still require the internal peer to communicate with
Internet peers using the router.

Major JXTA Technologies 37

NATs

A NAT isn’t a small insect but a TLA (three-letter acronym) for Network
Address Translation. All computers on an internal network need IP addresses
in order to communicate on the corporate network as well as on the Internet.
However, getting an IP address can be expensive over time, and not all internal
computers need to have a “real” IP address. The Internet protocols keep a num-
ber of IP addresses out of circulation for use in internal networks. These
addresses are in the IP groups 10.x.x.x, 192.168.x.x, and 172.16.x.x. The address
can be assigned to any computer on an internal network that doesn’t have
direct access to the Internet. Typically, these computers will be behind a router
that prohibits the internal computer from accessing the Internet. While this is
all good for the internal network and the pocketbook, it doesn’t help the inter-
nal computers get to the Internet.

The NAT process allows the router to translate the internal addresses to a real
IP address. The router will be assigned a real IP address, which will be used to
communicate with the outside Internet. When an internal machine requests
access to the Internet, its request will be wrapped by the router and the router’s
IP address will be used in place of the internal address. When a response from
a request arrives at the router, it will check for the wrapper and the response
will be forwarded to the internal computer.

This could pose something of a problem for the peer on the internal network,
especially when a firewall is in place as well. But the situation isn’t all bad. All
of the work is done by the router performing the NAT; the peer system doesn’t
need to do anything. The internal peer must communicate with the P2P system
just as if a firewall were in place by using the router and rendezvous peers for
discovery requests and pulling information from Internet peers.

The JXTA specification allows for peers to be located behind firewalls by incor-
porating the use of the HTTP protocol and enabling communication to occur
over all ports defined for a system. If communication needs to occur over port
80, only a small change is needed to a peer’s configuration. Peers can also have
IP addresses through Network Address Translation without any problem. Gate-
way peers allow access to the JXTA network from a peer located on an internal
network. The gateway peer is responsible for delivering advertisements from
the internally bound peer to the outside network.

38 Chapter 2 An Overview of JXTA

Summary

With the major component of a P2P system and a review of the JXTA specifica-
tion behind us, we are ready to investigate some of the major applications built
using JXTA. The next chapter will show how to use the JXTA Shell and provide
many examples of using its built-in commands.

JXTA Shell

familiar feel to developers. To partially achieve this goal, the team cre-

ated the JXTA shell, an interactive application that provides direct
access to the JXTA network in much the same way that a Unix shell provides
direct access to the operating system. Through a series of commands, the shell
enables you to interact with the network and provide information about it. As
with the Unix shell, commands are loaded when executed, and the shell can be
extended. In this chapter, we take an in-depth look at how to use the JXTA shell.

One of the goals of the JXTA team was to create tools that would have a

Executing the Shell

You can execute the shell in one of two ways. If you installed JXTA on a Win-
dows system using the instructions in Appendix A, the shell will have an icon
under the Start menu. In addition, for both Windows and Unix, you can find the
shell in a directory called Shell. There will be either a BAT or a SH script file for
starting the shell application. Once started, the shell will display a configuration
screen. See Appendix A for instructions on filling out this screen.

After you've entered the correct information, the shell application window will
appear, as shown in Figure 3.1 (this could take as long as 60-120 seconds).

39

40

ol

The J¥XTd 5hell prowides an interactive environment to the JRTA

platform. The Shell provides basic commands to discowver peers and
peergroups, Lo join and resign from peergroups, to create pipes

between peers, and to send pipe messages. The 5Shell prowvides enwironment
variables that permit binding symbolic names to Jxta platform objects.
Environment wariablesz allow Zhell commands to exchange data between
themselwes. The shell command 'enw' displays all defined enwironment
wariables in the current Zhell session.

The 5hell creates a Jxta InputPipe (stdin) for reading input from

the keyhoard, and a Jxta utputPipe (stdout) to display information

on the Shell console. 411 commands executed by the 3hell hawe their
initial 'stdin' and 'stdout' zet up Lo the Fhell's stdin and stdout pipes.
The 3hell also creates the enwironment wariable 'stdgroup' that

contains the current JXTA PeerGroup in which the Shell and commands

are executed.

4 new Zhell can be forked within a ZShell. The '5hell -s'
command starts a new Shell with a new Shell window. The 3hell can
alzo read a command script f£ile wia the 'Shell -£f wyfile'.

4 'man' command is awailable to list the commands awailable.
Type 'man <command=' to get help about a particular command.
To exit the Shell, use the 'exit' command,

TXTh

Figure 3.1 JXTA shell's main window.

The shell application begins with an explanation of what the application is all
about. At the end of the text is the shell command prompt, JXTA>, which indi-
cates that the user can now enter a command. In the rest of this chapter, we will
run through the various commands available in the shell.

Shell Commands

In both the Windows Command Prompt window and a Unix shell, you can use
a number of built-in commands to perform some simple operations. The JXTA
shell leans toward the Unix side of things, which features a mix of both simple
and complex commands. The following section lists the commands available in
the current implementation of the JXTA shell. Each of the commands is
presented with its available options, as well as some sample output where
appropriate.

Shell

The Shell command is used to create a new shell from the command prompt of
another shell. A new shell lets us perform an operation without disrupting the

Shell Commands

[E53x74A Shell - 1 - o] x|

platfor
peergro
between
wvariabl
Environ
thensel
wvariabl

The She
the key
on the

initial
The She
contain
are exe

4 new 3
commard
also re

4 'man'
Type 'm
To exit
TXTh»sh
commard
TXTA>5h
THTA>

byt =2 3xTA Shell - 2

=

The J¥Ti 5Shell provides an interactiwve enwviromment to the JXT4

platform. The 3hell prowides basic commands to discower peers and
peergroups, to join and resign from peergroups, to create pipes

between peers, and to send pipe messages. The 3hell provides environment
wvariables that permit binding symbolic names to Jxta platform objects.
Environment wariables allow 5hell commands to exchange data between
themselves. The shell command 'enw' displays all defined enwvironment
wvariables in the current Shell session.

The 5hell creates a Jxta InputPipe (stdin) for reading input from

the keyboard, and a Jxta OutputPipe (stdout) to display information

on the Shell console. 411 commands executed by the 5hell hawe their
initial 'stdin' and 'stdout' set up to the 3hell's stdin and stdout pipes.
The 5hell also creates the enwviromment wariable 'stdgroup' that

contains the current JHTA PeerGroup in which the 3hell and commands

are executed.

4 new Shell can be forked within a Shell. The 'Shell -s'
conmand starts a new Shell with a new Shell window. The Jhell can
also read a command script file wia the 'Shell -f myfile'.

4 'man' command is available to list the commands available.
Type 'man <command:=' to get help about a particular command.
To exit the 3hell, use the 'exit' command.

THTa|

=10l x|

Figure 3.2 One shell invoking another.

current commands in the original shell. The format of the command is

Shell [-f

The —f option allows a Shell command to execute commands from a file you
specify. The —s option indicates the new shell should fork a new window and
environment. The —s option is appended to the Shell command to force a new
shell window to appear. The —f option is used to both create a new shell and
execute commands. For example, the command Shell —f batch will execute the
commands within a file called batch, located in the same directory in which the

filename] [-s]

shell was first started

41

Figure 3.2 shows what happens when one shell invokes another using the

command

Shell —s

The shell is case-sensitive, so be sure to enter Shell —s instead of shell —s.

If you want specific commands to be executed each time the shell is initiated,
you can place them in a file called $HOME/.jshrccan. These commands will be
executed once the shell is completely set up, but before a command prompt is

provided.

42

Chapter 3 JXTA Shell

whoami

One of the most-used Unix shell commands is whoami. Under Unix, this com-
mand will display a string giving the name of the user currently logged into the
machine. The JXTA shell uses the whoami command to show either the peer
advertisement of the current user, or the peergroup advertisement of the group
currently logged into. The format of the command is:

whoami [-g][-1]

The —g option is used to display the current peer group advertisement. The -1
option is used to display the entire peer or peer group advertisement.

By default, the command only displays consolidated information. The output of
the command when using no options is:

JXTA>whoami

<Peer>JosephGradecki</Peer>
<PeerId>urn:jxta:uuid-9616261646162614A787461503250339
1329E2072D241499211AE2F2CB657BC03</PeerId>
<TransportAddress>tcp://12.254.21.182:9701/</TransportAddress>
<TransportAddress>jxtatls://uuid-
9616261646162614A7874615032503391329E2072D241499211AE2
F2CB657BC03/TlsTransport/jxta-WorldGroup</TransportAddress>
<TransportAddress>jxta://uuid-
9616261646162614A7874615032503391329E2072D241499211AE2
F2CB657BC03/</TransportAddress>
<TransportAddress>http://JxtaHttpClientuuid-
9616261646162614A7874615032503391329E2072D241499211AE2
F2CB657BC03/</TransportAddress>

JXTA>

The command will show only the important information about the peer, includ-
ing its ID, name, and the input/output connections available on the peer. The
output of the command using the —g option is:

JXTA>whoami -g

<PeerGroup>NetPeerGroup</PeerGroup>
<Description>NetPeerGroup by default</Description>
<PeerGroupId>urn:jxta:jxta-NetGroup</PeerGroupId>
JXTA>

The output of the command using the -1 option is:

JXTA>whoami -1
jxta:PGA :
GID : urn:jxta:jxta-NetGroup
MSID : urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE(000000010206
Name : NetPeerGroup
Desc : NetPeerGroup by default
JXTA>

Shell Commands 43

env

The env command displays all of the current environment variables and their
associated values. Environment variables are created from the output of a JXTA
shell command, and will be illustrated in later sections. The command does not
have any parameters and will display a listing like this:

JXTA>env

stdout = Default OutputPipe (class
net.jxta.impl.shell.ShellOutputPipe)

SHELL = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)
consout = Default Console OutputPipe (class
net.jxta.impl.shell.ShellOutputPipe)

History = History (class
net.jxta.impl.shell.bin.history.HistoryQueue)

stdgroup = Default Group (class
net.jxta.impl.peergroup.ShadowPeerGroup)

stdin = Default InputPipe (class
net.jxta.impl.shell.ShellInputPipe)

consin = Default Console InputPipe (class
net.jxta.impl.shell.ShellInputPipe)

Shell = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)
JXTA>

peers

The shell can be used to find or discover other peers in the current peer group.
The format of the peers command is:

peers [-r][-p peername][-n limit][-a tagname][-v tagvalue] [-f]
The simplest version of the command is to execute
peers

This command will display all of the peers in the local cache of the peer. For
example:

JXTA>peers
peer0: name = Florin

peerl: name = JXTA.ORG 237
peer2: name = Jjoe2jake
peer3: name = JosephGradecki
peer4: name = pauld

JXTA>

If it’'s been awhile since peers have been discovered with the shell, we can exe-
cute the command peers -t to send a remote discovery to the JXTA network.
The remote discovery is a request to all peers in the network to return informa-
tion about themselves. For example:

44

Chapter 3 JXTA Shell

JXTA>peers -r
peer discovery message sent
JXTA>

Not what you expected? The peers —r command just sends the request to the
network. To see the results of the discovery request, execute the peers com-
mand again to see if any additional peers have been found. All of the peers
found will be placed in the local cache of the shell and given a number. If you
are aware of a specific rendezvous peer in the network, it can be specified using
the —p option, as in

peers —p myRendezvous
Here, myRendezvous is the name of the peer.

Many times, a discovery needs to be narrowed to find specific peers. We can
use the —a option to specify an element within a peer advertisement to be used
as a search name. The —v option is used to specify the value of the element used
for the search. For example:

JXTA>peers —a name —v ax

This command will attempt to find peers in the network where the name ele-
ment of the peer’s advertisement has a value of * (where * is a wildcard).

At some point, the local cache might have stale or old peer advertisements in it.
We can flush the cache by using the —f option.

Finally, we can limit the total number of peers returned from the remote dis-
covery request by using the —n option. For example, the following command
will return 10 peers from the local cache:

JXTA>peers —n 10

groups

The shell also provides a way to search for new groups in the JXTA network:
the groups command. The format of this command is:

groups [-r][-p peername][-n limit][-a tagname][-v tagvalue] [-f]

Notice that the format of the command is the same as that of peers, and it works
the same way. Here’s an example of submitting a group search request, along
with the results:

JXTA>groups —r —a name —v m
JXTA>groups

group0: name = MyShareGroup
groupl: name = MuzzleGroup
group2: name = mdc-test
group3: name = momo

Shell Commands 45

mkadv

As we discuss later in the book, the advertisement is the file tool the JXTA
specification uses for configuration information. The advertisement is an XML
document that is both human-readable and able to be parsed by the computer.
The shell environment uses the mkadv command to build advertisements
dynamically for new peer groups, or pipes (which are used for peer communi-
cation). The format of the mkadv command is:

mkadv [-g|p] [-t type] [-d doc] name

The —g option is used to create a new peer group. If the —d option isn’t used, the
peer group advertisement will be a clone of the current group. The —p option
specifies that a pipe advertisement should be created. The —t option is used for
pipe advertisements and specifies the type of pipe; the values are JxtaUnicast,
JxtaUnicastSecure, and JxtaPropagate. The —d option specifies the name of a
document that contains the XML advertisement in use. Finally, name is the
name to be used for the new pipe or peer group.

Creating a Peer Group Advertisement

The mkadv command creates an advertisement object based on an advertise-
ment XML document found on the local file system of the computer or by using
a clone advertisement. Creating an advertisement for a new peer group can be
done in two ways. First, we can create a new peer group advertisement based
on the current peer group or the NetPeerGroup. The command is:

JXTA>Mynewpeergroupadv = mkadv —g myGroup

We can create the group by using a peer group advertisement pulled from a file
using the importfile command (which we discuss later in this chapter). For
example:

JXTA>importfile —f myDoc groupfileadv
JXTA>Mynewgroup = mkadv —g —d myDoc

The file with the peer group advertisement is called groupfileadv. The contents
of the file are read into the shell variable, myDoc. The mkadv command builds
a new peer group advertisement using the myDoc variable, as specified by the
—d option in the command.

Creating a Pipe Advertisement

Creating a pipe can only be done using an advertisement pulled from a file on
the local machine. An example of the command is:

JXTA>mkadv —p —t JxtaUnicast inputPipe

46

Chapter 3 JXTA Shell

This command will build a new pipe advertisement as specified by the —p
option. The —t option tells the system to use a JxtaUnicast type. The name of the
pipe will be inputPipe. At this time, the shell does not support building a pipe
advertisement.

mkpgrp

If a new peer group is needed, we can use the mkpgrp command. This com-
mand can create a new peer group by using an advertisement or by cloning the
NetPeerGroup advertisement. The format of the command is:

mkpgrp [-d doc] [-m policy] groupname

The —d option tells the command the document that contains the peer group
advertisement; the document is the environment variable with the advertise-
ment. The —m option specifies the policy to use in the new peer group, and
wasn’t implemented in the current shell. The groupname is the name to be used
for the new group.

To create a new peer group that is a clone of the current peer group, we use the
following command:

JXTA>mkpgrp myGroup
JXTA>groups

group0: name = myGroup
JXTA>

Notice that the new group is in the local cache of the peer. A peer group can be
created with an advertisement located in a document by using this code:

JXTA>importfile —f myDoc groupfileadv
JXTA>mynewgroup = mkadv —g —d myDoc
JXTA>mkpgrp —d mynewgroup myGroup

Here, the advertisement is read from a local file and placed in an environment
variable called myDoc. Next, a peer group advertisement object is created with
the mkadv command using the document in the environment variable. Finally,
the peer group is created with the group advertisement.

join
Once peer groups are discovered using the groups command, a specific group

can be joined using the join command. The format of the command is:

join [-r] [-d doc] [-c credential] [groupname]

The —-r option tells the new group to use the current peer as a rendezvous peer.
The —d option specifies the advertisement of the peer group to join. The —c
option allows a credential to be provided to the group being joined. The group-
name is the name of the group to join. The group should be in the local cache.

Shell Commands 47

A peer group can be joined by either specifying the name of the group or pro-
viding the peer group advertisement using the —d option. For example:

JXTA>join myGroup

Stopping rdv

Enter the identity you want to use when joining this peer
group (nobody)

1Identity : JosephGradecki

JXTA>

Listing Join Status
If we want to list all groups in the local cache and learn whether or not they are
joined, we can specify the join command by itself. For example:

JXTA>join
Unjoined Group : myGroup
JXTA>

chpgrp

A peer can join as many groups as it wants, but there can be only one default
group. The chpgrp command allows the default group to be changed. The for-
mat of the command is:

chpgrp group

The group is the name of the group to join. If the current default peer group is
NetPeerGroup, it can be changed with this command:

JXTA>chpgrp myGroup

leave

Any peer group that has been joined can also be left. The format for the leave
command is:

leave [-k]

The -k option tells the system to delete and remove the peer group from the
JXTA network, if possible. When a peer group is left using the leave command,
the default peer group is reset to be the NetPeerGroup.

search

We can use the search command to find advertisements in the JXTA network.
The format of the command is:

search [-n limit] [-p peername] [-f] [-r] [-a] [-V]

The —n attribute limits the total number of advertisements found before the
command returns. The —p attribute searches for advertisements at a specific

48

Chapter 3 JXTA Shell

peer. The —f attribute will flush the local cache of advertisements. The —r
attribute will force a remote propagated search. We use the —a attribute to spec-
ify a search using an element of the advertisement. And finally, the —v attribute
is used with the —a attribute for the search value.

If executed by itself, the search command will find only those advertisements
in the local cache. The —a and —v options allow searching based on an element
of the advertisement. A common example is searching on the name element
using a pattern such as apple. To perform a search for jpg in the name element,
the command would look like this:

Jxta>search —r —a name —v jpg

The shell will put all of the found advertisements in the local cache using envi-
ronment variables named adv#. For example:

JXTA>search

JXTA Advertisement adv0
JXTA Advertisement advl
JXTA Advertisement adv2
JXTA Advertisement adv3
JXTA Advertisement advié
JXTA Advertisement adv5
JXTA Advertisement advé
JXTA Advertisement adv7
JXTA>

To see the contents of an advertisement, use the cat command:

JXTA> cat adv0

mkpipe

The shell has the capability to create input and output pipes based on a given
pipe advertisement. The mkadv command is used to create the pipe advertise-
ment, and the mkpipe command is used to build the pipe. The format of the
command is:

mkpipe —i|o pipeadv

The —-i option creates an input pipe; the —o option creates an output pipe. The
pipeady is the pipe advertisement to use when creating the pipe.

The command is quite simple to use. Here’s an example of building a pipe:

JXTA>InputPipeAdv = mkadv —p
JXTA>InputPipe = mkpipe —I InputPipeAdv

Once the input pipe is created, we can use the recv command to receive a mes-
sage from a peer that connects to the input pipe.

Shell Commands 49

mkmsg

A message is the container used to receive data from a pipe or to send data out
a pipe. A message container is built using the mkmsg command, whose format
is as follows:

mkmsg

If the command is used by itself from a command prompt, a new container is cre-
ated and assigned an environment variable using the format env#. In many cases,
you will create a message and provide a name with the following command:

JXTA>AMessage = mkmsg

The message is now ready for data, and can be sent to another peer or used for
receiving data. The put, send, and recv commands will use the new message
container.

put

We use the put command to store data in a message container. The format of
the command is:

put msg tag document

The msg is the message container. The tag is the data tag used to store the data.
The document is the data to be stored in the data tag. An example of using the
command is:

JXTA>Amessage = mKkmsg
JXTA>put Amessage "newData" "this is the data"

get

Once a message has been received from a pipe using the recv command, we can
use the get command to extract data from the message. The format of the com-
mand is:

get msg tag

The msg is the message container. The fag is the data tag to extract the data
from.

An example of using the get command is:

JXTA>InputPipeAdv = mkadv —p
JXTA>InputPipe = mkpipe —i InputPipeAdv
JXTA>Amessage = recv InputPipe
JXTA>Thedata = get Amessage newData

Chapter 3 JXTA Shell

send

The basic format for the send command is:
send outputpipe msg

The outputpipe is the pipe to be used to send the message. The msg is the mes-
sage container. An example of using the send command is:

JXTA>OutputPipeAdv = mkadv —p
JXTA>OutputPipe = mkpipe —o OutputPipeAdv
JXTA>Importfile —f datafile dataDocument
JXTA>Amessage = mkmsg

JXTA>put Amessage newData dataDocument
JXTA>send OutputPipe Amessage

recv

The recv command is used to accept a message from an input pipe. The format
of the command is:

recv [-t timeout] inputpipe

The —t option is used to limit the amount of time the shell will wait for a mes-
sage on the pipe. The inputpipe is the input pipe to used for reception of a mes-
sage.

An example of using the recv command is:

JXTA>InputPipeAdv = mkadv —p
JXTA>InputPipe = mkpipe —i InputPipeAdv
JXTA>Amessage = recv InputPipe

man

Because the shell application is constantly changing, the man command is
extremely valuable. The format of the command is:

man [commandname]

The commandname is the name of the command that we want to find more
information about. We can list all of the current commands in the application by
executing the man command by itself. In the current application, the man com-
mand produces:

JXTA>man
The 'man' command is the primary manual system for the JXTA Shell.
The usage of man is:

JXTA> man <commandName>

Shell Commands 51

For instance typing
JXTA> man Shell
displays man page about the Shell

The following is the list of commands available:

cat Concatane and display a Shell object
chpgrp Change the current peer group

clear Clear the shell’s screen

env Display environment variable

exit Exit the Shell

exportfile Export to an external file

get Get data from a pipe message

grep Search for matching patterns

groups Discover peer groups

help No description available for this ShellApp
history No description available for this ShellApp
importfile Import an external file

instjar Installs jar-files containing additional Shell commands
join Join a peer group

leave Leave a peer group

man An on-line help command that displays information about a
specific Shell command

mkadv Make an advertisement

mkmsg Make a pipe message

mkpgrp Create a new peer group

mkpipe Create a pipe

more Page through a Shell object

peerconfig Peer Configuration

peerinfo Get information about peers

peers Discover peers

put Put data into a pipe message

rdvserver No description available for this ShellApp
rdvstatus Display information about rendezvous

recv Receive a message from a pipe

search Discover jxta advertisements

send Send a message into a pipe

set Set an environment variable

setenv Set an environment variable

share Share an advertisement

Shell JXTA Shell command interpreter

sql Issue an SQL command (not implemented)

sglshell JXTA SQL Shell command interpreter

talk Talk to another peer

uninstjar Uninstalls jar-files previously installed with 'instjar'
version No description available for this ShellApp

wc Count the number of lines, words, and chars in an object
who Display credential information

whoami Display information about a peer or peergroup

JXTA>

52

Chapter 3 JXTA Shell

As you look through the commands, you'll notice that several are not imple-
mented at this time. You can learn more information about a command by exe-
cuting the man command, followed by that command’s name.

importfile

Files on the current file system can be brought into the shell using the import-
file command. The format of the command is:

importfile —f filename [env]

The —f option specifies the location of the file. The filename is the name of the
file to be loaded. The env option is the name of the environment variable for
storing the file’s contents.

exportfile

The contents of an environment variable can be exported to a file using the
exportfile command. The format of the command is:

exportfile —f filename [env]

The —f option specifies the location of the file. The filename is the name of the
file to use on the file system. The env option is the environment variable that
will be exported.

Here’s an example:

JXTA>exportfile —f c:/shell/myFile variableToExport

version

We can learn the current version of the shell application by executing the ver-
sion command. For example:

JXTA>version
jxta version 1.0 (build 4le, 12-03-2001)
JXTA>

clear

To clear the screen of the current shell application, execute the clear command.

exit

To terminate the shell, use the exit command. There are no options to the com-
mand, and the application will be terminated once the command is executed.

- summary QY

Writing New Shell Commands

As mentioned at the beginning of the chapter, the shell is extensible. New com-
mands can be added very easily. The code in Llisting 3.1 shows a new command
called tank.

package net.jxta.impl.shell.bin;

import net.jxta.Impl.shell.ShellEnv;
public class tank extends ShellApp {

private ShellEnv myEnv;
public int startApp(String []args) {

}

myEnv = getEnv();

System.out.println("tank");
return ShellApp.appNoError;

public void stopApp() {

}
}

Listing 3.1 A new shell command.

The code in Listing 3.1 should be placed in the bin directory of the shell in order
for the shell application to find the new command. All new commands are
required to extend ShellApp. ShellApp is a framework for new commands that
includes two methods: startApp() and stopApp(). These two methods must be
overridden in any new command. The startApp() method is appropriately
called when the user enters a command. When the command has finished its
work, it will call the stopApp() method to perform any necessary housekeep-
ing. The primary work of the new command should be contained in the star-
tApp() method or called from startApp().

Summary

This chapter has provided a comprehensive view of the JXTA shell application.
We covered all of the commands available in the shell, as well as the process of
building commands that aren’t included in the shell itself. When you're devel-
oping JXTA applications, the JXTA shell can be a useful tool for finding the peer
application and making sure it is executing in the network appropriately.

Using myJXTA

pplication called InstantP2P (later called myJXTA) was also pro-
vided to teach many of the key concepts of the specification/binding.
myJXTA has the following functions:

When the JXTA specification and Java binding were first introduced, an
a

= One-to-one chat
m Group chat
m Resource sharing
m Searching

m Document downloading

myJXTA has taken on alife of its own, and has its own project page off the main
JXTA web site at http://myjxta.jxta.org/servlets/ProjectHome. This chapter dis-
cusses the features of myJXTA, and also provides pointers to the code where
you can see the implementations of those features. Because the source code to
the myJXTA application is available, you can study and reuse many of the com-
mon functions desirable in a peer-to-peer application.

In addition, the myJXTA application can be considered a peer within the JXTA
network. As a peer, it will have a name visible to other peers in the network and
share the common NetPeerGroup upon execution. Being a part of the NetPeer-
Group enables the application to publish advertisements, create pipes, and
exchange content.

56 Chapter 4 Using myJXTA

Downloading myJXTA

The myJXTA application is installed when you download the Jxtalnst.exe appli-
cation (see Appendix A). After you've installed the application, click Start, Pro-
grams, JXTA to see an entry called myJXTA. Click on the entry to launch the
myJXTA application. If you right-click on the listing and select Properties, you
will find that the application is stored in a directory called <root>/JXTA_Demo/
InstantP2P. There is no source code in this directory; it contains only the appli-
cation executables. You can find the application in a similar directory after a
Linux/Unix installation, often in the path /usr/local/JXTA_Demo/InstantP2P.

You can find the source for this application at http://download.jxta.org/stable-
builds/index.html, and the instructions for building the myJXTA application are
located at http://instantp2p.jxta.org/build.html. I recommend you install both
the application executable file and the source code; both will be referenced in
this chapter.

Executing myJXTA

When you first execute the application, you’ll see a splash screen like the one
shown in Figure 4.1. As you can see, a few options are available:

Quit—The application will quit.

Quit & Reconfigure—The application will quit, but will allow the reconfig-
uration window to be displayed when the application is started again.

Just Wait—If this is the first time the application has been executed, the
configuration window will appear; otherwise, the application will continue
to connect to the JXTA network.

Proceed Anyway—This command will launch the application, even if the
appropriate JXTA network peers haven’t been contacted.

Executing myJXTA for the First Time

The first time you start myJXTA, you will need to configure it. Figure 4.2 shows
the first Configurator dialog box. You must provide a valid peer name; because
the application is a peer within the default peer group, it needs a name. This
name will be put into a peer advertisement and then distributed within the net-
work and made available upon request by another peer. You don’t need a unique
name; it serves only as a human-readable identifier for peers.

Next, click the Security button; you will see the dialog box shown in Figure 4.3.
Each peer must have a personal security name and password, so fill in the

Executing myJXTA

EimyxTa

PROJECT

Figure 4.1 The myJXTA splash screen.

E‘%JXTA Configurator
See "hitpuishell jxta.orglfindex html* far config help

hasics | advanced | RendezvousiRouters | Securityl

Basics zettings

Feer Mame |Josethradecki (Mandatary)

l_ Use a proxy server if behind firewall)

Prowy address |myPr0><v.myDomain a080

=10l x|

Ok | Cancell

Figure 4.2 Enter a peer name in the myJXTA Configurator dialog box.

58 Chapter 4 Using myJXTA

E‘%JXTA Configurator 10l =|
See "hitpuishell jxta.orglfindex html* far config help

hasics | advanced | RendezvousiRouters | Securityl

Security Settings

Secure Username JosephGradecki <TA

[

Fassword

Werify Passward R

Flease note your secure username and passward

They will he required far all future access

Ok | Cancell

Figure 4.3 Entering a username and password in the myJXTA Configurator dialog box.

appropriate values. Make the username and password something you will
remember; the system won’t allow you to start the application without the cor-
rect values. For simplicity’s sake, the peer name and the secure peer name can
be the same. The secure peer name and password are used only on the local
machine (and stored only in a file locally as well). Once you've entered the user-
name and password, click the OK button to continue.

You can find the code for the splash screen and the JXTA network connection
in the instantp2p.java file in the root directory /binding/java/src/net/
jxta/instantp2p/desktop. Located in the file is the InstantP2P class, which con-
tains the application’s main() method. The constructor of the class handles
most of the GUI details through object instantiation and configuration. The
main() method includes a call to a class method called startJxta(). Within
startJxta() is the code for joining the default peer group and handling the
splash status bar graphic:

statusBar.setPercentage(.50);
netPeerGroup = PeerGroupFactory.newNetPeerGroup();
statusBar.setPercentage(1.0);

After the peer is joined to the peer group, an attempt is made to contact one of
the rendezvous peers. At this point, the splash screen remains on the screen,
giving the user the ability to continue with the application without having

Executing myJXTA

Ega myJXTA: Peer JosephGradecki =10l x|

File Edit Mavigation Group Help

MNetPeerGroup - Joined

osephGradecki JosephGradecki= = has joined MetPeerGroup

% Connected to the

Figure 4.4 myJXTA window.

contacted a rendezvous peer. The run() method will execute once a peer is
found or the user clicks to continue without waiting. (Note that this doesn’t
mean the attempt to contact the rendezvous peer isn’t still occurring; however,
it will no longer block waiting on the attempt.) The code in the run() method
will finish the setup of the main application GUI and make it visible.

myJXTA Window

After several seconds, the application tries to connect to the NetPeerGroup.
(As you'll recall, NetPeerGroup is the name of the default peer group that all
JXTA peers will initially join.) The myJXTA window will appear, as shown in
Figure 4.4. The functionality provided by the myJXTA application is found in
three areas:

60 Chapter 4 Using myJXTA

m Menu bar
m Dialog box tabs

m Search panel

On the menu bar, the File menu allows the user to create and accept chat invi-
tations as well as launch the Shell application. The Edit menu includes the abil-
ity to save the session and activate sharing. The Help menu contains the About
option, which you can select to display the application version. The Navigation
menu duplicates the tabs in the dialog box; and you use the Group menu to cre-
ate, join, and leave groups. We discuss both the File and Group menu items in
detail a little later.

The dialog box tabs—Group Chat (the default), Chat, Search, and Share—are
located in the center of the application. The Search panel is located at the top
of the application; it is visible in all tabs. We also discuss these features later in
this chapter.

Within the instantp2p.java file mentioned earlier, the menu and buttons are cre-
ated, and appropriate ActionListeners are built. A specific actionPerformed()
method is created to handle the menu item events; the code is shown in Listing
4.1. Notice that for each menu event, a specific method is called to handle the

request.

if (item == exit) {
exitInstantP2P();

} else if (item == prefs) {
//net.jxta.impl.peergroup.Configbhialog config =
// new net.jxta.impl.peergroup.ConfigDialog (
// application.getAdvertisement());
// config.setVisible (true);

} else if (item == sharingPrefs) {

setSharingPreferences();

} else if (item == about) {
String[] str = new String[l];
str[0] = "myJXTA Version: " + Version.version;
getDialog().setText(str);

} else if (item == addGroup) {
addNewGroup() ;

} else if (item == joinGroup) {
joinGroup();

} else if (item == leaveGroup) {
leaveGroup();

/* } else if (item == refresh) {

Listing 4.1 The myJXTA code for handling menu events. (continues)

Executing myJXTA 61

refreshGroup(); This is broken and redundant with
search */

} else if (item == shell) {

runShell();
} else if (item == invite) {
invite();
} else if (item == accept) {
accept();

}

Listing 4.1 The myJXTA code for handling menu events. (continued)

Group Chat

When the myJXTA application launches, the default tab is Group Chat, as
shown in Figure 4.4. All of the users who are part of the currently selected
group in the Peer Groups panel will be displayed in the users panel on the left.
The right panel contains the messages being constantly sent by users in the
group. As peers join and leave the group, indicator messages will be displayed.
To send a message to the group, simply enter text in the Send Message text
area.

If you want to view the chat in other groups, just click on any of the groups
listed in the Peer Groups panel. Notice that when you're switching to other peer
groups, you will not see any of the chat history, but only the chat that occurs
while you are viewing the group chat.

The code for the group chat can be found in the GroupChat.java file in the <root
directory where you installed source>/binding/java/src/net/jxta/instantp2p/.
When an object is instantiated from the GroupChat class, one of the first things
the constructor does is create a separate thread to contain the instantiation.
This allows the object to constantly be aware of new peers entering the Net-
PeerGroup, and display their peer name and chat in the Group Chat tab.

All communication received by this peer during the group chat is funneled to
the pipeMsgEvent() method. This method receives information about the
sender as well as the sender’s message (see Listing 4.2).

public void pipeMsgEvent (PipeMsgEvent event) {
Message msg = event.getMessage();

Listing 4.2 The myJXTA code for handling group peer discussions. (continues)

62 Chapter 4 Using myJXTA

try {

String sender = getTagString(msg,
SENDERNAME, "anonymous");

String groupname = getTagString(msg,

SENDERGROUPNAME, "unknown");
String senderMessage = getTagString(msg,
SENDERMESSAGE, null);
String msgstr;
if (groupname.equals(group.getPeerGroupName())) {
//message is from this group

msgstr = sender + "> + senderMessage;

} else {
msgstr = sender + "@" + groupname + "> " +
senderMessage;
}

for (int i = 0; i < applisteners.size(); i++) {

ChatListener cl = (ChatListener)
applisteners.elementAt(i);

cl.chatEvent (msgstr);

}

updateList (sender) ;

} catch (Exception e) {

e.printStackTrace();

Listing 4.2 The myJXTA code for handling group peer discussions. (continued)

When a peer enters a message in the Send Message control box, the code found
in sendMsg() is executed:

public void sendMsg(String gram) {

try {
Message msg = pipe.createMessage();
msg.setString (SENDERMESSAGE, gram);
msg.setString (SENDERNAME, userName);
msg.setString (SENDERGROUPNAME,

group.getPeerGroupName());

queue.push(msqg) ;

} catch (Exception ex) {

ex.printStackTrace();

}

This code accepts message text in the form of a String object. The text along
with the peergroup name and username of the current peer is inserted into a
Message object and placed on a queue to be sent to other peers.

Executing myJXT 63

Ega myJXTA: Peer Sam (=]
File Edit MNavigstion Group Help

- Joined

Sam iz now logged in MNetPeerGroup
Connected with JosephGradecki
Sam= Hello!

Sam=*es | am

osephGradecki= I'm now cannected

Figure 4.5 The myJXTA Chat window.

Chat

If you click on the Chat tab, you'll see the window shown in Figure 4.5. The
Chat functionality in the application is designed to allow a chat session
between two users. The chat session will be secure, but both of the peers need
to be in the same group.

Chatting with a User

Chatting with a user is very simple; just locate his or her peer name in the User
List panel of the known peer group, and double-click on it. When you do, the

64 Chapter 4 Using myJXTA

application will first attempt to find the user in the current peer group. (There
may be times when users appear in the User List panel, but they have left the
current peer group or closed their application.) Once the peer has been located,
a connection will be made with the remote peer. After the connection is estab-
lished, messages can be sent. It should be noted that each peer will be required
to connect to the other peer. In other words, if Sam connects to Joe, Sam will
be able to send secure messages to Joe, but Joe will not be able to send mes-
sages to Sam until Joe double-clicks on Sam’s name in the User List panel.

Changing Users

It is possible to chat with a number of users at the same time. To do this, just
double-click on another user in the User List panel of the current group. A con-
nection will be attempted with that user; if found, a one-way connection will be
established. The new user will be placed in your My Preferred Users list. Simply
click on a user to send a message to that user specifically.

Changing Groups

If you join a group and then click on that group in the Peer Group panel, the
User List panel will refresh to display all the peers in the new group.

You can find the code for the one-to-one chat in the chat.java file in the <root
directory where you installed source>/binding/java/src/net/jxta/instantp2p/. As
in the case of the group chat, the one-to-one chat class places itself in a thread
when instantiated. Recall that numerous one-to-one chat sessions can occur, so
it isn’t surprising to see a number of array attributes for the class. These attrib-
utes will be used to hold the various peer names and pipes. The majority of the
code in the Chat class handles administration tasks, such as changing users you
are chatting with and handling the change from one group to another. One of
the most important methods is processMessage(), which handles a new mes-
sage when it arrives at the peer (see Listing 4.3).

protected void processMessage(Message msg) {
String messagelD;
byte[] buffer = null;

String srcPeerAdvWireFormat = msg.getString (SRCPEERADV);
PeerAdvertisement srcPeerAdv = null;
try {
if (srcPeerAdvWireFormat != null) {
srcPeerAdv = (PeerAdvertisement)
AdvertisementFactory.newAdvertisement (

Listing 4.3 The processMessage() method handles new chat messages as they arrive at the
peer. (continues)

Executing myJXTA

new MimeMediaType("text/xml"),
new ByteArrayInputStream(
srcPeerAdvWireFormat.getBytes()));

discovery.publish(srcPeerAdv, DiscoveryService.PEER);

}
} catch (Exception e) {

String srcPipeAdvWireFormat = msg.getString (SRCPIPEADV);
PipeAdvertisement srcPipeAdv = null;
try {
if (srcPipeAdvWireFormat != null) {
srcPipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement (
new MimeMediaType("text/xml"),
new ByteArrayInputStream(
srcPipeAdvWireFormat.getBytes()));

discovery.publish(srcPipeAdv, DiscoveryService.ADV);

}
} catch (Exception e) {

String groupId = msg.getString (GROUPID);
PeerGroup group = null;
if (groupId != null) {

group = getGroup (groupId);

String sender = null;

String groupname = null;

String senderMessage = null;

// Get sender information

try {
sender = getTagString(msg, SENDERNAME, "anonymous");
groupname = getTagString(msg, SENDERGROUPNAME, "unknown");
senderMessage = getTagString(msg, SENDERMESSAGE, null);

String msgstr;

if (groupname.equals(manager.getSelectedPeerGroup ()
.getPeerGroupName())) {
//message is from this group

+ senderMessage +EOL ;

msgstr = sender + ">
} else {
msgstr = sender + "@" + groupname + ">
+ senderMessage +EOL;

Listing 4.3 The processMessage() method handles new chat messages as they arrive at the
peer. (continues)

65

66 Chapter 4 Using myJXTA

}

if (senderMessage != null) {
messageBoard.displayMessage(msgstr, sender);

}

// If there is a PipeAdvertisement piggy backed
//into the message
// create a new buddy.

if ((srcPipeAdv != null) && (group != null)) {
PipePresence p = getPipePresence (group, myPipeAdvt);
if (p != null) {
p.addOnlineBuddy (sender, srcPipeAdv);

}
} catch (Exception e) {
messageBoard.error (e.getMessage());

}

// Process any Chat commands

String cmd = msg.getString (COMMAND);
if (ecmd == null) {

// Nothing to do

return;

if (cmd.equals (PING) && (group != null)) {
// This is a PING request. We need to reply ACK
OutputPipe op = null;
Vector dstPeers = new Vector (1);
dstPeers.add (srcPeerAdv.getPeerID());
try {
op = group.getPipeService().createOutputPipe (scPipeAdv,
dstPeers.elements(),
PipeTimeout) ;
if (op != null) {
// Send the ACK
Message rep = pipes.createMessage();
rep.setString (COMMAND, ACK);
rep.setString (GROUPID, groupId);
rep.setString (SENDERNAME, myName);
op.send (rep);
} else {
}
} catch (Exception ezl) {
// We can’t reply. Too bad...

Listing 4.3 The processMessage() method handles new chat messages as they arrive at the
peer. (continues)

Executing myJXTA 67

}

}

if (cmd.equals (ACK) && (group != null)) {
// This is a ACK reply. Get the appropriate PipePresence
PipePresence p = getPipePresence (group, myPipeAdvt);

}

if (p != null) {

}

p.processAck (sender);

Listing 4.3 The processMessage() method handles new chat messages as they arrive at the

peer. (contiued)

Notice where the method compares the tag of the received message to deter-
mine what to do with the message. The action could be to display the contents
of the message because it was sent to the current peergroup, or it could be a
ping message which requires an acknowledgment message be returned to the
caller. This type of processing will be shown again in Chapter 15, where we
examine the default password membership service and have to process various
messages from peers.

Search

Clicking the Search tab displays the search features that enable a peer in a
group to find resources that have been made available by other peers. Figure
4.6 shows an example of searching in the default peer group for the text string
“html”. As you can see, several different filenames have been identified. If you
click on any of the filenames, you will see the dialog box shown in Figure 4.7.

You can save the file at the given path or browse to place the file in a different
location. If you just want to view the file, click the View button to launch a
viewer (if you have one on your system).

You can find the code for the search functionality in the files Search.java,
SearchListener.java, SearchManager.java, and SearchResult.java in the <root
directory where you installed source>/binding/java/src/net/jxta/instantp2p/.
The Search.java file handles the basic mechanics of the search functionality by
searching through the instantiation of SearchListener objects as well as cancel-
ing currently executing searches. When a search result occurs, the advertise-
ment sent back from each of the peers will include not only the name of the
content but a pipe advertisement that the local peer can use to obtain the con-
tent. The result is handled in the SearchResult class, located in the SearchRe-
sult.java file. The SearchManager class (which is located in the
SearchManager.java file) does quite a bit of work when dealing with the shared
content the local peer has provided to the peer group. When a request from

68 Chapter 4 Using myJXTA

-Ioix]

File Edit Mavigation Group Help

- Jained

HTTP-JHTA-PROKY htrnl
frog-homepage. html

Figure 4.6 Performing a search.

-ioix

Path |C:1Pr0gram Files\J<TA_DemowCopy of InstantP 2Pindex html hrowse |
OK| Viewl

Figure 4.7 Saving and viewing a search result.

another peer arrives at the local peer, SearchManager will check to see
if any of the local shared content matches the search text. If there is a
match, an output pipe will be opened, and an advertisement will be cre-
ated and sent to the requesting peer.

. cExecutingmy)x7A BT

Share

Clicking the Share tab will open the window shown in Figure 4.8. The Share
part of the application allows contents to be shared among the peers in a group.
Content is added to the Share Content panel at the bottom of the GUIL. When
you click the Add button, you'll see a Select File dialog box, which lets you add
content. If you want to remove any of the pieces of content, just highlight the
entry and click the Remove Content button.

You can find the code for the share functionality in the LocalContentTab.java
file in the <root directory where you installed source>/binding/java/src/
net/jxta/instantp2p/desktop. The code for the local content isn’t too complex; it
simply handles the adding and removing of content from the Share tab’s display
panel.

Egi myJXTA: Peer JosephGradecki o |EI|1|

File Edit Mavigstion Group Help

Add Content || Eemove Content

% Connected to the JXTA network

Figure 4.8 The myJXTA Share window.

70

Chapter 4 Using myJXTA

Using the File Menu

The File menu contains three commands. The first, called Shell, opens a Shell
application to the JXTA network (see Chapter 3 for a complete discussion of
the shell’s functionality). The second and third commands are called Create
Invite and Accept Invite. The Create Invite command will create a peer adver-
tisement that can be sent to other users. A user who receives a peer advertise-
ment can use the Accept Invite command to load the peer advertisement from
the local drive.

You can find the code for the File menu functionality in the instantp2p.java file
in the <root directory where you installed source>/binding/java/src/
net/jxta/instantp2p/desktop. The code for starting a new peer group shell can
be found in the same file. For invite() and accept() functionality, the final code
resides in the PeerGroupPanel.java file, located in the same directory. The
invite() method pulls information about the local peer and peer group, and
saves the information to the local disk. The code is a good example of using
disk operations within JXTA. The accept() method contains code for pulling an
advertisement from the disk and building appropriate JXTA objects from: it.

Using the Group Menu

The Group menu contains three separate commands all related to dealing with
peer groups. The commands are

m (Create New Group
m Join Group

m Leave Group

The Create New Group command allows a new peer group to be advertised and
created in the JXTA network. When you choose this command, you'll see the
window shown in Figure 4.9.

To create a new peer group, enter the desired name of the group in the provided
space. By default, the new peer group will act as a rendezvous, but can be
turned off if you desire. If you click OK at this point, the new peer group will be
visible to all who discover it. There are no restrictions for joining the group. If
you select the Create Private Group check box, you'll have to supply a pass-
word for the group. After you click OK, the new peer group will be available
only to those peers who know the password to the group.

In either case, the new peer group will appear in the Peer Groups panel at the
top of the application. You will not be automatically joined to the group because
you created it.

Executing myJXTA 71

Figure 4.9 Creating a new peer group.

If you want to join a group, that group must appear in the Peer Group panel.
Click on the group you want to join, and select the Join Group command from
the Group menu. Either you will be joined to the group, or a dialog box will
appear asking you for the password to the group. In either case, a Joined label
will indicate the joined group after the peer group name in the Peer Group
panel.

When you have finished with a group, just highlight it in the panel, and choose
Leave Group from the Group menu to resign from the group.

You can find the code for the Group menu commands in the PeerGroupPanel.
java file in the <root directory where you installed source>/ binding/java/src/
net/jxta/instantpZp/desktop. The code for creating new peer groups, joining
groups, and leaving groups can be found in that file.

Searching for a Group

If you look at Figure 4.8 again, you will see that quite a few peer groups are
listed in the top panel of the application. We discovered the peer groups by plac-
ing search text with an asterisk (*) wildcard in the Search Group text area at the
top of the myJXTA application. A discovery is attempted against peer group
advertisements in the JXTA network based on the search text. All of the peer
groups found will be listed in the panel. If you click on one of the groups, you
can join it using the Join Group command on the Group menu.

You can find the code for the group search functionality in the PeerGroup-
Panel.java file in the <root directory where you installed source>/binding/
java/src/net/jxta/instantp2p/desktop. The code for building the search panel is
in this file.

72 Chapter 4 Using myJXTA

Summary

This chapter has been an overview of the myJXTA sample application provided
by the developers of the Java binding. The application introduces the full capa-
bilities of the JXTA Java binding. In addition, we supplied pointers to the under-
lying source code that provides the functionality in the application. Reusing the
source code from the application gives us a foundation on which we can build
new and innovative programs. Next, we will begin looking into the details
behind the JXTA specification and Java implementation with a discussion of
JXTA advertisements.

JXTA Advertisements

peer, peer group, and resource configuration information available to the net-

work, peers, and peer groups. The advertisement is a container that can be
passed from peer to peer using a common format. To provide a generalized format, the
JXTA team chose to implement the advertisement using XML, thus providing an easily
expandable and hierarchical representation of information needed by all peers to
support the JXTA network. In this chapter, we discuss the major advertisements, as
well as the code needed to pull advertisements from files or to build them on the fly
programmatically.

The advertisement is the primary tool the JXTA protocols use for making general

Core Advertisements

The core advertisements defined in the current specification include the
following:

Peer advertisement

Peer group advertisement

Module class advertisement

Module specification advertisement
Module implementation advertisement

Pipe advertisement

Rendezvous advertisement (discussed in Chapter 11)

73

74 Chapter 5 JXTA Advertisements

An XML-Based Format

Instead of creating yet another configuration description format, the JXTA
team chose to format the advertisement using XML. This section contains a
brief introduction to XML; if you are already familiar with XML, you can safely
skip ahead.

The JXTA team selected XML as the configuration description language
because XML is the following:

m Independent of any language
m Self-describing

m Extensible

= Strongly typed

Because of these important features, XML is a format that can be shared
between implementations of the JXTA specification, regardless of how the pro-
tocols have been coded. XML is plain text, and parsing engines are widely avail-
able. Listing 5.1 contains a simple XML document.

<?XML VERSION="1.0"?>
<root>
<eleml>
value
</eleml>
<elem2 attrib="value2">
value3
</elem2>
</root>

Listing 5.1 A simple XML document.

All XML documents must begin with a processing instruction:

<?XML VERSION="1.0"?>

An XML parser uses this instruction to confirm that the document it is starting
to work with is indeed a XML document. A hierarchy of elements follows the
instruction. An XML element is denoted by a text string enclosed in < > sym-
bols. Here’s an example of an element pair:

<address>
</address>

Note the use of the / symbol for the ending element. If you are familiar with
HTML, this syntax won’t be new to you. Although the JXTA specification has
defined a number of specific elements for advertisements, XMLs extensibility

Core Advertisements 75

enables you to define your own elements as well. The JXTA system will simply
ignore additional elements; you will need to parse the XML document on your
own to find the elements.

XML is hierarchical, which means you can nest elements within other elements,
as in the following:

<account>
<name>
</name>

</account>

Elements are allowed to contain a value, which is either a string value or
another element. For example:

<account>
<name>
John Smith
</name>

</account>

In this case, the value of the <account> element is the <name> element, and the
<name> element has a string value. You can have any number of subelements
within a parent element:

<account>
<name>John Smith</name>
<address>123 S. Anywhere Street></address>
<city>Nowhere</city>

</account>

All XML documents must have a high-level root element, which means that all
documents will consist of a minimum of three lines. For example:

<?XML VERSION="1.0">
<root>

</root>
Here are some important XML rules to keep in mind:

m The document must be well formed; elements must have matching begin-
ning and ending elements.

m Attribute values must be enclosed with double quote characters.

m Documents must contain one and only one root element.

Peer Advertisements

The peer advertisement has a twofold purpose. The first is to identify the peer
to outside entities, such as peer groups or other peers. This public part of the
peer advertisement is made available to convey information, such as its name,

76 Chapter 5 JXTA Advertisements

ID, the endpoint addresses currently available on the peer, and other elements
that are placed in the advertisement by current group services. The second pur-
pose of a peer advertisement is to hold local configuration information that isn’t
published.

Listing 5.2 shows the JXTA specification-defined elements of a peer advertise-
ment. These elements are defined in the advertisement:

Name—The name of the peer is taken from the name provided when the
peer was first configured (see Chapter 4 for information about configuring a
peer with myJXTA).

Desc—You can supply a description string in the peer advertisement for
the primary purpose of having text available for searching. Note that you
have to separate the keywords in the description by spaces, and the terms
don’t have to be unique—in other words, the description string for one
advertisement might match or be close to the same as another advertise-
ment.

PID—Each peer in a JXTA network will have a unique ID, as described in
Chapter 2. It is imperative that the PID be unique in order for the JXTA pro-
tocols to be able to locate peers.

GID—The group ID (GID) is the name of the group to which the peer
belongs (in formal notation).

Sve—This element contains information relevant to the peer, including its
certificate and transports that it supports.

Dbg—This element corresponds to the Debug option found on the
Advanced tab of the Configuration window. The value is used to display
some level of debugging during the execution of the peer. At a high level, all
types of messages will be displayed at the command prompt or terminal
window from where the peer was executed.

<xs:complexType name="PA">
<xs:element name="Name" type="xs:string" minOccurs="0"/>
<xs:element name="PID" type="JXTAID"/>
<xs:element name="GID" type="JXTAID"/>
<xs:element name="Desc" type="xs:anyType" minOccurs="0"/>
<xs:element name="Dbg" type="xs:token" minOccurs="0"/>
<xs:element name="Svc" type="jxta:serviceParams" minOccurs="0"
maxOccurs="unbounded" />
</xs:complexType>

<xs:simpleType name="JXTAID">
<xs:restriction base="xs:anyURI">

Listing 5.2 The specification-defined structure of a peer advertisement. (continues)

Core Advertisements 77

<pattern value=" ([uU] [rR] [nN]: [jJ] [xX] [tT] [@A]:)+\-+"/>
</xs:restriction>
</xs:simpleType>

<xXs:complexType name="serviceParam">
<xs:element name="MCID" type="JXTAID"/>
<xs:element name="Parm" type="xs:anyType"/>
</xs:complexType>

Listing 5.2 The specification-defined structure of a peer advertisement.

Listing 5.3 shows an example of a “real” peer advertisement. Notice the <parm>
element, which includes information specific to the peer, such as available end-
points into the peer. The values in Listing 5.3 include two endpoints and their
related protocols (TCP as well as the Transport Layer Security protocols).

<?xml version="1.0"?>
<!DOCTYPE jxta:PA>
<jxta:PA xmlns:jxta="http://jxta.org">
<PID>
urn:jxta:uuid-5961626164616261
4A787461503250336027A230B57E4EBBB32DA84EAC3588F003

</PID>
<GID>
urn:jxta:jxta-NetGroup
</GID>
<Name>
JosephGradeckiClient
</Name>
<Svc>
<MCID>
urn:jxta:uuid-DEADBEEFDEAFBABA
FEEDBABE0O000000805
</MCID>
<Parm>
<Addr>
tep://12.254.21.182:9702/
</Addr>
<Addr>

jxtatls://uuid-5961626164
6162614A787461503250336027A230B57E4EB
BB32DA84EAC3588F003/TlsTransport/jxta-WorldGroup
</Addr>
<Addr>
jxta://uuid-59616261646

Listing 5.3 A valid peer advertisement. (continues)

78 Chapter 5 JXTA Advertisements

162614A787461503250336027A230B57E4EBBB32DA84EAC3588F003/
</Addr>
</Parm>
</Sve>
<Svc>
<MCID>
urn:jxta:uuid-DEADBEEFDEAFB
ABAFEEDBABE0000000105
</MCID>
<Parm>
<RootCert>
MIICVDCCAb2gAwIBAGIBATANBgkahkiGIw0BAQUFADBYMRUW
EwYDVQQKEwx3d3cuanh0YS5vcecmexCzAIJBgNVBACTAINGMQOswCQYDVQQGEWIVUZEg
MB4GA1UEAXMXSm9zZXBoR3JThZGVja21DbGl1bnQtQOEXHTALBGNVBASTFEZBNJY2
QTOxRJg2NDAWN] 1CNONBMBAXDTAXMTIXMTAIMzMWNVOXDTEXMT IXxMTA1MzMwNVowW
cjEVMBMGA1UEChMM
d3d3Lmp4dGEub3InMQswCQYDVQQHEWJITRjELMAKGA1UEBhMCVVMxIDAeBgNVBAMT
FOpvc2VwaEdyYWR1Y2tpQ2xpZW50LUNBMROwGWYDVQQLEXRGQTY2NKEOMUY 4N JjQw
MDY5Q3jdDQTCBmzALBgkghkiGI9wOBAQEDgYSAMIGHAOGBAIWUGZpl 6K4D1g821Im5
1XojbUznV+dtw]ZngXhgtvVOoP7INTRPiK/ £NGUTGDVrJTohl PIJmVkwEj 1HLbx2 7
3jmiVNGVKLbDM+sFG+ZaTAwjuOmfDei8lai¥YnKx1 fKSz+MQ80OANQwUeBPHYW611k
IwhXxJ/mJCvjtFy/PzyuNFy7AgERMAOGCSQGSIb3DQEBBQUAAAGBAALOOOHHL f7a
bB200hsceRi2IjQtL8d6ZXAbHSa93VMROYQ2gTI680RALNLIZErRKFX3ulXgSq7oxF
6UP8JINm0OD5S/8cSsE1gN46pTiS08R1fnigO0aD6RNW8QgZZJeady968A6NYLZfHALzZ
EDzrh70hEX8KvMDoopTR3hcrgTVVuwBn
</RootCert>
</Parm>
</Sve>
</jxta:PA>

Listing 5.3 A valid peer advertisement. (continued)

You can obtain all of the information from a peer advertisement by using the
methods associated with the PeerAdvertisement object. The most important
methods are as follows:

String getAdvertisementType()—Returns a string representing the type
of the current advertisement.

String getDescription()—Returns the description string found in the peer
advertisement.

ID getID()—Returns the ID associated with the peer advertisement for
unique identification.

ID getPeerID()—Returns the ID of the peer associated with this
advertisement.

String getName()—Returns the name of the peer.

Core Advertisements 79

PeerGroupID getPeerGroupID()—Returns the ID of the group the peer
is currently associated with.

StructuredDocument getServiceParam(ID key)—Returns the element
found in the <parm> hierarchy that matches the parameter key.

Hashtable getServiceParams()—Returns all of the elements found in the
<parm> hierarchy.

The PeerAdvertisement object also includes the appropriate setter methods
corresponding to these getter methods.

Peer Group Advertisements

A peer group advertisement is created for all peer groups in the JXTA network.
As with peers, the advertisement describes the group, and provides other infor-
mation necessary for creating a new group. To create a new peer group, you
must create an advertisement and provide it to a current group. This is one of
the reasons that all peers are part of a default peer group. Listing 5.4 shows the
definition of a peer group advertisement as outlined in the specification. Within
the peer group advertisement are the following elements:

GID—A unique peer group ID.

MSID—The Module Specification ID, which defines the basic functionality
necessary for a peer group. You can locate any number of implementations
of the functionality in the JXTA network by using the MSID of the peer
group.

Name—The name of the peer group.

Desc—A description string useful for searching.

Sve—A list of services available from this peer group as well as the attrib-
utes necessary for the services. A peer group advertisement can include any
number of Svc elements.

<xs:complexType name="PGA">
<xs:element name="GID" type="JXTAID"/>
<xs:element name="MSID" type="JXTAID"/>
<xs:element name="Name" type="xs:string" minOccurs="0"/>
<xs:element name="Desc" type="xs:anyType" minOccurs="0"/>
<xs:element name="Svc" type="jxta:serviceParam"

minOccurs="0" maxOccurs="unbounded" />
</xs:complexType>

Listing 5.4 The specification definition of a peer group advertisement.

80 Chapter 5 JXTA Advertisements

Module Class Advertisements

When a peer is expected to provide some type of functionality to a peer group,
a number of advertisements will be used to publish this fact. At the top level of
the necessary advertisements is the module class advertisement. This adver-
tisement is designed to be a high-level announcement of pending functionality.
It could be considered analogous to a package in the Java language. The pack-
age describes and contains some level of functionality, and acts as a high-level
descriptor, just as the module class advertisement does. Listing 5.5 shows the
specification’s definition of the module class advertisement. In the specifica-
tion, the elements are:

MCID—The Module Class ID is an ID created to be unique and to represent
this module.

Name—The name of the module class.

Desc—A description of the class.

<xs:complexType name="MCA">
<xs:element name="MCID" type="JXTAID"/>
<xs:element name="Name" type="xs:string" minOccurs="0"/>
<xs:element name="Desc" type="xs:anyType" minOccurs="0"/>
</xs:complexType>

Listing 5.5 The module class advertisement.

Listing 5.6 shows an example of a valid module class advertisement. Notice that
the advertisement is quite simple. The most important part of the advertisement
is the MCID, which you must use when providing a specification and an imple-
mentation to the JXTA network. The module class advertisement also has the
purpose of associating an ID to the functionality a peer wants to put into
the peer group. All of the functionality will be tied to the ID placed within the
advertisement.

<?xml version="1.0"?>
<!DOCTYPE jxta:MCA>

<jxta:MCA xmlns:jxta="http://jxta.org">
<MCID>
urn:jxta:uuid-401A2D3C453F4893A6A48684B9DE6BIBOS
</MCID>
<Name>

Listing 5.6 A valid module class advertisement. (continues)

Core Advertisements 81

JXTAMOD : JXTA-CH15EX2
</Name>
<Desc>
Service 1 of Chapter 15 example 2
</Desc>
</jxta:MCA>

Listing 5.6 A valid module class advertisement. (continued)

Module Specification Advertisements

After a module class advertisement has been published to the JXTA network, it
should normally be followed up by a module specification advertisement
(MSA). The MSA has two purposes:

m Provides references to documentation describing how to implement the
services of the module class.

m Provides an instance of a class discoverable by remote peers and contain-
ing information about how to obtain the code behind a class.

The MSA is a human-readable advertisement designed to provide information
about a module class. The specification of the class is defined in the advertise-
ment. Listing 5.7 shows the definition of the advertisement as given in the spec-
ification. The elements of the advertisement include those listed here in the
order found in the specification:

Name—The name of the specification this advertisement is describing.
Desc—A description string that can be searched by other entities.
MSID—A unique ID used by the JXTA network.

CRTR—A string representing the creator of this specification.

SURI—A URI that points to an actual specification. This could be a URL to
a web server, for instance.

Vers—A string representing the version of the specification. This value is
mandatory.

Parm—Parameters that can be retrieved by the receiver of the
advertisement.

Pipe—A pipe advertisement that may be used to communicate with a peer
that implements this module specification.

Proxy—An optional Module Spec ID of a module that can be used to com-
municate with the module of this specification.

Auth—The Module Spec ID of a module that may be required for authenti-
cation before using modules of this specification.

82 Chapter 5 JXTA Advertisements

<xs:complexType name="MSA">
<xs:element name="MSID" type="JXTAID"/>
<xs:element name="Name" type="xs:string" minOccurs="0"/>
<xs:element name="Crtr" type="xs:string" minOccurs="0"/>
<xs:element name="SURI" type="xs:anyURI" minOccurs="0"/>
<xs:element name="Vers" type="xs:string"/>
<xs:element name="Desc" type="xs:anyType" minOccurs="0"/>
<xs:element name="Parm" type="xs:anyType" minOccurs="0"/>
<xs:element name="PipeAdvertisement"
type="jxta:PipeAdvertisement" minOccurs="0"/>
<xs:element name="Proxy" type="xs:anyURI" minOccurs="0"/>
<xs:element name="Auth" type="JXTAID" minOccurs="0"/>
</xs:complexType>

Listing 5.7 The module specification advertisement definition.

The valid advertisement is shown in Listing 5.8.

<?xml version="1.0"?>
<!DOCTYPE jxta:MSA>

<jxta:MSA xmlns:jxta="http://jxta.org">
<MSID>
urn:jxta:uuid-69D41BB186FF4E1ABIE
AAB40F1BC6EDCOFOF6A0680D54A7A8A85BD1C68BF2B06
</MSID>
<Name>
JXTASPEC : JXTA-CH15EX2
</Name>
<Crtr>
gradecki.com
</Crtr>
<SURI>
&1lt;http://www.jxta.org/CHL5EX2>
</SURI>
<Vers>
Version 1.0
</Vers>
<jxta:PipeAdvertisement>
<Id>
urn:jxta:uuid-9CCCDF5AD8154D3D8
7A391210404E59BE4B888209A2241A4A162A10916074A9504
</Id>
<Type>
JxtaUnicast

Listing 5.8 A valid module specification advertisement. (continues)

Core Advertisements

</Type>
<Name>
JXTA-CH15EX2
</Name>
</jxta:PipeAdvertisement>
</jxta:MSA>

Listing 5.8 A valid module specification advertisement. (continued)

Module Implementation Advertisements

83

An advertisement isn't much good without implementations. The module
implementation advertisement (MIA) is designed to be published when an
implementation of a specification has been created. This advertisement is used
to tell peers where to find the implementation. The MIA references the ID of the
MSA so that peers can find implementations based on the ID of the specifica-
tion. As one might expect, there can be a whole host of implementations of a
single specification.

The MIA contains all of the information necessary to execute the implementa-
tion. As you'll see in a moment, the elements <Code> and <PURI> contain the
class of the code and the download location, respectively. Depending on the
implementation desired, the <Code> element might contain some other kind of
execution information. Listing 5.9 shows the advertisement as defined in the
JXTA specification; Listing 5.10 contains a valid advertisement.

The elements of the advertisement are as follows:
Name—The name of the specification this implementation is based on.

Desc—A description of the implementation. This is an optional name that
can be associated with a specification. The name does not have to be
unique unless it is obtained from a centralized naming service that guaran-
tees name uniqueness.

Proxy—An element used to hold a URL through which communication
should be directed. Some organizations don’t use port 80 for communica-
tion, but instead use an IP address and port 8080 to act as a proxy.

MSID—The Module Spec ID from the MSA of the specification this imple-
mentation is based on. This is a mandatory field.

Comp—An element with required information about the environment this
implementation can execute.

PURI—The location of the package, if not found in the code on the client’s
machine.

84 Chapter 5 JXTA Advertisements

Code—Information needed for a peer to load and execute the code. This
could be the entire code.

Parm—Parameters for the implementation.

Prov—A string with information about the provider of this implementation.

<xs:complexType name="MIA">

<Xs
<Xs
<Xs
<Xs
<Xs
<Xs

<Xs

:element
:element
:element
:element
:element
:element
:element

</xs:complexType>

name="MCID"
name="Comp"
name="Code"
name="PURI"
name="Prov"
name="Desc"
name="Parm"

type="JXTAID" />
type="xs:anyType" />
type="xs:anyType" />
type="xs:anyURIv minOccurs="0"/>
type="string" minOccurs="0"/>
type="xs:anyType" minOccurs="0"/>
type="xs:anyType" minOccurs="0"/>

Listing 5.9 A module implementation advertisement definition.

<?xml version="1.0"?>

<!DOCTYPE jxta:MIA>

<jxta:MIA xmlns:jxta="http://jxta.org">
<MSID>

urn:jxta:uuid-DEADBEEFDEAF

BABAFEEDBABE000000010306
</MSID>
<Comp>

<Efmt>

JDK1.4

</Efmt>
<Bind>

V1.0 Ref Impl

</Bind>

</Comp>

<Code>

net.jxta.impl.peergroup.StdPeerGroup

</Code>
<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>
<Prov>

sun.com

</Prov>

<Desc>

General Purpose Peer Group Implementation

Listing 5.10 A valid module implementation advertisement. (continues)

Core Advertisements

</Desc>
<Parm>
<Svc>
<jxta:MIA>
<MSID>
urn:jxta:uuid-DEADBEEF
DEAFBABAFEEDBABEO00000060106
</MSID>
<Comp>
<Efmt>
JDK1.4
</Efmt>
<Bind>
V1.0 Ref Impl
</Bind>
</Comp>
<Code>

net.jxta.impl.rendezvous.RendezVousServiceImpl
</Code>
<PURI>

http://www.jxta.org/download/jxta.jar
</PURI>
<Prov>
sun.com
</Prov>
<Desc>
Reference
Implementation of the Rendezvous service
</Desc>
</jxta:MIA>
</Sve>
<Svc>
<jxta:MIA>
<MSID>
urn:jxta:uuid-DEAD
BEEFDEAFBABAFEEDBABEO00000030106
</MSID>
<Comp>
<Efmt>
JDK1.4
</Efmt>
<Bind>
V1.0 Ref Impl
</Bind>
</Comp>

Listing 5.10 A valid module implementation advertisement. (continues)

86 Chapter 5 JXTA Advertisements

<Code>

net.jxta.impl.discovery.DiscoveryServiceImpl
</Code>
<PURI>

http://www.jxta.org/download/jxta.jar
</PURI>
<Prov>
sun.com
</Prov>
<Desc>
Reference Implementation of the DiscoveryService service

</Desc>
</jxta:MIA>
</Svc>
<Svc>
<jxta:MIA>
<MSID>
urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABEO00000050106
</MSID>
<Comp>
<Efmt>
JDK1.4
</Efmt>
<Bind>
V1.0 Ref Impl
</Bind>
</Comp>
<Code>

net.jxta.impl.membership.NullMembershipService
</Code>
<PURI>

http://www.jxta.org/download/jxta.jar
</PURI>
<Prov>
sun.com
</Prov>
<Desc>
Reference Implementation of the
MembershipService service
</Desc>
</jxta:MIA>
</Svc>

<Svc>

Listing 5.10 A valid module implementation advertisement. (continues)

Core Advertisements 87

<jxta:MIA>
<MSID>
urn:jxta:uuid-
DEADBEEFDEAFBABAFEEDBABEO00000070106
</MSID>
<Comp>
<Efmt>
JDK1 .4
</Efmt>
<Bind>
V1.0 Ref Impl
</Bind>
</Comp>
<Code>

net.jxta.impl.peer.PeerInfoServiceImpl
</Code>
<PURI>

http://www.jxta.org/download/jxta.jar
</PURI>
<Prov>
sun.com
</Prov>
<Desc>
Reference Implementation of the
Peerinfo service
</Desc>
</jxta:MIA>
</Sve>
<Svc>
<jxta:MIA>
<MSID>
urn:jxta:uuid-
DEADBEEFDEAFBABAFEEDBABEO00000020106
</MSID>
<Comp>
<Efmt>
JDK1 .4
</Efmt>
<Bind>
V1.0 Ref Impl
</Bind>
</Comp>
<Code>

net.jxta.impl.resolver.ResolverServiceImpl

Listing 5.10 A valid module implementation advertisement. (continues)

88 Chapter 5 JXTA Advertisements

</Code>
<PURI>

http://www.jxta.org/download/jxta.jar
</PURI>
<Prov>
sun.com
</Prov>
<Desc>
Reference Implementation of the
ResolverService service
</Desc>
</jxta:MIA>
</Svc>
<Svc>
<jxta:MIA>
<MSID>
urn:jxta:uuid-
DEADBEEFDEAFBABAFEEDBABE000000040106
</MSID>
<Comp>
<Efmt>
JDK1.4
</Efmt>
<Bind>
V1.0 Ref Impl
</Bind>
</Comp>
<Code>
net.jxta.impl.pipe.PipeServiceImpl
</Code>
<PURI>

http://www.jxta.org/download/jxta.jar
</PURI>
<Prov>
sun.com
</Prov>
<Desc>
Reference Implementation of the
PipeService service
</Desc>
</jxta:MIA>
</Svc>
<App>
<jxta:MIA>
<MSID>

Listing 5.10 A valid module implementation advertisement. (continues)

Core Advertisements 89

urn:jxta:uuid-
DEADBEEFDEAFBABAFEEDBABEO000000C0206
</MSID>
<Comp>
<Efmt>
JDK1 .4
</Efmt>
<Bind>
V1.0 Ref Impl
</Bind>
</Comp>
<Code>

net.jxta.impl.shell.bin.Shell.Shell
</Code>
<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>

<Prov>
sun.com

</Prov>

<Desc>
JXTA Shell reference implementation

</Desc>

</jxta:MIA>
</App>
</Parm>
</jxta:MIA>

Listing 5.10 A valid module implementation advertisement. (continued)

Pipe Advertisements

The final advertisement we will look at is the pipe advertisement, which has the
job of informing one peer how to establish a connection with another peer. List-
ing 5.11 shows the schema for the pipe advertisement, and Listing 5.12 shows a
sample pipe advertisement. The elements of the advertisement are:

Name—The name of the pipe.
Type—The type of the pipe:
m xtaUnicast

m JxtaUnicastSecure

m JxtaPropagateSecure

Id—The ID of the pipe.

90 Chapter 5 JXTA Advertisements

<xs:element name="PipeAdvertisment" type="jxta:PipeAdvertisment"/>

<xs:complexType name="PipeAdvertisement">
<xs:element name="Name" type="xs:string” minOccurs="0"/>
<xs:element name="Id" type="JXTAID"/>
<xs:element name="Type" type="xs:string"/>
</xs:complexType>

Listing 5.11 A pipe advertisement schema.

Another peer will discover the pipe advertisement of a remote peer in a number
of ways:

m From a file on the local machine
m Through an already established pipe

m [n a module specification advertisement

<?xml version="1.0"7?>
<jxta:PipeAdvertisement>
<Id> UUID </Id>
<Type> type of the pipe </Type>
<Name> optional symbolic name that can be used by
any search engine </Name>
</jxta:PipeAdvertisement>

Listing 5.12 A sample pipe advertisement.

Displaying an Advertisement

During the process of debugging a JXTA application, the capability to display
the contents of an advertisement is invaluable. Fortunately, the code that dis-
plays the contents is quite simple. Listing 5.13 shows the code that you can use
for any advertisement class. The code creates a PipeAdvertisement object in
the first line. In the next line, a StructuredTextDocument object is created using
the getDocument() method of the advertisement. The code will pull the adver-
tisement as XML, based on the getDocument() method’s parameter. A Struc-
turedTextDocument object contains a method called sendToStream(), which
outputs the contents of the document object into the specified stream object.
Subsequently, the advertisement will appear in the terminal window or the
command prompt from where the application is started.

Creating an Advertisement 91

PipeAdvertisement aPipeAdv = new PipeAdvertisement () ;

StructuredTextDocument aDoc = (StructuredTextDocument)
aPipeAdv.getDocument (new MIMETYPE ("text/xml")) ;
try {

aDoc.sendToStream (System.out) ;
} catch(Exception e) {}

Listing 5.13 Display advertisement code.

Creating an Advertisement

At some point, a peer will need to create an advertisement for a service or pipe.
As we mentioned earlier, there are several ways to obtain an advertisement.
One way is to receive the advertisement from another peer in a pipe. In this
case, the pipe advertisement is already built.

Another way a peer can obtain an advertisement is to pull it from the local file
system. The code in Listing 5.14 shows how to pull an advertisement from the
local file system into an object.

PipeAdvertisement myPipeAdvertisement = null;

try {
FileInputStream is = new
FileInputStream("servicel.adv") ;
myPipeAdvertisement = (PipeAdvertisement)
AdvertisementFactory.newAdvertisement (new
MimeMediaType ("text/xml"), 1is);
} catch (Exception e) {
System.out.println("failed to read/parse pipe
advertisement") ;
e.printStackTrace() ;
System.exit (-1) ;

Listing 5.14 Code to pull an advertisement from a local file system.

The code assumes that the advertisement is already in a valid XML format. The
code begins by creating a null PipeAdvertisement object. Next, a FileInput-
Stream object is created using the filename of the advertisement that will be
pulled. The code starting in Line 7 uses a class called AdvertisementFactory to
build a new advertisement object based on data fed to it. In this case, the data

92 Chapter 5 JXTA Advertisements

is of XML type, and thus the first parameter to the newAdvertisement() method
of the factory is the data type. The second parameter is where the information
for the advertisement can be found. If any of these steps fail, an exception will
be raised. Once the code finishes successfully, the PipeAdvertisement object
will have valid information from the data file.

Building an Advertisement from Scratch

There will be times when you have to create a new advertisement on the fly.
The code in Listing 5.15 shows the steps for building a new advertisement using
all code and no data files.

ModuleSpecAdvertisement myModuleSpecAdvertisement =
(ModuleSpecAdvertisement)AdvertisementFactory.

newAdvertisement (ModuleSpecAdvertisement.
getAdvertisementType ()) ;

myModuleSpecAdvertisement . setName (

"JXTASPEC:JXTA-CH15EX2") ;
myModuleSpecAdvertisement.setVersion("Version 1.0");
myModuleSpecAdvertisement.setCreator ("gradecki.com") ;
myModuleSpecAdvertisement .setModuleSpecID (

IDFactory.newModuleSpecID (myServicellID)) ;
myModuleSpecAdvertisement.setSpecURT (
"<http://www.jxta.org/CHI5EX2>") ;

myModuleSpecAdvertisement.setPipeAdvertisement (

myPipeAdvertisement) ;

Listing 5.15 Code for building an advertisement.

The code in Listing 5.15 starts by calling the newAdvertisement() method of the
AdvertisementFactory class. The exact method called is an overloaded method,
which accepts the type of advertisement needed. The parameter to the method
is obtained using the getAdvertisementType() method of the desired advertise-
ment class. After the advertisement object has been created, the individual
methods of the advertisement class are called with appropriate parameter val-
ues. The methods will basically fill in the values of specific elements in the
advertisement. After all of the necessary methods are called, a valid advertise-
ment object will have been populated.

- summary QY

Summary

Advertisements are the main information-dissemination tool for the JXTA sys-
tem. Most all of the advertisements covered in this chapter are designed to be
manipulated by a JXTA application and the developer. The next six chapters
discuss the underlying protocols defined in the JXTA specification. Each of
these protocols include their own advertisements for encapsulated communi-
cation between protocols and peers.

Peer Discovery Protocol

discovery of advertisements published by peers within a peer group. As

we saw in the previous chapter, we use advertisements to describe and
make available a wide variety of resources, including other peers, peer groups,
and ordinary content. All resources must have an advertisement associated
with them.

The Peer Discovery Protocol (PDP) is a protocol designed to allow for the

The PDP works in conjunction with a peer group, and is implemented as a dis-
covery service. In the Java reference implementation, the DiscoveryService
class allows peers associated with a particular group to publish and discover
advertisements. The NetPeerGroup, the default group that all peers belong to,
provides a discovery service to all peers without individual peers having to
write their own service. When developers create their own peer group, the new
group will typically be derived from the NetPeerGroup, thus enabling the new
group to have publish and discovery services. The designers of the discovery
protocol have written the specification and the Java reference implementation
in a manner that allows the basic discovery service and PDP to serve as a basis
for more intelligent and high-level discovery services.

This chapter, and all the other protocol chapters in this book, takes a twofold
approach to presenting information about the JXTA protocols. First, we explain
the protocol as it is defined in the specification. Second, we discuss the Java
reference implementation for the protocol. It is not our intention to provide all
of the code necessary to use the protocol—you can find most of that informa-
tion in later chapters. Here, we want to provide insights into the reference
implementation, and examine how the functionality is defined.

96 Chapter 6 Peer Discovery Protocol

PDP Protocol Overview

The PDP works on two basic levels: local (within the requesting peer’s own
cache) and remote (across the network). In both cases, the requesting
peer calls an exposed method of the discovery service implemented by a
language binding of the JXTA specification. The methods have the following
parameters:

=m An element name to use as a search key
m A value for the search key

m A value indicating the number of returned responses desired

The discovery service, which implements the PDP, packages the information
provided as parameters into a PDP query message represented as XML (see the
section “The PDP Query Message Format”). We will examine the discovery ser-
vice in detail later in this chapter.

In the case of a remote query, the requesting peer sends a query message to
other peers on the network, including rendezvous peers, using the Peer
Resolver Protocol (which we discuss in Chapter 7). Each peer that receives the
query message will examine its advertisements to see if any match the search
key and its associated value. If a match is found, the matching advertisement is
returned to the requesting peer. The requesting peer has the option of using any
of the returned advertisements.

In the case of a local query, the discovery service will check in the local cache
of the peer to find any advertisements that match the request. The local cache
contains advertisements sent from other peers, as well as advertisements cre-
ated by the local peer. The discovery service doesn’t need to build a query mes-
sage when searching the local cache—the code can simply perform a search of
the data structure used for holding the local cache. All of the obvious concerns
exist with the local cache, including stale advertisements and peers that are no
longer connected to the network. The local cache will also be populated
with the advertisements found during any remote discoveries. In both the
local and remote queries, results will be returned from peers with matching
resource using a response message (see the section “The PDP Response
Message Format”).

The local cache is maintained in a directory called cm, which is located in the
root directory in which a peer’s application was started. Within the cm directory
are a number of subdirectories, as shown in the following diagram. At the low-
est level of the cache are the XML advertisements.

PDP Protocol Overview 97

/cm
/info-jxta-NetGroup
/info-jxta-WorldGroup
/Jjxta-NetGroup
/Adv
/Groups
/Peers
uuid-59494383938492020934845093982092
uuid-90230832484849320982092092020200
/private
/public
/ tmp
/jxta-WorldGroup

Within the cm directory are the peer groups the peer has contacted. The system
doesn’t allow the mixing of advertisements across peer groups (notice the sep-
arate Adv, Peers, and Groups directories). In the publishing and discovery of
advertisements, these three directories will be used as key parameters in the
methods implementing the discovery of publishing.

In many cases, a discovery will return advertisements that aren’t of the type
being searched for. This is a normal operation for the JXTA network, and it
enables the system to propagate advertisements effectively. For this reason, all
advertisements found will need to be cast to the appropriate type and rejected
if the cast is not successful.

In summary, a service that implements the PDP will follow these basic steps:

1. Receives a request for discovery, either local or remote, from an
application.

2. For alocal discovery, searches the local cache of the peer for the desired
key/value.

3. For a remote discovery, builds a query message, and forwards it to all
known peers.

4. Places responses from the query message in the local cache based on their
type, and subsequently places them in the appropriate directory on the
hard drive.

The PDP Query Message Format

The XML in Listing 6.1 shows the format required for a PDP query message. The
elements are defined as follows:

Type—The advertisement type to be explicitly searched during the query.
Its values are the following:

98 Chapter 6 Peer Discovery Protocol

PEER—An advertisement that includes information about an individ-
ual peer

GROUP—An advertisement that includes information about a group
ADV—AIl advertisements

Threshold—The maximum number of advertisements to be returned by
each peer.

PeerAdv—The advertisement of the peer performing the discovery request.

Attr—The <element> name that should be searched in all advertisements.
An obvious example is the <name> element.

Value—The search string to be matched using the Attr element. The value
can contain a wildcard character (*) at either end (or both ends of) the
value string. A value of * will draw any advertisement of the specified type,
although an implementation may choose to match no advertisement. If the
Attr and Value elements are not present, peers will return a random number
of advertisements up to the stated Threshold value.

<xs:element name="DiscoveryQuery" type="jxta:DiscoveryQuery"/>

<xs:complexType name="DiscoveryQuery">
<!-- this should be an enumeration -->
<xs:element name="Type" type="xs:string"/>
<xs:element name="Threshold" type="xs:unsignedInt" minOccurs="0"/>
<xs:element name="PeerAdv” type="jxta:PA" minOccurs="0"/>
<xs:element name="Attr" type="xs:string" minOccurs="0"/>
<xs:element name=vValue" type="xs:string" minOccurs="0"/>
</xs:complexType>

Listing 6.1 PDP query message XML format.

PDP Response Message Format
The XML in Listing 6.2 shows the format of a PDP response message. The ele-
ments in the response message are the following:

Type—The advertisement type returned in the <response> element.

Count—The total number of <response> elements in the response mes-
sage.

PeerAdv—The peer advertisement of the responding peer.

m Expiration—An attribute of the <response> element that indicates
the total number of milliseconds until expiration of the returned ad-
vertisement.

Attr—The element used in the search for the enclosed advertisements.

Java Binding of the PDP 99

Value—The search string this response message relates.

Response—The <count> element noted previously indicates the total num-
ber of response advertisements that will appear under this element.

m Expiration—An attribute of the <response> element that indi-
cates the total number of milliseconds until the expiration of the
returned advertisement.

<xs:element name="DiscoveryResponse" type="jxta:DiscoveryResponse"/>

<xs:complexType name="DiscoveryResponse">

<!-

<Xs:

<XS:

<Xs

- this should be an enumeration -->

element name="Type" type="xs:string"/>

element name="Count" type="xXs:unsignedInt" minOccurs="0"/>
:element name="PeerAdv" type="xs:anyType" minOccurs="0">
<xs:attribute name="Expiration" type="xs:unsignedLong"/>

</xs:element>

<Xs

<Xs:

<XS:

:element name="Attr" type="xs:string" minOccurs="0"/>

element name="Value" type="xs:string" minOccurs="0"/>

element name="Response" type="xs:anyType" maxOccurs="unbounded">
<xs:attribute name=vExpiration" type="xs:unsignedLong"/>

</xs:element>

</xs:complexType>

Listing 6.2 PDP response message XML format.

Java Binding of the PDP

In the remainder of this chapter, we will look at the code necessary to perform
discovery operations as defined in the Java binding of the JXTA specification.
The classes necessary to implement discovery within a peer group, and ulti-
mately a peer, are as follows:

net.jxta.discovery.DiscoveryService
net.jxta.discovery.DiscoveryListener
net.jxta.impl.discovery.DiscoveryServiceImpl

net.jxta.impl.discovery.DiscoveryServicelnterface

Discovery Service

The heart of the discovery implementation is the discovery service. The service
has a twofold purpose: publishing of new advertisements and querying
for advertisements. To support these purposes, the following methods are
available:

Chapter 6 Peer Discovery Protocol

m public Enumeration getLocalAdvertisements(int type, String attribute,
String value);

m public int getRemoteAdvertisements(String peerid, int type, String
attribute, String value, int threshold);

m public void getRemoteAdvertisements(String peerid, int type, String
attribute, String value, int threshold, DiscoveryListener listener);

m public void publish(Advertisement advertisement, int type);

m public void publish(Advertisement adv, int type, long lifetime, long
lifetimeForOthers);

m public void remotePublish(Advertisement adv, int type);

m public void remotePublish(Advertisement adv, int type, long lifetime);

A discovery service is a core service provided with the NetPeerGroup or any
other group created using the NetPeerGroup as a default implementation. To
obtain a discovery service object, simply use the getDiscoveryService()
method belonging to the PeerGroup object obtained when the peer first joined
a group. For example:

PeerGroup netPeerGroup; //holds a peergroup object associated
with the NetPeerGroup

DiscoveryService myDiscoveryService =
netPeerGroup.getDiscoveryService () ;

All of the initialization work required by the discovery service will be handled
internally with the object. The discovery service interacts with the other proto-
cols to both push and publish new advertisements in the current peer group. If
a peer needs to publish or query advertisements in another peer group, it will
have to obtain a PeerGroup object and instantiate a DiscoveryService object
specific to that group.

Publishing Advertisements

Before advertisements can be queried, some advertisements must exist in the
peer group. All peers will have advertisements cached relating to themselves as
well as their peer group, but an application will also want to publish advertise-
ments about resources available in the group. As we mentioned earlier, four
methods are available for publishing advertisements:

public void publish (Advertisement advertisement, int type);

public void publish(Advertisement adv, int type, long
lifetime, long lifetimeForOthers) ;

public void remotePublish(Advertisement adv, int type);

public void remotePublish(Advertisement adv, int type, long
lifetime) ;

Java Binding of the PDP 101

The methods can be grouped in terms of local publishing and remote publish-
ing. All published advertisements have a default lifetime and a default expira-
tion expressed in milliseconds. The current Java binding sets these values as
the following:

public final static long DEFAULT _LIFETIME = 1000 * 60 * 60 *
24 * 365;
public final static long DEFAULT_EXPIRATION = 1000 * 60 * 60 * 2;

The overloaded publishing methods allow the lifetime and expiration to be
specified. In the case of the publish() method with a parameter called lifetime-
ForOthers, all peers who discover this advertisement will hold onto the adver-
tisement for the number of milliseconds specified in lifetimeForOthers. This is
because the peer that originally published the advertisement will republish the
advertisement using the same time frame.

Local Publishing

An advertisement that is published locally will be placed in the cache of the
executing peer and use a multicast transport, if available, to disseminate the
advertisement to other peers. If the TCP transport is available, all peers on the
local network will receive a copy of the published advertisement. The two
methods available for a local publish are the following:

public void publish(Advertisement advertisement, int type);
public void publish(Advertisement adv, int type, long
lifetime, long lifetimeForOthers) ;

In the first case, the advertisement will be published using the default lifetime
and expiration values. In the second method, the lifetime and expiration
(lifetimeForOthers) can be specified using milliseconds. Consider the code in
Listing 6.3, which builds a ModuleClassAdvertisement object and publishes it
locally.

ModuleClassAdvertisement myServicelModuleAdvertisement =
(ModuleClassAdvertisement)
AdvertisementFactory.newAdvertisement
(ModuleClassAdvertisement.getAdvertisementType ()) ;

myServicelModuleAdvertisement.setName ("JXTAMOD: JXTA-CH15EX2") ;

myServicelModuleAdvertisement.setDescription(“Service 1 of
Chapter 15 example 2");

myServicelID = IDFactory.newModuleClassID() ;

myServicelModuleAdvertisement.setModuleClassID (myServicelID) ;

try {

Listing 6.3 A local publishing example. (continues)

102 Chapter 6 Peer Discovery Protocol

myDiscoveryService.publish (myServicelModuleAdvertisement,
DiscoveryService.ADV) ;
} catch (Exception e) {
System.out.println("Error during publish of Module
Advertisement") ;
System.exit (-1) ;

Listing 6.3 A local publishing example. (continued)

The Java binding requires that the publish() method be enclosed in a try
block—it will throw an exception if there is any problem with the publishing.

Remote Publishing

An advertisement that is published remotely will be placed in the local cache,
as well as broadcast to the current peer group using all available transports.
This means that the advertisement will be delivered to all remote rendezvous
peers using HTTP or TCP (depending on which protocol is available). Obvi-
ously, advertisements that are remotely published get the widest audience. Two
methods are available for publishing remote advertisements:

public void remotePublish(Advertisement adv, int type);
public void remotePublish(Advertisement adv, int type, long
lifetime);

To use the methods, just place them within a try block. For example:

try {
myDiscoveryService.publish (myServicelModuleAdvertisement,
DiscoveryService.ADV) ;
myDiscoveryService.remotePublish (myServicelModuleAdvertisement,
DiscoveryService.ADV) ;

} catch (Exception e) {
System.out.println(“Error during publish of Module
Advertisement”) ;
System.exit (-1) ;

}

The discovery service will create an Advertisement object from the information
provided as parameters to the methods. The Advertisement will be sent to all
known peers, as well as any currently configured rendezvous peers. In the
examples preceding, it should be noted that we don’t have to call publish() and
then remotePublish() if the peer application does not need to publish

Java Binding of the PDP 103

advertisement to all remote peers. Remember that publish() uses only multi-
cast protocols that will not allow publishing over HTTP.

Discovering Advertisements

The other primary functionality provided in the DiscoveryService object is
querying for advertisements that meet a particular criterion. Three methods are
available for finding advertisements in a peer group:

public Enumeration getLocalAdvertisements(int type,
String attribute, String wvalue);

public int getRemoteAdvertisements(String peerid, int type,
String attribute, String value, int threshold);

public void getRemoteAdvertisements(String peerid, int type,
String attribute, String value, int threshold,
DiscoverylListener listener);

The getLocalAdvertisements() method is responsible for pulling advertise-
ments from the local cache of the current peer only. All of the advertisements
found in the cache matching the type, attr, and value specified in the method
will be returned in an Enumeration object.

Both of the getRemoteAdvertisements() methods will send a propagated query
message to all possible peers to find matching advertisements up to the speci-
fied threshold. When a remote peer finds a match, the advertisement will be
returned to the requesting peer. The returned advertisement will be placed in
the local cache, where a call to getLocalAdvertisements() will find it. Option-
ally, a listener object can be attached to the getRemoteAdvertisements()
method, which will be called when any remote advertisement is returned that
relates to the query.

Checking Advertisements

The advertisements are pulled from the local cache and placed into an Enu-
meration object. The Enumeration object consists of numerous XML elements,
which in turn make up the advertisements. A loop is typically used to move
through the Enumeration object. For example, the following code will loop
through the Enumeration, looking for the start of a pipe advertisement and then
determining its name:

TextElement singleElement = null;
TextElement childElements = null;

while (elements.hasMoreElements()) {
singleElement = (TextElement) elements.nextElement () ;
if (singleElement.getName () .equals ("jxta:PipeAdvertisement")) {

childElements = (TextElement)singleElement.getChildren() ;

104 Chapter 6 Peer Discovery Protocol

while (childElements.hasMoreElements()) {
tempElement = (TextElement) childElements.nextElement () ;
if (tempElement.getName () .equals (“Name”)) {

//do something
// check value with tempElement.getValue/()

}

The code begins by checking to make sure there are elements in the current
Enumeration. If elements are available, the name of the current element is
checked; if the name is jxta:PipeAdvertisement, then a valid PipeAdvertise-
ment is the current element. Because the code is XML, it must obtain the child
elements of the current element in order to process them. Within the code, a
loop is used to look at each of the child elements of the pipe advertisement
and determine if the <Name> element is found, the value associated with the
element is compared against the text passed to the method. The code will
loop through all of the elements of each PipeAdvertisement element found in
the Enumeration.

A Local Query

The code necessary to query the current cache for an advertisement is shown
in Listing 6.4. The code starts by defining a local Enumeration object to
hold any of the advertisements found in the cache. Next, a try block is cre-
ated, and a call is made to the method getLocalAdvertisements(), using the
appropriate parameters. The discovery service will use the information to
pull appropriate advertisements from the local cache. No query message is
sent on the network or to other peers—all advertisements are pulled from the
cache only.

Enumeration localEnum;
try {
localEnum = myDiscoveryService.getLocalAdvertisements (DiscoveryService.ADV,

-name”, -*group*”);
if (localEnum != null) {
while (localEnum.hasMoreElements()) {

Element elem = localEnum.nextElement () ;
}
}
} catch (Exception e) {}

Listing 6.4 Local cache advertisement query code.

Java Binding of the PDP 105

A Remote Query

A remote query is performed using the getRemoteAdvertisements() methods.
The code in Listing 6.5 shows an example of requesting a remote discovery. The
code is very basic—the only thing required is a call to the method using the
appropriate parameters. The discovery service will create a query message
using the parameter information and cause the message to be propagated
within the JXTA network if the appropriate network protocols are available. All
of the peers that receive the query message have the option of responding with
advertisements matching the desired criteria. The advertisements are returned
to the original peer and placed in the local cache. At this point, the peer would
make a call to getLocalAdvertisements() using the same search criteria to find
any returned advertisements.

try {
myDiscoveryService.getRemoteAdvertisements (null,
DiscoveryService.ADV, --name", --Group*", null);
} catch(Exception e) {}

Listing 6.5 Remote query discovery code.

Using an Asynchronous Listener

At the same time the getRemoteAdvertisements() functionality is placing a new
response advertisement in the local cache, it also has the capability to call a
method asynchronously when a new response appears. The functionality to do
this callback is a listener, which works the same way as a button listener on a
Java GUI screen. Your application can use the listener functionality in one of
two ways. First, it can specify on the class line that it implements Discov-
eryListener—the interface used to implement the remote query callback mech-
anism. The class declaration would look similar to this:

public class Client implements DiscoveryListener {
// code to implement listener goes here

}

The DiscoveryListener interface requires a single method be available based on
the following prototype:

public void discoveryEvent (DiscoveryEvent e);

If the application states that it implements the interface, one of the methods must
be discoveryEvent(). We will discuss the contents of this method in a moment.

The second way to implement DiscoveryListener is to use an inner anonymous
class. The inner anonymous class is used to build a self-contained object, which

106 Chapter 6 Peer Discovery Protocol

will handle all of the incoming advertisements from a given query. Listing 6.6
shows an example.

The primary part of the code in Listing 6.6 is the creation of a new DiscoveryLis-
tener object. After the instantiation of the object, the discoveryEvent() method is
created, along with the code necessary to handle a response message.

DiscoverylListener myDiscoveryListener = new
DiscoveryListener () {
public void discoveryEvent (DiscoveryEvent e) {
Enumeration enum;
String str;

DiscoveryResponseMsg myMessage = e.getResponse () ;
enum = myMessage.getResponses|() ;
str = (String)enum.nextElement () ;

try {
ModuleSpecAdvertisement myModSpecAdv =
(ModuleSpecAdvertisement) AdvertisementFactory.newAdvertisement (new
MimeMediaType ("text",
"xml"), new ByteArrayInputStream(str.getBytes()));
PipeAdvertisment myPipeAdvertisement =
myModSpecAdv.getPipeAdvertisement () ;

} catch(Exception ee) {
ee.printStackTrace () ;
System.exit (-1) ;

}
b3

Listing 6.6 DiscoveryListener inner anonymous class.

DiscoveryEvent Method

The DiscoveryEvent() method will be called each time a new discovery response
is received. The parameter passed to the method is a DiscoveryEvent object,
which contains a DiscoveryResponseMsg object. The Msg object is pulled from
the DiscoveryEvent using the getResponse() method. An enumeration of the
responses from the remote query is obtained by calling the getResponse()
method of the DiscoveryResponseMsg object. Now, the advertisements returned
can be parsed and processed as desired.

Java Binding of the PDP 107

Assigning the Listener

After a listener object is created, it should be attached to the DiscoveryService
object. There are basically two ways to perform the attachment. The first is by
using an overloaded version of getRemoteAdvertisements():

myDiscoveryService.getRemoteAdvertisements (null,
DiscoveryService.ADV, searchKey, searchvalue, 1,
myDiscoveryListener) ;

In this overloaded method, the DiscoveryListener object is passed to the dis-
covery service as the last parameter and attached to the service. The second
way to attach the listener is to use the addDiscoveryListener() method of the
DiscoveryService object. The method is as follows:

public void addDiscoveryListener (DiscoveryListener
listener);

If the listener is no longer needed, but the DiscoveryService object isn’t
destroyed, a listener can be removed with the following statement:

public boolean removeDiscoveryListener (DiscoveryListener
listener);

Flushing Advertisements

One of the ancillary functions available through a DiscoveryService object is the
capability to flush the cache of all current advertisements. Although a user can
flush the advertisement quite easily by removing the /cm subdirectory found in
the directory where the peer is executed, programmatically a peer can use the
flushAdvertisements() method. The prototype for the method is as follows:

public void flushAdvertisements(String id, int type);

The id parameter is a valid document, peer, or peer group ID value. The type
parameter is PEER, GROUP, or ADV. For the most part, the local cache will han-
dle advertisements that have expired; however, if the expiration threshold of an
advertisement hasn’t been reached, but the peer that originally published the
advertisement cannot be reached, the developer may want to flush the adver-
tisement. For example:

flushAdvertisement (aPipeAdvertisement.getID() .toString(),
DiscoveryService.ADV) ;

This code will flush the advertisement associated with the object aPipeAdver-
tisement. It could be that all attempts were made to use the advertisement, but
that all failed, so it will be flushed. Notice the use of the toString() method. The
first parameter to the flushAdvertisement () method is a string, so the ID of the
advertisement must be converted.

108 Chapter 6 Peer Discovery Protocol

As you might expect though, there can be many reasons an advertisement
appears to be “bad.” The peer associated with the advertisement could be
rebooting, or a network segment may be down. The peer itself could be down
for several days, or perhaps permanently. Great care should be taken when
flushing advertisements; however, all is not lost when one is flushed. The code
just needs to perform a discovery to find new advertisements.

Summary

The Peer Discovery Protocol is essential to a JXTA application, which relies on
resources being dynamically published to the group and discovered by other
peers. As a core mechanism, the PDP provides the most basic and brute-force
implementation for finding advertisements across any number of peers in a
peer group. Peers and peer groups have the flexibility to use the basic mecha-
nism, provide their own service, or extend the current one. Many of the services
of the DiscoveryService class will be used in the next part of the book, in which
we build JXTA applications. In the next chapter, the Peer Resolver Protocol will
show how peers are able to find and communicate with each other without the
use of a centralized server.

Peer Resolver Protocol

en a peer needs to instantiate a query to other peers in the network,

‘ ;s ; massive confusion would result if the peer just sent its own message

to the other peers using whatever network protocol it had available.

The JXTA specification defines a protocol called the Peer Resolver Protocol

(PRP) with the purpose of laying out a framework for generic query and

response communication between peers. The specification does not define any

type of peer searching or discover service, but expects that such a service

would be built using the framework. The service would be made available
within a peer group.

The Java binding of the specification builds a resolver service using the PRP
specification. The resolver service is directly associated with a peer group as a
default or core service. The discovery service discussed in Chapter 6 is one of
the beneficiaries of this service. The discovery service relies on the resolver
service to handle the exchange of the query and response messages necessary
for publishing and discovery.

An Overview of the PRP

The PRP is a set of generic query and response messages designed to facilitate
a common messaging system among peers in the JXTA network. To reduce the
amount of processing a service has to do, the messages are assigned and deliv-
ered to a specific handler on the peer. The handler is a name assigned to a def-
inition that specifies the format of a message, as well as the response that can

Chapter 7 Peer Resolver Protocol

occur when a message of that type is received. For instance, a handler might
use the rendezvous service to propagate a message to multiple peers or to send
the message to a specific peer.

As you might expect, the discovery service will have a handler assigned to it
that is designed to handle the discovery query and response messages. When
the discovery service needs to send a query message, it passes the message to
the PRP. The PRP will wrap the discovery query message in its own message,
and send the new message to other peers. The PRP on the remote peers will
receive the wrapper message and then forward the underlying message to the
appropriate handler.

Handler Naming

The PRP uses the handler name to transfer messages arriving at, or leaving
from, the peer to a specific endpoint service. (We cover the endpoint service,
which handles low-level communication, in Chapter 9.) A listener is used to
connect an endpoint service to a handler name. All of the details are currently
handled by the Java binding’s implementation of a resolver service. The current
specification states that all PRP bindings must use a common format for nam-
ing. The format is a string concatenation of the service name, the ID of the
peer’s group, and a unique value. The ABNF for the handler name is shown in
Listing 7.1.

<JXTARSLVRRSQRY> ::= <JXTARSLVRNAM> <JXTAIDVAL> <JXTARSLVRQRYTAG>
<JXTARSLVRRSRSP> = <JXTARSLVRNAM> <JXTAIDVAL> <JXTARSLVRRSPTAG>
<JXTARSLVRQRYTAG> ::= "ORes"

<JXTARSLVRRSPTAG> ::= "IRes”

<JXTARSLVRNAM> ::= "jxta.service.resolver"

<JXTAIDVAL> = JXTA ID

Listing 7.1 Listener naming syntax ABNF.

Only two listeners are currently defined for the PRP.

For queries:

jxta.service.resolver[group unique Id string]ORes

For responses:

jxta.service.resolver[group unique Id string]IRes

An Overview of the PRP 111

Although the service will be unique on a specific peer, all peers within a group
will use the same service. Obviously, we can create a group that doesn’t use the
default resolver service implementation. In this situation, the query and
response messages should still be the same because they are defined by the
specification. However, we could create other handlers with unique messages
and handler names.

Resolver Query Messages

As we discussed in Chapter 6, when a discovery service has to send a query to
peers within a group, it will put the query into its own message format. The mes-
sage will be given to the resolver service for delivery to other peers, and the
resolver service will wrap the discovery message into its own message. Listing
7.2 shows the XML used for the resolver query message; the elements of the
message are the following:

Credential—The credential object of the query peer.
SrcPeerID—The ID of the query peer.

HandlerName—A string that the receiving resolver service will use to
determine how the enclosed query will be processed.

QueryID—A JXTA ID of the query; it must be used in response messages to
identify the query.

Query—A string, in our case the discovery message, which represents the
query.

<xs:element name="ResolverQuery" type="jxta:ResolverQuery"/>

<xs:complexType name="ResolverQuery">

<xs:element name="Credential" type="xs:anyType" minOccurs="0"/>
<xs:element name="SrcPeerID" type="xs:anyURI"/>

<!-- This could be extended with a pattern restriction -->
<xs:element name="HandlerName" type="xs:string"/>

<xXs:element name="QueryID” type="xs:string" minOccurs="0"/>
<xs:element name="Query" type="xs:anyType"/>

</xs:complexType>

Listing 7.2 Resolver query message format.

Listing 7.3 shows an example of a query executed from the myJXTA applica-
tion; the query is searching for content containing the string jpg. The XML mes-
sage begins with the ResolverQuery element. This is the root element for the
message, and it indicates that the message was created by the resolver service.
The elements after the root are those required by the resolver query message
format, including the handler name, credential, query ID, ID of the peer that

112 Chapter 7 Peer Resolver Protocol

issued the query, and the query itself. The <query> element is used to hold the
discovery query message and its elements. The message starts on line 14 and
runs through line 24.

Line 1: <?xml version="1.0"?>
<!DOCTYPE jxta:ResolverQuery>
<jxta:ResolverQuery xmlns:jxta="http://jxta.org">
<HandlerName>
urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABEO000000305
</HandlerName>
<Credential>JXTACRED</Credential>
<QueryID>0</QueryID>
<SrcPeerID>
Line 10: urn:jxta:uuid-59616261646162614A787
4615032503304BD268FA4764960AB93A53D7F15044503
</SrcPeerID>
<Query>
<?xml version="1.0"?>
<!DOCTYPE jxta:DiscoveryQuery>
<jxta:DiscoveryQuery xmlns:jxta="http://jxta.org">
<Type>2/Type>
<Threshold>25</Threshold>
<PeerAdv>
<?xml version="1.0"?>
<!DOCTYPE jxta:PA>
Lne 20: ...just too big to show ...
</jxta:PA>
</PeerAdv>
<Attr>Name</Attr>
<Value>*jpg*</Value>
</jxta:DiscoveryQuery>
</Query>
</jxta:ResolverQuery>

Listing 7.3 Sample of a resolver query.

Resolver Response Messages

When a query is executed, the remote peers are more than likely (although
not required) to reply to the query with a result. The remote peers will put
the response into a discovery service response message, and the discovery
service will pass the message to the resolver service to deliver to the request-
ing peer. The resolver service will then wrap the message into its own mes-
sage format, which is shown in Listing 7.4. The elements in the response
message are as follows:

An Overview of the PRP 113

Credential—The credential object of the query peer.

HandlerName—A string that the receiving resolver service will use to
determine how the enclosed query will be processed.

QueryID—A JXTA ID of the query; it must be used in response messages to
identify the query.

Response—A string-based response to the query. In the case of the discov-
ery service, the response will be its specified message.

<xs:element name="ResolverResponse" type="ResolverResponse"/>

<xs:complexType name="ResolverResponse">
<xs:element name="Credential" type="xs:anyType" minOccurs="0"/>
<xs:element name="HandlerName" type="xs:string"/>
<xs:element name="QueryID" type="xXs:string" minOccurs="0"/>
<xs:element name="Response" type="xs:anyType"/>
</xs:complexType>

Listing 7.4 Resolver service response message.

Listing 7.5 shows an example of a response message from a remote peer. You
can see the wrapping of various core service messages in the message. On line
3, an element named ResolverResponse indicates that this XML document is a
message created by the resolver service. This root element is followed by the
elements specific to the resolver service response message, such as the handler
name, the credential, the query ID, and the response.

Within the Response element resides the discovery response message (remem-
ber that the resolver service is just handling the messages between handlers).
Line 14 is the start of this message. Notice that the message is a complete and
valid XML document because it begins with the processing instruction <?xml
version=“1.0"?>. Lines 14 through 41 represent the entire discovery response
message.

Embedded in the message are the required fields: Count (the number of
responses), Type (the discovery type used—PEER, PEERGROUP, ADV (2)),
PeerAdv (most of the peer advertisement is removed because it is very large),
and the Response element. The responses for the discovery query begin on line
27. The responses are advertisements, and subsequently include their appropri-
ate elements. Notice the expiration on the advertisement being returned. This
particular advertisement is a pipe advertisement that includes the pipe type and
the ID that a peer can use to connect with the response peer.

114 Chapter 7 Peer Resolver Protocol

Line 1l:<?xml version="1.0"?>
<!DOCTYPE jxta:ResolverResponse>
<jxta:ResolverResponse xmlns:jxta="http://jxta.org">
<HandlerName>
urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABEO000000305
</HandlerName>
<Credential>
JXTACRED
</Credential>
Line 10: <QueryID>
0
</QueryID>
<Response>
<?xml version="1.0"?>
<!DOCTYPE jxta:DiscoveryResponse>
<jxta:DiscoveryResponse xmlns:jxta="http://jxta.org">
<Count>1</Count>
<Type>2</Type>
<PeerAdv>
Line 20: <?xml version="1.0"?>
<!DOCTYPE jxta:PA>
<jxta:PA xmlns:jxta="http://jxta.org">
too big to show.
</jxta:PA>
</PeerAdv>
<Response Expiration="7200000">
<?xml version="1.0"?>
<!DOCTYPE jxta:PipeAdvertisement>
<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">
Line 30: <Id>
urn:jxta:uuid-59616261646162
614E50472050325033D1D1D1D1D1D1D1D1D1D1D1D1ID1ID1D1D104
</Id>
<Type>
JxtaPropagate
</Type>
<Name>
JxtaInputPipe
</Name>
Line 40: </jxta:PipeAdvertisement>
</Response>
</jxta:DiscoveryResponse>
</Response>
</jxta:ResolverResponse>

Listing 7.5 A sample response message. (continued)

115

No Guarantees

We all know the adage that the only guarantees in life are death and taxes; JXTA
messages aren’t going to challenge that. As we've seen, the PRP is designed to
wrap query messages from high-level components and deliver them to the JXTA
network. As responses are available, the PRP provides them to the calling compo-
nents. Unfortunately, there are no guarantees that a query message sent from the
discovery service and resolved through the PDP will arrive at a destination; fur-
thermore, there are no guarantees that a response will be generated from the

query.

Java Binding of the PRP

The Java binding for the PRP is defined in the following files:

m net.jxta.protocol.ResolverQueryMsg.java

m net.jxta.protocol.ResolverResponseMsg.java
m net.jxta.protocol.GenericResolver.java

m net.jxta.protocol.QueryHandler.java

m net.jxta.protocol.ResolverService.java

m net.jxta.protocol.ResolverInterface.java

You can find the actual implementation of the definition in the corresponding
files in the net.jxta.impl.resolver package; the Java Reference implementation
includes the PRP as a peer group service called the resolver service. For all of
the basic and fundamental query/response operations found in the JXTA speci-
fications, all you need is the default resolver service in the NetPeerGroup peer
group. As an application developer, you do not have to become involved with
the details of using the service. However, if you develop a new service and want
to take advantage of the resolver’s query/response mechanism, the remaining
sections of this chapter will show you some of the basic code.

GenericResolver is a base interface that defines the methods for sending and
receiving query and response messages. The ResolverService interface, which
is derived from GenericResolver, implements methods for registering and
unregistering handlers based on the QueryHandler interface. QueryHandler
will receive objects of types ResolverQueryMsg and ResolverResponseMsg
when the resolver service has to invoke a specific handler.

116 Chapter 7 Peer Resolver Protocol

Building a Handler

The process of implementing code that handles developer-defined
query/ response messages begins with the development of a handler. The
QueryHandler interface contains two methods (note that we don’t show the
exceptions):

m ResolverResponseMsg ProcessQuery(ResolverQueryMsg)

m void ProcessResponse(ResolverResponseMsg)

The processQuery() method will be called with an object of type Resolver-
QueryMsg. The code within the method is responsible for creating a Resolver-
ResponseMsg to send to the calling peer, and should have a response based on
the query message received. The processResponse() method will receive a
ResolverResponseMsg, and will perform actions based on the response.

The processQuery() method has a number of exceptions that will be thrown in
specific cases. These exceptions are as follows:

DiscardException—This exception is thrown when there is no response
to the query and the query should not be propagated to other peers for an
answer.

NoResponseException—This exception is thrown when the handler has
no response to the query.

ResendQueryException—This exception is thrown when the current peer
has no response to the query, but wants to know the answer. The query
message will be re-sent to other peers to obtain an answer.

IOException—This exception is thrown when the handler is unable to
respond to the query due to an error.

So, let’s say we want to build a peer that offers a service that automatically trans-
lates a phrase from one language to another. We could implement this service in
the application part of the peer, but it is such a routine request that the service
can be moved into core functionality. Just as in the case of the discovery service,
our new service will need query and response messages. The query message is
shown in Listing 7.6, and the response message is shown in Listing 7.7.

<?xml version="1.0"?>

<translate:TranslateQuery xmlns:translate="http://jxta.org">
<from> </from>
<to> </to>
<phrase> </phrase>

</translate:TranslateQuery>

Listing 7.6 Translation query message.

Java Binding of the PRP

<?xml version="1.0"?>

<translate:TranslateResponse xmlns:translate="http://jxta.org">
<from> </from>
<to> </to>
<phrase> </phrase>

117

</translate:TranslateResponse>

Listing 7.7 Translation response message.

Based on these two messages, we need to build a QueryHandler object that will
take the information provided in the query message, perform a translation, and
return the new phrase in a response message. Listing 7.8 shows the code nec-
essary to build a QueryHandler for our translation messages. As we discussed
earlier, only two methods are available in the QueryHandler interface: process-
Query() and processResponse().

The processQuery() method has four functions. First, the query message
received needs to be parsed and the individual message pieces extracted. This
parsing is accomplished using a loop and several conditional statements to pull
out the to, from, and phrase strings. Next, the phrase has to be translated from
the “from” language into the “to” language. Then, an XML document is created
with the new phrase. Finally, a response object is created that wraps the new
XML document. During the translation, the code should throw any of the excep-
tions listed earlier as appropriate. For instance, there could be languages that
aren’t recognized, and as such, the handler should not produce a response.

The processResponse() method is simple in that the only functionality is the
parsing of the response message. The to, from, and phrase parts of the response
are obtained and dealt with appropriately.

class TranslationHandler implements QueryHandler

{

public ResolverResponseMsg processQuery (ResolverQueryMsg queryMsg)
throws IOException, NoResponseException,
DiscardQueryException, ResendQueryException

ResolverResponse responseMsg;
String to = null;

String from = null;

String phrase = null;

String newPhrase = null;

Listing 7.8 Translation QueryHandler. (continues)

118 Chapter 7 Peer Resolver Protocol

//parse the query Message

StructuredTextDocument doc = (StructuredTextDocument)
StructuredDocumentFactory.newStructuredDocument (
new MimeMediaType (“text/xml”), queryMsg.getQuery ());

Enumeration elements = doc.getChildren() ;
while (elements.hasMoreElements()) {
TextElement ele