Eill McCarty and Luke Cazsady-Doron

dava
lllstrlhutﬂd [Ih]ﬂnts

THE AUTHORITATIVE SOLUTIO

L s T 0 s
':'-JII'_:-_I.I': P i
I iy T, | s Rt s, i R

Ak DDA e oo

i T ol - peTE BT
Cieiis d Ml B
T T o T]

LE e = TL - T

Fermmord by
1k eyl W ig iy B [P
Rlrum e wgl CAED

Wil 1 Dyl o0 Loy Fe

I

Ch10/blackbox.bin

Ch10/BlackBox.html

Ch10/BlackBox.java

 Ch10/BlackBox.java

Ch10/BlackBox.java/*
This applet requires read/write access to the local file system.
You can grant this by adding the following lines to the java.policy file:

 grant codeBase "file:" {
 permission java.security.AllPermission;
 };

*/
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.security.*;
import javax.crypto.*;
import java.io.*;

public class BlackBox extends Applet
{
 static final String ALGORITHM = "DES";
 static final String TRANSFORMATION = ALGORITHM + "/ECB/PKCS5Padding";
 static boolean isCallable = true;

 TextField theTextField = new TextField();
 Button theSerialButton = new Button("Serialize");
 Button theDeSerialButton = new Button("De-Serialize");
 Panel thePanel = new Panel();

 SecretKey theKey;
 Cipher theCipher;

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 thePanel.setLayout(new GridLayout(2, 2));
 p1.setLayout(new GridLayout(1, 2));
 add(thePanel, BorderLayout.NORTH);
 add(p1, BorderLayout.SOUTH);
 thePanel.add(new Label("Original TextField:"));
 thePanel.add(new Label("Serialized TextField:"));
 thePanel.add(theTextField);
 p1.add(theSerialButton);
 p1.add(theDeSerialButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theTextField.setFont(f);
 theSerialButton.addActionListener(new Serializer());
 theDeSerialButton.addActionListener(new DeSerializer());

 try
 {
 theCipher = Cipher.getInstance(TRANSFORMATION);
 KeyGenerator generator = KeyGenerator.getInstance(ALGORITHM);
 theKey = generator.generateKey();
 }
 catch (Exception ex) { fatalError(ex); }
 }

 public void fatalError(Exception ex)
 {
 System.err.println("Fatal error:\n" + ex.toString());
 ex.printStackTrace();
 }

 class Serializer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theCipher.init(Cipher.ENCRYPT_MODE, theKey);
 SealedObject dark = new SealedObject(theTextField, theCipher);
 ObjectOutputStream out = new ObjectOutputStream(
 new FileOutputStream("BlackBox.bin"));
 out.writeObject(dark);
 out.close();
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class DeSerializer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 if (! isCallable) return;
 try
 {
 theCipher.init(Cipher.DECRYPT_MODE, theKey);
 ObjectInputStream in = new ObjectInputStream(
 new FileInputStream("BlackBox.bin"));
 SealedObject obj = (SealedObject) in.readObject();
 in.close();
 TextField t = (TextField) obj.getObject(theCipher);
 thePanel.add(t);
 invalidate();
 validate();
 isCallable = false;
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
}

Ch10/EngimaStream.bin

�rｊ�螴

Ch10/Enigma.html

Ch10/Enigma.java

 Ch10/Enigma.java

Ch10/Enigma.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.security.*;
import javax.crypto.*;

public class Enigma extends Applet
{
 static final String ALGORITHM = "DES";
 static final String TRANSFORMATION = ALGORITHM + "/ECB/PKCS5Padding";

 TextArea theInputText = new TextArea(10, 64);
 TextArea theOutputText = new TextArea(10, 64);
 Button theEncodeButton = new Button("Encode");
 Button theDecodeButton = new Button("Decode");

 SecretKey theKey;
 Cipher theCipher;

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 p1.setLayout(new GridLayout(0, 1));
 p2.setLayout(new GridLayout(1, 0));
 add(p1, BorderLayout.CENTER);
 add(p2, BorderLayout.SOUTH);
 p1.add(new Label("Input:"));
 p1.add(theInputText);
 p1.add(new Label("Output:"));
 p1.add(theOutputText);
 p2.add(theEncodeButton);
 p2.add(theDecodeButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theInputText.setFont(f);
 theOutputText.setFont(f);
 theOutputText.setEditable(false);
 theEncodeButton.addActionListener(new Encoder());
 theDecodeButton.addActionListener(new Decoder());

 try
 {
 theCipher = Cipher.getInstance(TRANSFORMATION);
 KeyGenerator generator = KeyGenerator.getInstance(ALGORITHM);
 theKey = generator.generateKey();
 }
 catch (Exception ex) { fatalError(ex); }
 }

 public void fatalError(Exception ex)
 {
 System.err.println("Fatal error:\n" + ex.toString());
 theOutputText.setText("Fatal error:\n" + ex.toString());
 ex.printStackTrace();
 }

 class Encoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theCipher.init(Cipher.ENCRYPT_MODE, theKey);
 byte [] text = theInputText.getText().getBytes();
 byte [] codedtext = theCipher.doFinal(text);
 theOutputText.setText(Hex.byteArrayToHexString(codedtext));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Decoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theCipher.init(Cipher.DECRYPT_MODE, theKey);
 String chars = theInputText.getText();
 byte [] text = Hex.hexStringToByteArray(chars);
 byte [] codedtext = theCipher.doFinal(text);
 theOutputText.setText(new String(codedtext));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
}

Ch10/EnigmaStream.bin

Ch10/EnigmaStream.html

Ch10/EnigmaStream.java

 Ch10/EnigmaStream.java

Ch10/EnigmaStream.java/*
This applet requires read/write access to the local file system.
You can grant this by adding the following lines to the java.policy file:

 grant codeBase "file:" {
 permission java.security.AllPermission;
 };

*/
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.security.*;
import javax.crypto.*;
import java.io.*;

public class EnigmaStream extends Applet
{
 static final String ALGORITHM = "DES";
 static final String TRANSFORMATION = ALGORITHM + "/ECB/PKCS5Padding";

 TextArea theInputText = new TextArea(10, 64);
 TextArea theOutputText = new TextArea(10, 64);
 Button theEncodeButton = new Button("Encode");
 Button theDecodeButton = new Button("Decode");

 SecretKey theKey;
 Cipher theCipher;

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 p1.setLayout(new GridLayout(0, 1));
 p2.setLayout(new GridLayout(1, 0));
 add(p1, BorderLayout.CENTER);
 add(p2, BorderLayout.SOUTH);
 p1.add(new Label("Input:"));
 p1.add(theInputText);
 p1.add(new Label("Output:"));
 p1.add(theOutputText);
 p2.add(theEncodeButton);
 p2.add(theDecodeButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theInputText.setFont(f);
 theOutputText.setFont(f);
 theOutputText.setEditable(false);
 theEncodeButton.addActionListener(new Encoder());
 theDecodeButton.addActionListener(new Decoder());

 try
 {
 theCipher = Cipher.getInstance(TRANSFORMATION);
 KeyGenerator generator = KeyGenerator.getInstance(ALGORITHM);
 theKey = generator.generateKey();
 }
 catch (Exception ex) { fatalError(ex); }
 }

 public void fatalError(Exception ex)
 {
 System.err.println("Fatal error:\n" + ex.toString());
 theOutputText.setText("Fatal error:\n" + ex.toString());
 ex.printStackTrace();
 }

 class Encoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theCipher.init(Cipher.ENCRYPT_MODE, theKey);
 byte [] text = theInputText.getText().getBytes();
 CipherOutputStream out = new CipherOutputStream(
 new FileOutputStream("EnigmaStream.bin"),
 theCipher);
 out.write(text);
 out.close();
 theOutputText.setText("");
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Decoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theOutputText.setText("");
 theCipher.init(Cipher.DECRYPT_MODE, theKey);
 CipherInputStream in = new CipherInputStream(
 new FileInputStream("EnigmaStream.bin"),
 theCipher);
 int c;
 byte [] b = new byte [8];
 c = in.read(b);
 while (c != -1)
 {
 theOutputText.append(new String(b));
 c = in.read(b);
 }
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
}

Ch10/Hex.java

 Ch10/Hex.java

Ch10/Hex.javapublic class Hex
{
 public static String byteArrayToHexString(byte [] bytes)
 {
 String s = "";
 for (int i = 0; i < bytes.length; i++)
 {
 int b = bytes[i] + 128;
 if (b < 16)
 s += "0" + Integer.toHexString(b);
 else
 s += Integer.toHexString(b);
 }
 return s;
 }

 public static byte [] hexStringToByteArray(String chars)
 {
 byte [] bytes = new byte[chars.length() / 2];
 for (int i = 0; i < bytes.length; i++)
 {
 String s = chars.substring(i*2, i*2 + 2);
 int b = Integer.parseInt(s, 16) - 128;
 bytes[i] = (byte) b;
 }
 return bytes;
 }
}

Ch10/MessageDigester.html

Ch10/MessageDigester.java

 Ch10/MessageDigester.java

Ch10/MessageDigester.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.security.*;

public class MessageDigester extends Applet
{
 static final String ALGORITHM = "SHA-1";
 TextField theFileName = new TextField(64);
 TextField theDigest = new TextField(64);
 Button theChooseButton = new Button("Choose File");

 public void init()
 {
 setLayout(new GridLayout(0, 1));
 add(new Label("File Name:"));
 add(theFileName);
 add(new Label("Digest:"));
 add(theDigest);
 add(new Label(""));
 add(theChooseButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theFileName.setFont(f);
 theDigest.setFont(f);
 theFileName.setEditable(false);
 theDigest.setEditable(false);
 theChooseButton.addActionListener(new Chooser());
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 class Chooser implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 Container c = getParent();
 while (c != null)
 {
 if (c instanceof Frame) break;
 c = c.getParent();
 }
 if (c == null) return;
 FileDialog fd = new FileDialog((Frame) c,
 "Choose A File", FileDialog.LOAD);
 fd.show();
 String file = fd.getFile();
 if (file != null)
 {
 try
 {
 String dir = fd.getDirectory();
 theFileName.setText(dir + file);
 MessageDigest digester =
 MessageDigest.getInstance(ALGORITHM);
 FileInputStream in = new FileInputStream(
 dir + file);
 int b = in.read();
 while (b != -1)
 {
 digester.update((byte) b);
 b = in.read();
 }
 in.close();
 byte [] digest = digester.digest();
 theDigest.setText(
 Hex.byteArrayToHexString(digest));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
 }
}

Ch10/MessageSigner.html

Ch10/MessageSigner.java

 Ch10/MessageSigner.java

Ch10/MessageSigner.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.security.*;
import java.security.spec.*;

public class MessageSigner extends Applet
{
 static final String ALGORITHM = "DSA";
 static final int KEY_MODULUS = 1024;
 static final byte [] SEED =
 { (byte) 1, (byte) 2, (byte) 6, (byte) 6, (byte) 0 };

 TextField theFileName = new TextField(64);
 TextField thePublicKey = new TextField(64);
 TextField thePrivateKey = new TextField(64);
 TextField theSignature = new TextField(64);
 TextField theResult = new TextField(64);
 Button theGenerateButton = new Button("Generate Keys");
 Button theChooseButton = new Button("Choose File");
 Button theSignButton = new Button("Generate Signature");
 Button theVerifyButton = new Button("Verify Signature");

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 add(p1, BorderLayout.CENTER);
 add(p2, BorderLayout.SOUTH);
 p1.setLayout(new GridLayout(0, 1));
 p1.add(new Label("File Name:"));
 p1.add(theFileName);
 p1.add(new Label("Public Key:"));
 p1.add(thePublicKey);
 p1.add(new Label("Private Key:"));
 p1.add(thePrivateKey);
 p1.add(new Label("Signature:"));
 p1.add(theSignature);
 p1.add(new Label(""));
 p1.add(new Label("Result:"));
 p1.add(theResult);
 p2.setLayout(new GridLayout(1, 0));
 p2.add(theGenerateButton);
 p2.add(theChooseButton);
 p2.add(theSignButton);
 p2.add(theVerifyButton);

 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theFileName.setFont(f);
 thePublicKey.setFont(f);
 thePrivateKey.setFont(f);
 theSignature.setFont(f);
 theFileName.setEditable(false);
 thePublicKey.setEditable(false);
 thePrivateKey.setEditable(false);
 theSignature.setEditable(false);
 theResult.setEditable(false);
 theGenerateButton.addActionListener(new Generator());
 theChooseButton.addActionListener(new Chooser());
 theSignButton.addActionListener(new Signer());
 theVerifyButton.addActionListener(new Verifier());
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 class Generator implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 KeyPairGenerator generator =
 KeyPairGenerator.getInstance(ALGORITHM);
 generator.initialize(KEY_MODULUS,
 new SecureRandom(SEED));
 KeyPair keypair = generator.generateKeyPair();
 PublicKey pubkey = keypair.getPublic();
 PrivateKey privkey = keypair.getPrivate();
 byte [] bytes = pubkey.getEncoded();
 thePublicKey.setText(Hex.byteArrayToHexString(bytes));
 System.out.println("Public Key Format:" +
 pubkey.getFormat() + " Length=" +
 thePublicKey.getText().length());
 bytes = privkey.getEncoded();
 thePrivateKey.setText(Hex.byteArrayToHexString(bytes));
 System.out.println("Private Key Format:" +
 privkey.getFormat() + " Length=" +
 thePrivateKey.getText().length());
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Chooser implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 Container c = getParent();
 while (c != null)
 {
 if (c instanceof Frame) break;
 c = c.getParent();
 }
 if (c == null) return;
 FileDialog fd = new FileDialog((Frame) c,
 "Choose A File", FileDialog.LOAD);
 fd.show();
 String file = fd.getFile();
 if (file != null)
 {
 String dir = fd.getDirectory();
 theFileName.setText(dir + file);
 }
 }
 }

 class Signer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 String file = theFileName.getText();
 String hex = thePrivateKey.getText();
 byte [] bytes = Hex.hexStringToByteArray(hex);
 KeyFactory factory = KeyFactory.getInstance(ALGORITHM);
 KeySpec keyspec = new PKCS8EncodedKeySpec(bytes);
 PrivateKey pkey = factory.generatePrivate(keyspec);
 Signature dsa = Signature.getInstance(ALGORITHM);
 dsa.initSign(pkey);
 FileInputStream in =
 new FileInputStream(file);
 int b = in.read();
 while (b != -1)
 {
 dsa.update((byte) b);
 b = in.read();
 }
 in.close();
 byte [] signature = dsa.sign();
 theSignature.setText(
 Hex.byteArrayToHexString(signature));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Verifier implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 String hex = thePublicKey.getText();
 byte [] bytes = Hex.hexStringToByteArray(hex);
 KeyFactory factory = KeyFactory.getInstance(ALGORITHM);
 KeySpec keyspec = new X509EncodedKeySpec(bytes);
 PublicKey pkey = factory.generatePublic(keyspec);
 Signature dsa = Signature.getInstance(ALGORITHM);
 dsa.initVerify(pkey);

 String file = theFileName.getText();
 FileInputStream in =
 new FileInputStream(file);
 int b = in.read();
 while (b != -1)
 {
 dsa.update((byte) b);
 b = in.read();
 }
 in.close();
 hex = theSignature.getText();
 bytes = Hex.hexStringToByteArray(hex);
 if(dsa.verify(bytes))
 theResult.setText("Verified okay.");
 else
 theResult.setText("Verification failed.");
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
}

Ch10/Password.html

Ch10/Password.java

 Ch10/Password.java

Ch10/Password.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import javax.crypto.*;
import javax.crypto.spec.*;

public class Password extends Applet
{
 static final String TRANSFORMATION = "PBEWithMD5AndDES";

 TextField thePassword = new TextField();
 TextArea theTextArea = new TextArea(10, 64);
 Button theEncodeButton = new Button("Encode");
 Button theDecodeButton = new Button("Decode");

 SecretKey theKey;
 Cipher theCipher;
 String theSalt = "saltsalt"; // must have length of 8 characters
 int theIterations = 17;
 byte [] theCipherText;

 PBEParameterSpec parmspec = new PBEParameterSpec(theSalt.getBytes(),
 theIterations);

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 p1.setLayout(new GridLayout(0, 1));
 p2.setLayout(new GridLayout(1, 0));
 add(p1, BorderLayout.NORTH);
 add(theTextArea, BorderLayout.CENTER);
 add(p2, BorderLayout.SOUTH);
 p1.add(new Label("Password:"));
 p1.add(thePassword);
 p1.add(new Label("Text:"));
 p2.add(theEncodeButton);
 p2.add(theDecodeButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 thePassword.setFont(f);
 theTextArea.setFont(f);
 theEncodeButton.addActionListener(new Encoder());
 theDecodeButton.addActionListener(new Decoder());

 try
 {
 theCipher = Cipher.getInstance(TRANSFORMATION);
 }
 catch (Exception ex) { fatalError(ex); }
 }

 class Encoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 PBEKeySpec keyspec = new PBEKeySpec(
 thePassword.getText());
 SecretKeyFactory factory =
 SecretKeyFactory.getInstance(
 TRANSFORMATION);
 theKey = factory.generateSecret(keyspec);
 theCipher.init(Cipher.ENCRYPT_MODE, theKey,
 parmspec);
 byte [] text = theTextArea.getText().getBytes();
 theCipherText = theCipher.doFinal(text);
 theTextArea.setText("<Cipher text stored.>");
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Decoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 if (theCipherText == null) return;
 PBEKeySpec keyspec = new PBEKeySpec(
 thePassword.getText());
 SecretKeyFactory factory =
 SecretKeyFactory.getInstance(
 TRANSFORMATION);
 theKey = factory.generateSecret(keyspec);
 theCipher.init(Cipher.DECRYPT_MODE, theKey, parmspec);
 theCipherText = theCipher.doFinal(theCipherText);
 theTextArea.setText(new String(theCipherText));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 public void fatalError(Exception ex)
 {
 System.err.println("Fatal error:\n" + ex.toString());
 theTextArea.setText("Fatal error:\n" + ex.toString());
 }
}

Ch07/AppletPage.html

Ch07/JavaApplet.java

 Ch07/JavaApplet.java

Ch07/JavaApplet.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class JavaApplet extends Applet
{
 // Fields
 private Button theButton = new Button("Click on me.");
 private TextField theText = new TextField(25);

 // Method
 public void init()
 {
 add(theButton);
 add(theText);
 theButton.addActionListener(new ButtonHandler());
 }

 // Inner class
 class ButtonHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 theText.setText("Hello, user!");
 }
 }
}

Ch08/Deadlock.html

Ch08/Deadlock.java

 Ch08/Deadlock.java

Ch08/Deadlock.javaimport java.applet.*;
import java.awt.*;

public class Deadlock extends Applet
{
 String thePasta = "Pasta";
 String theFork = "Fork";
 Counter theCounter1 = new Counter("Philosopher #1",
 thePasta, theFork);
 Counter theCounter2 = new Counter("Philosopher #2",
 theFork, thePasta);

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theCounter1);
 add(theCounter2);
 Thread t1 = new Thread(theCounter1);
 Thread t2 = new Thread(theCounter2);
 t1.start();
 t2.start();
 }

 class Counter extends TextField implements Runnable
 {
 int theState = 0;
 String theName;
 String theResource1, theResource2;

 public Counter(String name, String res1, String res2)
 {
 theName = name;
 theResource1 = res1;
 theResource2 = res2;
 setFont(new Font("SansSerif", Font.BOLD, 32));
 setEditable(false);
 }

 public void sleep()
 {
 try
 {
 Thread.sleep(2000);
 }
 catch (Exception ex) { ; }
 }

 public void run()
 {
 while (true)
 {
 Loop1:
 while (true)
 {
 synchronized (theResource1)
 {
 System.out.println(theName +
 " acquired " +
 theResource1);
 sleep();
 while (true)
 {
 synchronized (theResource2)
 {
 System.out.println(theName +
 " acquired " +
 theResource2);
 theState += 1;
 break Loop1;
 }
 }
 }
 }
 setText("" + theState);
 sleep();
 }
 }
 }
}

Ch08/NoDeadlock.html

Ch08/NoDeadlock.java

 Ch08/NoDeadlock.java

Ch08/NoDeadlock.javaimport java.applet.*;
import java.awt.*;

public class NoDeadlock extends Applet
{
 String thePasta = "Pasta";
 String theFork = "Fork";
 Counter theCounter1 = new Counter("Philosopher #1",
 thePasta, theFork);
 Counter theCounter2 = new Counter("Philosopher #2",
 thePasta, theFork);

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theCounter1);
 add(theCounter2);
 Thread t1 = new Thread(theCounter1);
 Thread t2 = new Thread(theCounter2);
 t1.start();
 t2.start();
 }

 class Counter extends TextField implements Runnable
 {
 int theState = 0;
 String theName;
 String theResource1, theResource2;

 public Counter(String name, String res1, String res2)
 {
 theName = name;
 theResource1 = res1;
 theResource2 = res2;
 setFont(new Font("SansSerif", Font.BOLD, 32));
 setEditable(false);
 }

 public void sleep()
 {
 try
 {
 Thread.sleep(2000);
 }
 catch (Exception ex) { ; }
 }

 public void run()
 {
 while (true)
 {
 Loop1:
 while (true)
 {
 synchronized (theResource1)
 {
 System.out.println(theName +
 " acquired " +
 theResource1);
 sleep();
 while (true)
 {
 synchronized (theResource2)
 {
 System.out.println(theName +
 " acquired " +
 theResource2);
 theState += 1;
 break Loop1;
 }
 }
 }
 }
 setText("" + theState);
 sleep();
 }
 }
 }
}

Ch08/Safe.html

Ch08/Safe.java

 Ch08/Safe.java

Ch08/Safe.javaimport java.applet.*;
import java.awt.*;

public class Safe extends Applet
{
 EvenCounter theCounter = new EvenCounter();

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theCounter);
 Thread t1 = new Thread(theCounter);
 Thread t2 = new Thread(theCounter);
 t1.start();
 t2.start();
 }

 class EvenCounter extends TextField implements Runnable
 {
 int theState = 0;

 public EvenCounter()
 {
 setText("Even");
 setFont(new Font("SansSerif", Font.BOLD, 32));
 setEditable(false);
 }

 public void run()
 {
 while (true)
 {
 update();
 }
 }

 private synchronized void update()
 {
 theState += 1;
 try
 {
 Thread.sleep(500);
 }
 catch (Exception ex) { ; }
 theState += 1;
 if (theState%2 == 1) setText("Odd");
 }
 }
}

Ch08/ThreadChars.html

Ch08/ThreadChars.java

 Ch08/ThreadChars.java

Ch08/ThreadChars.javaimport java.applet.*;
import java.awt.*;

public class ThreadChars extends Applet
{
 TextArea theOutput = new TextArea();
 DummyThread theThread = new DummyThread();

 public void init()
 {
 setLayout(new BorderLayout());
 add(theOutput);
 theOutput.setFont(new Font("Monospaced", Font.BOLD, 12));
 theOutput.setEditable(false);
 theThread.start();
 theOutput.append("\nActive Count: " + theThread.activeCount());
 theOutput.append("\n");
 theOutput.append("\nName : " + theThread.getName());
 theOutput.append("\nPriority : " + theThread.getPriority());
 theOutput.append("\nAlive : " + theThread.isAlive());
 theOutput.append("\nDaemon : " + theThread.isDaemon());
 ThreadGroup t = theThread.getThreadGroup();
 while (t != null)
 {
 theOutput.append("\n");
 theOutput.append("\nName : " + t.getName());
 theOutput.append("\nGroup Count : " + t.activeGroupCount());
 theOutput.append("\nMax Priority: " + t.getMaxPriority());
 t = t.getParent();
 }
 }

 class DummyThread extends Thread
 {
 public void run()
 {
 while (true)
 {
 try
 {
 Thread.sleep(500);
 }
 catch (Exception ex) { ; }
 }
 }
 }
}

Ch08/ThreadCreation.html

Ch08/ThreadCreation.java

 Ch08/ThreadCreation.java

Ch08/ThreadCreation.javaimport java.applet.*;
import java.awt.*;

public class ThreadCreation extends Applet
{
 Digit theUpCounter = new Digit(+1);
 Digit theDownCounter = new Digit(-1);

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theUpCounter);
 add(theDownCounter);
 Thread t1 = new Thread(theUpCounter);
 Thread t2 = new Thread(theDownCounter);
 t1.start();
 t2.start();
 }

 class Digit extends TextField implements Runnable
 {
 int theStep;
 int theState = 0;

 public Digit(int step)
 {
 theStep = step;
 setFont(new Font("SansSerif", Font.BOLD, 96));
 setEditable(false);
 }

 public void run()
 {
 while (true)
 {
 theState += theStep;
 if (theState < 0) theState = 9;
 if (theState > 9) theState = 0;
 setText("" + theState);
 try
 {
 Thread.sleep(500);
 }
 catch (Exception ex) { ; }
 }
 }
 }
}

Ch08/ThreadStopper.html

Ch08/ThreadStopper.java

 Ch08/ThreadStopper.java

Ch08/ThreadStopper.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class ThreadStopper extends Applet
{
 TextArea theOutput = new TextArea();
 DummyThread theThread = new DummyThread(theOutput);
 Button theStop = new Button("Stop");
 Button theSuspend = new Button("Suspend");
 Button theResume = new Button("Resume");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theOutput, BorderLayout.CENTER);
 Panel p = new Panel();
 p.setLayout(new GridLayout(1, 0));
 add(p, BorderLayout.SOUTH);
 p.add(theStop);
 p.add(theSuspend);
 p.add(theResume);
 theOutput.setFont(new Font("Monospaced", Font.BOLD, 12));
 theOutput.setEditable(false);
 theStop.addActionListener (new Stopper());
 theSuspend.addActionListener(new Suspender());
 theResume.addActionListener (new Resumer());
 theThread.start();
 }

 class Stopper implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 theThread.stopThread();
 }
 }

 class Suspender implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 theThread.suspend();
 }
 }

 class Resumer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 theThread.resume();
 }
 }

 class DummyThread extends Thread
 {
 TextArea theOutput;
 boolean isStopPending = false;

 public DummyThread(TextArea out)
 {
 theOutput = out;
 }

 public void stopThread()
 {
 isStopPending = true;
 }

 public void run()
 {
 while (! isStopPending)
 {
 theOutput.append("\nRunning...");
 try
 {
 Thread.sleep(1000);
 }
 catch (Exception ex) { ; }
 }
 theOutput.append("\nStopped.");
 }
 }
}

Ch08/Unsafe.html

Ch08/Unsafe.java

 Ch08/Unsafe.java

Ch08/Unsafe.javaimport java.applet.*;
import java.awt.*;

public class Unsafe extends Applet
{
 EvenCounter theCounter = new EvenCounter();

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theCounter);
 Thread t1 = new Thread(theCounter);
 Thread t2 = new Thread(theCounter);
 t1.start();
 t2.start();
 }

 class EvenCounter extends TextField implements Runnable
 {
 int theState = 0;

 public EvenCounter()
 {
 setText("Even");
 setFont(new Font("SansSerif", Font.BOLD, 32));
 setEditable(false);
 }

 public void run()
 {
 while (true)
 {
 theState += 1;
 try
 {
 Thread.sleep(500);
 }
 catch (Exception ex) { ; }
 theState += 1;
 if (theState%2 == 1) setText("Odd");
 }
 }
 }
}

Ch09/ChangeVetoer.html

Ch09/ChangeVetoer.java

 Ch09/ChangeVetoer.java

Ch09/ChangeVetoer.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.beans.*;

public class ChangeVetoer extends Applet
{
 TextSelector theText = new TextSelector();
 ScrollSelector theScroll = new ScrollSelector();
 ColorCanvas theCanvas = new ColorCanvas();

 public void init()
 {
 setLayout(new GridLayout(0, 1));
 Panel p = new Panel();
 p.add(new Label("Color: "));
 p.add(theText);
 add(p);
 add(theScroll);
 add(theCanvas);
 theText.addVetoableChangeListener(theScroll);
 theText.addPropertyChangeListener(theCanvas);
 theScroll.addPropertyChangeListener(theText);
 theScroll.addPropertyChangeListener(theCanvas);
 }

 class TextSelector extends TextField
 implements ActionListener, PropertyChangeListener
 {
 PropertyChangeSupport theSupport
 = new PropertyChangeSupport(this);
 VetoableChangeSupport theVetoableSupport
 = new VetoableChangeSupport(this);
 Integer theOldColor = null;

 public TextSelector()
 {
 super(3);
 addActionListener(this);
 }

 public int getColor()
 {
 try
 {
 return Integer.parseInt(getText());
 }
 catch (NumberFormatException ex)
 {
 return 0;
 }
 }

 public void setColor(int color)
 {
 Integer newcolor = new Integer(color);
 try
 {
 theVetoableSupport.fireVetoableChange("Color", theOldColor, newcolor);
 theSupport.firePropertyChange("Color", theOldColor, newcolor);
 setText("" + color);
 theOldColor = newcolor;
 }
 catch (PropertyVetoException ex)
 {
 if(theOldColor != null)
 setColor(theOldColor.intValue());
 }
 }

 public void actionPerformed(ActionEvent evt)
 {
 setColor(getColor());
 }

 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 setText("" + ((Integer) value).intValue());
 }
 }

 public void addPropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.addPropertyChangeListener(q);
 }

 public void removePropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.removePropertyChangeListener(q);
 }

 public void addVetoableChangeListener(VetoableChangeListener q)
 {
 theVetoableSupport.addVetoableChangeListener(q);
 }

 public void removeVetoableChangeListener(VetoableChangeListener q)
 {
 theVetoableSupport.removeVetoableChangeListener(q);
 }
 }

 class ScrollSelector extends Scrollbar
 implements AdjustmentListener, VetoableChangeListener
 {
 PropertyChangeSupport theSupport = new PropertyChangeSupport(this);
 Integer theOldColor = null;

 public ScrollSelector()
 {
 super(Scrollbar.HORIZONTAL);
 setMinimum(0);
 setMaximum(260);
 setValue(255);
 setVisibleAmount(5);
 addAdjustmentListener(this);
 }

 public int getColor()
 {
 return getValue();
 }

 public void setColor(int color)
 {
 setValue(color);
 Integer newcolor = new Integer(color);
 theSupport.firePropertyChange("Color", theOldColor, newcolor);
 theOldColor = newcolor;
 }

 public void adjustmentValueChanged(AdjustmentEvent evt)
 {
 setColor(getColor());
 }

 public void vetoableChange(PropertyChangeEvent evt)
 throws PropertyVetoException
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 int n = ((Integer) value).intValue();
 if (n < 0 || n > 255)
 throw new PropertyVetoException("Color out of range", evt);
 setValue(((Integer) value).intValue());
 }
 }

 public void addPropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.addPropertyChangeListener(q);
 }

 public void removePropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.removePropertyChangeListener(q);
 }
 }

 class ColorCanvas extends Canvas implements PropertyChangeListener
 {
 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 int red = ((Integer) value).intValue();
 setBackground(new Color(red, 0, 0));
 }
 }
 }
}

Ch09/ColorSelector.html

Ch09/ColorSelector.java

 Ch09/ColorSelector.java

Ch09/ColorSelector.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.beans.*;

public class ColorSelector extends Applet
{
 TextSelector theText = new TextSelector();
 ScrollSelector theScroll = new ScrollSelector();
 ColorCanvas theCanvas = new ColorCanvas();

 public void init()
 {
 setLayout(new GridLayout(0, 1));
 Panel p = new Panel();
 p.add(new Label("Color: "));
 p.add(theText);
 add(p);
 add(theScroll);
 add(theCanvas);
 theText.addPropertyChangeListener(theScroll);
 theText.addPropertyChangeListener(theCanvas);
 theScroll.addPropertyChangeListener(theText);
 theScroll.addPropertyChangeListener(theCanvas);
 }

 class TextSelector extends TextField
 implements ActionListener, PropertyChangeListener
 {
 PropertyChangeSupport theSupport = new PropertyChangeSupport(this);
 Integer theOldColor = null;

 public TextSelector()
 {
 super(3);
 addActionListener(this);
 }

 public int getColor()
 {
 return Integer.parseInt(getText());
 }

 public void setColor(int color)
 {
 setText("" + color);
 Integer newcolor = new Integer(color);
 theSupport.firePropertyChange("Color", theOldColor, newcolor);
 theOldColor = newcolor;
 }

 public void actionPerformed(ActionEvent evt)
 {
 setColor(getColor());
 }

 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 setText("" + ((Integer) value).intValue());
 }
 }

 public void addPropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.addPropertyChangeListener(q);
 }

 public void removePropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.removePropertyChangeListener(q);
 }
 }

 class ScrollSelector extends Scrollbar
 implements AdjustmentListener, PropertyChangeListener
 {
 PropertyChangeSupport theSupport = new PropertyChangeSupport(this);
 Integer theOldColor = null;

 public ScrollSelector()
 {
 super(Scrollbar.HORIZONTAL);
 setMinimum(0);
 setMaximum(260);
 setValue(255);
 setVisibleAmount(5);
 addAdjustmentListener(this);
 }

 public int getColor()
 {
 return getValue();
 }

 public void setColor(int color)
 {
 setValue(color);
 Integer newcolor = new Integer(color);
 theSupport.firePropertyChange("Color", theOldColor, newcolor);
 theOldColor = newcolor;
 }

 public void adjustmentValueChanged(AdjustmentEvent evt)
 {
 setColor(getColor());
 }

 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 setValue(((Integer) value).intValue());
 }
 }

 public void addPropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.addPropertyChangeListener(q);
 }

 public void removePropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.removePropertyChangeListener(q);
 }
 }

 class ColorCanvas extends Canvas implements PropertyChangeListener
 {
 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 int red = ((Integer) value).intValue();
 setBackground(new Color(red, 0, 0));
 }
 }
 }
}

Ch09/MyJar.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Name: RetrieveJar$RetrieveHandler.class

Digest-Algorithms: SHA MD5

SHA-Digest: ZLfxwCrVirqIfuWPROu4jZEtUYA=

MD5-Digest: j3FaX67CIWjOJn5UveiRVw==

Name: RetrieveJar.class

Digest-Algorithms: SHA MD5

SHA-Digest: QsVB6b3LWrJrOPbzCyaX9O3btnQ=

MD5-Digest: jx2cDQjVTLF6W4R/T2wkDQ==

Name: RetrieveObject$RetrieveHandler.class

Digest-Algorithms: SHA MD5

SHA-Digest: 8cwyZAO2VVtHxjo4GqMaP07X1QI=

MD5-Digest: RK1DVWt+0Ug6Yj1KQqp8yw==

Name: RetrieveObject.class

Digest-Algorithms: SHA MD5

SHA-Digest: RkBFK5TO4OiNVs4rwMdtTzBNC7A=

MD5-Digest: l+QHdCJNJEruOOxNOtyJxQ==

Name: StoreObject$StoreHandler.class

Digest-Algorithms: SHA MD5

SHA-Digest: NEa+3SMa7OtDImvDdJwYsdeOXUI=

MD5-Digest: 5p9/8WqnlzZcUrH/xW1DLA==

Name: StoreObject.class

Digest-Algorithms: SHA MD5

SHA-Digest: j0pcCL+Gv3rRjzbm31dfvMs0UsQ=

MD5-Digest: 4wZiAFlg5z/mwEDLXvscUA==

Name: temp

Digest-Algorithms: SHA MD5

SHA-Digest: +lXCY6I8Oum4tyYdV5uBHB/dZXI=

MD5-Digest: 3NT4p+i53yOZEw2mHtvb5w==

RetrieveJar$RetrieveHandler.class

synchronized class RetrieveJar$RetrieveHandler implements java.awt.event.ActionListener {
 public void actionPerformed(java.awt.event.ActionEvent);
 void RetrieveJar$RetrieveHandler(RetrieveJar);
}

RetrieveJar.class

public synchronized class RetrieveJar extends java.applet.Applet {
 java.awt.Button theRetrieveButton;
 public void init();
 public void RetrieveJar();
}

RetrieveObject$RetrieveHandler.class

synchronized class RetrieveObject$RetrieveHandler implements java.awt.event.ActionListener {
 public void actionPerformed(java.awt.event.ActionEvent);
 void RetrieveObject$RetrieveHandler(RetrieveObject);
}

RetrieveObject.class

public synchronized class RetrieveObject extends java.applet.Applet {
 java.awt.Button theRetrieveButton;
 public void init();
 public void RetrieveObject();
}

StoreObject$StoreHandler.class

synchronized class StoreObject$StoreHandler implements java.awt.event.ActionListener {
 public void actionPerformed(java.awt.event.ActionEvent);
 void StoreObject$StoreHandler(StoreObject);
}

StoreObject.class

public synchronized class StoreObject extends java.applet.Applet {
 java.awt.TextField theMessage;
 java.awt.Button theStoreButton;
 public void init();
 public void StoreObject();
}

temp

Ch09/RetrieveJar.html

Ch09/RetrieveJar.java

 Ch09/RetrieveJar.java

Ch09/RetrieveJar.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class RetrieveJar extends Applet
{
 Button theRetrieveButton = new Button("Retrieve");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theRetrieveButton, BorderLayout.NORTH);
 theRetrieveButton.addActionListener(new RetrieveHandler());
 }

 class RetrieveHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 ObjectInputStream in = new ObjectInputStream(
 getClass().getResourceAsStream("temp"));
 Object c = in.readObject();
 in.close();
 if (c instanceof Component)
 {
 add((Component) c, BorderLayout.CENTER);
 invalidate();
 validate();
 System.out.println("Retrieved");
 }
 }
 // Possible IOException or ClassNotFoundException
 catch (Exception ex)
 {
 System.err.println(ex);
 }
 }
 }
}

Ch09/RetrieveObject.html

Ch09/RetrieveObject.java

 Ch09/RetrieveObject.java

Ch09/RetrieveObject.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class RetrieveObject extends Applet
{
 Button theRetrieveButton = new Button("Retrieve");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theRetrieveButton, BorderLayout.NORTH);
 theRetrieveButton.addActionListener(new RetrieveHandler());
 }

 class RetrieveHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 FileInputStream in = new FileInputStream("temp");
 ObjectInputStream sin = new ObjectInputStream(in);
 Object c = sin.readObject();
 sin.close();
 if (c instanceof Component)
 {
 add((Component) c, BorderLayout.CENTER);
 invalidate();
 validate();
 System.out.println("Retrieved");
 }
 }
 // Possible IOException or ClassNotFoundException
 catch (Exception ex)
 {
 System.err.println(ex);
 }
 }
 }
}

Ch09/StoreObject.html

Ch09/StoreObject.java

 Ch09/StoreObject.java

Ch09/StoreObject.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class StoreObject extends Applet
{
 TextField theMessage = new TextField();
 Button theStoreButton = new Button("Store");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theMessage, BorderLayout.CENTER);
 add(theStoreButton, BorderLayout.SOUTH);
 theStoreButton.addActionListener(new StoreHandler());
 }

 class StoreHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 FileOutputStream out = new FileOutputStream("temp");
 ObjectOutputStream sout = new ObjectOutputStream(out);
 sout.writeObject(theMessage);
 sout.close();
 System.out.println("Stored");
 }
 catch (IOException ex) { ; }
 }
 }
}

CH05/CallbackClient.java

 CH05/CallbackClient.java

CH05/CallbackClient.java// used for callback pattern

/**
 * The CallbackClient class will bind to a server object
 * request that a large prime number be calculated, and
 * then respond to the results when delieved by the server.
 */
public final class CallbackClient {

 public CallbackClient() {
 CallbackServer server = // bind to server
 server.findLargestPrimeNumberGreaterThan(100000, this);
 }

 /**
 * Invoked by the server when the target prime number is found.
 * Accepts a Long object and not a long base-type to allow
 * for the passing of a null value if an impossible
 * request was performed.
 */
 public void primeNumberFound(Long lValue) {
 if(lValue == null) System.out.println("number not found");
 else System.out.println("number found: "+lValue);
 }
}

CH05/CallbackServer.java

 CH05/CallbackServer.java

CH05/CallbackServer.java// used for callback pattern

/**
 * The CallbackServer class finds very
 * large prime numbers. Since the calculations
 * often take much time, clients are not required to
 * wait for a return value. Instead, the CallbackServer
 * class notified the client when the value has been
 * found. All requests are performed in a
 * unique thread to allow for maximum information
 * processing.
 */
public final class CallbackServer {

 public CallbackServer() {
 }

 public void findLargestPrimeNumberGreaterThan(long lBase, CallbackClient client) {
 CallbackProcessor processor = new CallbackProcessor(lBase, client);
 processor.start();
 // immediately return
 }

 /**
 * Inner class used to process requests in a
 * unique thread.
 */
 class CallbackProcessor extends Thread {
 private long _lBase;
 private CallbackClient _client;

 public CallbackProcessor(long lBase, CallbackClient client) {
 _lBase = lBase;
 _client = client;
 }

 public void run() {
 long lFoundValue = // spend a lot of time figuring out the needed prime numer
 _client.primeNumberFound(new Long(lFoundValue));
 }
 }
}

CH05/ClientObject.java

 CH05/ClientObject.java

CH05/ClientObject.java// this applies to the factory pattern
public final class ClientObject {

 public ClientObject() {
 // First bind to the remote factory object
 // object. Since the binding process is
 // specific to an actual implementation, it is
 // shown here as a comment.
 FactoryServer server = // bind to factory server

 // Request that the remote factory object instantiate
 // a ServerObject object for us.
 ServerObject serverObject = server.createServerObject("luke");
 }
}

CH05/FactoryServer.java

 CH05/FactoryServer.java

CH05/FactoryServer.java// this applies to the factory pattern
public final class FactoryServer extends Thread {

 public FactoryServer() {
 waitForConnection();
 }

 private void waitForConnection() {
 // Code to wait for an incoming connection. This code
 // specific to the distributed object technology
 // currently enabling communication.
 }

 public ServerObject createServerObject(String sName) {
 return new ServerObject(sName);
 }

 public static void main(String[] args) {
 FactoryServer server = new FactoryServer();
 }
}

CH05/PersonQuery.java

 CH05/PersonQuery.java

CH05/PersonQuery.javapublic final class PersonQuery {
 private String _sFirstName;
 private String _sMiddleName;
 private String _sLastName;

 // getter methods
 public String getFirstName() { return _sFirstName; }
 public String getMiddleName() { return _sMiddleName; }
 public String getLastName() { return _sLastName; }

 // setter methods
 public void setFirstName(String sFirstName) { _sFirstName = sFirstName; }
 public void setMiddleName(String sMiddleName) { _sMiddleName = sMiddleName; }
 public void setLastName(String sLastName) { _sLastName = sLastName; }

 // overload equals()
 public boolean equals(Object compare) {
 // make sure that a PersonQuery object was passed
 if(!(compare instanceof PersonQuery)) return false;

 PersonQuery personCompare = (PersonQuery)compare; // cast once to save time

 // check all fields
 if(! personCompare.getFirstName().equals(getFirstName())) return false;
 if(! personCompare.getMiddleName().equals(getMiddleName())) return false;
 if(! personCompare.getLastName().equals(getLastName())) return false;

 return true; // all good
 }
}

CH05/QuoteClient.java

 CH05/QuoteClient.java

CH05/QuoteClient.java// used for observer pattern

/**
 * The QuoteClient class registers interest with a server
 * for tracking the values of different stocks. Whenever
 * the server detects that a stock's value has changed, it
 * will notify the QuoteClient object by invoking the
 * quoteValueChanged() method.
 *
 */
import java.util.*;

public final class QuoteClient implements QuoteClientI {
 private Hashtable _hshPortfolio;

 public QuoteClient() {
 _hshPortfolio = new Hashtable();
 regWithServer();
 }

 /**
 * Registers with the server our interest in receiving
 * notification when certian stocks change value.
 */
 private final void regWithServer() {
 QuoteServer server = // bind to quote server
 server.regListener("INKT", this);
 server.regListener("MOBI", this);
 server.regListener("NGEN", this);
 server.regListener("ERICY", this);

 _hshPortfolio.put("INKT", new Double(0));
 _hshPortfolio.put("MOBI", new Double(0));
 _hshPortfolio.put("NGEN", new Double(0));
 _hshPortfolio.put("ERICY", new Double(0));
 }

 /**
 * Invoked whenever the value associated with an interested
 * symbol changes.
 */
 public void quoteValueChanged(String sSymbol, double dNewValue) {
 // display the changes
 System.out.println("\n");
 System.out.println(sSymbol+" changed value");
 System.out.println("old value: "+_hshPortfolio.get(sSymbol));
 System.out.println("new value: "+dNewValue);

 // store the new value
 _hshPortfolio.put(sSymbol, new Double(dNewValue));

 }

 public static void main(String[] args) {
 QuoteClient client = new QuoteClient();
 }
}

CH05/QuoteClientI.java

 CH05/QuoteClientI.java

CH05/QuoteClientI.java// used for observer pattern

/**
 * Interface to be implemented by all object interested
 * in receiving quote value changed events.
 */
public interface QuoteClientI {
 public void quoteValueChanged(String sSymbol, double dNewValue);
}

CH05/QuoteServer.java

 CH05/QuoteServer.java

CH05/QuoteServer.java// used for observer pattern

/**
 * The QuoteServer class monitors stock feeds, and
 * notfies interested parties when a change occurs
 * to the value of a registered symbol.
 */
import java.util.*;

public final class QuoteServer {
 // listeners are stored in a hashtable or vectors. the hashtable
 // uses as a key the registered symbol, and as a value a Vector
 // object containing all listners.
 private Hashtable _hshListeners;

 public QuoteServer() {
 _hshListeners = new Hashtable();

 }

 /**
 * Send changed values to all listeners. Since the manner
 * in which the QuoteServer object monitors the stock
 * feeds is beyond the scope of this pattern, it is
 * simply assumed that that method is invoked when needed.
 */
 private void sendChangeForSymbol(String sSymbol, double dNewValue) {
 // check if there are any listeners for this symbol
 Object o = _hshListeners.get(sSymbol);
 if(o != null) {
 Enumeration listeners = ((Vector)o).elements();
 while(listeners.hasMoreElements()) {
 ((QuoteClientI)listeners.nextElement()).quoteValueChanged(sSymbol, dNewValue);
 }
 }
 }

 /**
 * Invoked by clients to register interest with the server for
 * a specific symbol.
 */
 public void regListener(String sSymbol, QuoteClientI client) {
 // check if we already have a vector of listeners at this location
 Object o = _hshListeners.get(sSymbol);
 if(o != null) {
 ((Vector)o).addElement(client);
 }
 else { // create the vector
 Vector vecListeners = new Vector();
 vecListeners.addElement(client);
 _hshListeners.put(sSymbol, vecListeners);
 }
 }

}

CH05/ServerObject.java

 CH05/ServerObject.java

CH05/ServerObject.java// this applies to the factory pattern
public final class ServerObject {
 private final String _sName;

 public ServerObject(String sName) {
 _sName = sName;
 }

 public String getName() {
 return _sName;
 }
}

CH05/SharedInstance.java

 CH05/SharedInstance.java

CH05/SharedInstance.javaimport java.util.*;

public class SharedInstance {
 private Hashtable _hshResults;

 public SharedInstance() {
 _hshResults = new Hashtable();
 }

 public Person[] executeQuery(PersonQuery query) {
 // check if the query has already been performed
 if(_hshResults.containsKey(query)) (Person[])return _hshResults.get(query);

 // query has not been performed
 Person[] returnValue = // get from database
 // register the return value with the distributed object technology

 _hshResults.put(query, returnValue); // store the results

 return returnValue; // return the results
 }
}

CH05/SharedInstanceWithReferenceCounting.java

 CH05/SharedInstanceWithReferenceCounting.java

CH05/SharedInstanceWithReferenceCounting.javaimport java.util.*;

public class SharedInstanceWithReferenceCounting {
 private Hashtable _hshResults;

 public SharedInstanceWithReferenceCounting() {
 _hshResults = new Hashtable();
 }

 /**
 * Adds one to each object's reference count
 */
 private void addToReferenceCount(Person[] persons) {
 int iLength = persons.length;
 for(int i=0; i<iLength; i++) {
 persons[i].addToReferenceCount();
 }
 }

 /**
 * Adds one to each object's reference count
 */
 private void subtractfromReferenceCount(Person[] persons) {
 int iLength = persons.length;
 for(int i=0; i<iLength; i++) {
 if(persons[i].subtractfromReferenceCount()) destroyObject(persons[i]);
 }
 }

 /**
 * Does any needed clean-up and destroying of objects
 */
 private final void destroyObject(Person person) {
 // destroy
 }

 public Person[] executeQuery(PersonQuery query) {
 Person[] returnValue = null;

 // check if the query has already been performed
 if(_hshResults.containsKey(query)) returnValue = (Person[])_hshResults.get(query);
 else returnValue = // get from database

 // register the return value with the distributed object technology

 // add to the reference count
 addToReferenceCount(returnValue);

 _hshResults.put(query, returnValue); // store the results

 return returnValue; // return the results
 }

 /**
 * Invoked by the client to indicate that he is done with all objects
 */
 public void doneWithObjects(Person[] persons) {
 subtractfromReferenceCount(persons);
 }
}

class Person {
 private int _iRefCount = 0;

 public Person() {
 }

 /**
 * Adds one to the reference count
 */
 public void addToReferenceCount() {
 _iRefCount++;
 }

 /**
 * Subtracts one from the reference count.
 *
 * @return true If the refernce count is zero after subtraction
 * @return false If the reference count is non-zero after subtraction
 */
 public boolean subtractfromReferenceCount() {
 _iRefCount--;
 return (_iRefCount == 0);
 }

}

root
jdolist.zip

023 72315378 CH18 1.21.2000 2:09 PM Page 397 $

SERVLETS AND COMMON
GATEWAY INTERFACE (CGl)

IN THIS CHAPTER

e USING THE URLCONNECTION CLASS 399

e COMMON GATEWAY INTERFACE
(Cal) 404

e SERVLETS: SERVER-SIDE JAVA 408
e IMPLEMENTING A SERVLET 4170

e THE servletrunner UTILITY 472

e A PARAMETERIZED SERVLET 413

e A SERVLET THAT HANDLES POST
REQUESTS 415

e CLIENT REQUEST AND SERVLET
CONTEXT INFORMATION 417

e SERVLET CONSIDERATIONS 418

1

023 72315378 CH18 1.21.2000 2:09 PM Page 398 $

398

Non-CORBA Approaches to Distributed Computing

PART IV

Two of the greatest tennis stars of all time were Australians Rod Laver and Ken
Rosewall. During the 1970s, they played opposite one another in tournament after tour-
nament. You never knew who’d win Wimbledon, for instance, but most years you could
be sure it would be either Laver or Rosewall. Though they were fellow countrymen, the
two were otherwise quite unalike. Laver was tall with a devastatingly powerful first
serve. Rosewall, at only 5 feet and 6 inches, seemed barely tall enough to peer over the
net; yet he moved with such agility that no passing shot seemed beyond his reach.
Nevertheless, in tennis just as in basketball, height has its advantages: In comparison to
Laver’s serve, Rosewall’s was merely a “servlet.”

In this chapter, you’ll learn about servlets of a different variety: small Java programs that
run on a server, providing HTML documents to remote clients. Some, particularly
Microsoft, have impugned the potential of client-side Java (not that we agree with them,
mind you). However, even detractors acknowledge that server-side Java is a technology
to reckon with. In this chapter you learn:

¢ How to use the URLConnection class to obtain data from a Web server

The URLConnection class makes it a snap to download information from a server,
whether the server is an ordinary Web server, a CGI-based Web server, or a Java
servlet-based Web server.

e How to use HTML forms to transfer data to a server using the Common Gateway
Interface (CGI)

HTML pages called forms can contain user interface controls such as pushbuttons
and check boxes. You can define a button that triggers the transmission of the val-
ues of a page’s controls to a server, which can process the data and return a
response for display by the Web client. Because Web clients are ubiquitous, HTML
forms let a user access a server, no matter what hardware platform or operating
system the user runs.

* How to write a servlet that processes a Web client’s GET request

To access a Web page, a Web client sends a GET request via the HTTP protocol to
a Web server. You’ll learn how to use a servlet to receive and process a Web
client’s GET request.

* How to write a servlet that processes a Web client’s POST request

To send the contents of a Web form to a Web server, a Web client uses the POST
request. You’ll learn how to use a servlet to receive and process POST requests.

A TA v L2 SAEPEET BEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA N0 ~TT1IO T A

023 72315378 CH18 1.21.2000 2:09 PM Page 399 (&

Serviets and Common Gateway Interface (CGI)

CHAPTER 18

USING THE URLCONNECTION CLASS

Recall that the URL class, which you met in Chapter 13, “Sockets,” lets you download the
document identified by a URL. Its cousin class URLConnection provides access to many
attributes that describe the document and the server response that provided it. You don’t
use a constructor to obtain an instance of URLConnection; instead, you use the
openConnection method of the URL class. Once you have a URLConnection instance, you
can invoke any of the methods summarized in Table 18.1. The getHeaderField method
returns the value of a specified field of the server’s response header. Table 18.2 describes

the most commonly used fields.

TaBLE 18.1 KEY METHODS OF THE URLConnection CLASS

Method

Function

Object getContent()

String getContentEncoding()

int getContentLength()

String getContentType()

long getDate()

long getExpiration()

String getHeaderField(String name)

String getHeaderField(int n)

A TA T L2 SV B BV B . AN A

Returns an object that represents the contents of the
document associated with the URLConnection, if an
appropriate content handler is available.

Returns a string that describes the type of encoding
used by the document associated with the
URLConnection.

Returns the length (in bytes) of the document associ-
ated with the URLConnection.

Returns a string that describes the type of encoding
used by the document associated with the
URLConnection.

Returns a long that holds the creation date and time
of the server’s response.

Returns a long that holds the expiration date and
time of the server’s response.

Returns a string that holds the value of the speci-
fied field of the response header returned by the
server. (See Table 18.2 for the names of the response
header fields.)

Returns a string that holds the value of the speci-
fied field of the response header returned by the
server. Response header fields are numbered begin-
ning with 0.

continues

o . 11 AA NN ~rYT10 T A

399

Y
(o]

19D
ANV SLITAY3S

023 72315378 CH18 1.21.2000 2:09 PM Page 400 (&

400

Non-CORBA Approaches to Distributed Computing

TaBLE 18.1

PART IV

CONTINUED

Method

Function

long getIfModifiedSince()

Returns a long that holds the modification date and
time that force refetching of the document associated
with the URLConnection.

InputStream getInputStream() Returns an InputStream that contains the bytes of

long getLastModified()

the document associated with the URLConnection.

Returns a long that holds the date and time at which
the document associated with the URLConnection
was last modified.

TaBLE 18.2 KEY SERVER RESPONSE HEADER FIELDS

Field

Meaning

Allowed

Content-Encoding

Content-Language

Content-Length

Content-Transfer-Encoding

Content-Type

Cost
Date
Derived-From

Expires

Last-Modified
Message-1D
Public

Title

URI

Version

WWW-Authenticate

WWW-Link

The request methods (for example, GET, PUT, and POST) that the
user can issue for this URL

The type of encoding of the response message (for example, Xx-
zip-compressed)

The language of the response message
The length (in bytes) of the response message
The type of encoding used for MIME messages

The MIME type and subtype of the content of this message (for
example, text/plain)

The cost of retrieving the document
The creation time (GMT) of the document
The version of the document from which this document derives

The time (GMT) at which the document expires and should be
refetched

The time (GMT) at which the document was last modified
A unique identifier for this message

The request methods anyone can issue for this URL

The title of this document

The URI (Universal Resource Identifier; for practical purposes,
the term is synonymous with URL) or URL of the document

The version of the document
The authorization method used by the server

The HTML link reference of the document

A TA

mMAAT FAMO o . 11 AA N0 ~TT1IO T na

o

023 72315378 CH18 1.21.2000 2:09 PM Page 401 $

Serviets and Common Gateway Interface (CGI)

CHAPTER 18

Figure 18.1 shows the output of WebClient, a simple applet that uses the URL and
URLConnection classes to download a Web page and its description. The applet doesn’t
render the HTML contents of the document, it merely displays them. To operate the
applet, you merely type a URL in the text box and press Enter. Let’s see how the applet

works.
FlGURE 1 8, 1 E’iApplel Viewer: WebClient !En
The WebClient i
. L:
applet dtsplays the | htEp: / /W, apu. com/~mocartyh
attributes and n s
content of a Web Content Encoding: mall =
Length: 2562
document. Tyme: texr/heml

Date: Mon Aug 10 11:37:15 PDT 1998
Expiration: Wed Dec 31 16:00:00 PST 1969
Last Modified: Ued Sep 24 16:08:47 PDT 1997
Allowed: null

Content-Encoding: mull

Content-Language: null

Content-Length: 2562

Content-Transfer-Encoding: null =
Kl F

TURL Content:

[<HTHML> a
<HEAD>
<META NAME="GENERATOR"™ CONTENT="Adobe PageMill 2.0 Win">
<TITLE>Bill McCarty's Home Page</TITLE>
</HEAD>
<BODY BGCOLOR="§EEEEEE" LINK="#E££0000" ALINK="#EE£££00">

<P><TABLE BORDER="0" CELLSPACING="0" CELLPADDING="0" HEIGHT="3739">

<TR>

<TD WIDTH="247" HEIGHT="346"><Pr&nhsp;<ING SRC="Bammer0l.gif" WIDTH=
"3RS -
4 »

Applet started.

Listing 18.1 shows the source code of the WebClient applet, except for the inner class
URLHandler, which provides an actionPerformed method that handles ActionEvents
associated with the TextField used to input a URL. The main point of interest is the
array theHeaders, which contains the names of the response field headers the applet
retrieves. Otherwise, most of the code is user interface oriented.

Listing 18.1 WebClient.java—AN APPLET THAT DispLAYS WEB DOCUMENT CONTENTS
AND CHARACTERISTICS

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

import java.net.*;
import java.util.Date;

public class WebClient extends Applet
{

continues

A TA v L2 SV B BV B . AN A o . 11 AA NN ~rYT10 T A

401

Y
(o]

19D
ANV SLITAY3S

023 72315378 CH18 1.21.2000 2:09 PM Page 402 $

402

Non-CORBA Approaches to Distributed Computing

PART IV

LisTING 18.1 CONTINUED

TextField theURL = new TextField(32);
TextArea theData = new TextArea(6, 64);
TextArea theContent = new TextArea(10, 64);

String [] theHeaders

b

{
"Allowed",

"Content-Encoding",
"Content-Language",
"Content-Length",
"Content-Transfer-Encoding",
"Content-Type",
"Cost",

"Date",
"Derived-From",
"Expires",
"Last-Modified",
"Message-ID",
"Public",

"Title",

"URI",

"Version",
"WWW-Authenticate",
"WWW-Link",

public void init()

{

A TA v

Font f = new Font("Monospaced", Font.PLAIN,
setFont(f);
Panel p1 = new Panel();

Panel p2 = new Panel();
setLayout (new BorderLayout());
add(p1, BorderLayout.NORTH);
add(p2, BorderLayout.CENTER);

p1.setlLayout(new GridLayout(0Q, 1));
p1.add(new Label("URL:"));
p1.add(theURL);

p2.setLayout(new GridLayout(Q, 1));
Panel p3 = new Panel();
Panel p4 = new Panel();
p2.add(p3);
p2.add(p4);

p3.setLayout(new BorderLayout());

p3.add(new Label("URL Data:"),
BorderLayout.NORTH) ;

p3.add(theData, BorderLayout.CENTER);

12);

L2 SAEPEET BEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA N0

~TT1IO

023 72315378 CH18 1.21.2000 2:09 PM Page 403 $

Serviets and Common Gateway Interface (CGI)

A TA

CHAPTER 18

p4.setlLayout(new BorderLayout());

p4.add(new Label("URL Content:"),
BorderLayout.NORTH) ;

p4.add(theContent, BorderLayout.CENTER);

theURL.addActionListener(new URLHandler());
theData.setEditable(false);
theContent.setEditable(false);

}

public void println(String s)

{ theData.append(s + "\n");

}

public void fatalError(Exception ex)
¢ ex.printStackTrace();

}

// Inner class omitted

Listing 18.2 shows the URLHandler inner class of the WebClient class. The
actionPerformed method retrieves and displays the document contents and characteris-
tics. To do so, it constructs a URL using the text input by the user. It invokes the
openConnection method to obtain a URLConnection and calls several URLConnection
methods that provide document characteristics. It uses a simple for loop to obtain and
display the response header fields. It displays the document characteristics in the upper
TextArea, theData, by using the println method of its enclosing class.

LisTinG 18.2 WebClient.java—URLHandler INNER CLASS

class URLHandler implements ActionListener

{
public void actionPerformed(ActionEvent evt)
{
try
{

theData.setText("");

theContent.setText("");

URL url = new URL(theURL.getText());

URLConnection connect =
url.openConnection();

println("Content Encoding: " +
connect.getContentEncoding());

println("Length: " +

continues

v L2 SV B BV B . AN A o . 11 AA NN ~rYT10 T A

403

Y
(o]

19D
ANV SLITAY3S

023 72315378 CH18 1.21.2000 2:09 PM Page 404 $

404

Non-CORBA Approaches to Distributed Computing

A TA v e .

PART IV

LisTING 18.2

CONTINUED

}

connect.getContentLength());
println("Type: " +
connect.getContentType());
println("Date: " +
new Date(connect.getDate()));
println("Expiration: " +
new Date(connect.getExpiration()));
println("Last Modified: " +
new Date(connect.getLastModified()));
for (int i = 0; i < theHeaders.length; i++)
{
String header =
connect.getHeaderField(theHeaders[i]);
println(theHeaders[i] + ": " +
header);
}
BufferedReader in =
new BufferedReader(
new InputStreamReader(
url.openStream()));
String line;
while ((line = in.readLine()) != null)
{
theContent.append(line + "\n");

in.close();

catch (Exception ex) { fatalError(ex); }

To obtain the document contents, the actionPerformed method uses the
URL.openStream method. It wraps the returned InputStream reader within a
BufferedReader, which provides the convenient readLine method for reading the stream
one line at a time. The method simply appends each line of input to the lower TextArea,
theContent.

Generally, your programs will need to access only a few (if any) document characteris-
tics. Therefore, your programs using URLConnection and URL to access a document won’t
usually be this long. Notice that you can download the contents of a URL with less than a

dozen lines of code. URL is simple to use, but powerful.

COMMON GATEWAY INTERFACE (CGl)

The WebClient program from Listing 18.2 demonstrates one of the two fundamental
capabilities of a Web client: the ability to download information from a Web server by

L TR BPe S . mMAAT FAMO o . 11 AA N0

o

023 72315378 CH18 1.21.2000 2:09 PM Page 405 (&

Serviets and Common Gateway Interface (CGI)

CHAPTER 18

issuing an HTTP GET request. Modern Web clients also have the capability to upload data
to a Web server, using techniques referred to as the Common Gateway Interface (or
CGI). CGI defines two methods for uploading data: GET and POST. The POST method is
more powerful and secure than the GET method, which is not implemented by Java
servlets. Therefore, we’ll omit discussion of using the GET method to upload data.

To use the POST method, you define an HTML page that includes tags that specify user
interface controls. Your page can include pushbuttons, input boxes, radio buttons, and so
on. When the user clicks a designated submit button, the Web client uploads the values of
the controls to the Web server. The Web server processes the incoming data and generally
returns a response in the form of an HTML page that the Web client displays. Let’s dis-
cuss how to build such a form.

The source code of a typical HTML page includes several structural tags in the following
form:
<HTML>
<HEAD>
<TITLE>This is the title</TITLE>
</HEAD>
<BODY>
. the body of the page is defined here ...
</BODY>
</HTML>

To create an HTML form, you follow this same pattern. Within the body of the HTML
document, you define a form using a pair of tags like these:
<FORM METHOD=POST ACTION="url">

. the body of the form goes here ...
</FORM>

url specifies the protocol (HTTP), the host name, and possibly the port of the Web
server in the same fashion as a URL used to access a document. However, the path and
document part of url do not refer to a document to be fetched; instead, they refer to a
program the Web server runs (possibly a Java servlet) to process the form’s input. The
path and name don’t need to be the actual path and name of the file containing the
program. Most Web servers provide a table that translates between a “document” path
and name specified by the user and the actual path and name of the program that
should be run.

Within the body of the form, you use HTML tags to define the controls you want. You
can also include ordinary HTML text, images, and so on. Table 18.3 summarizes HTML
tags you can use to include various input elements within a form. Most of the tags sup-
port attributes that modify their appearance or function. The purpose in presenting this
information is to help you read HTML forms prepared by others. If you want to create
your own HTML forms, you might consult a book on basic HTML. An easier approach

A TA v L2 SV B BV B . AN A o . 11 AA NN ~rYT10 T A

o

405

Y
(o]

19D
ANV SLITAY3S

023 72315378 CH18 1.21.2000 2:09 PM Page 406 $

406

Non-CORBA Approaches to Distributed Computing

PART IV

is to use an HTML editor that lets you build forms using a point-and-click, WYSIWYG
interface, such as Adobe’s PageMill or Microsoft’s FrontPage.

TABLE 18.3 SUMMARY OF FORM INPUT ELEMENTS

Tag and Attribute Input Element

<INPUT TYPE=TEXT ..> Defines a text box.

<INPUT TYPE=CHECKBOX ..> Defines an on/off check box.

<INPUT TYPE=RADIOBUTTON ..> Defines a radio button. All controls that have the

same name are considered part of a single set of
radio buttons, only one of which can be in the “on”
state at any time.

<INPUT TYPE=SUBMIT ..> Defines a submit button.

<INPUT TYPE=RESET ..> Defines a reset button.

<INPUT TYPE=HIDDEN ..> Defines a hidden field, the value of which is trans-
mitted to the Web server. It cannot be manipulated
by the user.

<TEXTAREA COLS=cols ROWS=rows ..> Defines a multiline text box.

<SELECT SIZE=n ..> Defines a drop-down list box. Used with CHOICE.

<OPTION ..> Specifies an item within the drop-down list box cre-

ated by SELECT. Must be nested between the
<SELECT> and </SELECT> tags that define the list box.

Form input elements include a NAME attribute, which specifies a name for the control, and
a VALUE attribute, which specifies a default initial value of an input field or the text that
appears on a button. Every form must include a submit button that initiates the data
upload. You should usually also include a reset button that restores the values of all con-
trols to their initial values.

Listing 18.3 shows the simple HTML form you’ll use later in this chapter to run a Java
servlet that processes form input. Study the tags and attributes used in the form and try to
determine how it should operate. Figure 18.2 shows how the form looks.

Use a Web browser (not the appletviewer, which cannot display HTML text) to verify
your conclusions. Then, experiment by replacing the tags and attributes to see what sorts
of forms you can create. Use a WYSIWYG HTML editor such as PageMill or FrontPage
if you have one. Of course, your forms won’t operate until you build an appropriate Java
servlet, which you’ll learn how to do later in this chapter.

A TA v L2 SAEPEET BEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA N0 ~TT1IO T A

023 72315378 CH18 1.21.2000 2:09 PM Page 407 $

Serviets and Common Gateway Interface (CGI)

LisTiNG 18.3

TestPoster.java—A SiMPLE HTML ForRm

CHAPTER 18

<HTML>
<HEAD>

<TITLE>Poster Test Page</TITLE>

</HEAD>
<BODY>

<FORM ACTION="http://127.0.0.1:8080/servlet/poster" METHOD=POST>

<H1>Poster Test Page</H1>

<P>Name:

<INPUT TYPE=TEXT NAME=name>

<P>Type:

<P> <INPUT TYPE=RADIO NAME=type VALUE=Human> Human
<P> <INPUT TYPE=RADIO NAME=type VALUE=Clone> Clone
<P> <INPUT TYPE=RADIO NAME=type VALUE=Replicant> Replicant

<P>Status:

<P> <INPUT TYPE=CHECKBOX NAME=status VALUE=Off-world> Off-world

<P> <INPUT TYPE=SUBMIT>
<INPUT TYPE=RESET>

</FORM>
</BODY>
</HTML>
Fioure 18.2 A e e ey 1]
A simple input File Edit View Go ngngs ﬂa\p — Lqﬁ
o B
form’ such as the Back Forward Stop Refresh Home ‘ Search
Poster Test Page | Address [&) D400\ ChaptersiCh BAListings' TestPasterhtml] || Links
example, can =
uload daaoa | Poster Test Page
Web server.
Name: |Bill
Type:
& Human
¢ Clone
¢ Replicant
Status:
F Off-world
Submit Query | Reset | |
| | | | |§ My Computer 4

A TA v e Lo

~1 - . AN A o

11 AA NN

~rYT10

407

Y
(o]

19D
ANV SLITAY3S

023 72315378 CH18 1.21.2000 2:09 PM Page 408 $

408

Non-CORBA Approaches to Distributed Computing

PART IV

SERVLETS: SERVER-SIDE JAVA

Now that you’ve learned a bit about the client side of Web data exchange, let’s shift
focus to the server side. In this section you’ll learn how to write servlets. First you’ll
learn how to write a servlet that handles a GET request; later in this chapter, you’ll learn
how to write a servlet that handles a POST request. Along the way, you’ll learn how to
access initialization arguments, request context data, and examine the servlet context.

Most servlets are instances of the HttpServlet class, which extends the GenericServlet
class. These classes provide much of the functionality of a servlet: All you must do is
provide the application-dependent functions. Table 18.4 summarizes key
GenericServlet methods, and Table 18.5 summarizes key HttpServlet methods.

The most important servlet methods are the doGet and doPost methods. To create a
servlet, you provide overriding implementations of these methods. When your doGet or
doPost method gets control, it receives two arguments: one, an HttpServletRequest,
encapsulates the HTTP request, and the other, an HttpServletResponse, encapsulates
the server response. By invoking methods on these objects, your program can inspect the
request and construct and send an appropriate response.

TaBLE 18.4 SuMMARY OF KEY GenericServlet METHODS

Method Function

void destroy() The network service automatically calls this
method whenever it removes the servlet.

String getInitParameter(String name) Returns the value of the specified initialization
parameter from the servlet’s properties file.

Enumeration getInitParameterNames() Returns the names of the servlet’s initialization
parameters.

ServletContext getServletContext() Returns a ServletContext object describing the
servlet’s context.

String getServletInfo() Returns a description of the servlet.

void init(ServletConfig config) Initializes the servlet. Servlet classes that override

init should call super.init so that the servlet
can be properly initialized.

void log(String msg) Writes a message to the servlet log.

A TA v L2 SAEPEET BEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA N0 ~TT1IO T A

023 72315378 CH18 1.21.2000 2:09 PM Page 409 (&

Serviets and Common Gateway Interface (CGI)

CHAPTER 18

TaBLE 18.5 SumMARY OF KEY HttpServlet METHODS

Method

Function

void doGet (
HttpServletRequest request,
HttpServletResponse response)

void doPost(
HttpServletRequest request,
HttpServletResponse response)

Processes an HTTP GET request.

Processes an HTTP POST request.

The HttpServletRequest class extends the ServletRequest class, which provides many
useful methods. Table 18.6 summarizes these. The HttpServletRequest provides several
additional methods that may be of value, including methods that handle Web browser
cookies. Consult the Servlet Development Kit documentation or the Java 1.2 JDK docu-

mentation for further information.

TaBLE 18.6 SuMMARY OF KEY ServletRequest METHODS

Method

Function

Object getAttribute(String name)

String getCharacterEncoding()

int getContentLength()
String getContentType()

ServletInputStream getInputStream()

String getParameter(String name)

Enumeration getParameterNames()

String [] getParameterValues(
String name)

String getProtocol()

BufferedReader getReader()

String getRemoteAddr()
String getRemoteHost ()
String getServerName()

int getServerPort()

Returns the value of the specified request attribute.

Returns the name of the character set used to encode
the request.

Returns the length of the request.
Returns the media type of the request.

Returns a ServletInputStream associated with the
request.

Returns the value of the specified request parameter.

Returns an Enumeration containing the names of the
request parameters.

Returns the values of the specified request
parameter.

Returns a description of the request protocol.

Returns a BufferedReader associated with the
request.

Returns the Internet address of the client.
Returns the host name of the client.
Returns the host name of the server.

Returns the port number of the server.

A TA T L2 SV B BV B . AN A

o . 11 AA NN ~rYT10 T A

409

Y
(o]

19D
ANV S131A¥3S

023 72315378 CH18 1.21.2000 2:09 PM Page 410 $

410

Non-CORBA Approaches to Distributed Computing

PART IV

The HttpServletReponse class and its parent class, ServletResponse, provide many
useful methods. The most important of these are shown in Table 18.7.

TaBLE 18.7 KEY HttpServletResponse AND ServletResponse METHODS
Method Function

PrintWriter getWriter() Returns a PrintWriter for writing text responses.

ServletOutputStream getOutputStream() Returns a ServletOutputStream for writing bina-
ry responses.

void setContentType(String type) Sets the content type of the response.

IMPLEMENTING A SERVLET

Now that you’re acquainted with the main method used to implement servlets, let’s
examine a sample servlet. Figure 18.3 shows the output of a servlet known as
SimpleServlet, as rendered by a Web browser. Don’t try to run the servlet just yet. It
requires the servletrunner utility (or a compatible Web server) as a host; the servletrunner
utility is the topic of the next section. Listing 18.4 shows the source code of the servlet.

NoTE

Listing 18.4 was compiled with JDK 1.1.6 with the Servlet Development Kit 2.0.
The Servlet Development Kit is not presently bundled with JDK 1.1 (now at
release 7) or JDK 1.2 (now at beta 4), so it's necessary to separately download
and install it. No special measures are necessary to work with the Servlet
Development Kit: Simply follow the installation instructions provided with the

download.
F|GURE 18_3 #< A SimpleServer Page - Netscape [_[O]x]
The SimpleServlet 'E|E Edit View Go Communicator Help
transmits a static &4 & a4 D a ?9 ‘3 N
i Back Forword Reload Home Search Guide Print
HTML page. 7|\ Bookmarks 4 Location:[rip://lacalhostB060/servietiest %]
i Internet (4 Lookup (§ Mew&Cool Netcaster

SimpleServlet was here.

=5l |Document: Done

A TA v L2 SAEPEET BEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA N0 ~TT1IO T A

023 72315378 CH18 1.21.2000 2:09 PM Page 411 $

Serviets and Common Gateway Interface (CGI)

CHAPTER 18

LisTING 18.4 sSimpleServlet.java—A SERVLET THAT HANDLES AN HTTP GET REQUEST

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class SimpleServlet extends HttpServlet
{
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException
{
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<HEAD>\n");
out.println(

"<TITLE>A SimpleServer Page</TITLE>\n");
out.println("</HEAD>\n");
out.println("<BODY>\n");
out.println(

"<H1>SimpleServlet was here.</H1>\n");
out.println("</BODY>\n");
out.close();

}

public String getServletInfo()
{

return (
"I'm a little servlet, 29 lines long.");

The servlet extends the HttpServlet class, overriding the doGet method to provide its
application-specific processing, which merely transmits a static HTML page. Notice that
the method can potentially throw a ServletException; many servlet-related methods
throw this exception, which requires you to program a try-catch block or a throws
clause.

The first task performed by this servlet, and most other servlets, is to set the content type
of its output. Most servlets return HTML text to the requesting client; therefore,
“text/html” is the most commonly used argument value. Next, the servlet uses the
getWriter method to obtain a reference to a PrintWriter that encapsulates the response
that will be transmitted to the client. Using the PrintWriter.println method, it writes a
series of HTML tags that comprise the static output shown in Figure 18.3. Finally, the
servlet closes the PrintWriter and exits its doGet method.

A TA v L2 SV B BV B . AN A o . 11 AA NN ~rYT10 T A

411

Y
(o]

19D
ANV SLITAY3S

023 72315378 CH18 1.21.2000 2:09 PM Page 412 $

412

Non-CORBA Approaches to Distributed Computing

PART IV

The servlet also implements the getServletInfo method, which returns a String that
describes the servlet. All servlets should implement this method.

To run the servlet, you need the servletrunner utility or a compatible Web server. So that
you can run the servlet, let’s examine the servletrunner utility that’s included in the
Servlet Development Kit.

THE servletrunner UTILITY

The servletrunner utility, like most JDK utilities, is a command-line program that accepts
several command arguments. To see these, type servletrunner -h, which causes
servletrunner to display the following menu of options:

D:\JDO\Chapters\Ch18\Listings>servletrunner -h
Usage: servletrunner [options]

Options:
-p port the port number to listen on
-b backlog the listen backlog
-m max maximum number of connection handlers
-t timeout connection timeout in milliseconds
-d dir servlet directory
-s filename servlet property file name
-r dir document root directory

java.exe: No error

Most of these options have default values. For example, the port defaults to 8080, and the
servlet property filename defaults to servlet.properties. Unless you place your servlet
.class files and HTML documents in the JDK directory tree, you’ll need to specify the
servlet and document root directories. The easiest way to use servletrunner is to navigate
to the directory that contains your servlet’s .class file and launch servletrunner from its
own DOS window, giving explicit values to the -d and -r options:

servletrunner -d c:\servlets -r c:\servlets

Once servletrunner has initialized itself, you can use a Web browser to access your
servlet by using the following URL:

http://localhost:8080/servlet/SimpleServlet

If you find that SimpleServer is too laborious to type, you can use the servlet.properties
file to establish a pseudonym for your servlet. Simply include a line like the following:

servlet.simple.code=SimpleServlet

This entry establishes simple as a pseudonym for SimpleServer, allowing you to use the
URL http://localhost:8080/servlet/simple to access the SimpleServlet servlet. Try
it for yourself before reading on.

A TA v L2 SAEPEET BEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA N0 ~TT1IO T A

023 72315378 CH18 1.21.2000 2:09 PM Page 413 $

Serviets and Common Gateway Interface (CGI)

CHAPTER 18

A PARAMETERIZED SERVLET

The servlet.properties file also lets you establish parameter name-value pairs that can
help you initialize a servlet. They let you change a servlet’s initial state without recom-
piling it. The multiline entry used for this purpose will look like this:
servlet.pseudonum.initArgs=\

name=value, \
name=value, \

name=value

Here, pseudonym is the pseudonym of the servlet, and each line after the first associates a
value with the specified name. Notice the backward slash (\) that ends each line (other
than the last). As an example, the following entry for the servlet named coins gives val-
ues for some common U.S. coins:

servlet.coins.initArgs=\

penny=1, \
nickel=5, \
dime=10, \
quarter=25

To see how to access these initialization parameters within a servlet, see Listing 18.5.
The servlet uses the getInitParameterNames method to obtain an Enumeration contain-
ing the names of its initialization parameters. Then it uses the getInitParameter method
to obtain the value of each, including the value in the HTML page it returns to the client.
The servlet.properties file on the CD-ROM contains entries for the ParameterizedServlet
servlet. If you run the servlet, you should see output like that shown in Figure 18.4.

LisTING 18.5 ParameterizedServlet.java—A SERVLET THAT ACCESSES INITIALIZATION
PARAMETERS

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

import java.util.Enumeration;

public class ParameterizedServlet extends HttpServlet
{
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException
{
response.setContentType("text/html");
PrintWriter out = response.getWriter();

continues

A TA v L2 SV B BV B . AN A o . 11 AA NN ~rYT10 T A

413

Y
(o]

19D
ANV SLITAY3S

023 72315378 CH18 1.21.2000 2:09 PM Page 414 $

414

Non-CORBA Approaches to Distributed Computing

A TA v L

PART IV

LisTiNG 18.5

CONTINUED

out.println("<HEAD>\n");
out.println(

"<TITLE>A SimpleServer Page</TITLE>\n");
out.println("</HEAD>\n");
out.println("<BODY>\n");
out.println(

"<H1>Parameters:</H1>");
out.println("<DL>\n");

Enumeration parms = getInitParameterNames();
while (parms.hasMoreElements())

{

String pname = (String) parms.nextElement();
String pval = getInitParameter(pname);
out.println("<DT>" + pname + ":");
out.println("<DD><I>" + pval + "</I><P>");

}

out.println("</DL>\n");
out.println("</BODY>");
out.close();

}

public String getServletInfo()

{

return (getClass().getName());

}

FiIGure 18.4
The
ParameterizedSer
vlet accesses ini-
tialization para-
meters.

/3 A SimpleServer Page - Microsoft Internet Explorer [_[O]]

JEIE Edit View Go Favorites Help ‘

TR 4] A ‘ a @ g

Back el Stop Refresh Home Search Fawvorites His
Address | htip://localhost8080/servet/parms =] || inks

-

Parameters:

function:
"The subject's design is optimized for food preparation.”

year_of_replication:
"The subject was replicated in the year 2036."

model:
"The subject 15 a model thx1138."

5’7’_’_’_@ Internet zane

I

1~ . mMAAT FAMO o . 11 AA N0 ~TT1IO

023 72315378 CH18 1.21.2000 2:09 PM Page 415 $

Serviets and Common Gateway Interface (CGI)

CHAPTER 18

A SERVLET THAT HANDLES POST REQUESTS

The PostServlet program example handles an HTTP POST request. PostServlet logs its
input to a disk file and returns a reply to the client. You can use PostServlet as a model
for more complex servlets that handle HTML form-based input, storing results in a file
or database. Listing 18.6 shows the source code for PostServlet.

Following in the footsteps of SimpleServlet, the first task of PostServlet is to set the con-
tent type of its response, which again is “text/html.” PostServlet then accesses an initial-
ization parameter that identifies the directory that contains its data file. It uses the Java
system property file.separator (which usually specifies a slash or backward slash) to
join the directory name and the filename. The servlet then calls getParameterNames to
obtain an Enumeration over the names of parameters included in its request data. Each
parameter holds the value of an HTML form control. By using the getParametervalues
method, the servlet obtains the data associated with each control. It writes the data to its
disk file and returns a grateful response to the client.

LisTING 18.6 PostServlet.java—A SERVLET THAT HANDLES POST REQUESTS

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

import java.util.Enumeration;

public class PostServlet extends HttpServlet
{
public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException
{
response.setContentType("text/html");
PrintWriter out = response.getWriter();

String dir = getInitParameter("dir");
String sep = System.getProperties().
getProperty("file.separator");

PrintWriter fout =

new PrintWriter(

new FileWriter(dir + sep + "data.txt", true));
Enumeration parms =

request.getParameterNames();
while (parms.hasMoreElements())

{

String pname = (String) parms.nextElement();

continues

A TA v L2 SV B BV B . AN A o . 11 AA NN ~rYT10 T A

415

Y
(o]

19D
ANV SLITAY3S

023 72315378 CH18 1.21.2000 2:09 PM Page 416 $

416

Non-CORBA Approaches to Distributed Computing

PART IV

LisTING 18.6

CONTINUED

fout.print(pname + "=");
String [] pval =

request.getParameterValues(pname);

for (int i = 0; i < pval.length; i++)

{

}

if (i > 0) fout.print(",");
fout.print(pval[i]);

fout.println();

}

fout.close();

out.println("<HEAD>\n");
out.println(

"<TITLE>A PostServer Page</TITLE>\n");
out.println("</HEAD>\n");
out.println("<BODY>\n");
out.println(

"<H2>Thanks for the yummy datal!</H2");
out.println("</BODY>");
out.close();

}

public String getServletInfo()

{

return (getClass().getName());

}

The HTML file shown earlier in Listing 18.3 provides an HTML form suitable for use by
PostServlet so that you can try it yourself. Figure 18.5 shows the output PostServlet
returns to its clients.

FiGUre 18.5
The PostServlet
servlet thanks the
user for the data
received.

A TA v L

1
“z] A PostServer Page - Microsoft Internet Explorer !En
Fila Edit View Go Favortes Halp [2]

T fa) a
Back Felpii=ife] Stop Refresh Home Search
|Address [£ ht://127.0.0.1:8080/senetposter =1 |j Links

o

Thanks for the yummy data!

E

| | | |@ Internet zone

1~ . mMAAT FAMO o . 11 AA N0

~TT1IO T A

023 72315378 CH18 1.21.2000 2:09 PM Page 417 $

Serviets and Common Gateway Interface (CGI) 417

CHAPTER 18

CLIENT REQUEST AND SERVLET CONTEXT
INFORMATION

The CD-ROM contains the sample program RequestInfo, which transmits a formatted
page that describes the client’s request. Figure 18.6 shows the output of the RequestInfo
servlet. You may find RequestInfo useful in debugging HTML forms, because it displays
the name and value of each control on the form.

F|GURE 1 8_6 5 A Requestinfo Page - Microsoft Internet Explorer !Em |

Y
(o]

The Requestlnfo EENETRERNCS Fﬂ"ngﬁ ua‘p A é
+ = &
se'rvlet dumps the Back Foward | Stop Refresh Home | Search
client request. Address [&] htip://127.0.0.1:8080/senvlet/info = “ il
B
Request Info:
Timestamp:
08-Aug-98 7:05:55 PM
Server:
127.0.0.1
Port:
8080
Remote Host:
127.0.0.1
Remote Address:
127.0.0.1
| |
| | | | |Glmamelznng Y.

The CD-ROM also contains the sample program ContextDumper, which transmits a for-
matted page that describes the servlet context, including a list of active servlets. The list
of active servlets is obtained using this code:

ServletContext context =
getServletContext();

Enumeration servlets =
context.getServletNames();

while (servlets.hasMoreElements())

{
String name =
(String) servlets.nextElement();
out.println(name + "
");
}

Sun advises that the getServletNames method may leave the servletrunner or Web server
in an inconsistent state. Therefore, you should not run the ContextDumper servlet in a

A TA v L2 SV B BV B . AN A o . 11 AA NN ~rYT10 T A

19D
ANV SLITAY3S

023 72315378 CH18 1.21.2000 2:09 PM Page 418 $

Non-CORBA Approaches to Distributed Computing

418

PART IV

production environment. Most Web servers that support servlets provide a built-in facility
that performs an operation similar to that of ContextDumper.

Figure 18.7 shows the output of the ContextDumper servlet.

F|GURE 1 8_7 EA ContextDumper Page - Microsoft Int... !Em
The J FEile Edit “iew Go Favorites Help |
S A
Conteerumper Back el Stop Refresh Hom
servlet dumps the Addiress [§] hip://127.0.0.1 8080/ senvet/Cont_ | || Links
current servlet |
context.
Context Info:
Servlets:
ContextDumper
RequestInfo
| |
|| | |Elmamelznna 4

SERVLET CONSIDERATIONS

Java servlets are becoming increasingly popular, but their use is not yet widespread.
Consequently, it’s too early to make a thorough and accurate assessment of servlet tech-
nology. However, here are some issues to consider:

e Virtually any Web browser can access a servlet. Consequently, applications using a
servlet-based architecture support essentially every common computing platform
and architecture.

e The HTML form-based user interface, although widely available, is a “least com-
mon denominator” user interface, offering relatively few features. Of course, it’s
possible to use Java servlets with other sorts of front ends. HTML form-based user
interfaces are simply easier to construct and more popular than alternative types of
user interfaces.

» Servlets appear to be more secure and perform more efficiently that CGI programs
written in C, C++, or Perl.

* Because they’re written in Java, servlets are relatively simple to create and are
portable across server platforms.

A TA v L2 SAEPEET BEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA N0 ~TT1IO

023 72315378 CH18 1.21.2000 2:09 PM Page 419 $

Serviets and Common Gateway Interface (CGI) 419
CHAPTER 18

FROM HERE

You learned how to use the URLConnection class to download data from a Web server.
You’ve learned how to construct and use HTML forms that transmit their contents to a
Web server. What’s more, you’ve learned how to write Java servlets that handle GET and
POST requests.

Chapter 19, “Servlet-Based Implementation of the Airline Reservation System,” provides
additional information about servlets. It shows how servlets might be used to implement
this book’s running sample application system.

Y
(o]

19D
ANV SLITAY3S

A TA v L2 SV B BV B . AN A o . 11 AA NN ~rYT10 T A

023 72315378 CH18 1.21.2000 2:09 PM Page 420 $

420

A TA v L2 SAEPEET BEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA N0 ~TT1IO

024 72315378 CH19 1.21.2000 2:09 PM Page 421 $

SERVLET-BASED
IMPLEMENTATION OF THE
AIRLINE RESERVATION
SYSTEM

IN THIS CHAPTER

e THE SEARCHFLIGHTS SERVLET 423
e THE SEARCHSEATS SERVLET 426
e THE BOOKSEAT SERVLET 429

19

024 72315378 CH19 1.21.2000 2:09 PM Page 422 $

422

Non-CORBA Approaches to Distributed Computing

A TA

PART IV

In the previous chapter, you learned about Java’s servlet facility. In this chapter, you’ll
see an example of a larger servlet-based program—one that implements the Airline
Reservation System of Chapter 6, “The Airline Reservation System Model.” The program
is similar in function to the RMI-based program presented in Chapter 16, “RMI-Based
Implementation of the Airline Reservation System.” You’ll find the source code for this
chapter’s program in the chapter19/listings directory of the CD-ROM. By studying the
program, you’ll learn more about using servlets to provide data and transactions to
remote users.

To refresh your recall of the Airline Reservation System, you should turn back to Chapter
6 and skim it quickly, focusing on the functional requirements of the system. You should
also refresh your recollection of the socket-based implementation of the Airline
Reservation System presented in Chapter 14, “Socket-Based Implementation of the
Airline Reservation System,” because the servlet-based program described in this chapter
is functionally equivalent to the socket-based program described in Chapter 14. As you’ll
see, it’s much easier to write applications using servlets than either sockets or RMI.

Here are the three transactions implemented by the sample program in this chapter:

e Search Flights, which returns each flight stored in the database.

e Search Seats, which returns the reservation information for a specified passenger
identified by passenger number.

e Book Seat, which enters a reservation for a specified passenger and flight. The
transaction makes several simplifying assumptions. The passenger and flight must
already exist as entities; the transaction does not create new passengers or flights.
The reservation number must be unique; attempting to add a reservation with the
same number as an existing reservation updates the existing reservation.

Like the sample program of Chapter 16, the sample program of this chapter does not
implement the visual interface for seat selection described in Chapter 6. Nor does it
implement the reservation pool locking mechanism. You could implement such a mecha-
nism by elaborating on the solution sketched near the end of Chapter 16.

We won’t need to study the application classes, because they’re unchanged from the ver-
sions presented with the RMI version of the program in Chapter 16. You can examine
them by copying them from the CD-ROM to your system’s hard drive. So, let’s dive in
and study the servlet classes themselves. The program design assigns each of the three
supported transactions to a distinct servlet; each of the next three sections presents one of
these servlets.

L2 SV BEEPEEEE BP2 N B . MAAd Ao o . 11 A~ NN ~ATTIN T nA

024 72315378 CH19 1.21.2000 2:09 PM Page 423 $

Servlet-Based Implementation of the Airline Reservation System

CHAPTER 19

423

THE SEARCHFLIGHTS SERVLET

The SearchFlights servlet displays a list of flights contained in the SQL database. You
can see the servlet’s output in Figure 19.1. The SearchFlights transaction requires no
input data; therefore, the SearchFlights servlet implements the doGet method, which han-
dles the clients” HTTP GET requests. To access the servlet, first compile the source file
(SearchFlights.java) and then launch the servletrunner utility (or your servlet-capable
Web server). You can access the servlet by pointing your Web browser to the following
URL:

http://localhost:8080/servlet/SearchFlights

(If you’re using a Web server, you may need to use a different URL: See your Web serv-

er’s documentation.) The output of the SearchFlights servlet is formatted as a data dump.
However, if your HTML skills are up to the task, you can easily revise the servlet to gen-
erate output that includes tags that format the data into an HTML table, making the data

easier to read.

F|GURE 1 9_1 /3 Search Flights Results Page - Microsoft Internet Explorer !Em
The SearchFlights | File Edt View Go Favorites Help |
isplay S A Q G613
servlet dlS]?la_)Sla Back Fanwerd Stop Refresh Home Search Fawvorites History Channels | Fullscre
complete list of Address [£] http./ /localhost B00/senvletSearchFlights =l |Jum=s
flights. H
Flight Information:
LMAL100,La Mirada,Newport Beach,1999-01-01 10:00:00,1999-01-01 11:00:00,5,2
LMALI110,Newport Beach,La Mirada,1999-01-01 18:00:00,1999-01-01 19:00:00,5,1

E
|a Done | | | | [& Local intranet zane 7

NoOTE

All the code from here until the next section, “The SearchSeats Servlet,” is
found in the file SearchFlights.java in the chapter19/listings directory of the CD-
ROM.

Let’s walk through the source code of the SearchFlights servlet. Like most Java pro-
grams, it begins with a set of imports. Because SearchFlights is a servlet, it imports two
servlet packages:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

A TA T L2 SRS EEEPEEE BP2 S I . AN FAMO o . 11 AA AN ~ATYTIN LTSN

O

NOILVININITdIN|

aisvg-131N43g

024 72315378 CH19 1.21.2000 2:09 PM Page 424 $

424

Non-CORBA Approaches to Distributed Computing

A TA v

PART IV

The class header specifies that SearchFlights extends the HttpServlet class:
public class SearchFlights extends HttpServlet

The class defines only three fields—the familiar fields used to establish a database con-
nection using the JDBC-ODBC bridge (for a refresher on JDBC, see Chapter 12, “Java
Database Connectivity (JDBC)”):

static final String DB = "jdbc:odbc:airline";
static final String USER = "";
static final String PASSWORD = "";

The class defines only two methods: getServletInfo and doGet. The getServletInfo
method returns a String describing the servlet:

public String getServletInfo()
{

}

Like the doGet methods of other servlets, the doGet method of SearchFlights may throw
a ServletException or IOException

return (getClass().getName());

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

The first tasks of the doGet method are to specify that its response stream will contain
HTML and to open the response stream:

response.setContentType("text/html");
PrintWriter out = response.getWriter();

Because the first part of the output HTML page will be the same whether the transaction
succeeds or fails, doGet next sends the first part of the page:

out.println("<HTML>");

out.println("<HEAD>");

out.println(

"<TITLE>Search Flights Results Page</TITLE>");
out.println("</HEAD>");

out.println("<BODY>");

Most of the remaining processing of the doGet method occurs inside a try statement.
Let’s first look at the associated catch statement, which completes the output HTML
page by sending an error message:

catch (Exception ex)

{
out.println("<H2>Error:</H2>");
out.println(ex);

L2 SV BEEPEEEE BP2 N B . MAAd Ao o . 11 A~ NN ~ATTIN T nA

024 72315378 CH19 1.21.2000 2:09 PM Page 425 $

Servlet-Based Implementation of the Airline Reservation System

CHAPTER 19

out.println("</BODY>");

out.println("</HTML>");

out.close();

The three statements following the catch statement are executed even if the try state-
ment succeeds. They finish the output page and close the response stream.

The statements within the body of the try statement open a connection to the database
and execute the Flight.getFlights method, passing a reference to the open database.
After closing the database connection, the program formats the output lines that comprise
the body of the HTML page:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection db =
DriverManager.getConnection (DB, USER, PASSWORD) ;

Flight [] flights =
Flight.getFlights(db);

db.close();
out.println("<H2>Flight Information:</H2>");

for (int i=0; i < flights.length; i++)

out.println(flights[i] + "
");
A more sophisticated version of the servlet might open the database connection only
once rather than every time it processes a transaction. You could accomplish this by
defining the database connection reference as a static field and opening the database con-
nection only if the field has a null value. If you’re using the JDBC-ODBC bridge and
you make this change, you must also specify that the servlet implements
SingleThreadModel, a marker interface that requires no methods. A servlet that imple-
ments SingleThreadModel will run as a single thread; this avoids problems that might
otherwise arise because many ODBC drivers are not thread safe.

As you can see, servlets are easy to write, and they’re very flexible. However, bear in
mind that the client performs only user interface processing: The servlet does all the real
work. Nevertheless, you can create fully distributed applications using servlets, because
servlets can easily communicate with one another using a fully object-oriented protocol
such as RMI or CORBA’s IIOP. One simple architecture associates a “gateway” server
with each client. The gateway server provides a set of servlets that act on behalf of the
client, contacting remote servers as needed to satisfy requests. Figure 19.2 depicts this
configuration.

A TA T L2 SRS EEEPEEE BP2 S I . AN FAMO o . 11 AA N0 ~ATYTIN LT

425

O

NOILVININITdIN|

aisvg-131N43g

024 72315378 CH19 1.21.2000 2:09 PM Page 426 $

Non-CORBA Approaches to Distributed Computing

426

PART IV

FIGURE 19.2
Servlets can coop-
erate to provide a
fully distributed
architecture.

Client PC

-

Client PC

Client PC Server

THE SEARCHSEATS SERVLET

The SearchSeats servlet lists all seat reservations associated with a specified passenger.
Figure 19.3 shows the input HTML page associated with the SearchSeats servlet, and
Figure 19.4 shows a sample output HTML page.

F|GURE 1 9_3 5 Search Seats Test Page - Microsoft Internet Explorer !En
The SearchSeats | Ele Edit Vew Go Favories Help ‘i
o5 I 7a) Q

servletproceues a Back FEransEr Stop Refrash Home Search |
request sent by an Address [#] D JDO4 Chapters\Ch1 8\ Listings\SearchSeats html =] Hunks
HTML form. H

Search Seats Test Page

Passenger No: [110
Submit Query | Reset |

.|
’_’_’_’E My Computer A

Here’s the HTML source code used to create the test page that exercises the SearchSeats
servlet:

A TA v L2 SV BEEPEEEE BP2 N B . MAAd Ao o . 11 A~ NN ~ATTIN T nA

024 72315378 CH19 1.21.2000 2:09 PM Page 427 $

Servlet-Based Implementation of the Airline Reservation System

FiIGURe 19.4
The SearchSeats
servlet returns an
HTML page that
lists the seats
reserved by a
specified passen-
ger.

1
/= Search Seats Results Page - Microsoft Internet Explnrer!ﬂn

File Edit View Go Favorites Help |ﬁ
=D A Q
Back. [FEnward Stop Refresh Home Search |

| Addlress [ntp:7127.0.0.1 8080/semieySearchSests =1 |j Links
. |
Seat Information:
2,IMAT100,110
E
| | | |@Inlamelzuna A

CHAPTER 19

427

NoOTE

The following code is found in the file SearchSeats.html in the chapter19/listings

directory of the CD-ROM.

<HTML>
<HEAD>

<TITLE>Search Seats Test Page</TITLE>

</HEAD>
<BODY>

<FORM ACTION="http://127.0.0.1:8080/servlet/SearchSeats"

METHOD=POST>

<H1>Search Seats Test Page</H1>
<P>Passenger No:
<INPUT TYPE=TEXT NAME=passenger_no>

<p>

<INPUT TYPE=SUBMIT>
<INPUT TYPE=RESET>

</FORM>
</BODY>
</HTML>

NoTE

All the code from here until the next section, “The BookSeat Servlet,” is found
in the file SearchSeats.java in the chapter19/listings directory of the CD-ROM.

Let’s study the source code of the servlet itself. The servlet imports the same packages

and defines the same fields as the SearchFlights servlet. However, because the

SearchSeats servlet requires a passenger number as input, it implements the doPost

method rather than the doGet method implemented by the SearchFlights servlet:

A TA T

1L 1 . AN FAMO o

11 AA N0

~ATYTIN

O

NOILVININITdIN|

aisvg-131N43g

024 72315378 CH19 1.21.2000 2:09 PM Page 428 $

428 Non-CORBA Approaches to Distributed Computing

PART IV

public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

Like the SearchFlights servlet, SearchSeats first specifies its response type, opens its
response stream, and transmits the first page of the output HTML page:

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.println("<HTML>");
out.println("<HEAD>");
out.println(
"<TITLE>Search Seats Results Page</TITLE>");
out.println("</HEAD>");
out.println("<BODY>");

Next, SearchSeats obtains the value of the passenger number input by the user:

String passenger_no =
request.getParameter("passenger_no");

Notice that the HTML source code for the input form specifies passenger_no as the
name of the input text field (refer to Figure 19.3).

The main processing of SearchSeats closely resembles that of SearchFlights; however, it
invokes Reservation.getPassenger rather than Flight.getFlights

try
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection db =
DriverManager.getConnection (DB, USER, PASSWORD) ;

Reservation [] seats =
Reservation.getPassenger(
db, passenger_no);

db.close();
out.println("<H2>Seat Information:</H2>");

for (int i=0; i < seats.length; i++)
out.println(seats[i] + "
");

}

catch (Exception ex)

{
System.err.println(ex);
out.println("<H2>Error:</H2>");
out.println(ex);

}

out.println("</BODY>");

A TA v L2 SV BEEPEEEE BP2 N B . MAAd Ao o . 11 A~ NN ~ATTIN T nA

024 72315378 CH19 1.21.2000 2:09 PM Page 429 $

Servlet-Based Implementation of the Airline Reservation System

429

CHAPTER 19

out.println("</HTML>");
out.close();

THE BOOKSEAT SERVLET

The BookSeat servlet creates and makes a database record of a fight reservation. Figure
19.5 shows the HTML input form, and Figure 19.6 shows sample output. The following
input form provides the flight number, passenger number, and reservation number that
specify the flight reservation:

NoOTE

The following code is found in the file BookSeat.html in the chapter19/listings
directory of the CD-ROM.

<HTML>

<HEAD>

<TITLE>Book Seat Test Page</TITLE>

</HEAD>

<BODY>

<FORM ACTION="http://127.0.0.1:8080/servlet/BookSeat"
METHOD=POST>

<H1>Book Seat Test Page</H1>

<p>

Flight No:

<INPUT TYPE=TEXT NAME=flight_no>

<p>

Passenger No:

<INPUT TYPE=TEXT NAME=passenger_no>

<p> 1

O

Reservation No:

<INPUT TYPE=TEXT NAME=reservation_no>
<p>

<INPUT TYPE=SUBMIT>

<INPUT TYPE=RESET>

</FORM>

</BODY>

</HTML>

NoOTE

All the code from here until the end of the chapter is found in the file
BookSeat.java in the chapter19/listings directory of the CD-ROM.

A TA T L2 SRS EEEPEEE BP2 S I . AN FAMO o . 11 AA N0 ~ATYTIN LT

NOILVININITdIN|
aisvg-131N43g

024 72315378 CH19 1.21.2000 2:09 PM Page 430 $

430

Non-CORBA Approaches to Distributed Computing

A TA v

PART IV

FIGURE 19.5
The BookSeat
servlet requires
the user to enter
flight number,
passenger number,
and reservation
number informa-
tion.

[
; Book Seat Test Page - Microsoft Internet Explorer !Em
File Edit ¥Yiew Go Favorites Help |i

- . 2 . B B o | a

Back [FErwErd Stop Refresh Home Search |
| Address [&] D:100\Chepters\Ch19iListings\BookSeathm] || Links

5|
Book Seat Test Page

Flight No: [LMAL100

Passenger No: I115—
Reservation No: W
,WI Resetl

Nl

Lg My Computer

1
F|GURE 1 9_6 /= Book Seat Results Page - Microsoft Internet Explorer !En
The BnokSeat File Edit ¥View Go ngngs Help ﬁ éﬁ
e . o .
servlet records a Back [FErwErd Stop Refresh Home Search |
Slight reservation. | Addirass [&) e/ 127.0.0.1:8080/5erviey Baokseat =] inks
[—|

Transaction Result:

Seat Booked.

alE

‘ | | | |@ Internet zone

The BookSeat servlet closely resembles the SearchSeats servlet. Both implement the
doPost method and receive parameter values from an HTML input form. The BookSeat

servlet receives three such parameters:

String flight_no =
request.getParameter("flight_no");

String passenger_no =
request.getParameter(

String reservation_no =
request.getParameter(

'passenger_no");
'reservation_no");

The main processing of the BookSeat servlet, which is enclosed within the usual try-
catch block, instantiates a Reservation object, invokes its dbWrite method, and outputs

a confirmation message:

Reservation res = new Reservation(

db, reservation_no, flight_no, passenger_no);
res.dbWrite(db);
db.close();

out.println("Seat Booked.");

MAAd Ao o 11 A~ NN ~TTAN T nA

024 72315378 CH19 1.21.2000 2:09 PM Page 431 $

Servlet-Based Implementation of the Airline Reservation System
CHAPTER 19

431

FROM HERE

In this chapter, you’ve seen a complete application of modest size that uses servlets to
display and update database data. As you can see, using servlets is very easy. Yet,
servlets are enormously powerful and flexible. Moreover, because they’re written in Java,
they’re also portable. Here’s a preview of what’s coming up:

e Chapter 20, “Distributed Component Object Model (DCOM),” describes
Microsoft’s proprietary distributed computing model.

e Chapter 21, “CORBA Overview,” begins the first of two parts of this book that pre-
sent the Common Object Request Broker Architecture (CORBA).

A TA T L2 SRS EEEPEEE BP2 S I . AN FAMO o . 11 AA N0 ~ATYTIN LT

O

NOILVININITdIN|

aisvg-131N43g

024 72315378 CH19 1.21.2000 2:09 PM Page 432 $

432

A TA

AR Ao

11 A~ NN

~ATTIN

025 72315378 CH20 1.21.2000 2:10 PM Page 433 $

DISTRIBUTED COMPONENT
OBJECT MODEL (DCOM)

IN THIS CHAPTER

e OVERVIEW OF COM AND DCOM 435
e COM/DCOM TOOL SUPPORT 437
e DCOM ARCHITECTURE 437

e COMPARING DCOM TO RMI AND
CORBA 452

e COM AND DCOM CODING
EXERCISES 456

CHAPTER

20

025 72315378 CH20 1.21.2000 2:10 PM Page 434 $

434

Non-CORBA Approaches to Distributed Computing

PART IV

Developing distributed components with Java and DCOM simplifies developing distrib-
uted applications. If you're already familiar with COM, CORBA, or RM]I, it won’t take
you long to understand DCOM. Even if you don’t have a good background with the
Component Object Model (COM), the Microsoft Java virtual machine (JVM), the run-
time environment for Java, makes it painless to develop both COM and DCOM compo-
nents.

NoOTE

Chapters 15, “Remote Method Invocation (RMI),” and 16, “RMI-Based
Implementation of the Airline Reservation System,” cover Remote Method
Invocation (RMI). Part V of this book, “The CORBA Approach to Distributed
Computing,” provides a detailed discussion of the Common Object Request
Broker Architecture (CORBA).

This chapter covers the following:

¢ An overview of DCOM
e A brief architecture review
* A comparison of DCOM to other technologies

e Code examples

The exercises are provided to help you become comfortable with the technology and to
drive home the concepts in the architecture section. After completing the code examples,
we’ll compare DCOM to other technologies such as CORBA and RMI. After you com-
plete this chapter and the exercises, you should have a solid understanding of DCOM and
be able to develop DCOM clients and servers in Java. In addition, you can use most of
the techniques and design patterns from the other chapters of this book with DCOM.

No matter what your background, you’ll probably at some point have to deal with
COM/DCOM. Understanding DCOM may be a great skill to master as you conquer your
next distributed applications. This is especially true if you have to interface with com-
mercial off-the-shelf components and applications or existing in-house applications that
use DCOM.

Windows NT is prevalent in the client/server market, and DCOM is heavily integrated
with the NT operating system. Therefore, DCOM is important to understand because of
the proliferation of Windows NT and the size of the COM component market.

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 435 $

Distributed Component Object Model (DCOM)

CHAPTER 20

NoTE

DCOM currently ships with the Microsoft Windows NT 4.0 and Windows 98
operating systems. DCOM is also available for download for the Windows 95
operating system. In addition, there are efforts to make DCOM available on
many UNIX platforms.

OVERVIEW OF COM AND DCOM

The Component Object Model (COM) provides a means to create extensible services
called components. As components mature (evolve) and add new features and functions,
the services they provide remain backward compatible with older incarnations of the
components they replace. This enables older applications (COM clients) to treat new
components like older components. Therefore, when you upgrade the component, older
client applications should continue working.

NoTE

Even within Windows NT and Windows 95, there’s a trend to provide more
operating system services in the form of COM services because of their flexible
nature. If you've ever installed software that uses new DLLs that make older
applications stop working, you'll realize the importance of this trend.

COM uses object-oriented techniques, namely polymorphism, to accomplish the extensi-
ble component architecture. COM compares to a local procedure call (LPC) roughly the
way C++ compares to C—one being procedural and one being object oriented.
Therefore, a remote procedure call (RPC) is to DCOM as C is to C++. DCOM groups
data and methods into objects, which you can use through various interfaces.

DCOM may be viewed as COM with a longer wire. Therefore, the terms DCOM and
COM are often used interchangeably throughout the text. Even though the first few itera-
tions of COM did not have distributed support, the design for distributed objects was
included. COM was designed from the ground up to support distributed computing.
Therefore, you can use a legacy COM client with a DCOM server just by changing a few
Windows NT Registry settings.

The major difference between DCOM and COM is that DCOM uses RPC as shown in
Figures 20.1 and 20.2. Therefore, the use of DCOM can be transparent to the COM
client; DCOM servers can work with an older COM client. For that matter, you can use

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

435

N
o

13ao\ araQ
ININOdINOD

aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 436 $

436

Non-CORBA Approaches to Distributed Computing

PART IV

most existing COM servers that predate the release of DCOM as DCOM servers, again,
just by changing a few Registry settings.

FiGure 20.1
The regular
Component Object
Model (COM).

FIGURE 20.2
COM with a long
wire (DCOM).

Remote

Client , Server
1
COM Client > Proxy Object | | Stub
' + | COM Component
1 - Service
CoCreate LPC 1 LPC (ice)
Instance :
Y 1
1
COMLiB .
1
LPC Manager
(Kernel)
COM
Client Server
Component
(D)COM Client > Proxy Object Stub DCOM
Service
“CoCreate RPC RPC
Instance”
\4
TCP/IP/Named Pipes TCP/IP/Named Pipes
(D)COM Lib

/

\Activation

SCM

=y

DCOM
Activation

“CoCreate
Instance”

DCOM Lib

/

SCM

In addition to this transparent mode of operation for interfacing with older COM ser-
vices, DCOM adds the ability for the client to ask to connect to a specific server. Also,
DCOM adds security features, which are important for secure distributed computing.
Again, LPC is based on RPC, so architecturally, the usage model and techniques for
using DCOM are similar in nature to COM.

Only the core operating system runs in kernel mode while most of the operating system
runs in separate processes in the user mode. Applications that want to use those operating
system processes have to go through the LPC manager, which resides in the kernel. The
LPC manager marshals the request from the application to the OS process. Therefore,

A TA T ~ L

AR Ao o

11 AA A0 ATTAN

025 72315378 CH20 1.21.2000 2:10 PM Page 437 $

Distributed Component Object Model (DCOM) 437

CHAPTER 20

Windows NT is designed from the ground up using the client/server architecture, which
is also referred to as the services architecture. COM is an object-oriented extension to
LPC. Therefore, LPC in not an afterthought; it’s a core part of Windows/NT.

COM/DCOM TOOL SUPPORT

Many development tools support COM. Microsoft’s Visual Basic, which is heavily cen-
tered on COM, commands a hefty portion of the programming language market. Other
prominent tools that support COM are Visual C++, C++ Builder, Delphi, and others.
Most of these tools support both the creation of COM components and the hosting of
COM objects. Development tool support is a major strength of DCOM.

In addition to these tools, Microsoft has made sure that Java integrates well with DCOM.
For instance, Java classes can be treated like COM objects. Visual J++ 6.0 is a rapid
application development (RAD) tool, and it integrates with COM seamlessly. Also, Sun
provides an ActiveX bridge to expose JavaBeans as ActiveX controls (an ActiveX control
is a type of COM component).

You can use the Java classes you create as scriptable components, which can be scripted
using Visual Basic, VBScript, JScript, Perl, Python, and other tools. Therefore, you can
use the classes you build, for example, inside of a Web browser, an Excel spreadsheet, or
as part of an Active Server Page. Essentially, you can use your Java classes anywhere
you can use Automation. Automation enables users to take control of components and
applications through easy-to-use scripting languages such as Visual Basic. We’ll discuss
Automation later in the chapter.

You may wonder why all this matters to Java. It’s simple really. There are a lot of COM
components out there and chances are you’ll need to integrate them in one of your pro-
jects. For that matter, there are a lot of COM component developers in the market, and
you may need to integrate their skills in your next project.

NoTE

Many of the Java application server providers, such as WebLogic’s Tengah and
Bluestone’s Sapphire, provide DCOM support.

N
o

DCOM ARCHITECTURE

All distributed object architecture must provide the following basic features:

¢ Interface definition

13ao\ araQ
ININOdINOD
aaLngiuisiq

 Directory services

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

025 72315378 CH20 1.21.2000 2:10 PM Page 438 $

438

Non-CORBA Approaches to Distributed Computing

PART IV

e Marshaling
* Object persistence

e Security

Interface negotiation is important to distributed systems. It allows distributed objects the
opportunity to communicate and evolve separately without breaking the existing contract.
Directory services provide a means of finding, activating, and connecting to remote
objects. Marshaling is a means to make the object appear to be in a local process, yet
communicate the invocation of methods along with their parameters over process and
machine boundaries. Marshaling allows access to interfaces from remote sites and moves
data to and from the client process and the server process. Marshaling is just a means of
formatting data between clients and components so they can communicate clearly at the
bit and byte level.

Object persistence is saving an object state to a persistent storage, such as a flat file or
database. It’s also how to connect to a unique instance of an object; for example, when
the object is already running in another process. Finally, security is needed to protect
access to components at various levels. The rest of this section briefly discusses these
architectural issues in order to help you understand the DCOM architecture well enough
to write Java/DCOM programs effectively.

Interfaces

Defining an interface between a client and a component is like defining a contract
between two people. The interface exposes a collection of methods that state what behav-
ior and functionality the component will provide.

In DCOM, you don’t deal with objects directly. Instead, you deal with interfaces to
objects. A DCOM interface is a collection of methods that define a service contract.
Actually, what you get is an interface pointer that points to a vtable (a vtable is a col-
lection of pointers to methods). Java does not support interface pointers or any pointers
for that matter (see the following note). However, Microsoft allows Java developers to
access COM objects in a natural way. The interface defines the behavior of an object
independently of any one implementation of an object. DCOM is a binary interoperabili-
ty agreement for how clients interact with interfaces via pointers and local and remote
proxies. Proxies act as surrogate objects that are involved in marshaling the parameters to
and from the components.

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 439 $

Distributed Component Object Model (DCOM) 439

CHAPTER 20

NoTE

Microsoft JVM is a precursor to COM+. The way DCOM is handled in Java is like
a precursor to the way DCOM will be handled in other languages with the
introduction of COM+. COM+ will make DCOM programming a lot easier. For
example, let’s compare getting a pointer to an interface in Java to doing the
same thing in C++:

IHelloDCOM pHelloDCOM;

CoCreateInstance (CLSID HelloDCOM, NULL,
CLSCTX_INPROC_SERVER,

IID_HelloDCOM,

(void **) &pHelloDCOM);

Here's the equivalent Java code:

IHelloDCOM helloDCOM = (IHelloDCOM) new HelloDCOM() ;

As you know, there are no pointers in Java. Therefore, instead of dealing with
pointers, the Microsoft JVM handles all the low-level complexity. The Microsoft
JVM also allows you to cast an interface to an object instead of using the
IUnknown interface negotiation, which makes programming COM in Java much
easier than doing it in C++ in many cases. Actually, Java’s multiple interfaces
inheritance model maps nicely to working with IUnknown.

DCOM provides standard interfaces for dealing with objects. One such interface is
IUnknown. Every DCOM object must support IUnknown. Also, Java classes, via the
Microsoft JVM, support a lot of other standard interfaces. So what’s a COM object? A
COM object is a component that supports one or more interfaces; a COM interface refers
to a collection of related methods. There are standard interfaces and there are user-
defined interfaces. COM objects are accessed only through interfaces. A COM class
implements one or more interfaces, and COM objects are runtime instantiations of COM
classes.

IDispatch is a standard interface, which all COM objects that support late binding
(Automation) must have. Java classes in the Microsoft JVM, by default, support
Automation via the IDispatch interface.

COM works with many computer programming languages. However, there’s a special
language for describing interfaces called the Interface Definition Language (IDL).

N
o

13ao\ araQ

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 440 $

440

Non-CORBA Approaches to Distributed Computing

PART IV

NoTE

Java classes also support the following interfaces:
IConnectionPointContainer, IDispatchEx, IExternalConnection, IMarshal,

IProvideClassInfo, IProvideClassInfo2, ISupportErrorInfo and, of course,
IUnknown.

Interface Definition Language (IDL)

IDLs are high-level, English-like languages for describing which interfaces an object
supports. You can define an interface via IDL independent of any programming language.
DCOM, like CORBA, has an IDL, which unlike CORBA’s IDL, is based on the existing
DCE standard IDL for RPC. Before Windows NT 4.0, Microsoft had two types of IDL.
One was called IDL, and one was called ODL. ODL works with Automation, which was
known as OLE Automation and for a brief while as ActiveX Automation. Since Windows
NT 4.0 was released, there’s only one type of IDL. Therefore, ODL has been merged
into IDL.

IDL is a special C-like language for specifying DCOM interfaces. You compile it with
Microsoft’s IDL compiler (MIDL) to create a type library. You then use another tool to
create Java or C++ stubs and proxies, which act as surrogate objects involved in marshal-
ing the parameters between the COM client and the COM components.

NoOTE

A DCOM stub equates to a CORBA or RMI skeleton. A DCOM proxy equates to
an RMI or CORBA stub. Therefore, stub in CORBA speak is the client, whereas
stub in DCOM speak is the server.

DCOM’s IDL, unlike CORBA IDL, does not support inheritance, which is a key ingredi-
ent to object-oriented design. Instead, DCOM supports containment, delegation, and
aggregation. It also uses interface negotiation (IUnknown), which provides the key feature
of inheritance (that is, polymorphism). Therefore, DCOM can support many interfaces.

The good news is you don’t have to know IDL to do DCOM programming. Microsoft
and others have a lot of development tools that can create type libraries and COM
objects; most of the tools approach the power of using IDL without the hassle. Visual
Basic, Visual C++, Visual J++, and Inprise’s Delphi all have the ability to create type
libraries, so you never have to use IDL. Also, with the release of COM+, there will be
even less reason to use IDL.

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 441 $

Distributed Component Object Model (DCOM) 441

CHAPTER 20

One of the keys to COM’s success is ease of use. DCOM is not tied to IDL the way
CORBA is. In fact, there’s nothing special about IDL. It’s just a C-like language for cre-
ating proxies and stubs. Again, you don’t have to use IDL to do DCOM programming.
For Java programming, you never have to touch IDL. Even if you use the Microsoft Java
SDK and JVM and no fancy integrated development environment (IDE), you don’t have
to write any IDL. Toward the end of the chapter we’ll go through the process of creating
COM and DCOM objects without using IDL.

Check out Part V of this book for a detailed look at CORBA IDL. CORBA syntax and
structure is different than DCOM, but the intent is similar. COM IDL, like Latin, may be
a dead language in a few years.

Invocation

Invocation is the means to invoke a method on an object. Dynamic invocation is the abil-
ity to call an object from a late bound language, such as a scripting language. A scripting
language typically is not compiled. Rather, scripting languages are associated with inter-
preted languages. Conversely, compiled languages, such as C++, use static invocation.
Java is an interpreted language with statically compiled language features; it’s a hybrid,
so to speak. Therefore, Java can work with both vtable and Dispinterface interfaces
(IDispatch-based interfaces) in Microsoft’s JVM.

DCOM, like CORBA, provides both static and dynamic invocation of objects. The type
library provides the meta data to do the dynamic invocation and introspection similar to
CORBA's interface repository or Java’s introspection mechanism. (For more on CORBA
dynamic invocation, introspection, and reflection, see Chapter 32, “Interface Repository,
Dynamic Invocation, Introspection, and Reflection.”) The type libraries are analogous, in
many respects, to CORBA’s interface repository, and dynamic invocation is needed for
languages that require late binding.

NoTE

Meta data is a term used to describe data that, instead of representing some
entity, serves to describe other data.

Directory Services and Activation

N
o

As mentioned earlier, object location provides a means of finding, activating, and con-

necting to remote objects. Once a COM client knows a component’s name, it can use the g
COM library to look up the component’s class that corresponds to a unique identifier. It 9
can then determine whether the COM object should be run locally or remotely (if §
remotely, it can work with the remote machine to activate the component). E

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 442 $

442

Non-CORBA Approaches to Distributed Computing

PART IV

COM uses the Registry and the COM library to perform object lookup. When a COM
client tries to create a COM object, the COM libraries look up the associated COM class
implementation in the Registry. (This is somewhat analogous to the way RMI uses the
RMIRegistry or CORBA uses COSNaming.) The COM class implementation is executable
code called by the server. The executable code that the COM class is associated with
could be a dynamic link library, executable file, or a Java class. (See the section on COM
servers for more details.) The COM libraries load the COM server and work with the
server to create the object (the instance of the COM class) and then return an interface
pointer to the COM client. With DCOM, the COM libraries are updated to create COM
objects on remote machines.

In order to create remote objects, the COM libraries read the network name of the remote
server machine from the Registry to create remote COM objects. Alternatively, the name
can be passed to the COM libraries’ CoCreateInstanceEx function call. We’ll cover a
code example that uses CoCreateInstanceEx with the name of the server passed as a
parameter.

For remote components (that is, DCOM components), the COM libraries use the service
control manager (SCM, pronounced “scum”), to perform object activation. In this sce-
nario, when a COM client attempts to create a COM component, the COM library looks
up the COM object in the Windows NT Registry as usual. What it finds in the Registry is
information on how to instantiate the COM object just as before. However, if the COM
class configuration in the Registry specifies a remote server, the COM library will collab-
orate with SCM. SCM’s job is to contact the SCM on the remote server. The remote
SCM then works with the COM library on the remote machine to instantiate the object
and return an instance to the client application.

NoTE

CoCreateInstanceEx is an extended version of CoCreateInstance of the original
COM library. CoCreateInstance is the standard way to look up COM objects in
the Registry. CoCreateInstanceEx adds parameters for security and remote
machine specification.

Identifiers for Locating Objects

You can find an interface by looking it up in the Windows Registry by its name or its

globally unique identifier (GUID). GUIDs are guaranteed to be unique. The GUIDs for
interfaces are called interface identifiers (IIDs). The GUIDs for COM classes are called
class identifiers (CLSIDs). All calls to CoCreateInstance need the CLSID to uniquely

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 443 $

Distributed Component Object Model (DCOM)

CHAPTER 20

identify the class the COM client is requesting. CLSID are listed in the Registry with a
list of the IIDs they support.

DCOM uses the remote server name and CLSID to interact with the COM client’s SCM.
As shown in Figure 20.3, the SCM uses this identifier when it connects to the remote
SCM on the server machine and requests creation of the COM object on the client’s

443

behalf.
FlGURE 20-3 Client Server
DCOM activation. DCOM Client >| Proxy Object Stub > COM Component
(Service)
RPC RPC A
CoCreate Instance
(Passing Server Name) @
\ TCP/IP/Named Pipes TCP/IP/Named Pipes g
Activate
COMLIB \ 4 Component
Start Making comLiB
Remote Activationto __| Calls
server specified by
servername CoCreate
Y N 4 Instance
scM o) > prom ® scM
DCOM
Activation
NoTe

Unlike CORBA, DCOM has no objectId. Instead, if you want to connect to the
same unique instance of an object, you use a moniker.

DCOM has two other types of identifiers called the application identifier (AppID) and
the program identifier (ProgID). The AppID was added to COM as part of its security
support. The AppID essentially represents a COM server process namespace that’s
shared by multiple CLSIDs. All COM objects in this server process namespace have the
same security settings. The AppID concept is like a container for CLSID associated with
a process to avoid a lot of excessive Registry keys that all contain the same server name.
We’ll work with these different identifiers in the code samples.

ProglID is a user friendly name of the component that’s associated with the CLSID.

N
o

Therefore, in Visual Basic, for example, you can pass the name of the ProgID to
CreateObject, and CreateObject will look up the ProgID in the Registry and get the
corresponding CLSID.

A TA v L

11 AA N0

~YTYAN

13ao\ araQ
ININOdINOD

aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 444 $

444

Non-CORBA Approaches to Distributed Computing

PART IV

With the release of Windows NT 5.0, COM adds a central store for COM classes. All
activation-related information about a component can be stored in the Active Directory of
the domain controller. The COM libraries will get activation information, such as the
remote server name, transparently from the Active Directory. Reconfiguring the compo-
nent will be a simple matter of changing the setting for the component in the Active
Directory. Then, Active Directory proliferates these changes to all the clients connected
to the portion of the Active Directory that contains the component’s information. This
further closes the gaps between CORBA’s activation model and DCOM’s. This is really a
leapfrog contest between CORBA, RMI, and DCOM.

Object Persistence and Unique Instances of Objects

As mentioned earlier, CORBA provides an objectId to connect to specific instances of
an object. This object reference is used by various CORBA services. The object refer-
ence can be used to reload the state of an object. Essentially, you can covert the object
reference to a string and copy it to a file or some other type of persistent storage. Then, a
year later you can use that object reference to instantiate that object to the state you left
it a year ago, assuming of course, that some other client did not change the state of that
object in the last year. CORBA clients use the object reference to connect to a particular
instance of an object. Conversely, COM objects, by default, are stateless objects. COM
objects do not have object identifiers. Instead, they use monikers to connect to a particu-
lar instance.

COM’s instance-naming mechanism is extremely flexible but at the price of complexity.
An IMoniker specifies an instance for COM. Monikers, also referred to as instance
names, for COM objects are themselves COM objects. This explains their flexibility and,
for that matter, their complexity (compared to the CORBA approach). The standard
COM interface for these naming objects is IMoniker.

If the COM object that the moniker is referring to is not already running in a server
process, IMoniker can create and initialize a COM object instance to the state it had
before. If, on the other hand, the COM object that IMoniker is referring to is running in
an existing COM server process, IMoniker can connect to the running instance of the
COM object via the COM server.

The COM library maintains a list of currently running, explicitly named COM object
instances called the running object table (ROT), which IMoniker uses to find the running
COM object instances. Essentially, if the COM object instance is not in the ROT,
IMoniker initializes a new one usually from some type of persistent storage. (With
acronyms such as SCM and ROT, it makes you wonder who comes up with this stuff and
what their fixation is with nasty sounding acronyms!) There are a few monikers built in
to COM, such as the File moniker, the URL moniker, and the Class moniker.

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

o

025 72315378 CH20 1.21.2000 2:10 PM Page 445 $

Distributed Component Object Model (DCOM)

445

CHAPTER 20

DCOM Servers

Once you create a COM object, you need a server to serve the objects up to the world. A
COM server is container that holds COM objects. In essence, a COM server is either a
class, a dynamic link library, or an executable file that contains COM classes, which in
the case of Java, relates to Java classes. The COM server has the ability to turn classes
into objects. The server implements the IClassFactory interface, which provides a stan-
dard way to request having a COM class instantiated into a COM object.

You won’t need to create servers because MIDL (a fancy IDE) generates them for you.
In addition, COM clients won’t need to deal with IClassFactory directly, because the
COM library handles this when you call CoCreateInstance or the extended version,
CoCreateInstanceEx.

The COM client asks the COM library for a given class via a CLSID. The CLSID can be
looked up in the Registry. The COM library goes to the Registry and looks up the
CLSID. The COM library then instantiates a server, which must provide an
IClassFactory interface so that the COM server can create the object on behalf of the
COM library. In order for the COM client to ask the COM library for a class, the COM
client has to find the CLSID in the Registry. Therefore, the server must register a CLSID
for every COM object it’s able to create.

Here are the three types of COM servers:
e In-process servers. In the same process (DLL, OCX, INPROC)

e Local servers. Local, separate process (EXE)

* Remote servers. Separate process on a remote machine

In-process servers execute in the same process context as the client. Fundamentally,

an in-process server is a DLL, which means, among other things, that if there’s a bug

in the in-process server, it could bring down the client process. For example, OCXs
always run in the context of the client. (ActiveX controls are sometimes referred to as
OLE controls. An OLE control is an ActiveX control, but an ActiveX control is not nec-
essarily an OCX.) An OCX is a DLL with a different extension that supports Automation
and events. (Automation is dynamic invocation support for late-bound languages.) Local
Java classes that are exported as COM objects run in this mode, unless they’re using a
surrogate process.

N
o

Local servers run in a separate process from their clients but still on the same machine.
Basically, local servers run over LPC. An example of a local server is Excel (and just
about every other Office Suite application for the Windows market). Most Office Suite
applications support Automation and OLE.

13ao\ araQ

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 446 $

446

Non-CORBA Approaches to Distributed Computing

PART IV

Remote servers execute in a separate process on another machine. The clients use RPC to
talk to the remote server. However, a client does not have to know that the server is
remote. This may be completely transparent to the client. Java classes that have been
exported as COM objects can be run in this mode only if they use a surrogate process,
which can be the default surrogate process provided by the COM library. This process is
covered in the code examples.

The COM library supplies three ways for COM clients to attach to a remote server and
request a COM object:

* The server name is associated with the ProgID of the object in the Windows
Registry.

e An explicit parameter is passed to CoCreateInstanceEx, CoGetInstanceFromFile,
CoGetInstanceFromStorage, or CoGetClassObject specifying the server name.

e Monikers are used.

As mentioned earlier, COM clients are backward compatible with DCOM servers; there-
fore, all a COM client has to know is the CLSID of the component it wants to use. The
COM client calls CoCreateInstance, and the COM libraries create the component on the
remote server as configured in the Registry. Therefore, older COM clients, which predate
the release of DCOM, can transparently use remote COM objects. However, newer
clients have the flexibility to specify the server they want to connect to, which is essen-
tial with some applications. The newer servers can specify the server name as a parame-
ter to CoCreateInstanceEx. Table 20.1 shows a list of calls used when creating objects
from persistent storage.

TaBLE 20.1 DCOM CompPoONENTS UseD TO REQUEST COM OBJECTS

DCOM API Calls Description

CoCreatelInstance Creates an interface pointer to a stateless COM object.
CoCreateInstanceEx Creates an interface pointer to a stateless COM object.
CoGetInstanceFromFile Creates a new instance from a file. The COM object is initial-

ized from the file.

CoGetInstanceFromStorage Creates a new instance from storage. The COM object is ini-
tialized from the storage.

Marshaling

A key concept to local/remote transparency is marshaling, which means to take an inter-
face pointer to a COM object in one process and allow a client in another process to call

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 447 $

Distributed Component Object Model (DCOM) 447

CHAPTER 20

member functions through that interface pointer. RMI, CORBA, and DCOM do some
form of marshaling. There are two ways to achieve marshaling in COM: COM standard
marshaling and COM custom marshaling.

COM marshaling allows a client in one process to make interface method calls on COM
objects in another process. The COM objects in the other process can be down the hall or
on the other side of the globe. The COM clients are not aware of the differences between
local and remote calls. Marshaling involves taking an interface pointer in a server’s
process and making that interface pointer available to the client process. Therefore, mar-
shaling involves setting up interprocess communication (either RPC or LPC). Next, mar-
shaling must take the arguments to an interface method call, as passed from the client,
and serialize those arguments to the remote object’s process.

Different argument types are marshaled differently. A simple value such as an int is
marshaled by copying the value. However, a more complex object, such as
java.lang.String, is marshaled by copying the data pointed to it. The arguments to
method calls must be moved to the server’s address space, which again, may be across
the hall or around the world. In order to use nonstandard, user-defined COM interfaces,
you must define your own marshaling. Microsoft defines custom marshaling for its Java
implementation.

Custom marshaling is fundamental for certain applications. However, Microsoft recog-
nized that most applications do not need or desire to optimize their marshaling mecha-
nism. Therefore, COM offers standard marshaling for the built-in standard COM inter-
faces. With standard marshaling, COM furnishes a generic proxy and a generic stub that
communicate through standard RPC for each standard COM interface.

On the other hand, each custom interface must implement an interface marshaler that
knows how to marshal all the arguments of those functions of the interface properly. The
interface marshaler actually performs the transportation, serialization, and deserialization
of the argument structures among the processes. COM’s architecture allows developers to
plug in their own marshalers for their own custom interfaces. Therefore, COM objects
can use these interfaces’ custom marshalers to transparently handle marshaling as if the
interface was supplied with COM. If a COM object supports IMarshal, it supports cus-
tom marshaling. The Microsoft JVM supports IMarshal, so it does some level of custom
marshaling for Java.

N
o

An example of custom marshaling is the Microsoft Active Data Connector (ADC), which

uses optimized marshaling to move an entire row set of OLE data, thus reducing network
traffic for accessing rows in a database.

13ao\ araQ

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 448 $

448

Non-CORBA Approaches to Distributed Computing

PART IV

NoTE

You probably won’t ever need to write your own custom marshaler because
DCOM/Java integration centers around IDispatch. IDispatch is a built-in inter-
face. Therefore, COM provides a marshaler for it. In addition, Microsoft provides
a special optimized marshaler for Java COM objects.

Standard Interfaces

IUnknown is the ubiquitous interface. IUnknown is used for interface negotiations, life
cycle management, and containment and delegation. All COM objects must implement
IUnkown’s QueryInterface(), AddRef (), and Release () methods.

Interface negotiation is the ability to ask a COM object at runtime which other interfaces
it supports. Because all COM objects must implement the IUnknown interface, all COM
objects support interface negotiation. Therefore, COM clients can access any COM
object and use QueryInterface to determine which interfaces the COM object supports.
The ability to query the interface supported allows COM clients to decide, at runtime,
which interface to use.

QueryInterface allows the COM object to pass an interface pointer to other COM
objects, which don’t even have to be on the same machine. COM uses QueryInterface
to aggregate many COM objects. It allows components to evolve overtime and yet still
be backward compatible with older clients, while new clients are allowed to access new
features through new interfaces.

This interface negotiation feature gives COM architectural appeal. COM objects describe
their features at a high level of abstraction. This permits COM clients the ability to query
the COM object to see whether it supports a particular interface (a feature-set). Compare
this to a CORBA object’s single interface model. The ability of a COM client to request

the feature-set of a COM object allows for flexibility that you would expect for a compo-
nent object model. In other words, COM objects should be allowed to mature and devel-

op new features without breaking old clients.

Life cycle management is the ability to create and destroy components. IUnknown sup-
ports two methods for performing life cycle management: AddRef () and Release().
COM uses reference counting to control a COM object’s lifetime. The COM system is
not responsible for the life cycle of the object. Rather, the individual object is responsible
for its own life cycle. Therefore, reference counting works a lot like memory manage-
ment (that is, objects are destroyed when they’re no longer being used).

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 449 $

Distributed Component Object Model (DCOM) 449

CHAPTER 20

When clients first get an interface pointer to an object, they must call AddRef (). When
the clients are done with the interface pointer, they must call Release (). Therefore,
when the client is finished with the COM object, it calls Release (), and if the object
determines that there are no other clients, it will destroy itself. This puts a lot of respon-
sibility on the client—especially considering that in a distributed environment the client
machine may crash, be rebooted, turned off abruptly, or otherwise disconnected before
the COM client is able to call Release (). COM components can be connected to many
clients, in different processes on different machines, and the COM object has to wait for
all clients to release their reference before the COM object can be freed. Once all the
COM objects associated with a COM server are freed, the COM server can exit.

DCOM has many features for optimizing and enhancing the life cycle management of
remote COM objects. As mentioned earlier, clients might disconnect prematurely; there-
fore, remote operations need a way to tell whether the client is still alive. Pinging is one
way to detect whether clients are still around. On the server machine, each remote object
being hosted has a ping period. If the ping period ends without receiving a ping from the
client, that remote COM object can be terminated. The ping period is approximately six
minutes in length. DCOM does not ping per COM object. Rather, it uses sets of pings
grouped by certain criteria for optimization.

No chapter about Java DCOM would be complete without a section on Dispinterface
and IDispatch. COM objects can support a Dispinterface, which is a dispatch inter-
face. Dispinterface works differently from a vtable interface. vtable interfaces, or
regular COM interfaces, have some limitations. COM clients of such interfaces have to
bind to the interface methods based on absolute locations of the methods in the vtable.
This scheme works for compiled code such as C++, but it does not work for interpreted
languages such as VBScript, Python, JScript, and Perl.

Of course, vtable access is much faster; the only downside is that creating your own
custom vtable-based interface requires you to write your own custom marshaler, which
is less than straightforward with Java. On the other hand, if you use IDispatch and a
Dispinterface, you don’t have to worry about custom marshaling. IDispatch is a stan-
dard built-in interface; therefore, Microsoft provides the marshaling.

The speed issues are really just noise if you’re doing remote servers. If you’re doing
remote servers, most of your speed issues are due to network latency. CORBA, DCOM
using IDispatch, and RMI execute at similar speeds. Here’s an example of what a

N
o

Dispinterface might look like:

dispinterface HelloCOM
{

properties:
[id(@)] long count;

13ao\ araQ

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 450 $

450

Non-CORBA Approaches to Distributed Computing

PART IV

methods:
[id(1)] BSTR getHelloMessage(void);
b
The count property is assigned a dispID of zero, and the getHelloMessage method is
assigned a dispID of one. A COM client, called an Automation controller, can use
dispIDs to get/set properties and to invoke the method call. In the code examples, we’re
going to write a Java program that uses IDispatch to do just this. In the sample program,
instead of accessing a COM object directly through a wrapper class, we control a COM
object by passing dispID to IDispatch. IDispatch has the methods for invoking meth-
ods and properties given a dispID using IDispatch::Invoke.

As referenced in Table 20.2, a variant is a class that can contain any kind of data. Invoke
uses variants to pass arguments to methods, to return properties and for method returns.
We’ll cover variants further in the code examples.

TaBLE 20.2 1Dispatch METHODS FOR ACCESSING A Dispinterface

Member Method Description

Invoke Gets or sets a property or invokes a method given a dispID. You can
pass an array of variants for arguments. Invoke returns a variant.

GetIDsOfNames Given a string representing the name of a property, method, or
method argument, it returns the corresponding dispID.

GetTypeInfoCount Determines whether Type info is available.

GetTypeInfo Retrieves Type information.

If all this talk about IDispatch and Dispinterface has you worried, relax. As this chap-
ter has mentioned many times before (and will mention again), if you use the Microsoft
JVM and Java SDK, you don’t have to write any IDL. The Microsoft JVM makes all
Java classes look like COM objects and all COM objects look like Java classes. We’ll
explore how the Microsoft JVM does this magic in the next section.

Java and DCOM

Java programmers do not need to create interface definition files (IDL/ODL) to create
COM objects. Also, special tools such as IDL compilers are not necessary.

Microsoft’s JVM allows you to create two types of COM objects with Java:

* COM objects that implement only IDispatch and do not contain any type informa-
tion

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 451 $

Distributed Component Object Model (DCOM)

451

CHAPTER 20

¢ COM objects that implement any COM interface (that is, custom, dual, or
Dispinterface)

The first type that uses IDispatch, as mentioned before, is great for scripting languages
such as Perl, Python, VBScript, JScript, and so on. The Microsoft JVM implements
IDispatch automatically for all Java objects. Microsoft refers to this feature as
AutoIDispatch. Before AutoIDispatch, Java programmers had to write their own IDL
files. Now all we have to do is create a Java class. Any public methods or member vari-
ables are automatically exposed via Automation. Anything that makes my job easier, I
like.

The second type of COM object is for use with strongly typed languages such as C++
and Java.

To implement a COM object in Java using AutoIDispatch, follow these steps:

1. Write a Java class and compile it. The class must have public members and meth-
ods.

2. Register the class using JavaReg.

There may be times when you don’t want a class to be scriptable—perhaps to hide cer-
tain properties to the outside world—yet still make them accessible from other Java
classes internal to the package. The Microsoft JVM allows you to turn off the
AutoIDispatch on a class-by-class basis. The class that doesn’t want scripting just has to
implement the com.ms.com.NoAutoScripting interface. This interface, like
java.io.Serializable, doesn’t contain any methods. Like Serializable, it tells the
VM that this object can be serialized. NoAutoScripting just tells the VM not to expose
IDispatch for this class.

NoOTE

Visual J++ 6.0 automates COM creation. If you create a COM DLL in Visual J++
6.0, the inproc server name is not msjava.dll. Instead, the name of the DLL is
NameOfClass.dll. There's an example on how to use Visual J++ to create COM
objects in the coding exercises.

This completes our survey of COM/DCOM architecture. We now take a look at some of

N
o

the differences between COM/DCOM and other distributed object technologies, such as
RMI and CORBA. We then move on to the coding examples.

13ao\ araQ

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 452 $

452

Non-CORBA Approaches to Distributed Computing

PART IV

COMPARING DCOM TO RMI AND CORBA

I don’t think it’s fair to advocate any one distributed object framework (DCOM, RMI, or
CORBA) over another, because each object framework has advantages that give it an
edge for certain types of applications. Also, using one distributed object framework does
not preclude using another.

NoOTE

Different CORBA ORB vendors implement different CORBA services, and not all
CORBA service implementations are equal. This comparison does not point out
specific differences between vendors. Therefore, as we cover CORBA services,
features, and architecture advantages, make sure the ORB you’re considering
supports the particular services, features, and implementations you need—don’t
base buying a particular CORBA ORB on this discussion alone.

Ease of Development and IDL

Java’s transparent DCOM support clearly gives it an architectural advantage—namely,
you don’t have to learn another language to create DCOM/Java components. Conversely,
when you develop a CORBA component, you typically start by creating an IDL file.
Then you have to derive your client and server from another class. However, it should be
noted that there are tools, such as Inprise’s Caffeine, that allow you to reduce some
CORBA complexity by allowing you to define your interfaces in Java.

As mentioned earlier, you don’t need IDL to create Java DCOM components. However,
there are times when you do need to create IDL files (for example, when you want to
provide custom marshaling, or you want to create vtable components). Concerning com-
parisons of the IDL languages (Microsoft’s IDL to CORBA’s IDL), it has been stated
that CORBA’s IDL seems more thought out and easier to use. CORBA (possibly) has a
cleaner IDL syntax because it doesn’t extend an existing IDL like Microsoft extends
RPC IDL for DCOM.

Java’s RMI has no IDL,; it does not need one because it provides only Java-to-Java com-
munication. You define your remote interfaces in Java. You then create an implementa-
tion class in Java that implements the remote interface you defined. Although it doesn’t
have an IDL to deal with like CORBA does, the inheritance model of defining a remote
object is a bit more complicated than the DCOM approach. RMI is bit less complicated
than the CORBA approach (unless you use something like Inprise’s Caffeine). Again, I
have seen demonstrations of IDEs that make RMI development fairly trivial. (I’ve always
used Notepad, Javac, and RMIC to do RMI development.)

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 453 $

Distributed Component Object Model (DCOM)

CHAPTER 20

There seems to be a lot of work by various companies to make CORBA and RMI devel-
opment easier. Therefore, any advantage DCOM has in development ease of use may be
short lived.

Directory Services

RMI is currently lacking a solid default directory service. However, there are third-party
tools that implement Java naming and directory interface, which give RMI a robust direc-
tory service. CORBA has an advanced directory service called COSNaming, which pro-
vides transparent location of objects, depending on your CORBA vendor COSNaming
implementation. DCOM’s current directory service lacks a truly distributed transparent
nature like CORBA’s cOSNaming. This lack of support appears to be more of different
approaches to solve a similar problem than a missing feature or an architecture
advantage.

However, in Windows NT 5.0, DCOM can be used in connection with Active Directory.
Activation-related information about a component will be stored in the Active Directory
of the domain controller. The COM libraries will get activation information, such as the
remote server name, transparently from the Active Directory. Active Directory will pro-
liferate configuration changes to all the clients that are registered to receive a compo-
nent’s information.

Marshaling

RMI has good support for marshaling—both in ease of use and overall feature-set. With
RMLI, if an object defines a remote interface, it’s passed by reference. Passed by reference
means that when the client calls a method of a remote interface, the call is marshaled
over the wire. However, RMI can pass objects by value.

Imagine defining a remote hashtable type of class that contains results to a query. Every
time your client accesses the remote hashtable object, the call goes over the wire, which
can really slow things down because of the latency of the network. RMI gives you anoth-
er option. If you pass a parameter to a remote method and that parameter does not imple-
ment a remote interface, and that parameter is an instantiation of a class that implements
Serializable, then the parameter will be marshaled over the network. If the code for the
parameter is not available on the client machine, RMI will load the class from the remote
machine. Therefore, not only are the values moved across the network, but the code that
accesses those values is moved across the network as well. In essence, you’ve moved
code and data such that the object has been relocated to the client’s process.

Therefore, RMI has an architectural advantage at doing marshaling. Neither CORBA nor
DCOM approaches this technique of moving the code from one JVM to another, but both

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

453

N
o

13ao\ araQ
ININOdINOD

aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 454 $

454

Non-CORBA Approaches to Distributed Computing

PART IV

allow you to pass by value. By default, DCOM, like CORBA, uses “pass by reference,’
whereas RMI allows both “pass by reference” and “pass by value.” In addition, RMI
allows to you to pass code.

Future versions of CORBA will have support for pass by value. It’s possible to create
your own pass by value support with DCOM, but it isn’t as straightforward as the RMI
approach. To perform pass by value in DCOM, you need to define your own custom
vtable interface, and you need to write you own custom marshaler for the custom
vtable, which involves using C programming and Raw Native Interface (RNI). There are
ways around the DCOM marshaling issue. For example, you could pack all class data in
a string and then write your own unpacker, but this is not an elegant solution.

Security and Administration

As far as security goes, DCOM has some clear architecture advantage with its tight inte-
gration with the NT security model. This gives DCOM an edge in administration and
ease of development. Therefore, the same or similar tools that are included with the OS
can manage DCOM security. In other words, if you know how to administer Windows
NT, you can learn to administer DCOM easily.

Interoperability and Bridging

It seems RMI is moving closer to interoperating with CORBA, which is a big plus for
RMI and CORBA. Of course, RMI interoperating with CORBA will degrade some of its
functionality (you would have to give up its most innovative feature, which is its ability
to transfer code and data in a pass by value call).

Already there’s a lot of bridging technologies from one distributed object architecture to
another. For example, IONA has a CORBA/COM bridge that takes a CORBA object and
makes it appear as an ActiveX control, which can then be embedded easily in a Visual
Basic program (or a Visual J++ or Delphi program, for that matter). Here’s another
example: The forthcoming CORBBeans implementation will allow CORBA distributed
objects to look like JavaBeans on the client. This, in effect, gives CORBA a local compo-
nent model and will make CORBA “toolable” on the client. Making CORBA toolable
makes it easier to use CORBA in applications such as Visual Basic by using the ActiveX
bridge to bridge the CORBA bean to look like an ActiveX control.

Persistence

CORBA seems to have a fairly straightforward persistence mechanism for reconnecting
to unique instances of an object. Java and DCOM don’t seem to provide a straightfor-
ward approach to handling persistence. DCOM does provide a flexible way to manage

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 455 $

Distributed Component Object Model (DCOM)

CHAPTER 20

persistence, yet it’s not as implicit as the CORBA technique. Therefore, at this point in
time, it’s more complex to implement.

The Component Revolution

Declaring one technology the winner, and any of the other technologies the loser, is
impossible. There’s something else of greater importance that all these technologies sup-
ply—the plumbing for the component revolution.

All these technologies enable the component revolution, which allows companies to
assemble frameworks of components into working solutions. Most information technolo-
gy (IT) shops have the option to buy commercial off-the-shelf components on the basis
of what functionality they provide, not on the basis of what distributed object technology
they were built with. The IT shops have this option because there are enough bridging
tools to bridge between any two technologies at least half a dozen ways.

The component revolution is based on the following precepts:

e Whenever possible and feasible, buy before you build.

* Do not reinvent the wheel. Be distributed object/component architecture agnostic
and buy the components that best fit your organization’s objectives.

Following these precepts accomplishes the following:

It allows IT shops to embrace and extend frameworks. Instead of focusing on the
mundane, they can focus on the IT tools that will give the organization the compet-
itive edge.

* It saves support and development costs.

It invests money in the component industry, which will grow and prosper, thus
pushing more applications features into the mundane space and allowing more
innovation and creation of cutting-edge IT tools.

Using a Model That Works

Splitting hairs over architecture issues may be the wrong way to pick a distributed object
framework. Rather, which component model you use may depend heavily on the talent
pool at your company. If you have a department full of Visual Basic programmers, you
should consider using DCOM mostly, and RMI and CORBA when you have to connect
to third-party components and frameworks. Conversely, if you use Java a lot on both the
middle-tier and the client, you might consider using RMI and only use COM when you
want to capitalize on a huge install base of applications that have ActiveX Automation
support. If you need to connect to a lot of legacy applications that support CORBA,
CORBA is the obvious choice.

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

455

N
o

13ao\ araQ
ININOdINOD

aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 456 (&

456

Non-CORBA Approaches to Distributed Computing

PART IV

DCOM is an excellent tool to have in your arsenal of tools for creating distributed appli-
cations, as well as for enabling the next revolution in history: the component revolution.
Using the Microsoft Java SDK, you can easily write both DCOM clients and DCOM
servers, and you can integrate with existing applications and in-house components devel-
oped by Visual Basic, Delphi, and Visual C++ developers. You can still use CORBA,
DCOM, and RMI from the Microsoft JVM, so you don’t have to select just one distrib-
uted object technology.

COM AND DCOM CODING EXERCISES

The strategy of the code examples is to keep them simple. The intent is to show how to
expose and use COM objects from Java. We’ll explore how what’s covered in the archi-
tecture section applies to the code example. If you do the code examples, you’ll under-
stand the architecture better.

Without further ado, let’s create our first COM program.

Creating a Java COM Object

This code example assumes you have Microsoft’s Java SDK 3.1 or higher. The Microsoft
Java SDK is freely downloadable from its Web site. If you don’t have the Microsoft Java
SDK, go to www.microsoft.com/java and get it. Once you’ve downloaded it, follow the
install instruction closely.

For the first code example, we’re going to just create a simple COM server; then we’re
going to register that COM server in the system Registry so other programs can find it.

In your favorite editor, enter the code in Listing 20.1.

LisTING 20.1 CREATING THE HellocOM COM PROGRAM

class HelloCOM

{
public int count = 0;

public String getHello()
{
count ++;
return "Hello from COM " + count;

}

Save this in a file as HelloCOM _java.

Now you need to compile it. Use the Microsoft compiler; from the command line, type
this:

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 457 $

Distributed Component Object Model (DCOM)

457

CHAPTER 20

C:\jsdk>jvc HelloCOM.java

Next, you need to register it with JavaReg by typing the command exactly as shown in

the following command line. If successful, you should get a dialog box, as shown in

Figure 20.4.

C:\jsdk>javareg /register /class:HelloCOM /progid:Acme.HelloCOM

FIGURE 20.4
OLE/COM Object
Viewer HelloCOM
Registration dia-
log box.

> OLE/COM Object Viewer
File Object View Help

[_[3]x]

Blr| & L]]

(& Intermet Studio wWeh Sits ‘Wizards
=-[&] Java Classes
&, Callback Calback

-

@&, ClassBuilderControls Classinfollpdate

&, ClassBuilderControls GetAttibute
&, ClassBuilderControls WizardUti
&, COMServer ComServerDbject
&, Hello HellgVipp

[W] Java Class: com ms vid. grid. Grid

@, Java Class: DCOM_Inventary

SR Java Class: HelloCOM
- IConnectionPointContainer

. Jawa Class: comms wic him Dhodule

N jcon

i
AR {EaNGAFAD-GFFS-11D2:A34F-D0ANCIEE4732}

Java Class: HelloCOM

Registy | Implementation | Activation | Launch Permissions | Access Permissions

CLSID = {00954144-3881-101C-92F 3-040224009C02)
- {6B0BBFAD-5FFE-11D 2-A94F-00A0CI564732} [<na name>] = Java Class: HelloCOM

Implemented Categaries
- {BE0375F0-BB0D-11CF-57DF-D0AA00TF73CT}

InprocSemver32 [¢no names] = msjava di

InprocServer32 [ThieadingModel] = Bath

InprocServer32 avaClass] = HeloCOM

ProalD = Acme. HelloCOM

-? IDispatch P

$ DispatchEx . {BE0BBFAD-5FF5-11D2AGAF-D0A0CI564732} = Java Class: HelloCOM
R :a"a’:j'cﬂ””aﬂtm“ crms HelloCM = Jaws Class: HeloCOM

-9 Marsha |

-? IPravideClassinfo

- CLSID = {GBOBBFAQ-BFFS-11D2-A94F-00A0CIS64732)

- {6B0BBFAD-5FFE-11D 2-A94F-00A0C9564732} [4ppID] = {5BO0BEFAD-SFF5-11D2-A34F 004!

-? IPravideClsssinfo2
-? ISupporEnarnia
-9 IUrknown
&, Java Class: HeloDCOM
Java Class: HiThere
Java Class: Inventory _
Java Class: sample.deom Hub
Java Class: Test
Java Class: TestDCOM
Project] Hello

P >, Project2 Hellopp IR ER | i
4 b | »

Ready

JavaREG is tool for registering Java classes as COM components in the system Registry.
This tool also enables you to configure the COM classes you create to execute remotely.

You now need to copy the HelloCOM.class file to \java\lib in the Windows directory.
You’ll need to substitute drives and directories as needed:

C:\jsdk>copy HelloCOM.class d:\winnt\java\lib\HelloCOM.class

That’s it! You just created your first COM object. Remember, the only difference
between COM and DCOM, from the programmer’s perspective, is a few Registry set-
tings and the length of the wire. Let’s do some poking around and see this first hand.

N
o

Exploring COM with OLEVIEW

OLEVIEW is the OLE/COM object viewer; it is a development, administration, and test-
ing tool. You’ll use this tool extensively to browse the COM classes you create. Reading
the Registry with RegEdit is no fun, and it’s quite time consuming. OLEVIEW allows
you to easily see the Registry entries for the COM objects you create. It also allows you

13ao\ araQ
ININOdINOD
aaLngiuisiq

A TA v L2 SV EEEPEEEE BP2 N I 11 AA A0 ATTAN v A

025 72315378 CH20 1.21.2000 2:10 PM Page 458 $

458

Non-CORBA Approaches to Distributed Computing

PART IV

to configure the COM classes you’re going to create. This includes distributed COM acti-
vation and security settings.

NoOTE

OLEVIEW comes with Visual J++, Visual C++, and the DCOM SDK. You likely
have OLEVIEW somewhere on your machine. If you can‘t find it, you can down-
load it at www.microsoft.com/oledev/olecom/oleview.htm.

Another great feature of OLEVIEW is that it allows you to instantiate a COM class into
a COM object. This allows you to test the COM classes you create simply by double-
clicking their names in the OLEVIEW program. The list of interfaces of the classes you
create is displayed in OLEVIEW, and you can activate COM classes locally or remotely.
Here’s the bottom line: OLEVIEW is a real nice tool to know if you’re doing DCOM
development.

With the above in mind let’s work with OLEVIEW to get a feel for how HelloCOM is
configured in the registry.

1. If OLEVIEW is on your path, type OLEVIEW at the DOS prompt. Otherwise, find it
and execute it.

Select View, ExpertMode.

Select Object, CoCreatelnstanceFlags, CLSCTX_INPROC_SERVER.

Expand the node labeled Grouped by Component.

Expand the Java Classes mode under Grouped by Component.

Find the class you created in the previous exercise (He11oCOM).

N ok w

Click this node once.

NoTE

The CLSCTX_INPROC_SERVER component will not run as a remote server. Local
and remote servers run in separate processes. Inproc is associated with a DLL, so
when the class is registered, it's associated with the DLL that runs Java classes
(namely, msjava.dll).

Notice that under the Registry tab on the right side, the CLSID and AppID are listed.
When we executed JavaREG earlier, we used the following for the class and ProgID
arguments:

/class:HelloCOM /progid:Acme.HelloCOM

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 459 $

Distributed Component Object Model (DCOM)
— 459
CHAPTER 20

Notice how the names map to this ProgID.
Now let’s look at the information we can glean from the Registry tab:

e The inproc server is listed as msjava.dll.

e The threading model is specified as Both.

* The Java class associated with this COM object is He11oCOM.
e The ProgID is Acme.HelloCOM.

Think about all the ways you can use this information if something goes wrong. OLE-
VIEW is a great tool for debugging configuration problems.

Now let’s test this COM object. When you double-click the Hel1oCcOM node, OLEVIEW
will try to instantiate the COM class associated with the CLSID listed. The following
events will happen when you double-click this node:

¢ OLEVIEW takes the ProgID and finds the CLSID (remember, the CLSID is a 128-
bit GUID that identifies our COM class) for this COM class.

e OLEVIEW calls CoCreatelInstance, passing it the CLSID and the
CLSCTX_INPROC_SERVER.

e The COM library loads msjava.dll and negotiates with its IFactory to get a COM

object representing our Java class.

The bottom line is that OLEVIEW is actually loading a live version of our class. This is
a powerful tool for testing classes.

Next, notice that the node has been expanded to show all the interfaces that this COM
class supports. Notice also that it supports the following interfaces:

e IUnknown. Interface negotiation and life cycle management

e IDispatch. Dynamic invocation for scripting languages

e IMarshal. Custom marshaling
You should be familiar with these interfaces from the earlier discussion of the architec-
ture. From there, we can ascertain that Microsoft has defined some kind of custom mar-

shaler to marshal parameters to methods and return types between processes and
machines.

N
o

Now, double-click IDispatch. A dialog box should pop up. Press the View Type Info
button. An ITypeInfo viewer should pop up. The type information is missing, as you can
see in Figure 20.5, because we didn’t create a type library.

13ao\ araQ
ININOdINOD
aaLngiuisiq

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

025 72315378 CH20 1.21.2000 2:10 PM Page 460 $

460 Non-CORBA Approaches to Distributed Computing

PART IV

> OLE{COM Object Viewer MEE
FiGURE 20.5 o

The OLEVIEW Sl 2 27 &)

dialog box’s view =& Active Scripting Engine with Parsing][tetace IDispatch
type information. & &l Automation Objects T {ooo20400-0000-0000-Co00-000000000(}
=& Bitmap Effect
=@ Bitmap Transition | Registry |
» [Typelnfo Viewer [[Ex][=rt30f5)
File View 0-0000-C000-00000000004¢
ds =7
E _?I riiewsrCLSID = {D2ZAF7AB
[lsid = {00020420-0000-0001
[Clsid32 = {00020420-0000-01
1 0f5)
0-0000-C000-00000000004¢
=r=ole2disp.dil

er32 [<no name>] = oleautd
er32 [ThreadingModel] = B

Ready Z
BeSiv

Type libraries are good to have around. Visual Basic has a tool called Object Browser in
its IDE that uses type libraries to gather meta data on components. This tool is so useful
that if a component provides these type libraries, developers will use them extensively.
Visual Basic even has a feature that as you type an object’s variable name in the editor,
the editor gives you a list of methods that the object supports. This feature is called intel-
lisense, and it makes development easier. Therefore, we definitely want to include type
libraries. But how? Keep reading.

Scripting the HellocOoM Object

We’re going to use the COM server you just created with Visual Basic.

This code example assumes you have some form of scripting language that works as an
Automation controller. If you don’t have such a language, don’t worry about it. The next
example shows you how to create an Automation controller in Java.

I chose Visual Basic for this example because many people know how to use it, and it’s
widely available. LotusScript is similar in syntax to Visual Basic. If you can’t find a
scripting language that suits your fancy, don’t sweat it. Just skip the scripting section of
this example.

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 461 $

Distributed Component Object Model (DCOM) 461

CHAPTER 20

NoTE

Any Automation-capable scripting language will do. You can use Lotus Script,
which comes with Notes and Lotus 1-2-3, VBScript, and Visual Basic for
Applications (VBA), which comes with Word and Excel. Two of my favorite
Automation-capable scripting languages are Perl and Python. Both Perl and
Python provide examples for doing Automation. They're freely available at
www.perl.org and www.python.org, respectively.

From your favorite Automation controller scripting language, add a button to a form
called Command1. Then add the code from Listing 20.2.

LisTING 20.2 SCRIPTING THE HelloCOM OBJECT WITH VISUAL BASIC

Private Sub Commandi_Click()
Dim helloCOM As Object
Dim count As Integer

Set helloCOM = CreateObject("Acme.HelloCOM")
MsgBox helloCOM.getHello
count = helloCOM.count

End Sub

Now run the program and press the Command]1 button. Your output should look like
what is shown in Figure 20.6.

FIGURE 20.6 S

HelloCOM using

Visual Basic
scripting. Hello from COM1

Notice that we use Visual Basic’s CreateObject to instantiate the COM class into an
object. Also notice that we pass CreateObject the ProgID of the COM class. You can
probably guess what Visual Basic is doing underneath, but let’s recap to make sure:

N
o

* CreateObject takes the ProgID and finds the CLSID for this COM class in the
system Registry.

e CreateObject then calls CoCreateInstance, passing it the CLSID and the CLSC-
TX_INPROC_SERVER, which tells CoCreateInstance to create this object as an in-

process COM server.

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

13ao\ araQ
ININOdINOD

airnaidisig

025 72315378 CH20 1.21.2000 2:10 PM Page 462 $

462

Non-CORBA Approaches to Distributed Computing

PART IV

e The COM library loads msjava.dll and negotiates with IUnknown to get an
IFactory interface.

e The COM library then uses the IFactory to get a COM object representing the
Java class. (Actually, at this point, IFactory returns an IDispatch that represents
the interface to the COM object.)

See Figure 20.7 for a diagram of this sequence.

(HelloTest) (VB Runtime) (ComLIB) (IU MS Java.dIl Kown) (IFactory) (IDispatch)
FIGURe 20.7 ‘ °
Visual Basic CreateObject H H
. (Acme.Hello DCOM) ' '
sequence dia- ' '
grams. CoCreate Instance ' '
(CLSID, INPROC) | '
' '
'
Create * Load MSJava.dLL
[S L
QuerylInterface
(FactoryID)
> _
Create Instance
> ﬁ
Create
—
Invoke (“get hello”) —|_
msgBox

VB Sequence Diagram

Now let’s consider what happens when the code example makes the following call:
MsgBox helloCOM.getHello

Here we’re taking what he11oCOM.getHello returns to use as a parameter to MsgBox.
MsgBox is just a Visual Basic method that pops up a message box with a string that you
give it. Underneath, Visual Basic is calling the IDispatch.Invoke method with the name
of the method we defined in the Java class getHello. IDispatch.Invoke passes back a
return type of Variant. A variant, as you’ll remember from the architecture section, can
hold any type of value. Visual Basic then works with the variant to see what it contains
(in this case, it contains a string).

You may wonder why you’re being prepped with all this background information.
AutoIDispatch does not provide a type library. If it did, you could use JActiveX (a tool
from the Microsoft Java SDK that wraps COM objects into Java classes) to create wrap-
per functions around the COM class you created (which we cover in the code examples).
Without JActiveX, creating wrapper classes can be a little tough.

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 463 $

Distributed Component Object Model (DCOM) 463

CHAPTER 20

Using Java and “Raw"” Dispatch Calls

Actually, using Visual Basic to do Automation is kind of like cheating, considering this is
a book on Java. However, this demonstrates how easy it is to control Java from scripting
languages.

You could do the preceding example in Java; however, we did not create a type library.
(We’ll go into the various ways of creating type libraries in other exercises.) For now the
question is this: How are you supposed to use this class if you can’t have JActiveX gen-
erate a wrapper class via a type library?

The obvious recommendation is just to use this as a regular Java class (use it like any
other java class and import He110COM). Although efficient, this technique does not teach
you how to work with Automation objects that do not have a type library. Also, this tech-
nique does not work when you do remote objects, which is covered in the next example.

NoTE

In order to do this exercise, you need the files from the examples that ship with
Microsoft Java SDK 3.1.

So let’s go through the “Raw” Dispatch Example step by step.

1. Copy the HelloCOMController.java file from the CD-ROM to a new directory.

2. Go to RegEdit and copy the CLSID for this class. You can do this by searching for
“HelloCOM” with the RegEdit utility. Use Find from RegEdits menu bar. When
you find “HelloCOM,,” select Edit and copy the CLSID to the clipboard.

3. Put the CLSID in the source file like so (note that your CLSID will be different):

private final String app_id = "{68068FA0-5FF5-11D2-A9AF}";
Now find the Java SDK examples. These are in the Microsoft Java SDK 3.1 directory:

\Samples\DCOM\Dispatch\Sample\util

The two files you want are DCOMLib.class and DCOMParam.class. Copy all the Java
*.class files from this directory to your Windows directory in the following path:

\Java\Lib\sample\util

N
o

This puts the files you need in the class path.

Listing 20.3 is on the CD-ROM. Copy this file into the class files directory.

13ao\ araQ
ININOdINOD
aaLngiuisiq

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

025 72315378 CH20 1.21.2000 2:10 PM Page 464 $

464

Non-CORBA Approaches to Distributed Computing

PART IV

LisTING 20.3 THE HelloCOMController CLASS

import com.ms.com.Variant;
import com.ms.com.Dispatch;
import java.util.Vector;
import sample.util.DCOMLib;
import sample.util.DCOMParam;

public class HelloCOMController
{

//CLSID shorten for appearance

private final String app_id = "{68068FAQ-5FF5-11D2-111-111111}";

private final String serverName = "localhost";

public static void main(String[] args)

{
HelloCOMController helloController =
new HelloCOMController();

}

public HelloCOMController()

{
Object helloCOM = null;
String strHello;
int getHellolD;
Variant [] arguments;

DCOMParam appId = new DCOMParam(app_id);
appld.setServerName(serverName);

try{

helloCOM = DCOMLib.CoCreatelInstanceEx(appIld);

}catch(Exception e){

System.out.println("HelloClient: Exception "+ e);

}finally{
}

arguments = new Variant[0Q];

getHelloID = Dispatch.getIDOfName (helloCOM, "getHello");

Variant retVal = Dispatch.invokev(helloCOM,
getHellolID,
Dispatch.Method,
arguments,
null);

strHello = (String)retVval.toString();

System.out.println("The hello COM servers says: " +
strHello);

A TA T I~ LT L1 A . AR Ao o . 11 AA AN

~ATTAN

025 72315378 CH20 1.21.2000 2:10 PM Page 465 $

Distributed Component Object Model (DCOM) 465

CHAPTER 20

Now you need to compile the code. From the command prompt enter
jvc HelloCOMController.java

Finally, run it by typing

jview HelloCOMController

You should get a message in the console that says

The hello COM server says: Hello from COM 1

Let’s do an analysis on the following snippet from the earlier code:

import com.ms.com.Variant;
import com.ms.com.Dispatch;

First, we’re importing two Microsoft classes that are used a lot with COM: variant and
Dispatch.

Variant is used to map the Automation Variant type to Java. Variant can hold any
value, int, string, float, double, DATE, or even an IDispatch. You need the Variant
class to work with COM components that do not supply type libraries. Variant is used
exclusively by Dispatch.Invoke to pass both return values and arguments. Variant
allows you to change what types a variant has. Most Variant methods fall into two
types: coercion (toTypexxX) and access (getTypeXXX and putTypeXxXX).

The Dispatch class, a class with only static members, allows COM clients written in
Java to invoke methods and get/set properties of Automation objects. Automation objects
are COM components that support the IDispatch interface, as discussed in the architec-
ture section. IDispatch includes a lot of methods, but all of them boil down to two capa-
bilities:

* getIDsOfNames, which maps methods or property names to dispids

e invokev, which invokes methods and get/set properties

We’ll use forms of both of these methods in this example. The IDispatch class has many
forms of these two methods. This helps developers with default types, as well as doing a

N
o

subset or a frequently used superset of this functionality.

o
The two other classes used are DCOMLib and DCOMParam: £
N
import sample.util.DCOMLib; -
import sample.util.DCOMParam; §
7

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 466 $

466

Non-CORBA Approaches to Distributed Computing

PART IV

These classes are included with the examples that ship with the Microsoft Java SDK 3.1.
Microsoft used its J/Direct tool to create the DCOMLib classes that allow you to access the
COM library directly. These are not supported classes; however, if enough people use
them, they will probably either be supported or their functionality will be included in the
core Microsoft API. (This happened in the past with MFC for VC++. So many people
used the sample classes that they became part of MFC in future releases.)

DCOML1ib contains methods for helping create DCOM objects more easily. It uses J/Direct
for importing the required COM functions and for mapping C structures needed to create
COM objects. It has one static function that we’ll cover:

public static IUnknown CoCreateInstanceEx(DCOMParam param)

DCOMParam simplifies the parameters used to create a DCOM object with
DCOMLib.CoCreateInstanceEx. It fills in common default value parameters that you
would pass to DCOMLib.CoCreateInstanceEx. Here’s an abbreviated list of some of the
methods DCOMParam defines:

public void setServerName(String server)

public String getServerName()

public void setUser(String user)

public String getUser()

public void setDomain(String domain)

public String getDomain()

public void setPassword(String password)

public String getPassword()

public int getHRESULT ()

All these features will be useful when we create remote objects. As you can see by this
list of methods, you can manipulate the user name and password you use to connect. You
can also specify to which server on which domain you should connect. This is a nice
class to have around.

Let’s look more closely at HelloCOMController. This constructor has five local vari-
ables:

* helloCOM holds the Dispatch pointer to an instance of the Hel11loCOM COM class
we created in the first code example.

e strHello contains the hello string that we’re going to retrieve using the
getHelloString method from the He11ocOM COM class we created previously.

* getHelloID holds the dispatch identifier of the method we want to call (getHello).

e Variant[] arguments holds the list of arguments to our method (which in this case
is none).

e The DCOMParam appID holds the parameters for the call to CoCreateInstanceEx.

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 467 $

Distributed Component Object Model (DCOM) 467
CHAPTER 20

Before we create the COM object, we must set the DCOMParam class used for the call to
CoCreateInstanceEx. HelloCOMController initializes the class DCOMParam with the
app_id we took from the Registry in step 1. Next, we’ll set the server to the local server
string constant. Here’s a snippet of what the code for this looks like:

NoOTE

HelloCOMController uses two similar, but separate, variables: appID and app_ID.
app_ID is a String constant and appID is an instance of DCOMPARAM class.

/] Create the DCOMParam and initialize it to
// the app_id we got out of the registry in step one
/]

DCOMParam appId = new DCOMParam(app_id);

// Set the server to the server name
// server name equals localhost
/1

appld.setServerName(serverName);

// Create the helloCOM COM Object
// Pass the appId to CoCreateInstanceEx
/1
helloCOM = DCOMLib.CoCreatelInstanceEx(appld);

Now that HelloCOMContoller has an IUnknown representing the Hel1oCOM COM object
class, it’s time to invoke its getHello method. First, we initialize arguments to a zero-
length variant array, because the getHello method has no arguments. Next, we get the
Dispinterface ID of the getHello method. Then we use this ID to invoke the method
using Dispatch.invokev:

// We don't need any arguments for "getHello".

/1
arguments = new Variant[0];

// Get the dispinterface identifier for "getHello"
/1l
getHelloID = Dispatch.getIDOfName (helloCOM, "getHello");

// Invoke the dispinterface method
// The return type is returned as a Variant

N
o

/1

Variant retVal = Dispatch.invokev(helloCOM, o
getHellolID, ®
Dispatch.Method, E

arguments, =

null); o

(5]

m

-

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 468 $

468

Non-CORBA Approaches to Distributed Computing

PART IV

// Convert the Variant to a string
/1l
strHello = (String)retval.toString();

//Write the hello message out to the console.
/1
System.out.println("The hello COM servers says: " +
strHello);

Creating a Java DCOM Object

In this exercise, we’re going to create a remote COM object. This exercise is a duplicate
of the first. We’re going to use a different class name than the He110COM Java class. The
class name will be He11oDCOM. This is so you can compare the Registry settings of
HelloDCOM to He11oCOM in the next exercise.

As you did in the first example, using your favorite editor, enter the code in Listing 20.4.

LisTING 20.4 CREATING THE HellobcOM DCOM OBJECT

class HelloDCOM
{

public int count = 0;

public String getHello()
{
count ++;
return "Hello from COM" + count;
}
}

Also, as before, you need to compile. Use the Microsoft compiler, like so:

C:\jsdk>jvc HelloDCOM.java

Next, you need to register it with JavaReg:

C:\jsdk>javareg /register /class:HelloDCOM /progid:My.HelloDCOM /surrogate

The only real difference in this step to what you did in the first exercise is the addition of
the /surrogate parameter, which is essential for doing remote objects. The JavaReg
/surrogate parameter allows the system-provided surrogate process to wrap the msja-
va.dll file in a process. This is needed because otherwise the DLL would have to run
inproc, which can’t be used with remote objects.

Again, as before, you need to copy this He11oDCOM. class file to the Windows directory:

C:\jsdk>copy HelloDCOM.class d:\winnt\java\lib\HelloDCOM.class

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 469 $

Distributed Component Object Model (DCOM)

469

CHAPTER 20

To test this setup, let’s run the OLEVIEW program from the second exercise. Go to the
HelloDCOM class and try to instantiate. This will test to see if everything is working okay.

From OLEVIEW, select View.ExpertMode and also set the Object.CoCreateInstance
flags to CLSCTX_LOCAL_SERVER and CLSCTX_REMOTE_SERVER.

NoOTE

It's essential that CLSCTX_INPROC_SERVER is not selected.

Now expand the Java Classes node. Then expand the Class He110DCOM node. If the node
opens, then the COM class you created was instantiated to a COM object. Now compare
all the parameters and settings in the Registry with the settings to Hel1oCOM. Go through
the steps from the second exercise with He110DCOM.

To actually use the COM object remotely, you’re going to need to get familiar with
another tool. The name of this tool is DCOM Configuration (DCOMCNFG). DCOMCN-
FG is included with DCOM for Windows 95 and Windows NT with Service Pack 2
(SP2) or Service Pack 3. You can use DCOMCNEFG to set application properties, such as
security and location. On the computer running the client application, you must also
specify the location of the server application that will be accessed or started. For the
server application, you’ll specify the user account that has permission to access and start
the application to the client computer.

Configuring the Server
Here are the steps needed to configure the server:
1. At the DOS prompt, type DCOMCNFG (or launch it any way you prefer; it’s in the
Windows \System32 directory).
2. Select Java Class: He110DCOM in the Applications tab’s Application list box.
3. Double-click Java Class: He110DCOM or press the Properties button.

4. Another dialog box pops up called Java Class: He11oDCOM. Ensure that the words
“DLL Surrogate” appear next to the application type in the General tab. This is
required for remote operation of Java classes.

Go to the Security tab.

N
o

Select the Use Custom Access permission.
Press the Edit button to edit the access permissions.

Add the user name with the Add button. (Press Show Users in the Add Users and
Groups dialog box.)

® =N W

13ao\ araQ

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 470 $

470

Non-CORBA Approaches to Distributed Computing

PART IV

9.
10.
11.
12.

13.

Set their permissions to Allow Access in the type of permission.
Select the Use Custom Launch permission.
Press the Edit button to edit the access permissions.

Add the user name with the Add button. (Press Show Users in the Add Users and
Groups dialog box.)

Set their permissions to Allow Access in the type of permission.

Configuring the Client

Here are the steps needed to configure the client:

1.

Run the JavaReg tool on the client machine. The following line is entered as a con-
tinuous line at the DOS prompt without a line break:

C:\jsdk>javareg /register /class:HelloDCOM /progid:My.HelloDCOM
/clsid:{CLSID} /remote:servername

Plug in the value of the CLSID to the 128-bit CLSID associated with this class.
You can get this value by looking it up in OLEVIEW.

. Set servername to the name of your remote machine.

Here’s an example of what it might look like:

javareg /register /class:HelloDCOM /progid:My.HelloDCOM

/clsid: {064BEEDQ-62FC-11D2-A9AF -00A0C9564732} /remote:azdeals08

Next, you can use OLEVIEW on the client to ensure that you can connect to the
remote server. This step should be familiar to you by now. This is the third time
we’ve used OLEVIEW. Go through the steps from the second exercise with OLE-
VIEW and note the differences between Hel1oDCOM on the client and He110DCOM on
the server.

Testing the Configuration with OLEVIEW

To test this setup, let’s run the OLEVIEW program (again) from the second example.
You’re going to go to the Hel1oCOM COM class and try to instantiate it into an object just
like you did before. This will test to see if everything is working okay:

1. Run OLEVIEW on the client machine.

Select View.ExpertMode and also set Object.CoCreateInstance flags to
CLSCTX_REMOTE_SERVER.

. Expand the Java Classes node. Then expand the Class: He110DCOM node. If the

node opens, then the COM class you created was instantiated to a COM object.
This essentially tests that you have everything running okay.

Let’s recap what this actually does from the architecture standpoint:

A TA

T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 471 $

Distributed Component Object Model (DCOM)

CHAPTER 20

1. OLEVIEW takes the ProgID and finds the CLSID for this COM class.

2. OLEVIEW calls CoCreateInstanceEx, passing in the CLSID and the
CLSCTX_REMOTE_SERVER.

3. Based on the CLSCTX_REMOTE_SERVER, the COM library knows that this object is on
a remote machine, so it looks up the name of the machine in the Registry.

4. At this point, the COM library starts interacting with the client SCM to load the
COM server.

5. The client SCM interacts with the server SCM.

6. The server SCM loads up the default DLL surrogate, which in turn loads
msjava.dll, which then loads the classes’ IFactory COM class.

7. The COM library on the server negotiates with IUnknown from the COM server to
get an IFactory interface.

8. The COM library will then use the IFactory to get a COM object representing the
Java class. (Actually, at this point, it returns an IDispatch that represents the inter-
face to the COM object.)

Demonstrating Access

From your favorite Automation controller scripting language, add a button to a form
called Command]1 and then add the code shown in Listing 20.5.

LisTING 20.5 DEMONSTRATING HelloDCOM CLASS ACCESS

Private Sub Commandi_Click()
Dim helloDCOM As Object
Dim count As Integer

Set helloDCOM = CreateObject("My.HelloDCOM")
MsgBox helloDCOM.getHello
count = helloDCOM.count

MsgBox helloDCOM.getHello
count = helloDCOM.count
End Sub

At this point, we pass the name of the COM class’s ProgID to CreateObject. The Visual
Basic runtime library initiates a similar process, as described in previous exercises.

Notice that we use Visual Basic’s CreateObject to instantiate the DCOM class into an
object. Also notice that again we pass CreateObject the ProgID of the COM class. By
this point you should be able to guess what Visual Basic might be doing underneath, but
let’s recap one more time:

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

471

N
o

13ao\ araQ
ININOdINOD

aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 472 $

472

Non-CORBA Approaches to Distributed Computing

PART IV

e CreateObject takes the ProgID and finds the CLSID for this COM class in the
system Registry. The Visual Basic runtime notices that the object being requested
is a remote object.

e CreateObject then calls CoCreateInstance, passing it the CLSID which tells
CoCreatelInstance to create this object as an remote process COM server.

¢ The local machine’s SCM contacts the remote machine’s SCM.

e The remote machine’s SCM uses the COM library to load msjava.dll in a surrogate
process and then negotiates with IUnknown to get an IFactory interface.

e The COM library then uses the IFactory to get a COM object representing the
Java class. (Actually, at this point, IFactory returns an IDispatch that represents
the interface to the COM object.)

* The IDispatch reference gets marshaled back to the local machine so that the VB
application (the COM client) can begin making calls.
Now use the example you created in the previous exercise as the client and do the fol-
lowing:
1. Go to RegEdit and copy the class ID for this class. The way to do this is to search
for HelloDcoM with RegEdit using Edit, Find.
2. Put the value of the CLSID in the file, like so:
private final String app_id = "{68068FA0-5FF5-11D2-A9AF}";
Where CLSID is the class ID you copied from RegEdit.
3. Change the name of the server:
private final String serverName = NAME_OF_REMOTE_HOST;
Here, NAME_OF_REMOTE_HOST is the name of the machine with your COM class on
it.
4. Compile and run it on the client machine.

5. Finally, move it to a different client machine and run DCOMCNEFG if you have to
set up security settings for the new client machine.

Before moving on, let’s summarize what we’ve covered to this point in the coding exer-
cises.

You know how to create a local COM server and a remote COM server. You know how
to test both a local and a remote COM server with OLEVIEW. You know how to config-
ure a COM server to be a remote server with JavaReg and DCOMCNFG. In addition to
this, you know how to access COM objects that do not supply type libraries.

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 473 $

Distributed Component Object Model (DCOM) 473

CHAPTER 20

The next thing we’re going to cover is how to create type libraries and how to use those
type libraries to generate wrapper classes with JActiveX.

You can use JActiveX to generate wrapper classes from any COM class that supplies
type libraries and supports IDispatch. In other words, you can use JActiveX to access
Visual Basic programs that support Automation and OCXs that you build with Visual
Basic. For instance, you can use JActiveX to create class wrappers with any tool that’s
able to create COM objects and type libraries, such as Delphi, Visual C++, C++ Builder,
and others. You can even use it to wrap Excel Automation services. There’s an excellent
example of using Java to control Excel in the Samples directory of the Java SDK 3.1.
(I’ve personally used JActiveX to generate class wrappers for Outlook, so my application
was an Automation controller for Outlook.)

Creating a Type Library with Visual J++

In this section, you’re going to create a class using Visual J++ 6.0. If you do not have
Visual J++, don’t worry. We’ll cover how to create type libraries with Microsoft’s Java
SDK.

Start up Visual J++ 6.0. If the New Project dialog box does not come up, do the follow-
ing:

Go to File, New Project.

From the New tab’s tree, select node Visual J++ Projects, Components.

Select the COM DLL icon.

Name the project “Hello.”

U

Press the Open button.
Once the new project is opened, do the following:

1. Double-click Class1 in the Project Explorer view.

2. Rename the class to HelloVJpp. You have to do this in the edit window and the
Project Explorer view.

3. Add a public member called count, like so:
public int count = 0;

4. Add the following method (you can right-click HelloVJpp in the class outline,

N
o

which pops up an Add Method dialog box):
public String getHello()

return "Hello First VJ ++ program";

}

13ao\ araQ
ININOdINOD
aaLngiuisiq

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

025 72315378 CH20 1.21.2000 2:10 PM Page 474 $

474

Non-CORBA Approaches to Distributed Computing

PART IV

Now, to compile it, go to Build, Build, and you’re done. You’ve created your first Java
component with a type library.

To show you that this does indeed have a type library, let’s fire up OLEVIEW and see it:

1. Start OLEVIEW.

2. Select Hello.HelloVJpp. Make sure CLSCTX_INPROC_SERVER is selected in the
Object menu. Notice that the project name became part of the ProgID.

Expand the node. This tests whether it was registered correctly.
Select Hello.HelloVJpp again.
Look at the Registry tag and notice that this has a TypeLib GUID.

AN

If you know how to use Visual Basic (4.0 or higher), start it up and use the Object
Browser to view the COM class you created.

It does not get much easier than this to create a type library for a Java class.

For the next exercise, let’s use JActiveX to build wrapper classes around this COM class
you created with Visual J++. Note that you can use Visual J++ to do this. Select Project,
Add COM Wrapper to automatically wrap a COM object. (For those who do not have
Visual J++, we’ll do it the JActiveX way.)

Creating a COM Wrapper with JActiveX

Among other things, the JActiveX tool can generate class wrappers for COM objects
from type libraries. JActiveX generates *.java files for the COM classes and interfaces
that are in a type library. When you compile the Java classes into *.class files, the classes
allow a program to access COM objects. You deal with Java classes and interfaces
instead of IDispatch, which makes life a lot easier. You just import and use the classes
as you would any other Java class. You can specify a type library (*.tlb) or a dynamic
link library (*.dll) that contains the type library as a resource.

NoOTE

If you specify an .ocx file and leave out the /javatlb switch, the JActiveX tool
will create a JavaBean wrapper for the ActiveX control.

JActiveX generates Java source files that use com directives. These directives appear
inside comments. The jvc compiler knows how to take these com directives and create a
class that will call the COM class (from information JActiveX receives out the type
library). Here is an example of a COM directive:

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 475 $

Distributed Component Object Model (DCOM) 475

CHAPTER 20

/** @com.method(vtoffset=3, dispid=3, type=METHOD, name="getHelloString")
@com.parameters() */

NoTE

Only the newer compilers that ship with the Java SDK accept com directives
(1.023.3920 or later). Earlier versions of jvc won't work.

Let’s use the JActiveX tool to create a wrapper around the last class that you created. Go
to the directory that contains the DLL you created in the last exercise.

Now run the JActiveX tool against it. The format for JActiveX is as follows:
jactivex /d output_path file name_of_type 1lib

Here, file name _of type 1lib can be *.tlb, *.0lb, *.ocx, *.dll, or *.exe, and the /d
option specifies the output directory path. Here’s an example of what this might look like
on your machine:

C:\jsdk>jactivex /d c:\jsdk\Exercise8 Hello.dll

This action should have created two files in your output directory:
HelloVdpp.java

HelloVJpp_Dispatch.java

These classes have a lot of warnings in them. Here’s an example:

// notifyAll UNMAPPABLE: Name is a keyword or conflicts

/] with another member.
// /** @com.method ()
/1 @hidden */

// public native void notifyAll();

You can ignore these warnings. Because the COM classes were created with Java classes,
a bunch of name conflicts exist. However, because we’re more interested in the custom
methods, we don’t really care.

Listings 20.6 and 20.7 are the listings for the classes. These listings are shortened for dis-
play. The full listings can be found on the CD-ROM.

N
o

LisTING 20.6 CLASSES FOR HelloVdpp

package hello;
import com.ms.com.*;

continues

13ao\ araQ

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 476 (&

476

Non-CORBA Approaches to Distributed Computing

PART IV

LisTING 20.6 CONTINUED

import com.ms.com.IUnknown;
import com.ms.com.Variant;

/** @com.class(classid=D130B670-63C5-11D2-A9B0-00A0C9564732,
DynamicCasts) */

public class HelloVJdpp implements
IUnknown,com.ms.com.NoAutoScripting,hello.HelloVJdpp_Dispatch

{

/** @com.method()
@hidden */
public native String getHello();

public static final com.ms.com._Guid clsid = new com.ms.com._Guid(...);

}

LisTING 20.7 CLASSES FOR HelloVJpp_Dispatch

package hello;

import com.ms.com.*;
import com.ms.com.IUnknown;
import com.ms.com.Variant;

// Dispatch-only interface HelloVJpp_Dispatch
/** @com.interface(11id=13076493-63C6-11D2-A9B0-00A0C9564732,
thread=AUTO, type=DISPATCH) */

public interface HelloVJpp_Dispatch extends IUnknown
{
/** @com.method(dispid=100, type=METHOD, name="getHello", returntype=VOID)
@com.parameters([type=STRING] return) */
public String getHello();

public static final com.ms.com._Guid iid = new com.ms.com._Guid(...);

}

Notice that there are com directives in the comments. Some of these directives specify the
IID; some are being used to demarcate methods. When the jvc compiler sees these com
directives, it knows how to generate the corresponding hooks into COM. Now all you
have to do is compile these classes. Then, with a few Registry settings, you can use the
COM object you created as a remote COM object (that is, DCOM).

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 477 $

Distributed Component Object Model (DCOM)

477

CHAPTER 20

The next step is to compile the generated files with jvc. Then you’ll test this as a local
COM object. You must create a small program that exercises the classes you just created

with JActiveX:
class HelloTest
{
public static void main(String [] args)
{
hello.HelloVJpp Dispatch helloVdpp = new hello.HelloVdpp();
System.out.println(helloVdpp.getHello());
}

}

Next, you need to compile this code example and run it (for now, run it all on the same
machine). As always, ensure that all the classes you create are in your class path. Then,
move the compiled files to client machine.

Now do the following:

1. Open up OLEVIEW and select Hello.HelloVJpp from the treeview.

2. Go to the Implementation tab.

3. Select Use Surrogate Process. (Typically, you do this with JavaReg; however,
because you’re working with a DLL instead of a Java class, you do it differently
for the server.)

4. Use DCOMCNEFG to configure Hello.HelloVJpp the same way you did before.
Essentially, what you want to do is give the user name you’re going to use on the
client machine and the privileges to launch and run this DCOM server. Refer to the
previous exercise if you don’t remember how to do this.

5. Next, copy the Hello.dll file over to the client. You need it for the type library
information it contains.

6. Run regsvr32 to register Hello.dll. This sets up the pointer to the type library infor-
mation. The wrapper classes needs this type library information to function proper-
ly.

7. Finally, you need to register the Hello.HelloVJpp on the client using JavaReg:

C:\jsdk>javareg /register /class:HelloVJpp /progid:Hello.HelloVJpp
/clsid:{CLSID} /remote:servername

As you did before, set the CLSID to the 128-bit CLSID associated with this class. You

N
o

can get this value by looking it up in OLEVIEW. (Right-click the class in the treeview
and then select Copy to Clipboard.)

Set the server name to the name of your remote machine.

13ao\ araQ

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 478 (&

478

Non-CORBA Approaches to Distributed Computing

PART IV

Note that regsvr32 registers DLLs in the Registry. Now, you may be thinking that
because the DLL is the code that contains the class, if the DLL is registered on the client,
the client will use the DLL locally. Yes, this is true. However, when you use JavaReg,
you register Hello.HelloVJpp to access the remote server. You need these two steps
because the DLL contains the TLB (type library) within itself as a Windows resource.
You need the TLB information; otherwise, the wrapper classes you generated with
JActiveX will not work. If you skip using regsvr32 to register the type library, you can
still call this remote COM object using IDispatch. You could also use this remote COM
object with Visual Basic using the CreateObject feature instead of using New.

Next, you need to use OLEVIEW on the client to test whether it’s connecting to the
DCOM server (HelloVJpp); then run the HelloTest sample program against it (use
Jview).

NoTE

You can also create type libraries using JavaReg. In this case, the first exercise
JavaReg command-line arguments would look like this:

C:\test>javareg /register /class:HiCOM /clsid:{guid} /typelib:HiCOM.tlb

This creates the type library and puts it in the Registry for you. You may want to
try the last exercise using nothing but the Java SDK.

Other COM bridges are available besides Microsoft’s. Sun provides a unidirectional
bridge from JavaBeans to ActiveX controls. ActiveX controls are COM objects that sup-
port events and are displayable in a container. Also, Halcyon and other vendors provide
bi-directional COM/DCOM interaction with Java from non-Microsoft JVMs.

Registering Callbacks

This exercise will show you how to create a callback in DCOM. Essentially, you pass a
callback object to a COM server object. The COM server object uses this COM callback
object to make a call on the client. Therefore, the server can initiate communication with
the client. (Actually, in this scenario, both the server and the client act as server and
client to each other; however, I'll refer to the COM object that’s actually registered in the
Registry as the server for simplicity of explanation.)

Listing 20.8 shows what the code should look like in concept.

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 479 $

Distributed Component Object Model (DCOM)

CHAPTER 20

LisTING 20.8 THE callMeAnyTime CALLBACK OBJECT UsiNG DCOM

479

class Callback

{
public void callMeAnyTime (Hashtable hashtable)
{
//use hashtable, in our case just display it
by
I3
class ComServerObject
{
Callback callback;
public void registerCallback(Callback callback)
{
this.callback = callback;
//return right away
by
public void queryState()
{
//fire off thread to do a query
//on the state of something and then return
}
public void gotQueryBack()
{
Hashtable queryResults;
//populate hashtable with query results
callback.callMeAnyTime (queryResults);
}
I3
class ComClient
{
void getStatus()
{
Callback callback = new Callback();
IComServerObject server = new ComServerObject();
server.registerCallback(callback);
server.queryState();
}
}

The callback class will be passed to the ComServer from the ComClient via a call to
ComServer.registerCallback. Once the ComServer has the Callback that the
ComClient creates, it can use the ComClient’s IDispatch interface to make calls in the
ComClient’s address space.

Essentially, you want the ComServerObject class to be a COM object. Also, the Call-
back object needs to be accessible from DCOM.

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

N
o

13ao\ araQ
ININOdINOD

aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 480 $

480

Non-CORBA Approaches to Distributed Computing

PART IV

I recommend you use the following technique to implement this callback example: First,
you do this as an all-Java solution. You test and develop the code with Java, not DCOM.
Next, you try exposing ComServerObject to COM via Visual J++ 6.0 and then use the
Visual J++ Create COM Wrapper feature to generate classes for dealing with the COM
server object. You then write and test an all-local COM object solution. Finally, you try
setting up ComServerObject as a DCOM component. You then test this as a remote solu-
tion.

The all-Java approach is shown in Listing 20.9 (the complete listing can be found on the
CD-ROM).

LisTING 20.9 THE Callback CLASS USING JAVA

class Callback
{
public void callMeAnyTime (Hashtable hashtable)
{
//use hashtable, in our case just display each element
for (Enumeration e = hashtable.elements();
e.hasMoreElements();)
{
Object object = e.nextElement();
System.out.println("default " + object);
}//end of for

}//end of method

}//end of Callback class

You can see by the class definition that the Callback class only contains one method:
callMeAnyTime. This method just goes through a hashtable and prints out each element
in the hashtable (using the toString of each object, which is implicitly called when
using the addition operator with any object and a string).

Listing 20.10 shows the ComClient class.

LisTING 20.10 THE comClient CLASS

class ComClient

{
class MyCallback extends Callback
{
public void callMeAnyTime (Hashtable hashtable)
{
System.out.println("Received callback ");
System.out.println(" " + hashtable);

}//end of callMeAnyTime method

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

o

025 72315378 CH20 1.21.2000 2:10 PM Page 481 $

Distributed Component Object Model (DCOM)

CHAPTER 20

}//end of inner class MyCallBack

void getStatus()

{
Callback callback = new MyCallback();
ComServerObject server = new ComServerObject();
server.registerCallback(callback);
server.queryState();

}//end of getStatus

public static void main(String [] args)
{

ComClient cc = new ComClient();
cc.getStatus();
}//end of main

}//end of class

MyCallback extends the Callback object and defines a method that overrides the
callMeAnyTime method. The getStatus method creates an instance of MyCallback and
registers the Callback instance with an instance of the ComServeroObject. The main
method creates an instance of the ComClient and calls the getStatus method. The main
method essentially just bootstraps and tests the ComClient.

Finally, Listing 20.11 shows the ComServerObectClass class.

LisTING 20.11 THE ComServerObjectClass CLASS

class ComServerObject

{
Callback callback;

public void registerCallback(Callback callback)
{

this.callback = callback;

//return right away

}

public void queryState()

{
SimulateQuery sq = new SimulateQuery();
sq.start();

}

public void gotQueryBack()
{
Hashtable queryResults = new Hashtable();

continues

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

481

N
o

13ao\ araQ

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 482 $

482 Non-CORBA Approaches to Distributed Computing

PART IV

LisTING 20.11 CONTINUED

//populate hashtable

callback.callMeAnyTime (queryResults);

}
class SimulateQuery extends Thread
{
public void run()
{
for (int index = 0; index < 10; index++)
{
try {sleep(2000);} catch (Exception e) {}
ComServerObject.this.gotQueryBack();
}

}//end of run

}//end of simulate query

Here, you define a SimulateQuery class, which is essentially a class to simulate getting a
query result from some type of database. SimulateQuery just pretends that it got some
results every two seconds.

Here’s the sequence:
You start the ComClient with Jview.
The ComClient creates an instance of MyCallback class and the ComServerObject.

The ComClient registers the MyCallback instance with the ComServerObject.

ComServerObject starts up an instance of the SimulateQuery class.

M e

SimulateQuery fires ten query results set to the callback object via the
callMeAnyTime method.

Now, you need to test this program as a local class. Then, you want to start up Visual
J++ and create a project for the Callback class:

1. Create a COM DLL project.
2. Rename Classi to Callback.

3. Cut and paste the callMeAnyTime method from Callback.java. Compile this project
into a COM DLL.

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 483 $

Distributed Component Object Model (DCOM)

CHAPTER 20

These steps expose Callback as a COM object. Repeat this for the ComServeroObject.

Next, you want to start up Visual J++ and create a project for the ComServeroObject class
and add it to the same solution as the previous one:

Create another COM DLL project in the same solution as before.

Rename Class1 to ComServerObject.

Cut and paste all the methods and the inner class from ComServerObject. java.
Select the project that contains the ComServerObject class.

Select Project, Add COM Wrapper.

Select Callback from the list of COM objects available.

N kv =

Add the import statement to the top of the ComServerObject.java file:
import callback.Callback
8. Compile this project into a COM DLL.

This changes the code to access the Callback object as a COM object instead of as a
COM class.

In order to put ComClient in the solution, you want to start up Visual J++ and create a
project for the Callback class:
1. Create an empty project and add the ComClient.java file to it.
2. Change the first line from
import Callback;
to
import callback.*;
This specifies that you want to use the Callback class as a COM object.
3. Select the project that contains the ComClient class.
4. Select Project, Add COM Wrapper.
Select ComServerObject from the list of COM objects available.

This creates the following two COM wrapper files in a package called comserverobject:

e ComServerObject.java—This is the COM wrapper.

* ComServerObject_Dispatch.java—This is the Dispatch interface.

Now we need to change the class MyCallback to implement the
callback.Callback_Dispatch interface.

Listing 20.12 defines the ComServerObjectClass class, which is what the ComClient
class looks like, and which is now DCOM enabled.

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

483

N
o

13ao\ araQ
ININOdINOD

aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 484 $

484 Non-CORBA Approaches to Distributed Computing

PART IV

LisTING 20.12 THE ComServerObjectClass CLASS DCOM ENABLED

import comserver.*; //import the comserver wrapper classes
import callback.*; //import the callback wrapper classes
import java.util.*;

import com.ms.com.*; //for using Variant

class ComClient
{

// Note this class implements callback.Callback_Dispatch
// Instantiating this interface identifies this class as
// COM object
LIEETEETEET T i i i i rrry
class MyCallback implements callback.Callback_Dispatch
{

//Call back method that the server uses to call the client
public void callMeAnyTime (Object object)
{
System.out.println("Recieved callback ")
System.out.println(" " + object);
}

Y/ /inner MyCallback class //////// /1111111 ITETEEETE0T0T0TTTTTTT]

void getStatus()

{
MyCallback callback = new MyCallback();
ComServerObject server = new ComServerObject();
server.registerCallback(callback);
server.queryState();

}

public static void main(String [] args)
{
ComClient cc = new ComClient();
cc.getStatus();

coMclient has an inner class called MyCallBack that defines an inner class that extends
callback.Callback_Dispatch. By extending callback.Callback_Dispatch we have
identified this class as a type of Callback_Dispatch so when we pass this object to the
server it can call us back. Thus, when we pass an instantiation of the call back to the
ComServerObject, it now knows how to talk to the server via DCOM. The getStatus
method creates an instance of MyCallback and registers the Callback instance with an

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 485 $

Distributed Component Object Model (DCOM)

CHAPTER 20

instance of the ComServerObject. The main method creates an instance of the ComClient
and calls the getStatus method. The main method just bootstraps and tests the
ComClient.

Next, you want to make sure that the all of the classes are on the class path. Then refer to
the earlier example using Visual J++ and make the server remote. Make sure that the
COM wrapper files and the two dlls are on both the client and the server.

You do not have to use Visual J++ to create the COM dll. You can use the Microsoft Java
SDK. Instead of creating COM dll, you just create regular Java classes and compile them
normally with the Java SDK. Then you use JavaReg with the /tlb option to create type
libraries. After you compile, you use JActiveX to run against the type library you created
to give you the Java COM wrapper files. You have to do this for each of the COM
objects.

We now turn our attention to COM IDL. We’re not going to cover DCOM IDL for sever-
al reasons. To do a decent job of covering DCOM IDL, we would need to dedicate a
whole chapter. Conversely, all that using DCOM IDL would buy us over AutoIDispatch
would be the ability to do custom marshaling. However, we won’t cover it because it
involves Raw Native Interface (RNI), which is beyond the scope of this chapter. Granted,
there are valid reasons for using IDL. However, if you examine the reasons, most of the
time you’ll find that you simply don’t need to use IDL. All the reasoning and warnings
behind, it’s at least a good idea to know how the Java types map to the Microsoft IDL
types. Microsoft IDL is the common language to the COM, so we discuss it here briefly.

Creating a COM Object with IDL

There’s another way to create COM objects. This way uses JActiveX again, but you need
to write some IDL and use MIDL (Microsoft’s IDL compiler). Essentially, what you do
is create an IDL file. Compile the IDL file into a type library. Run the type library
through the JActiveX, which will generate some Java source code. You then extend the
*Impl class that JActiveX creates for you. You either extend the class that JActiveX gen-
erates directly (by editing the source) or you subclass the class that JActiveX generates.
The second technique is recommended.

For this exercise we are going to use a new (IDL) version of our Hello class. We will add
several do-nothing methods to show how to specify Java types in IDL.

Here is what our class looks like:

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

485

N
o

13ao\ araQ
ININOdINOD

aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 486 $

486

Non-CORBA Approaches to Distributed Computing

PART IV

LisTING 20.13 THE HelloIDL CLass DCOM ENABLED

public class HelloIDL

{

public HelloIDL()
{
}
public String sayHello(String name)
{

return "Hello " + name;
}
public int giveInt(int number)
{

return number;
}
public Integer givelnteger(Integer number)
{

return number;
}
public float giveFloat(float number)
{
return number;

}
public byte giveByte(byte number)
{

return number;
}
public char giveChar(char number)
{

return number;
}

}

Listing 20.14 shows what the IDL for this class would look like.

LisTING 20.14 THE HelloIDLLib IDL FILE

[
uuid(c250ad52-69ce-11d2-99d6-00a0c9569583) ,
helpstring("HelloIDLLib Type Library"),

A TA T I~ LT L1 A . AR Ao o . 11 AA AN

~ATTAN

025 72315378 CH20 1.21.2000 2:10 PM Page 487 $

Distributed Component Object Model (DCOM) 487
CHAPTER 20

version(1.0)
]
library HelloIDLLib
{
importlib("stdole32.tlb");
[
object,
uuid(c250ad51-69ce-11d2-99d6-00a0c9569583) ,
dual,
pointer_default(unique),
helpstring("IHelloIDL Interface")

]
interface IHelloIDL : IDispatch

{
[helpstring("giveChar Method")]
HRESULT giveChar([in] char p1, [out, retval] char * rtn);

[helpstring("giveInt Method")]
HRESULT giveInt([in] long p1, [out, retval] long * rtn);

[helpstring("giveFloat Method")]
HRESULT giveFloat([in] float p1, [out, retval] float * rtn);

[helpstring("giveByte Method")]
HRESULT giveByte([in] unsigned char p1, [out, retval] unsigned char*
rtn);

[helpstring("sayHello Method") 1]
HRESULT sayHello([in] BSTR p1, [out, retval] BSTR * rtn);
}//end of interface

[
uuid(c250ad50-69ce-11d2-99d6-00a0c9569583),

helpstring("CHelloIDL Object")
]
coclass CHelloIDL
{
interface IHelloIDL;
};//end of co class
};//end of library

uuid(c250ad52-69ce-11d2-99d6-00a0c9569583) ,

helpstring("HelloIDLLib Type Library"),
version(1.0)

A TA

v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA N0

~YTYAN

N
o

13ao\ araQ

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 488 $

488

Non-CORBA Approaches to Distributed Computing

PART IV

The preceding are settings for the attributes of the COM library that we are creating. It is
here that we specify version information and helpstrings to identify this component.

The IDL also specifies the Universal Unique identifier (UUID) to identify our library: in
this case, c250ad51-69ce-11d2-99d6-00a0c9569583. The UUID is the same as the
GUID that we talked about earlier.

interface IHelloIDL : IDispatch
{

defines the VTABLE interface definition for our class. As you can see, our interface sup-
ports IDispatch, which is the ability to do late bound calls. This interface supports the
dual interface, which means that it supports both dispinterface and VTABLE interfaces
as defined by the dual keyword in the Hel1loIDLLib declaration.

coclass CHelloIDL

{
interface IHelloIDL;

The above snippet defines our dispinterface for this component.

So let’s see how the Java methods map to this IDL file.

giveChar in Java snippet

public char giveChar(char number)

{
}

return number;

giveChar in IDL snippet

[helpstring("giveChar Method")]

HRESULT giveChar([in] char p1, [out, retval] char * rtn);
Here we see that char in Java corresponds to char in IDL.

We also see that return types for char in Java are char pointers in IDL.

giveInt in Java snippet

public int giveInt(int number)

{
}

return number;

giveInt in IDL snippet

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 489 $

Distributed Component Object Model (DCOM)

CHAPTER 20

[helpstring("giveInt Method") 1]
HRESULT givelInt([in] long p1, [out, retval] long * rtn);

Similarly, we see that int in Java corresponds to long in IDL. And return types for int
in Java are pointer to longs in IDL.

We summarize these data type mappings in Table 20.3.

TaBLE 20.3 DATA TYPE MAPPING FROM JAvA TO COM IDL

Java Data Type COM IDL Data Type
Void void

Char char

Double double

Int long

Float float

String BSTR

Pointer to interface IDispatch
Short short

Byte unsigned char
Boolean boolean

In order to use this IDL we first create a type library out of it. Then we use the type
library in conjunction with JActiveX to create an IHelloIDL interface for the class that
we want to extend. If you have done CORBA development, these steps are similar to
what you would do with CORBA. We then run the IDL through the MIDL compiler,
which then gives us a type library file.

To run it we enter MIDL HelloIDLIib.IDL at the DOS prompt. Then we run the Type
library file through JActiveX.

To Run JActiveX, enter the following at the DOS prompt:
JActiveX /D . HelloIDLLib.TLB
JActiveX would generate two Java class files.

* CHelloIDL.java is the file we need to use the COM object from the client perspec-
tive.

* IHelloIDL.java is the file we need to extend in our component class to expose it
as a COM object.

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

489

N
o

13ao\ araQ
ININOdINOD

aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 490 $

490

Non-CORBA Approaches to Distributed Computing

PART IV

Listing 20.15 shows the CHelloIDL class generated.

LisTING 20.15 THE CHelloIDL CLASS

package helloidllib;

import com.ms.com.*;
import com.ms.com.IUnknown;
import com.ms.com.Variant;

/** @com.class(classid=C250AD50-69CE-11D2-99D6 - 00A0C9569583,DynamicCasts)

*/

public class CHelloIDL implements
IUnknown,com.ms.com.NoAutoScripting,helloidllib.IHelloIDL

{

/** @com.method() */
public native char giveChar(char p1);

/** @com.method() */
public native int givelInt(int p1);

/** @com.method() */
public native float giveFloat(int p1);

/** @com.method() */
public native byte giveByte(byte p1);

/** @com.method() */
public native String sayHello(String p1);

public static final com.ms.com._Guid clsid = new com.ms.com.
Guid((int)@xc250ad50, (short)ox69ce, (short)ox11d2, (byte)0x99,
(byte)oxd6, (byte)ox@, (byte)0xad, (byte)oxc9, (byte)Ox56,
(byte)ox95, (byte)0x83);

Notice that this class gives us the same methods as our original class. It also has COM
directives that specify that the methods are really COM methods for a COM object.
When jvc runs across these COM directives it puts hooks in the bytecode so that when
JView or IE runs across these hooks, they know how to dispatch a method call to the
COM object.

Listing 20.16 shows the IHel1loIDL class generated by JActiveX.

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN T nA

025 72315378 CH20 1.21.2000 2:10 PM Page 491 $

Distributed Component Object Model (DCOM)

CHAPTER 20

LisTING 20.16 THE IHelloIDL CLASS

IHelloIDL.java Listing
package helloidllib;

import com.ms.com.*;
import com.ms.com.IUnknown;
import com.ms.com.Variant;

// Dual interface IHelloIDL

/** @com.interface(1iid=C250AD51-69CE-11D2-99D6-00A0C9569583,
thread=AUTO, type=DUAL) */

public interface IHelloIDL extends IUnknown

{

/** @com.method(vtoffset=4, dispid=1610743808, type=METHOD,
name="giveChar", addFlagsVtable=4)
@com.parameters([in,type=I1] p1, [type=I1] return) */

public char giveChar(char p1);

/** @com.method(vtoffset=5, dispid=1610743809, type=METHOD,
name="giveInt", addFlagsVtable=4)
@com.parameters([in,type=I4] p1, [type=I4] return) */

public int givelInt(int p1);

/** @com.method(vtoffset=6, dispid=1610743810, type=METHOD,
name="giveFloat", addFlagsVtable=4)
@com.parameters([in,type=I4] p1, [type=R4] return) */

public float giveFloat(int p1);

/** @com.method(vtoffset=7, dispid=1610743811, type=METHOD,
name="giveByte", addFlagsVtable=4)
@com.parameters([in,type=U1] p1, [type=U1] return) */

public byte giveByte(byte p1);

/** @com.method(vtoffset=8, dispid=1610743812, type=METHOD,
name="sayHello", addFlagsVtable=4)
@com.parameters([in,type=STRING] p1, [type=STRING] return) */

public String sayHello(String p1);

public static final com.ms.com._Guid iid = new com.ms.com._
Guid((int)@xc250ad51, (short)ox69ce, (short)@xi11d2, (byte)0x99,
(byte)oxd6, (byte)oxo, (byte)0xad, (byte)oxc9, (byte)0dx56,
(byte)ox95, (byte)0x83);

CHelloIDL.java is the file we use as a client and IHelloIDL. java is the file we need to
extend in our component class.

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

491

N
o

13ao\ araQ

ININOdINOD
aiirngaiisiqg

025 72315378 CH20 1.21.2000 2:10 PM Page 492 $

492

Non-CORBA Approaches to Distributed Computing

PART IV

Compile the preceding two classes and make sure they are in the class path. Change the
HelloIDL to implement IHelloIDL and add the UUID to the class file as follows:

From

public class HelloIDL

{
public HelloIDL()
{
}

To

public class HelloIDL implements helloidllib.IHelloIDL
{
private static final String CLSID =
"c250ad50-69ce-11d2-99d6-00a0c9569583" ;

public HelloIDL()
{
}

Compile HelloIDL and make sure it is in the classpath.

Register the class in the register like so:

C:\msjsdk >javareg /register /class:HelloIDL /progid:DEAL.HelloIDL /

clsid: {c250ad50-69ce-11d2-99d6-00a0c9569583}

Now we need to write a simple test program to test this class. The test program uses the
class as a COM object, not a Java object. We use the CHelloIDL class. (We could now

use this COM object from any language, such as Visual Basic.) Here is the
TestHelloIDL.java class file.

import helloidllib.*;

class TestHelloIDL
{
public static void main(String [] args)({
helloidllib.IHelloIDL hello = new helloidllib.CHelloIDL();
System.out.println("Say Hello: " + hello.sayHello("Hello"));
System.out.println("Say 5: " + hello.giveInt(5));
System.out.println("Say 5.0: " + hello.giveFloat(5));
}//end of main
}//end of class TestHelloIDL

A TA T I~ LT L1 A . AR Ao o . 11 AA A0 ATTAN

025 72315378 CH20 1.21.2000 2:10 PM Page 493 $

Distributed Component Object Model (DCOM) 493

CHAPTER 20

As you can see in the main method, we assign an IHel1loIDL reference and a new
instance, CHelloIDL class. We can then make calls on this COM object.

You should try to activate this object through the OLEVIEW program before you start
trying to test it with this local program. This will let you know if you have copied all the
classes to the classpath and registered the COM class correctly.

Now compile TestHelloIDL and run it.

To make this class remote you use JActiveX or DCOMCNEFG like we did earlier. The
main difference between this class and the other classes we created is that this class
works with both a dispinterface or vtable interface. So you get a performance advan-
tage if you’re using a statically compiled language as opposed to a late bound language
that needs dispinterface. Of course, you only see this advantage if you used all the
classes locally.

FROM HERE

This chapter covered a brief overview of COM/DCOM and distributed object architec-
ture. After discussing some of the advantages and disadvantages of COM/DCOM tech-
nologies, we ran through some basic exercises for developing COM/DCOM objects.

This chapter completes Part IV, “Non-CORBA Approaches to Distributed Computing.”
Part V, “The CORBA Approach to Distributed Computing,” which includes Chapters 21
through 27, delves into the CORBA approach to distributed computing.

N
o

13ao\ araQ
ININOdINOD
aaLngiuisiq

A TA v L2 SV EEEPEEEE BP2 N I . mMAAT FAMO o . 11 AA A0 ATTAN v A

025 72315378 CH20 1.21.2000 2:10 PM Page 494 $

494

A TA T ™~ LT L1~ . AR Ao o . 11 AA A0 ATTAN

root
ch18thru20.pdf

Java Distributed Objects
dma by Bill McCarty and Luke Cassady-Dorion ISBN: 0672315378

Wiy Pl Wi
Sams © 1999, 936 pages

Pros ready to design distributed architectures get well-
explained, expert help, with an emphasis on CORBA.

1 able of Contents

wBack Cover

Synopsis by Rebecca Rohan

Interchangeable, interoperable software components are making it less time-
consuming to create sophisticated software that resides on more than one
side of a network - an advantage that Java developers can press further in
keeping CPU cycles at the most efficient spots on the network. Distributing
objects raises the complexity of projects by calling for arbitration among the
software components and participating nodes, but Java Distributed Objects
can help professionals achieve the flexible, transparent distribution necessary
to create powerful, efficient architectures. Java Distributed Objects
emphasizes CORBA, which is defined jointly by over 800 companies and de-
emphasizes Microsoft's proprietary DCOM, though servlets, CGIl, and DCOM
do get some attention. An airline reservation system affords an example
throughout the book.

Table of Contents

JAVA Distributed Objects - 4

Introduction - 8

Part1 Basic Concepts

Chapter 1 - Distributed Object Computing - 14

Chapter 2 - TCP/IP Networking - 20

Chapter 3 - Object-Oriented Analysis and Design - 41
Chapter 4 - Distributed Architectures - 55

Chapter 5 - Design Patterns - 73

Chapter 6 - The Airline Reservation System Model - 90
Part 11 Java

Chapter 7 - JAVA Overview - 106

Chapter 8 - JAVA Threads - 131

Chapter 9 - JAVA Serialization and Beans - 149

Part I11 Java’s Networking and Enterprise APIs
Chapter 10 - Security - 170

Chapter 11 - Relational Databases and Structured Query Language (SQL) - 190
Chapter 12 - JAVA Database Connectivity (JDBC) - 208
Chapter 13 - Sockets - 227

.

Chapter 14 _ Socket-Based Implementation of the Airline Reservation
System - 248

Chapter 15 - Remote Method Invocation (RMI) - 262

Chapter 16 - RMI-Based Implementation of the Airline Reservation System - 279
Chapter 17 - JAVA Help, JAVA Mail, and Other JAVA APIs - 294

Part IV Non-CORBA Approaches to Distributed Computing

Chapter 18 - Servlets and Common Gateway Interface (CGI) - 308

Chapter 19 _Servlet-Based Implementation of the Airline Reservation
System - 327

Chapter 20 - Distributed Component Model (DCOM) - 334
Part V Non-CORBA Approaches to Distributed Computing
Chapter 21 - CORBA Overview - 384

Chapter 22 - CORBA Architecture - 393

Chapter 23 - Survey of CORBA ORBs - 419

Chapter 24 - A CORBA Server - 429

Chapter 25 - A CORBA Client - 445

Chapter 26 CORBA-Based Implementation of the Airline Reservation
System - 474

Chapter 27 - Quick CORBA: CORBA Without IDL - 489
Part VI Advanced CORBA

Chapter 28 - The Portable Object Adapter (POA) - 515
Chapter 29 - Internet Inter-ORB Protocol (IIOP) - 523
Chapter 30 - The Naming Service - 532

Chapter 31 - The Event Service - 550

Chapter 32 _Interface Repository, Dynamic Invocation, Introspection, and
Reflection - 573

Chapter 33 - Other CORBA Facilities and Services - 592
Part VII Agent Technologies
Chapter 34 - Voyager Agent Technology - 608

Chapter 35 Voyager-Based Implementation of the Airline Reservation
System - 620

Part VIII Summary and References

Chapter 36 - Summary - 639

Appendix A - Useful Resources - 652

Appendix B - Quick References - 656

Appendix C - How to Get the Most From the CD-ROM - 689

Back Cover

Learn the concepts and build the applications:

e Learn to apply the Unified Modeling Language to describe distributed
object architecture

e Understand how to describe and use Design Patterns with real-world
examples

e Advanced Java 1.2 examples including Threads, Serialization and
Beans, Security, JDBC, Sockets, and Remote Method Invocation
(RMI)

_3-

e In-depth coverage of CORBA

e Covers the Portable Object Adapter (POA) and Interface Definition
Language (IDL)

e Understand and apply component-based development using DCOM

e |Learn about agent technologies and tools such as Voyager

About the Authors

Bill McCarty, Ph.D., is a professor of MIS and computer science at Azusa
Pacific University. He has spent more than 20 years developing distributed
computing applications and seven years teaching advanced programming to
graduate students. Dr. McCarty is also coauthor of the well-received Object-
Oriented Design in Java.

Luke Cassady-Dorion is a professional programmer with eight years of
experience developing commercial distributed computing applications. He
specializes in Java/CORBA programming.

JAVA Distributed Objects

Bill McCarty and Luke Cassady-Dorion
Copyright © 1999 by Sams

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-31537-8
Library of Congress Catalog Card Number: 98-86975
Printed in the United States of America

First Printing: December 1998

00 99 4 3 2

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

The following are trademarks of the Object Management Group ®: CORBA ®, OMG ™,
ORB™, Object Request Broker ™, [IOP™, OMG Interface Definition Language (IDL)™,
and UML™,

WARNING AND DISCLAIMER

Every effort has been made to make this book as complete and as accurate as possible,

-4 -

but no warranty or fithess is implied. The information provided is on an “as is” basis. The
authors and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book or from the use of the CD or programs accompanying it.

EXECUTIVE EDITOR
Tim Ryan
DEVELOPMENT EDITOR
Gus Miklos

MANAGING EDITOR
Patrick Kanouse
PROJECT EDITOR
Carol L. Bowers

COPY EDITORS

Tonya Maddox Bart Reed
INDEXER

Rebecca Salerno
PROOFREADER

Kim Cofer

TECHNICAL EDITOR
Mike Forsyth
SOFTWARE DEVELOPMENT SPECIALIST
Craig Atkins

INTERIOR DESIGN
Anne Jones

COVER DESIGN

Anne Jones

LAYOUT TECHNICIAN

Marcia Deboy

FOREWORD

Every time | give a presentation somewhere in the world, | ask a simple question of the
audience: “Raise your hand if your company is developing a distributed application.”
Depending on the type of audience, | might get from 10 percent to 90 percent of the
audience to admit that they are taking on this difficult development task. The rest are
wrong.

You see, every organization that features more than a single employee or a single
computer—or needs to share information with another organization—is developing a
distributed application. If they’'re not quite aware of that fact, then they are probably not
designing their applications properly. They might end up with a “sneakernet,” or they
might find themselves with full-time personnel doing nothing but data file reformatting, or
they might end up maintaining more server applications or application servers than
necessary. Every organization builds distributed applications; that is, applications which
mirror, reinforce, or enhance the workflow of the company and its relationships with
buyers and suppliers. Because the purpose of an organization is to maximize the output
of its employees by integrating their experience and abilities, the purpose of an
Information Technology (IT) infrastructure is to maximize the output of its computing
systems by integrating their data and functionality.

The complexity of distributed application development and integration—indeed, of any
systems integration project—makes such projects difficult. The rapid pace of change in
the computer industry makes it nigh impossible.

This tome helps alleviate this problem by gathering together, in one place, descriptions
and examples of most of the relevant commercial solutions to distributed application
integration problems. By recognizing the inherent and permanent heterogeneity of
systems found in real IT shops today, this book provides a strong basis for making the
tough choices between approaches based on the needs of the reader. An easy style with
abundant examples makes it a pleasure to read, so | invite the reader to dive in without
any more delay!

Richard Mark Soley, Ph.D.
Chairman and CEO
Object Management Group, Inc.

September 1998

ABOUT THE AUTHORS

Bill McCarty, Ph.D., is a professor of MIS and computer science at Azusa Pacific
University. He has spent more than 20 years developing distributed computing
applications, and seven years teaching advanced programming to graduate students. Dr.
McCarty is also coauthor of the well-received Object-Oriented Programming in Java.

Luke Cassady-Dorion is a professional programmer with eight years of experience
developing commercial distributed computing applications. He specializes in
Java/CORBA programming.

Rick Hightower is a member of Intel’s Enterprise Architecture Lab. He has a decade of
experience writing software, from embedded systems to factory automation solutions.
Rick’s current work involves emerging solutions using middleware and component
technologies, including Java and JavaBeans, COM, and CORBA. Rick wrote Chapter 20
of this book.

About the Technical Editor

Mike Forsyth, Technical Director, Calligrafix, graduated with a computer science degree
from Heriot Watt University, Edinburgh, Scotland, and developed high speed free text
retrieval systems. He is currently developing Java servlet and persistent store solutions
using ObjectStore and Orbix in pan European Extranet projects.

ACKNOWLEDGMENTS

Luke Andrew Cassady-Dorion: As | sit looking over the hundreds of pages that form the
tome you are now holding, | am finally able to catch my breath and think about everything
that has gone into this book. Starting at ground zero, none of this could have come
together without the work done by Bill McCarty, my co-author. Bill, you have put together
an excellent collection of work; thank you. In addition, Tim Ryan, Gus Miklos, Jeff Taylor
and the countless faces that | never see have worked day and night to help this project.
To all of you, this could never have happened without your help; bravo. My family, who
has always supported everything that | did (even when | dropped out of college and
moved to California), your support means mountains to me. All of my friends, who
understood when | said that | could not go out as | had to “work on my book,” thank you,
and the next round is on me. Finally, to all of the musicians, composers and authors who
kept me company as | wrote this book. Maria Callas, Phillip Glass, Stephen Sondheim,
Cole Porter, and Ayn Rand, your work has kept me sane during this long process. Finally,
a word of advice to my readers: Enjoy this book, but know that the best computer
programmers do come up for air. Make sure that there is always time in your life for fun,
fiction, family, friends and—of course—really good food.

Bill McCarty: As with any book, a small army has had a hand in bringing about this book.
Some of them | don’t even know by name, but | owe each of them my thanks. I'm
especially grateful for the work of my co-author, Luke, who wrote the CORBA material that
forms the core of the book. I'm also grateful for the wise counsel and able assistance of my
literary agent, Margot Maley of Waterside Productions, without whom this book wouldn’t
have been completed. | thank Tim Ryan of Macmillan Computer Publishing who graciously
offered help when | needed it and who generously spent many hours helping us write a
better book. Gus Miklos, our development editor, not only set straight many crooked
constructions, but taught me much in the process. | envy his future students. My family
patiently endured untold hardships during the writing of this book; | greatly appreciate their
understanding, support, and love. My eternal thanks go to the Lord Jesus Christ, who paid
the full price of my redemption from sin and called me to be His disciple and friend. To Him
be all glory, and power, and honor now and forever.

TELL US WHAT YOU THINK!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way.

As the Executive Editor for the Java team at Macmillan Computer Publishing, | welcome
your comments. You can fax, email, or write me directly to let me know what you did or
didn’t like about this book—as well as what we can do to make our books stronger.

Please note that | won't have time to help you with Java programming problems.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. | will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-817-7070

Email: javal@mcp.com

Mail: Tim Ryan, Executive Editor
Java Team
Macmillan Computer Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction

STRUCTURE OF THIS BOOK

Now that you are familiar with the aims of this book, let’s explore its structure. This will
help you map out your study of the book. As you’ll discover, you may not need to read
every chapter.

Part I: Basic Concepts

Distributed object technologies do not stand on their own. Instead, they depend on a set
of related technologies that provide important services and facilities. You can’t thoroughly
understand distributed object technologies without a solid understanding of networks,
sockets, and databases, for example. The purpose of Part | is to acquaint you with these
related technologies and prepare you for the more advanced material in subsequent
parts of this book.

Chapter 1, “Distributed Object Computing”

Chapter 1 sets the stage for the main topic of this book by introducing fundamental
concepts and terms related to distributed objects. It also explains the structure of this
book and provides some friendly advice intended to enhance your understanding and
application of the material. Specifically, Chapter 1 covers what distributed object systems
are; why objects should be distributed; which technologies facilitate the implementation of
distributed object systems; which related technologies distributed objects draw upon; and
who should read this book and how it should be used.

Chapter 2, “TCP/IP Networking”

Chapter 2 introduces the basic terms and concepts of TCP/IP networking, the technology
of the Internet and Web. You'll learn how various protocols and Internet services work
and how to perform simple TCP/IP troubleshooting.

Chapter 3, “Object-Oriented Analysis and Design”

Chapter 3 presents an overview of object-oriented analysis and design (OOA and OQOD),
including the Unified Modeling Language (UML), which is used in subsequent chapters to
describe the structure of distributed object systems.

Chapter 4, “Distributed Architectures”

Chapter 4 presents an evolutionary perspective on distributed computing architectures.
You'll learn the strengths and weaknesses of a variety of system architectures.

Chapter 5, “Design Patterns”

Chapter 5 provides an overview of the important and useful topic of design patterns, the
themes that commonly appear in software designs. You'll learn how to describe and use

-8-

patterns and learn about several especially useful patterns.

Chapter 6, “The Airline Reservation System Model”

Chapter 6 presents an example application that we refer to throughout subsequent
chapters, in which we implement portions of the example application using a variety of
technologies. The Airline Reservation System helps you see how technologies can be
applied to real-world systems rather than the smaller pedagogical examples included in
the explanatory chapters.

Part ll: Java

Part Il presents the Java language and APIs important to distributed object systems.

Chapter 7, “Java Overview”

Despite the impression conveyed by media hype, Java is not the only object-oriented
language, nor is it the only language that you can use to build distributed object systems.
Programmers have successfully built distributed systems using other languages, notably
Smalltalk and C++. However, this book is unabashedly Java-centric. Here are some
reasons for this choice:

+ Java is an easy language to read and learn. Much of Java’s syntax and semantics are
based on C++, so C++ programmers can readily get the gist of a section of Java code.
Moreover, Java omits some of the most gnarly features of C++, making Java programs
generally simpler and clearer than their C++ counterparts.

» Java provides features that are important to the development of distributed object
systems, such as thread programming, socket programming, object serialization,
reusable components (Java Beans), a security API, and a SQL database API (JDBC).
Although all these are available for C++, they are not a standard part of the language
or its libraries. We’'ll briefly survey each of these features.

» Java bytecodes are portable, giving Java a real advantage over C++ in a
heterogeneous network environment. Java’s detractors decry the overhead implicit in
the interpretation of bytecodes. But Java compiler technology has improved
significantly over the last several years. Many expect that Java’s execution speed will
soon rival, and in some cases surpass, that of C++.

» Java is inexpensive. You don’t need to purchase an expensive IDE to learn or use
Java: You can run and modify the programs in this book using the freely available
JDK. Of course, if you decide to spend a great deal of time writing Java programs and
getting paid for doing so, an IDE is a wise investment.

» The last reason is the best one: Java is fun. One of the authors has been
programming for almost three decades. But not since those first weeks writing Fortran
code for the IBM 1130 has programming been as much fun as the last several years
spent writing Java code. Having taught Java programming to dozens of students
who’ve had the same experience, we can confidently predict that you too will enjoy
Java.

For readers not familiar with Java, Chapter 7 presents enough of the Java language and
APIs to enable most readers—especially those already fluent in C++—to understand,
modify, and run the example programs in this book. If you find you'd prefer a more
thorough explanation of Java, please consider Object-Oriented Programming in Java, by
Gilbert and McCarty (Waite Group Press, 1997), which is designed to teach programming
and software development as well as the Java language and APlIs.

Chapter 8, “Java Threads”

Chapter 8 presents threads, an important topic for distributed object systems. The
chapter deals not only with the syntax and semantics of Java’s thread facilities, but also
with several pitfalls of thread programming, including race conditions and deadlocks.

Chapter 9, “Java Serialization and Beans”

Chapter 9 presents two additional Java APlIs: serialization and Beans. Serialization is
important to creating persistent and portable objects, while beans are important to
creating reusable software components.

Part lll: Java’s Networking and Enterprise APls

Part lll presents Java’'s networking and enterprise APIs. Distributed object systems use
these APIs either directly or through the mediation of a distributed object technology.

Chapter 10, “Security”

Chapter 10 presents Java’s security API, including ciphers and public key encryption
systems.

Chapter 11, “Relational Databases and Structured Query Lanquage

(SQL)”

Chapter 11 presents the basics of relational database technology, including an overview
of Structured Query Language (SQL).

Chapter 12, “Java Database Connectivity (JDBC)”

Chapter 12 presents the JDBC API, which facilitates access to SQL databases.

Chapter 13, “Sockets”

Chapter 13 explains socket programming and shows how to create clients and servers
that exchange data using sockets.

Chapter 14, “Socket-Based Implementation of the Airline Reservation
System”

Chapter 14 describes a socket-based implementation of a portion of the Airline
Reservation System example presented in Chapter 6. Chapter 14 helps you place the
explanations of Chapter 13 in a real-world context.

Chapter 15, “Remote Method Invocation (RMI)”’

Chapter 15 presents RMI and shows how to create and access remote objects.

Chapter 16, “RMI-Based Implementation of the Airline Reservation
System”

Chapter 16 describes an RMI-based implementation of a portion of the Airline
Reservation System example presented in Chapter 6. Chapter 16 helps you place the
explanations of Chapter 15 in a real-world context.

Chapter 17, “Java Help, Java Mail, and Other Java APIs”

-10 -

Chapter 17 describes two more APIs of interest to developers of distributed object
systems: Java Help and Java Mail. This chapter also surveys several Java APIs that are
currently under development.

Part IV: Non-CORBA Approaches to Distributed Computing

Part IV describes three non-CORBA approaches to distributed computing: RMI, Java
servlets, and DCOM.

Chapter 18, “Serviets and Common Gateway Interface (CGl)”

Chapter 18 presents Java servlets, which provide services to Web clients. The chapter
also describes CGI and surveys the HTML statements necessary to build typical CGI
forms for Web browsers.

Chapter 19, “Serviet-Based Implementation of the Airline Reservation
System”

Chapter 19 describes a servlet-based implementation of a portion of the Airline
Reservation System example presented in Chapter 6. Chapter 19 helps you place the
explanations of Chapter 18 in a real-world context.

Chapter 20, “Distributed Component Object Model (DCOM)”

Chapter 20 describes Microsoft's DCOM and compares and contrasts it with other
distributed object technologies.

Part V: The CORBA Approach to Distributed Computing

Part V presents CORBA and shows how to write Java clients and servers that
interoperate using the CORBA object bus.

Chapter 21, “CORBA Overview”

Chapter 21 presents an overview of CORBA, the OMG, and the process whereby the
OMG ratifies a specification.

Chapter 22, “CORBA Architecture”

Chapter 22 describes the CORBA software universe and shows you how CORBA
describes objects in a language-independent fashion.

Chapter 23, “Survey of CORBA ORBs”

Chapter 23 surveys popular CORBA ORBs, related products, and development tools.

Chapter 24, “A CORBA Server”

Chapter 24 presents a simple CORBA server written in Java and explains its
implementation in detail.

Chapter 25, “A CORBA Client”

Chapter 25 presents a simple CORBA client written in Java and explains its
implementation in detail.

-11 -

Chapter 26, “CORBA-Based Implementation of the Airline
Reservation System”

Chapter 26 describes a CORBA-based implementation of a portion of the Airline
Reservation System example presented in Chapter 6. Chapter 26 helps you place the
explanations of Chapters 24 and 25 in a real-world context

Chapter 27, “Quick CORBA: CORBA Without IDL”

Chapter 27 presents Netscape’s Caffeine and other technologies that let Java
programmers create CORBA clients and servers without writing IDL.

Part VI: Advanced CORBA

Part VI describes advanced CORBA features, facilities, and services.

Chapter 28, “The Portable Object Adapter (POA)”

Chapter 28 discusses one area that is changing under CORBA 3.0. The Basic Object
Adapter (BOA) is being replaced with the Portable Object Adapter (POA). Since the POA
will eventually replace the BOA, this chapter prepares you for the upcoming change by
first discussing problems inherent in the BOA, and then discussing how the POA solves
these problems. The chapter concludes with the POA IDL and a collection of examples
showing how Java applications use the POA.

Chapter 29, “Internet Inter-ORB Protocol (IIOP)”

Chapter 29 presents details of the Inter-ORB Protocol and demonstrates how it supports
interoperation of CORBA products from multiple vendors.

Chapter 30, “The Naming Service”

Chapter 30 presents CORBA’s naming service, which enables CORBA objects to locate
and use remote objects.

Chapter 31, “The Event Service”

Chapter 31 presents CORBA's event service, which enables CORBA obijects to reliably
send and receive messages representing events.

Chapter 32, “Interface Repository, Dynamic Invocation,
Introspection, and Reflection”

Chapter 32 presents the CORBA Interface Repository and Dynamic Invocation Interface
(DII), which enable CORBA objects to discover and use new types (classes).

Chapter 33, “Other CORBA Facilities and Services”

Chapter 33 surveys other CORBA facilities and services that are less commonly available
than those presented in previous chapters.

Part VII: Agent Technologies

Part VII presents software agents, which are objects that can migrate from network node
to node.

-12 -

Chapter 34, “Voyager Agent Technoloqy”

Chapter 34 presents software agent technology, using ObjectSpace’s Voyager as a
reference technology.

Chapter 35, “Voyager-Based Implementation of the Airline
Reservation System”

Chapter 35 describes a Voyager-based implementation of a portion of the Airline
Reservation System example presented in Chapter 6. Chapter 35 helps you place the
explanations of Chapter 34 in a real-world context.

Part VIlI: Summary and References

Part VIII provides a summary of the book’s contents, suggestions for further study, and
handy references.

Chapter 36, “Summary”

Chapter 36 recaps the book’s contents and offers suggestions for further study.

Appendixes

Appendix A, “Useful Resources”

Appendix A presents a bibliography of information useful to developers of distributed
object systems.

Appendix B, “Quick References”

Appendix B presents quick references that summarize key information and APIs in handy
form.

Appendix C, “How to Get the Most from the CD-ROM”

Appendix C provides a summary of the contents of the CD-ROM that accompanies this
book. It also provides system requirements, installation instructions, and a general
licensing agreement for the software on the CD-ROM. (Additional licensing terms may be
required by the individual vendors on certain software.)

Who Should Read This Book?

This book is written for the intermediate to advanced reader. We assume that you've
written enough programs to know your way around the tools of the trade, such as
operating systems, editors, and command-line utilities. It's helpful if you’ve had some
previous experience with Java. However, we provide an overview that will help you make
sense of the Java example programs even if you haven’t previously worked with Java.

We assume that you know about program variables, arrays, and files. It's helpful if your
programming experience includes some work with an object-oriented language. But we
provide some explanation of basic object-oriented programming along with our
explanation of Java.

However, we don’t assume that you're familiar with networks, object-oriented analysis
and design, or Unified Modeling Language (UML). This book includes chapters that
address each of these important topics.

- 13-

We don’t assume that your Java experience includes an understanding of advanced
features such as threads, Java Beans, serialization, or security. We also don’t assume
that you're familiar with SQL or JDBC. Instead, we present all these topics.

So if you've got a solid understanding of programming, this book contains all you need to
equip yourself to develop distributed object systems.

HOW TO USE THIS BOOK

A book can communicate ideas, but it cannot impart skills. Reading this book won't
instantly make you a better programmer, nor a competent developer of distributed object
systems. Experience is, in the end, the only teacher of skills.

Here’s how to gain experience in an unfamiliar programming domain: You should run
each of the example programs for yourself, studying them line by line until you thoroughly
understand how they work. It’s best to type them, rather than simply copy them from the
CD-ROM. By doing so, you'll force yourself to notice and question everything. Lest you
think this is mere idle advice, be assured that we apply this method ourselves. One of the
authors learned UNIX system programming, X-Windows, and Java exactly this way. In
the case of X-Windows he typed in, ran, and studied all the examples in three textbooks.
The method requires time and patience, but it is quite effective.

After you've understood a program, you should modify it to perform new, but related,
functions. Humans learn—or at least have the capacity to learn—from their mistakes. The
more mistakes you make and recognize as such, the more you've learned. Here’s a point
to ponder: You won’t make enough mistakes by merely reading this book. So get in front of
your keyboard and make some mistakes. That's the way to learn.

Part I: Basic Concepts

Chapter List

Chapter 1: Distributed Object Computing

Chapter 2: TCP/IP Networking

Chapter 3: Object-Oriented Analysis and Design

Chapter 4: Distributed Architectures

Chapter 5: Design Patterns

Chapter 6: The Airline Reservation System Model

Chapter 1: Distributed Object Computing

Overview

Somewhat oddly, the principal purpose of a system of distributed objects is to better
integrate an organization. By properly distributing pieces of software (objects) throughout
the organization, the organization becomes more cohesive, more effective, and more
efficient. As you might know from experience, the devil is in that important adverb
properly. Experience shows that scattering software to the wind is likely to bring about
disorder, ineffectiveness, and inefficiency.

- 14 -

This book aims to help you avoid such catastrophes, by introducing you to a
comprehensive toolkit of technologies and methods for implementing distributed object
systems. Our emphasis is on the Common Object Request Broker Architecture (CORBA)
because, as we see it, it's the most powerful technology for building distributed object
systems available today. But we don’t give other options short shrift. We describe each
technological option, present and explain simple examples showing how to use it,
compare and contrast it with other technologies, and provide a larger example that
demonstrates how to apply it to real-world-sized systems.

This chapter sets the stage for the play that follows, by introducing fundamental concepts
and terms related to distributed objects. It also explains the structure of this book and
provides some friendly advice intended to enhance your understanding and application of
the material it presents. More specifically, in this chapter you learn:

+ What distributed object systems are.

Objects are software units that encapsulate data and behavior. Objects that reside
outside the local host are called remote objects; systems that feature them are termed
distributed object systems.

* Why objects should be distributed.

The introduction to this chapter presents a brief business case for distributed object
systems. However, the introduction doesn’t explain how distributed object technologies
actually support the business case by providing more effective and efficient
computation. That explanation is the topic of the second section of this chapter.

* Which technologies facilitate the implementation of distributed object systems.

Before the advent of the Web, people talked about the rapidity of technological
change. Now, technology seems to change so rapidly that few dare talk about it, lest
they suffer the social embarrassment of reporting old news. In the third section of this
chapter, we’ll give you a map that will help you navigate the forest of distributed object
acronyms.

* Which related technologies distributed objects draw upon.

Distributed objects didn’t autonomously spring into existence, and they don't exist
within a technological vacuum. Rather, they’re a logical milestone in the progress of
computing. In the fourth section of this chapter, we’ll identify and describe the
technological progenitors and cousins that make distributed objects what they are.

* Who should read this book and how it should be used.

Generally, this information is presented in the introduction of a book. However, we've
observed that most software developers are impatient to read about technology and
therefore skip book introductions. Because this information is important, we’ve put it in
this chapter, where we hope you'll read it and follow its advice. For those who actually
read introductions, we’ve included one in this book that contains an abridged version of
this material. So, if you read the introduction, congratulations, and thanks. Be sure to
read this section anyway, because it contains information not found in the introduction.

WHAT IS A DISTRIBUTED OBJECT SYSTEM?

Simply put, distributed object computing is the product of a marriage between two
technologies: networking and object-oriented programming. Let’s examine each of these
technologies.

- 15 -

Distributed Systems

The word distributed in the term distributed object system connotes geographical
separation or dispersal. A distributed system includes nodes that perform computations.
A node may be a PC, a mainframe computer, or another sort of device. The nodes of a
distributed system are scattered. You refer to the node you use as the local node and to
other nodes as remote nodes. Of course, from the point of view of a user at another
node, your node is the remote node and his is the local node.

Networks make distributed computing possible: You can’t have a distributed system
without a network that connects the nodes and allows them to exchange data. One of the
great forces driving distributed systems forward is the Web, which you can think of as the
largest distributed computing system in the world. Of course, the Web is a rather unique
type of system. For example, it has no single purpose, no single designer, and no single
maintainer. The Web is actually a federation of systems, a network of networks. A unique
aspect of the Web is its popularity: A rapidly increasing proportion of computers connects
to the Web and therefore—at least potentially—to one another.

Object-Oriented Systems

Of course, not every distributed system is “object oriented.” However, mingling objects
and distributed computing yields a synergistic result akin to that of mingling tomatoes and
basil. You can have objects that aren’t distributed, and you can distribute software that’s
not object oriented, just as can make pasta sauce with either tomatoes or basil. But, put
the two together, and something marvelous happens.

In the case of software systems, that marvelous result is standardization. You've
probably read many accounts that define object-oriented technology: What it is and how it
differs from non—object-oriented technology. We've written a few of these, and almost all
(some of our own included) make too much of too little. The real uniqueness of
objectoriented technology can be summed up in a single word: interface.

An interface is a software affordance, like the knob on your front door, the steering wheel
of your car, or a button on your television remote control. You manipulate and interact
with an affordance to operate the device of which it is a part. Software interfaces work the
same way. When you want to use the XYZ Alphabetic Sorter Object in your program, you
don’t need to know what’s inside it, how it was made, or how it works. You only need to
know its interface.

Our modern civilization rests on the notion of conveniences. If we had to understand
electronics in order to watch TV or automotive engineering to drive to the supermarket,
our lives would change radically. Yet, until object-oriented technology, the software world
required programmers to surmount analogous obstacles.

If you’re familiar with object-oriented technology, you may object to this simple—
seemingly simplistic—explanation. “What of P-I-E (polymorphism, inheritance, and
encapsencapsulation)?? you might wish to protest. As we see it, these important
properties are not ends in themselves but merely means—means intended to provide
flexible, reliable, easy-to-use interfaces. In a nutshell, because of these properties,
object-oriented programs provide more flexible, reliable, and easy-to-use interfaces than
non—object-oriented systems.

These better interfaces, in turn, provide two useful properties: interchangeability and
interoperability. Just as precision-machined components spurred an industrial revolution,
interchangeable software components—made possible by high-quality object-oriented
interfaces—have spurred a software revolution. You may not be aware that today’s
extensive markets for software components—spelling checkers, email widgets, and
database interfaces, for example—did not exist even ten years ago. Today, using an
Interactive Development Environment (IDE), you can drop a chart-drawing component
into your program rather than write one yourself, saving you and your employer both time

- 16 -

and trouble. If your needs are simple, it may not matter a great deal which chartdrawing
component you choose to use. Any of the available choices will work in your program
because their standardized interfaces make them interchangeable.

Standardized interfaces also promote interoperability, the ability of components to work
together. Software components from different vendors can be plugged into an object bus,
which lets the components exchange data. You can build entire systems from software
components that have never previously been configured together. The components will
interoperate successfully because their interfaces are standardized.

The case for the use of object-oriented systems could be further elaborated. If you're
interested in the topic, you should consult any of the several books by Dr. Brad Cox, which
are among the best on the subject.

WHY DISTRIBUTE OBJECTS?

So far, we've established that objects are “good” and that it's possible, by means of
networking, to distribute them. However, the question remains: Why distribute them?

If your organization occupies a single location and has few computers, you probably don'’t
need a distributed object system. However, in search of economies of scale and scope,
many organizations have grown large, occupying many locations and owning many
computers. These organizations can benefit from applying distributed object
technologies.

To see these benefits, consider the polar opposite of a distributed system: a centralized
system supported by a single mainframe computer, as illustrated in Figure 1.1. In this
configuration, the mainframe computer does all the application processing, even though
the remote systems may be PCs capable of executing millions of instructions per second.
The remote systems act as mere data entry terminals.

As proponents of the client/server architecture have pointed out, several drawbacks
attend this monolithic architecture:

» When the mainframe computer is unavailable, no processing can be performed
anywhere.

+ All data must be transported across the network to the central computer, which is the
sole repository of data. This applies even if the data is needed only locally. The
resulting volume of traffic requires greater network bandwidth than an architecture that
stores data near the point of origin or probable need.

» The single mainframe computer is more costly to purchase and operate than an
equivalently powerful set of smaller computers.

In contrast to the rigid “the mainframe does it all” policy that underlies a nondistributed
system, distributed object systems take a more flexible approach: Perform the
computation at the most cost-effective location. Of course, you can err by understanding
the term cost-effective in too narrow a sense. We use the term as meaning the long-run
total cost of building and operating a system, not merely such obvious and tangible initial
costs as hardware.

-17 -

1= | —

Ressacla PO o Taiming

P |
==
Raimidta PC of Taminal
T— T
| ST
L
“L J Caoniral Mainirame Compaior L _l
@/ =
—

Rl PG o Taiminal Ramgla PG or Tammiral

W=

[re—
Rsslg PO o Taimine

Figure 1.1: A centralized system often uses resources inefficiently.

If your interest is technology rather than business, you may be put off by this mention of
cost-effectiveness. Many books on distributed computing omit discussion of the reasons for
distributing computation. Perhaps the reasons are so obvious that they go without saying.
However, it’s altogether too common for fans of technology to apply a technology just
because it’s the latest and “best.” If distributed object systems are to have a future,
software developers must build them intelligently. Only by bearing in mind the goals and
needs of the organization can developers correctly decide which computations should be
performed where. You'll learn more about computing architectures in Chapter 4,
“Distributed Architectures.”

DISTRIBUTED OBJECT TECHNOLOGIES

A distributed object technology aims at location transparency, thus making it just as easy
to access and use an object on a remote node (called, logically enough, a remote object)
as an object on a local node. Location transparency involves these functions:

* Locating and loading remote classes
* Locating remote objects and providing references to them

+ Enabling remote method calls, including passing of remote objects as arguments and
return values

* Notifying programs of network failures and other problems

The first three functions are familiar even to programmers of nondistributed systems.
Nondistributed systems must be able to locate and load classes, obtain references to
local objects, and perform local method calls. Handling nonlocal references is more
complex than handling local references, but the distributed computing technology
shoulders this burden, freeing the programmer to focus on the application. Let’s consider
each of these functions in more detail.

The first function, locating and loading remote classes, is needed by ordinary Java
applets, which may contain references to classes that the browser must download from
the host on which the applet resides. However, distributed object systems demand a
somewhat more flexible capability that can locate and download classes from several

- 18 -

hosts. Such a capability lets system developers store classes on whatever system can
provide the classes most efficiently. Developers can even store classes on multiple
systems, possibly providing improved system performance or availability.

The second function, locating and obtaining references to remote objects, requires some
sort of catalog or database of objects and a server that provides access to the catalog.
When your program needs a particular service, it can ask the catalog server to provide it
with a reference to a suitable server object. Normally, object references are memory
pointers or handles that reference entries within object tables. You can’t simply send
such a reference across a network, because it won’t be valid at the destination node. At
the least, remote references must encode their node of origin. Languages such as Java
that support garbage collection of unused objects require mechanisms that can
determine whether remote references to an object exist. An object must not be scrapped
if it's in use by a remote node, even if it's not being used by the local node.

The third function, supporting method calls, requires mechanisms for obtaining a
reference to the target method as well as mechanisms for transporting arguments and
return values across the network. Because objects may contain other objects as
components, much activity may be required to perform an apparently simple method call.

The fourth function, notifying programs of network failures, may be unfamiliar to you if
you've programmed only nondistributed systems. You may even think that this function is
unnecessary, but it serves an important purpose. Distributed computing differs from
ordinary computing in several ways, so it's not always possible or even desirable to
provide full location transparency. The fourth function is necessary so that the distributed
system can notify programs when location transparency fails.

Consider the case of a nondistributed system running on a standalone computer. If the
computer malfunctions, it can do no useful work and might as well be shut down.
Distributed systems operate differently. If a single node of the network malfunctions, the
other nodes can—and should—continue to operate. In a distributed environment, an
attempt to reference an object may fail, yet such a failure need not entail shutting down
the application. It may be more appropriate to simply advise the user that the requested
object is not currently available. Such a fail-soft approach is less commonly helpful in
standalone applications, where availability of objects is all or nothing.

Most approaches to distributed computing define special exceptions that are thrown
when an attempt to reference a remote object fails. As you'll see in subsequent chapters,
writing code to handle such exceptions is one of the greatest differences between
programming distributed systems and nondistributed systems. Fortunately, due to help
provided by distributed object technologies, this code is not difficult to write.

Now that you have a foundation for understanding distributed object technologies, let's
survey some of the specific technologies you'll meet in subsequent chapters: Remote
Method Invocation (RMI), Microsoft’s Distributed Component Object Model (DCOM), the
Common Object Request Broker Architecture (CORBA), and ObjectSpace’s Voyager.

Remote Method Invocation (RMI)

Sun developed RMI as a Java-based approach to distributed computing. RMI provides a
registry that lets programs obtain references to remote server objects and uses Java’s
serialization facility to transfer method arguments and return values across a network.
Though it's Java-based, RMI is not necessarily Java only. By combining RMI with the
Java Native-code Interface (JNI), you can interface C/C++ code with RMI, providing a
bridge to non-Java legacy systems.

Moreover, Sun has announced a joint project with IBM that aims to develop technology
that will let RMI interoperate with CORBA. Because RMI is implemented using pure Java
and is part of the core Java package, no special software or drivers are needed to use
RMI. However, Microsoft has announced that it does not plan to provide RMI as part of its
implementation of Java, choosing instead to put the full weight of its considerable

-19 -

marketing muscle behind its own distributed object technology, DCOM.

Distributed Component Object Model (DCOM)

Microsoft's DCOM is an evolutionary development of Microsoft’s ActiveX software
component technology. DCOM lets you create server objects that can be remotely
accessed by Visual Basic, C, and C++ programs. Visual J++ and Microsoft’s Java
Interactive Development Environment (IDE) let you write Java programs that access
DCOM objects. However, such programs will not currently run on non-Microsoft
platforms. If other vendors choose to support DCOM, it may someday be possible to
write portable Java programs that access DCOM servers.

Common Object Request Broker Architecture (CORBA)

The Object Management Group (OMG) is a consortium of over 800 companies that have
jointly developed a set of specifications for technologies that support distributed object
systems. CORBA specifies the functions and interfaces of an Object Request Broker
(ORB), which acts as an object bus that allows remote objects to interact. Unlike RMI,
CORBA is language-neutral. To use CORBA with a given programming language, you
employ bindings that map the data types of the language to CORBA data types. CORBA
bindings are available for COBOL, C, C++, and Java, among other languages.

Several vendors provide software that complies with CORBA. Because CORBA'’s
interfaces are standard, you can build systems that include products from multiple
vendors. However, the way you write a program to access an ORB does vary somewhat
from vendor to vendor, so CORBA programs are not portable across platforms. Because
CORBA implementations are widespread and relatively mature, this book focuses on
CORBA. Moreover, you can explore CORBA without incurring significant cost: Sun freely
distributes Java IDL, an ORB, with its Java Developer’s Kit (JDK).

Missing from the CORBA bandwagon is Microsoft, which touts its own distributed object
technology, DCOM, as superior to CORBA. However, Microsoft users find no shortage of
support for CORBA among the vendors who offer CORBA products for use on Microsoft
platforms.

Voyager

ObjectSpace offers a free software package called Voyager, which provides the ability to
create and control Java-based software agents. Agents are mobile objects that can move
from node to node. For example, an agent that requires access to a database may
relocate itself to the node that hosts the database rather than cause a large volume of
data to be transmitted across the network. The same agent may later relocate itself to the
user’s local node so that it can efficiently interact with the user.

Because Java byte codes are portable, Java offers unique developers of software agents
unique advantages. Voyager makes it easy to explore software agent technology.
Moreover, Voyager is no mere toy: Several companies have built sophisticated distributed
object systems using Voyager.

FROM HERE

You've learned what distributed objects are and why distributed object systems are useful.
You've learned about technologies important to the implementation of distributed systems,
including RMI, DCOM, CORBA, and software agents. You’ve also learned about key
enabling technologies such as Java and networking on the Web. The rest of this book
builds on this chapter as its foundation.

Chapter 2: TCP/IP Networking

-20 -

Overview

The pre-Columbian Indians known as the Inca, who lived along the Pacific coast of South
America, knew the importance of communication. They linked an empire of about 12
million people with an elaborate system of roads. Two main north-south roads ran for
about 2,250 miles, one along the coast and the other inland along the Andes mountains.
The Inca roads featured many interconnecting links, as well as rock tunnels and vine
suspension bridges. Runners could carry messages, represented by means of knotted
strings, along these roads at the rate of 150 miles per day. Ironically, the Inca’s effective
transportation system made it much easier for the Spanish Conquistadors to conquer
them.

In previous eras of computing, computers were mostly standalone devices; data
communication was relatively limited. In contrast, the present era of computing is
dominated by networks and networking. Just as the Inca road system permitted rapid
delivery of information in the form of knotted strings, today’s modern networks permit
rapid delivery of digitally encoded packets of information.

Although there are a number of networking standards, the Transmission Control
Protocol/Internet Protocol (TCP/IP) family of protocols has established itself as the most
popular standard, connecting tens of millions of hosts of every imaginable manufacture
and type. In this chapter you learn

* How the TCP/IP family of protocols is structured

The TCP/IP protocols are arranged in four layers of increasing sophistication and
power: the network access layer, the Internet layer, the transport layer, and the
application layer.

» How the TCP/IP protocol moves data from one device to another

TCP/IP forms data into packets and uses IP addresses to interrogate routers, which
supply a route from the source to the destination.

* About the major TCP/IP services

TCP/IP doesn’t merely move data, it provides a rich variety of services to users,
programmers, and network administrators.

» How to troubleshoot TCP/IP problems

You don’t need to be a TCP/IP guru to solve many common TCP/IP problems. You learn
here how to use commonly available tools to diagnose TCP/IP problems.

TCP/IP PROTOCOL ARCHITECTURE

A protocol is nothing more than an agreed way of doing something. Diplomatic protocol,
for example, avoids unintentional insult of dignitaries by rigidly fixing the sequence in
which they are introduced to one another. In the world of computer networks, a
communications protocol specifies how computers (or other devices) cooperate in
exchanging messages. Some people refer to communications protocols as handshaking,
which is an accurate, though metaphorical, picture of what’s involved.

Diplomats often find it difficult to get disputing parties together to talk about and resolve
their differences. In the hardware/software world, it seems even more difficult to
introduce dissimilar computers to one another and get them to shake hands. As a
consequence, communications protocols are vastly more complex than diplomatic

-21 -

protocols. As you'll see, a whole family of protocols is involved in simply moving a
message from one computer to another.

In his book, The Wealth of Nations, the great economist Adam Smith argued in favor of
core competencies. He believed that economic wealth is maximized when nations and
individuals do only what they do best. Centuries later, modern corporations struggle to
apply his advice as they decide which business functions should be maintained and
which should be outsourced.

The TCP/IP protocols apply this wisdom: That's why they comprise a number of smaller
protocols, rather than one enormous protocol. Each protocol has a specific role, leaving
other considerations to its sibling protocols.

Unfortunately, there are so many TCP/IP protocols that the beginner is overwhelmed by
their sheer number. To simplify understanding TCP/IP protocols, each protocol is
commonly presented as belonging to one of four layers, as shown in Figure 2.1. Every
protocol in a layer has a related function. The layers near the bottom of the hierarchy
(network access and Internet) provide more primitive functions than those near the top of
the hierarchy (transport and application). Typically, the bottom layers are relatively more
concerned with technology than the top layers, which are concerned with user needs.

Application Layer

e areagr] Layer

sl Layer

Bptwinrk; Airiss Layer

Figure 2.1: The four layers of the TCP/IP protocols form a pyramid.

Note If you're familiar with data communications, you may know the Open Systems
Interconnect (OSI) Reference Model. This seven-layer model is presented in
many textbooks and taught in many courses. However, its structure does not
accurately match that of the TCP/IP protocols (or equally fairly, the structure
of the TCP/IP protocols does not accurately match that of the OSI Reference
Model). Consequently, this chapter ignores the OSI Reference Model,
focusing instead on the four-layer model that better describes TCP/IP.

Let's examine each of the four layers of the TCP/IP protocols in detail. We'll start with the
bottom layer and work our way up the pyramid.

Network Access Layer

The bottom layer of the TCP/IP protocol hierarchy is the network access layer. The
functions it performs are so primitive—so close to the hardware level—that they’re often
transparent to the user. These functions include

* Restructuring data into a form suitable for network transmission
» Mapping logical addresses to physical device addresses

Networks often impose constraints on data they transmit. One of the network access
layer’s jobs is to restructure data so that it's acceptable to the network. Of course, it does
this in a way that permits the data to be reconstituted into its original form at the
destination.

-22 -

Every device attached to a network has a physical device address. Some devices may
have more than one address—a computer with multiple network cards, for example.
Physical addresses are often cumbersome in form, consisting of a series of hexadecimal
digits. Moreover, devices come and go; for example, a network interface card may fail
and have to be replaced.

Programmers who write programs that must be revised whenever a device is replaced do
not find many friends in the workplace. Therefore, programmers prefer to work with
logical addresses rather than physical addresses. TCP/IP provides a logical address,
known as an IP address or IP number, that uniquely identifies a network device. A
network device can use a special TCP/IP protocol to discover its IP address when it is
started. That way, programs can be insulated from changes in the hardware devices that
compose the network.

The good news about the network access layer is that its functions are usually
implemented in the network device’s device driver. Neither users nor application
programmers are typically much concerned with the workings of the network access
layer. Of course, without the network access layer, the jobs of the Internet and other
layers would be much more complicated.

Internet Layer

The Internet layer, which sits atop the network access layer, provides two main

protocols: the Internet protocol (IP) and the Internet control message protocol (ICMP). All
TCP/IP data flows through the network by means of the IP protocol; the ICMP protocol is
used to control the flow of data.

The IP Protocol

Because the TCP/IP protocols are named, in part, for the IP protocol, you might correctly
guess that the IP protocol performs some of the most important networking functions. For
example, the IP protocol

» Standardizes the contents and format of the data packet, called a datagram, that is
transmitted across the network

+ Selects a suitable route for transmission of datagrams
+ Fragments and reassembles datagrams as required by network constraints
+ Passes data to an appropriate higher-level protocol

The IP protocol precedes every packet of data with five or six 32-bit words that specify, in
a standard format, such information as the source and destination addresses of the
packet, the length of the packet, and the TCP/IP protocol that will handle the data. By
standardizing the location and format of this data, the IP protocol makes it possible to
exchange messages between devices built by different manufacturers. The open
architecture of TCP/IP is one of the reasons it is so popular, in contrast to the limited
popularity of the several proprietary architectures promoted by vendors.

Note An open architecture or technology is one developed and subscribed to by
multiple vendors, such as Common Object Request Broker Architecture
(CORBA), which is the product of the joint efforts of hundreds of companies. A
proprietary architecture or technology is one developed and promoted by a
single vendor, such as Microsoft’s Distributed Object Component Model
(DCOM) or Novell's IPX.

A central purpose of TCP/IP is to allow exchange of data among, not merely within,

_23 .

computer networks. To move data from one network to another, the two networks must
somehow be connected. Typically, the connection takes the form of a device, called a
gateway, that is attached to each network. The hosts, or non-gateway devices, of one
network can exchange data with the hosts of the other network by means of the IP
protocol, which routes the data through the common gateway (as shown in Figure 2.2).

Bhatwork A ol Matwenrk B Host

A

Caadaiay -

Heteak & Meataark A

Figure 2.2: The IP protocol routes information between networks.

Hosts need not be connected via a single intermediate gateway. The IP protocol is
capable of multi-hop routing (see Figure 2.3), which passes a packet through as many
gateways as necessary in order to reach the destination system.

Another responsibility of the IP protocol is packet fragmentation. Networks typically
impose an upper limit on the size of a transmitted packet, called the maximum
transmission unit (MTU). The IP protocol hides this complexity by automatically
fragmenting and reassembling datagrams so that the network MTU is never exceeded.

The IP protocol’s final task is to pass received packets to the proper higher-level protocol.
It relies on a protocol number stored in the packet to determine the protocol to which it
should deliver the packet.

The IP protocol has two properties of particular interest. First, it is a connectionless or
stateless protocol. To understand what this means, consider the opposite: a
connectionoriented protocol. One example is the nurse who screens telephone calls
directed to your physician. You explain the reason for your call and the nurse decides
whether it's proper to interrupt the busy physician. You wait until finally you hear the
reassuring, “Dr. Casey will speak to you now.” Only then do you begin your dialog with
the physician.

A connectionless protocol, on the other hand, imposes no screening. If your physician
used a connectionless protocol, you could simply begin talking the moment the phone
was answered. Of course, you might have dialed a wrong number; instead of your
physician, you might have reached the local pizzeria, where the employees are puzzled
and amused by your earnest questions regarding test results. To avoid mix-ups of this
sort, the IP protocol depends upon other, higher-level protocols. In other words, the
connectionless IP protocol alone won'’t prevent a connection to the wrong host or
gateway.

-4 -

HMetvecri & st

'y

L

Gintemway &1

Mestveor [Fioss

Figure 2.3: Hosts can be connected via several intermediate gateways via IP
protocol multi-hop routing.

Second, the IP protocol is an unreliable protocol. This doesn’t mean that data sent via the
IP protocol may be received in corrupted form, only that the IP protocol itself doesn’t
verify that data has been transmitted correctly. Other, higher-level protocols are
responsible for this important task. Because of the support the IP protocol receives from
its sibling protocols, you can safely trust it with your most important data.

The ICMP Protocol

Like the IP protocol and the protocols of the network access layer, the ICMP protocol
works behind the scenes to make networking as simple, reliable, and efficient as
possible. The ICMP protocol has four main responsibilities:

» Ensure that source devices transmit slowly enough for destination devices and
intermediate gateways to keep pace

» Detect attempts to reach unreachable destinations
» Dynamically re-route network traffic
* Provide an echo service used to verify operation of a remote system’s IP protocol

When a network device, either a host or a gateway, finds that it cannot keep up with a
source’s flow of datagrams, it sends the source an ICMP message that instructs the
source to temporarily stop sending datagrams. This helps avoid data overruns that would
necessitate retransmission of data, which would reduce network efficiency.

The ICMP protocol also provides a special message that is sent to a host that attempts to
send data to an unreachable host or port. (You learn about ports in this chapter’'s
“Packets, Addresses, and Routing.”) This message enables the sending host to deal with
the error, rather than waiting indefinitely for a reply that will never come.

The ICMP protocol also enables dynamic re-routing of packets. For example, consider
the networks shown in Figure 2.4. Two gateways join the networks, allowing data to flow
from one network to the other through either gateway. The ICMP protocol provides a

_25.-

message that acts as a switch, telling hosts to use one gateway in preference to the
other. This message, for example, can allow one gateway to take over when the other
fails or is shut down for maintenance. The path from Host A to Host B has been
dynamically re-routed through Gateway #2 due to the broken connection between Host A
and Gateway #1.

Finally, the ICMP protocol provides a special echo message. When a host or gateway
receives an echo message, it replies by sending the data packet back to the source host.
This permits verification that the host or gateway is operational. The ping command,

I

which you meet in this chapter’s “Troubleshooting,” relies upon this message.

Transport Layer

The transport layer sits atop the Internet layer. Like the Internet layer, the transport layer
provides two main protocols: the transmission control protocol (TCP) and the user
datagram protocol (UDP). Most network data is delivered by TCP. A few special
applications benefit from the lower overhead provided by UDP.

Mo & Hiosl Ptk B Hosi

~

—————————— | Gateway ¥l |

Hitmiik 4 i Mutmiik B
1

Y

Ciabcyvay ¥2 |-

Figure 2.4: Networks can provide multiple data paths by dynamic re-routing of
packets.

The TCP Protocol

As the name TCP/IP suggests, the TCP and IP protocols are at the center of TCP/IP
networking. Recall that the IP protocol is an unreliable protocol that transmits data
packets from one host to another. The TCP protocol builds on these basic functions by
adding

» Error checking and re-transmission, so that data transmission is reliable
» Assembly of packets into a continuous stream of data in the proper sequence
» Delivery of data to the application program that processes it

The TCP protocol provides a sending host that periodically re-transmits a packet until it
receives positive confirmation of delivery to the destination host. The receiving host uses
a checksum within the packet to verify that the packet was received correctly. If so, it
transmits an acknowledgment to the source host. If not, it simply discards the bad packet;
the source host therefore re-transmits the packet when it fails to receive a timely
acknowledgment.

Most programs view data as a continuous stream rather than packet-sized units of data.
The TCP protocol takes responsibility for reconstituting packets into a stream. This is

-26 -

more difficult than it might sound because packets do not always follow a single path
from source to destination. As you can see in Figure 2.5, packets may arrive at the
destination out of sequence. The TCP protocol uses a sequence number in each packet
to reassemble the packets in the original sequence.

E E

Sior Natwark Palh sy
Sourca Host Dastination Host
Fast Matwork Fath =¥
[N — —
Transmined Feeared
SO SR

Figure 2.5: Data packets may arrive out of sequence and must be reassembled.

The TCP protocol delivers the data stream it assembles to an application program. An
application listens for data on a port, which is designated by a number called the port
number, which is carried within every datagram. The TCP protocol uses the port number
to deliver the data stream. You learn more about ports in the “Ports and Sockets” section.

Every function exacts a price, however small, in overhead. Applications that do not
require all the functions provided by the TCP protocol may use the UDP protocol, which
has fewer functions and less overhead than the TCP protocol.

The UDP Protocol

Essentially, UDP provides the important port number that enables delivery of a packet to
a particular application program. However, data transmission via UDP is unreliable and
connectionless. This means that the application program must verify that packets were
sent accurately and, if stream-oriented data are involved, reassemble them into proper
sequence.

When small amounts of data are exchanged between network devices—that is, amounts
less than the maximum size of a packet—the UDP protocol may present few
programming difficulties, yet provide improved efficiency. For example, if messages
strictly alternate between devices, following a query-response model in which one device
transmits a packet and then the other transmits a response, packet sequence may not be
an issue. In such a case, the capabilities of TCP are largely wasted.

In principle, UDP allows a system’s designer to trade off performance under less than
ideal conditions (where TCP shines) for performance under ideal conditions (where UDP
shines). When network reliability is substandard, UDP performance may be no better,
and perhaps worse, than that of TCP. As one wag put it, “‘UDP potentially combines the
low performance of a connectionless protocol with the inefficiency of TCP.”

Moreover, some network administrators who fear security breaches do not allow UDP
packets to cross into their networks, allowing them only on the local, highly reliable
network. Consequently, UDP remains a specialty protocol with limited application.

Application Layer

The uppermost layer of the TCP/IP family of protocols is the application layer, which
includes every application program that uses data delivered by TCP/IP. Certain
applications, such as mail and remote login, have become highly standardized. You

_27 -

9 K6

learn about several standard applications in this chapter’s “TCP/IP Services” section.

Other applications are highly specialized; the program used by a Web retailer to record
your purchases and debit your account is an example. This is where the real action of
distributed computing is taking place today. System designers and programmers are
working to conceive and build entirely new sorts of applications using technologies like
Java and mobile agents, which were not widely available even a few years ago.

PACKETS, ADDRESSES, AND ROUTING

In the last section you learned what the key TCP/IP protocols do. Now take a closer look
at how TCP/IP works. This section’s goal is not to make you a TCP/IP network
administrator, but merely to give you a working knowledge of TCP/IP sufficient to
develop networkcapable software and to communicate with network administrators
responsible for configuring the systems on which your programs run. By learning a bit
more about the TCP/IP, you’ll be a more effective system developer.

IP Addresses

Recall that the IP protocol provides every network device with a logical address, called an
IP address, which is more convenient to use than the device’s physical address. The IP
addresses provided by the IP protocol take a very specific form: Each is a 32-bit number,
commonly represented as a series of four 8-bit numbers (bytes), which range in value
from 0 to 255. For example, 192.190.268.124 is a valid IP address.

The purpose of the IP address is to identify a network and a specific host on that network.
However, the IP protocol uses four distinct schemes, known as address classes, to
specify this information.

The value of the first of the four bytes that compose an IP address determines the form of
the address:

» Class A addresses begin with a value less than 128. In a Class A address, the first
byte specifies the network and the remaining three bytes specify the host. About 16
million hosts can exist on a single Class A network.

» Class B addresses begin with a value from 128 to 191. In a Class B address, the first
two bytes specify the network and the remaining two bytes specify the host. About
65,000 hosts can exist on a single Class B network.

» Class C addresses begin with a value from 192 to 223. In a Class C address, the first
three bytes specify the network and the remaining byte specifies the host. Only 254
hosts can exist on a single Class C network (hosts 0 and 255 are reserved).

IP addresses that begin with a value greater than 223 are used for special purposes, as
are certain addresses beginning with 0 and 127.

As you can see, a Class A address enables you to specify a much larger network than a
Class C address. Class A addresses are assigned to only the largest of organizations;
smaller organizations must make do with Class C addresses, using several such
addresses if they have more than 254 network hosts.

Routing

IP addresses are important because of their role in routing, finding a suitable path across
which packets can be transmitted from a source host to a destination host. Every packet
contains the destination host’s IP address. Network hosts use the network part of the
destination IP address to determine how to handle a packet. If the destination host is on
the same network as the host, the host simply transmits the data packet via the local

-28 -

network. The destination host receives and processes the packet.

If the destination host is on a different network, the host transmits the packet to a
gateway, which forwards the packet to the destination, possibly by way of several
intermediate gateways. The host determines to which gateway it should send the packet
by searching its routing table, which lists known networks and gateways that serve them.
Generally, the routing table includes a default gateway used for destination hosts that are
on unfamiliar networks. Internally, the default gateway is known by the special IP address
0.0.0.0. Other special IP addresses are 127.0.0.1, which is used as a synonym for the
address of the host itself, and 127.0.0.0, which is used as a synonym for the local
network.

The routing table does not provide enough information for a host to construct a complete
route to the destination host. Instead, it determines only the next hop in the journey,
relying on a downstream gateway to pick up where it left off.

Hosts can be configured to use static routing, in which the routing table is built when the
host is booted, or dynamic routing, in which ICMP messages may update the routing
table, supplying new routes or closing old ones. Typically, system administrators use
static routing only for small, simple networks; larger, more complex networks are easier
to manage using dynamic routing.

Ports and Sockets

Recall that the TCP protocol’s final task is to hand the data stream to the proper
application, identified by the port number contained in the packets that compose the data
stream. Certain port numbers, so-called well-known port numbers (see Table 2.1), are
normally reserved for standard applications.

TABLE 2.1 Some Representative Well-Known Port Numbers and Their Associated
Applications

Port Number Application

7 ECHO, which retransmits the received packet

21 FTP, which transfers files

23 Telnet, which provides a remote login

25 SMTP, which delivers mail messages

67 BOOTP, which provides configuration information at boot time

109 POP, which enables users to access mail boxes on remote systems

Port numbers are 16-bit numbers, providing for 65,536 possible ports. Although there are
dozens of well-known ports, these are a fraction of the available ports. The remaining
ports are dynamically allocated ports known as sockets. The combination of an IP
address and a port number uniquely identifies a program, permitting it to be targeted for
delivery of a network data stream.

-29.

Well-known ports and sockets are typically used together. For example, suppose a user
on host 111.111.111.111 wants to access mail held on host 222.222.222.222. The user’s
program first dynamically acquires a socket on host 111.111.111.111. Assume that
socket 3333 is assigned; the complete source address, including IP address and port
number, is then 111.111.111.111.3333. Because the POP application uses well-known
port 109, the destination address is 222.222.222.222.109. The user’s program sends a
packet to the destination address, a packet containing a request to connect to the POP
application. The TCP/IP protocols pass the packet across the network and deliver it to the
POP application.

The POP application considers the request and decides whether to allow the user to
connect. Assuming it decides to allow the connection, it dynamically allocates a socket.
Assume that socket 4444 is assigned. The two hosts now begin a conversation involving
addresses 111.111.111.111.3333 and 222.222.222.222.4444. Port 109 is used only to
initially contact the POP application. By allocating a socket specifically for the
conversation between the hosts, port 109 is quickly made available to serve other users
who want to request a connection. Other well-known applications respond similarly.

Hosts and Domains

Recalling the IP addresses of network hosts quickly grows tiring: Was the budget
database on host 111.123.111.123 or 123.111.123.111? Fortunately, a standard TCP/IP
service frees users and programmers from this chore. The Domain Name Service (DNS)
translates from structured host names to IP addresses and vice versa.

The structured names supported by DNS take the form of words separated by periods.
For example, one host familiar to many is the AltaVista Web search engine, known as
altavista.digital.com. The components of this fully qualified domain name
(FQDN) include the host name, altavista, and the domain name, digital.com. As
the period indicates, the domain name itself is composed of two parts: the top-level
domain, com, and the subdomain, digital.

There are six commonly used top-level domains in the U.S., as shown in Table 2.2.
Outside the U.S., most nations use top-level domains that specify a host’s nation of
origin. For example, the top-level domain ca is used in Canada, and the top-level
domain uk is used in the United Kingdom. However, there is no effective regulation of
top-level domains, so alternative schemes are in use and continue to arise. For example,
some host names within the U.S. use the domain us, following the style used by most
other nations.

TABLE 2.2 Common Top-Level Domains Used in the U.S.

Domain Organization Type

com Commercial organizations
edu Educational institutions
gov Government agencies
mil Military organizations

-30 -

net Network support organizations and access providers

org Non-profit organizations

Authority to establish domains is held by the Internet Resource Registries (IRR), which
hold authority for specific geographic regions. In the U.S., InterNIC holds authority to
assign IP addresses and establish domains.

Once an organization has registered a domain name with the appropriate IRR, the
organization can create as many subdomains as desired. For example, a university
might register the domain almamater.edu. It might then establish subdomains for various
university departments, such as chemistry.almamater.edu and literature.almamater.edu.
Hosts could then be assigned names within these domains. For example, hosts within the
chemistry department might include benzene.chemistry.almamater.edu and
hydroxyl.chemistry.almamater.edu; hosts within the literature department might include
chaucer literature.almamater.edu and steinbeck.literature.almamater.edu. Of course, the
university might choose to forego the creation of subdomains (see Figure 2.6),
particularly if it has few hosts. It might then use host names such as
benzene.almamater.edu and chaucer.almamater.edu, which include no subdomain.

Of course, typing names of such length can become tiresome. Fortunately, DNS allows
users to abbreviate host names by supplying omitted domain information on behalf of the
user. For example, if a user of a host within the almamater.edu domain refers to a host
named chaucer, DNS assumes that the user means chaucer.almamater.edu. Similarly, if
a user within the ivywalls.edu domain refers to a host named chaucer, DNS takes the
user to mean chaucer.ivywalls.edu. This convention makes it much easier to refer
to hosts within one’s domain, while preserving the possibility of addressing every host.
For example, if the user within the ivywalls.edu domain wants to refer to the chaucer host
within the almamater.edu domain, the user merely specifies the fully qualified domain
name, chaucer.almamater.edu.

As you see, DNS is rather simple from the user’s standpoint. On the other hand, it is
somewhat more complex from the standpoint of the system administrator. The next section
takes a more in-depth look at several TCP/IP application layer services, including DNS.

TCP/IP SERVICES

The popularity of TCP/IP is due in part to the fact that its bottom three protocol layers do
their jobs well. However, much of the credit must go to the fourth layer, the application
layer, which provides many useful functions that make network use and programming
much more convenient.

This section surveys several representative services provided by the application layer of
most TCP/IP implementations. It's necessary to say most because no law requires a
vendor to include any of these services in its implementation. However, Adam Smith’s
“invisible hand” (the market) tends to reward those vendors who provide rich
implementations of TCP/IP and punish those who do not. Of course, it's the consumer
who decides whether a given implementation is rich or not, so it doesn’t always follow
that a popular operating system will support all, or even most, of these services—at least
not right out of the box.

231 -

With Subdomains Without Subdomains

aslmamainreduy Alrmsm st e

bl W rard o4l e aler. i
chai el M g e Simanss . sl ==t chaucer.slmamater.edu
R TR T LR TNERT L T E R —— steinhpch almamaten, e da
- chasmisdry skl e _stu
I e S iy el by —— bengese almamatsr,sdu
Farhinsl.chensstng sinanaster o L | pdroul.almamster ade

Figure 2.6: Domain and subdomain hierarchies.

Consider Microsoft Windows 9x, one of the leading operating systems in terms of market
share. Windows 9x is designed for personal use. Consequently, it can access most of
these services, but it can provide only about half of them. For power users who want to
provide the full range of TCP/IP services, Microsoft offers its flagship operating system,
Windows NT. Because Windows NT is more expensive and more complex than Windows
9x, many Windows 9x users are reluctant to migrate to Windows NT, even though they
wish their PC could provide some of the TCP/IP services that Windows 9x cannot.

Fortunately, another solution is available. Even though Microsoft has not included, for
example, mail server protocols in Windows 9x, several shareware mail server packages
are available. The same is true of most other application layer services, so even
Windows 9x users can provide most application layer services, though they may need to
hunt down and install special software in order to do so.

This section surveys the following application layer services:
+ Domain Name Service (DNS)

* Telnet

» File Transfer Protocol (FTP)

+ Mail (SMTP and POP)

* Hypertext Transfer Protocol (HTTP)

* Bootstrap (BOOTP and DHCP)

* File and Print Servers (NFS)

» Firewalls and Proxies

The point of this material is not to teach you how to install and configure these services.
For that you can consult a book such as Timothy Parker’s TCP/IP Unleashed (Sam’s
Publishing). This section provides enough information to help you identify services your
applications may require and to communicate with network administrators responsible for

-32-

installing and maintaining TCP/IP services.

Domain Name Service (DNS)

In the previous section you learned how DNS simplifies references to hosts by
substituting host names for IP addresses and allowing use of abbreviated domain names.
In this section you briefly consider how DNS works.

The main function of DNS is to map host names to IP addresses. DNS is, in effect, a
large, distributed database with records residing in thousands of Internet hosts. No one
host possesses a complete database that includes information on every host. Instead,
DNS servers are arranged in a hierarchy. This structure makes DNS more efficient and
more robust. Here’s how:

When a new domain is established, a DNS server is designated for the domain, along
with (at least) a second DNS server that acts as a backup. At all times, a domain’s DNS
server contains a complete record of the IP addresses and host names of hosts within its
domain.

Hosts within the domain know the local DNS server’s IP address. When a user specifies
a host by name, the TCP/IP protocols contact the DNS server and determine the
corresponding IP address, as you can see in Figure 2.7. The IP address is then
incorporated within the outgoing packets as the destination address; the host name never
appears in a packet.

4. Sowrce Host
Coniacts

Dassinaicn Hosl Dwstination Host
Saaprce Hesl W e MM
{20626 131227

2. DS Sarss
Pepides P
Aadirasns

DPES. Barvar
206 8,137 VM)

1. Souece Host
Aequests IP
Aicbiran

Figure 2.7: Hosts contact the DNS server to look up destination IP addresses.

The situation is a little more involved when the destination host is outside the local
network. In this case, the local DNS server does not contain a record identifying the
remote host. Instead, the local DNS server contacts an upstream DNS server that may
know a DNS server’s |IP address for the destination domain. If so, the upstream DNS
server forwards the request to the designated DNS server (see Figure 2.8) for the
destination domain.

If the upstream DNS server does not know where to find the needed record, it forwards
the request to a DNS server further upstream. DNS servers are arranged in a hierarchy
(see Figure 2.9); somewhere within that hierarchy is a description of any host. This find-
or-forward process continues until the needed record is found or a root DNS server
acknowledges that even it does not know the destination host. In that case, the reference
fails and TCP/IP returns an error code to the requesting program. If you're using a Web
browser, you may get the annoying “Cannot open the Internet site” message.

-33 .

4. S Host
Conacs

Dastinalion Hosl [Deshrgyton Fiost

Source Host 3 ey miop com
200,240,131 220

Figure 2.8: DNS servers forward unmatched requests to other DNS servers.

Rzl DHS
Servar

ok I rrags]yie Iniesmefiang
D43 Siarr DS Sersar DS Servar

Lozsl DRS Laonl DMS Locsl QS Lizznl DNS Lzal DNS
Sarvai Bt = E Sarvie

Figure 2.9: DNS servers form a hierarchy.

Remote Login (Telnet)

The Telnet protocol provides a simple but effective remote login facility. For example, a
user working at home can connect via modem with a host that provides a Telnet server.
By running a Telnet client on the home PC, the user can type commands to be executed
by the remote host.

Telnet is a very popular application within the UNIX community; most UNIX hosts
provide a Telnet server. However, Telnet is significantly less popular within the Microsoft
Windows community. Most Windows PCs include a Telnet client because Microsoft
includes one in its Windows operating systems. However, a standard installation of
Windows NT does not include a Telnet server.

One reason for this seems to be Microsoft's emphasis on graphical user interfaces
(GUIs). In contrast with the Windows GUI, the text-based, command-line interface of
Telnet seems an anachronism. However, Telnet's text-based interface offers several
advantages:

-34 -

» Telnet requires very low communications bandwidth. Performance is adequate even
under conditions of line noise that constrain connection rates to 2400 baud or less.

» Telnet is widely available on non-Microsoft systems.

* UNIX commands can be very powerful in the hands of a skilled user. The UNIX
command shell is, in effect, a powerful programming language that enables quick and
easy automation of repetitive tasks. The DOS command shell, by contrast, offers
limited functionality.

+ Most UNIX systems afford a text-based interface to every system function. Using
Telnet, it's possible to reconfigure the kernel or network configuration of a system and
restart the system remotely.

Microsoft does offer a beta implementation of Telnet for Windows NT and third parties
have developed Telnet implementations available as shareware. You can establish a
Telnet server even if your main sever runs a Microsoft operating system.

File Transfer Protocol (FTP)

One of the most widely used TCP/IP applications is File Transfer Protocol (FTP), which
allows users to transfer files to and from network hosts. FTP is ubiquitous: Both UNIX
and Microsoft operating systems include FTP clients and servers. Even popular Web
browsers include built-in FTP clients.

A variety of FTP servers are available. Windows 9x sports an FTP server, although it is
not installed by default. Shareware packages allow even Windows 3.1 users to provide
FTP services.

FTP services can be provided in either of two modes: anonymous and non-anonymous.
An FTP server configured for anonymous access allows any host to access its files. An
FTP server configured for non-anonymous access requires users to provide a user ID
and password before access is granted. An FTP server can be configured to allow
anonymous access to some files and only non-anonymous access to others. Similarly,
users and anonymous users can be allowed to download (read) files, upload (create)
files, or both. Most servers allow access permissions to be set at the directory level, so
some directories restrict access more stringently than others.

Although it’s possible to download files using the HTTP protocol, FTP transmits files more
efficiently. Therefore, FTP remains an important protocol, particularly for the transmission
of large files.

Mail (SMTP and POP)

Email was one of the first Internet applications to reach public awareness. Today, it
seems that everyone has an email address; some of us have several. Sending and
receiving email has become a national pastime.

Mail involves two main protocols: SMTP is used to transfer email from one system to
another. POP enables users to access mail boxes remotely.

As is true of most TCP/IP applications, mail involves a client program and a server
program. Client programs are nearly universal; popular Web browsers include mail clients
and there are several popular freeware mail clients.

Mail servers are less common. One reason for this is the complicated configuration
options of the most popular UNIX mail server, sendmail. However, shareware mail
servers are available even for Windows 3.1. Many of these trade off features for ease of
configuration, making them quite simple to install and use.

-35-

Hypertext Transfer Protocol (HTTP)

The TCP/IP protocol that made the 1990s the decade of the Web is Hypertext Transfer
Protocol (HTTP). HTTP, like other standard TCP/IP application layer protocols, is a
relatively simple protocol that provides impressive capability.

HTTP was designed to solve the problem of providing access to large archives of
documents represented using a variety of formats and encoding. The clever solution of
Tim Berners-Lee was to design a simple protocol (HTTP) to transmit the data to a
browser, a client program that knows how to deal with each of the various data formats
and encoding. By putting most of the burden on the client, rather than the server, HTTP
makes it easy to install and maintain the server.

The second innovation underlying the Web is the Universal Resource Locator (URL),
which allows users to refer to documents on remote hosts. An URL (see Figure 2.10)
consists of three parts:

» A protocol name, which identifies the protocol to be used to retrieve the document.
The HTTP protocol is usually specified, but most browsers support other common
protocols such as FTP and Telnet.

* The name of the host that contains the document.

» The file system path that identifies the document on the host.

e |

Patiacol Hirzer] B Fia Soputarni Pt

Figure 2.10: An URL includes three main parts.

Because host names are unique and because file system paths are unique within a given
host, URLs provide a simple way of uniquely identifying any document on the network. In
effect, every document becomes part of one large document, whose chapters are
designated by URLs. The resulting mega-document is called the Web.

The rest, as everyone knows, is history. Because Web (HTTP) servers are relatively easy
to set up, many companies established them. Freeware and shareware Web servers are
now available for every popular computing platform. Several companies, most notably
Netscape and Microsoft, delivered browsers capable of handling a plethora of document
types and formats. Soon, everyone, it seemed, was surfing the Web.

Bootstrap (BOOTP and DHCP)

Recall that one of the IP protocol’s responsibilities is mapping logical addresses (IP
addresses) both to and from physical addresses (device addresses). When you boot a
host, it quickly discovers the manufacturer-assigned physical address of each network
interface by probing the ROM of the network interface. A host’s next task is to discover its
user-assigned IP addresses.

The simplest approach is to give each host a fixed IP address. However, as pointed out
earlier, this can present problems. For example, replacing a faulty network interface card
may change the IP address assigned to a host.

TCP/IP provides two protocols that help system administrators apply a more flexible
approach: BOOTP and DHCP. BOOTP and DHCP are widely implemented among UNIX

-36 -

systems; Microsoft Windows supports DHCP. Each allows a system administrator to build
a table that maps physical addresses to IP numbers. A server process with access to the
table runs on a host.

When a host starts, it runs a client process that sends a broadcast message to every host
on its local network, inquiring what IP address it should use. A BOOTP or DHCP server
that receives such a message searches its mapping table and sends a reply that tells the
host its IP address.

In addition to this fixed method of assignment, DHCP allows a more sophisticated
dynamic assignment of IP addresses that’s particularly appropriate when computers are
mobile. DHCP allows the system administrator to establish a block of IP numbers that
forms a pool. When a host asks for an IP address, it's assigned an available address
from the pool.

Of course, this dynamic method of IP address assignment is not suitable for hosts that
run server processes because such hosts generally require fixed IP numbers; that way
they can be readily contacted by clients. However, hosts that run client applications
rather than servers are well served by this approach. An advantage of DHCP is that the
pool need contain only enough IP addresses to accommodate the maximum number of
simultaneously connected computers. This avoids the need to apply for, and maintain, a
distinct IP number for every computer that might connect to the network. It's especially
helpful for mobile computers that may connect to the network at various points, which
would otherwise require that they be configured to somehow choose an IP address
appropriate to the current connection point.

File and Print Servers (NFS)

Users can employ the FTP protocol to copy files from a server to their system, but it's
often useful to be able to directly access a file rather than creating a copy. The Network
File System (NFS) protocol provides this capability. Files on a system running an NFS
server can appear as if they were local files of a host running an NFS client. Users can
read and write such files using ordinary application programs. Files can even be shared,
so that multiple users can access them simultaneously.

NFS also provides for sharing of printers. Rather than allocating a printer to each user, a
cost-prohibitive approach for all but the cheapest and least capable printers, many users
can share a single printer.

NFS is mainly found on UNIX systems, although third-party implementations of NFS for
Microsoft operating systems exist. Microsoft supports its own set of network protocols
that provide similar features—Server Message Block (SMB or Samba), for example.
Several third-party implementations of SMB are available for UNIX systems, allowing
integration of Microsoft and UNIX networks.

Firewalls and Proxies

One of the hazards of modern network life is the cracker. A cracker is anyone who
attempts to access confidential data, alter restricted data, deny use of a computing
resource, or otherwise hamper network operation. One tactic designed to thwart the
cracker is the firewall, a filter intended to block traffic that might compromise the network.
This brief discussion simply outlines the role of the firewall. To learn more about how
firewalls work, see Sharp Amoroso’s PC Week Intranet and Internet Firewall Strategies
(Ziff-Davis Press).

The idea of a firewall is to prevent remote hosts from directly accessing servers on the
local network. Instead, one host is designated as a bastion host (see Figure 2.11) that is
visible to the outside world. When a remote host wants to access a service provided on
the local network, it contacts the bastion host. The bastion host runs a proxy application
that evaluates the request. If the proxy decides to allow the access, it forwards the

-37 -

request to the proper server within the local network. The server performs the requested
service and sends a reply by way of the bastion host, rather than directly to the remote
host. Essentially, all traffic flows through the bastion host, which acts as a drawbridge
screening internal network resources from inappropriate outside access. Because all
traffic flows through a single point, it's easier to monitor and control.

Foeensll Losal ntrsret

o N

—— Protecied Host

Eleealion Hizet Protached Hosi

L Privinciad Host

Figure 2.11: A firewall protects local hosts from unauthorized access.

The bastion host often performs a similar service for requests originating within the local
network, forwarding them to outside servers. By this means, remote hosts may remain
unaware of the identities of hosts within the local network (other than the bastion host),
making it difficult to compromise network security.

TROUBLESHOOTING

Now that you know what the TCP/IP protocols do when they’re working properly, it's time
to learn something about troubleshooting. That way, you can cope even when they’re not
working properly. Again, don’t expect to become a networking guru by understanding and
applying the information in this section. The goal is to help you pin-point problem
sources and show you how to collect information that may expedite your network
administrator’s response to your problem reports.

The ping Command

Both Windows 9x and UNIX, as well as most other operating systems, implement the
ping command. As you recall, ping sends ECHO packets to a remote host, which
responds by resending them to the source host. This works somewhat like the sonar
system in The Hunt for Red October. When the source host receives a return ping it
knows the remote host is operational. Moreover, it can make a crude estimate of network
performance by timing the circuit from the source to the destination and back.

To use the ping command, you supply an argument, which can be a host name:
ping www.mcp.com

Alternatively, you can use an IP address:

ping 206.246.131.227

If the remote host is operational, you see something like this:

C:WINDOWS>ping www. mcCp. com

-38 -

Pinging www.mcp.com [206.246.131.227] with 32 bytes of data:

Reply from 206.246.131.227: bytes=32 time=220ms TTL=230
Reply from 206.246.131.227: bytes=32 time=202ms TTL=231
Reply from 206.246.131.227: bytes=32 time=196ms TTL=231
Reply from 206.246.131.227: bytes=32 time=199ms TTL=231

C:WINDOWS>

You can see from the output that it takes from 196 to 220 milliseconds for a packet to
make the complete round trip. On a high-speed local area network you might see
numbers in order of magnitude smaller than this.

If the host name is unknown, you get a message like this:

C:WINDOWS>ping badhost.mcp.com
Bad IP address badhost.mcp.com.

C:WINDOWS>

If you suspect that the host name may not be properly recorded in the DNS database
(perhaps it's a new host, for example), you can try again using the IP address.

The traceroute Command

Suppose ping cannot find a route to the remote host. In that case, its output looks
something like this:

C:WINDOWS>ping 199.107.98.211
Pinging 199.107.98.211 with 32 bytes of data:

Reply from 134.24.95.73: Destination host unreachable.
Reply from 134.24.95.73: Destination host unreachable.
Request timed out.

Reply from 134.24.95.73: Destination host unreachable.

C:WINDOWS>

Of course, the problem may lie with the remote host itself, or with any of the gateways
between the local host and the remote host. The traceroute command, known to
Windows 9x users by the abbreviated name tracert, helps you discover the location of
the problem:

C:WINDOWS>tracert 199.107.98.211

Tracing route to bmccarty.apu.edu [199.107.98.211]
over a maximum of 30 hops:

114 ms 99 ms 99 ms elay.hooked.net [206.80.11.2]
108 ms 107 ms 119 ms sgwl.la.hooked.net [206.80.11.1]
118 ms 107 ms 127 ms 206.169.170.173

* 750 ms 118 ms ix-sf.bdr.hooked.net [206.80.17.3]
125 ms 126 ms 118 ms ix-pa-ethO.bdr.hooked.net

g w N

-30 .

206.80.25.2]
128 ms 116 ms 144 ms fe2-0.sjc-bb3.cerf.net [134.24.23.1]

[

6

7 143 ms 136 ms 124 ms atm0-0-155M.sfo-bb2.cerf.net
[134.24.29.21]

8 132 ms 123 ms 2215 ms fe9-0-0.sfo-bbl.cerf.net
[134.24.29.117]

9 144 ms 123 ms 141 ms atml0-0-155M.lax-bbl.cerf.net
[134.24.29.41]

10 125 ms 134 ms 128 ms fe0-0-0.lax-bb2.cerf.net
[134.24.29.77]

11 145 ms 142 ms 150 ms azusa-la-smds.cerf.net [134.24.95.73]
12 azusa-la-smds.cerf.net [134.24.95.73] reports: Destination

host unreachable.

Trace complete.

The traceroute outputincludes one line for each intermediate gateway between the
local host and the remote host. Notice how routing fails after the twelfth hop: azusa-
lasmds.cerf.net reports that it does not know how to reach host 199.107.99.211.
The problem, therefore, is not with any of the first 11 gateways, which successfully
passed on the packet. Now you know where to focus your attention.

The netstat Command

Another useful command is netstat, which is something of a Swiss Army knife,
providing many functions in one package. One of the most important of its functions is a
report of TCP/IP statistics. The Windows 9x version of the command gives statistics for
the IP protocol, the ICMP protocol, the TCP protocol, and the UDP protocol. To generate
the statistics, simply type the following:

netstat s
Here’s an excerpt from a typical report, showing the TCP statistics:

TCP Statistics

Active Opens = 200
Passive Opens =0
Failed Connection =1
Attempts

Reset Connections = 67
Current Connections =1
Segments Received = 2188
Segments Sent = 2223
Segments Retransmitted = 20

Notice that the report shows one failed connection attempt and 20 retransmissions out of
over 2,000 segments sent—about a 1% error rate. These statistics apply to a dial-up
modem connection. The error rate would normally be much lower over a local area
network.

By using ping, traceroute, and netstat, you can collect important and helpful
information concerning network performance—information that can help you and others
quickly determine a point of failure. You'll find these commands very useful as you develop
programs that operate over the network. They help you determine whether a failure is due
to an error in your code or a problem with the network itself.

- 40 -

FROM HERE

As you've learned, TCP/IP is an important enabling technology: Distributed computing
builds upon TCP/IP networking as its foundation.

The following chapters teach you more about networking and show you how networking
fits into distributed computing:

» Chapter 4, “Distributed Architectures,” shows how different ideas about networking
determine the architecture, or shape, of an information system.

» Chapter 10, “Security,” explains security risks that arise when computers are
networked and presents the Java security model that attempts to control security
risks.

+ Chapter 13, “Sockets,” shows how to write programs that communicate over a TCP/IP
network.

Chapter 3: Object-Oriented Analysis and
Design

Overview

If you're a Star Trek fan, you’re familiar with the transporter, an amazing device that can
transport members of an orbiting starship’s crew to the surface of a planet, or back again,
in an instant. Series creator Gene Roddenberry once observed that the transporter’s
speed played a crucial role in the success of Star Trek. Without it, action-packed
episodes would have devolved into tedium, owing to lengthy and boring shuttle trips from
the Enterprise to whatever exotic planet lay below.

The operating principles of Star Trek’s transporter are simple, even if fantastic. It breaks
objects (or beings) into their molecular components, transforms these components into
energy that it temporarily stores in a pattern buffer, beams the energy to the designated
location, and ultimately re-transforms the energy into a replica of the original object. The
ship’s surgeon, Dr. McCoy, is perhaps the wisest person on board the starship, because
he alone expresses concern over the fact that his original molecules are forever lost,
wondering what subtle differences may distinguish his replicated self from the original
and what the cumulative effect of regularly scrambling his molecules may be.

Object-oriented analysis (OOA) and object-oriented design (OOD) work a little like Star
Trek’s transporter. The process of analysis seeks to break a problem into small pieces
(called requirements) so that it can be fully understood and readily communicated. The
complementary process of design seeks to assemble a system that matches its
requirements. Of course, the kind of matching performed in object-oriented design is
different from that performed by the transporter system. The transporter seeks an exact
match, a replica that duplicates every feature of the original. Object-oriented design
instead seeks a complementary match of problem with solution. After all, users seldom
have a desire to see their problems replicated (even if this is too often what actually
occurs during system development).

This chapter teaches you how to perform object-oriented analysis and design and also
introduces you to the basic tools of object-oriented analysis and design, which take the
form of diagrams. In this chapter you learn

» How to use the object-oriented design process.

The object-oriented design process defines a series of steps you can follow in
analyzing and designing object-oriented systems. By following these steps, you can

-4] -

become a more efficient and effective object-oriented systems developer.

» How to use a problem summary paragraph to determine system requirements.

The problem summary paragraph is the first product of the object-oriented analysis
and design process. A well-written problem summary paragraph helps you quickly and
accurately determine system requirements.

» How to identify classes and services by using Class-Responsibility-Collaboration
(CRC) cards and use-cases.

CRC cards and use-cases are helpful and easy-to-use tools that assist you in
identifying the classes you need and the services they provide.

* How to describe relationships by using Unified Modeling Language (UML), including
inheritance diagrams and class diagrams.

Unified Modeling Language appears poised to achieve the status of a de facto standard
for representing design information. Its inheritance diagrams and class diagrams are
generally more helpful to the developer than analysis-oriented CRC cards. Inheritance
diagrams show parent-child relationships between classes. Class diagrams show the
attributes and behaviors of classes.

INTRODUCING THE OBJECT-ORIENTED DESIGN PROCESS

Object-oriented analysis and object-oriented design have not been around for very long.
Nevertheless, techniques (or methodologies as they’re commonly called) for OOA and
OOD have become legion. The 18-19th century clergyman-economist Thomas Malthus
may have foreseen such circumstances when he observed that populations tend to
outstrip food supplies. Although his predictions of worldwide famine failed to materialize
during his lifetime, many in the twentieth century have become persuaded that his ideas
are fundamentally sound.

In any case, we may now be witnessing the “Malthusian Effect” as it applies to OOA and
OOD techniques, which now appear to be shrinking in number. The cause: Several
originators of rival techniques have recently joined forces and begun developing the
Unified Modeling Language (UML), which many expect will combine the best features of
many popular OOA and OOD techniques.

The techniques described in this chapter loosely follow those of UML. Using the qualifier
loosely is necessary because UML is not yet fully developed. Moreover, its potential
status more resembles that of a de facto standard (one that reflects practice) rather than
a de jure standard (one that reflects what some think should be done). Consequently,
UML will doubtless continue to evolve even after it is initially published.

At the time of writing, the tools (diagrams) of UML have been described in several books,
including Martin Fowler's UML Distilled: Applying the Standard Modeling Language
(Addison-Wesley, 1997) and Pierre-Alain Muller’s Instant UML (Wrox, 1997). However,
the process underlying UML is to be the topic of a forthcoming book. Consequently, the

process described in this chapter reflects common elements of existing analysis and
design techniques, rather than the not-yet-published UML process.

The process, which is fully described in the following sections, consists of these steps:
1. Determine the requirements.
2. Identify the classes and the services they provide.

3. Describe the relationships.

-4 -

Although the parts of the process are described as steps, you should not expect that
these steps are typically performed one at a time, from first to last, without repetition or
back-tracking. On the contrary, the nature of any problem-solving activity more closely
resembles an exploration rather than a program. Problem solving is an iterative activity
that much resembles what occurs when a psychologist drops a hungry rat into a cheese-
baited maze. We may be relatively certain of the goals of the activity, but the means by
which we achieve them are seldom clear at the outset. With hard work, persistence, and
a little luck, they become progressively clearer as we near the goal. The trail blazed by
the OOA/OQOD processes more closely resemble that in the right panel of Figure 3.1 than
that in the left.

Actually, once the analysis and design dichotomy breaks down, it's more usual to
consider a single process that combines analysis and design. Rather than moving
linearly from analysis to design, such a process cycles between analysis and design.

=
<
)

Figure 3.1: The actual path of OOA and OOD efforts is opportunistic.

DETERMINING THE REQUIREMENTS

In Lewis Carroll’s Alice in Wonderland, Alice naively asks the Cheshire Cat which path
she should take. When the Cat asks Alice where she’s going, she admits she doesn’t
know, prompting the Cat’s famous rejoinder: “If you don’t know where you are going,
what difference does it make which path you take?”

Analysis and design are somewhat like Alice’s journey. If your client doesn’t know what
the system should do, it doesn’t matter what you ultimately deliver. Therefore, your first
task in analysis and design is to figure out what the system should do, that is, what the
requirements are. The formal name for this process is requirements elicitation.

Alas, there is no royal road to requirements elicitation. To see why this is so, consider
that clients often do not know what they really want. Therefore, requirements elicitation
often involves more than simply asking clients what they need. Often you must first help a
client identify the real needs.

Requirements elicitation, therefore, is a communications-intensive process of learning
and discovery for both the client and the software developer. It typically involves
interviews, surveys, study of documents and existing systems, study of competitor’s
systems, and so on. The goal of requirements elicitation is an understanding that is

» Complete—The delivered system will satisfy only the identified requirements, so these
must be as complete as possible.

» Consistent—The requirements should contain no contradictions.
» Correct—Perhaps it seems to go without saying that the requirements should be

-43 -

correct. However, achieving correctness is very difficult. For example, users may
inadvertently (or even maliciously) provide you with incorrect information. You must
keep the goal of correctness continuously in mind or risk failure.

» Clear—An understanding that is ambiguous is no understanding at all. The difficult
work you devote to developing a complete, consistent, and correct understanding
comes to naught if people interpret it differently because you’ve been unclear.

+ Concise—Few people today enjoy novels as long as those popular during the
Victorian era. Even fewer enjoy reading business documents of comparable length.
The same phenomenon constrains the length of a business presentation. Unless your
understanding can be communicated concisely, it won’t be understood or acted upon.

Like other communications processes, the requirements elicitation process can be
improved by developing a written record of what you discover along the way. The written
record augments your limited recall of detail, helps bring others to a common
understanding of the problem, and tends to increase the objectivity of the process. By
documenting the requirements, you also make them portable. For example, they can be
beamed across the country via email, so that people who can’t be interviewed in person
can nevertheless contribute their insights and expertise. A popular form for this record is
the problem summary paragraph.

Writing the Problem Summary Paragraph

Many software developers see the completion of a problem summary paragraph as the
first milestone on the journey to a completed system. But exactly how far down the road
should that milestone be placed? Let’s not push the term paragraph—no court has yet
decreed that problem summaries of more than one paragraph violate the laws of any
jurisdiction. If the system you’re analyzing is a large one, you may exceed the budgeted
single paragraph with complete impunity. The point of the word paragraph is to remind
you that you should strive to be concise, but sacrificing completeness in order to be
concise may not be the wisest course.

Perhaps now you begin to see why some organizations reward those involved in analysis
and design better than those involved in implementation. Whether a section of code
does, or does not, fulfill its purpose can be determined fairly easily and most qualified
observers will agree with a carefully made determination. In contrast, the quality of
system requirements is far more elusive. Improving one dimension of system
requirements quality often diminishes the quality of one or more other dimensions. For
example, it's difficult to be both complete and concise at the same time. Achieving
completeness may require you to write more pages than many people are willing to read.
If you try to cut corners, the clarity of your writing may suffer. You must bob and weave
your way to quality, much like a pilot buzzing the Grand Canyon. Miss one turn and
you’re wall decoration for the marvelment of future tourists.

Note If all this talk of failure depresses you, be encouraged. Recall that OOA/OOD
is an iterative process. You shouldn’t expect to get everything right at first,
only eventually. Feedback is your ally. As long as your clients spend time
reviewing and constructively criticizing your work products, your mutual
understanding of the system will converge to reality over time.

The biggest risk is that some organizational power figure, fearful of the march
of time and mindful that time is money, will push to begin implementation even
though the requirements are inadequately understood. It's like a mother giving
birth who yields too early to the urge to push: The baby may be crushed by
the pressure. There’s a time to tough it out and a time to push. The trick is to
know which should be done when. Try at the outset of a project to help the
client understand this convergence principle, so that you can avoid a rush to
implementation.

In the next section you begin a case study that gives you the opportunity to watch as a

_44 -

simple system is analyzed and designed. The case study begins with a problem
summary paragraph. The design, including all the important UML diagrams, is complete
by the end of the chapter.

Introducing Kvetch Net

In modern free enterprise, everyone is occasionally shortchanged. In response to every-
day petty fraud, consumers fall into one of two categories: Some complain and some
don’t. In fact, some consumers are downright complaint-challenged. Others, however,
elevate the mundane act of complaint to an art. These practitioners of kvetch (the Yiddish
word for a complaint or an annoying complainer, pronounced kuh-vetch, with the accent
on the last syllable) have a valuable service to offer their less adept fellow consumers.
Kvetch Net, an Internet startup headquartered in New York, was founded to realize this
vision, potentially benefiting consumers the world over.

You've been invited by Ms. Yenta Luftmensh, founder of Kvetch Net, to help her build the
Web site that will serve her clients. Arriving early at her ostentatious downtown
Manhattan headquarters, you spend the morning interviewing her about her information
system needs. Ultimately, you determine that the Web site must support two
transactions:

» A quote transaction, in which the user describes the sort of complaint needed and
receives a price quotation

* A purchase transaction, in which the user approves the price, provides the required
electronic funds, and receives the complaint via email

Based on the information supplied by Yenta, you develop the problem summary
paragraph shown in Figure 3.2.

The Kvetch Systerm enables a client, who accesses Kvetch Met's Web site using a
standard Web browser, to describe the sort of complaint required. The system selects
a prefabricated complaint from its complaint database, one that closely matches the
client's requirements. The systemn then proposes a price, which the client can accept or
decline. To accept the price, the client simply authorizes an electronic fund transfer in
the proper amount. The systerm responds by transmitting the selected complaint, which
can be saved and modified by the client.

Figure 3.2: A problem summary paragraph identifies system requirements.

The rest of this chapter shows you how to develop the key diagrams that describe the
required system. You start by learning how to use CRC cards to document classes and
their services.

IDENTIFYING CLASSES AND THEIR SERVICES

Once you have a problem summary paragraph, you're ready to identify the classes and
the services they provide. This is really quite easy.

First, activate the transporter. Second, put the problem statement on the transporter pad,
slide the lever to the Activate position, and watch as the problem summary paragraph
breaks into its component molecules.

Okay, unless you have a transporter, it isn’t quite so simple—but, it's almost that easy.
Here’s what you do:

- 45 -

1. Underline the action phrases (verb phrases) that appear in the problem summary
paragraph.

2. Draw a box around the phrases (noun phrases) that denote actors and objects of
action that appear in the problem summary paragraph.

3. Study the actors that you circled in step 2, determining which of them should be
represented as classes.

4. Study the actions that you underlined in step 1, deciding which of them are services
provided by a class.

5. Record your findings as one or more CRC cards.

To get you started, Figure 3.3 shows the problem summary paragraph for the Kvetch
System, with the actions and actors indicated. Next, you learn how to identify the classes.

Taxl Teud Taxl
The Kvetch System| enables a|client,|who accesses Kvetch Net's|Web sitelusing a

laxl laxl . laxl
standard|Web browser,|to describe the sort ui| complaint|required.|The system| selects

, text, , \
a prefabricated c:orr'?fblamt from its cc:mplamieﬁatabase, one that closely matches the

Text Teud

Texl Taxt] : L
client’s I'EE]IJIFEI"I‘I-E!I'][S-. The SHSTEI‘I"I then proposes alprice, which the|client|can ECCEpt or

. fexl Texd i ,] Text .
decline. To accept the|price,| the|client|simply authorizes an|electronic fund transfer]in

Tl Tt . texl ,
the properlamount.| The|system|responds by transmitting the selected cnmpllamt, which

fend

can be saved and modified by the|client|

Figure 3.3: The problem summary paragraph discloses candidate classes and
services.

Identifying Classes

To identify the classes, make a list of the problem summary paragraph phrases you
circled. Table 3.1 shows such a table for the Kvetch System. Notice how synonyms
(entries that mean the same thing, although they're expressed differently) have been
removed. For example, Kvetch System and the system refer to the same thing, so only
Kvetch System (the more specific phrase) appears in the table.

TABLE 3.1 CANDIDATE CLASSES OF THE KVETCH SYSTEM

Candidate Class

amount

client

- 46 -

client’s requirements

complaint

complaint database

electronic fund transfer

Kvetch System

price

Web browser

Web site

]
Now, further winnow the list by casting out these entries:
» Entries that do not need to be represented as objects or classes within the system
» Entries that represent attributes or characteristics of other entries

Admittedly, this task is tough. You don’t really know at this point which entries need to be
represented as classes. That's why OOA/OOD is iterative. You probably will make some
mistakes at this point, but, as you proceed, your errors will become evident. When that
happens, backtrack to this point, add the missing class or delete the unneeded class, and
retrace your forward progress.

Perhaps the biggest difference between experienced analysts and inexperienced
analysts is the number of false starts: Experienced analysts experience more false starts
than inexperienced analysts, who tend to lock onto their early impressions, refusing to
reconsider them even in the light of further information. Don’t hesitate to backtrack:
Backtracking is essential to quality work.

Table 3.2 shows the candidate classes of the Kvetch System after the winnowing cycle.
TABLE 3.2 CANDIDATE CLASSES OF THE KVETCH SYSTEM

Candidate Class
client

client’s requirements
complaint

complaint database

-47 -

electronic fund transfer

The following candidates were discarded for the reasons given:

» Amount—It’s really an attribute of the electronic fund transfer.

+ Kvetch System—The system doesn’t need to represent itself.

» Price—lIt’s really an attribute of complaint selected by the system.

+ Web browser—It’'s merely the means used by the client to access the system.
» Web site—It turns out to be roughly synonymous with the system.

Now that you’ve identified the classes, move on to identify the services they provide.

Identifying Services

You saw that the circled actors and objects (noun phrases) in the problem summary
paragraph help you identify classes. The underlined actions (verb phrases) help you
identify services. You may not be familiar with the term services, even if you know
something about objects. Sometimes they’re referred to as behaviors, methods, or
responsibilities.

Among these alternatives, the term services is particularly apt because it places the
emphasis on actions performed by an object on behalf of other objects. In addition to
such public actions, most objects also have private actions, which do not concern us at

this point. We prefer services because it emphasizes exactly those behaviors and
methods that we seek.

A reason for preferring the term services over the term responsibilities, which also
emphasizes public actions, is that services recalls the popular term client-server. The
fundamental paradigm of client-server system is client objects requesting services of
server objects, exactly the thing we seek to find mentioned in the problem summary
paragraph. Table 3.3 shows the candidate services, which are the underlined phrases in
the problem summary paragraph.

TABLE 3.3 CANDIDATE SERVICES OF THE KVETCH SYSTEM

Candidate Service
accept

accesses
authorizes

decline

- 48 -

describe
enables
matches
modified
proposes
required
responds
saved
selects
transmitting

using

Just as the list of candidate classes was winnowed, so now the list of candidate services
is winnowed. Table 3.4 shows the winnowed list.

TABLE 3.4 REMAINING CANDIDATE SERVICES OF THE KVETCH SYSTEM

Candidate Service

authorizes
decline
describe
matches
proposes
selects

transmitting

Here are the reasons entries were deleted:

- 49 -

» Accesses and using—The phrase accesses Kvetch Net's Web site using a standard
Web browser constrains the technology that is used to access the system, rather than
specifying a requirement of the system.

* Accept—It can be treated as synonymous with authorizes.

» Enables—It describes a non-specific action of the entire system.

* Modified and saved—They specify actions of the client that do not concern the system.

* Required—It specifies the needs of the client rather than the actions of the client or
system.

* Responds—It can be treated as synonymous with transmitting.

In all, about half of the candidate services were eliminated. This is good news because
fewer services points to smaller classes that are more quickly and easily implemented.
Let's move on to a discussion of CRC cards, which helps you pair classes with related
services.

Using CRC Cards

Class-Responsibility-Collaboration (CRC) cards are one of the most useful tools during
OOA/OOD. A CRC card is nothing more than an index card (for example, a 3-5 card) that
records information about a class, including

* The name of the class

» A brief description of what the class represents
* The services provided by the class

» Alist of class attributes

If you like, you can begin using CRC cards at the outset, rather than building lists of
candidate classes and services. However, it's often easier to identify services and then
match them with classes. Making lists first can make things go more smoothly.

Figure 3.4 shows a CRC card for the Kvetch System’s complaint database. Notice that
the class name and the names of services have been styled as Java identifiers; this
makes it easier to code the class in Java.

Class: ComplaintDatabase ComplaintDatabase: an archive of
prefabricated complaints.
Responsibilities:
Attributes:
selectComplaint()
circumstance
tone
complaint
price
(Front of card) (Back of card)

-50 -

Figure 3.4: A CRC card presents key information about a class.

Notice that the back of the CRC card includes a list of attributes. Attributes hold the
characteristics of objects. For example, a simple Bal1l object might have attributes
reflecting its color, diameter, weight, and rebound factor.

You may wonder how attributes are identified because you’ve seen no list of candidate
attributes for the Kvetch System.

Attributes are seldom disclosed by the problem summary paragraph. Two attributes of
the ComplaintDatabase class, price and complaint, appeared there. The
remaining attributes, circumstance (is this a complaint about food or a complaint
about rent?) and tone (should the complaint be calm or abusive?), are implicit in the
phrase matches the client’s requirements in the problem summary paragraph.

Perhaps a more complete problem summary paragraph would have mentioned them, but
no problem summary paragraph is likely to mention all the attributes. That's another
reason OOA/OQOD is an iterative process. Recall the Lewis and Clark expedition that
found a land route across the American territories to the Pacific coast. Despite the help of
Indian guide Sacagawea, they merely found a route, not the best route. Don’t expect to
do better on your own first trip through a system.

You may also be wondering how the selectComplaint service shown on the CRC
card came to be there, rather than on the CRC card of some other class. Determinations
such as this involve a combination of problem insight, technical expertise, careful
reflection, and luck. The essential function of the ComplaintDatabase classis to
provide a complaint that matches the user’s requirements. Therefore, the
selectComplaint service is implicit in the essence of the class.

This is a good time for you to try your hand at making some CRC cards. Select one of the
remaining candidate classes and make its CRC card. Do your best to identify the related
services and attributes. You may discover a need for services that do not appear in the list
of candidates: Feel free to add these. Similarly, feel free to disregard any listed services
that don’t seem to actually be needed. The same is true of classes: Add or delete classes
as you see fit.

DESCRIBING RELATIONSHIPS

In the preceding section you learned how to identify services by studying the problem
summary paragraph. In this section you learn an alternative technique that’s especially
helpful when systems are large or complex: the use-case. You also learn how to prepare
two more UML diagrams: the class diagram and the inheritance diagram.

Developing Use-Cases

Identifying services from a problem summary paragraph and allocating them to classes
by a combination of insight and intuition often works well, but the going gets tough when
systems become large or complex. A helpful technique in these situations is the use-case
and its accompanying collaboration diagram.

A use-case relates to a particular use of a system, a scenario or transaction, if you will.
Consider the Kvetch System, which has the following use-cases:

» Client Requests Quote and Accepts

» Client Requests Quote and Declines

-51 -

As the Kvetch System has been described, these two use-cases encompass all that it
must, or can, do.

A collaboration diagram (see Figure 3.5) illustrates the classes and the sequence of
actions involved in a use-case. For example, the “Client Requests Quote and Accepts”
use-case has these actions:

1. Client sends requirements to the ComplaintDatabase, requesting that
ComplaintDatabase select a complaint and provide a quotation.

2. Client sends an authorization to FundTransfer.

3. FundTransfer notifies ComplaintDatabase that payment has been received
and authorizes ComplaintDatabase to transmit the complaint.

4. Cclient requests and receives the purchased complaint.

1 pelaeCamplain

h J

Cham ComplaniDalatasa
4: fran=mitC omplaing

2 autreizeTransher

¥

3 methon BTSN

FundTransfsr

Clianl Reguests Duche and Accepls

Figure 3.5: A collaboration diagram illustrates a use-case.

The collaboration diagram shows each of these four actions as a line joining the
requestor (known as the client) and the requestee (known as the server). The arrowhead
on each line points to the server, which performs the requested action. For example,
consider action 1, the selectComplaint action; Client requests this action and the
ComplaintDatabase performs it.

Generally, collaboration diagram actions have associated information flows. However, a
collaboration diagram does not show these because the diagram would otherwise quickly
become cluttered. This is an application of the principle of design abstraction, which is
summed up in the aphorism “less is more.” Human information processing capacity is
limited; to avoid overwhelming the reader, UML diagrams present a limited amount of
information. That's why there are several kinds of UML diagrams: Each presents a few
aspects of the design, just enough to make its point. Taken together, a set of UML
diagrams describes all the important aspects of the design.

A great way to prepare collaboration diagrams is to distribute CRC cards among the
members of a team seated around a large table; then simulate each use-case as a series
of conversations among the team members. Step through the requests one by one,
having the team member who holds the CRC card for a class explain how that class will
respond to the request. Often this will quickly disclose missing or unnecessary classes,
services, data attributes, or use-case steps.

Developing Class Diagrams

-5

CRC cards are handy during analysis but less handy during implementation. They tend to
fall out of project notebooks, get out of order, and so on. Therefore, many developers
transcribe information from CRC cards to class diagrams, which fit conveniently on
standard-size sheets of paper and can be stored in a three-ring binder with the other
diagrams and documents that pertain to a system. Moreover, as you'll see, class
diagrams can record information pertaining to groups of classes, something that CRC
cards cannot do.

Figure 3.6 shows a class diagram for the ComplaintDatabase class. Notice that the
class diagram is divided by horizontal rules into three sections. The class name is shown
in the top section, the attributes are listed in the middle section, and the services are
listed in the bottom section.

Colasd i { CewrplaantDitatasa

CINCUMSRancs

At o
Gomphit
prica

Barace { fabenc Cormplani)

Figure 3.6: A class diagram is a bit different from a CRC card.

Figure 3.6 lists one service, selectComplaint. Notice how the name of the service is
followed by a pair of parentheses, which makes it clear that the name refers to a Java
method, not a field.

Some developers like to include more information on class diagrams, particularly as
analysis and design progress and implementation nears. You can easily include type
information in a class diagram by merely prefixing each attribute with its data type. For
example, if you decide that price should be represented as a float, you could write
either of these to specify the data type:

price:float
float price;

The former style is recommended for UML, but the latter has the virtue of more closely
resembling Java.

Some developers like to also include default or initial values, describing attributes like
this:

price:float = 0.0

UML provides a standard syntax for specifying visibility or access. You use a + to
indicate public visibility, a # to indicate protected visibility, and a - to indicate private
visibility. If price is a private field, its full UML description might be as follows:

-price:float = 0.0

UML also provides a syntax for more fully specifying the characteristics of services. The
syntax closely resembles that of a standard Java method header. Here’s an example of a
fully specified service:

+ getComplaint (circumstance:int): float

-53 -

This statement tells us that getComplaint is a public service that requires a single
argument, an int that describes the client’s circumstances. The service returns a
float value.

Classes in OOA/OOD are often associated with one another. A class diagram can
include multiple classes, with arrows that indicate associations between classes. Figure
3.7 shows a Kvetch System feature not previously discussed: the ability to track clients’
purchases so that regular clients can be offered special terms or sent email catalogs
describing new complaints Yenta has obtained. To support this feature, a Purchase
class has been established. The line joining it to the Client class indicates that
Clients and Purchases are related. The numbers to the right of the line show the
cardinalities of the association, that is, the number of object instances that can participate
in the association. The “1” indicates that each Purchase is associated with exactly one
Client, whereas the “asterisk” indicates thata C1ient can be associated with zero,
one, or more Purchases.

]
%

Do

showtHision [

Piarcifiid

cleani
A
complain
ich

Figure 3.7: A class diagram can indicate associations.

Note If you're familiar with the entity-relationship diagrams used to model database
relationships, you may correctly notice that class diagrams resemble them.
However, don’t push the superficial resemblance too far. Classes, which
encapsulate data and behavior, are not the same as database tables, which
merely contain data.

LandiormiCompiant A et ra i ompiniend

CFCUTRELENCE STTLITEA G
fons 117
(G5 pioa

Figure 3.8: A class diagram can indicate inheritance.

-54 -

A class diagram can also indicate that a class extends another class. (If you're unfamiliar
with extending classes by means of inheritance, you might like to look ahead to the section
‘Inheritance” in Chapter 7, “Java Overview.”) Figure 3.8 shows an example. In the figure,
the classes LandlordComplaint and RestaurantComplaint are subclasses of
Complaint, as indicated by the triangle that appears on the line joining them to the
Complaint class.

FROM HERE

CRC cards, collaboration diagrams, and class diagrams can communicate a wealth of
information about a system in an easy-to-understand, visual format. Whenever you
create a system diagram, remember that your purpose is to communicate. Don’t develop
your own arcane and complicated system of notation when a standard notation such as
UML will serve. Feel free, however, to rearrange things and break the rules once in a
while in the interest of clarity.

Now that you’ve learned about object-oriented analysis and design, you're ready to
develop your skills by applying its techniques to significant analysis and design problems.
The following chapters give you that opportunity:

» Chapter 6, “The Airline Reservation System Model,” uses object-oriented analysis and
design to describe a simple distributed system. There you learn more about use-
cases. You also learn about activity diagrams.

» Chapter 14, “Socket-Based Implementation of the Airline Reservation System,”
describes an implementation of the Airline Reservation System based on sockets.

+ Chapter 16, “RMI-Based Implementation of the Airline Reservation System,” describes
an implementation of the Airline Reservation System based on Java’s Remote Method
Invocation (RMI) facility.

» Chapter 19, “Servlet-Based Implementation of the Airline Reservation System,”
describes an implementation of the Airline Reservation System based on Java
servlets.

» Chapter 26, “CORBA-Based Implementation of the Airline Reservation System,”
describes an implementation of the Airline Reservation System based on Common
Object Request Broker Architecture (CORBA).

+ Chapter 35, “Voyager-Based Implementation of the Airline Reservation System,”
describes an implementation of the Airline Reservation System based on Voyager, a
mobile agent technology.

Chapter 4: Distributed Architectures

Overview

Charles Darwin’s 1859 book The Origin of Species inaugurated a conflict between
science and religion that continues, at least in some circles, almost a century and a half
later. Based on his five-year study of animal life in the Galapagos Islands off the Pacific
Coast of South America, Darwin concluded that modern species had evolved from a few
earlier species. To explain the evolution of species, he posited the existence of a
mechanism he called natural selection.

Regardless of whether Darwin was correct in his understanding of animal species, his
theory of natural selection helps us understand how information system architectures
change. Just as the traits of a species are determined by its genes, the characteristics of

-55-

an information system architecture are determined by the technologies it employs. Just
as individuals of a species compete for scarce resources, information systems architects
strive to find new ways of creating systems that cost less to build and operate, and are
more effective in meeting user needs. The result is an evolutionary march of the sort
Darwin believed operated to produce animal species.

This chapter introduces the elements of information system architectures and
recapitulates major eras in the development of such architectures. Just as object-oriented
programming builds upon the principles of structured programming, distributed object
architectures build on the principles of their non—object-oriented forebears. By
understanding non—object-oriented architectures and the forces that shaped them, you'll
be prepared to understand not only the current styles of distributed object architectures
presented in this chapter, but also those that have yet to be conceived.

In this chapter you learn

* How the management of user interface, data, and computation characterize an
architecture.

Technological change simultaneously presents new opportunities and changes user
expectations. When user interface technology, data management technology, or
computational technology change, computing architecture changes.

» How the mainframe and file-server architectures solved problems of their era and
where they continue to be useful today.

The venerable mainframe and file-server architectures were kings in their day. Despite
a hoary reputation, they remain appropriate architectures for some modern systems.

* How client/server architectures led to more efficient and effective information systems.

The 1990s client/server revolution gave users a higher return on their computing
investments. You see how this was accomplished and how more modern architectures
build on the lessons of client/server computing.

+ How distributed object technologies such as object buses, mobile objects, and agents
provide the information systems architect with exciting new options.

After years of unfulfilled promises, distributed object technology now appears poised to
become the dominant architecture. You’ll see what this new technology offers and why
information systems architects have begun to favor it over other technologies.

ARCHITECTURAL ELEMENTS

An information system architecture describes the way computers are used to meet
organizational needs. For example, one very simple architecture consists of a standalone
PC. This architecture might be suitable for a one-person professional office, for instance.
A more elaborate architecture might consist of a minicomputer server connected via a
highspeed LAN to dozens of PCs that run special application software under Microsoft
Windows 9x.

Note People generally use the terms architecture and infrastructure to refer to
distinct aspects of an information system. Architecture refers to the
technologies an information system uses and the way the technologies work
together. Infrastructure sometimes refers to the specific components and
types of components that realize an architecture; an IBM 3090 mainframe and
Compaq PCs, for example. More often, however, infrastructure refers to the
portfolio of information processing applications owned by an organization or
the mode of organization of the information systems function (centralized,
decentralized, and so on).

- 56 -

Even from these brief descriptions, you can see that an information systems architecture
has several kinds of components including physical components, such as servers and
PCs, and logical components, such as application programs. Let's examine each of these
kinds of components in detail. This will lay a foundation for the subsequent discussion of
architectures.

Network Components

A very simple non-networked information system can consist of a single component— the
PC. However, a networked system like the one in Figure 4.1 always has at least three
components:

« A Client
« A Server

* The network itself

Client Sorver

Figure 4.1: An information systems architecture has three components.

The user operates the client, which is used to initiate requests. Clients include PCs, video
terminals, bank ATMs, and so on. The purpose of the client is to provide a user interface.

The server holds resources, such as data or programs, needed to satisfy client requests.
Servers may be mainframe computers, minicomputers, or even PCs. From the
architectural perspective, the size or power of the server doesn’t matter. What does
matter is that the server responds to client requests. Of course, the size and power of a
server are important characteristics of an information system design: The more powerful
the server, the more clients it can handle, but a server that serves only one client is
nonetheless a server. The architectural perspective is a very high-level perspective,
much like the view of a city you’d experience when flying in an airplane at an altitude of
50,000 feet. The architectural perspective draws your attention to a few prominent
characteristics of a system that experience has shown to be important and relatively long-
lived. It also helps you ignore details that don’t much matter and would otherwise tend to
get in the way of your thinking. After you've determined the architecture of a system, you
must decide how to realize the architecture. It is then that matters of size and power
become relevant. The network joins the client to the server. Client requests flow across
the network to the server and server responses flow across the network to the client. A
network can be a dial-up modem connection, a 100Mbps Ethernet, or any other means of
connecting computers. As with servers, the capability of the network doesn’t matter from
the standpoint of architecture. What does matter is the network’s role as a channel
between client and server.

Just as modern househusbands reverse traditional family roles, clients and servers too
can reverse their usual roles. Consider the situation shown in Figure 4.2. In Transaction
#1, computer A acts as the client and computer B is the server. In Transaction #2, B acts
as a client and C is the server. Therefore, computer B can be both a client and server as
needed for a given situation.

-57 -

& i}
Trarupclion §1

Chianl E Metwork A SersciChont

Trarsaction £2 | %

Figure 4.2: Clients and servers can reverse roles as needed.

The key idea distinguishing a client from a server is usually that the client acts on behalf
of a human user. The distinction can be hard to draw when each of a pair of cooperating
computers is operated by a user. For example, if two users are talking via Internet phone
software, which is the client and which is the server? And what about the situation in
which pre-programmed computers communicate entirely without human intervention?

In such cases, client and server become roles (in a logical sense) rather than physical
devices. Just as in the more usual case, the client initiates an interaction and the server
responds.

An information system architecture can be better characterized in terms of its logical
components rather than its physical components. Although the logical components are
harder to see than the physical components, they’re more central to the purpose of an
information system. For example, a system can be implemented using any of several
competing graphical user interfaces (GUIs). Which particular GUI is chosen is not much
more important than the state of origin of lumber used to construct a home. Just as the
size and strength of building components—rather than their origin—are the real concerns
of a residential architect, the characteristics of the GUl—rather than its identity—are the
real concerns of an information system architect.

Information system architectures differ in terms of the technology used to provide their
logical components. Some of the most important components of an information system
architecture are

+ User interface
+ Data management

+ Computation

User Interfaces

Because it's the part of the system nearest the user, a system’s user interface is
sometimes called the front end. In fact, from the limited perspective of the user, the user
interface is the system. A typical modern user interface might consist of a keyboard, a
video display, and a mouse. Alternatively, a system might employ a more specialized or
exotic user-interface technology, such as a power glove. Some day we may even have
futuristic thought-controlled interfaces such as that of the fictional Soviet fighter plane
stolen by Clint Eastwood in the movie Firefox.

Three main user-interface technologies are used today:

e Dumb terminals

- 58 -

* X-terminals
« PCs

In addition, some expect a fourth technology to soon capture a significant share of the
user-interface market: network computers.

Let’'s examine each of these technologies.

Introduced into widespread use in the 1960s, dumb terminals were one of the earliest
user-interface technologies. Prior to dumb terminals, ordinary folk were not computer
users: The privilege of access to expensive mainframes was the special prerogative of
professional computer programmers and operators. Instead, users communicated with
computers by filling out paper forms, the contents of which were transcribed by keypunch
operators onto punched cards that were fed into the computer in batches. Typically hours
or days elapsed before a user’s transaction was processed. Computer output, too, was
paper bound, taking the form of massive reports that were often out of date by the time
they were distributed.

The early dumb terminal was nothing more than a keyboard and a monochrome text-only
video display connected via a simple network to a mainframe server. Nevertheless, this
humble device brought about a computing revolution. No longer was data passed through
several hands, batched into the computer, and processed into reports. Instead, for the
first time, users could submit transactions that the computer processed in real-time, that
is, while the user waited. Results could be displayed on the video screen rather than on
reports, which required much time to print and distribute. However, dumb terminals were
not simple to operate: Users had to spend days or weeks in training in order to learn how
to use them.

The early 1980s saw PCs transition from hobbyists’ toys to business tools. At first they
offered an interface little different from that of the dumb terminal, but PCs soon sported
high-resolution color displays. These enabled development of GUIs that featured lines
and simulated buttons, making the PC somewhat more user-friendly than the dumb
terminal.

The Apple Macintosh and Microsoft's Windows operating system further improved the PC
user interface by adding a computer mouse, which permitted the user to perform simple,
common operations without typing. This opened PC use to a much wider audience.
Businesses began to purchase PCs rather than dumb terminals because the higher cost
of the PC was offset by its greater ease of use and consequently lower training costs.

However, replacing a dumb terminal with a PC did not automatically afford a GUI.
Application programs had to be changed to support the new user interface technology.
This proved to be costly and time consuming. One of the most thorny issues in
information system management during the 1980s and 1990s was the struggle to
improve the user interface of so-called legacy systems built during the era of dumb
terminals.

The 1990s saw a specialization of GUIs as Web browsers. Browsers became a common
tool for interacting with computers and networks. These easy-to-use programs allowed
even novice computer users to access data from a variety of sources via a consistent
user interface.

Manufacturers of non-PC user-interface devices did not willingly cede the market to the
PC. The 1980s saw the advent of the X-terminal, which provided a graphical user
interface comparable to that of the PC, but at lower cost. X-terminals were, and remain
today, popular within the UNIX community. However, the strategic advantage of X-
terminals, their low cost, was undercut by the falling price of general-purpose PCs. The
capability of a PC to function, via emulation software, as an X-terminal further cut into the
market potential of X-terminals. For just a few dollars more than an X-terminal, one could

-59 -

purchase a PC that ran standard PC applications, such as word processing, as well as an
X-terminal emulator.

The 1990s brought the network computer, which combined the low cost of an X-terminal
with the capability to run standard PC applications. At the time of this writing, the market
success of the network computer remained at issue. However, the continued fall of PC
prices seemed to be hampering their widespread acceptance.

Table 4.1 summarizes the characteristics of general-purpose user-interface technologies.

TABLE 4.1 CHARACTERISTICS OF GENERAL-PURPOSE USER INTERFACE
TECHNOLOGIES

Technology Characteristics
Dumb terminals Low hardware cost

High training cost
Keyboard input

Text-based output

Windows-based Medium-to-high hardware cost
PCs

Low training cost
Keyboard and mouse input
Text and graphical output
Run standard PC software
X-terminals Medium hardware cost
Medium training cost
Keyboard and mouse input

Text and graphical output

Network Medium hardware cost
computers

Low training cost
Keyboard and mouse input

Text and graphical output

- 60 -

Run standard PC software (with assistance of appropriate
server)

Data Management

By definition, information systems involve storage and retrieval of data. Therefore, the
technology used to manage data is a second important logical component of an
information systems architecture. Modern systems generally employ relational databases
as their data management technology.

Just as a system’s user interface is known as its front end, a system’s data management
functions are known as its back end because they’re invisible to the user. Not that
invisible implies unimportant; data management is at the heart of the essential purpose of
an information system: processing and storing data.

Two main data management technologies are in use today:
+ Flat files
* Relational databases

In addition, a third data management technology is vying for a significant market share:
object-oriented databases.

Let’'s examine each of these technologies.

So-called flat files are the ordinary sort of files processed by application programs. Flat
files may be an appropriate technology for simple, standalone applications. However, flat
files suffer from two deficiencies:

+ Aflat file does not include meta data that describes its contents and format.
» Aflat file does not provide a way to relate records in one file with those in another.

The result is that application programs must contain descriptions of the flat files they use
and of the relationships between them. As more and more programs are written,
changing the format of a file or revising its relationships with other files becomes
laborious and expensive.

Relational databases overcome these limitations. A relational database includes a
schema, which describes the contents of the database. Moreover, relational databases
allow relationships between files (fables in relational database parlance) to be specified
and automatically maintained. This provides applications with an important property
known as data independence. Many sorts of changes to the structure of the relational
database can be made without requiring changes to application programs. For example,
it's typically possible to add fields to relational tables or add tables to a relational
database without affecting existing applications. This significantly lowers costs of
database operation and maintenance.

Relational databases also facilitate sharing of data by multiple concurrent users. Without
the special protection they provide, update transactions can “collide,” resulting in
corrupted data. Flat files require one-user-at-a-time access to data or elaborate (and
errorprone) application programming to avoid data corruption.

Relational databases also generally support Structured Query Language (SQL), a
standardized language for definition, access, manipulation, and control of data within

-61 -

relational databases. Because many vendors have provided SQL support for their
relational databases and because SQL is standardized, programmers can write
applications for one host platform and later cost-effectively port them to a different host
platform rather than rewrite them. Chapter 11, “Relational Databases and Structured
Query Language (SQL),” presents these concepts in more detail.

One limitation of relational databases is that they provide only limited support for objects.
Most relational databases support the BLOB (Binary Large Object) data type, which can
hold a persistent external representation of an object’s attributes. An object can therefore
be stored in a relational database. For example, you can store a Java String ina
database as a BLOB item, but the BLOB item holds only the values of the fields of the
String—its text characters. The .class file that defines the behaviors of the String
class must be stored outside the database so that the Java virtual machine can access it.
Essentially, BLOB s are handy for storing objects, but not classes. They’re not fully
object-oriented.

These sorts of capabilities are provided by object-oriented databases, which are
becoming more widely used. One problem hindering acceptance of object-oriented
databases is the present lack of an accepted standard. The American National Standards
Institute (ANSI) and the International Standards Organization (ISO) have been working
for some years on a revised version of the SQL Standard that supports objects known as
SQL-3. However, the standard has not yet been finalized and implementations of the
standard are not yet widely available.

To further complicate matters, the Object Data Management Group (ODMG) has
proposed a standard that differs from the SQL-3 draft in important ways. For example,
the ODMG standard does not attempt backward compatibility with SQL-2. On the other
hand, several vendors (for example, Ardent Software and Poet Software) currently
provide implementations of databases that are ODMG-compliant.

Table 4.2 summarizes the characteristics of data management technologies. Although
object-oriented database technology is currently immature, its potential benefits seem to
ensure that it will gain a growing share of the data management technology market.

TABLE 4.2 CHARACTERISTICS OF DATA MANAGEMENT TECHNOLOGIES

Technology Characteristics
Flat files Lack data independence.

Lack data sharing.

Lack standard language.
Relational databases Provide data independence.

Provide data sharing.

Provide standard language (SQL).
Object-oriented databases Provide data independence.

Provide data sharing.

-62 -

Provide elaborate support for objects.

Not yet standardized by internationally recognized
standards body.

Computation Management

An information system consists of more than data: It also includes software programs that
manipulate the data. An information systems architect can choose from a variety of ways
to manage computation. For example, a batch-oriented COBOL system is quite different
from a distributed Java system. There are four main ways of managing computation:

* A system can allocate processing to one unit or multiple units.
* A system can be written in a non-portable or portable language.
+ A system can allocate processing statically or dynamically, using mobile agents.

Most systems use a single technology for management of user interface or data;
however, systems commonly utilize several technologies for management of
computation. Let’'s examine each of these three technologies.

Strictly speaking, only a standalone system allocates processing to a single unit. Even a
dumb terminal contains a simple microprocessor, so a system that employs a dumb
terminal will have at least two processors: one in the dumb terminal and one in the
computer than controls it. However, programmers don’t write code that runs on the dumb
terminal’s microprocessor terminal. In a typical configuration, they write code only for the
mainframe computer that controls it. Because the programmer’s code runs only on the
mainframe, we view such a configuration as performing all its processing on a single unit.

If the dumb terminal were replaced by a PC that emulated it, nothing of significance
would change. Even though the PC contains a general-purpose microprocessor, it's not
being used in this configuration, which is still deemed to perform all its processing on a
single unit.

However, imagine a network that links a dozen or so PCs scattered across the country,
each PC containing a relational database that records inventory and sales for its region.
One PC might run a program that queries the other PCs to locate an item in short supply.
Processing is being performed on multiple units if the remote PCs run a program that
responds to that query.

Why might this be desirable? It may be less expensive to purchase 50 ordinary
computers than to purchase a single computer that has fifty times the capacity of an
ordinary computer. Similarly, it may be easier to ensure that one of several computers is
operational at all times than to ensure that a single computer is operational at all times.
Allocating processing among several units can decrease cost and improve reliability.

Systems can also be written using a non-portable or portable language. Java, of course,
is the first portable language in widespread use. By writing programs in a portable
language, programmers hope to reduce or eliminate the cost of adapting programs to
run on platforms other than that on which they were developed.

Many companies have suffered the misfortune of constructing large information systems
that use proprietary languages or technologies, only to have the provider of the language
or technology go bankrupt or charge an exorbitant price for continued support. If these
companies had implemented their systems using a portable language they could have

-63 -

replaced the vendor without the high cost of porting the systems.

Mobile agents are software objects that can relocate themselves, or be relocated, from
one processor to another. Mobile agents written in a portable language are particularly
interesting and useful because they can move from a processor of one type to a
processor of another type.

Mobile agents can reduce network traffic and improve the efficiency of a system. For
example, suppose that an application requires two objects to exchange data in a lengthy
dialog. If the objects are located on separate processors, the data must flow across the
network, increasing network traffic and delaying the completion of the dialog. However, if
one of the objects is a mobile agent, it can relocate itself to the processor on which the
other object resides. The two objects can then complete their business using local data
transfers, rather than network data transfers. This decreases network traffic and greatly
increases the speed of the computation.

Now that you’ve been introduced to the technologies used for managing user interfaces,
data, and computation, you’re ready to embark on a study of specific information systems
architectures. In the following sections you learn about two traditional information systems
architectures. You also learn about client/server architectures and distributed architectures.

TRADITIONAL ARCHITECTURES

The two traditional information systems architectures are
» Mainframe architecture

» File-server architecture

To be honest, many experts consider the file-server architecture, which became popular
in the 1980s, a modern architecture rather than a traditional architecture. However, an
architecture that’s been around for over a decade seems to fit the notion of traditional in a
field where the half life of knowledge is anywhere from two to five years. Hence, the file-
server architecture is included with the mainframe architecture as a traditional
architecture.

Mainframe Architecture

The mainframe architecture came into widespread use during the 1960s. Featuring a “big
iron” server (later versions of the mainframe architecture sometimes substituted a less
expensive minicomputer for the mainframe) and dumb terminals (see Figure 4.3), the
mainframe was sometimes aptly called a smart server/dumb client architecture. All
programs were executed by the server, which was responsible for management of the
user interface, data, and computation.

Pl irfrema
Sor
Manageman of

E — | Lisar Imecisce

X

+ i puadicn
Cumb Termina Dumb Termna

Figure 4.3: Mainframe architecture featured a smart server and dumb clients.

Because such systems employed dumb terminals as a user interface, they suffered from

- 64 -

the disadvantages inherent in those primitive devices. Users found them hard to learn
and companies invested significant resources in training employees to use the systems.

Although modern uses of the mainframe architecture feature relational databases, most
systems built using the mainframe architecture used flat files to manage data. As a result,
application programs were generally large and complex. Many of these systems continue
in use today, partly because the software is so difficult to modify.

Note Information systems experts expect large numbers of such systems to fail on
or about the year 2000 because many antiquated systems represent years
using only two digits. Such systems represent both the year 1900 and the
year 2000 as 00 and therefore cannot reliably manipulate dates subsequent to
December 31, 1999. This so-called Y2K problem may compel organizations to
finally update these outmoded systems.

Computational technology was also primitive by modern standards. All processing was
done on the mainframe server. Programs were not portable and mobile software agents
were not employed. Most programs were written in COBOL, a language designed to be
readable by non-computer professionals rather than as a tool for efficient programming.
(Of course, as it turned out, most programs were too complicated for non-programmers to
understand: COBOL didn’t achieve this design goal.)

However, the mainframe architecture had its bright points too. For one thing, during its
day it was the only affordable architecture that allowed direct use of the computer.
Computers were so expensive that organizations were fortunate to be able to afford one.
More elaborate architectures featuring multiple computers were not economically
feasible. An architect’s choices were batch processing or the mainframe architecture.

The mainframe architecture did some things well. For example, a mainframe system
could be made highly reliable. Also, data security was high because data was stored in a
single location with a single point of access. Some modern architectures composing the
mainframe architecture also scaled well: It was possible to build very large information
systems using the mainframe architecture. Table 4.3 summarizes salient characteristics
of the mainframe architecture.

TABLE 4.3 CHARACTERISTICS OF MAINFRAME ARCHITECTURE

Component Characteristic
]
Server hardware Mainframe computer or minicomputer

Client hardware Dumb terminals

User interface Keyboard input, text output

Data management Flat files

Computation COBOL programs (non-portable) executed on server
management

Cost Medium to high

Reliability High

- 65 -

Security High
Scalability High

Flexibility Low

File-Server Architecture

Decreased costs of computing hardware and advances in computing software led to a
new architecture, the file-server architecture, which became popular during the 1980s.
Many organizations had been unable to afford the high cost of the server required by the
mainframe architecture. When powerful PCs first became available, these organizations
sought ways to construct information systems using PCs.

Because they performed computation in the clients rather than the server, file-server
systems could be built using a relatively inexpensive PC as a server. The server itself did
little, functioning mainly as a repository for the common data accessed by client PCs. In
contrast to the smart server/dumb client configuration of the mainframe architecture, the
file-server architecture (see Figure 4.4) was dumb server/smart client.

P or Minicampuder Saness

="

J: { Managamang ot

L_J [[_] :.‘::::.. rhariace

T "ol & Coimgidalic
g
Dashktop: PC Dusikdop PC

Figure 4.4: File-server architecture featured a dumb server and smart clients.

User interface management functions of file-server systems were not much more
advanced than those of mainframe systems. The file-server systems usually featured
color rather than monochrome displays, but both file-server and mainframe systems
depended heavily on keyboard input. A user had to possess typing skills in order to use
such systems.

Data management, too, was little changed: File-server systems depended on flat files just
as mainframe systems did. However, the way in which file-server systems accessed their
files was a little different because a program running on a client PC had to access files
residing on a server PC. Typically, this was accomplished by using operating system
support for file sharing that made the files appear as though they were files on the client
system's local hard drive.

This approach potentially compromised both reliability and security. Because each client
PC modified data on the server, a hardware or software failure in any client could corrupt
the central data. Moreover, clever users could circumvent application controls by
accessing the central files using, for example, a text editor, which would allow them to
change or delete any data.

However, the biggest problem with the file-server approach to data management was
efficiency. Suppose a user wanted to search the files for a given record. The application
program would read data from the server’s files, looking for the record of interest.

- 66 -

Potentially, every record might be transmitted before the right one was found. This high
level of network traffic meant that the file-server architecture was suitable for use only
with a high-speed local network. Large information systems extending beyond the
bounds of the local network could not operate efficiently.

Computation management was similar to that of the mainframe architecture. However,
languages other than COBOL (such as BASIC and dBASE) were commonly used.

Table 4.4 summarizes salient features of the file-server architecture.

TABLE 4.4 CHARACTERISTICS OF FILE-SERVER ARCHITECTURE

Component Characteristic
]
Server hardware PC

Client hardware PCs

User interface Keyboard input, text output

Data management Flat files

Computation Programs written in various languages (BASIC or
management dBASE) executed on client

Cost Low

Reliability Low

Security Low

Scalability Low

Flexibility Medium to high

CLIENT/SERVER ARCHITECTURE

Microsoft Windows became the predominant PC operating system during the 1990s and
relational database technology matured, giving rise to the client/server architecture you
see in Figure 4.5. In this more balanced architecture, the server and clients shared the
burden of computation, making this the first smart server/smart client architecture.

As previously discussed, transition from a textual to a graphical user interface greatly
increased ease of computer use. Many users owned PCs and required little training in
order to use systems that featured GUI.

Equally important was replacement of flat files with relational databases. Early relational
database management systems were notoriously inefficient. However, by the 1990s
database technology had improved and hardware power had increased to the point that
relational database performance was no longer a significant issue.

-67 -

P, Mnicomguler, or
Mainframe Sereer

Maragement of

5';

| Maragamant of
; | * Llser inbsrfacs
] I é "" = Comgastation
Dasking FC Dasking FC

Figure 4.5: Client/server architecture featured a smart server and smart clients.

SQL helped make client/server systems more scalable than file-server systems because
it was no longer necessary to transmit large amounts of data across the network. Instead,
the database engine could search for a desired record and return only that record. This,
of course, was possible because both the server and client were fully programmable.
Clients were programmed in a PC language, such as C or Visual Basic. The server
commonly ran only the database engine, which executed SQL programs, but some
systems featured more elaborate server programs written in C or other languages.

Because it’s a relatively simple language, SQL also made client/server systems flexible.
So-called ad hoc queries, unanticipated queries that were not pre-programmed, had been
a common and significant thorn in the side of flat-file—based systems. Responding to
such queries involved writing a program, a costly and time-consuming process. SQL was
simple enough that programmers became much more productive; some users learned
enough SQL to be able to write their own query programs.

The absence of a costly mainframe made client/server systems more cost-effective than
their predecessors. The combination of cost-effectiveness and flexibility made migration
to the client/server architecture a priority for many organizations. Table 4.5 summarizes
salient characteristics of the client/server architecture.

TABLE 4.5 CHARACTERISTICS OF CLIENT/SERVER ARCHITECTURE

Component Characteristic
]
Server hardware PC, minicomputer, or mainframe

Client hardware PC

User interface Graphical

Data management Relational database

Computation Programs written in various languages executed on
management server or client

Cost Low to medium

Reliability High

- 68 -

Security High
Scalability High

Flexibility High

By the middle of the 1990s the rush to client/server systems had become headlong. The
slogan of the day was downsizing, which meant reducing information systems costs by
replacing the big iron mainframe with a minicomputer that acted as server in a
client/server configuration. Partly, downsizing was a product of cost pressures resulting
from increased globalization. It was thus a logical competitive response. However,
sometimes so much attention was paid to reducing costs that little attention was paid to
securing the potential benefits of the client/server architecture. Consequently, not all
client/server migrations were successful.

However, some understood that the proper slogan was rightsizing, meaning the use of
appropriate and cost-effective technologies for both client and server. Those who
adopted this perspective more often realized the considerable potential benefits of the
client/server architecture.

Web-Server—-Based Architecture

A particular form of client/server architecture has become popular since the mid 1990s—
the Web-server—based architecture shown in Figure 4.6. This architecture features a
Web server and Web browsers as clients.

Web-server—based architecture has come to play a particularly important role in
organiorganization?s internal networks. There it supports functions such as project
management, document tracking, and training.

Because they use a Web browser as a user interface, Web-server—based systems are
easier to use than those that require complete familiarity with Microsoft Windows. Thus,
they open computer use to a wider audience.

Moreover, Web-server—based architecture is not limited merely to internal use within
organizations. It is the architecture of the World Wide Web itself. Using

Web-server-based architectures, many organizations have developed extensive Web
sites for product information, retail sales, customer support, and other purposes. Without
exaggeration, the Web-server-based architecture is the information systems architecture
of the late 1990s.

EIE
=

]
L] -
- =

Wy BlNwsa Wk B

Figure 4.6: Web-server—based architecture features Web server and Web
browser clients.

-69 -

Three-Tier Architecture

One complication affecting the client/server architecture arises in those situations in
which a client accesses several different servers. If the servers use different operating
systems or database engines, the client must be equipped with proper drivers for each
such configuration. To complicate matters, vendors tend to update such drivers regularly.
Therefore, a client must be equipped not only with drivers for the right operating system
or database engine, it must be equipped with the proper versions of such drivers. When
clients are numerous and geographically dispersed, this becomes a problem of system
administration.

The solution (see Figure 4.7) is known as the three-tier client/server architecture. This
architecture features a middleware server, which it interposes between client and server.
Clients are equipped with a simple driver (a thin driver) that enables access to the
middleware server. In turn, the middleware server provides access to servers of various
types.

Middleware servers provide other useful functions, such as protocol translation. Some
architects place application logic in middleware, which results in a very simple structure:

» Clients are responsible for user interface.

+ Middleware servers are responsible for computation, including application logic
encoding the business rules related to a system.

» The servers are responsible for data stored in a relational database.

Earén’ Earvnr

-SI-

e
la

Widclmenen Sorser

| 9

& B

T
=
Chaskicg PC Db P2

Figure 4.7: Three-tier systems simplify client configuration maintenance when
accessing multiple servers is a requirement.

When Web browsers are used as clients, this configuration simplifies the maintenance of
application programs as well as drivers. In this configuration, both the clients and the
servers are general-purpose programs. All the unique parts of the information system
reside in the middleware server, where they can be conveniently updated as required.

DISTRIBUTED ARCHITECTURES

A distributed architecture is one that includes multiple servers. If you push the point too
far, many client/server systems fit this definition. For example, a three-tier client/server

system usually includes multiple servers. In fact, that's the reason for having a third tier:
to facilitate access to heterogeneous servers.

But clients in such systems generally connect to only a single server at a given time. To
be considered truly distributed, a system should include multiple concurrent server
connections. One simple distributed architecture is peer-to-peer networking (see Figure

-70 -

4.8), in which every host potentially acts as both client and server.

Designers of distributed systems aim to place data and computation near the point of
use. This reduces network traffic and improves system response time. Reliability is
another potential advantage of a distributed system, which can continue working even
when part of the system fails. In the past, development of distributed systems has been a
difficult undertaking, owing to the novelty of the technology and the lack of adequate
tools. With the advent of Java, the Web, and Common Object Request Broker
Architecture (CORBA), this has finally changed. Table 4.6 summarizes salient
characteristics of distributed systems.

Daskiog PG Daskiag PC

T

| [r—

i

T

Daskacp PC Deskiog PC

Figure 4.8: A peer-to-peer network is a distributed system.

TABLE 4.6 CHARACTERISTICS OF THE DISTRIBUTED ARCHITECTURE

Components Characteristics
]
Server hardware PC, minicomputer, or mainframe

Client hardware PC

User interface Graphical

Data management Relational database

Computation Programs written in various languages executed on
management server or client

Cost Medium

Reliability High

Security High

Scalability High

Flexibility High

-71 -

Object Buses

Just as a system based on flat files can pose a maintenance problem when changes are
made to data structure or format, a distributed system can pose a maintenance problem
when hosts are added or deleted or when resources, such as data or programs, are
relocated. A directory service can provide location transparency by enabling hosts to
discover the location of resources at runtime.

When a distributed information system is object-oriented, the directory service can take
the form of an object bus. An object bus helps objects locate remote resources, including
other objects; it also enables objects to send messages to remote objects and receive
responses.

The most popular object bus is that provided by CORBA, which is the subject of Chapters
21 through 33 of this book. Object bus technologies include Java’s Remote Method
Invocation, presented in Chapter 15 and Chapter 16, and Microsoft's DCOM, presented

in Chapter 20.

Mobile Agents

Another innovation in distributed systems architecture is the mobile agent, an object that
can move from host to host. Mobile agents allow processing to follow use dynamically;
they can be used, for example, to balance the processing load of a system so as to avoid
overtaxing a host that’s handling many requests.

An interesting consequence of technologies like the object bus and mobile agent is that
they simplify the structure of information systems. A system built using these
technologies is adaptable, or even adaptive, so its structure can be tuned when
necessary. Therefore, such a system better fits current organizational needs than a
system built using a fixed structure.

As organizations face increased competitive pressures and environmental turbulence, the
advantages offered by the distributed architecture are crucial. Data is the lifeblood of the
modern organization, flowing to the remotest outpost and bringing opportunity and insight.
A static information system structure is akin to hardening of the arteries, restricting the vital
flow of data. Agile competitors seek information systems structures that are energetic and
long-lived, such as those built using the distributed architecture.

FROM HERE

The following chapters provide additional details regarding specific state-of-the-art
distributed architectures:

» Chapter 11, “Relational Databases and Structured Query Language (SQL),” more fully
presents relational database technology.

+ Chapter 15, “Remote Method Invocation (RMI),” describes a Java core technology that
provides a simple but effective object bus for Java objects.

+ Chapter 18, “Servlets and Common Gateway Interface (CGl),” describes Java
servlets, a technology designed to overcome weaknesses of the Common Gateway
Interface (CGI) commonly used in Web-server—based architectures.

» Chapter 21, “CORBA Overview,” begins a series of chapters that describe the
Common Object Request Broker Architecture, which provides an elaborate and
sophisticated object bus.

» Chapter 34, “Voyager Agent Technology,” introduces you to Voyager, a freely available

-T2 -

software product that supports mobile objects and agents. In addition, Voyager is
compatible with CORBA.

Chapter 5: Design Patterns

Overview

Feed any programmer a thimble of gin, and chances are that he will begin complaining
about unreal deadlines, being forced to release buggy software, and a general software
industry that is moving too fast for its own good. Fill up his glass again, and this time he
will probably start talking about something called the software crisis and how he cannot
get funding to properly write software. Truth be told, the software industry is in a lot of
trouble and if we don’t watch out, things are going to get much worse.

The term software crisis is used to describe the situation brought about when software
shops are forced to develop feature-packed products under unrealistic time constraints.
This crisis gets exponentially worse as the number of interdependent systems grows.

A major cause of the crisis is attributed to actions taken by major companies, including
Netscape and Microsoft. These companies, along with many others, operate under the
bizarre new concept of Internet time. Under Internet time, development schedules that
historically took 12 months are being shortened to 6 or 9 months. Chances are, these
timetables may never turn around and only by changing the manner in which we solve
problems can we overcome this crisis. In looking for solutions to the crisis, the software
community looked to other engineering disciplines and studied the manner in which they
solve problems.

When building a bridge, for example, civil engineers don't just start throwing wood and
metal across a chasm. Instead, they study the manner that bridges were previously built,
they devise a plan for a new bridge, test models, and finally, build the real bridge. Too
often software projects neglect to study the successes and failures of the past, fail to plan
the current project, and often fail to produce a solid piece of code. In an attempt to
refocus the software industry around planning, planning, and more planning, software
engineers have turned to design patterns, anti-patterns, and the Unified Modeling
Language (UML).

Note The UML is a collection of symbols that can be used to fully model the software
cycle. For more information on this topic, see Chapter 3, “Object-Oriented Analysis
and Design.” Anti-patterns, a relatively new term describing an old concept, are the
study of failed software projects. Anti-patterns are useful because they allow you
to show that a piece of software has a greater chance of success if it lacks design
concepts detailed by an anti-pattern.

INTRODUCING DESIGN PATTERNS

Design patterns are a tool by which the knowledge of how to build something is shared
from one software engineer to another. More precisely, they allow for a logical description
of a solution to a common software problem. A pattern should have applications in
multiple environments, and be broad enough to allow for customization upon
implementation. For example, memory management in a distributed environment is
tricky. Instead of inventing a new solution for every project, many developers look to the
reference counting pattern as a guide.

Note Reference counting involves tracking the number of clients who have access
to a unique server object. When that count reaches zero, there are no longer
any clients of the object, and its allocated memory can be returned.

When working with new technologies, like distributed objects, the ability to share
knowledge thorough design patterns is critical. Distributed applications introduce

-73 -

concerns beyond those present in standalone applications, and developers new to their
use will benefit greatly from any help. These concerns, including network traffic, server
scalability, and general reliability, can mean project failure if neglected. This chapter
covers a history of design patterns and then covers a series of patterns that applies to
distributed object development.

Like all movements in the software world, the pattern movement has a rather interesting
history. Back in 1987 two engineers, Ward Cunningham and Kent Beck, were working on
a project and were unsure if they would be able to finish on time. They turned to what
would eventually become known as patterns, and were amazed at the massive
assistance these patterns provided for the project. Cunningham and Beck first presented
their findings at the Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA) conference in 1987, where they managed to generate much excitement.

Note OOPSLA is presented every year by the Association for Computing
Machinery (ACM). It is one of the premier conferences for individuals
specializing in object technology.

Soon after OOPSLA, a group of four individuals—Erich Gamma, Richard Helm, John
Vlissides, and Ralph Johnson—met and realized they shared a common enthusiasm for
patterns. These four engineers, now known as the Gang of Four (GOF), published in the
early '90s a book titled Design Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley, 1995). Design Patterns, or the GOF book as it is often called, has
fueled the current patterns movement, which continues gaining momentum every day.

One final bit of pattern trivia is that the true father of patterns was not a software engineer
at all. Christopher Alexander, an architect (not a software architect) first discussed patterns
in his 1964 book, Notes on the Synthesis of Form (Harvard University Press, 1970). While
Alexander discussed patterns as they apply to building physical structures, the issues
discussed are relevant in the software community.

DEFINING PATTERN TYPES

The term pattern as it applies to the software process is rather broad and has numerous
subcategories. Further complicating matters is the fact that patterns that apply to all parts
of the software cycle are now being developed. The focus here is on patterns that
specifically apply to the development of software itself. Note, however, that there are
additional pattern categories that apply to analysis, organization, and risk management.
Although the focus of this chapter is strictly on design patterns, it is good to have a solid
understanding of other pattern categories that apply to the code writing process. These
categories are described as follows:

Architectural patterns describe how systems are organized as a whole. For example,
an architectural pattern for an Integrated Development Environment (IDE) would
discuss the manner in which the compiler, linker, text editor, and debugger all
interoperate.

Design patterns describe how to physically design code with respect to a single
function. For example, the design of a distributed parallel processing application
could take advantage of one of the many parallel processing patterns. Idioms (or
coding patterns) describe patterns specific to a single programming language. The
use of Java interfaces to describe class functionality is an example of an idiom.

The design patterns covered in this chapter are
Factory

Observer

-74 -

Callback

In presenting a pattern there are many criteria that should be included to provide a
complete picture to the reader. The criteria should be presented in a format that is easy
to read and allows readers to quickly obtain the needed pieces of information.

While a logical, easy-to-read format is required for pattern presentation, there is no
standard form. The format used in this book is loosely based on what is commonly
referred to as the Christopher Alexander’s Alexandrian form. Besides not having a
standard presentation format, there is no central pattern authority that guarantees a
unique pattern name and function. The relatively small size of the pattern community
helps eliminate redundancy, although some is bound to occur.

As stated earlier, a pattern must meet certain criteria to exist. Often people use the term
pattern rather loosely and incorrectly label algorithms or data structures as “design
patterns.”

Note The ability to determine whether something is actually a design pattern comes
with time. However, algorithm and data structure confusion is common. The
main difference between a design pattern and a data structure or algorithm is
that a design pattern describes how a general problem is solved. An algorithm
or data structure is a code implementation that solves a highly specific
problem.

Note All patterns in this chapter are implemented in Java. However, since many
examples require explicit knowledge of a specific distributed object
environment, some pseudocode is used. For example, instead of writing code
that binds to a remote CORBA server, you see a line like this: “/bind to

”

corba server

The term “ ” refers to the process by which a client object obtains a reference
to a remote object. For example, under CORBA, if you know an object’'s name
and interface you can request that the ORB bind you to that object.

Although some variance may exist from author to author, it is generally accepted that
patterns must contain all of the following criteria:

Name—Just like every other item in the world, a logical name makes identification
much easier. The name should be concise, easy to remember, and logically describe
the function of the pattern. An attempt should also be made to ensure that the name
is not used by another pattern.

Abstract—A description of the pattern without too much regard for its implementation.
This section is usually written last and is based on the problem, context, solution, and
forces sections. The abstract is not necessarily a required criteria, but is an added
convenience to readers.

Problem—A pattern solves a problem, and this should be clearly spelled out here.
While the pattern name should hint at its function, the problem statement allows
developers to clearly identify its purpose.

Context—The pattern context identifies the environment in which the pattern is
applied. For example, a pattern for handling multiprocessing identifies a context for a
multiprocessor machine.

Forces—The forces acting on a pattern indicate conditions that make the pattern less
than optimal. Additionally, the forces section details design trade-offs that must be
made to fully exploit the pattern.

Solution—Whereas the problem description states the problem solved by this

=75 -

pattern, the solution description states both the means to the end and the end itself.
The section often includes illustrations, diagrams, and detailed text descriptions.

Examples—The examples section includes one or more code implementations of the
pattern. This section is extremely important; it acts as proof that the pattern can be
successfully implemented.

Resulting context—This section discusses both the desired results and side effects
caused by the pattern execution.

Rationale—Discussion on why the pattern solution solves the pattern problem.
Additionally present in this section are notes on why the pattern is actually needed,
and the larger role that it plays in the software lifecycle.

Related patterns—If applicable, similar patterns and their relationships are
mentioned here.

Known uses—In addition to meeting all criteria defined in this list, the rule of three is
often applied to determine whether something is actually a pattern. This rule states
that for a pattern to be truly proven, it must exist in at least three successful systems.
The known uses section presents a discussion on known implementations of the
pattern.

Now that you have a general background on design patterns, let’'s begin the design
pattern coverage. Some of the patterns discussed in this chapter do have applications
outside of distributed computing, but are not within the scope of this book.

Having covered what exactly patterns are and the problem they solve, you are ready to
dive into individual discussions on a series of patterns. The rest of this chapter changes
form to follow the previously discussed Alexandrian form for patterns. Each successive
section introduces a new pattern in our version of the Alexandrian form.

USING THE FACTORY PATTERN

Abstract. In a distributed environment, it is not always possible to allocate memory for an
object in a foreign system. The factory pattern facilitates remote instantiation of objects.

Problem. When performing distributed object-oriented programming, it is often necessary
to instantiate an object on a foreign machine. While Java does provide the new keyword
for local object instantiation, there is no explicit keyword that allows for remote object
instantiation. It is not possible to directly instantiate a remote object unless the distributed
environment explicitly monitors usage of the new keyword and brokers requests to a
remote machine.

Context. This pattern is applicable in distributed environments where remote object
instantiation is necessary.

Forces. Under the factory pattern, a single object becomes a dedicated “factory object.”
Since multiple simultaneous clients most likely use the factory object, it must be written to
be totally thread-safe. If usage is going to be extremely high, or if instantiation of the
target object is going to take a long while, the factory object will probably want to answer
each request in a separate thread.

Solution. Under the factory pattern, client objects do not explicitly instantiate an object.
Rather, they bind to a remote factory object, ask that object to perform the instantiation,
and then obtain the new object from the remote factory object. This pattern mirrors many
producer-to-consumer relationships in the real world. For example, if you need a shirt
made, you walk down to the tailor, have your measurements taken, pick your fabrics, and
then the tailor makes the shirt and gives it to you. Acting as the “factory object,” the tailor
accepts the burden of ensuring that the shirt meets both your requirements and the

-76 -

requirements of the fabric.

A factory object is passed data that acts as requirements for the remote object. The
factory object then uses that data to instantiate the remote object and returns it to the
client. Because the factory object has explicit knowledge of the remote environment, it
can ensure that the instantiated object meets both the client and environmental
requirements. In general, the factory object will have methods with parameter lists that
mirror the constructor parameter lists. These parameters are then passed directly from
the factory object method to the new object’s constructor. An exception to this rule occurs
when the factory needs to track data about the requestor, or when the object being
instantiated needs explicit data from the factory object. Figure 5.1 shows the factory
pattern in action.

Examples. Three classes are employed in the following example. A FactoryServer
object can instantiate ServerObject objects. AClientObject object first binds to
the FactoryServer object and then asks for a ServerObject instance.
FactoryServer isin Listing 5.1, ServerObject isin Listing 5.2, and
ClientObject isin Listing 5.3.

1. Clisnt Fequests Ohiscl From Factay

Client f========m » Faclory
2. Faclory metantistes lamgel otyect. and
givas mtamncs (o 1ha chiant
Client pe=s=s=== > Faclory
T
'
'
|
¥
Targat Object
r

Figure 5.1: Factory pattern facilitates remote object instantiation.

LISTING 5.1 FactoryServer

public final class FactoryServer extends Thread ({
public FactoryServer () {
waitForConnection () ;

private void waitForConnection () {
// Code to wait for an incoming connection. This code
// specific to the distributed object technology
// currently enabling communication.

public ServerObject createServerObject (String sName) {
return new ServerObject (sName) ;

public static void main (String[] args)) {

FactoryServer server = new FactoryServer();

=77 -

LISTING 5.2 SserverObject

public final class ServerObject {
private final String _sName;

public ServerObject (String sName) {
_sName = sName;

}

public String getName () {

return _sName;

LISTING 5.3 ClientObject

public final class ClientObject {
public ClientObject () {
// First bind to the remote factory object
// object. Since the binding process is
// specific to an actual implementation, it is
// shown here as a comment.
FactoryServer server = // bind to factory server

// Request that the remote factory object instantiate

// a ServerObject object for us.

ServerObject serverObject =
server.createServerObject ("luke") ;

}
}

Resulting Context. The factory pattern does not alter the state of the factory object, but
there are memory implications that the factory server must take into account. Since many
clients instantiate objects using server memory, the factory must always ensure that
sufficient memory exists. In a Java environment, ensuring proper memory allocation is
simply a matter of starting the Java Virtual Machine (JVM) with sufficient available
memory.

Rationale. In a distributed object environment, it is usually necessary for a client to
instantiate an object at the server. This pattern solves this need.

Known Uses. The factory pattern has been around in various forms for ages. It is used in
non-distributed applications to centralize object instantiation and is used in countless
distributed applications.

USING THE OBSERVER PATTERN

Abstract. A common requirement of distributed systems is that they possess knowledge
regarding the state of a remote object. Constantly checking that remote object for
changes consumes client resources, server resources, and bandwidth. The observer
pattern allows for client notification upon server changes.

Problem. The function of a client object is often to either represent some state present in
a corresponding server object or to take an action on a server object change. Since the
client object must have instant notification of changes to the server object’s state,
thereare two possible solutions to the notification problem. The client object could check
for changes every n units of time, or the server could notify the client only when a change

-78 -

occurs. Having clients constantly check for server changes is a drain on resources (both
client and server) and requires that much bandwidth be dedicated to this checking. The
observer pattern discusses a logical manner by which clients can receive notification of
server state change.

Context. This design pattern is applicable in any environment where client objects need
constant knowledge of changes to some server-side value.

Forces. Server objects conforming to the observer pattern will spend time notifying clients
of changes to server state. When implementing the server object, decisions need to be
made about change synchronization and the manner in which resources are allocated to
telling clients about changes. In some situations the server will want to notify the client
before making the actual changes to itself. In other situations, the server object will want
to immediately reflect the change internally and then send off client notification in a
separate (possibly low-priority) thread. Additionally, since two-way communication
between client and server is required, you must ensure that external security devices
allow this. If a firewall protects the client from receiving method invocations, this pattern
cannot be used.

Solution: The observer pattern functions in a manner quite similar to the Java JDK1.1
delegation event model. Under the observer pattern, clients expose a method (via an
interface), which is then invoked to indicate a change in the server object. The client

registers with the server as an interested listener. When changes occur in the server
object, the server object sends information about the change to all clients. Figure 5.2
illustrates this process.

Note As with any distributed object environment, the concept of clients and servers
is rather gray. Since the role of client or server may change during the
application lifecycle, role should be thought of as a transient, not persistent,
quality. Just because one piece of software is running on a Sun Sparc10 and
the other is running on a 486 does not imply that the Sparc is the server and
the 486 is the client. If the Sparc passes processing requests off to the 486,
the 486 plays the role of the server.

Examples. The following examples demonstrate a simple application in which a client
registers interest with a stock quote server. The client notifies the quote server of all
interested ticker symbols, and the server notifies the client whenever one of those values
changes. There are two classes and one interface contained in this application. The
QuoteClientI interface (see Listing 5.4) identifies the method by which the client
obtains notification of a change. The QuoteClient class (see Listing 5.5) implements
the QuoteClientI interface and listens for changes to a few ticker symbols. The
QuoteServer class (see Listing 5.6) tracks all listeners and sends notification
whenever a registered symbol has a value change.

-79 -

1. Boih classes. ane instantiaind, and regstes
el in adch it

Dtesereer Class Disersabin Class

2 Some changs Bappans in e Obisrabls obis

CHeanial Clhinsg Citesnrvpbin Class

3 Obssranbie ohject nosfes Dbadsver objoct that
A chargs hag cotumad

Otssana Class Orsarvabin Class
Chang
Crcgzarred
Moificaiion

~

Figure 5.2: The observer pattern facilitates client notification of changes in
server objects.

LISTING 5.4 THE QuoteClientI INTERFACE

/**

* Interface to be implemented by all object interested
* in receiving quote value changed events.

*/

public interface QuoteClientI {

public void quoteValueChanged (String sSymbol, double
dNewValue) ;
}

LISTING 5.5 THE QuoteClient CLASS

/**

* The QuoteClient class registers interest with a server
* for tracking the values of different stocks. Whenever

* the server detects that a stock"s value has changed, it
* will notify the QuoteClient object by invoking the

* quoteValueChanged () method.

*/

import java.util.x*;

public final class QuoteClient implements QuoteClientI {
private Hashtable _hshPortfolio;

public QuoteClient () {

_hshPortfolio = new Hashtable();
regWithServer () ;

- 80 -

/**
* Registers with the server our interest in receiving

* notification when certian stocks change value.

*/

private final void regWithServer () {
QuoteServer server = // bind to quote server
server.regListener ("INKT", this);
server.regListener ("MOBI", this);
server.reglListener ("NGEN", this);
server.regListener ("ERICY", this);
_hshPortfolio.put ("INKT", new Double(0));
_hshPortfolio.put ("MOBI", new Double(0));
_hshPortfolio.put ("NGEN", new Double(0));
_hshPortfolio.put ("ERICY", new Double(0));

}

/**

* Invoked whenever the value associated with an interested
* symbol changes.
*/

public void quoteValueChanged (String sSymbol, double

dNewValue) {
// display the changes

System.out.println ("\n");
System.out.println (sSymbol+" changed value");

System.out.println ("old value:
"+ hshPortfolio.get (sSymbol));
System.out.println ("new value: "+dNewValue) ;

// store the new value
_hshPortfolio.put (sSymbol, new Double (dNewValue)) ;

public static void main(String[] args)) {
QuoteClient client = new QuoteClient () ;

LISTING 5.6 THE QuoteServer CLASS

/**

* The QuoteServer class monitors stock feeds, and
* notfies interested parties when a change occurs
* to the value of a registered symbol.

*/

import Jjava.util.*;

public final class QuoteServer {

// listeners are stored in a hashtable or vectors. the
hashtable

// uses as a key the registered symbol, and as a value a
Vector

// object containing all listners.

- 81 -

private Hashtable _hshlListeners;

public QuoteServer () {
_hshListeners = new Hashtable();

/**
* Send changed values to all listeners. Since the manner
* in which the QuoteServer object monitors the stock
* feeds is beyond the scope of this pattern, it is
* simply assumed that that method is invoked when needed.
*/

private void sendChangeForSymbol (String sSymbol, double

dNewValue) {
// check if there are any listeners for this symbol

Object o = hshlListeners.get (sSymbol);
if(o !'= null) {
Enumeration listeners = ((Vector)o).elements();
while (listeners.hasMoreElements()) {
((QuoteClientI)listeners.nextElement ()) .
=2 quoteValueChanged (sSymbol, dNewValue);
1

/**
* Invoked by clients to register interest with the server for
* a specific symbol.
*/
public void regListener (String sSymbol, QuoteClientI client) {
// check if we already have a vector of listeners at this
= location
Object o = hshListeners.get (sSymbol);
if(o !'= null) {
((Vector)o) .addElement (client) ;
1
else { // create the vector
Vector veclListeners = new Vector():;
vecListeners.addElement (client) ;
hshlListeners.put (sSymbol, vecListeners);

Resulting Context. Since the method defined by the client to indicate a server value
change can be invoked at any time, clients must be developed with this in mind. Flow
control cannot always be assumed, and any access to shared resources must be written
in a thread-safe manner.

Rationale. The observer pattern allows for client synchronization with a server value in a
manner that keeps resource use to a minimum. Since network traffic exists only when a
value changes, no bandwidth is wasted. Additionally, their resources are used more
efficiently because clients are not constantly pinging servers for change requests.

-8 -

Known Uses. The observer pattern has obvious parallels in the world of push media. Push
media involves pushing of content from some content source to a content listener. For
example, instead of checking The New York Times Web site every day, push media
delivers the information directly to your desktop whenever a change occurs.

USING THE CALLBACK PATTERN

Abstract. The role of a server object is often to perform some business logic that cannot
be performed by a client object. Assuming that this processing takes a significant time to
perform, a client may not be able to simply wait for a server request method to complete.
As an alternative, the server object can immediately return void from a request method,
perform the business calculations in a unique thread, and then pass the results to the
client when ready.

Problem. It is common for a client object to request some data from a server object.
Assuming that the processing only takes a second or two, the client need not concern
itself with the processing time involved. If, however, the server processing will take 10,
15, 120, or more seconds, the client could end up waiting too long for a method return
value. Having the client wait for this return value too long may cause client threads to
hang and block, which is obviously not a desirable situation. Additionally, depending on
the technology used to enable distributed computing, a timeout could occur if the server
object takes too long before returning a value.

Context. This design pattern is applicable in any environment where server processing in
response to a client request will take an extreme amount of time.

Forces. Since two-way communication between client and server is required, it must be
ensured that external security devices allow this. If a firewall protects the client from
receiving method invocations, this pattern cannot be used.

Solution. The callback pattern functions by allowing the client to issue a server request
and then having the server immediately return without actually processing the request.
The server object then processes the request and passes the results to the client. In most
situations, the server performs all processing in a separate thread to allow additional
incoming connections to be accepted.

This solution has obvious parallels to our earlier shirt-making example. When you visit
the tailor, you give him your measurements and fabric preferences. The tailor then makes
your shirt, but most likely spends at least a few weeks doing the work. Your options are to
either wait for a return value (obviously not the best use of your time), or to instruct the
tailor to perform a callback to you when the shirt is ready.

Examples. In this example you implement a server class that has the capability to figure
out very large prime numbers. Perhaps you will have an application that requires client
access to large prime numbers, but will not have client machines capable of performing
the processing. Assuming this situation, the processing is offloaded to a more powerful
server that performs the calculation in a unique thread and returns the value when it is
found.

There are three classes that compose this example. CallbackClient (see Listing 5.7)
binds to a server, requests a large prime number, and takes action upon notification that
the value arrived. CallbackServer (see Listing 5.8) waits for client requests and spins
each off into a separate thread using the CallbackProcessor inner-class.
CallbackProcessor (see Listing 5.8) discovers the required number and returns it
when found. If CallbackProcessor is unable to provide the correct value, a null
value is returned.

LISTING 5.7 THE callbackClient CLASS

-83 -

/**

* The CallbackClient class will bind to a server object

* request that a large prime number be calculated, and

* then respond to the results when delieved by the server.
*/

public final class CallbackClient ({

public CallbackClient () {
CallbackServer server = // bind to server
server.findLargestPrimeNumberGreaterThan (100000, this);

/**
* Invoked by the server when the target prime number is

found.
* Accepts a Long object and not a long base-type to allow

* for the passing of a null value if an impossible
* request was performed.
*/

public void primeNumberFound (Long 1Value) {

if (1lValue == null) System.out.println ("number not
found") ;
else System.out.println ("number found: "+1Value);

LISTING 5.8 THE callbackServer CLASS

/**

* The CallbackServer class finds very

* large prime numbers. Since the calculations

* often take much time, clients are not required to

* wait for a return value. Instead, the CallbackServer
* class notified the client when the value has been

* found. All requests are performed in a

* unique thread to allow for maximum information

* processing.

*/

public final class CallbackServer ({

public CallbackServer () {
}

public void findLargestPrimeNumberGreaterThan
= (long 1Base, CallbackClient client) {
CallbackProcessor processor = new CallbackProcessor
= (lBase, client);
processor.start () ;
// immediately return
}
/**
* Inner class used to process requests in a
* unique thread.

-84 -

*/
class CallbackProcessor extends Thread {
private long _1Base;
private CallbackClient client;

public CallbackProcessor (long 1lBase, CallbackClient
client) {

_1Base = 1Base;
_client = client;
}
public void run () {

long lFoundValue = //
= spend a lot of time figuring out the needed prime numer
_client.primeNumberFound (new Long (lFoundValue)) ;

Resulting Context. Since the method defined by the client to indicate a return value from
the server can be invoked at any time, clients must be developed with this in mind. Flow
control cannot always be assumed, and any access to shared resources must be written
in a thread-safe manner.

Rationale. Waiting for the return value of a distributed method invocation is not always
possible due to a variety of constraints imposed by the system. The callback pattern
offers a solution to that problem.

Known Uses. A common situation that requires the use of the callback patterns is when
queries are executed against old systems that take a long time to generate a response.

| once found myself in a situation where | had to write a Java applet front end to an ancient
DOS-based application. The only public interface exposed by the DOS application dictated
that | write queries to an input directory and wait for a response to be written to an output
directory. Through use of the callback pattern, | was able to eliminate the network
overhead generated when the client would often have to wait at least a minute for a
response to be generated.

USING THE SHARED INSTANCE PATTERN

Abstract. Creation of a remote object often takes a long time due to both potential
database queries and object registration requirements defined by the distributed object
technology. For example, in a CORBA environment a remote object must register itself
with the ORB before it can be exported. Long database queries combined with potentially
slow object registration can cause a rather long delay to occur between the time that a
client issues a request and the time that the request is answered. CORBA, detailed in
Chapters 22 through 33, is a technology that allows code written in multiple languages,
running on multiple machines to communicate and share processing. CORBA technology
is taking the computing world by storm, and is one of this book’s major focuses.

In addition to long creation time, server objects take up memory; if the server runs out of
memory, it could crash the whole system. Assuming a stateless remote object, it is
possible to take this creation hit once and then allow clients to share the instance.

Note When talking about remote objects, the terms statefull and stateless refer to
the remote object’s capability to be changed by a client. When a method is
invoked on a statefull object, that object’'s member data can change. When a
method is invoked on a stateless object, none of that object’'s member data

-85 -

changes.

Problem. In a distributed environment, speed is an issue that developers must constantly
consider. Method invocations on a distributed object involve network traffic, and server
implementations must deal with the fact that clients could create thousands of objects at
the server. All of these server objects take up memory, and can take a long time to
instantiate. If possible, the number of server objects created should be minimized, thus
allowing for reduced resource usage and reduced response time to client queries.

Context. This pattern has applications in any distributed environment where multiple
clients need access to the same server object. In general, this object must be stateless.
In some situations it may be possible for clients to share a statefull object, but much care
has to be taken to ensure that dirty data is never seen.

Note Dirty data refers to data that has been altered by one client and that another
client thinks contains historical information. For example, if two clients
reference the same remote object and one alters the remote object’s data,
that new data is called dirty until everyone references the same information.

Forces. The shared instance pattern achieves its greatest success when a single server
object is shared by lots of clients. If a server object is only going to be occasionally used
by one or two clients, it is not worth the work required to track usage.

Solution. Serving shared instances to multiple clients places three major requirements on
the server developer. First of all, the server must be able to ensure that two queries are
identical. The second requirement comes into play once a query is identified as already
executed. At this point, the server must be able easily locate the unique response
objects. If either of these first two requirements is ignored, it is quite possible that the
wrong query results will be returned to the user, which could be a major security risk. The
final requirement that must be heeded by developers involves identifying when no clients
have access to the shared server object. At some point, the server must be able to
destroy the shared object and the only safe time to do this is when no clients are
accessing the object.

The first requirement of uniquely identifying queries can easily be achieved by
aggregating query parameters into a holder class and overloading that class’s equals ()
method. If the query does not accept any parameters, you need not bother with this
requirement. Listing 5.9 shows an example query holder class that might be used for
searching a database of people.

LISTING 5.9 THE PersonQuery CLASS

public final class PersonQuery {
private String sFirstName;
private String sMiddleName;
private String _sLastName;

// getter methods

public String getFirstName() { return sFirstName; }
public String getMiddleName () { return sMiddleName; }
public String getLastName() { return sLastName; }

// setter methods
public void setFirstName (String sFirstName) {

= sFirstName = sFirstName; }
public void setMiddleName (String sMiddleName) {

= sMiddleName = sMiddleName; }
public void setLastName (String sLastName) {

- 86 -

= slastName = sLastName; }

// overload equals ()

public boolean equals (Object compare) {
// make sure that a PersonQuery object was passed
if (! (compare instanceof PersonQuery)) return false;

PersonQuery personCompare = (PersonQuery)compare; //

= cast once to save time

// check all fields

if (! personCompare.getFirstName () .equals (getFirstName ()))
= return false;

if (!
personCompare.getMiddleName () .equals (getMiddleName ()))
= return false;

if (! personCompare.getLastName () .equals (getLastName ()))

= return false;

return true; // all good

Once a query has been identified as unique, a server object must then decide if the
object to be served in response already exists. To facilitate discovery of the response
objects, a hashtable that uses the query as a key can be used.

All query results in Listing 5.10 are stored in a hashtable. The query object is used as the
key and the query results are used as a value.

LISTING 5.10 THE SharedInstance CLASS

import Jjava.util.*;

public class SharedInstance {
private Hashtable _hshResults;

public SharedInstance () {
_hshResults = new Hashtable();

public Person[] executeQuery ((PersonQuery query) {
// check if the query has already been performed
if (_hshResults.containsKey (query)) return

= (Person[])hshResults.get (query) ;

// query has not been performed
Person[] returnValue == // get from database
// register the return value with the distributed object

= technology

_hshResults.put (query, returnValue); // store the results

-87 -

return returnValue; // return the results

It is easy for Java programmers to forget about that time long, long ago when they
actually had to properly dispose of allocated memory. Java does provide a garbage
collector that usually destroys any allocated unused object, but functionality is not always
the same in a distributed environment. Unless the distributed object technology explicitly
provides a distributed garbage collector, you as the developer are charged with this
responsibility. If a remote object is given to a single client, it is easy to tie the lifecycle of
the remote object to the lifecycle of the client. In situations where the remote object is
shared between many clients, that number of clients must be explicitly tracked.

Listing 5.11 expands on Listing 5.10 to include support for something called reference
counting. Reference counting involves tracking client references to a server object. When
an object is served to a client, that object’s reference count is incremented by 1. When
the client is done with the remote object, that object’s reference count is decreased by 1.
When an object’s reference count is 0, the server can destroy the object.

LISTING 5.11 sharedInstanceWithReferenceCounting AND PERSON
CLASSES

import Jjava.util.*;
public class SharedInstanceWithReferenceCounting {
private Hashtable _hshResults;

public SharedInstanceWithReferenceCounting () {
_hshResults = new Hashtable();

/**
* Adds one to each object"s reference count
*/
private void addToReferenceCount (Person[] persons)) {
int iLength = persons.length;
for (int i=0; i<iLength; i++) {
persons[i] .addToReferenceCount () ;
}
}
/**
* Adds one to each object"s reference count
*/
private void subtractfromReferenceCount (Person[] persons)) {

int iLength = persons.length;
for (int i=0; i<ilLength; i++) {
if (persons[i].subtractfromReferenceCount ())

= destroyObject (persons[i]) ;
}

/**

* Does any needed clean-up and destroying of objects

- 88 -

*/
private final void destroyObject (Person person) {
// destroy

public Person[] executeQuery ((PersonQuery query) {
Person[] returnValue == null;

// check if the query has already been performed

if (_hshResults.containsKey(query)) returnvValue =
(Person|[])

= hshResults.get (query) ;
else returnvValue = // get from database

// register the return value with the distributed object
= technology

// add to the reference count
addToReferenceCount (returnValue) ;

_hshResults.put (query, returnValue); // store the results

return returnValue; // return the results

/**
* Invoked by the client to indicate that he is done with all
= objects
*/
public void doneWithObjects (Person[] persons)) {
subtractfromReferenceCount (persons) ;

class Person {

private int iRefCount = 0;

public Person() {

}

/**

* Adds one to the reference count
*/

public void addToReferenceCount () {

_1RefCount++;
1
/**

* Subtracts one from the reference count.
*

* @return true If the refernce count is zero after
subtraction

* @return false If the reference count is non-zero after

-89 -

= subtraction

*/
public boolean subtractfromReferenceCount () {
_1RefCount";
return (_iRefCount == 0);

Examples. In covering this pattern, code examples were provided in the solution section.
These examples taken together provide for a working example of this pattern.

Resulting Context. Use of this pattern has obvious memory implications at the server
level. Users must employ reference counting (as discussed earlier) to ensure that objects
are destroyed when no longer in use.

Rationale. The shared instance pattern provides a method to speed delivery of remote
objects to clients. Objects that take a long time to create can be created only once and
then shared between multiple clients.

Known Uses. As with all other patterns covered in this chapter, the shared instance pattern
is employed in many of the solutions that | have developed in the past few years. Most
recently, | developed a piece of software to view hospital patient records. All incoming data
was fed into the system via legacy system gateways, and my software provided read-only
access to the data. Creating the graph of objects that compromised a single record was an
involved process that took around four seconds. Through use of the shared instance
pattern, | was able to reuse the same objects with multiple clients.

FROM HERE

The software industry is definitely heading toward a lot of trouble in the next few years.
Unless all computers shut down in the year 2000, we will soon find ourselves forced to
develop amazing feature-rich applications in hardly any time at all. Only by using patterns
and other development technologies will we be able to rapidly develop the needed
software.

As you continue your exploration, the following chapters aid in your understanding of the
material in this chapter:

» Chapter 6, “The Airline Reservation System Model,” uses the UML use-case notation
to describe an airline reservation system.

+ Chapter 15, “Remote Method Invocation (RMI),” describes a Java core technology that
provides a simple but effective object bus for Java objects.

» Chapter 21, “CORBA Overview,” provides a solid description of what CORBA is and how
it can be used in your applications.

Chapter 6: The Airline Reservation System
Model

Overview

Contained within the pages of this book is detailed information on five different
technologies that allow for distributed communication between applications. Even though
all of these technologies enable this level of communication, each takes a radically
different approach. Further complicating matters is the fact that there is no one perfect
distributed object technology for all development efforts; only a careful analysis of the

-90 -

problem and a detailed knowledge of the technologies shows a best solution.

Given that choosing the best distributed object technology can often make or break a
project, this book spends significant time teaching you how to make this decision. This
knowledge is imparted in two complementary manners. First a discussion of the
differences between the competing technologies is presented, and then you use each
technology to implement a common piece of software.

This chapter presents a formal definition of that common piece of software, an airline
reservation system. The definition is then implemented throughout the book in chapters
immediately following coverage of each technology. The formal definition of the airline
reservation system is presented using the Unified Modeling Language (UML), which is
covered in Chapter 3, “Object-Oriented Analysis and Design.” Chapter 3 provides a solid
introduction to the UML. This chapter does, however, spend some time covering aspects
of the UML that apply to use-cases and activity diagrams.

Note The UML is a tool used to formally model the entire software process. By using the
UML you can model a development effort from the beginning of the requirements
gathering to the final implementation models. The UML is quickly becoming the de
facto standard for modeling software, and proficiency in it will most likely become
an essential job skill in the next five years.

DEFINING THE MODEL

As you can imagine, the software used to drive real-world airline reservations is complex.
It needs to respond to thousands of simultaneous users and interact with constantly
changing flight data. The airline reservation software developed for this book, however,
only models a small number of transactions. The software supports multiple users, but
has not been stress tested to handle thousands of users.

In adherence with the development methods defined by the UML, we first simulate a user-
based requirements gathering step. We then analyze the requirements and build the
necessary use-cases and activity diagrams for the system.

GATHERING REQUIREMENTS

In an actual development project, the first step is to start talking to your user base to
figure out exactly what its needs are. Unfortunately, this step is often ignored and
software is developed according only to how developers feel the product should work.
Although projects developed without user input may be fun for developers, they often
have the downside of not being used.

Although not all systems are developed in the manner they should be, we have the luxury
here of pretending that we live in a perfect world. Thus, you can perform every step in the
manner that it should logically happen. In addition to pretending that we live in a perfect
development world, this book also gets to play both sides in a dialog with users. Of
course, nothing in real life is so easy. We get to ignore the fact that users often can’t find
time to meet with you, or have difficulty communicating what they need.

Our airline reservation system has the following capabilities:
Search for a flight
View all open seats on a given flight
Make a flight reservation

Search for an active reservation

-91 -

Of the items in the list, the two that involve searching are those that probably benefit most
from user input. Only the individuals answering the phones and making reservations all
day know how customers want to search for a flight.

After talking with reservation operators, the following items are ranked as the desired
criteria used when searching for a flight:

Departure location
Arrival location
Departure date
Departure time

Number of required seats

The reservation operators also stated that they need the ability to specify whether queries
should be strict as to departure and arrival times, or whether they should be flexible if a
lower-cost flight exists. When allowing for flexibility, the operator should be able to specify
a range of 1-48 hours, which defines the permitted flexibility.

The other search exposed by our system is the capability to search for an existing
reservation. To perform that search, at least one of the following criteria are needed:

Reservation number

Full name

Date and approximate time of flight
Credit card number used to book flight

All searches return a collection of reservations that match the specified pattern. The
burden of verifying the user, once flight data is obtained, is placed on the airline itself. In
most situations, the caller is asked to verify his name and credit card number used to book
the flight.

DEVELOPING THE USE-CASE

As discussed in Chapter 3, a use-case is a tool used for modeling a unique function in a
system. Use-cases should be easy to read, unambiguous, and generally provide a
detailed explanation of the highlighted function.

It is really important that a use-case not leave any question unanswered. Remember that
the functions as they are defined in use-cases become your software. If you mean one
thing, but the developers interpret your comments in a different manner, the costs can be
rather large.

Another important use-case development requirement to keep in mind is that use-cases
model a single function in a system. That function has a distinct starting point and a
distinct end value. A common mistake made by people when developing use-cases is to
model the entire system as one large use-case. Modeling a system as a single use-case
leads to confusion, and should only be done if the system exposes a single function.

It should be noted that the term used to describe the entity executing a use-case is Actor.

-9) .-

A use-case is performed by an Actor that may or may not be an actual person. In fact, in
many situations the Actor performing a use-case is another piece of software.

A use-case is implementation-independent and, in fact, does not necessarily need to be
implemented in software. One could easily write a use-case that models the process of
driving a car, or even walking the dog. Although it might be rather exciting to model our
entire lives via use-cases, doing so here would move this book into the self-help section,
which is not a desired outcome of the “Actor writes a computer book” use-case. The use-
cases developed in this chapter are implemented throughout the book in Java using
each of the highlighted distributed object technologies.

Finally, use-cases apply to the general use of a system and not a specific interaction with
the system. For example, a use-case titled “Actor searches for a reservation using a
reservation number” is probably a valid use-case. A use-case titled “Actor searches for a
reservation using reservation number #1013-42” is a use-case scenario since it
represents a distinct interaction with the system. Use-case scenarios are useful for
modeling how special conditions are handled.

Use-Case Notation

Just as the UML provides symbols for modeling all parts of the software process, a series
of UML symbols exist that are used with use-cases. The airline-reservation system use-
cases do not take advantage of every symbol (most use-cases don’t), but as a reference
they are all addressed here.

The first step when developing a series of use-cases is to identify the system that is
being modeled. A square, with the name of the system written above it, denotes a single
system. Figure 6.1 shows a model of the airline reservation system.

Aifing Fosaraion Sysiam

Figure 6.1: The square symbol denotes an entire system.

After identifying the system being modeled, use-cases that identify unique functions
within the system are added. A use-case is denoted using an ellipse or oval with a logical
name placed below it. The names applied to both use-cases and systems should be
logical, easy-to-read names, and not obscure variable-like names. For example, a use-
case that models a reservation search by reservation number should be titled “Search for
a Reservation by Reservation Number,” not named resSearchByNum . Figure 6.2
shows a single use-case that becomes part of our system.

C O

Acter Sakesis a Flighi

Figure 6.2: The ellipse or oval symbol denotes a use-case.

Use-Case Relationships

Within a given system, situations may arise where two or more use-cases share some
features, or where two or more use-cases use each other. For these reasons, it is
possible to model three different relationships between use-cases. These relationships

-03 .

are defined as follows:

» Grouping—Similar to Java packages, the grouping relationship exists when multiple
use-cases perform common tasks in a system.

+ Uses—Similar to object composition, the uses relationship exists when multiple use-
cases interact with each other.

» Extends—Similar to Java inheritance, the extends or generalization relationship allows
one use-case to inherit functionality from a parent use-case.

The grouping relationship is defined using the UML package symbol. This symbol, shown
in Figure 6.3, looks much like a file folder with a logical name near its top. There are zero
functional implications presented by the grouping relationship. However, it does aid the
logical grouping of use-cases. Systems with hundreds or thousands of use-cases employ
this relationship to make their documents easier to understand.

R

Bearch Use-Cases

Figure 6.3: The use-case grouping relationship is modeled with the package
symbol.

The uses relationship is employed when one use-case takes advantage of functionality
present in other use-cases. This relationship, shown in Figure 6.4, is modeled using a
straight line ending in a triangle. The triangle points to the use-case being used and the
line has the word <<uses>> written next to it.

-

Sclir Seanden for o Fight

Aoior Sabocis a Fight

Figure 6.4: The uses relationship allows one use-case to take advantage of
functionality exposed by another usecase.

The extends relationship can be thought of in terms similar to Java or C++ inheritance.
This relationship is used when one use-case needs to inherit functionality from a parent
use-case. For example, one use-case might be used to model making a standard airline
reservation. Two additional use-cases could extend this parent use-case and model the
situation when reservations are made using frequent flyer miles or a bounce pass (a
ticket voucher or discount coupon given to passengers who volunteer to leave a over-
booked flight). The extends relationship, shown in Figure 6.5, is shown using a line with
a triangle at the end of it. The triangle points to the parent use-case and the line has the
word <<extends>> written next to it.

-94 -

C O

Ao Creates & Fesanation

Acior Croabes & Riesorvalion Using Acior Croates a Resonvation Using o
Fraszusaimi Flywr Mias Bonircin Fass

Figure 6.5: The extends relationship allows one use-case to inherit functionality
exposed by another use-case.

Use-Case Actors

As was earlier stated, an Actor performs a use-case. The Actor may or may not be an
actual person; regardless, it is modeled using a stickman. Directly below the stickman,
the Actor is labeled with a logical name. Figure 6.6 shows two potential Actors in our
reservation system.

J:-\Ei '\:
Remprvation Chent FHuman Liser of
Softwans Chor. Softwang

Figure 6.6: The stickman symbol denotes an Actor.

The development of a use-case is one of the most important tasks in a given software
development project. Because use-cases drive the entire development process, it is
critical that they unambiguously describe exactly what the software should do.

The development of a use-case is an iterative process that involves the user-base
(client), project managers, and developers or development managers. Project managers
through a dialog with the user base come up with initial copies of the use-cases. Often
the project manager first interviews the user base to determine its needs. He then
generates usecases and presents them to the client. This presentation process often
involves physically acting out the use-case with different people playing the roles
represented by different systems.

Once some level of agreement has been reached between the project manager and the
client, a dialog between the project manager and the development manager begins. It is
the duty of the development manager to ensure that all use-cases are technologically
feasible. If, for example, the project manger writes a use-case titled “Actor thinks about an
item and it materializes in his hand,” the development manager needs to use this
opportunity to put his foot down. This example does, however, bring up another point,
which is that the project manager must be either technically savvy or must work with the
development manager earlier in the use-case development process. If the project
manager is going to write pipe-dream use-cases, the development manger must reel him in
before the client gets any far-off ideas.

MAKING ACTIVITY DIAGRAMS

In addition to the use of use-cases when modeling system functions, activity diagrams
are used to model an execution path through the system. An activity diagram shows the
order in which actions occur, as well as the different conditional situations that may affect
the execution order. For example, one could specify that in a reservation system a flight
search precedes the making of a reservation, and that a failed search leads to no

-905 -

reservation. It is useful to build activity diagrams after writing use-cases because the use-
cases become the actions modeled by the activity diagram.

An activity diagram start point is shown as a single black dot. A line is used to show the
first action or conditional to be executed after starting. The end point of an activity
diagram is shown using a black dot surrounded by a black circle. Figure 6.7 shows an
activity diagram start and end point.

An action in an activity diagram is a single function performed by the system. For
example, searching in our reservation system for a flight is a distinct action. When
transitioning use-cases into activity diagrams, each use-case often becomes an action.
An action (shown in Figure 6.7) is modeled in an activity diagram using a rectangle with
rounded corners.

A conditional in an activity diagram is used to alter the executing path based on some
condition. For example, if no matching flights are found after a flight search is performed,
another search is performed. If, however, the search did locate flights, the diagram shows
a transition to a flight selection action. As shown in Figure 6.7, conditionals are
represented using a diamond.

While conditionals and actions form the meat of an activity diagram, they are all tied

together using fransitions. Transitions, shown in Figure 6.7, use a solid line with an arrow
pointing to the destination.

[] @ S2art and End Points

Diadrad Flgii Exasta
Congdiiceal

Dssrad Flighi Diois Mol Exial

Figure 6.7: An activity diagram shows start points, end points, actions,
conditionals, and transitions.

AIRLINE RESERVATION SYSTEM SERVER MODEL

Now that we have covered the technical aspects of use-case development, let’s turn our
user interviews into use-cases. Figure 6.8 shows the use-case diagram that depicts our
system. We model the server functionality in this section. The next section models the
client functionality. In developing use-cases for client/server applications, it is common to
create one set of use-cases that model server functionality and another that model client
functionality. As you are developing thin-client applications, all business logic (see
following Note) is placed at the server level, and server use-cases comment on this.
Client-side use-cases spend time focusing on usability issues.

The following sections contain text descriptions for each use-case. The descriptions
conform to the following outline, which allows readers to easily pick out key pieces of
information. Note, however, that the outline is by no means a UML requirement. It is
instead my preferred manner of developing a use-case. Also note that not all use-cases
make use of every element in the outline; for example, some use-cases need no data for
completion.

-906 -

Note The term business logic refers to any code that exists to represent a
transaction performed in the target domain. For example, any logic in a
banking environment that applies interest to accounts is considered business
logic. Code that obtains the name associated with an account is not
considered business logic.

Ajrline Ressrawbon Sy

O

At Gnanies kr a Fhgr

/O

Arior Balacis a Flight

i Arior Lok ol Aeoababla Secols

~ C O

cins Locks Accass o 8 St

¥ Wi 5a. M sl ior

N\
\o

Eilcs Sasanchec ke an Aifive

[FEP
Clnnt

PATANN

Kpspraron

Figure 6.8: The airline reservation server described using use-case notation.

* Actor—Name of the Actor performing the use-case.

» Desired Outcome—Desired return value and changes to state caused by this use-
case assuming an affirmative executing.

+ Entered When—Discussion of pre-conditions and general entry point for the use-
case.

» Finished When—Conditions that must be achieved for the use-case to complete.

» Description—Detailed description of the use-case, along with any additional
information that may be needed. This section is also used to discuss general issues of
how the use-case fits into the global picture of the system under development.

+ Data Needed—Required information for execution to occur. This section is omitted if
no data is sent to the use-case.

+ Comments—Any additional information not presented under Description. This section
is often used for notes on a future version of the use-case, client thoughts on the use-
case, or any other additional information. This section may be omitted if not needed.

Diving into the use-case development, wherever possible we move through the system in
a manner similar to that followed by an actual user. This workflow begins when an Actor
searches for a flight, and ends when a reservation is booked or cancelled.

-97 -

Actor Searches for a Flight

Actor. Reservation client.

Desired Outcome. Actor finds a collection of flights that meet his search criteria. Note that
this collection may include zero flights if his criteria does not match any active schedules.

Entered When. Actor invokes search function in the server.

Finished When. A collection of flight entities are returned to the Actor. An empty
collection is returned if no flights meet the specified criteria.

Description. The purpose of this function is to identity a single flight path from point A to
point B. If the Actor desires round-trip information, multiple searches are performed. The
server does support simultaneously exposing multiple flight schedules, but it is the
burden of the client software to present the data in an easy-to-read fashion. In
representing a single flight path, the following data elements are presented for each leg
of the journey: origin airport code, origin time, origin date, arrival airport code, arrival time,
and arrival date. Further information on the value expected for each element is contained
in Table 6.1.

TABLE 6.1 DATA ELEMENTS USED WHEN SEARCHING FOR A FLIGHT

Name Description
]
Origin airport Unique airport code identifying the point of origin.

code

Origin time Time of day (24-hour clock) of departure.

Origin date Date (must be year 2000-compliant) of departure.

Arrival airport Unique airport code identifying the arrival location.

code

Arrival time Time of day (24-hour clock) of arrival.

Arrival date Date (must be year 2000-compliant) of arrival.

Data Needed. Data is passed to this function detailing date of origin, time of origin, airport
code of origin, airport of destination, number of needed seats, and a range of 0—48 hours,
specifying a flexibility in schedule allowed by the Actor if a lower price exists. Again,
values for these data elements are detailed in Table 6.1.

Actor Selects a Flight

Actor. Reservation client.

- 08 -

Desired Outcome. Actor selects a target flight from the collection of available flights
presented to him.

Entered When. Flight collection is notified of choice flight.

Finished When. Both Actor and server have confirmed the choice flight, and additionally
those flights that are not selected.

Description. This use-case is important because it acts as a signal to the system that the
Actor has selected a single flight. Any flights that were part of the original collection of
flights are no longer candidates for selection once this use-case has exited.

Data Needed. Collection of flights that meet the original search criteria. See “Actor
Searches for a Flight” for additional information.

Actor Looks at Available Seats

Actor. Reservation client.

Desired Outcome. Collection of available seats is returned to the Actor.
Entered When. Actor requests seat configuration information for a unique flight.
Finished When. Seat information has been returned to the Actor.

Description. At a given point in time, any flight returned from “Actor Searches for a Flight”
has at least one available seat. This function allows viewing of all unreserved and
unlocked seats.

Data Needed. The seat block to be locked.

Comments. It is important to note that the system is multiuser and more than one Actor
may be making reservations on the same flight at the same time. Due to this fact, a
search has to be coupled with an immediate request from the Actor to lock access to the
desired block of seats. See “Actor Locks Access to a Seat” for further information.

Actor Locks Access to a Seat

Actor. Reservation client.
Desired Outcome. A collection of seats is reserved in the system for a specific user.
Entered When. Actor obtains a collection of available seats on a unique flight.

Finished When. Actor identifies the desired seats as a subset of the available collection
obtained from “Actor Looks at Available Seats.”

Description. The multiuser nature of the reservation system requires that desired seats
on a flight be locked before the actual reservation is made. This locking prevents another
Actor from viewing the desired seats as available before the actual reservation is made.
Since many exception situations may occur after the seats are locked and could prevent
the reservation from being made, seat locks not turned into reservations become
unlocked after 20 minutes.

Actor Makes Reservation

-99 .

Actor. Reservation client.
Desired Outcome. A reservation is made in the system.

Entered When. Actor requests access to the parts of the system that allow for making
reservations.

Finished When. A reservation that meets the Actor’s requested flight criteria is made and
a reservation number is returned to the Actor.

Description. Most other use-cases aid in the gathering of the data needed to make an
actual reservation; in this use-case the actual reservation is made in the system. A
reservation is not limited to a unique flight, but can act as an umbrella under which
multiple flights are collected.

Data Needed. In order to make a reservation, the Actor must include all of the following
pieces of information: flight and seat information for all flights, method of payment, and
passenger demographics. Passenger demographics to be collected include name, billing
address, mailing address, and frequent flyer number. Information describing the expected
values of each data element is contained in Table 6.2.

TABLE 6.2 DATA ELEMENTS USED WHEN SEARCHING FOR A FLIGHT

Name Description

Name Both the first and last name of the passenger.
Billing address Address to which the reservation was billed.
Mailing address Address at which the passenger accepts mail; usually this

matches the billing address.

Frequent flyer Alphanumeric ID of the passenger’s frequent flyer account.
number

Comments. Since locked seats revert to the available pool if they are not turned into a
reservation after 20 minutes, the reservation must occur within 20 minutes of the seat
locking. As part of the reservation process, all credit card payments must be verified
against available funds. If the credit card is denied, the Actor is either prompted to enter
another card or to cancel the reservation. See “Actor Cancels Reservation” for
information on reservation canceling.

Actor Cancels Reservation
Actor. Reservation client.
Desired Outcome. Reservation in progress, or already made, is cancelled.

Entered When. The system receives a request to cancel at least one flight owned by a
reservation.

- 100 -

Finished When. The flight(s) is cancelled, seats are returned to the available pool, and (if
applicable) a refund less cancellation fees is generated. If certain flights on a reservation
are to be kept, the entire reservation is still cancelled and the flights that remain are
moved to a new reservation.

Description. A user may cancel a reservation at any point after a seat lock has been
obtained and before the flight takes place. The most important part of the cancellation
process involves removing the lock that has been placed on reserved seats.

Data Needed. The reservation and flights to be cancelled.

Comments. To facilitate historical information gathering, nothing is ever deleted from the
database itself. A cancelled flight, therefore, is simply tagged as cancelled and not
deleted from the system.

Actor Searches for an Active Reservation

Actor. Reservation client.

Desired Outcome. A collection of reservations is returned to the Actor based upon search
criteria. If there are no active reservations that meet the specified criteria, the returned
collection is empty.

Entered When. Actor requests that a search be performed.

Finished When. The collection of available flights is returned to the Actor. If no flights
meet the specified criteria, an empty collection is returned.

Description. It is a common occurrence that an Actor wants to obtain information on an
active reservation after the reservation has been made. This function allows searching of
the system for reservations that have either not occurred, or have occurred within the
past 60 days. After 60 days, historical information is moved to a data warehouse and is
obtained using another application.

Data Needed. To search for a reservation, an Actor must provide the name under which
the reservation was made, in addition to any of the following data elements: credit card
number used to book the reservation, date of any leg of any flight in the reservation, or
time of any leg of any flight in the reservation. Due to that fact that some searches are
more limiting than others, this function only returns the top 50 available reservations that
match the search criteria.

Comments. This function does present security issues, since reservation information
should not be given out if the requestor is not the same individual who booked the flight (or
is not a trusted third party). It is up to the reservation operator to follow an authentication
procedure to determine if the information requestor is approved for information
dissemination.

AIRLINE RESERVATION SYSTEM CLIENT MODEL

Now that server functionality has been modeled, we can concentrate on modeling client
functionality. Where the server use-cases concentrate on modeling the business logic of
our system, the client use-cases can concentrate on modeling usability issues. As with
the server use-cases, the client use-cases follow the outline specified earlier in this
chapter.

The decision to model the client and server separately was made due to the nature of the
n-tier application we are building. All business logic in an n-tier environment is placed at
the server level, and a thin client attaches to the server to allow access to its functionality.

- 101 -

The server, in turn, connects to other servers and the persistence mechanism (database,
flat file, and so forth).

As an example of how the client and server differ, consider modeling the ability to search
for a flight. In the real world, users rarely have a reservation consisting of a single flight
but instead book at least one flight in each direction, and potentially more. At the server
level, the only consideration when providing flight data is to obtain the single flight that
best matches the specified criteria. At the client level, searching for a flight involves
searching for multiple flights, displaying them all onscreen, and choosing certain flights
to be used in a reservation. Client use-cases can also take into consideration issues
regarding the User Interface (Ul). The client-side use-cases are shown in Figure 6.9 and
described in the following pages.

Faservisbion Dleed Softaune
Apior Soarohes. for & Flight
e AcCinr Solecis Soans On Flght

~ OO

Acior Makps Resanaion

O

Achor Saarchas for an Active
Hpssrvation

Haran Leer of
Clant Sofwarn

Figure 6.9: The reservation client use-cases.

Actor Searches for a Flight

Actor. Human user of client software.

Desired Outcome. Collection of flights meeting search criteria is returned to the user.
Entered When. Actor clicks the Ul element titled “Flight Search.”

Finished When. Reservations are returned to the user and are displayed onscreen.

Description. When searching for the flights necessary to make a reservation, the Actor
may want to simultaneously search for multiple fights. For example, if the flight is round-
trip, the Actor wants to search for one flight from origin to destination and another flight
from destination back to origin. Additionally, Actors may want to create reservations for
flights between multiple cities. For this reason, the screen that supports searching for
flights should allow multiple, simultaneous search results to be displayed onscreen at the
same time. Since the server only supports executing a single search, the client software
has to break up all searches, execute each in a separate thread, and show all results
onscreen.

Data Needed. Data is passed to this function detailing date of origin, time of origin,
airport code of origin, airport of destination, number of needed seats, and a range of 0—
48 hours, specifying a flexibility in schedule allowed by the Actor if a lower price exists.
Further information on the expected values for these data elements is found in Table 6.1.

Actor Selects a Flight

-102 -

Actor. Human user of client software.
Desired Outcome. Flights desired by the Actor are selected.

Entered When. Actor clicks a Ul element adjacent to the target flight(s) and then clicks a
Ul element titled “Select Flights.”

Finished When. Flight selection is communicated to the server and Ul is updated to show
available seats.

Description. After viewing the results of each search, the Actor has the option to either
perform another search or to begin making flight reservations.

Data Needed. Logically, to select a flight, the Actor must have some collection of
available flights from which to choose.

Actor Selects Seats on Flight

Actor. Human user of client software.

Desired Outcome. A collection of seats on the desired number of flights is reserved for
the Actor.

Entered When. The Ul element titled “Select Flights” mentioned in “Actor Selects a Flight”
is clicked.

Finished When. The Actor clicks Ul elements identifying all desired seats and clicks a Ul
element titled “Choose Seats.”

Description. After choosing flights to place under a reservation umbrella, the next step in
making a reservation is to pick seats. In this function, the Ul displays seat plans for each
of the planes and visually identifies each available seat.

Data Needed. To select desired seats, the Actor must be presented with a list of available
seats.

Actor Makes Reservation

Actor. Human user of client software.
Desired Outcome. A reservation is made and the unique reservation number is returned.

Entered When. The Ul element “Choose Seats” (mentioned in “Actor Selects Seats on
Flight”) is clicked.

Finished When. Actor enters demographic and payment data and clicks the Ul element
titled “Make Reservation”; the unique reservation is returned.

Description. The final steps in making a reservation are to enter passenger
demographics, payment information, and to click the Ul element titled “Make
Reservation.” Passenger demographics collected include billing address, mailing
address, and frequent flyer number. A unique flight number is given to the Actor upon
successful booking of the reservation. Further information on the expected values for
these elements is found in Table 6.2.

Data Needed. Billing address, mailing address, frequent flyer number, payment

- 103 -

information, and flight data.

Comments. In most situations this use-case terminates according to the description
under “Finished When.” If the server rejects payment information, the server asks the
Actor to either enter new payment information or to cancel the reservation. See “Actor
Cancels Reservation” for information on reservation canceling.

Actor Cancels Reservation

Actor. Human user of client software.

Desired Outcome. A reservation either in progress of being made, or already made but
not taken is cancelled.

Entered When. Actor clicks any of the many “Cancel Reservation” Ul elements present at
various stages of the reservation process. The elements first appear once “Actor Selects
a Flight” has completed execution. The element is also present when viewing the results
of “Actor Searches for an Active Reservation,” assuming the reservation has yet to occur.

Finished When. Reservation is cancelled and (where applicable) any of the following
occur: Seats are returned to the available pool, a refund is generated, a new reservation
is generated with flights not cancelled.

Description. When an Actor clicks any “Cancel Reservation” button he is presented with a
list of flights present on that reservation. The Actor then clicks a Ul element next to each
flight to be cancelled and then clicks a Ul element titled “Process Cancellation.” If less
than 100% of all flights in the reservation are cancelled, a new reservation is generated
and reservation number is returned to the user.

Data Needed. Reservation and flights to be cancelled.

Actor Searches for an Active Reservation

Actor. Human user of client software.

Desired Outcome. Actor obtains data on a series of reservations that match his specified
search criteria.

Entered When. Actor clicks the Ul element titled “Reservation Search.”
Finished When. The search results are returned to the Actor.

Description. It is a common occurrence that an Actor wants to obtain information on an
active reservation after the reservation was made. This function allows searching of the
system for reservations that have either not occurred or have occurred within the past 60
days. After 60 days, historical information is moved to a data warehouse and is obtained
by another application.

Data Needed. To search for a reservation, an Actor must provide the name under which
the reservation was made as well as any of the following data elements: credit card
number used to book the reservation, date of any leg of any flight in the reservation, or
time of any leg of any flight in the reservation (see Table 6.3). Due to the fact that some
searches are more limiting than others, this function only returns the top 50 available
reservations that match the search criteria. Once the search results are obtained, the
following data elements for each flight are displayed in a multi-list: departure time,
departure date, arrival time, arrival date, flight duration, number of layovers. From this
multi-list, the Actor may click a Ul element that alters the display causing full flight details
to be displayed for a unique flight.

-104 -

TABLE 6.3 DATA ELEMENTS USED WHEN SEARCHING FOR A FLIGHT

Name Description
]
Departure time Time (24-hour clock) of the flight departure.

Departure date Date (must be year 2000-compliant) of the flight departure.
Arrival time Time (24-hour clock) of the flight arrival.

Arrival date Date (must be year 2000-compliant) of the flight arrival.

Flight duration Length (in hours and minutes) of the flight.

Number of layovers Total number of layovers experienced during the flight as a
whole.

Comments. This function presents security issues because reservation information
should not be given out if the requestor is not the same individual who booked the flight
(or is not a trusted third party). It is up to the reservation operator to follow an
authentication procedure to determine if the information requestor is approved for
information dissemination.

Although we now have a complete picture of the server functionality, there is one
additional step that aids developers. We develop the activity diagram for the system in
this last step. The diagram, shown in Figure 6.10, depicts the flow of action in the system
as a whole.

Figure 6.10: An activity diagram for the reservation system depicts the flow of
work executed within the application as a whole.

The use-cases presented in this chapter exist as a final product that has been approved by
the client (user-base), product manager, and development manager. At this point it is
possible to turn them over to the programming staff for modeling and code development.
What is important to keep in mind is that the UML is used not only for use-case
development, but also for class modeling, object and state modeling, architecture design,
and all other steps in the development process. These steps are rather implementation-
specific and are illustrated in the chapters of the book where the software is actually
implemented.

FROM HERE

This chapter introduces the concepts behind using the UML to model a system in an

- 105 -

implementation-independent fashion. Those concepts were then applied to model an
airline reservation system. Later in this book the specifications are turned into more UML
models, and then into actual software. Each of those implementations is found in one of
the following chapters:

» Chapter 14, “Socket-Based Implementation of the Airline Reservation System.”

e Chapter 16, “RMI-Based Implementation of the Airline Reservation System.”

« Chapter 19, “Servlet-Based Implementation of the Airline Reservation System.”

« Chapter 26, "CORBA-Based Implementation of the Airline Reservation System.”

« Chapter 35, “Voyager-Based Implementation of the Airline Reservation System.”

Part ll: Java

Chapter List

Chapter 7: Java Overview

Chapter 8: Java Threads

Chapter 9: Java Serialization and Beans

Chapter 7: JAVA Overview

Overview

In 1891 Dutch physician Eugene Dubois discovered on the island of Java the fossil
remains of a prehistoric human being, now thought to have lived 500,000 to 1.5 million
years ago. Java man (as the species is called in utter disregard of sex) had a large face.
His forehead was low and sloped, with heavy ridges above the eyes. His chinless jaw
was massive and contained teeth that were huge in comparison to ours. He was short,
barely over five feet tall, and his brain size was smaller than that of more modern
humans.

In contrast, modern Java man and Java woman—the Java software developer—stand at
the apex of human evolution. Their physical prowess is exceeded only by their intellectual
acumen: Both are simply superior and entirely without peer. Does this sound like you?

If you're not a Java man or Java woman, this chapter introduces you to Java and helps
you read and understand the Java sample programs used throughout this book’s
subsequent chapters. The chapter may not provide all that’s required to transform you
into Java man or Java woman, though hefting this tome will certainly help build your
biceps.

Consider this chapter, if you will, “Teach Yourself Java in 24 Minutes.” If you're already a
Java man or Java woman, you don’t need to read it. However, you might skim it as a
refresher, reading only the sections on interesting or unfamiliar topics.

In this chapter you learn

+ What makes Java such a unique programming language.

- 106 -

Java is the first portable programming language to come into widespread use. You see
here how it enables programmers to “write once and run anywhere.”

* How to use the basic Java development tools included in the Java Developer’s Kit
(JDK).

You don’t have to purchase an expensive suite of tools in order to write Java
programs. Sun Microsystems provides a free JDK that includes all the tools you need
to develop Java programs.

» How to read and write programs that use Java’s object-oriented and procedural
constructs.

Java includes a full range of object-oriented facilities as well as the more traditional
flow-of-control facilities.

» How to read and write programs that use Java’s graphical user interface (GUI) library.

Java’s Abstract Windowing Toolkit (AWT) makes it easy to write GUI programs that run
on multiple platforms.

WHAT’S DIFFERENT ABOUT JAVA?

Within just a few years of its initial public release, Java has established itself as a signifi-
cant programming language. At the time of this writing, pollsters estimate that there are
500,000 to 1,000,000 Java programmers. Why have so many programmers found Java a
worthy object of attention? What's different about Java?

Such questions are not easily answered because Java is really quite a remarkable lan-
guage. However, three characteristics stand out:

» Java programs are portable.
+ Java applets automate distribution of code.
» Java is thoroughly object-oriented.

Let’s take a closer look at these characteristics.

Software Portability

Most computer programs are not portable. They are written and designed to be run on a
specific computing platform. Coaxing them to run on another platform is regularly more
difficult and costly than writing a new program for the target platform.

To be fair, the UNIX community has long taken software portability seriously. There, the
art of writing portable software has become an art. However, for the most part, the sort of
portability that has been achieved is compile-time portability: Many UNIX programs can
be successfully recompiled and run on a variety of platforms. The point is that the
programs must be recompiled, which often takes minutes or even hours. Moreover, the
process is not perfect: Often a programmer must tweak the code before it compiles and
runs properly. This sort of portability is a genuine boon, but falls short of the incessant
user demands: “faster, cheaper, better.”

Java programs are portable in a different sense; they are run-time portable, meaning that
a Java executable file can be run, without recompilation, on any platform that supports
Java. The technique that makes this possible is the bytecode.

- 107 -

Note Although Java programs are portable across platforms, you may have some
trouble moving Java programs from one release of Java to another. See the
upcoming section “Java Releases.”

Bytecodes

Most programming languages require source programs to be compiled and linked (see
Figure 7.1) before execution. Both the object code and the executable code are basically
machine code for the target platform; the object code is somewhat more abstract than the
machine code, but fundamentally little different. As a consequence, both the object code
and the executable code are specific to the target platform. If you want to port the
program to a new platform, you work with the source code; the object and executable
code are of no value to you.

Figure 7.1: Non-Java source code must be compiled and linked.

However, Java takes a different approach as you see in Figure 7.2. In a single step, the
Java compiler produces bytecodes, a sort of machine-independent object code. The trick
is that bytecodes are not directly executed by the native hardware; they are instead
executed by a Java Virtual Machine (JVM), which functions as an interpreter. (This is
gen-erally true, but it's possible to put a JVM on a chip. In fact, several companies have

-‘\l
m >“'c""|'.4|'|

Tuma

R
Tima

Javn Wirdual
Maching

Minkoomputen’
Maprfrme

Javen Wirtusd
Mpchee

Maciniosh PC

- 108 -

Figure 7.2: Java bytecodes are portable.

Interpretive languages are not novel: Several implementations of BASIC and Pascal
featured interpreters, although they did not generally support runtime portability. Java’s
particular novelty lies elsewhere—in the special technologies employed to reduce the
overhead inherent in interpretation. Normally, interpreted code runs about an order of
magnitude more slowly than machine code. However, Java designers intended from the
start for Java to rival C as a language for writing efficient application code.

Early Java compilers and virtual machines did not incorporate facilities devoted to boost-
ing the execution speed of bytecodes, such as just-in-time compilation or hotspot opti-
mization. At the time of this writing, these facilities are just coming into widespread use.
Just-in-time compilation has significantly narrowed the speed gap between Java and C,
and hotspot optimization holds the promise of effectively eliminating it. The result: a
language that produces portable code and yet exacts no performance penalty. This is
truly a winning combination.

Portable bytecodes, however, do not in themselves solve all the problems of making soft-
ware portable. Most programs, whether written in Java, C, or another language, are not
complete. They depend upon libraries of pre-written code that must be available when
the program is linked (static binding) or executed (dynamic binding).

Libraries

Java provides an elaborate suite of class libraries that programmers can reference,
sparing the programmer the need to write code to perform common operations. Because
Java’s class libraries are written in Java, they are portable. The combination of a pro-
grprogram?s bytecodes, the Java class libraries, and a Java Virtual Machine for the
target platform (see Figure 7.3) are all that's needed to run a Java program.

W Jarvn Virtua
Machine

Figure 7.3: Java provides an extensive portable class library.

Applets

A second outstanding Java characteristic is a new kind of program called an applet.
Ordinary Java programs are referred to as applications, to avoid confusion.

An applet is stored as bytecodes on a Web server, which are referenced by a Web page
using a special HTML tag. When a Java-equipped browser requests the Web page that
contains the applet, it discovers the applet and requests it as well. The browser then
loads and executes the applet.

The applet is free to draw within a designated area of the screen. Moreover, it can
interact with the user by displaying user-interface controls. The applet can even open a
network connection to the Web server that stores it, enabling access to databases and
other resources.

Because most computer users know how to use a Web browser, they’'re comfortable
interacting with an applet; as long as the user’s browser is Java-equipped, it doesn’t mat-

- 109 -

ter whether the user has an IBM PC, a Macintosh PC, or some other computer. The
Java applet is portable, just as other kinds of Java programs are portable.

Note Portability is easier to achieve in principle than in practice. At the time of this
writing, the JVMs in browsers are somewhat buggy and implement somewhat
different Java subsets and dialects. Moreover, Sun and Microsoft are
embroiled in a legal dispute over Microsoft’s alleged responsibilities as a Java
licensee to provide a compatible Java implementation in Internet Explorer.

However, incompatibilities between browser implementations of Java may
soon be alleviated. Sun’s Java plug-in technology lets users run a standard
Sun JVM in Microsoft Internet Explorer or Netscape Navigator. Moreover,
Netscape has announced that it will incorporate a third-party JVM, possibly
Sun’s, in future versions of Netscape Navigator.

Applets solve one difficult application maintenance problem: software distribution. Every
time the user accesses a page containing an applet, the browser downloads a fresh copy
of the applet (assuming that the browser’s cache doesn’t intervene). If the applet has
recently been changed, the user will effortlessly receive the new version of the applet.
Thus, the user never runs out-of-date software.

Of course, this solution is not without complications. For one thing, some browsers may
cache copies of files downloaded via the network. When this is the case, a user may
unknowingly execute an out-of-date applet. Moreover, downloading itself is not without
problems. The Java bytecode file is a very compact program representation;
nevertheless, the overhead of downloading a large applet every time it's accessed may
be objectionable. This could be avoided by means of a simple date and time stamp.
Presumably, future versions of popular Web browsers will incorporate mechanisms that
compare the date and time stamp of a cached applet with that of the applet residing on
the server, and download the applet only if it has been updated.

Object-Oriented Programming and Program Quality

A final salient characteristic of Java is its support of object-oriented programming.
Although C++ possesses object-oriented features, it's possible to write non—object-
oriented software using C++. As a consequence, many C++ programmers are really C
programmers in disguise, using C++ to write programs just like those they previously
wrote in C. This approach to programming fails to realize the benefits inherent in object-
oriented programming. Java, on the other hand, compels programmers to understand
and use objects. The result is better program structure and higher program
maintainability.

Bjarne Stroustrup, the designer of C++, saw backward compatibility with C as a critical
language design issue. As a result, C++ is burdened with certain C facilities that have
proven problematical. Although Java borrows much from C and C++, the designers of
Java rejected the need for backward compatibility. The high similarity with C and C++
makes Java an easy language for C and C++ programmers to learn, and yet many
troublesome C and C++ facilities, such as pointers, are not found in Java. Consequently,
Java programs are potentially more reliable than comparable C or C++ programs. So far,
experience with Java bears this out.

Objects and Their Properties

Because object-orientation is so fundamental to Java, it's worthwhile to spend some time
reviewing its fundamentals. This will facilitate understanding the remainder of the chapter,
which presents the syntax and semantics of Java.

The fundamental concept of object-oriented programming is the object. An object is
simply a program unit, including both data and code, that is divided into two parts:
interface and implementation. This separation of interface and implementation is called

- 110 -

encapsulation. An object’s interface is simply that portion that is publicly visible to, and
therefore usable by, other objects. The implementation of an object is its hidden inner
workings— those parts that are necessary to support the functions provided by the
object’s interface, but are not directly accessed by other objects. In addition to
encapsulation, objects are also characterized by inheritance and polymorphism, topics
addressed shortly.

The constituent parts of an object—the data and the code—have special object-oriented
names. The data of an object describe it. Therefore, the data is called the object’s
attributes, which are stored in Java program variables called fields. An object’s code
typically consists of a set of relatively small procedures, each supporting a single
operation, service, or behavior. (Unfortunately, object-oriented terminology remains
rather inconsistent.) In Java, these procedures are called the object’s methods, which
consist of executable program statements.

Cijoct

Intaifacs
| .I | Muihods I
Fialds [Data) [Codn)

Implemantation

| I I | Finthocks I
Faalds [Daia) \Codn)

Figure 7.4: Objects encapsulate data and code.

For example, consider an object designed to access an email server, as is shown in
Figure 7.4. Its interface might include data (such as the name of the email server and the
ID of the user), code (such as a procedure to send an email message), and a procedure
(to receive email messages). Its implementation might include data, such as the IP
number of the email server, and code, such as a procedure to transmit the body of an
email message.

Object Messages

Operations in non—object-oriented programs are invoked by calling a function or
procedure, which performs a computation and may return a result. Because a function or
procedure is unique within a non—object-oriented program, it's clear which function or
procedure is meant.

Object-oriented programs are somewhat more complex. Each object has its own
methods (though a single, shareable copy of a method may be held in memory). Calling a
method begs an important question: which method?

Sanding Objec Fscaeen g Oliect

Mathod

Slatirsan]

- 111 -

Figure 7.5: Objects send and receive messages.

Instead, object-oriented programmers talk of one object sending a message to another as
you see in Figure 7.5. The sending object sends a message to a receiving object. The
receiving object handles the message by executing a method that corresponds to the
message. As shown in the figure, the receiving object may return a response (called a
return value) to the sending object.

However, the difference between calling a procedure and sending a message is more
than mere terminology. Even though objects may run in different processes or different
computers-circumstances that preclude the simple procedure call—they can send
messages to one another. The operation of sending a message outwardly resembles a
procedure call but may be implemented quite differently.

Object Inheritance

In principle, objects are all that's needed for object-oriented programming. Many
programs, however, work with objects that differ only in the values of their fields. The
labor-saving concepts of class and inheritance were introduced to facilitate creation of
such objects.

A class is a template that defines the common fields and methods of similar objects. In
object-oriented programming, a program consists primarily of definitions of classes.
Program statements can create an object that’s an instance or member of a specified
class.

For example, suppose you had to create objects representing purchases. Each such

object may include a purchase date, a customer number, a stock number, a quantity, and
a price. By creating a class named Purchase and specifying that instances of the class
have exactly these data attributes, it becomes simple to create a new Purchase object.

Inheritance is a simple extension of this concept. Suppose you find that you need a set of
objects that each represent a time purchase. A time purchase has all the attributes of a
Purchase, plus two additional attributes: the interest rate and the final due date. Rather
than create an entirely separate class that includes the five attributes of a Purchase
plus the two new attributes, it's possible to extend the Purchase class, creating a new
TimePurchase class thatincludes all the attributes of a Purchase (see Figure 7.6)
plus the two new attributes. Conceptually, each instance of TimePurchase contains
within it all the fields and methods of a Purchase. When one class extends another, the
original class is called the parent class or superclass and the new class is called the child
class or subclass.

Fananl Class Chikd Class

nhariled Fialds
Fialds

Mew Fiaks

Inhariied Mathods
Mtethod s

Hira Madhods

=

Figure 7.6: Inheritance lets you extend class capabilities.

-112 -

If an inherited method fails to meet a programmer’s need, the programmer can redefine
the method in the child class. The new definition of the method overrides the definition in
the parent class.

Inheritance increases the productivity of programmers; with it, they can pick up where
other programmers have left off. Inheritance also facilitates the creation and marketing of
reusable software components. In Java, you can extend a class even if you have only its
bytecodes; the source code is not necessary. This facilitates the production and sale of
class libraries because vendors do not have to publicize proprietary details of the source
code and yet programmers can extend the function of class library members.

Inheritance provides one payoff—the ability to extend classes—to users of objectoriented
technology. Polymorphism provides another.

Object Polymorphism

Non-object-oriented code suffers from complicated flow of control, which tends to worsen
as the code is revised and adapted. For example, consider a payroll system for a large
company with many employee bargaining units (unions), each with different dues and
policies. When the system computes an employee’s pay, it must determine the
bargaining unit to which the employee belongs and deduct the proper dues. Because
bargaining units may negotiate various work and compensation policies, the system must
also consider an employee’s bargaining unit affiliation when computing overtime pay.
Other computations, such as vacation time accrual, also require consideration of
bargaining unit membership.

Each computation takes a form something like this:

if (member of unit #1)
Compute per unit #1 policies
else 1f (member of unit #2)
Compute per unit #2 policies

else 1f (member of unit #N)
Compute per unit #N policies

Now consider what happens when a new bargaining unit is formed. A programmer must
study each computation and revise it to include proper conditional statements to handle
the new unit. If the system is sufficiently large and complex, the programmer is likely to
err somewhere. Even if the programmer doesn’t err, updating the payroll system is
laborious and expensive.

Polymorphism provides a better way. In object-oriented programming the word
polymorphism, which means many forms, refers to the capability of objects to respond
distinctively to identical messages. Here’s how it works:

In the object-oriented payroll system, each employee is represented by an object. Like all
objects, this object belongs to a class. One simple way to solve the payroll system
problem is to establish one class for each bargaining unit. Each such class is then a
subclass of the Employee class and inherits common fields and methods. However, the
computations that require consideration of bargaining unit affiliation are implemented in
each subclass.

Now, when the program sends a ComputeOvertimePay message to an object, the
object knows the pertinent bargaining unit (that is, it knows its own class identity) and its
policies (that is, it implements the relevant computations in its own distinctive way). The

-113 -

message sender doesn’t need to test what bargaining unit applies because the message
receiver knows how to perform each necessary computation. Each subclass of
Employee handles the same ComputeOvertimePay message polymorphically—in its
own fashion.

It's much simpler to add a new bargaining unit to an object-oriented system. The
programmer simply creates a class to represent the new bargaining unit. The new class
handles all the necessary messages, so the programmer doesn’t need to search the
code and revise flow-of-control statements. As a result, the programmer is more likely to
make the change quickly and properly.

Now that you know something about object-oriented programming, briefly consider the
tools available to Java programmers. After doing so, you begin your survey of the Java
language and libraries.

JAVA DEVELOPMENT TOOLS

Sun includes all the basic tools needed for Java programming in the free Java
Developer’s Kit (JDK). These free tools are not very elaborate, so many programmers
prefer to purchase an Interactive Development Environment (IDE) for Java. However,
even the most sophisticated IDEs provide the same three major components provided by
the JDK: a compiler, an interpreter, and an appletviewer.

Java Compiler

Writing a Java program involves using an editor to prepare a source code file that has the
extension . java. You must not use . JAVA as an extension. Java hails from the UNIX
world, where file names are case sensitive; it hasn't lost this trait even when ported to
operating systems that are not case sensitive, such as Microsoft Windows.

You use the Java compiler, known as javac, to transform your source code into
bytecodes. Using the JDK, you do this at a command-line prompt:

javac MyJavaProgram.java

If the source code is error-free, the compiler produces the file MyJavaProgram.class .

If you’re unaccustomed to working with a command-line prompt, you may want to get a
Java IDE. However, many programmers used to IDEs find that they quickly become
adept at using commands. Some actually grow to prefer using commands because of the
freedom it affords.

Java Interpreter

To run a Java application—not a Java applet—you invoke the Java interpreter, known as
java :

java MyJavaProgram

Notice that the program name does not specify the extension . class. Because its
argument must be a .class file containing bytecodes, the Java interpreter doesn’t
require the extension. Moreover, including the extension causes an unexpected result. If
you enter the following code, the Java interpreter assumes you want to run the file
MyJavaProgram.class.class —probably not what you intended:

java MyJavaProgram.class

-114 -

Java Appletviewer

As mentioned, Java applets can be run from Web pages loaded by Web browsers.
However, this method often proves inconvenient during program development. Many
browsers have a habit of caching applets. An unwary programmer may modify and
recompile source code yet have the browser execute an old version of the applet. Worse
yet, at the time of this writing, browser-based implementations of Java are rather buggy.
Many Java programmers prefer to use the appletviewer program included in the JDK.

To execute a Java applet, you merely run appletviewer on the HTML file that contains
this applet:

appletviewer MyWebPage.html

The appletviewer program brings up a window that contains only the applet: It ignores the
HTML text, pictures, and styles specified in the file. Consequently, many Java
programmers work with a skeleton HTML file that contains only those HTML tags
necessary to run the applet. Here’s an example:

<APPLET CODE=MyJavaApplet WIDTH=400 HEIGHT=300>
</APPLET>

The APPLET tag’s CODE attribute names the . class file that contains the applet. The
WIDTH and HEIGHT attributes specify the size of the window in which the applet runs.

JAVA RELEASES

At the time of this writing, there have been two major releases of Java and a third is
imminent (see Table 7.1). Even though Java aims at making programs portable across
platforms, you can encounter problems due to the evolution of Java and its libraries.

TABLE 7.1 MAJOR JAVA RELEASES

Release Date

Java December, 1995

1.0

Java January, 1997

1.1

Java December, 1998 (anticipated)

—_
N

Java 1.1 introduced so many changes that Java 1.1 applets generally will not run in
browsers equipped with Java 1.0, which includes the majority of browsers at the time of
this writing. Programmers who want to develop applets to be hosted by public Web pages
are all but compelled to use Java 1.0, even though Java 1.1 made many important
improvements to the language and its libraries. Programmers writing for intranets find
these incompatibilities less troublesome because they have greater control of the
browser versions their users employ.

- 115 -

Sun has released a free product called Java Plug-in that ameliorates some of these
difficulties. Java Plug-in lets Microsoft’s Internet Explorer or Netscape’s Navigator use
Sun’s Java virtual machine and library classes, rather than the Microsoft or Netscape
version. Moreover, when a new version of the Java virtual machine or classes becomes
available, the Plug-in automatically downloads and installs it. However, the Java virtual
machine and classes are relatively large, so the download may be time consuming when
a modem connection is used. Thus, Java Plug-in is of most value to intranet
programmers. Those programming for public Web access are left with only the lowest-
common-denominator approach: using Java 1.0.

The examples in this book are based on Java 1.1 because that’s the version of Java
familiar to most programmers. Don’t try to run the examples using an IDE or browser that
supports only Java 1.0—they simply won’t work. If your IDE or browser supports Java
1.2, all should be well: Java 1.2 is backward-compatible with Java 1.1.

You’re finally ready to embark on your whirlwind tour of the Java language and its libraries.
The goal is to prepare you to read the Java program examples used throughout this book.
If you’ve never written Java programs, you’ll probably require further study before writing
complete applications on your own.

JAVA CLASSES

A Java program, just as programs written in other object-oriented languages, consists of
a collection of classes. At run-time, these classes are used to instantiate objects that
perform the program’s functions. Listing 7.1 shows a simple Java program. Let’s dissect
the program, piece by piece.

A typical Java program begins with a series of import statements. Strictly speaking,
import statements are not required; they’re merely a convenience to the programmer.
For example, this program uses several classes, including java.awt.Button and
java.awt.TextField . These names are long and rather cumbersome, so most Java
programmers prefer to refer to Button and TextField. The import statements allow
such abbreviated references. The following import statement tells Java that the
programmer wants to abbreviate names of classes that begin with java.awt:

import Jjava.awt.*;

LISTING 7.1 JavaApplet.java—A SIMPLE JAVA APPLET
import Jjava.applet.*;

import java.awt.*;

import java.awt.event.*;

public class JavaApplet extends Applet
{

// Fields
private Button theButton = new Button("Click on me.");
private TextField theText = new TextField(25);
// Method
public void init ()
{
add (theButton) ;
add (theText) ;
theButton.addActionListener (new ButtonHandler ());

- 116 -

// Inner class
class ButtonHandler implements ActionListener
{
public void actionPerformed (ActionEvent evt)

{
theText.setText ("Hello, user!");

Because this mechanism resembles the wildcard filename specification provided by
many operating systems, some programmers attempt to go too far:

import *.*.*x;

The Java compiler will reject such an import statement: You can omit only the last
word of a class name. The remainder of the name is called the package. Java uses the
package name to find the class file; if the package cannot be found, Java rejects the
class reference.

Class Header

The definition of a class, which begins with the class header, follows the import
statements:

public class JavaApplet extends Applet

Following the class header is the class body, which begins with an opening brace () and
extends through the final closing brace () on the last line of the program. Let’s dissect the
class header before examining the contents of the class body.

The Java compiler recognizes the class header by the keyword class, which is followed
by the name of the class, JavaApplet. The Java compiler requires that each source file
contain only one main class and that the name of the class be the same as that of the
source file, except that the source filename has the . java extension. The JavaApplet
class must be contained in the JavaApplet.java file. This relationship between class
name and source filename helps programmers trace through programs that consist of
many classes, which would otherwise be a great chore.

The keyword public indicates that the Javarpplet class and its object instances are
freely accessible to other classes and objects. You almost always give a program’s main
class public accessibility.

Finally, the keyword extends and the following class name indicate that the
JavalApplet class is a subclass of Applet. Therefore, it inherits fields and methods
from Applet; these give it many capabilities before you write a single line of code.

Class Body
Coming to the body of the class, you first find these lines:

// Fields
private Button theButton = new Button("Click on me.");

- 117 -

private TextField theText = new TextField(25);

The first line is a comment, meaning that it is ignored by the compiler. It helpfully points
out that the following two lines define fields, which are program variables.

Fields

The first field, theButton, can refer to a Button object and the second, theText, can
referto a TextField object. Button and TextField are Java library classes.

Button provides a clickable user-interface button and TextField provides an input
block.

Each field is initialized so that it holds a reference to a valid object. Java’s new operator
constructs object instances, using arguments that specify object characteristics. Here, the
argument to the Button constructor specifies the text that appears on the button; the
argument to the TextField constructor specifies the number of characters that the
input block accommodates. Figure 7.7 shows the applet’s user interface.

L o p b e Jevebpplai

B -

Figure 7.7: Java programs look and feel like ordinary programs when executing.

When you declare a Java field, the type you specify can name a class within Java’s
libraries, your program, or a so-called primitive type. Primitive types are simple numeric
or Boolean values. Table 7.2 describes Java’s primitive types. Because primitive values
are not objects, you don’t use the new operator to construct them. For example, you
could write the following to define a field that holds the number of hairs on a human head
(typically in the tens of thousands):

int theNumberOfHairs = 25378;

TABLE 7.2 JAVA’S PRIMITIVE TYPES

Type Description
]
boolean true value

byte 8-bit signed integer

char 16-bit unsigned integer

double 64-bit floating-point number

float 32-bit floating-point number

int 32-bit signed integer

- 118 -

long 64-bit signed integer

short 16-bit signed integer

The keyword private specifies that only the enclosing class can access the fields
theButton and theText. This marks them as part of the implementation of the class,
rather than the interface. You could make the fields public, in which case they would be
part of the interface, accessible everywhere. Java provides a third access specifier,
protected, which allows access only from within the enclosing class or one of its
subclasses. If you don’t specify one of the three access keywords, Java assigns package
access, which allows access by classes within the same package.

In all, Java provides four levels of access:

» package Allows access by classes within the package.

» private Allows access only by the class.

» protected Allows access only by the class and its subclasses.
» public Allows unrestricted access.

You specify protected access using the keyword protected or private access using the
keyword private. Java assigns package access by default when you specify neither
public, protected, norprivate

You can specify the package to which your class belongs by including a package
statement as the first statement of the class:

package TheGreatExperiment;

If you omit the package statement, as is the custom in small programs, Java assumes
an unnamed package that consists of all the classes within the same directory as the
current class.

You can also define fields with constant values. By including the keywords static
final in the declaration of a field, you tell the Java compiler that the value of the field
should not change during program execution. For example, here’s a constant that
represents the number of sides of a square:

static final int SIDES SQUARE = 4;

If you erroneously write a statement that assigns a value to a static final field (such
as SIDES SQUARE), the compiler will reject your program. For example, a program
containing the preceding declaration and the following statement would not compile:

SIDES SQUARE = 5;

Methods

The second section of code within the class body defines a method, that is, a procedure
that responds to a message. The message header is the line:

-119 -

public void init ()

This tells us the init method is publicly accessible and does not return a value. You
specify the accessibility of a method in the same way as a field. However, fields are
generally part of the implementation and have private access; methods are a mixed
bag, some are part of the interface and some are part of the implementation.

Between a matched opening brace and closing brace are the statements that compose
the method’s body:

add (theButton) ;
add (theText) ;
theButton.addActionListener (new ButtonHandler ());

Each of these statements sends a message. The first two statements send the add
message and the third sends the addActionListener message. You can spot the
name of the message by looking for the open parenthesis that immediately follows it. The
third statement sends its message to the Button object to which the field theButton
refers. The first two statements give no receiver; in such a case the message is sent to
the current instance of the enclosing class; here, to the JavaApplet object.

The add message places a control on the screen. Thus, the effect of the first statement

is to place the button on the screen and the effect of the second statement is to place the
input block on the screen. The argument of the add message specifies the control that’s
to be placed on the screen. Messages can take zero, one, or more arguments.

The third statement tells the button the identity of an object that will handle user
interactions with the button. The message argument specifies the object, which is
constructed on-the-fly by using the new operator. The type of the message handler is
ButtonHandler, a second class in the JavaApplet program, as you’ll see presently.

Assignments and Operators

In addition to statements that send messages, Java also provides assignment
statements. Assignments use operators to compute a value and assign it to a variable.
Here’s a simple assignment statement:

X =2 *y +1;

Java borrows many operators from C and C++. These are summarized in Table 7.3.
Notice that several of the operators have different meanings, depending on the type of
operand. The table gives the precedence for each operator. This determines how
operators and operands are grouped. You can use parentheses to explicitly specify the
grouping. For example, look at the following statements:

X = 2;

y = 3;

zl = x * y + 4;
z2 = x * (y + 4);

The value of z1 is 10 , but z2 is 14 because the addition operator in parentheses now
takes precedence over the multiplication.

Java’s operators are mostly left associative. The expression

y = x1 * x2 * x3; isinterpretedasy = ((x1 * x2) * x3);

- 120 -

However, assignment operators are right associative, making it possible to write an
expression such as the following, which assigns the value of z to y and then assigns
the same value to x:

Readers unfamiliar with C or C++ may at first be puzzled by several Java operators,
especially the increment and decrement operators, which simply increase or decrease a
value by 1. For example, the statement

x++;

increases the value of x by 1. These operators behave oddly when used within an
expression. For example, consider the following snippet of code:

x = 1;
y = 1;
++x + y++;

N
Il

The subexpression ++x increments x and the subexpression y++ increments y; the
expression assigns the value 2 to each of these variables. The value of y s trickier to
determine. When the increment operator is placed before a variable, it returns the
incremented value of the variable, but when it is written after a variable, it returns the
unincremented value of the variable. The subexpression ++x returns the value 2 and
the subexpression y++ returns the value 1. Therefore, the expression assigns the value
3 to z. The decrement operator (") functions analogously.

Java’s assignment operators are also unusual. For example, you can use the +=
operator to increment a variable:

X += 23

The expression has the same meaning as this:

X =x + 2;

Java’s other assignment operators function analogously (see Table 7.3).

TABLE 7.3 JAVA OPERATORS

Precedence Operator Operand Description

Type

—_

++ numeric increment

-- numeric decrement

+, - numeric unary plus,
unary minus

- 121 -

~ integral bitwise complement

! boolean logical complement
(type) any type cast
* /% numeric multiplication, division, remainder
+, - numeric addition, subtraction
+ String concatenation
<< integral left shift
>> integral right shift (signed)
>>> integral right shift (unsigned)
<, <= numeric less than, less than or equal
>, >= numeric greater than, greater than or equal
instanceof object, type type comparison
== any equality
1= any inequality
& integral bitwise AND
& boolean logical AND
~ integral bitwise XOR
A boolean logical XOR
| integral bitwise OR
| boolean logical OR
&& boolean conditional AND
| boolean conditional OR
?: boolean, conditional operator
any, any
= += ,-= variable, any assignment
= /=,%=,
<K=, >>=
>>>= | &=

-122 -

Characters and Strings

Java provides the string class and character and string literals for representing
text. Java uses the Unicode character set, a 16-bit representation that provides over
65,000 characters—enough to represent the alphabets of the world’s major languages.
Unicode greatly facilitates writing programs for the international market.

You write character literals as in C/C++—by surrounding a character with single quotation
marks:

char ¢ = "A";
Alternatively, you can use the integer value of the desired Unicode character.

String literals are written like C/C++ strings, by surrounding text with double quotation
marks:

String s = "Hello Mom";

This avoids the need to use the new operator to construct Strings, an otherwise
cumbersome process.

To represent common control characters, Java provides escape sequences similar to
those of C/C++. For example, you can write a character literal containing a carriage
return as "\r" . You can write a new line character as \n or a tab character as \t .

The concatenation operator () joins Strings ora String and a char :
String s = "Hello Mo" + "m";

The Java idiom for converting a numeric value to text is simple but sometimes hard to
recall. You use the concatenation operator to join the numeric value to a String, which
can be empty:

int n = 12; // arbitrary value
String s = "" + n;

Java provides methods that extract numeric values from text. For example, the
parseInt method of the Integer class extracts an int value from a String:

String s = "123"; // arbitrary value
int n = Integer.parselnt(s);

Return Values

A method can return a value of any type, either object or primitive, by executing a
return statement that specifies the returned value. However, the type of the value
returned must be compatible with the type specified in the method header. As you saw,
the init method does not return a value and therefore its method header specifies
void as the method’s return type. Here’'s an example method that doubles the value of
its int argument:

public int doubler (int x)

-123 -

return x + x;

Local Variables

Methods can define variables, known as local variables, that exist only during the
execution of the method and cannot be accessed outside the method. Local variables are
useful for storing intermediate results and clarifying code. For example, the doubler
method could be written like this:

public int doubler (int x)

{
int y;
y = X + X7

return y;

Inner Classes

A class can, within its body, define other classes, called inner classes. For example, the
JavalApplet class defines an inner class named ButtonHandler , which handles
messages denoting button clicks:

// Inner class
class ButtonHandler implements ActionListener

{

public void actionPerformed (ActionEvent evt)

theText.setText ("Hello, user!");

The remarkable thing about an inner class is that it can freely access fields of the
enclosing class. For example, the ButtonHandler class accesses the JavaApplet
field named theText. Notice that the header of the ButtonHandler class uses an
unfamiliar keyword, implements. The implements keyword is used because an
ActionListener is nota class, but a special entity known as an interface.

Interfaces

An interface resembles a class; however, an interface has only constant fields and its
methods include only an interface—the implementation is omitted. Java programmers
use interfaces to create the “tongues and grooves” that join software units. When a
programmer writes that a class implements an interface, the compiler ensures that every
method named in the interface is implemented by the class; otherwise the class is
considered abstract and cannot be instantiated. In effect, a class that implements an
interface is advertising its capability to handle certain messages.

For example, the ButtonHandler class implements the ActionListener interface,
a built-in interface that contains a single method, actionPerformed . Consistent with
ButtonHandler ’s declaration, it implements the actionPerformed method. You

learn more about the actionPerformed method and its role in event handling shortly.

-124 -

Constructors

When the new operator instantiates an object, the numeric fields of the object are set to
0 and the object fields are set to refer to a non-existent object named null . You'l
often prefer some other initial values, which you can establish by coding a constructor. A
constructor closely resembles a method, but its name is always the same as that of the
enclosing class, and the header of a constructor never specifies a return type. After all,
the purpose of a constructor is to initialize an object, not return a value.

Here’s a simple example of a class that has a constructor:

public class Ball
{

private float theRadius; // radius in centimeters

public Ball(int size in inches)
{

theRadius = 2.54 * size in inches;

The Ball class contains a single field, theRadius, which holds the radius of a ball. The
constructor accepts a single int argument, which it converts from inches to centimeters
and stores in the field.

The Javalpplet class, like other applets, has no constructor. Instead, it uses an init
method to initialize itself. A browser always calls an applet’'s init method after it
constructs the applet.

Before you lose track of the JavaApplet example program, perhaps you'd like to run it.
Listing 7.2 shows the HTML you need. Be sure to compile the Java source program
before running the applet.

LISTING 7.2 WwebPage . htm1—A WEB PAGE THAT HOSTS AN APPLET

<APPLET CODE=JavaApplet WIDTH=400 HEIGHT=100>
</APPLET>

FLOW OF CONTROL

Like its ancestors, C and C++, Java provides a variety of flow of control statements,
including i f-else, switch, for ,while, and do-while.

Conditional Statements

The 1 £ statement evaluates an expression and conditionally executes a statement.
When combined with an else , the if can execute one or the other of a pair of
statements, based on the value of an expression. You may nest if-else statements
and use braces to group multiple statements for conditional execution. Unlike C/C++, an
if expression must have boolean type; it cannot be numeric. The familiar C/C++
idiom of treating 0 as false and other values as true doesn’t work in Java.

For example, the following i f-else statementincrements top and bottom if x is 0;
otherwise it decrements them:

- 125 -

if (x == 0)

top++;
bottom++;
}
else
{
top--7;
bottom--;

Whereas the 1 £ performs a two-way conditional branch, the switch statement
performs a multi-way conditional branch. The switch statementincludes an integer
expression and a series of case statements; it evaluates the expression and then
executes the case statement that has a matching value. The switch statement may
also include a default statement;if no case statement within the switch has a
matching value, the switch executes the default statement. Like C/C++, once a
case statement is executed, control flows to the following case or default
statement. To prevent this, you can use a break statement to transfer control to the
statement following the switch. Altogether too often, programmers neglect to include
break statements where needed, resulting in program bugs.

Here’s a typical switch statement, with a complement of case and break statements
and a default statement:

int y = 0;
switch (num / 100)
{

case 0:
y = 1;
break;
case 1:
y = 2;
break;
case 2:
y = 8;
break;
default:
y = 32;
break;

Loop Control Statements

Like C/C++, Java provides three sorts of loops. The for statement is especially
convenient for writing counted loops in which the number of iterations is fixed. The for
typically includes three expressions:

* An initilization expression, which is executed when the loop is entered.

* ABoolean testexpression, which is executed before each iteration. When the test
expression evaluates to false, iteration ceases.

- 126 -

* An update expression, which is executed at the end of each iteration.

Here’s an example for loop that sums the numbers from 1 to n:

int 1i;
int sum = 0;
for (1 = 1; i <= n; 1i++)

{

sum += 1i;

Loop variables that exist only for the duration of the for can be defined inside the for ,
like this:

for (int i = 1; 1 <= n; 1i++)

The do and do-while statements are essentially simpler forms of the for statement. The do
statement features a test expression. If the expression evaluates false, the do
statement terminates; otherwise, the body of the do executes and the test expression is
reevaluated. Iteration continues until the test expression evaluates to false. Here’s a do
that sums the numbers from 1 to n, just as the previous for statement did:

int i = 1;
int sum = 0;
while (i <= n)
{
sum += 1i;
i++;

Notice that the initialization and update expressions that were incorporated within the
for are performed by auxiliary statements rather than the do . The do is most useful
when the loop requires no initialization and update operations because other program
statements have already established the proper initial conditions and iteration.

The do-while resembles the do , but its test expression is not evaluated until the
completion of the first iteration. Therefore, a do-while always executes its body at least
once. Here’s a do-while loop that computes the same result as the previous loops.
Notice that the computation fails if the initial value of n is less than 1:

int 1 = 0;
int sum = 0;
do
{
i++;
sum += 1i;
} while (i <= n)

Program Exceptions

Java provides an elegant mechanism for dealing with unexpected program conditions:
the exception. When a Java virtual machine encounters a problem it throws an exception,
a special object that records information about the problem. A try-catch statement
can be used to trap exceptions thrown within a block of code:

- 127 -

try
{

// statements that cause exception to be thrown

}

catch (IOException ex)

{
// statements the deal with the exception

The catch functions somewhat like a method, including an argument (here ex) that
has a type that subclasses Exception. Java’s libraries define many such subclasses.
It's also possible to associate multiple catch blocks with a single try ; the first catch
block with an argument matching the type of the actual exception executes.

If a statement that could throw a given exception is not within a try block with a catch
for that exception, the Java compiler will reject the program unless special steps are
taken. The header of the method enclosing the statement must be tagged with a throws
clause that advertises the possibility of the uncaught exception. This allows the compiler
to efficiently check that statements that invoke the method are enclosed within an
appropriate try-catch or that the enclosing method also throws the exception.

Java’s exception mechanism ensures that programmers deal with the most likely sources
of unexpected program termination. As a result, Java programs tend to be highly reliable.

USER INTERFACE

When programming the client side of a system, the user interface is paramount. Most
modern systems employ a graphical user interface, but you can write Java programs that
use either a text-based or graphical style of user interface.

Text-Based User Interfaces

Java’s System class mediates access to the three standard input/output streams
provided by most operating systems: input, output, and error. The System.in object
models the input stream; its read method lets you read a Unicode character from the
input stream:

character data = System.in.read();

If the input stream is at end of file, the read method returns the value "1 , which
corresponds to no Unicode character.

The System.out and System.err objects model the output and error streams,
respectively. Their print and println methods let you write text. Each takes a single
argument, which must be a String or capable of conversion to a String. Unlike the
print method, the println method adds a line termination sequence to its output
and flushes the output buffer. For example, the following statement writes the familiar
“Hello World!” message to the output stream:

System.out.println ("Hello World!");

Abstract Window Toolkit (AWT) Interfaces

For writing GUI programs, Java provides the Abstract Window Toolkit (AWT). The AWT
uses the facilities of the host platform to create and display buttons and other
userinterface controls. Therefore, the AWT preserves the familiar look and feel of the

- 128 -

host platform, making users feel thoroughly at home. However, experience shows that
writing portable programs using the AWT is difficult (though by no means impossible),
owing to subtle differences from platform to platform in the behavior of native controls.

The AWT classes are too extensive to be thoroughly covered in the space of a single
chapter. The most important aspects of the AWT are summarized in Table 7.4, which
shows key AWT classes, and Table 7.5, which shows key AWT event listeners. You
should be able to understand the user-interface aspects of the example programs by
reading the explanations and referring to these tables. If you're interested in a more
detailed presentation of Java and the AWT, consider Object-Oriented Programming in
Java, by Gilbert and McCarty (Waite Group Press, 1997).

TABLE 7.4 KEY AWT CLASSES

Class

Description

Button Clickable button

Canvas Surface for drawing

Checkbox On/off button

Choice Drop-down list

Dialog Dialog box

FileDialog Dialog box for opening/saving files
Frame Top-level window

Label Static text

List Scrollable list

Menu Clickable menu

Menultem Clickable menu item

Panel Container for controls
Scrollbar Standard scrollbar

ScrollPane Container with integral scrollbars
TextArea Multi-line text box

TextField Single-line text box

Window A generic window

- 129 -

TABLE 7.5 KEY AWT EVENT LISTENERS

Listener Description

ActionlListener Listens for mouse click on a control

AdjustmentListener Listens for change to scrollbar position

FocusListener Listens for change in focus (user tabbing to next control)
TtemListener Listens for user selection from list

KeyListener Listens for key press

MouselListener Listens for mouse click within a window

MouseMotionListener Listens for mouse movement within a window
TextListener Listens for changes to contents of a text control

WindowListener Listens for reposition, resize, or close of window

Despite the intention to be brief, one useful but unusual AWT characteristic must be
mentioned. In order to facilitate writing portable programs, the AWT lets programmers
avoid hard-coding sizes and positions of controls and other user-interface objects. Most
AWT programs use one or more layout managers to automatically position their controls.
By dividing a window into regions controlled by different layout managers, programmers
can create a portable screen layout that functions well over a wide range of video monitor
resolutions. Table 7.6 summarizes the most popular of the AWT’s layout managers.

TABLE 7.6 POPULAR AWT LAYOUT MANAGERS

Layout Description
Manager

BorderLayout Places controls in one of five positions: north (top), south (bottom),
west (left), east (right), or center.

CardLayout Places controls on a panel within a group of panels that resembles
index cards. The user can click a card for access, bringing it to the
front of the group.

FlowLayout Places controls in rows, filling each from left to right and then

- 130 -

moving down to the next row.

GridBagLayout Places controls according to parameters that specify size, location,
and so on.

GridLayout Places controls in a horizontal row, vertical column, or matrix of
equally sized cells.

Java Foundation Classes

To overcome limitations of the AWT, Sun created the Java Foundation Classes (JFC,
also known as Swing). Unlike the AWT, JFC does not utilize native peer components of
the host platform. It is a pure-Java facility whose behavior—by design—is consistent
across platforms. Because it requires architectural improvements made subsequent to
Java 1.0, JFC can be used only with Java 1.1 or later.

Our example programs use the AWT rather than JFC for a number of reasons. First—and
primarily—more programmers are familiar with the AWT than JFC. Second, AWT-based
code tends to be simpler than JFC-based code. Devoting less space to presentation of
user-interface issues is consistent with this book’s emphasis on the non-client aspects of
distributed systems. Third, Sun intends JFC as an alternative to, rather than a replacement
of, the AWT. Finally, at the time of this writing, the current beta version of JFC is rather
slow and buggy. Even though it appears that JFC represents the future of clientside Java,
the AWT is chosen as the vehicle for presenting user-interface code.

FROM HERE

This chapter has taken you on a whirlwind tour of the Java language and its libraries.

Obviously, there’s much more to Java than could be presented in a single chapter. This
chapter’s goal was to jump-start your ability to read Java programs so that you’ll be able
to understand the many Java example programs used throughout subsequent chapters.

You need to understand a few advanced Java facilities before jumping into the examples.
The following chapters provide additional details regarding the Java language and its
libraries:

» Chapter 8, “Java Threads,” presents threads, explaining why they’re useful in building
distributed systems and how to create and use them. It also discusses thread
synchronization, alerting you to some subtle pitfalls that can cause your programs to
fail.

+ Chapter 9, "Java Serialization and Beans," presents serialization and Java Beans, both
of which are especially important to building distributed systems.

Chapter 8: JAVA Threads

Overview

Unlike other popular programming languages, Java has threads—not clothes, of course,
but lightweight processes capable of concurrent, asynchronous execution. Java'’s easy
access to threads makes it simpler than ever to build efficient, threaded client servers. In
this chapter, you'll learn:

* How concurrency can improve program performance

-131 -

Concurrent programs can do several things at once. Often, a concurrent program can
outperform an equivalent nonconcurrent program.

* How to create and manage threads

Java provides extensive capabilities for creating and controlling threads as part of its
core API.

» How to avoid pitfalls of concurrency

Concurrent programs may contain subtle bugs that cause them to hang or produce
incorrect results. You'll learn how to recognize and avoid such problems.

CONCURRENCY

We're all familiar with concurrency—uwhich is simply performing several tasks at the same
time—in our daily lives. When the boss asks where the Mulligan report is, we’d better
have it ready. The reply “It's not ready: I've been working on the Needham analysis”
won't cut the mustard. We're expected to do several things at once and do them well.

However, until recently, computers couldn’t rise to this expectation. For example, you
couldn’t run your word processor and spreadsheet at the same time. If the boss asked for
a copy of the Mulligan report while you were working with a spreadsheet, you had to shut
down the spreadsheet, launch the word processor, print the report, shut down the word
processor, launch the spreadsheet, and resume work. No wonder days seemed so
frantic.

Microsoft Windows changed that, giving desktop computer users the power of
concurrency. Provided your computer has enough memory, you can run your word
processor and spreadsheet at the same time. The programs can even cooperate, sharing
data in a way that lets you insert a spreadsheet into your report so that the report stays up-
to-date, even if you change the formulas in the spreadsheet. As you know from experience,
con-currency provides enormous potential for improved efficiency.

THREADS

Running multiple programs—a feat called multitasking—is not the only form of
concurrency. In fact, it's not the most powerful form, because it's hobbled by several
constraints. In multitasking, each program lives in its own address space. To exchange
data with other programs, a program must use a rather elaborate protocol that
overcomes the lack of access to a common area of memory (for example, UNIX shared
memory). You can'’t simply call another program’s procedures. Moreover, from the
perspective of an operating system, launching a program is a major event, requiring
exclusive access to many shared resources. Consequently, it takes many clock ticks to
launch a new program, and other programs must stand down during that interval.

You can write a concurrent system as a suite of programs, but this architecture suffers
from the constraints of multitasking. Your system will probably have a fixed number of
tasks—running copies of a program—because it's so costly to launch a new task. What's
more, you'll probably spend quite a bit of time programming the system, coaxing tasks
that live in private address spaces to cooperate with one another.

Now, imagine a better way. Instead of multiple programs that share no common memory,
suppose you could have a single program with multiple parts that execute concurrently.
The parts would cooperate without coaxing, because they’re part of the same program
and share common data and procedures. Also, because they’re part of a single program,
they could come and go without major operating system overhead. Such an architecture
would make it easy to create fast, efficient servers because you could instantiate one of
your hypothetical parts each time a client requests service. That way, multiple clients

-132 -

could be processed concurrently.

Sound too good to be true? It’s not: You've just imagined Java’s threads, which are quite
real. Let's see how to actually create and use them.

Creating Threads

Java provides the java.lang.Thread class to model threads, which it supports using
facilities of the host platform. This poses a few unfortunate consequences, because
threads do not behave consistently across platforms. We'll take up these problems and
propose some workarounds later in the chapter.

The most obvious way to create a thread is by instantiating an instance of the Thread
class. However, the most straightforward way is to first create an instance of a class that
implements the Runnable interface. The sample program ThreadCreation shows how
to create a pair of threads. Copy it from the book’s CD-ROM (you’ll find both the Java and
HTML source files) and run it on your own system. Its screen displays two single-digit
counters—one that counts up and one that counts down (see Figure 8.1). The counters
run asynchronously, because each has its own thread.

Figure 8.1: Threaded programs perform tasks concurrently.

Listing 8.1 shows the Java code for the ThreadCreation program, which consists of an
Applet subclass, ThreadCreation , that defines two fields, a method, and an inner
class. Let’s look at the inner class, Digit, because it's the heart of the program.

LISTING 8.1 ThreadCreation.java —INSTANTIATING A THREAD

import java.applet.*;

import Jjava.awt.*;

public class ThreadCreation extends Applet
{
Digit theUpCounter = new Digit (+1);
Digit theDownCounter = new Digit(-1);

public void init ()
{
setLayout (new GridLayout(l, 0));
add (theUpCounter) ;
add (theDownCounter) ;
Thread tl = new Thread (theUpCounter) ;
Thread t2 = new Thread (theDownCounter) ;
tl.start();
t2.start();

class Digit extends TextField implements Runnable

- 133 -

int theStep;
int theState = 0;

public Digit (int step)
{
theStep = step;
setFont (new Font ("SansSerif", Font.BOLD, 96));
setEditable (false);
}
public void run()
{
while (true)
{
theState += theStep;
if (theState < 0) theState 9;
if (theState > 9) theState = 0;
setText ("" + theState);
try
{

Thread.sleep (500);
}

catch (Exception ex) { ; }

The inner class Digit extends TextField and implements Runnable. You may have
expected that it would extend Thread; it's possible to create a thread by extending
Thread, but Digit demonstrates the more common approach. The Runnable
interface requires its implementing class to define one method: run . As you'll see in a
moment, the run method functions as a gateway for threads; when you want a class to
be able to run as a thread, you should specify that the class implements Runnable and
define a run method.

A class can implement as many interfaces as you choose, but it can only extend a single
base class. By implementing Runnable, your class is free to extend a base class that
provides fields and methods useful to your application. For example, the Digit class
extends TextField, which gives it the ability to display itself on the screen as a text box.
Because the Java language—not its libraries—provides thread capabilities, you don’t
need to extend Thread.

Looking more closely at the Digit class, you can see that it defines two fields, a
constructor, and a method. One field, theState, holds the current value of the counter,
which is initialized to zero. The other field, theStep, holds the increment/decrement
value by which the counter is adjusted each time it steps.

The constructor accepts an argument that specifies the step value; the constructor copies
the value of the argument to the field thesStep. It then configures itself, via methods
inherited from TextField, to use a large font and to disallow user editing of its contents.

The run method steps the counter. It consists of an endless loop that steps the value of

theState and wraps the value when it falls outside single-digit range. It then updates
the contents of the TextField to reflect the new value of theState. Finally, it invokes

-134 -

the Thread.sleep method from within a try-catch block.

The Thread.sleep method puts a program “on hold” for a specified interval; Digit
uses the value 500, which means 500 milliseconds. By calling Thread.sleep, Digit
courteously gives other programs and threads a chance to run; otherwise, it might
monopolize the system, making the system seem sluggish to users. Because its nap
might be interrupted (by an InterruptedException), Digit must call
Thread.sleep withina try-catch or throw the exception to its caller. Digit
handles the exception itself, because the exception is relatively inconsequential; the
precise timing of the counting is not important. In effect, Digit ignores the exception,
because the catch block contains no executable statements. Although Digit runs as
a thread, it does not create the Thread in which it runs; the ThreadCreation applet
performs this task in its init method.

Let's examine ThreadCreation. Its two fields are instances of Digit, one counting up by
one and the other counting down by one, as specified by the argument passed to the
constructor. The init method establishes a horizontal GridLayout (one row and an
unspecified number of columns) as the applet’s layout manager and adds each Digit
to the applet’s window.

The init method then creates two Thread objects, one for each instance of Digit.
The Thread constructor imposes restrictions on the class it accepts as an argument.
The class must extend Thread or implement Runnable. Because Digit implements
Runnable, it's acceptable as an argument to Thread’s constructor. Once you create a
thread, it simply sits idle until started via the start method; therefore, init is used to
send a start message to each new Thread.

In response to a start message, a Thread begins executing its run method
asynchronously: The calling program and the thread execute in parallel. (Unless your
computer has multiple CPUs, it can’t perform parallel computation; it merely causes the
calling program and the thread to execute in turn. However, given a fast computer, this
presents the illusion of parallel computation.)

You can invoke start several times on the same instance of Thread. Each thread will
then share access to the fields of the shared instance. This makes it easy for threads to
share information; however, as you’ll soon see, it also opens the way for certain kinds of
subtle program bugs that don’t affect nonthreaded programs.

Thread Characteristics

Thread objects, like other objects, possess attributes that store their characteristics.
Here are the most important characteristics of a thread:

» The thread group to which the thread belongs
* The priority of the thread

* The name of the thread

» The type of the thread

* The status of the thread

The ThreadChars program, shown as Listing 8.2, shows how to access these
characteristics. This program follows the general pattern established by ThreadCreation.
It consists of an applet that has two fields: a TextArea for displaying output and an
instance of DummyThread, which is a subclass of Thread. The program’s init method

- 135 -

sets up the user interface and starts the thread. Then, it commences sending messages
to the DummyThread and displaying the responses. Notice that the init method does
not need to create the Thread instance. As you'll see, DummyThread extends Thread
rather than implementing Runnable, so the initializer of the field theThread creates
the Thread.

LISTING 8.2 ThreadChars.java —THREAD CHARACTERISTICS

import Jjava.applet.*;

import java.awt.*;

public class ThreadChars extends Applet
{
TextArea theOutput
DummyThread theThread

new TextArea();

new DummyThread() ;

public void init ()
{
setLayout (new BorderLayout()):;
add (theOutput) ;
theOutput.setFont (new Font ("Monospaced", Font.BOLD, 12));
theOutput.setEditable (false);
theThread.start () ;

theOutput.append ("\nActive Count: " +
theThread.activeCount ()) ;
theOutput.append ("\n") ;

theOutput.append ("\nName "+
theThread.getName ()) ;

theOutput.append ("\nPriority s "o+
theThread.getPriority())

theOutput.append ("\nAlive "+
theThread.isAlive ());

theOutput.append ("\nDaemon "4+

theThread.isDaemon ()) ;
ThreadGroup t = theThread.getThreadGroup()

while (t != null)
{
theOutput.append ("\n") ;

theOutput.append ("\nName : " + t.getName());

theOutput.append ("\nGroup Count : " +
t.activeGroupCount ());

theOutput.append ("\nMax Priority: " +

t.getMaxPriority());
t = t.getParent();

}

class DummyThread extends Thread

{

public void run()

{

while (true)
{
try
{
Thread.sleep (500);

- 136 -

}

catch (Exception ex) { ; }

The inner class DummyThread consists of little more than a run method. An instance of
DummyThread has no function beyond mere existence: We simply want to probe it in
the init method of ThreadChars. That's why DummyThread extends Thread rather
than implementing Runnable; it doesn’t need to inherit any capability from another base
class.

Figure 8.2 shows the output of the ThreadChars program. The first paragraph displays
the number of active threads in the Java virtual machine. The second paragraph displays
the characteristics of the DummyThread instance. Each subsequent paragraph
describes the characteristics of a thread group, from DummyThread’s immediate parent
to the root of the thread group hierarchy.

§ PRLSE I g L M LT L - L il
P

s

==

Figure 8.2: Threads are members of thread groups.

Java associates threads as thread groups for convenience. Thread groups let you send a
single message to a group of threads rather than sending a message to each member of
the group. A thread group can also impose restrictions on its members and their children.
For example, thread groups restrict the maximum priority their members and their
children can assume.

Thread priority governs access to the CPU. When a thread of higher priority is ready to
run, it preempts lower priority threads. Your application may run poorly unless you assign
thread priorities properly. Generally, high-priority tasks that consume little CPU time
(such as user interaction) should run as high-priority threads, whereas low-priority tasks,
as well as tasks that are CPU intensive, should run as low-priority threads.

In addition to group membership and priority, threads have names. However, names are
mainly useful for debugging, because they don’t normally appear in user-oriented output.

Threads are of two varieties: daemon and nondaemon. Daemon threads typically perform
background tasks of low priority. When the last nondaemon thread terminates, Java
automatically terminates any remaining daemon threads.

Using and Controlling Threads

In addition to their relatively fixed characteristics, threads have characteristics that reflect
their state. A thread can be in any of several states:

» Alive or dead

- 137 -

» Sleeping or awake
» Suspended or nonsuspended
* Interrupted or noninterrupted

You kill a thread by sending it a stop message. However, this unfriendly act may not
allow the thread an opportunity to put its affairs in order, leaving the program in an
inconsistent state. Therefore, Sun has deprecated use of the stop message. You'll
learn a better way to terminate a thread in the next section, “Pitfalls and Solutions.” You
can test whether a thread is alive by sending it the i sA1ive message. You can free the
resources associated with a thread by sending it the destroy message.

A thread sleeps when it receives a sleep message. It awakens after the specified time
interval expires or when it's interrupted.

You can suspend a thread—temporarily block it from execution—by sending it a
suspend message. You can subsequently allow it to execute by sending it a resume
message.

You can interrupt a thread by sending it the interrupt message, which throws it an
InterruptedException . The isInterrupted method lets you determine whether
a thread has been interrupted.

Java provides messages that let you set the characteristics of a thread:
* setName (String name) lets you set the name of a thread.
* setPriority(int priority) lets you set the priority of a thread.

* setDaemon (boolean daemon) lets you change the daemon status of a thread.
Sending true as the argument makes the thread a daemon, and sending false
makes the thread a nondaemon.

You can send the setMaxPriority message to a thread group, changing the
restrictions it imposes on its members and their children. Also, you can send the
setDaemon message to a thread group, thereby changing the daemon status of every
member of the group.

PITFALLS AND SOLUTIONS

Subsequent chapters present sample programs that use Java’s thread capabilities, so we
won't take time to present such practical examples here. (If you're eager to see a useful
application of threads, see Chapter 13, “Sockets,” which shows how to create a threaded
Internet server.) Instead, we’ll focus here on some of the pitfalls that accompany thread
use, showing you both the pit and the path around it.

Stopping a Thread

Java’s Thread class includes a stop method that terminates a running thread.
However, Java 1.2 deprecates the method, because abruptly terminating a thread may
leave program data in an inconsistent state. The ThreadStopper program, shown in
Listing 8.3, demonstrates the proper technique for terminating a thread: You should allow
the thread to terminate itself.

- 138 -

LISTING 8.3 ThreadStopper.java —HOW TO SAFELY STOP A THREAD

import java.applet.*;
import Jjava.awt.*;

import java.awt.event.*;

public class ThreadStopper extends Applet
{

TextArea theOutput = new TextAreal();

DummyThread theThread = new DummyThread (theOutput) ;

Button theStop = new Button("Stop"):;

Button theSuspend = new Button ("Suspend") ;
Button theResume = new Button ("Resume");

public void init ()

{
setLayout (new BorderLayout()):;
add (theOutput, BorderLayout.CENTER) ;
Panel p = new Panel();
p.setlLayout (new GridLayout (1, 0));
add (p, BorderLayout.SOUTH) ;
p.add (theStop) ;
p.add (theSuspend) ;
p.add (theResume) ;

theOutput.setFont (new Font ("Monospaced", Font.BOLD,

theOutput.setEditable (false);
theStop.addActionListener (new Stopper()):;

theSuspend.addActionListener (new Suspender());
theResume.addActionListener (

theThread.start () ;

new Resumer());

class Stopper implements ActionListener

{

public void actionPerformed (ActionEvent evt)

{
theThread.stopThread() ;

class Suspender implements ActionListener

{

public void actionPerformed (ActionEvent evt)

{
theThread.suspend() ;

class Resumer implements ActionListener

{

public void actionPerformed (ActionEvent evt)

- 139 -

12));

theThread.resume () ;

class DummyThread extends Thread

{
TextArea theOutput;
boolean isStopPending = false;

public DummyThread (TextArea out)

{
theOutput = out;

public void stopThread()
{

isStopPending = true;

public void run()

{

while (! isStopPending)

{
theOutput.append ("\nRunning...");
try

{
Thread.sleep (1000) ;

}

catch (Exception ex) { ; }

}
theOutput.append ("\nStopped.") ;

Examine the DummyThread inner class and notice that it includes a boolean variable
called isStopPending . This variable is initialized to false and setto true by the
stopThread method. You might prefer to name such a method stop ; however, the
Thread.stop method is final and thus cannot be overridden.

DummyThread’s run method includes a conditional while rather than the
unconditional while of previous examples. When the while discovers that
isStopPending is true , it exits. Therefore, you can view its output—the
DummyThread appends messages to a text block set up by the applet, which passes a
reference to the text block to DummyThread’s constructor.

As you can see from DummyThread’s user interface, DummyThread not only lets you
stop a thread, it lets you suspend and resume it (see Figure 8.3). Let’'s see how the user
interface and the suspend/resume feature work.

The user interface includes three buttons: one to stop the thread, one to suspend it, and
one to resume it. Once you stop the thread, it cannot be restarted; you must exit and
launch the program again.

- 140 -

Figure 8.3: Threads can be stopped, suspended, and resumed.

The init method creates a BorderLayout to control the placement of controls and
puts the TextArea (a multiline text box) at the center of the applet’'s window so that it
fills the available space. Next, the method creates a Panel (an invisible container) and
places it along the bottom edge of the applet’s windows, allowing it to expand horizontally
but not vertically. A GridLayout governs the placement of controls within the Panel;
the Panel’s constructor parameters (1,0) instruct it to place the controls in a single row.
The method then adds the buttons to the Panel, styles the TextArea, sets an
ActionListen