

Ch10/blackbox.bin

Ch10/BlackBox.html

Ch10/BlackBox.java

 Ch10/BlackBox.java

Ch10/BlackBox.java/*
This applet requires read/write access to the local file system.
You can grant this by adding the following lines to the java.policy file:

 grant codeBase "file:" {
 permission java.security.AllPermission;
 };

*/
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.security.*;
import javax.crypto.*;
import java.io.*;

public class BlackBox extends Applet
{
 static final String ALGORITHM = "DES";
 static final String TRANSFORMATION = ALGORITHM + "/ECB/PKCS5Padding";
 static boolean isCallable = true;

 TextField theTextField = new TextField();
 Button theSerialButton = new Button("Serialize");
 Button theDeSerialButton = new Button("De-Serialize");
 Panel thePanel = new Panel();

 SecretKey theKey;
 Cipher theCipher;

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 thePanel.setLayout(new GridLayout(2, 2));
 p1.setLayout(new GridLayout(1, 2));
 add(thePanel, BorderLayout.NORTH);
 add(p1, BorderLayout.SOUTH);
 thePanel.add(new Label("Original TextField:"));
 thePanel.add(new Label("Serialized TextField:"));
 thePanel.add(theTextField);
 p1.add(theSerialButton);
 p1.add(theDeSerialButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theTextField.setFont(f);
 theSerialButton.addActionListener(new Serializer());
 theDeSerialButton.addActionListener(new DeSerializer());

 try
 {
 theCipher = Cipher.getInstance(TRANSFORMATION);
 KeyGenerator generator = KeyGenerator.getInstance(ALGORITHM);
 theKey = generator.generateKey();
 }
 catch (Exception ex) { fatalError(ex); }
 }

 public void fatalError(Exception ex)
 {
 System.err.println("Fatal error:\n" + ex.toString());
 ex.printStackTrace();
 }

 class Serializer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theCipher.init(Cipher.ENCRYPT_MODE, theKey);
 SealedObject dark = new SealedObject(theTextField, theCipher);
 ObjectOutputStream out = new ObjectOutputStream(
 new FileOutputStream("BlackBox.bin"));
 out.writeObject(dark);
 out.close();
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class DeSerializer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 if (! isCallable) return;
 try
 {
 theCipher.init(Cipher.DECRYPT_MODE, theKey);
 ObjectInputStream in = new ObjectInputStream(
 new FileInputStream("BlackBox.bin"));
 SealedObject obj = (SealedObject) in.readObject();
 in.close();
 TextField t = (TextField) obj.getObject(theCipher);
 thePanel.add(t);
 invalidate();
 validate();
 isCallable = false;
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
}

Ch10/EngimaStream.bin

�rｊ�螴

Ch10/Enigma.html

Ch10/Enigma.java

 Ch10/Enigma.java

Ch10/Enigma.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.security.*;
import javax.crypto.*;

public class Enigma extends Applet
{
 static final String ALGORITHM = "DES";
 static final String TRANSFORMATION = ALGORITHM + "/ECB/PKCS5Padding";

 TextArea theInputText = new TextArea(10, 64);
 TextArea theOutputText = new TextArea(10, 64);
 Button theEncodeButton = new Button("Encode");
 Button theDecodeButton = new Button("Decode");

 SecretKey theKey;
 Cipher theCipher;

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 p1.setLayout(new GridLayout(0, 1));
 p2.setLayout(new GridLayout(1, 0));
 add(p1, BorderLayout.CENTER);
 add(p2, BorderLayout.SOUTH);
 p1.add(new Label("Input:"));
 p1.add(theInputText);
 p1.add(new Label("Output:"));
 p1.add(theOutputText);
 p2.add(theEncodeButton);
 p2.add(theDecodeButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theInputText.setFont(f);
 theOutputText.setFont(f);
 theOutputText.setEditable(false);
 theEncodeButton.addActionListener(new Encoder());
 theDecodeButton.addActionListener(new Decoder());

 try
 {
 theCipher = Cipher.getInstance(TRANSFORMATION);
 KeyGenerator generator = KeyGenerator.getInstance(ALGORITHM);
 theKey = generator.generateKey();
 }
 catch (Exception ex) { fatalError(ex); }
 }

 public void fatalError(Exception ex)
 {
 System.err.println("Fatal error:\n" + ex.toString());
 theOutputText.setText("Fatal error:\n" + ex.toString());
 ex.printStackTrace();
 }

 class Encoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theCipher.init(Cipher.ENCRYPT_MODE, theKey);
 byte [] text = theInputText.getText().getBytes();
 byte [] codedtext = theCipher.doFinal(text);
 theOutputText.setText(Hex.byteArrayToHexString(codedtext));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Decoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theCipher.init(Cipher.DECRYPT_MODE, theKey);
 String chars = theInputText.getText();
 byte [] text = Hex.hexStringToByteArray(chars);
 byte [] codedtext = theCipher.doFinal(text);
 theOutputText.setText(new String(codedtext));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
}

Ch10/EnigmaStream.bin

Ch10/EnigmaStream.html

Ch10/EnigmaStream.java

 Ch10/EnigmaStream.java

Ch10/EnigmaStream.java/*
This applet requires read/write access to the local file system.
You can grant this by adding the following lines to the java.policy file:

 grant codeBase "file:" {
 permission java.security.AllPermission;
 };

*/
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.security.*;
import javax.crypto.*;
import java.io.*;

public class EnigmaStream extends Applet
{
 static final String ALGORITHM = "DES";
 static final String TRANSFORMATION = ALGORITHM + "/ECB/PKCS5Padding";

 TextArea theInputText = new TextArea(10, 64);
 TextArea theOutputText = new TextArea(10, 64);
 Button theEncodeButton = new Button("Encode");
 Button theDecodeButton = new Button("Decode");

 SecretKey theKey;
 Cipher theCipher;

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 p1.setLayout(new GridLayout(0, 1));
 p2.setLayout(new GridLayout(1, 0));
 add(p1, BorderLayout.CENTER);
 add(p2, BorderLayout.SOUTH);
 p1.add(new Label("Input:"));
 p1.add(theInputText);
 p1.add(new Label("Output:"));
 p1.add(theOutputText);
 p2.add(theEncodeButton);
 p2.add(theDecodeButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theInputText.setFont(f);
 theOutputText.setFont(f);
 theOutputText.setEditable(false);
 theEncodeButton.addActionListener(new Encoder());
 theDecodeButton.addActionListener(new Decoder());

 try
 {
 theCipher = Cipher.getInstance(TRANSFORMATION);
 KeyGenerator generator = KeyGenerator.getInstance(ALGORITHM);
 theKey = generator.generateKey();
 }
 catch (Exception ex) { fatalError(ex); }
 }

 public void fatalError(Exception ex)
 {
 System.err.println("Fatal error:\n" + ex.toString());
 theOutputText.setText("Fatal error:\n" + ex.toString());
 ex.printStackTrace();
 }

 class Encoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theCipher.init(Cipher.ENCRYPT_MODE, theKey);
 byte [] text = theInputText.getText().getBytes();
 CipherOutputStream out = new CipherOutputStream(
 new FileOutputStream("EnigmaStream.bin"),
 theCipher);
 out.write(text);
 out.close();
 theOutputText.setText("");
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Decoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theOutputText.setText("");
 theCipher.init(Cipher.DECRYPT_MODE, theKey);
 CipherInputStream in = new CipherInputStream(
 new FileInputStream("EnigmaStream.bin"),
 theCipher);
 int c;
 byte [] b = new byte [8];
 c = in.read(b);
 while (c != -1)
 {
 theOutputText.append(new String(b));
 c = in.read(b);
 }
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
}

Ch10/Hex.java

 Ch10/Hex.java

Ch10/Hex.javapublic class Hex
{
 public static String byteArrayToHexString(byte [] bytes)
 {
 String s = "";
 for (int i = 0; i < bytes.length; i++)
 {
 int b = bytes[i] + 128;
 if (b < 16)
 s += "0" + Integer.toHexString(b);
 else
 s += Integer.toHexString(b);
 }
 return s;
 }

 public static byte [] hexStringToByteArray(String chars)
 {
 byte [] bytes = new byte[chars.length() / 2];
 for (int i = 0; i < bytes.length; i++)
 {
 String s = chars.substring(i*2, i*2 + 2);
 int b = Integer.parseInt(s, 16) - 128;
 bytes[i] = (byte) b;
 }
 return bytes;
 }
}

Ch10/MessageDigester.html

Ch10/MessageDigester.java

 Ch10/MessageDigester.java

Ch10/MessageDigester.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.security.*;

public class MessageDigester extends Applet
{
 static final String ALGORITHM = "SHA-1";
 TextField theFileName = new TextField(64);
 TextField theDigest = new TextField(64);
 Button theChooseButton = new Button("Choose File");

 public void init()
 {
 setLayout(new GridLayout(0, 1));
 add(new Label("File Name:"));
 add(theFileName);
 add(new Label("Digest:"));
 add(theDigest);
 add(new Label(""));
 add(theChooseButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theFileName.setFont(f);
 theDigest.setFont(f);
 theFileName.setEditable(false);
 theDigest.setEditable(false);
 theChooseButton.addActionListener(new Chooser());
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 class Chooser implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 Container c = getParent();
 while (c != null)
 {
 if (c instanceof Frame) break;
 c = c.getParent();
 }
 if (c == null) return;
 FileDialog fd = new FileDialog((Frame) c,
 "Choose A File", FileDialog.LOAD);
 fd.show();
 String file = fd.getFile();
 if (file != null)
 {
 try
 {
 String dir = fd.getDirectory();
 theFileName.setText(dir + file);
 MessageDigest digester =
 MessageDigest.getInstance(ALGORITHM);
 FileInputStream in = new FileInputStream(
 dir + file);
 int b = in.read();
 while (b != -1)
 {
 digester.update((byte) b);
 b = in.read();
 }
 in.close();
 byte [] digest = digester.digest();
 theDigest.setText(
 Hex.byteArrayToHexString(digest));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
 }
}

Ch10/MessageSigner.html

Ch10/MessageSigner.java

 Ch10/MessageSigner.java

Ch10/MessageSigner.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.security.*;
import java.security.spec.*;

public class MessageSigner extends Applet
{
 static final String ALGORITHM = "DSA";
 static final int KEY_MODULUS = 1024;
 static final byte [] SEED =
 { (byte) 1, (byte) 2, (byte) 6, (byte) 6, (byte) 0 };

 TextField theFileName = new TextField(64);
 TextField thePublicKey = new TextField(64);
 TextField thePrivateKey = new TextField(64);
 TextField theSignature = new TextField(64);
 TextField theResult = new TextField(64);
 Button theGenerateButton = new Button("Generate Keys");
 Button theChooseButton = new Button("Choose File");
 Button theSignButton = new Button("Generate Signature");
 Button theVerifyButton = new Button("Verify Signature");

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 add(p1, BorderLayout.CENTER);
 add(p2, BorderLayout.SOUTH);
 p1.setLayout(new GridLayout(0, 1));
 p1.add(new Label("File Name:"));
 p1.add(theFileName);
 p1.add(new Label("Public Key:"));
 p1.add(thePublicKey);
 p1.add(new Label("Private Key:"));
 p1.add(thePrivateKey);
 p1.add(new Label("Signature:"));
 p1.add(theSignature);
 p1.add(new Label(""));
 p1.add(new Label("Result:"));
 p1.add(theResult);
 p2.setLayout(new GridLayout(1, 0));
 p2.add(theGenerateButton);
 p2.add(theChooseButton);
 p2.add(theSignButton);
 p2.add(theVerifyButton);

 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theFileName.setFont(f);
 thePublicKey.setFont(f);
 thePrivateKey.setFont(f);
 theSignature.setFont(f);
 theFileName.setEditable(false);
 thePublicKey.setEditable(false);
 thePrivateKey.setEditable(false);
 theSignature.setEditable(false);
 theResult.setEditable(false);
 theGenerateButton.addActionListener(new Generator());
 theChooseButton.addActionListener(new Chooser());
 theSignButton.addActionListener(new Signer());
 theVerifyButton.addActionListener(new Verifier());
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 class Generator implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 KeyPairGenerator generator =
 KeyPairGenerator.getInstance(ALGORITHM);
 generator.initialize(KEY_MODULUS,
 new SecureRandom(SEED));
 KeyPair keypair = generator.generateKeyPair();
 PublicKey pubkey = keypair.getPublic();
 PrivateKey privkey = keypair.getPrivate();
 byte [] bytes = pubkey.getEncoded();
 thePublicKey.setText(Hex.byteArrayToHexString(bytes));
 System.out.println("Public Key Format:" +
 pubkey.getFormat() + " Length=" +
 thePublicKey.getText().length());
 bytes = privkey.getEncoded();
 thePrivateKey.setText(Hex.byteArrayToHexString(bytes));
 System.out.println("Private Key Format:" +
 privkey.getFormat() + " Length=" +
 thePrivateKey.getText().length());
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Chooser implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 Container c = getParent();
 while (c != null)
 {
 if (c instanceof Frame) break;
 c = c.getParent();
 }
 if (c == null) return;
 FileDialog fd = new FileDialog((Frame) c,
 "Choose A File", FileDialog.LOAD);
 fd.show();
 String file = fd.getFile();
 if (file != null)
 {
 String dir = fd.getDirectory();
 theFileName.setText(dir + file);
 }
 }
 }

 class Signer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 String file = theFileName.getText();
 String hex = thePrivateKey.getText();
 byte [] bytes = Hex.hexStringToByteArray(hex);
 KeyFactory factory = KeyFactory.getInstance(ALGORITHM);
 KeySpec keyspec = new PKCS8EncodedKeySpec(bytes);
 PrivateKey pkey = factory.generatePrivate(keyspec);
 Signature dsa = Signature.getInstance(ALGORITHM);
 dsa.initSign(pkey);
 FileInputStream in =
 new FileInputStream(file);
 int b = in.read();
 while (b != -1)
 {
 dsa.update((byte) b);
 b = in.read();
 }
 in.close();
 byte [] signature = dsa.sign();
 theSignature.setText(
 Hex.byteArrayToHexString(signature));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Verifier implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 String hex = thePublicKey.getText();
 byte [] bytes = Hex.hexStringToByteArray(hex);
 KeyFactory factory = KeyFactory.getInstance(ALGORITHM);
 KeySpec keyspec = new X509EncodedKeySpec(bytes);
 PublicKey pkey = factory.generatePublic(keyspec);
 Signature dsa = Signature.getInstance(ALGORITHM);
 dsa.initVerify(pkey);

 String file = theFileName.getText();
 FileInputStream in =
 new FileInputStream(file);
 int b = in.read();
 while (b != -1)
 {
 dsa.update((byte) b);
 b = in.read();
 }
 in.close();
 hex = theSignature.getText();
 bytes = Hex.hexStringToByteArray(hex);
 if(dsa.verify(bytes))
 theResult.setText("Verified okay.");
 else
 theResult.setText("Verification failed.");
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
}

Ch10/Password.html

Ch10/Password.java

 Ch10/Password.java

Ch10/Password.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import javax.crypto.*;
import javax.crypto.spec.*;

public class Password extends Applet
{
 static final String TRANSFORMATION = "PBEWithMD5AndDES";

 TextField thePassword = new TextField();
 TextArea theTextArea = new TextArea(10, 64);
 Button theEncodeButton = new Button("Encode");
 Button theDecodeButton = new Button("Decode");

 SecretKey theKey;
 Cipher theCipher;
 String theSalt = "saltsalt"; // must have length of 8 characters
 int theIterations = 17;
 byte [] theCipherText;

 PBEParameterSpec parmspec = new PBEParameterSpec(theSalt.getBytes(),
 theIterations);

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 p1.setLayout(new GridLayout(0, 1));
 p2.setLayout(new GridLayout(1, 0));
 add(p1, BorderLayout.NORTH);
 add(theTextArea, BorderLayout.CENTER);
 add(p2, BorderLayout.SOUTH);
 p1.add(new Label("Password:"));
 p1.add(thePassword);
 p1.add(new Label("Text:"));
 p2.add(theEncodeButton);
 p2.add(theDecodeButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 thePassword.setFont(f);
 theTextArea.setFont(f);
 theEncodeButton.addActionListener(new Encoder());
 theDecodeButton.addActionListener(new Decoder());

 try
 {
 theCipher = Cipher.getInstance(TRANSFORMATION);
 }
 catch (Exception ex) { fatalError(ex); }
 }

 class Encoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 PBEKeySpec keyspec = new PBEKeySpec(
 thePassword.getText());
 SecretKeyFactory factory =
 SecretKeyFactory.getInstance(
 TRANSFORMATION);
 theKey = factory.generateSecret(keyspec);
 theCipher.init(Cipher.ENCRYPT_MODE, theKey,
 parmspec);
 byte [] text = theTextArea.getText().getBytes();
 theCipherText = theCipher.doFinal(text);
 theTextArea.setText("<Cipher text stored.>");
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Decoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 if (theCipherText == null) return;
 PBEKeySpec keyspec = new PBEKeySpec(
 thePassword.getText());
 SecretKeyFactory factory =
 SecretKeyFactory.getInstance(
 TRANSFORMATION);
 theKey = factory.generateSecret(keyspec);
 theCipher.init(Cipher.DECRYPT_MODE, theKey, parmspec);
 theCipherText = theCipher.doFinal(theCipherText);
 theTextArea.setText(new String(theCipherText));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 public void fatalError(Exception ex)
 {
 System.err.println("Fatal error:\n" + ex.toString());
 theTextArea.setText("Fatal error:\n" + ex.toString());
 }
}

Ch07/AppletPage.html

Ch07/JavaApplet.java

 Ch07/JavaApplet.java

Ch07/JavaApplet.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class JavaApplet extends Applet
{
 // Fields
 private Button theButton = new Button("Click on me.");
 private TextField theText = new TextField(25);

 // Method
 public void init()
 {
 add(theButton);
 add(theText);
 theButton.addActionListener(new ButtonHandler());
 }

 // Inner class
 class ButtonHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 theText.setText("Hello, user!");
 }
 }
}

Ch08/Deadlock.html

Ch08/Deadlock.java

 Ch08/Deadlock.java

Ch08/Deadlock.javaimport java.applet.*;
import java.awt.*;

public class Deadlock extends Applet
{
 String thePasta = "Pasta";
 String theFork = "Fork";
 Counter theCounter1 = new Counter("Philosopher #1",
 thePasta, theFork);
 Counter theCounter2 = new Counter("Philosopher #2",
 theFork, thePasta);

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theCounter1);
 add(theCounter2);
 Thread t1 = new Thread(theCounter1);
 Thread t2 = new Thread(theCounter2);
 t1.start();
 t2.start();
 }

 class Counter extends TextField implements Runnable
 {
 int theState = 0;
 String theName;
 String theResource1, theResource2;

 public Counter(String name, String res1, String res2)
 {
 theName = name;
 theResource1 = res1;
 theResource2 = res2;
 setFont(new Font("SansSerif", Font.BOLD, 32));
 setEditable(false);
 }

 public void sleep()
 {
 try
 {
 Thread.sleep(2000);
 }
 catch (Exception ex) { ; }
 }

 public void run()
 {
 while (true)
 {
 Loop1:
 while (true)
 {
 synchronized (theResource1)
 {
 System.out.println(theName +
 " acquired " +
 theResource1);
 sleep();
 while (true)
 {
 synchronized (theResource2)
 {
 System.out.println(theName +
 " acquired " +
 theResource2);
 theState += 1;
 break Loop1;
 }
 }
 }
 }
 setText("" + theState);
 sleep();
 }
 }
 }
}

Ch08/NoDeadlock.html

Ch08/NoDeadlock.java

 Ch08/NoDeadlock.java

Ch08/NoDeadlock.javaimport java.applet.*;
import java.awt.*;

public class NoDeadlock extends Applet
{
 String thePasta = "Pasta";
 String theFork = "Fork";
 Counter theCounter1 = new Counter("Philosopher #1",
 thePasta, theFork);
 Counter theCounter2 = new Counter("Philosopher #2",
 thePasta, theFork);

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theCounter1);
 add(theCounter2);
 Thread t1 = new Thread(theCounter1);
 Thread t2 = new Thread(theCounter2);
 t1.start();
 t2.start();
 }

 class Counter extends TextField implements Runnable
 {
 int theState = 0;
 String theName;
 String theResource1, theResource2;

 public Counter(String name, String res1, String res2)
 {
 theName = name;
 theResource1 = res1;
 theResource2 = res2;
 setFont(new Font("SansSerif", Font.BOLD, 32));
 setEditable(false);
 }

 public void sleep()
 {
 try
 {
 Thread.sleep(2000);
 }
 catch (Exception ex) { ; }
 }

 public void run()
 {
 while (true)
 {
 Loop1:
 while (true)
 {
 synchronized (theResource1)
 {
 System.out.println(theName +
 " acquired " +
 theResource1);
 sleep();
 while (true)
 {
 synchronized (theResource2)
 {
 System.out.println(theName +
 " acquired " +
 theResource2);
 theState += 1;
 break Loop1;
 }
 }
 }
 }
 setText("" + theState);
 sleep();
 }
 }
 }
}

Ch08/Safe.html

Ch08/Safe.java

 Ch08/Safe.java

Ch08/Safe.javaimport java.applet.*;
import java.awt.*;

public class Safe extends Applet
{
 EvenCounter theCounter = new EvenCounter();

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theCounter);
 Thread t1 = new Thread(theCounter);
 Thread t2 = new Thread(theCounter);
 t1.start();
 t2.start();
 }

 class EvenCounter extends TextField implements Runnable
 {
 int theState = 0;

 public EvenCounter()
 {
 setText("Even");
 setFont(new Font("SansSerif", Font.BOLD, 32));
 setEditable(false);
 }

 public void run()
 {
 while (true)
 {
 update();
 }
 }

 private synchronized void update()
 {
 theState += 1;
 try
 {
 Thread.sleep(500);
 }
 catch (Exception ex) { ; }
 theState += 1;
 if (theState%2 == 1) setText("Odd");
 }
 }
}

Ch08/ThreadChars.html

Ch08/ThreadChars.java

 Ch08/ThreadChars.java

Ch08/ThreadChars.javaimport java.applet.*;
import java.awt.*;

public class ThreadChars extends Applet
{
 TextArea theOutput = new TextArea();
 DummyThread theThread = new DummyThread();

 public void init()
 {
 setLayout(new BorderLayout());
 add(theOutput);
 theOutput.setFont(new Font("Monospaced", Font.BOLD, 12));
 theOutput.setEditable(false);
 theThread.start();
 theOutput.append("\nActive Count: " + theThread.activeCount());
 theOutput.append("\n");
 theOutput.append("\nName : " + theThread.getName());
 theOutput.append("\nPriority : " + theThread.getPriority());
 theOutput.append("\nAlive : " + theThread.isAlive());
 theOutput.append("\nDaemon : " + theThread.isDaemon());
 ThreadGroup t = theThread.getThreadGroup();
 while (t != null)
 {
 theOutput.append("\n");
 theOutput.append("\nName : " + t.getName());
 theOutput.append("\nGroup Count : " + t.activeGroupCount());
 theOutput.append("\nMax Priority: " + t.getMaxPriority());
 t = t.getParent();
 }
 }

 class DummyThread extends Thread
 {
 public void run()
 {
 while (true)
 {
 try
 {
 Thread.sleep(500);
 }
 catch (Exception ex) { ; }
 }
 }
 }
}

Ch08/ThreadCreation.html

Ch08/ThreadCreation.java

 Ch08/ThreadCreation.java

Ch08/ThreadCreation.javaimport java.applet.*;
import java.awt.*;

public class ThreadCreation extends Applet
{
 Digit theUpCounter = new Digit(+1);
 Digit theDownCounter = new Digit(-1);

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theUpCounter);
 add(theDownCounter);
 Thread t1 = new Thread(theUpCounter);
 Thread t2 = new Thread(theDownCounter);
 t1.start();
 t2.start();
 }

 class Digit extends TextField implements Runnable
 {
 int theStep;
 int theState = 0;

 public Digit(int step)
 {
 theStep = step;
 setFont(new Font("SansSerif", Font.BOLD, 96));
 setEditable(false);
 }

 public void run()
 {
 while (true)
 {
 theState += theStep;
 if (theState < 0) theState = 9;
 if (theState > 9) theState = 0;
 setText("" + theState);
 try
 {
 Thread.sleep(500);
 }
 catch (Exception ex) { ; }
 }
 }
 }
}

Ch08/ThreadStopper.html

Ch08/ThreadStopper.java

 Ch08/ThreadStopper.java

Ch08/ThreadStopper.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class ThreadStopper extends Applet
{
 TextArea theOutput = new TextArea();
 DummyThread theThread = new DummyThread(theOutput);
 Button theStop = new Button("Stop");
 Button theSuspend = new Button("Suspend");
 Button theResume = new Button("Resume");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theOutput, BorderLayout.CENTER);
 Panel p = new Panel();
 p.setLayout(new GridLayout(1, 0));
 add(p, BorderLayout.SOUTH);
 p.add(theStop);
 p.add(theSuspend);
 p.add(theResume);
 theOutput.setFont(new Font("Monospaced", Font.BOLD, 12));
 theOutput.setEditable(false);
 theStop.addActionListener (new Stopper());
 theSuspend.addActionListener(new Suspender());
 theResume.addActionListener (new Resumer());
 theThread.start();
 }

 class Stopper implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 theThread.stopThread();
 }
 }

 class Suspender implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 theThread.suspend();
 }
 }

 class Resumer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 theThread.resume();
 }
 }

 class DummyThread extends Thread
 {
 TextArea theOutput;
 boolean isStopPending = false;

 public DummyThread(TextArea out)
 {
 theOutput = out;
 }

 public void stopThread()
 {
 isStopPending = true;
 }

 public void run()
 {
 while (! isStopPending)
 {
 theOutput.append("\nRunning...");
 try
 {
 Thread.sleep(1000);
 }
 catch (Exception ex) { ; }
 }
 theOutput.append("\nStopped.");
 }
 }
}

Ch08/Unsafe.html

Ch08/Unsafe.java

 Ch08/Unsafe.java

Ch08/Unsafe.javaimport java.applet.*;
import java.awt.*;

public class Unsafe extends Applet
{
 EvenCounter theCounter = new EvenCounter();

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theCounter);
 Thread t1 = new Thread(theCounter);
 Thread t2 = new Thread(theCounter);
 t1.start();
 t2.start();
 }

 class EvenCounter extends TextField implements Runnable
 {
 int theState = 0;

 public EvenCounter()
 {
 setText("Even");
 setFont(new Font("SansSerif", Font.BOLD, 32));
 setEditable(false);
 }

 public void run()
 {
 while (true)
 {
 theState += 1;
 try
 {
 Thread.sleep(500);
 }
 catch (Exception ex) { ; }
 theState += 1;
 if (theState%2 == 1) setText("Odd");
 }
 }
 }
}

Ch09/ChangeVetoer.html

Ch09/ChangeVetoer.java

 Ch09/ChangeVetoer.java

Ch09/ChangeVetoer.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.beans.*;

public class ChangeVetoer extends Applet
{
 TextSelector theText = new TextSelector();
 ScrollSelector theScroll = new ScrollSelector();
 ColorCanvas theCanvas = new ColorCanvas();

 public void init()
 {
 setLayout(new GridLayout(0, 1));
 Panel p = new Panel();
 p.add(new Label("Color: "));
 p.add(theText);
 add(p);
 add(theScroll);
 add(theCanvas);
 theText.addVetoableChangeListener(theScroll);
 theText.addPropertyChangeListener(theCanvas);
 theScroll.addPropertyChangeListener(theText);
 theScroll.addPropertyChangeListener(theCanvas);
 }

 class TextSelector extends TextField
 implements ActionListener, PropertyChangeListener
 {
 PropertyChangeSupport theSupport
 = new PropertyChangeSupport(this);
 VetoableChangeSupport theVetoableSupport
 = new VetoableChangeSupport(this);
 Integer theOldColor = null;

 public TextSelector()
 {
 super(3);
 addActionListener(this);
 }

 public int getColor()
 {
 try
 {
 return Integer.parseInt(getText());
 }
 catch (NumberFormatException ex)
 {
 return 0;
 }
 }

 public void setColor(int color)
 {
 Integer newcolor = new Integer(color);
 try
 {
 theVetoableSupport.fireVetoableChange("Color", theOldColor, newcolor);
 theSupport.firePropertyChange("Color", theOldColor, newcolor);
 setText("" + color);
 theOldColor = newcolor;
 }
 catch (PropertyVetoException ex)
 {
 if(theOldColor != null)
 setColor(theOldColor.intValue());
 }
 }

 public void actionPerformed(ActionEvent evt)
 {
 setColor(getColor());
 }

 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 setText("" + ((Integer) value).intValue());
 }
 }

 public void addPropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.addPropertyChangeListener(q);
 }

 public void removePropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.removePropertyChangeListener(q);
 }

 public void addVetoableChangeListener(VetoableChangeListener q)
 {
 theVetoableSupport.addVetoableChangeListener(q);
 }

 public void removeVetoableChangeListener(VetoableChangeListener q)
 {
 theVetoableSupport.removeVetoableChangeListener(q);
 }
 }

 class ScrollSelector extends Scrollbar
 implements AdjustmentListener, VetoableChangeListener
 {
 PropertyChangeSupport theSupport = new PropertyChangeSupport(this);
 Integer theOldColor = null;

 public ScrollSelector()
 {
 super(Scrollbar.HORIZONTAL);
 setMinimum(0);
 setMaximum(260);
 setValue(255);
 setVisibleAmount(5);
 addAdjustmentListener(this);
 }

 public int getColor()
 {
 return getValue();
 }

 public void setColor(int color)
 {
 setValue(color);
 Integer newcolor = new Integer(color);
 theSupport.firePropertyChange("Color", theOldColor, newcolor);
 theOldColor = newcolor;
 }

 public void adjustmentValueChanged(AdjustmentEvent evt)
 {
 setColor(getColor());
 }

 public void vetoableChange(PropertyChangeEvent evt)
 throws PropertyVetoException
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 int n = ((Integer) value).intValue();
 if (n < 0 || n > 255)
 throw new PropertyVetoException("Color out of range", evt);
 setValue(((Integer) value).intValue());
 }
 }

 public void addPropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.addPropertyChangeListener(q);
 }

 public void removePropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.removePropertyChangeListener(q);
 }
 }

 class ColorCanvas extends Canvas implements PropertyChangeListener
 {
 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 int red = ((Integer) value).intValue();
 setBackground(new Color(red, 0, 0));
 }
 }
 }
}

Ch09/ColorSelector.html

Ch09/ColorSelector.java

 Ch09/ColorSelector.java

Ch09/ColorSelector.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.beans.*;

public class ColorSelector extends Applet
{
 TextSelector theText = new TextSelector();
 ScrollSelector theScroll = new ScrollSelector();
 ColorCanvas theCanvas = new ColorCanvas();

 public void init()
 {
 setLayout(new GridLayout(0, 1));
 Panel p = new Panel();
 p.add(new Label("Color: "));
 p.add(theText);
 add(p);
 add(theScroll);
 add(theCanvas);
 theText.addPropertyChangeListener(theScroll);
 theText.addPropertyChangeListener(theCanvas);
 theScroll.addPropertyChangeListener(theText);
 theScroll.addPropertyChangeListener(theCanvas);
 }

 class TextSelector extends TextField
 implements ActionListener, PropertyChangeListener
 {
 PropertyChangeSupport theSupport = new PropertyChangeSupport(this);
 Integer theOldColor = null;

 public TextSelector()
 {
 super(3);
 addActionListener(this);
 }

 public int getColor()
 {
 return Integer.parseInt(getText());
 }

 public void setColor(int color)
 {
 setText("" + color);
 Integer newcolor = new Integer(color);
 theSupport.firePropertyChange("Color", theOldColor, newcolor);
 theOldColor = newcolor;
 }

 public void actionPerformed(ActionEvent evt)
 {
 setColor(getColor());
 }

 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 setText("" + ((Integer) value).intValue());
 }
 }

 public void addPropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.addPropertyChangeListener(q);
 }

 public void removePropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.removePropertyChangeListener(q);
 }
 }

 class ScrollSelector extends Scrollbar
 implements AdjustmentListener, PropertyChangeListener
 {
 PropertyChangeSupport theSupport = new PropertyChangeSupport(this);
 Integer theOldColor = null;

 public ScrollSelector()
 {
 super(Scrollbar.HORIZONTAL);
 setMinimum(0);
 setMaximum(260);
 setValue(255);
 setVisibleAmount(5);
 addAdjustmentListener(this);
 }

 public int getColor()
 {
 return getValue();
 }

 public void setColor(int color)
 {
 setValue(color);
 Integer newcolor = new Integer(color);
 theSupport.firePropertyChange("Color", theOldColor, newcolor);
 theOldColor = newcolor;
 }

 public void adjustmentValueChanged(AdjustmentEvent evt)
 {
 setColor(getColor());
 }

 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 setValue(((Integer) value).intValue());
 }
 }

 public void addPropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.addPropertyChangeListener(q);
 }

 public void removePropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.removePropertyChangeListener(q);
 }
 }

 class ColorCanvas extends Canvas implements PropertyChangeListener
 {
 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 int red = ((Integer) value).intValue();
 setBackground(new Color(red, 0, 0));
 }
 }
 }
}

Ch09/MyJar.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Name: RetrieveJar$RetrieveHandler.class

Digest-Algorithms: SHA MD5

SHA-Digest: ZLfxwCrVirqIfuWPROu4jZEtUYA=

MD5-Digest: j3FaX67CIWjOJn5UveiRVw==

Name: RetrieveJar.class

Digest-Algorithms: SHA MD5

SHA-Digest: QsVB6b3LWrJrOPbzCyaX9O3btnQ=

MD5-Digest: jx2cDQjVTLF6W4R/T2wkDQ==

Name: RetrieveObject$RetrieveHandler.class

Digest-Algorithms: SHA MD5

SHA-Digest: 8cwyZAO2VVtHxjo4GqMaP07X1QI=

MD5-Digest: RK1DVWt+0Ug6Yj1KQqp8yw==

Name: RetrieveObject.class

Digest-Algorithms: SHA MD5

SHA-Digest: RkBFK5TO4OiNVs4rwMdtTzBNC7A=

MD5-Digest: l+QHdCJNJEruOOxNOtyJxQ==

Name: StoreObject$StoreHandler.class

Digest-Algorithms: SHA MD5

SHA-Digest: NEa+3SMa7OtDImvDdJwYsdeOXUI=

MD5-Digest: 5p9/8WqnlzZcUrH/xW1DLA==

Name: StoreObject.class

Digest-Algorithms: SHA MD5

SHA-Digest: j0pcCL+Gv3rRjzbm31dfvMs0UsQ=

MD5-Digest: 4wZiAFlg5z/mwEDLXvscUA==

Name: temp

Digest-Algorithms: SHA MD5

SHA-Digest: +lXCY6I8Oum4tyYdV5uBHB/dZXI=

MD5-Digest: 3NT4p+i53yOZEw2mHtvb5w==

RetrieveJar$RetrieveHandler.class

synchronized class RetrieveJar$RetrieveHandler implements java.awt.event.ActionListener {
 public void actionPerformed(java.awt.event.ActionEvent);
 void RetrieveJar$RetrieveHandler(RetrieveJar);
}

RetrieveJar.class

public synchronized class RetrieveJar extends java.applet.Applet {
 java.awt.Button theRetrieveButton;
 public void init();
 public void RetrieveJar();
}

RetrieveObject$RetrieveHandler.class

synchronized class RetrieveObject$RetrieveHandler implements java.awt.event.ActionListener {
 public void actionPerformed(java.awt.event.ActionEvent);
 void RetrieveObject$RetrieveHandler(RetrieveObject);
}

RetrieveObject.class

public synchronized class RetrieveObject extends java.applet.Applet {
 java.awt.Button theRetrieveButton;
 public void init();
 public void RetrieveObject();
}

StoreObject$StoreHandler.class

synchronized class StoreObject$StoreHandler implements java.awt.event.ActionListener {
 public void actionPerformed(java.awt.event.ActionEvent);
 void StoreObject$StoreHandler(StoreObject);
}

StoreObject.class

public synchronized class StoreObject extends java.applet.Applet {
 java.awt.TextField theMessage;
 java.awt.Button theStoreButton;
 public void init();
 public void StoreObject();
}

temp

Ch09/RetrieveJar.html

Ch09/RetrieveJar.java

 Ch09/RetrieveJar.java

Ch09/RetrieveJar.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class RetrieveJar extends Applet
{
 Button theRetrieveButton = new Button("Retrieve");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theRetrieveButton, BorderLayout.NORTH);
 theRetrieveButton.addActionListener(new RetrieveHandler());
 }

 class RetrieveHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 ObjectInputStream in = new ObjectInputStream(
 getClass().getResourceAsStream("temp"));
 Object c = in.readObject();
 in.close();
 if (c instanceof Component)
 {
 add((Component) c, BorderLayout.CENTER);
 invalidate();
 validate();
 System.out.println("Retrieved");
 }
 }
 // Possible IOException or ClassNotFoundException
 catch (Exception ex)
 {
 System.err.println(ex);
 }
 }
 }
}

Ch09/RetrieveObject.html

Ch09/RetrieveObject.java

 Ch09/RetrieveObject.java

Ch09/RetrieveObject.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class RetrieveObject extends Applet
{
 Button theRetrieveButton = new Button("Retrieve");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theRetrieveButton, BorderLayout.NORTH);
 theRetrieveButton.addActionListener(new RetrieveHandler());
 }

 class RetrieveHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 FileInputStream in = new FileInputStream("temp");
 ObjectInputStream sin = new ObjectInputStream(in);
 Object c = sin.readObject();
 sin.close();
 if (c instanceof Component)
 {
 add((Component) c, BorderLayout.CENTER);
 invalidate();
 validate();
 System.out.println("Retrieved");
 }
 }
 // Possible IOException or ClassNotFoundException
 catch (Exception ex)
 {
 System.err.println(ex);
 }
 }
 }
}

Ch09/StoreObject.html

Ch09/StoreObject.java

 Ch09/StoreObject.java

Ch09/StoreObject.javaimport java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class StoreObject extends Applet
{
 TextField theMessage = new TextField();
 Button theStoreButton = new Button("Store");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theMessage, BorderLayout.CENTER);
 add(theStoreButton, BorderLayout.SOUTH);
 theStoreButton.addActionListener(new StoreHandler());
 }

 class StoreHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 FileOutputStream out = new FileOutputStream("temp");
 ObjectOutputStream sout = new ObjectOutputStream(out);
 sout.writeObject(theMessage);
 sout.close();
 System.out.println("Stored");
 }
 catch (IOException ex) { ; }
 }
 }
}

CH05/CallbackClient.java

 CH05/CallbackClient.java

CH05/CallbackClient.java// used for callback pattern

/**
 * The CallbackClient class will bind to a server object
 * request that a large prime number be calculated, and
 * then respond to the results when delieved by the server.
 */
public final class CallbackClient {

 public CallbackClient() {
 CallbackServer server = // bind to server
 server.findLargestPrimeNumberGreaterThan(100000, this);
 }

 /**
 * Invoked by the server when the target prime number is found.
 * Accepts a Long object and not a long base-type to allow
 * for the passing of a null value if an impossible
 * request was performed.
 */
 public void primeNumberFound(Long lValue) {
 if(lValue == null) System.out.println("number not found");
 else System.out.println("number found: "+lValue);
 }
}

CH05/CallbackServer.java

 CH05/CallbackServer.java

CH05/CallbackServer.java// used for callback pattern

/**
 * The CallbackServer class finds very
 * large prime numbers. Since the calculations
 * often take much time, clients are not required to
 * wait for a return value. Instead, the CallbackServer
 * class notified the client when the value has been
 * found. All requests are performed in a
 * unique thread to allow for maximum information
 * processing.
 */
public final class CallbackServer {

 public CallbackServer() {
 }

 public void findLargestPrimeNumberGreaterThan(long lBase, CallbackClient client) {
 CallbackProcessor processor = new CallbackProcessor(lBase, client);
 processor.start();
 // immediately return
 }

 /**
 * Inner class used to process requests in a
 * unique thread.
 */
 class CallbackProcessor extends Thread {
 private long _lBase;
 private CallbackClient _client;

 public CallbackProcessor(long lBase, CallbackClient client) {
 _lBase = lBase;
 _client = client;
 }

 public void run() {
 long lFoundValue = // spend a lot of time figuring out the needed prime numer
 _client.primeNumberFound(new Long(lFoundValue));
 }
 }
}

CH05/ClientObject.java

 CH05/ClientObject.java

CH05/ClientObject.java// this applies to the factory pattern
public final class ClientObject {

 public ClientObject() {
 // First bind to the remote factory object
 // object. Since the binding process is
 // specific to an actual implementation, it is
 // shown here as a comment.
 FactoryServer server = // bind to factory server

 // Request that the remote factory object instantiate
 // a ServerObject object for us.
 ServerObject serverObject = server.createServerObject("luke");
 }
}

CH05/FactoryServer.java

 CH05/FactoryServer.java

CH05/FactoryServer.java// this applies to the factory pattern
public final class FactoryServer extends Thread {

 public FactoryServer() {
 waitForConnection();
 }

 private void waitForConnection() {
 // Code to wait for an incoming connection. This code
 // specific to the distributed object technology
 // currently enabling communication.
 }

 public ServerObject createServerObject(String sName) {
 return new ServerObject(sName);
 }

 public static void main(String[] args) {
 FactoryServer server = new FactoryServer();
 }
}

CH05/PersonQuery.java

 CH05/PersonQuery.java

CH05/PersonQuery.javapublic final class PersonQuery {
 private String _sFirstName;
 private String _sMiddleName;
 private String _sLastName;

 // getter methods
 public String getFirstName() { return _sFirstName; }
 public String getMiddleName() { return _sMiddleName; }
 public String getLastName() { return _sLastName; }

 // setter methods
 public void setFirstName(String sFirstName) { _sFirstName = sFirstName; }
 public void setMiddleName(String sMiddleName) { _sMiddleName = sMiddleName; }
 public void setLastName(String sLastName) { _sLastName = sLastName; }

 // overload equals()
 public boolean equals(Object compare) {
 // make sure that a PersonQuery object was passed
 if(!(compare instanceof PersonQuery)) return false;

 PersonQuery personCompare = (PersonQuery)compare; // cast once to save time

 // check all fields
 if(! personCompare.getFirstName().equals(getFirstName())) return false;
 if(! personCompare.getMiddleName().equals(getMiddleName())) return false;
 if(! personCompare.getLastName().equals(getLastName())) return false;

 return true; // all good
 }
}

CH05/QuoteClient.java

 CH05/QuoteClient.java

CH05/QuoteClient.java// used for observer pattern

/**
 * The QuoteClient class registers interest with a server
 * for tracking the values of different stocks. Whenever
 * the server detects that a stock's value has changed, it
 * will notify the QuoteClient object by invoking the
 * quoteValueChanged() method.
 *
 */
import java.util.*;

public final class QuoteClient implements QuoteClientI {
 private Hashtable _hshPortfolio;

 public QuoteClient() {
 _hshPortfolio = new Hashtable();
 regWithServer();
 }

 /**
 * Registers with the server our interest in receiving
 * notification when certian stocks change value.
 */
 private final void regWithServer() {
 QuoteServer server = // bind to quote server
 server.regListener("INKT", this);
 server.regListener("MOBI", this);
 server.regListener("NGEN", this);
 server.regListener("ERICY", this);

 _hshPortfolio.put("INKT", new Double(0));
 _hshPortfolio.put("MOBI", new Double(0));
 _hshPortfolio.put("NGEN", new Double(0));
 _hshPortfolio.put("ERICY", new Double(0));
 }

 /**
 * Invoked whenever the value associated with an interested
 * symbol changes.
 */
 public void quoteValueChanged(String sSymbol, double dNewValue) {
 // display the changes
 System.out.println("\n");
 System.out.println(sSymbol+" changed value");
 System.out.println("old value: "+_hshPortfolio.get(sSymbol));
 System.out.println("new value: "+dNewValue);

 // store the new value
 _hshPortfolio.put(sSymbol, new Double(dNewValue));

 }

 public static void main(String[] args) {
 QuoteClient client = new QuoteClient();
 }
}

CH05/QuoteClientI.java

 CH05/QuoteClientI.java

CH05/QuoteClientI.java// used for observer pattern

/**
 * Interface to be implemented by all object interested
 * in receiving quote value changed events.
 */
public interface QuoteClientI {
 public void quoteValueChanged(String sSymbol, double dNewValue);
}

CH05/QuoteServer.java

 CH05/QuoteServer.java

CH05/QuoteServer.java// used for observer pattern

/**
 * The QuoteServer class monitors stock feeds, and
 * notfies interested parties when a change occurs
 * to the value of a registered symbol.
 */
import java.util.*;

public final class QuoteServer {
 // listeners are stored in a hashtable or vectors. the hashtable
 // uses as a key the registered symbol, and as a value a Vector
 // object containing all listners.
 private Hashtable _hshListeners;

 public QuoteServer() {
 _hshListeners = new Hashtable();

 }

 /**
 * Send changed values to all listeners. Since the manner
 * in which the QuoteServer object monitors the stock
 * feeds is beyond the scope of this pattern, it is
 * simply assumed that that method is invoked when needed.
 */
 private void sendChangeForSymbol(String sSymbol, double dNewValue) {
 // check if there are any listeners for this symbol
 Object o = _hshListeners.get(sSymbol);
 if(o != null) {
 Enumeration listeners = ((Vector)o).elements();
 while(listeners.hasMoreElements()) {
 ((QuoteClientI)listeners.nextElement()).quoteValueChanged(sSymbol, dNewValue);
 }
 }
 }

 /**
 * Invoked by clients to register interest with the server for
 * a specific symbol.
 */
 public void regListener(String sSymbol, QuoteClientI client) {
 // check if we already have a vector of listeners at this location
 Object o = _hshListeners.get(sSymbol);
 if(o != null) {
 ((Vector)o).addElement(client);
 }
 else { // create the vector
 Vector vecListeners = new Vector();
 vecListeners.addElement(client);
 _hshListeners.put(sSymbol, vecListeners);
 }
 }

}

CH05/ServerObject.java

 CH05/ServerObject.java

CH05/ServerObject.java// this applies to the factory pattern
public final class ServerObject {
 private final String _sName;

 public ServerObject(String sName) {
 _sName = sName;
 }

 public String getName() {
 return _sName;
 }
}

CH05/SharedInstance.java

 CH05/SharedInstance.java

CH05/SharedInstance.javaimport java.util.*;

public class SharedInstance {
 private Hashtable _hshResults;

 public SharedInstance() {
 _hshResults = new Hashtable();
 }

 public Person[] executeQuery(PersonQuery query) {
 // check if the query has already been performed
 if(_hshResults.containsKey(query)) (Person[])return _hshResults.get(query);

 // query has not been performed
 Person[] returnValue = // get from database
 // register the return value with the distributed object technology

 _hshResults.put(query, returnValue); // store the results

 return returnValue; // return the results
 }
}

CH05/SharedInstanceWithReferenceCounting.java

 CH05/SharedInstanceWithReferenceCounting.java

CH05/SharedInstanceWithReferenceCounting.javaimport java.util.*;

public class SharedInstanceWithReferenceCounting {
 private Hashtable _hshResults;

 public SharedInstanceWithReferenceCounting() {
 _hshResults = new Hashtable();
 }

 /**
 * Adds one to each object's reference count
 */
 private void addToReferenceCount(Person[] persons) {
 int iLength = persons.length;
 for(int i=0; i<iLength; i++) {
 persons[i].addToReferenceCount();
 }
 }

 /**
 * Adds one to each object's reference count
 */
 private void subtractfromReferenceCount(Person[] persons) {
 int iLength = persons.length;
 for(int i=0; i<iLength; i++) {
 if(persons[i].subtractfromReferenceCount()) destroyObject(persons[i]);
 }
 }

 /**
 * Does any needed clean-up and destroying of objects
 */
 private final void destroyObject(Person person) {
 // destroy
 }

 public Person[] executeQuery(PersonQuery query) {
 Person[] returnValue = null;

 // check if the query has already been performed
 if(_hshResults.containsKey(query)) returnValue = (Person[])_hshResults.get(query);
 else returnValue = // get from database

 // register the return value with the distributed object technology

 // add to the reference count
 addToReferenceCount(returnValue);

 _hshResults.put(query, returnValue); // store the results

 return returnValue; // return the results
 }

 /**
 * Invoked by the client to indicate that he is done with all objects
 */
 public void doneWithObjects(Person[] persons) {
 subtractfromReferenceCount(persons);
 }
}

class Person {
 private int _iRefCount = 0;

 public Person() {
 }

 /**
 * Adds one to the reference count
 */
 public void addToReferenceCount() {
 _iRefCount++;
 }

 /**
 * Subtracts one from the reference count.
 *
 * @return true If the refernce count is zero after subtraction
 * @return false If the reference count is non-zero after subtraction
 */
 public boolean subtractfromReferenceCount() {
 _iRefCount--;
 return (_iRefCount == 0);
 }

}

root
jdolist.zip

CHAPTER

IN THIS CHAPTER
• USING THE URLCONNECTION CLASS 399

• COMMON GATEWAY INTERFACE
(CGI) 404

• SERVLETS: SERVER-SIDE JAVA 408

• IMPLEMENTING A SERVLET 410

• THE servletrunner UTILITY 412

• A PARAMETERIZED SERVLET 413

• A SERVLET THAT HANDLES POST
REQUESTS 415

• CLIENT REQUEST AND SERVLET
CONTEXT INFORMATION 417

• SERVLET CONSIDERATIONS 418

18
SERVLETS AND COMMON
GATEWAY INTERFACE (CGI)

CHAPTER

023 72315378 CH18 1.21.2000 2:09 PM Page 397

Two of the greatest tennis stars of all time were Australians Rod Laver and Ken
Rosewall. During the 1970s, they played opposite one another in tournament after tour-
nament. You never knew who’d win Wimbledon, for instance, but most years you could
be sure it would be either Laver or Rosewall. Though they were fellow countrymen, the
two were otherwise quite unalike. Laver was tall with a devastatingly powerful first
serve. Rosewall, at only 5 feet and 6 inches, seemed barely tall enough to peer over the
net; yet he moved with such agility that no passing shot seemed beyond his reach.
Nevertheless, in tennis just as in basketball, height has its advantages: In comparison to
Laver’s serve, Rosewall’s was merely a “servlet.”

In this chapter, you’ll learn about servlets of a different variety: small Java programs that
run on a server, providing HTML documents to remote clients. Some, particularly
Microsoft, have impugned the potential of client-side Java (not that we agree with them,
mind you). However, even detractors acknowledge that server-side Java is a technology
to reckon with. In this chapter you learn:

• How to use the URLConnection class to obtain data from a Web server

The URLConnection class makes it a snap to download information from a server,
whether the server is an ordinary Web server, a CGI-based Web server, or a Java
servlet-based Web server.

• How to use HTML forms to transfer data to a server using the Common Gateway
Interface (CGI)

HTML pages called forms can contain user interface controls such as pushbuttons
and check boxes. You can define a button that triggers the transmission of the val-
ues of a page’s controls to a server, which can process the data and return a
response for display by the Web client. Because Web clients are ubiquitous, HTML
forms let a user access a server, no matter what hardware platform or operating
system the user runs.

• How to write a servlet that processes a Web client’s GET request

To access a Web page, a Web client sends a GET request via the HTTP protocol to
a Web server. You’ll learn how to use a servlet to receive and process a Web
client’s GET request.

• How to write a servlet that processes a Web client’s POST request

To send the contents of a Web form to a Web server, a Web client uses the POST
request. You’ll learn how to use a servlet to receive and process POST requests.

Non-CORBA Approaches to Distributed Computing

PART IV
398

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

023 72315378 CH18 1.21.2000 2:09 PM Page 398

USING THE URLCONNECTION CLASS
Recall that the URL class, which you met in Chapter 13, “Sockets,” lets you download the
document identified by a URL. Its cousin class URLConnection provides access to many
attributes that describe the document and the server response that provided it. You don’t
use a constructor to obtain an instance of URLConnection; instead, you use the
openConnection method of the URL class. Once you have a URLConnection instance, you
can invoke any of the methods summarized in Table 18.1. The getHeaderField method
returns the value of a specified field of the server’s response header. Table 18.2 describes
the most commonly used fields.

TABLE 18.1 KEY METHODS OF THE URLConnection CLASS

Method Function

Object getContent() Returns an object that represents the contents of the
document associated with the URLConnection, if an
appropriate content handler is available.

String getContentEncoding() Returns a String that describes the type of encoding
used by the document associated with the
URLConnection.

int getContentLength() Returns the length (in bytes) of the document associ-
ated with the URLConnection.

String getContentType() Returns a String that describes the type of encoding
used by the document associated with the
URLConnection.

long getDate() Returns a long that holds the creation date and time
of the server’s response.

long getExpiration() Returns a long that holds the expiration date and
time of the server’s response.

String getHeaderField(String name) Returns a String that holds the value of the speci-
fied field of the response header returned by the
server. (See Table 18.2 for the names of the response
header fields.)

String getHeaderField(int n) Returns a String that holds the value of the speci-
fied field of the response header returned by the
server. Response header fields are numbered begin-
ning with 0.

Servlets and Common Gateway Interface (CGI)

CHAPTER 18
399

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

18

S
ER

V
LETS

A
N

D
C

G
I

continues

023 72315378 CH18 1.21.2000 2:09 PM Page 399

long getIfModifiedSince() Returns a long that holds the modification date and
time that force refetching of the document associated
with the URLConnection.

InputStream getInputStream() Returns an InputStream that contains the bytes of
the document associated with the URLConnection.

long getLastModified() Returns a long that holds the date and time at which
the document associated with the URLConnection
was last modified.

TABLE 18.2 KEY SERVER RESPONSE HEADER FIELDS

Field Meaning

Allowed The request methods (for example, GET, PUT, and POST) that the
user can issue for this URL

Content-Encoding The type of encoding of the response message (for example, x-
zip-compressed)

Content-Language The language of the response message

Content-Length The length (in bytes) of the response message

Content-Transfer-Encoding The type of encoding used for MIME messages

Content-Type The MIME type and subtype of the content of this message (for
example, text/plain)

Cost The cost of retrieving the document

Date The creation time (GMT) of the document

Derived-From The version of the document from which this document derives

Expires The time (GMT) at which the document expires and should be
refetched

Last-Modified The time (GMT) at which the document was last modified

Message-ID A unique identifier for this message

Public The request methods anyone can issue for this URL

Title The title of this document

URI The URI (Universal Resource Identifier; for practical purposes,
the term is synonymous with URL) or URL of the document

Version The version of the document

WWW-Authenticate The authorization method used by the server

WWW-Link The HTML link reference of the document

Non-CORBA Approaches to Distributed Computing

PART IV
400

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

TABLE 18.1 CONTINUED

Method Function

023 72315378 CH18 1.21.2000 2:09 PM Page 400

Figure 18.1 shows the output of WebClient, a simple applet that uses the URL and
URLConnection classes to download a Web page and its description. The applet doesn’t
render the HTML contents of the document, it merely displays them. To operate the
applet, you merely type a URL in the text box and press Enter. Let’s see how the applet
works.

Servlets and Common Gateway Interface (CGI)

CHAPTER 18
401

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

18

S
ER

V
LETS

A
N

D
C

G
I

FIGURE 18.1
The WebClient
applet displays the
attributes and
content of a Web
document.

Listing 18.1 shows the source code of the WebClient applet, except for the inner class
URLHandler, which provides an actionPerformed method that handles ActionEvents
associated with the TextField used to input a URL. The main point of interest is the
array theHeaders, which contains the names of the response field headers the applet
retrieves. Otherwise, most of the code is user interface oriented.

LISTING 18.1 WebClient.java—AN APPLET THAT DISPLAYS WEB DOCUMENT CONTENTS

AND CHARACTERISTICS

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import java.util.Date;

public class WebClient extends Applet
{

continues

023 72315378 CH18 1.21.2000 2:09 PM Page 401

TextField theURL = new TextField(32);
TextArea theData = new TextArea(6, 64);
TextArea theContent = new TextArea(10, 64);

String [] theHeaders = {
“Allowed”,
“Content-Encoding”,
“Content-Language”,
“Content-Length”,
“Content-Transfer-Encoding”,
“Content-Type”,
“Cost”,
“Date”,
“Derived-From”,
“Expires”,
“Last-Modified”,
“Message-ID”,
“Public”,
“Title”,
“URI”,
“Version”,
“WWW-Authenticate”,
“WWW-Link”,

};

public void init()
{

Font f = new Font(“Monospaced”, Font.PLAIN, 12);
setFont(f);
Panel p1 = new Panel();
Panel p2 = new Panel();
setLayout(new BorderLayout());
add(p1, BorderLayout.NORTH);
add(p2, BorderLayout.CENTER);

p1.setLayout(new GridLayout(0, 1));
p1.add(new Label(“URL:”));
p1.add(theURL);

p2.setLayout(new GridLayout(0, 1));
Panel p3 = new Panel();
Panel p4 = new Panel();
p2.add(p3);
p2.add(p4);

p3.setLayout(new BorderLayout());
p3.add(new Label(“URL Data:”),
BorderLayout.NORTH);

p3.add(theData, BorderLayout.CENTER);

Non-CORBA Approaches to Distributed Computing

PART IV
402

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

LISTING 18.1 CONTINUED

023 72315378 CH18 1.21.2000 2:09 PM Page 402

p4.setLayout(new BorderLayout());
p4.add(new Label(“URL Content:”),
BorderLayout.NORTH);

p4.add(theContent, BorderLayout.CENTER);

theURL.addActionListener(new URLHandler());
theData.setEditable(false);
theContent.setEditable(false);

}

public void println(String s)
{

theData.append(s + “\n”);
}

public void fatalError(Exception ex)
{

ex.printStackTrace();
}
// Inner class omitted

}

Listing 18.2 shows the URLHandler inner class of the WebClient class. The
actionPerformed method retrieves and displays the document contents and characteris-
tics. To do so, it constructs a URL using the text input by the user. It invokes the
openConnection method to obtain a URLConnection and calls several URLConnection
methods that provide document characteristics. It uses a simple for loop to obtain and
display the response header fields. It displays the document characteristics in the upper
TextArea, theData, by using the println method of its enclosing class.

LISTING 18.2 WebClient.java—URLHandler INNER CLASS

class URLHandler implements ActionListener
{

public void actionPerformed(ActionEvent evt)
{

try
{

theData.setText(“”);
theContent.setText(“”);
URL url = new URL(theURL.getText());
URLConnection connect =
url.openConnection();

println(“Content Encoding: “ +
connect.getContentEncoding());

println(“Length: “ +

Servlets and Common Gateway Interface (CGI)

CHAPTER 18
403

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

18

S
ER

V
LETS

A
N

D
C

G
I

continues

023 72315378 CH18 1.21.2000 2:09 PM Page 403

connect.getContentLength());
println(“Type: “ +
connect.getContentType());

println(“Date: “ +
new Date(connect.getDate()));

println(“Expiration: “ +
new Date(connect.getExpiration()));

println(“Last Modified: “ +
new Date(connect.getLastModified()));
for (int i = 0; i < theHeaders.length; i++)
{

String header =
connect.getHeaderField(theHeaders[i]);

println(theHeaders[i] + “: “ +
header);

}
BufferedReader in =
new BufferedReader(
new InputStreamReader(
url.openStream()));

String line;
while ((line = in.readLine()) != null)
{

theContent.append(line + “\n”);
}
in.close();

}
catch (Exception ex) { fatalError(ex); }

}
}

To obtain the document contents, the actionPerformed method uses the
URL.openStream method. It wraps the returned InputStream reader within a
BufferedReader, which provides the convenient readLine method for reading the stream
one line at a time. The method simply appends each line of input to the lower TextArea,
theContent.

Generally, your programs will need to access only a few (if any) document characteris-
tics. Therefore, your programs using URLConnection and URL to access a document won’t
usually be this long. Notice that you can download the contents of a URL with less than a
dozen lines of code. URL is simple to use, but powerful.

COMMON GATEWAY INTERFACE (CGI)
The WebClient program from Listing 18.2 demonstrates one of the two fundamental
capabilities of a Web client: the ability to download information from a Web server by

Non-CORBA Approaches to Distributed Computing

PART IV
404

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

LISTING 18.2 CONTINUED

023 72315378 CH18 1.21.2000 2:09 PM Page 404

issuing an HTTP GET request. Modern Web clients also have the capability to upload data
to a Web server, using techniques referred to as the Common Gateway Interface (or
CGI). CGI defines two methods for uploading data: GET and POST. The POST method is
more powerful and secure than the GET method, which is not implemented by Java
servlets. Therefore, we’ll omit discussion of using the GET method to upload data.

To use the POST method, you define an HTML page that includes tags that specify user
interface controls. Your page can include pushbuttons, input boxes, radio buttons, and so
on. When the user clicks a designated submit button, the Web client uploads the values of
the controls to the Web server. The Web server processes the incoming data and generally
returns a response in the form of an HTML page that the Web client displays. Let’s dis-
cuss how to build such a form.

The source code of a typical HTML page includes several structural tags in the following
form:

<HTML>
<HEAD>
<TITLE>This is the title</TITLE>
</HEAD>
<BODY>

... the body of the page is defined here ...
</BODY>
</HTML>

To create an HTML form, you follow this same pattern. Within the body of the HTML
document, you define a form using a pair of tags like these:

<FORM METHOD=POST ACTION=”url”>
... the body of the form goes here ...

</FORM>

url specifies the protocol (HTTP), the host name, and possibly the port of the Web
server in the same fashion as a URL used to access a document. However, the path and
document part of url do not refer to a document to be fetched; instead, they refer to a
program the Web server runs (possibly a Java servlet) to process the form’s input. The
path and name don’t need to be the actual path and name of the file containing the
program. Most Web servers provide a table that translates between a “document” path
and name specified by the user and the actual path and name of the program that
should be run.

Within the body of the form, you use HTML tags to define the controls you want. You
can also include ordinary HTML text, images, and so on. Table 18.3 summarizes HTML
tags you can use to include various input elements within a form. Most of the tags sup-
port attributes that modify their appearance or function. The purpose in presenting this
information is to help you read HTML forms prepared by others. If you want to create
your own HTML forms, you might consult a book on basic HTML. An easier approach

Servlets and Common Gateway Interface (CGI)

CHAPTER 18
405

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

18

S
ER

V
LETS

A
N

D
C

G
I

023 72315378 CH18 1.21.2000 2:09 PM Page 405

is to use an HTML editor that lets you build forms using a point-and-click, WYSIWYG
interface, such as Adobe’s PageMill or Microsoft’s FrontPage.

TABLE 18.3 SUMMARY OF FORM INPUT ELEMENTS

Tag and Attribute Input Element

<INPUT TYPE=TEXT …> Defines a text box.

<INPUT TYPE=CHECKBOX …> Defines an on/off check box.

<INPUT TYPE=RADIOBUTTON …> Defines a radio button. All controls that have the
same name are considered part of a single set of
radio buttons, only one of which can be in the “on”
state at any time.

<INPUT TYPE=SUBMIT …> Defines a submit button.

<INPUT TYPE=RESET …> Defines a reset button.

<INPUT TYPE=HIDDEN …> Defines a hidden field, the value of which is trans-
mitted to the Web server. It cannot be manipulated
by the user.

<TEXTAREA COLS=cols ROWS=rows …> Defines a multiline text box.

<SELECT SIZE=n …> Defines a drop-down list box. Used with CHOICE.

<OPTION …> Specifies an item within the drop-down list box cre-
ated by SELECT. Must be nested between the
<SELECT> and </SELECT> tags that define the list box.

Form input elements include a NAME attribute, which specifies a name for the control, and
a VALUE attribute, which specifies a default initial value of an input field or the text that
appears on a button. Every form must include a submit button that initiates the data
upload. You should usually also include a reset button that restores the values of all con-
trols to their initial values.

Listing 18.3 shows the simple HTML form you’ll use later in this chapter to run a Java
servlet that processes form input. Study the tags and attributes used in the form and try to
determine how it should operate. Figure 18.2 shows how the form looks.

Use a Web browser (not the appletviewer, which cannot display HTML text) to verify
your conclusions. Then, experiment by replacing the tags and attributes to see what sorts
of forms you can create. Use a WYSIWYG HTML editor such as PageMill or FrontPage
if you have one. Of course, your forms won’t operate until you build an appropriate Java
servlet, which you’ll learn how to do later in this chapter.

Non-CORBA Approaches to Distributed Computing

PART IV
406

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

023 72315378 CH18 1.21.2000 2:09 PM Page 406

LISTING 18.3 TestPoster.java—A SIMPLE HTML FORM

<HTML>
<HEAD>
<TITLE>Poster Test Page</TITLE>
</HEAD>
<BODY>
<FORM ACTION=”http://127.0.0.1:8080/servlet/poster” METHOD=POST>
<H1>Poster Test Page</H1>
<P>Name:
<INPUT TYPE=TEXT NAME=name>
<P>Type:
<P> <INPUT TYPE=RADIO NAME=type VALUE=Human> Human
<P> <INPUT TYPE=RADIO NAME=type VALUE=Clone> Clone
<P> <INPUT TYPE=RADIO NAME=type VALUE=Replicant> Replicant
<P>Status:
<P> <INPUT TYPE=CHECKBOX NAME=status VALUE=Off-world> Off-world
<P> <INPUT TYPE=SUBMIT>
<INPUT TYPE=RESET>
</FORM>
</BODY>
</HTML>

Servlets and Common Gateway Interface (CGI)

CHAPTER 18
407

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

18

S
ER

V
LETS

A
N

D
C

G
I

FIGURE 18.2
A simple input
form, such as the
Poster Test Page
example, can
upload data to a
Web server.

023 72315378 CH18 1.21.2000 2:09 PM Page 407

SERVLETS: SERVER-SIDE JAVA
Now that you’ve learned a bit about the client side of Web data exchange, let’s shift
focus to the server side. In this section you’ll learn how to write servlets. First you’ll
learn how to write a servlet that handles a GET request; later in this chapter, you’ll learn
how to write a servlet that handles a POST request. Along the way, you’ll learn how to
access initialization arguments, request context data, and examine the servlet context.

Most servlets are instances of the HttpServlet class, which extends the GenericServlet

class. These classes provide much of the functionality of a servlet: All you must do is
provide the application-dependent functions. Table 18.4 summarizes key
GenericServlet methods, and Table 18.5 summarizes key HttpServlet methods.

The most important servlet methods are the doGet and doPost methods. To create a
servlet, you provide overriding implementations of these methods. When your doGet or
doPost method gets control, it receives two arguments: one, an HttpServletRequest,
encapsulates the HTTP request, and the other, an HttpServletResponse, encapsulates
the server response. By invoking methods on these objects, your program can inspect the
request and construct and send an appropriate response.

TABLE 18.4 SUMMARY OF KEY GenericServlet METHODS

Method Function

void destroy() The network service automatically calls this
method whenever it removes the servlet.

String getInitParameter(String name) Returns the value of the specified initialization
parameter from the servlet’s properties file.

Enumeration getInitParameterNames() Returns the names of the servlet’s initialization
parameters.

ServletContext getServletContext() Returns a ServletContext object describing the
servlet’s context.

String getServletInfo() Returns a description of the servlet.

void init(ServletConfig config) Initializes the servlet. Servlet classes that override
init should call super.init so that the servlet
can be properly initialized.

void log(String msg) Writes a message to the servlet log.

Non-CORBA Approaches to Distributed Computing

PART IV
408

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

023 72315378 CH18 1.21.2000 2:09 PM Page 408

TABLE 18.5 SUMMARY OF KEY HttpServlet METHODS

Method Function

void doGet(Processes an HTTP GET request.
HttpServletRequest request,

HttpServletResponse response)

void doPost(Processes an HTTP POST request.
HttpServletRequest request,

HttpServletResponse response)

The HttpServletRequest class extends the ServletRequest class, which provides many
useful methods. Table 18.6 summarizes these. The HttpServletRequest provides several
additional methods that may be of value, including methods that handle Web browser
cookies. Consult the Servlet Development Kit documentation or the Java 1.2 JDK docu-
mentation for further information.

TABLE 18.6 SUMMARY OF KEY ServletRequest METHODS

Method Function

Object getAttribute(String name) Returns the value of the specified request attribute.

String getCharacterEncoding() Returns the name of the character set used to encode
the request.

int getContentLength() Returns the length of the request.

String getContentType() Returns the media type of the request.

ServletInputStream getInputStream() Returns a ServletInputStream associated with the
request.

String getParameter(String name) Returns the value of the specified request parameter.

Enumeration getParameterNames() Returns an Enumeration containing the names of the
request parameters.

String [] getParameterValues(Returns the values of the specified request
String name) parameter.

String getProtocol() Returns a description of the request protocol.

BufferedReader getReader() Returns a BufferedReader associated with the
request.

String getRemoteAddr() Returns the Internet address of the client.

String getRemoteHost() Returns the host name of the client.

String getServerName() Returns the host name of the server.

int getServerPort() Returns the port number of the server.

Servlets and Common Gateway Interface (CGI)

CHAPTER 18
409

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

18

S
ER

V
LETS

A
N

D
C

G
I

023 72315378 CH18 1.21.2000 2:09 PM Page 409

The HttpServletReponse class and its parent class, ServletResponse, provide many
useful methods. The most important of these are shown in Table 18.7.

TABLE 18.7 KEY HttpServletResponse AND ServletResponse METHODS

Method Function

PrintWriter getWriter() Returns a PrintWriter for writing text responses.

ServletOutputStream getOutputStream() Returns a ServletOutputStream for writing bina-
ry responses.

void setContentType(String type) Sets the content type of the response.

IMPLEMENTING A SERVLET
Now that you’re acquainted with the main method used to implement servlets, let’s
examine a sample servlet. Figure 18.3 shows the output of a servlet known as
SimpleServlet, as rendered by a Web browser. Don’t try to run the servlet just yet. It
requires the servletrunner utility (or a compatible Web server) as a host; the servletrunner
utility is the topic of the next section. Listing 18.4 shows the source code of the servlet.

Non-CORBA Approaches to Distributed Computing

PART IV
410

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

NOTE

Listing 18.4 was compiled with JDK 1.1.6 with the Servlet Development Kit 2.0.
The Servlet Development Kit is not presently bundled with JDK 1.1 (now at
release 7) or JDK 1.2 (now at beta 4), so it’s necessary to separately download
and install it. No special measures are necessary to work with the Servlet
Development Kit: Simply follow the installation instructions provided with the
download.

FIGURE 18.3
The SimpleServlet
transmits a static
HTML page.

023 72315378 CH18 1.21.2000 2:09 PM Page 410

LISTING 18.4 SimpleServlet.java—A SERVLET THAT HANDLES AN HTTP GET REQUEST

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class SimpleServlet extends HttpServlet
{

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

{
response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
out.println(“<HEAD>\n”);
out.println(
“<TITLE>A SimpleServer Page</TITLE>\n”);

out.println(“</HEAD>\n”);
out.println(“<BODY>\n”);
out.println(
“<H1>SimpleServlet was here.</H1>\n”);

out.println(“</BODY>\n”);
out.close();

}

public String getServletInfo()
{

return (
“I’m a little servlet, 29 lines long.”);

}
}

The servlet extends the HttpServlet class, overriding the doGet method to provide its
application-specific processing, which merely transmits a static HTML page. Notice that
the method can potentially throw a ServletException; many servlet-related methods
throw this exception, which requires you to program a try-catch block or a throws
clause.

The first task performed by this servlet, and most other servlets, is to set the content type
of its output. Most servlets return HTML text to the requesting client; therefore,
“text/html” is the most commonly used argument value. Next, the servlet uses the
getWriter method to obtain a reference to a PrintWriter that encapsulates the response
that will be transmitted to the client. Using the PrintWriter.println method, it writes a
series of HTML tags that comprise the static output shown in Figure 18.3. Finally, the
servlet closes the PrintWriter and exits its doGet method.

Servlets and Common Gateway Interface (CGI)

CHAPTER 18
411

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

18

S
ER

V
LETS

A
N

D
C

G
I

023 72315378 CH18 1.21.2000 2:09 PM Page 411

The servlet also implements the getServletInfo method, which returns a String that
describes the servlet. All servlets should implement this method.

To run the servlet, you need the servletrunner utility or a compatible Web server. So that
you can run the servlet, let’s examine the servletrunner utility that’s included in the
Servlet Development Kit.

THE servletrunner UTILITY
The servletrunner utility, like most JDK utilities, is a command-line program that accepts
several command arguments. To see these, type servletrunner -h, which causes
servletrunner to display the following menu of options:

D:\JDO\Chapters\Ch18\Listings>servletrunner -h
Usage: servletrunner [options]
Options:
-p port the port number to listen on
-b backlog the listen backlog
-m max maximum number of connection handlers
-t timeout connection timeout in milliseconds
-d dir servlet directory
-s filename servlet property file name
-r dir document root directory

java.exe: No error

Most of these options have default values. For example, the port defaults to 8080, and the
servlet property filename defaults to servlet.properties. Unless you place your servlet
.class files and HTML documents in the JDK directory tree, you’ll need to specify the
servlet and document root directories. The easiest way to use servletrunner is to navigate
to the directory that contains your servlet’s .class file and launch servletrunner from its
own DOS window, giving explicit values to the -d and -r options:

servletrunner -d c:\servlets -r c:\servlets

Once servletrunner has initialized itself, you can use a Web browser to access your
servlet by using the following URL:

http://localhost:8080/servlet/SimpleServlet

If you find that SimpleServer is too laborious to type, you can use the servlet.properties
file to establish a pseudonym for your servlet. Simply include a line like the following:

servlet.simple.code=SimpleServlet

This entry establishes simple as a pseudonym for SimpleServer, allowing you to use the
URL http://localhost:8080/servlet/simple to access the SimpleServlet servlet. Try
it for yourself before reading on.

Non-CORBA Approaches to Distributed Computing

PART IV
412

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

023 72315378 CH18 1.21.2000 2:09 PM Page 412

A PARAMETERIZED SERVLET
The servlet.properties file also lets you establish parameter name-value pairs that can
help you initialize a servlet. They let you change a servlet’s initial state without recom-
piling it. The multiline entry used for this purpose will look like this:

servlet.pseudonum.initArgs=\
name=value, \
name=value, \
...

name=value

Here, pseudonym is the pseudonym of the servlet, and each line after the first associates a
value with the specified name. Notice the backward slash (\) that ends each line (other
than the last). As an example, the following entry for the servlet named coins gives val-
ues for some common U.S. coins:

servlet.coins.initArgs=\
penny=1, \
nickel=5, \
dime=10, \
quarter=25

To see how to access these initialization parameters within a servlet, see Listing 18.5.
The servlet uses the getInitParameterNames method to obtain an Enumeration contain-
ing the names of its initialization parameters. Then it uses the getInitParameter method
to obtain the value of each, including the value in the HTML page it returns to the client.
The servlet.properties file on the CD-ROM contains entries for the ParameterizedServlet
servlet. If you run the servlet, you should see output like that shown in Figure 18.4.

LISTING 18.5 ParameterizedServlet.java—A SERVLET THAT ACCESSES INITIALIZATION

PARAMETERS

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.Enumeration;

public class ParameterizedServlet extends HttpServlet
{

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

{
response.setContentType(“text/html”);
PrintWriter out = response.getWriter();

Servlets and Common Gateway Interface (CGI)

CHAPTER 18
413

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

18

S
ER

V
LETS

A
N

D
C

G
I

continues

023 72315378 CH18 1.21.2000 2:09 PM Page 413

out.println(“<HEAD>\n”);
out.println(
“<TITLE>A SimpleServer Page</TITLE>\n”);

out.println(“</HEAD>\n”);
out.println(“<BODY>\n”);
out.println(
“<H1>Parameters:</H1>”);

out.println(“<DL>\n”);
Enumeration parms = getInitParameterNames();
while (parms.hasMoreElements())
{

String pname = (String) parms.nextElement();
String pval = getInitParameter(pname);
out.println(“<DT>” + pname + “:”);
out.println(“<DD><I>” + pval + “</I><P>”);

}
out.println(“</DL>\n”);
out.println(“</BODY>”);
out.close();

}

public String getServletInfo()
{

return (getClass().getName());
}

}

Non-CORBA Approaches to Distributed Computing

PART IV
414

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

LISTING 18.5 CONTINUED

FIGURE 18.4
The
ParameterizedSer
vlet accesses ini-
tialization para-
meters.

023 72315378 CH18 1.21.2000 2:09 PM Page 414

A SERVLET THAT HANDLES POST REQUESTS
The PostServlet program example handles an HTTP POST request. PostServlet logs its
input to a disk file and returns a reply to the client. You can use PostServlet as a model
for more complex servlets that handle HTML form-based input, storing results in a file
or database. Listing 18.6 shows the source code for PostServlet.

Following in the footsteps of SimpleServlet, the first task of PostServlet is to set the con-
tent type of its response, which again is “text/html.” PostServlet then accesses an initial-
ization parameter that identifies the directory that contains its data file. It uses the Java
system property file.separator (which usually specifies a slash or backward slash) to
join the directory name and the filename. The servlet then calls getParameterNames to
obtain an Enumeration over the names of parameters included in its request data. Each
parameter holds the value of an HTML form control. By using the getParameterValues
method, the servlet obtains the data associated with each control. It writes the data to its
disk file and returns a grateful response to the client.

LISTING 18.6 PostServlet.java—A SERVLET THAT HANDLES POST REQUESTS

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.Enumeration;

public class PostServlet extends HttpServlet
{

public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

{
response.setContentType(“text/html”);
PrintWriter out = response.getWriter();

String dir = getInitParameter(“dir”);
String sep = System.getProperties().
getProperty(“file.separator”);

PrintWriter fout =
new PrintWriter(
new FileWriter(dir + sep + “data.txt”, true));

Enumeration parms =
request.getParameterNames();

while (parms.hasMoreElements())
{

String pname = (String) parms.nextElement();

Servlets and Common Gateway Interface (CGI)

CHAPTER 18
415

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

18

S
ER

V
LETS

A
N

D
C

G
I

continues

023 72315378 CH18 1.21.2000 2:09 PM Page 415

fout.print(pname + “=”);
String [] pval =
request.getParameterValues(pname);

for (int i = 0; i < pval.length; i++)
{

if (i > 0) fout.print(“,”);
fout.print(pval[i]);

}
fout.println();

}
fout.close();

out.println(“<HEAD>\n”);
out.println(
“<TITLE>A PostServer Page</TITLE>\n”);

out.println(“</HEAD>\n”);
out.println(“<BODY>\n”);
out.println(
“<H2>Thanks for the yummy data!</H2”);

out.println(“</BODY>”);
out.close();

}

public String getServletInfo()
{

return (getClass().getName());
}

}

The HTML file shown earlier in Listing 18.3 provides an HTML form suitable for use by
PostServlet so that you can try it yourself. Figure 18.5 shows the output PostServlet
returns to its clients.

Non-CORBA Approaches to Distributed Computing

PART IV
416

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

LISTING 18.6 CONTINUED

FIGURE 18.5
The PostServlet
servlet thanks the
user for the data
received.

023 72315378 CH18 1.21.2000 2:09 PM Page 416

CLIENT REQUEST AND SERVLET CONTEXT
INFORMATION
The CD-ROM contains the sample program RequestInfo, which transmits a formatted
page that describes the client’s request. Figure 18.6 shows the output of the RequestInfo
servlet. You may find RequestInfo useful in debugging HTML forms, because it displays
the name and value of each control on the form.

Servlets and Common Gateway Interface (CGI)

CHAPTER 18
417

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

18

S
ER

V
LETS

A
N

D
C

G
I

FIGURE 18.6
The RequestInfo
servlet dumps the
client request.

The CD-ROM also contains the sample program ContextDumper, which transmits a for-
matted page that describes the servlet context, including a list of active servlets. The list
of active servlets is obtained using this code:

ServletContext context =
getServletContext();

Enumeration servlets =
context.getServletNames();

while (servlets.hasMoreElements())
{

String name =
(String) servlets.nextElement();

out.println(name + “
”);
}

Sun advises that the getServletNames method may leave the servletrunner or Web server
in an inconsistent state. Therefore, you should not run the ContextDumper servlet in a

023 72315378 CH18 1.21.2000 2:09 PM Page 417

production environment. Most Web servers that support servlets provide a built-in facility
that performs an operation similar to that of ContextDumper.

Figure 18.7 shows the output of the ContextDumper servlet.

Non-CORBA Approaches to Distributed Computing

PART IV
418

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

FIGURE 18.7
The
ContextDumper
servlet dumps the
current servlet
context.

SERVLET CONSIDERATIONS
Java servlets are becoming increasingly popular, but their use is not yet widespread.
Consequently, it’s too early to make a thorough and accurate assessment of servlet tech-
nology. However, here are some issues to consider:

• Virtually any Web browser can access a servlet. Consequently, applications using a
servlet-based architecture support essentially every common computing platform
and architecture.

• The HTML form-based user interface, although widely available, is a “least com-
mon denominator” user interface, offering relatively few features. Of course, it’s
possible to use Java servlets with other sorts of front ends. HTML form-based user
interfaces are simply easier to construct and more popular than alternative types of
user interfaces.

• Servlets appear to be more secure and perform more efficiently that CGI programs
written in C, C++, or Perl.

• Because they’re written in Java, servlets are relatively simple to create and are
portable across server platforms.

023 72315378 CH18 1.21.2000 2:09 PM Page 418

FROM HERE
You learned how to use the URLConnection class to download data from a Web server.
You’ve learned how to construct and use HTML forms that transmit their contents to a
Web server. What’s more, you’ve learned how to write Java servlets that handle GET and
POST requests.

Chapter 19, “Servlet-Based Implementation of the Airline Reservation System,” provides
additional information about servlets. It shows how servlets might be used to implement
this book’s running sample application system.

Servlets and Common Gateway Interface (CGI)

CHAPTER 18
419

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

18

S
ER

V
LETS

A
N

D
C

G
I

023 72315378 CH18 1.21.2000 2:09 PM Page 419

420

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH18 L #2

023 72315378 CH18 1.21.2000 2:09 PM Page 420

CHAPTER

19
SERVLET-BASED
IMPLEMENTATION OF THE
AIRLINE RESERVATION
SYSTEM

IN THIS CHAPTER
• THE SEARCHFLIGHTS SERVLET 423

• THE SEARCHSEATS SERVLET 426

• THE BOOKSEAT SERVLET 429

024 72315378 CH19 1.21.2000 2:09 PM Page 421

In the previous chapter, you learned about Java’s servlet facility. In this chapter, you’ll
see an example of a larger servlet-based program—one that implements the Airline
Reservation System of Chapter 6, “The Airline Reservation System Model.” The program
is similar in function to the RMI-based program presented in Chapter 16, “RMI-Based
Implementation of the Airline Reservation System.” You’ll find the source code for this
chapter’s program in the chapter19/listings directory of the CD-ROM. By studying the
program, you’ll learn more about using servlets to provide data and transactions to
remote users.

To refresh your recall of the Airline Reservation System, you should turn back to Chapter
6 and skim it quickly, focusing on the functional requirements of the system. You should
also refresh your recollection of the socket-based implementation of the Airline
Reservation System presented in Chapter 14, “Socket-Based Implementation of the
Airline Reservation System,” because the servlet-based program described in this chapter
is functionally equivalent to the socket-based program described in Chapter 14. As you’ll
see, it’s much easier to write applications using servlets than either sockets or RMI.

Here are the three transactions implemented by the sample program in this chapter:

• Search Flights, which returns each flight stored in the database.

• Search Seats, which returns the reservation information for a specified passenger
identified by passenger number.

• Book Seat, which enters a reservation for a specified passenger and flight. The
transaction makes several simplifying assumptions. The passenger and flight must
already exist as entities; the transaction does not create new passengers or flights.
The reservation number must be unique; attempting to add a reservation with the
same number as an existing reservation updates the existing reservation.

Like the sample program of Chapter 16, the sample program of this chapter does not
implement the visual interface for seat selection described in Chapter 6. Nor does it
implement the reservation pool locking mechanism. You could implement such a mecha-
nism by elaborating on the solution sketched near the end of Chapter 16.

We won’t need to study the application classes, because they’re unchanged from the ver-
sions presented with the RMI version of the program in Chapter 16. You can examine
them by copying them from the CD-ROM to your system’s hard drive. So, let’s dive in
and study the servlet classes themselves. The program design assigns each of the three
supported transactions to a distinct servlet; each of the next three sections presents one of
these servlets.

Non-CORBA Approaches to Distributed Computing

PART IV
422

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH19 L #2

024 72315378 CH19 1.21.2000 2:09 PM Page 422

THE SEARCHFLIGHTS SERVLET
The SearchFlights servlet displays a list of flights contained in the SQL database. You
can see the servlet’s output in Figure 19.1. The SearchFlights transaction requires no
input data; therefore, the SearchFlights servlet implements the doGet method, which han-
dles the clients’ HTTP GET requests. To access the servlet, first compile the source file
(SearchFlights.java) and then launch the servletrunner utility (or your servlet-capable
Web server). You can access the servlet by pointing your Web browser to the following
URL:

http://localhost:8080/servlet/SearchFlights

(If you’re using a Web server, you may need to use a different URL: See your Web serv-
er’s documentation.) The output of the SearchFlights servlet is formatted as a data dump.
However, if your HTML skills are up to the task, you can easily revise the servlet to gen-
erate output that includes tags that format the data into an HTML table, making the data
easier to read.

Servlet-Based Implementation of the Airline Reservation System

CHAPTER 19
423

19

S
ER

V
LET-B

A
SED

IM
PLEM

EN
TA

TIO
N

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH19 L #2

FIGURE 19.1
The SearchFlights
servlet displays a
complete list of
flights.

Let’s walk through the source code of the SearchFlights servlet. Like most Java pro-
grams, it begins with a set of imports. Because SearchFlights is a servlet, it imports two
servlet packages:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;

NOTE

All the code from here until the next section, “The SearchSeats Servlet,” is
found in the file SearchFlights.java in the chapter19/listings directory of the CD-
ROM.

024 72315378 CH19 1.21.2000 2:09 PM Page 423

The class header specifies that SearchFlights extends the HttpServlet class:

public class SearchFlights extends HttpServlet

The class defines only three fields—the familiar fields used to establish a database con-
nection using the JDBC-ODBC bridge (for a refresher on JDBC, see Chapter 12, “Java
Database Connectivity (JDBC)”):

static final String DB = “jdbc:odbc:airline”;
static final String USER = “”;
static final String PASSWORD = “”;

The class defines only two methods: getServletInfo and doGet. The getServletInfo
method returns a String describing the servlet:

public String getServletInfo()
{

return (getClass().getName());
}

Like the doGet methods of other servlets, the doGet method of SearchFlights may throw
a ServletException or IOException:

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

The first tasks of the doGet method are to specify that its response stream will contain
HTML and to open the response stream:

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();

Because the first part of the output HTML page will be the same whether the transaction
succeeds or fails, doGet next sends the first part of the page:

out.println(“<HTML>”);
out.println(“<HEAD>”);
out.println(
“<TITLE>Search Flights Results Page</TITLE>”);
out.println(“</HEAD>”);
out.println(“<BODY>”);

Most of the remaining processing of the doGet method occurs inside a try statement.
Let’s first look at the associated catch statement, which completes the output HTML
page by sending an error message:

catch (Exception ex)
{

out.println(“<H2>Error:</H2>”);
out.println(ex);

}

Non-CORBA Approaches to Distributed Computing

PART IV
424

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH19 L #2

024 72315378 CH19 1.21.2000 2:09 PM Page 424

out.println(“</BODY>”);
out.println(“</HTML>”);
out.close();

The three statements following the catch statement are executed even if the try state-
ment succeeds. They finish the output page and close the response stream.

The statements within the body of the try statement open a connection to the database
and execute the Flight.getFlights method, passing a reference to the open database.
After closing the database connection, the program formats the output lines that comprise
the body of the HTML page:

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
Connection db =
DriverManager.getConnection(DB, USER, PASSWORD);

Flight [] flights =
Flight.getFlights(db);

db.close();

out.println(“<H2>Flight Information:</H2>”);

for (int i=0; i < flights.length; i++)
out.println(flights[i] + “
”);

A more sophisticated version of the servlet might open the database connection only
once rather than every time it processes a transaction. You could accomplish this by
defining the database connection reference as a static field and opening the database con-
nection only if the field has a null value. If you’re using the JDBC-ODBC bridge and
you make this change, you must also specify that the servlet implements
SingleThreadModel, a marker interface that requires no methods. A servlet that imple-
ments SingleThreadModel will run as a single thread; this avoids problems that might
otherwise arise because many ODBC drivers are not thread safe.

As you can see, servlets are easy to write, and they’re very flexible. However, bear in
mind that the client performs only user interface processing: The servlet does all the real
work. Nevertheless, you can create fully distributed applications using servlets, because
servlets can easily communicate with one another using a fully object-oriented protocol
such as RMI or CORBA’s IIOP. One simple architecture associates a “gateway” server
with each client. The gateway server provides a set of servlets that act on behalf of the
client, contacting remote servers as needed to satisfy requests. Figure 19.2 depicts this
configuration.

Servlet-Based Implementation of the Airline Reservation System

CHAPTER 19
425

19

S
ER

V
LET-B

A
SED

IM
PLEM

EN
TA

TIO
N

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH19 L #2

024 72315378 CH19 1.21.2000 2:09 PM Page 425

THE SEARCHSEATS SERVLET
The SearchSeats servlet lists all seat reservations associated with a specified passenger.
Figure 19.3 shows the input HTML page associated with the SearchSeats servlet, and
Figure 19.4 shows a sample output HTML page.

Non-CORBA Approaches to Distributed Computing

PART IV
426

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH19 L #2

FIGURE 19.2
Servlets can coop-
erate to provide a
fully distributed
architecture.

Servlet
Server

Client PC

Client PC

Client PC

Server

Server

Server

HTTP Object-Oriented
Protocol

HTTP

Object-Oriented

Protocol

HTTP

Object-
Orie

nted

Pro
toco

l

FIGURE 19.3
The SearchSeats
servlet processes a
request sent by an
HTML form.

Here’s the HTML source code used to create the test page that exercises the SearchSeats
servlet:

024 72315378 CH19 1.21.2000 2:09 PM Page 426

<HTML>
<HEAD>
<TITLE>Search Seats Test Page</TITLE>
</HEAD>
<BODY>
<FORM ACTION=”http://127.0.0.1:8080/servlet/SearchSeats”
METHOD=POST>
<H1>Search Seats Test Page</H1>
<P>Passenger No:
<INPUT TYPE=TEXT NAME=passenger_no>
<P>
<INPUT TYPE=SUBMIT>
<INPUT TYPE=RESET>
</FORM>
</BODY>
</HTML>

Servlet-Based Implementation of the Airline Reservation System

CHAPTER 19
427

19

S
ER

V
LET-B

A
SED

IM
PLEM

EN
TA

TIO
N

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH19 L #2

FIGURE 19.4
The SearchSeats
servlet returns an
HTML page that
lists the seats
reserved by a
specified passen-
ger.

NOTE

The following code is found in the file SearchSeats.html in the chapter19/listings
directory of the CD-ROM.

NOTE

All the code from here until the next section, “The BookSeat Servlet,” is found
in the file SearchSeats.java in the chapter19/listings directory of the CD-ROM.

Let’s study the source code of the servlet itself. The servlet imports the same packages
and defines the same fields as the SearchFlights servlet. However, because the
SearchSeats servlet requires a passenger number as input, it implements the doPost
method rather than the doGet method implemented by the SearchFlights servlet:

024 72315378 CH19 1.21.2000 2:09 PM Page 427

public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

Like the SearchFlights servlet, SearchSeats first specifies its response type, opens its
response stream, and transmits the first page of the output HTML page:

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();

out.println(“<HTML>”);
out.println(“<HEAD>”);
out.println(
“<TITLE>Search Seats Results Page</TITLE>”);

out.println(“</HEAD>”);
out.println(“<BODY>”);

Next, SearchSeats obtains the value of the passenger number input by the user:

String passenger_no =
request.getParameter(“passenger_no”);

Notice that the HTML source code for the input form specifies passenger_no as the
name of the input text field (refer to Figure 19.3).

The main processing of SearchSeats closely resembles that of SearchFlights; however, it
invokes Reservation.getPassenger rather than Flight.getFlights:

try
{

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
Connection db =
DriverManager.getConnection(DB, USER, PASSWORD);

Reservation [] seats =
Reservation.getPassenger(
db, passenger_no);

db.close();

out.println(“<H2>Seat Information:</H2>”);
for (int i=0; i < seats.length; i++)

out.println(seats[i] + “
”);
}
catch (Exception ex)
{

System.err.println(ex);
out.println(“<H2>Error:</H2>”);
out.println(ex);

}

out.println(“</BODY>”);

Non-CORBA Approaches to Distributed Computing

PART IV
428

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH19 L #2

024 72315378 CH19 1.21.2000 2:09 PM Page 428

out.println(“</HTML>”);
out.close();

THE BOOKSEAT SERVLET
The BookSeat servlet creates and makes a database record of a fight reservation. Figure
19.5 shows the HTML input form, and Figure 19.6 shows sample output. The following
input form provides the flight number, passenger number, and reservation number that
specify the flight reservation:

Servlet-Based Implementation of the Airline Reservation System

CHAPTER 19
429

19

S
ER

V
LET-B

A
SED

IM
PLEM

EN
TA

TIO
N

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH19 L #2

NOTE

The following code is found in the file BookSeat.html in the chapter19/listings
directory of the CD-ROM.

<HTML>
<HEAD>
<TITLE>Book Seat Test Page</TITLE>
</HEAD>
<BODY>
<FORM ACTION=”http://127.0.0.1:8080/servlet/BookSeat”
METHOD=POST>
<H1>Book Seat Test Page</H1>
<P>
Flight No:
<INPUT TYPE=TEXT NAME=flight_no>
<P>
Passenger No:
<INPUT TYPE=TEXT NAME=passenger_no>
<P>
Reservation No:
<INPUT TYPE=TEXT NAME=reservation_no>
<P>
<INPUT TYPE=SUBMIT>
<INPUT TYPE=RESET>
</FORM>
</BODY>
</HTML>

NOTE

All the code from here until the end of the chapter is found in the file
BookSeat.java in the chapter19/listings directory of the CD-ROM.

024 72315378 CH19 1.21.2000 2:09 PM Page 429

The BookSeat servlet closely resembles the SearchSeats servlet. Both implement the
doPost method and receive parameter values from an HTML input form. The BookSeat
servlet receives three such parameters:

String flight_no =
request.getParameter(“flight_no”);

String passenger_no =
request.getParameter(“passenger_no”);

String reservation_no =
request.getParameter(“reservation_no”);

The main processing of the BookSeat servlet, which is enclosed within the usual try-
catch block, instantiates a Reservation object, invokes its dbWrite method, and outputs
a confirmation message:

Reservation res = new Reservation(
db, reservation_no, flight_no, passenger_no);

res.dbWrite(db);
db.close();

out.println(“Seat Booked.”);

Non-CORBA Approaches to Distributed Computing

PART IV
430

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH19 L #2

FIGURE 19.5
The BookSeat
servlet requires
the user to enter
flight number,
passenger number,
and reservation
number informa-
tion.

FIGURE 19.6
The BookSeat
servlet records a
flight reservation.

024 72315378 CH19 1.21.2000 2:09 PM Page 430

FROM HERE
In this chapter, you’ve seen a complete application of modest size that uses servlets to
display and update database data. As you can see, using servlets is very easy. Yet,
servlets are enormously powerful and flexible. Moreover, because they’re written in Java,
they’re also portable. Here’s a preview of what’s coming up:

• Chapter 20, “Distributed Component Object Model (DCOM),” describes
Microsoft’s proprietary distributed computing model.

• Chapter 21, “CORBA Overview,” begins the first of two parts of this book that pre-
sent the Common Object Request Broker Architecture (CORBA).

Servlet-Based Implementation of the Airline Reservation System

CHAPTER 19
431

19

S
ER

V
LET-B

A
SED

IM
PLEM

EN
TA

TIO
N

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH19 L #2

024 72315378 CH19 1.21.2000 2:09 PM Page 431

432

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH19 L #2

024 72315378 CH19 1.21.2000 2:09 PM Page 432

CHAPTER

20
DISTRIBUTED COMPONENT
OBJECT MODEL (DCOM)

IN THIS CHAPTER
• OVERVIEW OF COM AND DCOM 435

• COM/DCOM TOOL SUPPORT 437

• DCOM ARCHITECTURE 437

• COMPARING DCOM TO RMI AND
CORBA 452

• COM AND DCOM CODING
EXERCISES 456

025 72315378 CH20 1.21.2000 2:10 PM Page 433

Developing distributed components with Java and DCOM simplifies developing distrib-
uted applications. If you’re already familiar with COM, CORBA, or RMI, it won’t take
you long to understand DCOM. Even if you don’t have a good background with the
Component Object Model (COM), the Microsoft Java virtual machine (JVM), the run-
time environment for Java, makes it painless to develop both COM and DCOM compo-
nents.

Non-CORBA Approaches to Distributed Computing

PART IV
434

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

NOTE

Chapters 15, “Remote Method Invocation (RMI),” and 16, “RMI-Based
Implementation of the Airline Reservation System,” cover Remote Method
Invocation (RMI). Part V of this book, “The CORBA Approach to Distributed
Computing,” provides a detailed discussion of the Common Object Request
Broker Architecture (CORBA).

This chapter covers the following:

• An overview of DCOM

• A brief architecture review

• A comparison of DCOM to other technologies

• Code examples

The exercises are provided to help you become comfortable with the technology and to
drive home the concepts in the architecture section. After completing the code examples,
we’ll compare DCOM to other technologies such as CORBA and RMI. After you com-
plete this chapter and the exercises, you should have a solid understanding of DCOM and
be able to develop DCOM clients and servers in Java. In addition, you can use most of
the techniques and design patterns from the other chapters of this book with DCOM.

No matter what your background, you’ll probably at some point have to deal with
COM/DCOM. Understanding DCOM may be a great skill to master as you conquer your
next distributed applications. This is especially true if you have to interface with com-
mercial off-the-shelf components and applications or existing in-house applications that
use DCOM.

Windows NT is prevalent in the client/server market, and DCOM is heavily integrated
with the NT operating system. Therefore, DCOM is important to understand because of
the proliferation of Windows NT and the size of the COM component market.

025 72315378 CH20 1.21.2000 2:10 PM Page 434

OVERVIEW OF COM AND DCOM
The Component Object Model (COM) provides a means to create extensible services
called components. As components mature (evolve) and add new features and functions,
the services they provide remain backward compatible with older incarnations of the
components they replace. This enables older applications (COM clients) to treat new
components like older components. Therefore, when you upgrade the component, older
client applications should continue working.

Distributed Component Object Model (DCOM)

CHAPTER 20
435

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

NOTE

DCOM currently ships with the Microsoft Windows NT 4.0 and Windows 98
operating systems. DCOM is also available for download for the Windows 95
operating system. In addition, there are efforts to make DCOM available on
many UNIX platforms.

NOTE

Even within Windows NT and Windows 95, there’s a trend to provide more
operating system services in the form of COM services because of their flexible
nature. If you’ve ever installed software that uses new DLLs that make older
applications stop working, you’ll realize the importance of this trend.

COM uses object-oriented techniques, namely polymorphism, to accomplish the extensi-
ble component architecture. COM compares to a local procedure call (LPC) roughly the
way C++ compares to C—one being procedural and one being object oriented.
Therefore, a remote procedure call (RPC) is to DCOM as C is to C++. DCOM groups
data and methods into objects, which you can use through various interfaces.

DCOM may be viewed as COM with a longer wire. Therefore, the terms DCOM and
COM are often used interchangeably throughout the text. Even though the first few itera-
tions of COM did not have distributed support, the design for distributed objects was
included. COM was designed from the ground up to support distributed computing.
Therefore, you can use a legacy COM client with a DCOM server just by changing a few
Windows NT Registry settings.

The major difference between DCOM and COM is that DCOM uses RPC as shown in
Figures 20.1 and 20.2. Therefore, the use of DCOM can be transparent to the COM
client; DCOM servers can work with an older COM client. For that matter, you can use

025 72315378 CH20 1.21.2000 2:10 PM Page 435

most existing COM servers that predate the release of DCOM as DCOM servers, again,
just by changing a few Registry settings.

Non-CORBA Approaches to Distributed Computing

PART IV
436

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

FIGURE 20.1
The regular
Component Object
Model (COM).

COM Client
COM Component

(Service)

Proxy Object

LPC

Stub

LPC

COM LiB

CoCreate
Instance

LPC Manager
(Kernel)

Client Server

COM

In addition to this transparent mode of operation for interfacing with older COM ser-
vices, DCOM adds the ability for the client to ask to connect to a specific server. Also,
DCOM adds security features, which are important for secure distributed computing.
Again, LPC is based on RPC, so architecturally, the usage model and techniques for
using DCOM are similar in nature to COM.

Only the core operating system runs in kernel mode while most of the operating system
runs in separate processes in the user mode. Applications that want to use those operating
system processes have to go through the LPC manager, which resides in the kernel. The
LPC manager marshals the request from the application to the OS process. Therefore,

FIGURE 20.2
COM with a long
wire (DCOM).

(D)COM Client

SCM

Proxy Object

RPC

TCP/IP/Named Pipes
(D)COM Lib

Stub

RPC

TCP/IP/Named Pipes

“CoCreate
Instance”

Remote
Activation

Client Server

DCOM
Activation

DCOM
Net

Component
DCOM
Service

SCM

DCOM Lib

“CoCreate
Instance”

025 72315378 CH20 1.21.2000 2:10 PM Page 436

Windows NT is designed from the ground up using the client/server architecture, which
is also referred to as the services architecture. COM is an object-oriented extension to
LPC. Therefore, LPC in not an afterthought; it’s a core part of Windows/NT.

COM/DCOM TOOL SUPPORT
Many development tools support COM. Microsoft’s Visual Basic, which is heavily cen-
tered on COM, commands a hefty portion of the programming language market. Other
prominent tools that support COM are Visual C++, C++ Builder, Delphi, and others.
Most of these tools support both the creation of COM components and the hosting of
COM objects. Development tool support is a major strength of DCOM.

In addition to these tools, Microsoft has made sure that Java integrates well with DCOM.
For instance, Java classes can be treated like COM objects. Visual J++ 6.0 is a rapid
application development (RAD) tool, and it integrates with COM seamlessly. Also, Sun
provides an ActiveX bridge to expose JavaBeans as ActiveX controls (an ActiveX control
is a type of COM component).

You can use the Java classes you create as scriptable components, which can be scripted
using Visual Basic, VBScript, JScript, Perl, Python, and other tools. Therefore, you can
use the classes you build, for example, inside of a Web browser, an Excel spreadsheet, or
as part of an Active Server Page. Essentially, you can use your Java classes anywhere
you can use Automation. Automation enables users to take control of components and
applications through easy-to-use scripting languages such as Visual Basic. We’ll discuss
Automation later in the chapter.

You may wonder why all this matters to Java. It’s simple really. There are a lot of COM
components out there and chances are you’ll need to integrate them in one of your pro-
jects. For that matter, there are a lot of COM component developers in the market, and
you may need to integrate their skills in your next project.

Distributed Component Object Model (DCOM)

CHAPTER 20
437

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

NOTE

Many of the Java application server providers, such as WebLogic’s Tengah and
Bluestone’s Sapphire, provide DCOM support.

DCOM ARCHITECTURE
All distributed object architecture must provide the following basic features:

• Interface definition

• Directory services

025 72315378 CH20 1.21.2000 2:10 PM Page 437

• Marshaling

• Object persistence

• Security

Interface negotiation is important to distributed systems. It allows distributed objects the
opportunity to communicate and evolve separately without breaking the existing contract.
Directory services provide a means of finding, activating, and connecting to remote
objects. Marshaling is a means to make the object appear to be in a local process, yet
communicate the invocation of methods along with their parameters over process and
machine boundaries. Marshaling allows access to interfaces from remote sites and moves
data to and from the client process and the server process. Marshaling is just a means of
formatting data between clients and components so they can communicate clearly at the
bit and byte level.

Object persistence is saving an object state to a persistent storage, such as a flat file or
database. It’s also how to connect to a unique instance of an object; for example, when
the object is already running in another process. Finally, security is needed to protect
access to components at various levels. The rest of this section briefly discusses these
architectural issues in order to help you understand the DCOM architecture well enough
to write Java/DCOM programs effectively.

Interfaces
Defining an interface between a client and a component is like defining a contract
between two people. The interface exposes a collection of methods that state what behav-
ior and functionality the component will provide.

In DCOM, you don’t deal with objects directly. Instead, you deal with interfaces to
objects. A DCOM interface is a collection of methods that define a service contract.
Actually, what you get is an interface pointer that points to a vtable (a vtable is a col-
lection of pointers to methods). Java does not support interface pointers or any pointers
for that matter (see the following note). However, Microsoft allows Java developers to
access COM objects in a natural way. The interface defines the behavior of an object
independently of any one implementation of an object. DCOM is a binary interoperabili-
ty agreement for how clients interact with interfaces via pointers and local and remote
proxies. Proxies act as surrogate objects that are involved in marshaling the parameters to
and from the components.

Non-CORBA Approaches to Distributed Computing

PART IV
438

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 438

DCOM provides standard interfaces for dealing with objects. One such interface is
IUnknown. Every DCOM object must support IUnknown. Also, Java classes, via the
Microsoft JVM, support a lot of other standard interfaces. So what’s a COM object? A
COM object is a component that supports one or more interfaces; a COM interface refers
to a collection of related methods. There are standard interfaces and there are user-
defined interfaces. COM objects are accessed only through interfaces. A COM class
implements one or more interfaces, and COM objects are runtime instantiations of COM
classes.

IDispatch is a standard interface, which all COM objects that support late binding
(Automation) must have. Java classes in the Microsoft JVM, by default, support
Automation via the IDispatch interface.

COM works with many computer programming languages. However, there’s a special
language for describing interfaces called the Interface Definition Language (IDL).

Distributed Component Object Model (DCOM)

CHAPTER 20
439

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

NOTE

Microsoft JVM is a precursor to COM+. The way DCOM is handled in Java is like
a precursor to the way DCOM will be handled in other languages with the
introduction of COM+. COM+ will make DCOM programming a lot easier. For
example, let’s compare getting a pointer to an interface in Java to doing the
same thing in C++:
IHelloDCOM pHelloDCOM;
CoCreateInstance (CLSID_HelloDCOM, NULL,
CLSCTX_INPROC_SERVER,
IID_HelloDCOM,
(void **) &pHelloDCOM);

Here’s the equivalent Java code:

IHelloDCOM helloDCOM = (IHelloDCOM) new HelloDCOM();

As you know, there are no pointers in Java. Therefore, instead of dealing with
pointers, the Microsoft JVM handles all the low-level complexity. The Microsoft
JVM also allows you to cast an interface to an object instead of using the
IUnknown interface negotiation, which makes programming COM in Java much
easier than doing it in C++ in many cases. Actually, Java’s multiple interfaces
inheritance model maps nicely to working with IUnknown.

025 72315378 CH20 1.21.2000 2:10 PM Page 439

Interface Definition Language (IDL)
IDLs are high-level, English-like languages for describing which interfaces an object
supports. You can define an interface via IDL independent of any programming language.
DCOM, like CORBA, has an IDL, which unlike CORBA’s IDL, is based on the existing
DCE standard IDL for RPC. Before Windows NT 4.0, Microsoft had two types of IDL.
One was called IDL, and one was called ODL. ODL works with Automation, which was
known as OLE Automation and for a brief while as ActiveX Automation. Since Windows
NT 4.0 was released, there’s only one type of IDL. Therefore, ODL has been merged
into IDL.

IDL is a special C-like language for specifying DCOM interfaces. You compile it with
Microsoft’s IDL compiler (MIDL) to create a type library. You then use another tool to
create Java or C++ stubs and proxies, which act as surrogate objects involved in marshal-
ing the parameters between the COM client and the COM components.

Non-CORBA Approaches to Distributed Computing

PART IV
440

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

NOTE

Java classes also support the following interfaces:

IConnectionPointContainer, IDispatchEx, IExternalConnection, IMarshal,
IProvideClassInfo, IProvideClassInfo2, ISupportErrorInfo and, of course,
IUnknown.

NOTE

A DCOM stub equates to a CORBA or RMI skeleton. A DCOM proxy equates to
an RMI or CORBA stub. Therefore, stub in CORBA speak is the client, whereas
stub in DCOM speak is the server.

DCOM’s IDL, unlike CORBA IDL, does not support inheritance, which is a key ingredi-
ent to object-oriented design. Instead, DCOM supports containment, delegation, and
aggregation. It also uses interface negotiation (IUnknown), which provides the key feature
of inheritance (that is, polymorphism). Therefore, DCOM can support many interfaces.

The good news is you don’t have to know IDL to do DCOM programming. Microsoft
and others have a lot of development tools that can create type libraries and COM
objects; most of the tools approach the power of using IDL without the hassle. Visual
Basic, Visual C++, Visual J++, and Inprise’s Delphi all have the ability to create type
libraries, so you never have to use IDL. Also, with the release of COM+, there will be
even less reason to use IDL.

025 72315378 CH20 1.21.2000 2:10 PM Page 440

One of the keys to COM’s success is ease of use. DCOM is not tied to IDL the way
CORBA is. In fact, there’s nothing special about IDL. It’s just a C-like language for cre-
ating proxies and stubs. Again, you don’t have to use IDL to do DCOM programming.
For Java programming, you never have to touch IDL. Even if you use the Microsoft Java
SDK and JVM and no fancy integrated development environment (IDE), you don’t have
to write any IDL. Toward the end of the chapter we’ll go through the process of creating
COM and DCOM objects without using IDL.

Check out Part V of this book for a detailed look at CORBA IDL. CORBA syntax and
structure is different than DCOM, but the intent is similar. COM IDL, like Latin, may be
a dead language in a few years.

Invocation
Invocation is the means to invoke a method on an object. Dynamic invocation is the abil-
ity to call an object from a late bound language, such as a scripting language. A scripting
language typically is not compiled. Rather, scripting languages are associated with inter-
preted languages. Conversely, compiled languages, such as C++, use static invocation.
Java is an interpreted language with statically compiled language features; it’s a hybrid,
so to speak. Therefore, Java can work with both vtable and Dispinterface interfaces
(IDispatch-based interfaces) in Microsoft’s JVM.

DCOM, like CORBA, provides both static and dynamic invocation of objects. The type
library provides the meta data to do the dynamic invocation and introspection similar to
CORBA’s interface repository or Java’s introspection mechanism. (For more on CORBA
dynamic invocation, introspection, and reflection, see Chapter 32, “Interface Repository,
Dynamic Invocation, Introspection, and Reflection.”) The type libraries are analogous, in
many respects, to CORBA’s interface repository, and dynamic invocation is needed for
languages that require late binding.

Distributed Component Object Model (DCOM)

CHAPTER 20
441

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

NOTE

Meta data is a term used to describe data that, instead of representing some
entity, serves to describe other data.

Directory Services and Activation
As mentioned earlier, object location provides a means of finding, activating, and con-
necting to remote objects. Once a COM client knows a component’s name, it can use the
COM library to look up the component’s class that corresponds to a unique identifier. It
can then determine whether the COM object should be run locally or remotely (if
remotely, it can work with the remote machine to activate the component).

025 72315378 CH20 1.21.2000 2:10 PM Page 441

COM uses the Registry and the COM library to perform object lookup. When a COM
client tries to create a COM object, the COM libraries look up the associated COM class
implementation in the Registry. (This is somewhat analogous to the way RMI uses the
RMIRegistry or CORBA uses COSNaming.) The COM class implementation is executable
code called by the server. The executable code that the COM class is associated with
could be a dynamic link library, executable file, or a Java class. (See the section on COM
servers for more details.) The COM libraries load the COM server and work with the
server to create the object (the instance of the COM class) and then return an interface
pointer to the COM client. With DCOM, the COM libraries are updated to create COM
objects on remote machines.

In order to create remote objects, the COM libraries read the network name of the remote
server machine from the Registry to create remote COM objects. Alternatively, the name
can be passed to the COM libraries’ CoCreateInstanceEx function call. We’ll cover a
code example that uses CoCreateInstanceEx with the name of the server passed as a
parameter.

For remote components (that is, DCOM components), the COM libraries use the service
control manager (SCM, pronounced “scum”), to perform object activation. In this sce-
nario, when a COM client attempts to create a COM component, the COM library looks
up the COM object in the Windows NT Registry as usual. What it finds in the Registry is
information on how to instantiate the COM object just as before. However, if the COM
class configuration in the Registry specifies a remote server, the COM library will collab-
orate with SCM. SCM’s job is to contact the SCM on the remote server. The remote
SCM then works with the COM library on the remote machine to instantiate the object
and return an instance to the client application.

Non-CORBA Approaches to Distributed Computing

PART IV
442

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

NOTE

CoCreateInstanceEx is an extended version of CoCreateInstance of the original
COM library. CoCreateInstance is the standard way to look up COM objects in
the Registry. CoCreateInstanceEx adds parameters for security and remote
machine specification.

Identifiers for Locating Objects
You can find an interface by looking it up in the Windows Registry by its name or its
globally unique identifier (GUID). GUIDs are guaranteed to be unique. The GUIDs for
interfaces are called interface identifiers (IIDs). The GUIDs for COM classes are called
class identifiers (CLSIDs). All calls to CoCreateInstance need the CLSID to uniquely

025 72315378 CH20 1.21.2000 2:10 PM Page 442

identify the class the COM client is requesting. CLSID are listed in the Registry with a
list of the IIDs they support.

DCOM uses the remote server name and CLSID to interact with the COM client’s SCM.
As shown in Figure 20.3, the SCM uses this identifier when it connects to the remote
SCM on the server machine and requests creation of the COM object on the client’s
behalf.

Distributed Component Object Model (DCOM)

CHAPTER 20
443

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

FIGURE 20.3
DCOM activation. DCOM Client COM Component

(Service)

SCM SCM

Proxy Object

RPC

TCP/IP/Named Pipes

COM LIB

Stub

RPC

TCP/IP/Named Pipes

CoCreate Instance
(Passing Server Name)

Client Server

DCOM
Activation

DCOM
Net

COM LIB

1

CoCreate
Instance

4

Activate
Component

5

Start Making
Calls

6

Remote Activation to
server specified by
servername

2

3 3

DCOM has two other types of identifiers called the application identifier (AppID) and
the program identifier (ProgID). The AppID was added to COM as part of its security
support. The AppID essentially represents a COM server process namespace that’s
shared by multiple CLSIDs. All COM objects in this server process namespace have the
same security settings. The AppID concept is like a container for CLSID associated with
a process to avoid a lot of excessive Registry keys that all contain the same server name.
We’ll work with these different identifiers in the code samples.

ProgID is a user friendly name of the component that’s associated with the CLSID.
Therefore, in Visual Basic, for example, you can pass the name of the ProgID to
CreateObject, and CreateObject will look up the ProgID in the Registry and get the
corresponding CLSID.

NOTE

Unlike CORBA, DCOM has no objectId. Instead, if you want to connect to the
same unique instance of an object, you use a moniker.

025 72315378 CH20 1.21.2000 2:10 PM Page 443

With the release of Windows NT 5.0, COM adds a central store for COM classes. All
activation-related information about a component can be stored in the Active Directory of
the domain controller. The COM libraries will get activation information, such as the
remote server name, transparently from the Active Directory. Reconfiguring the compo-
nent will be a simple matter of changing the setting for the component in the Active
Directory. Then, Active Directory proliferates these changes to all the clients connected
to the portion of the Active Directory that contains the component’s information. This
further closes the gaps between CORBA’s activation model and DCOM’s. This is really a
leapfrog contest between CORBA, RMI, and DCOM.

Object Persistence and Unique Instances of Objects
As mentioned earlier, CORBA provides an objectId to connect to specific instances of
an object. This object reference is used by various CORBA services. The object refer-
ence can be used to reload the state of an object. Essentially, you can covert the object
reference to a string and copy it to a file or some other type of persistent storage. Then, a
year later you can use that object reference to instantiate that object to the state you left
it a year ago, assuming of course, that some other client did not change the state of that
object in the last year. CORBA clients use the object reference to connect to a particular
instance of an object. Conversely, COM objects, by default, are stateless objects. COM
objects do not have object identifiers. Instead, they use monikers to connect to a particu-
lar instance.

COM’s instance-naming mechanism is extremely flexible but at the price of complexity.
An IMoniker specifies an instance for COM. Monikers, also referred to as instance
names, for COM objects are themselves COM objects. This explains their flexibility and,
for that matter, their complexity (compared to the CORBA approach). The standard
COM interface for these naming objects is IMoniker.

If the COM object that the moniker is referring to is not already running in a server
process, IMoniker can create and initialize a COM object instance to the state it had
before. If, on the other hand, the COM object that IMoniker is referring to is running in
an existing COM server process, IMoniker can connect to the running instance of the
COM object via the COM server.

The COM library maintains a list of currently running, explicitly named COM object
instances called the running object table (ROT), which IMoniker uses to find the running
COM object instances. Essentially, if the COM object instance is not in the ROT,
IMoniker initializes a new one usually from some type of persistent storage. (With
acronyms such as SCM and ROT, it makes you wonder who comes up with this stuff and
what their fixation is with nasty sounding acronyms!) There are a few monikers built in
to COM, such as the File moniker, the URL moniker, and the Class moniker.

Non-CORBA Approaches to Distributed Computing

PART IV
444

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 444

DCOM Servers
Once you create a COM object, you need a server to serve the objects up to the world. A
COM server is container that holds COM objects. In essence, a COM server is either a
class, a dynamic link library, or an executable file that contains COM classes, which in
the case of Java, relates to Java classes. The COM server has the ability to turn classes
into objects. The server implements the IClassFactory interface, which provides a stan-
dard way to request having a COM class instantiated into a COM object.

You won’t need to create servers because MIDL (a fancy IDE) generates them for you.
In addition, COM clients won’t need to deal with IClassFactory directly, because the
COM library handles this when you call CoCreateInstance or the extended version,
CoCreateInstanceEx.

The COM client asks the COM library for a given class via a CLSID. The CLSID can be
looked up in the Registry. The COM library goes to the Registry and looks up the
CLSID. The COM library then instantiates a server, which must provide an
IClassFactory interface so that the COM server can create the object on behalf of the
COM library. In order for the COM client to ask the COM library for a class, the COM
client has to find the CLSID in the Registry. Therefore, the server must register a CLSID
for every COM object it’s able to create.

Here are the three types of COM servers:

• In-process servers. In the same process (DLL, OCX, INPROC)

• Local servers. Local, separate process (EXE)

• Remote servers. Separate process on a remote machine

In-process servers execute in the same process context as the client. Fundamentally,
an in-process server is a DLL, which means, among other things, that if there’s a bug
in the in-process server, it could bring down the client process. For example, OCXs
always run in the context of the client. (ActiveX controls are sometimes referred to as
OLE controls. An OLE control is an ActiveX control, but an ActiveX control is not nec-
essarily an OCX.) An OCX is a DLL with a different extension that supports Automation
and events. (Automation is dynamic invocation support for late-bound languages.) Local
Java classes that are exported as COM objects run in this mode, unless they’re using a
surrogate process.

Local servers run in a separate process from their clients but still on the same machine.
Basically, local servers run over LPC. An example of a local server is Excel (and just
about every other Office Suite application for the Windows market). Most Office Suite
applications support Automation and OLE.

Distributed Component Object Model (DCOM)

CHAPTER 20
445

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 445

Remote servers execute in a separate process on another machine. The clients use RPC to
talk to the remote server. However, a client does not have to know that the server is
remote. This may be completely transparent to the client. Java classes that have been
exported as COM objects can be run in this mode only if they use a surrogate process,
which can be the default surrogate process provided by the COM library. This process is
covered in the code examples.

The COM library supplies three ways for COM clients to attach to a remote server and
request a COM object:

• The server name is associated with the ProgID of the object in the Windows
Registry.

• An explicit parameter is passed to CoCreateInstanceEx, CoGetInstanceFromFile,
CoGetInstanceFromStorage, or CoGetClassObject specifying the server name.

• Monikers are used.

As mentioned earlier, COM clients are backward compatible with DCOM servers; there-
fore, all a COM client has to know is the CLSID of the component it wants to use. The
COM client calls CoCreateInstance, and the COM libraries create the component on the
remote server as configured in the Registry. Therefore, older COM clients, which predate
the release of DCOM, can transparently use remote COM objects. However, newer
clients have the flexibility to specify the server they want to connect to, which is essen-
tial with some applications. The newer servers can specify the server name as a parame-
ter to CoCreateInstanceEx. Table 20.1 shows a list of calls used when creating objects
from persistent storage.

TABLE 20.1 DCOM COMPONENTS USED TO REQUEST COM OBJECTS

DCOM API Calls Description

CoCreateInstance Creates an interface pointer to a stateless COM object.

CoCreateInstanceEx Creates an interface pointer to a stateless COM object.

CoGetInstanceFromFile Creates a new instance from a file. The COM object is initial-
ized from the file.

CoGetInstanceFromStorage Creates a new instance from storage. The COM object is ini-
tialized from the storage.

Marshaling
A key concept to local/remote transparency is marshaling, which means to take an inter-
face pointer to a COM object in one process and allow a client in another process to call

Non-CORBA Approaches to Distributed Computing

PART IV
446

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 446

member functions through that interface pointer. RMI, CORBA, and DCOM do some
form of marshaling. There are two ways to achieve marshaling in COM: COM standard
marshaling and COM custom marshaling.

COM marshaling allows a client in one process to make interface method calls on COM
objects in another process. The COM objects in the other process can be down the hall or
on the other side of the globe. The COM clients are not aware of the differences between
local and remote calls. Marshaling involves taking an interface pointer in a server’s
process and making that interface pointer available to the client process. Therefore, mar-
shaling involves setting up interprocess communication (either RPC or LPC). Next, mar-
shaling must take the arguments to an interface method call, as passed from the client,
and serialize those arguments to the remote object’s process.

Different argument types are marshaled differently. A simple value such as an int is
marshaled by copying the value. However, a more complex object, such as
java.lang.String, is marshaled by copying the data pointed to it. The arguments to
method calls must be moved to the server’s address space, which again, may be across
the hall or around the world. In order to use nonstandard, user-defined COM interfaces,
you must define your own marshaling. Microsoft defines custom marshaling for its Java
implementation.

Custom marshaling is fundamental for certain applications. However, Microsoft recog-
nized that most applications do not need or desire to optimize their marshaling mecha-
nism. Therefore, COM offers standard marshaling for the built-in standard COM inter-
faces. With standard marshaling, COM furnishes a generic proxy and a generic stub that
communicate through standard RPC for each standard COM interface.

On the other hand, each custom interface must implement an interface marshaler that
knows how to marshal all the arguments of those functions of the interface properly. The
interface marshaler actually performs the transportation, serialization, and deserialization
of the argument structures among the processes. COM’s architecture allows developers to
plug in their own marshalers for their own custom interfaces. Therefore, COM objects
can use these interfaces’ custom marshalers to transparently handle marshaling as if the
interface was supplied with COM. If a COM object supports IMarshal, it supports cus-
tom marshaling. The Microsoft JVM supports IMarshal, so it does some level of custom
marshaling for Java.

An example of custom marshaling is the Microsoft Active Data Connector (ADC), which
uses optimized marshaling to move an entire row set of OLE data, thus reducing network
traffic for accessing rows in a database.

Distributed Component Object Model (DCOM)

CHAPTER 20
447

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 447

Standard Interfaces
IUnknown is the ubiquitous interface. IUnknown is used for interface negotiations, life
cycle management, and containment and delegation. All COM objects must implement
IUnkown’s QueryInterface(), AddRef(), and Release() methods.

Interface negotiation is the ability to ask a COM object at runtime which other interfaces
it supports. Because all COM objects must implement the IUnknown interface, all COM
objects support interface negotiation. Therefore, COM clients can access any COM
object and use QueryInterface to determine which interfaces the COM object supports.
The ability to query the interface supported allows COM clients to decide, at runtime,
which interface to use.

QueryInterface allows the COM object to pass an interface pointer to other COM
objects, which don’t even have to be on the same machine. COM uses QueryInterface
to aggregate many COM objects. It allows components to evolve overtime and yet still
be backward compatible with older clients, while new clients are allowed to access new
features through new interfaces.

This interface negotiation feature gives COM architectural appeal. COM objects describe
their features at a high level of abstraction. This permits COM clients the ability to query
the COM object to see whether it supports a particular interface (a feature-set). Compare
this to a CORBA object’s single interface model. The ability of a COM client to request
the feature-set of a COM object allows for flexibility that you would expect for a compo-
nent object model. In other words, COM objects should be allowed to mature and devel-
op new features without breaking old clients.

Life cycle management is the ability to create and destroy components. IUnknown sup-
ports two methods for performing life cycle management: AddRef() and Release().
COM uses reference counting to control a COM object’s lifetime. The COM system is
not responsible for the life cycle of the object. Rather, the individual object is responsible
for its own life cycle. Therefore, reference counting works a lot like memory manage-
ment (that is, objects are destroyed when they’re no longer being used).

Non-CORBA Approaches to Distributed Computing

PART IV
448

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

NOTE

You probably won’t ever need to write your own custom marshaler because
DCOM/Java integration centers around IDispatch. IDispatch is a built-in inter-
face. Therefore, COM provides a marshaler for it. In addition, Microsoft provides
a special optimized marshaler for Java COM objects.

025 72315378 CH20 1.21.2000 2:10 PM Page 448

When clients first get an interface pointer to an object, they must call AddRef(). When
the clients are done with the interface pointer, they must call Release(). Therefore,
when the client is finished with the COM object, it calls Release(), and if the object
determines that there are no other clients, it will destroy itself. This puts a lot of respon-
sibility on the client—especially considering that in a distributed environment the client
machine may crash, be rebooted, turned off abruptly, or otherwise disconnected before
the COM client is able to call Release(). COM components can be connected to many
clients, in different processes on different machines, and the COM object has to wait for
all clients to release their reference before the COM object can be freed. Once all the
COM objects associated with a COM server are freed, the COM server can exit.

DCOM has many features for optimizing and enhancing the life cycle management of
remote COM objects. As mentioned earlier, clients might disconnect prematurely; there-
fore, remote operations need a way to tell whether the client is still alive. Pinging is one
way to detect whether clients are still around. On the server machine, each remote object
being hosted has a ping period. If the ping period ends without receiving a ping from the
client, that remote COM object can be terminated. The ping period is approximately six
minutes in length. DCOM does not ping per COM object. Rather, it uses sets of pings
grouped by certain criteria for optimization.

No chapter about Java DCOM would be complete without a section on Dispinterface
and IDispatch. COM objects can support a Dispinterface, which is a dispatch inter-
face. Dispinterface works differently from a vtable interface. vtable interfaces, or
regular COM interfaces, have some limitations. COM clients of such interfaces have to
bind to the interface methods based on absolute locations of the methods in the vtable.
This scheme works for compiled code such as C++, but it does not work for interpreted
languages such as VBScript, Python, JScript, and Perl.

Of course, vtable access is much faster; the only downside is that creating your own
custom vtable-based interface requires you to write your own custom marshaler, which
is less than straightforward with Java. On the other hand, if you use IDispatch and a
Dispinterface, you don’t have to worry about custom marshaling. IDispatch is a stan-
dard built-in interface; therefore, Microsoft provides the marshaling.

The speed issues are really just noise if you’re doing remote servers. If you’re doing
remote servers, most of your speed issues are due to network latency. CORBA, DCOM
using IDispatch, and RMI execute at similar speeds. Here’s an example of what a
Dispinterface might look like:

dispinterface HelloCOM
{
properties:

[id(0)] long count;

Distributed Component Object Model (DCOM)

CHAPTER 20
449

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 449

methods:
[id(1)] BSTR getHelloMessage(void);

};

The count property is assigned a dispID of zero, and the getHelloMessage method is
assigned a dispID of one. A COM client, called an Automation controller, can use
dispIDs to get/set properties and to invoke the method call. In the code examples, we’re
going to write a Java program that uses IDispatch to do just this. In the sample program,
instead of accessing a COM object directly through a wrapper class, we control a COM
object by passing dispID to IDispatch. IDispatch has the methods for invoking meth-
ods and properties given a dispID using IDispatch::Invoke.

As referenced in Table 20.2, a variant is a class that can contain any kind of data. Invoke
uses variants to pass arguments to methods, to return properties and for method returns.
We’ll cover variants further in the code examples.

TABLE 20.2 IDispatch METHODS FOR ACCESSING A Dispinterface

Member Method Description

Invoke Gets or sets a property or invokes a method given a dispID. You can
pass an array of variants for arguments. Invoke returns a variant.

GetIDsOfNames Given a string representing the name of a property, method, or
method argument, it returns the corresponding dispID.

GetTypeInfoCount Determines whether Type info is available.

GetTypeInfo Retrieves Type information.

If all this talk about IDispatch and Dispinterface has you worried, relax. As this chap-
ter has mentioned many times before (and will mention again), if you use the Microsoft
JVM and Java SDK, you don’t have to write any IDL. The Microsoft JVM makes all
Java classes look like COM objects and all COM objects look like Java classes. We’ll
explore how the Microsoft JVM does this magic in the next section.

Java and DCOM
Java programmers do not need to create interface definition files (IDL/ODL) to create
COM objects. Also, special tools such as IDL compilers are not necessary.

Microsoft’s JVM allows you to create two types of COM objects with Java:

• COM objects that implement only IDispatch and do not contain any type informa-
tion

Non-CORBA Approaches to Distributed Computing

PART IV
450

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 450

• COM objects that implement any COM interface (that is, custom, dual, or
Dispinterface)

The first type that uses IDispatch, as mentioned before, is great for scripting languages
such as Perl, Python, VBScript, JScript, and so on. The Microsoft JVM implements
IDispatch automatically for all Java objects. Microsoft refers to this feature as
AutoIDispatch. Before AutoIDispatch, Java programmers had to write their own IDL
files. Now all we have to do is create a Java class. Any public methods or member vari-
ables are automatically exposed via Automation. Anything that makes my job easier, I
like.

The second type of COM object is for use with strongly typed languages such as C++
and Java.

To implement a COM object in Java using AutoIDispatch, follow these steps:

1. Write a Java class and compile it. The class must have public members and meth-
ods.

2. Register the class using JavaReg.

There may be times when you don’t want a class to be scriptable—perhaps to hide cer-
tain properties to the outside world—yet still make them accessible from other Java
classes internal to the package. The Microsoft JVM allows you to turn off the
AutoIDispatch on a class-by-class basis. The class that doesn’t want scripting just has to
implement the com.ms.com.NoAutoScripting interface. This interface, like
java.io.Serializable, doesn’t contain any methods. Like Serializable, it tells the
VM that this object can be serialized. NoAutoScripting just tells the VM not to expose
IDispatch for this class.

Distributed Component Object Model (DCOM)

CHAPTER 20
451

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

NOTE

Visual J++ 6.0 automates COM creation. If you create a COM DLL in Visual J++
6.0, the inproc server name is not msjava.dll. Instead, the name of the DLL is
NameOfClass.dll. There’s an example on how to use Visual J++ to create COM
objects in the coding exercises.

This completes our survey of COM/DCOM architecture. We now take a look at some of
the differences between COM/DCOM and other distributed object technologies, such as
RMI and CORBA. We then move on to the coding examples.

025 72315378 CH20 1.21.2000 2:10 PM Page 451

COMPARING DCOM TO RMI AND CORBA
I don’t think it’s fair to advocate any one distributed object framework (DCOM, RMI, or
CORBA) over another, because each object framework has advantages that give it an
edge for certain types of applications. Also, using one distributed object framework does
not preclude using another.

Non-CORBA Approaches to Distributed Computing

PART IV
452

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

NOTE

Different CORBA ORB vendors implement different CORBA services, and not all
CORBA service implementations are equal. This comparison does not point out
specific differences between vendors. Therefore, as we cover CORBA services,
features, and architecture advantages, make sure the ORB you’re considering
supports the particular services, features, and implementations you need—don’t
base buying a particular CORBA ORB on this discussion alone.

Ease of Development and IDL
Java’s transparent DCOM support clearly gives it an architectural advantage—namely,
you don’t have to learn another language to create DCOM/Java components. Conversely,
when you develop a CORBA component, you typically start by creating an IDL file.
Then you have to derive your client and server from another class. However, it should be
noted that there are tools, such as Inprise’s Caffeine, that allow you to reduce some
CORBA complexity by allowing you to define your interfaces in Java.

As mentioned earlier, you don’t need IDL to create Java DCOM components. However,
there are times when you do need to create IDL files (for example, when you want to
provide custom marshaling, or you want to create vtable components). Concerning com-
parisons of the IDL languages (Microsoft’s IDL to CORBA’s IDL), it has been stated
that CORBA’s IDL seems more thought out and easier to use. CORBA (possibly) has a
cleaner IDL syntax because it doesn’t extend an existing IDL like Microsoft extends
RPC IDL for DCOM.

Java’s RMI has no IDL; it does not need one because it provides only Java-to-Java com-
munication. You define your remote interfaces in Java. You then create an implementa-
tion class in Java that implements the remote interface you defined. Although it doesn’t
have an IDL to deal with like CORBA does, the inheritance model of defining a remote
object is a bit more complicated than the DCOM approach. RMI is bit less complicated
than the CORBA approach (unless you use something like Inprise’s Caffeine). Again, I
have seen demonstrations of IDEs that make RMI development fairly trivial. (I’ve always
used Notepad, Javac, and RMIC to do RMI development.)

025 72315378 CH20 1.21.2000 2:10 PM Page 452

There seems to be a lot of work by various companies to make CORBA and RMI devel-
opment easier. Therefore, any advantage DCOM has in development ease of use may be
short lived.

Directory Services
RMI is currently lacking a solid default directory service. However, there are third-party
tools that implement Java naming and directory interface, which give RMI a robust direc-
tory service. CORBA has an advanced directory service called COSNaming, which pro-
vides transparent location of objects, depending on your CORBA vendor COSNaming
implementation. DCOM’s current directory service lacks a truly distributed transparent
nature like CORBA’s COSNaming. This lack of support appears to be more of different
approaches to solve a similar problem than a missing feature or an architecture
advantage.

However, in Windows NT 5.0, DCOM can be used in connection with Active Directory.
Activation-related information about a component will be stored in the Active Directory
of the domain controller. The COM libraries will get activation information, such as the
remote server name, transparently from the Active Directory. Active Directory will pro-
liferate configuration changes to all the clients that are registered to receive a compo-
nent’s information.

Marshaling
RMI has good support for marshaling—both in ease of use and overall feature-set. With
RMI, if an object defines a remote interface, it’s passed by reference. Passed by reference
means that when the client calls a method of a remote interface, the call is marshaled
over the wire. However, RMI can pass objects by value.

Imagine defining a remote hashtable type of class that contains results to a query. Every
time your client accesses the remote hashtable object, the call goes over the wire, which
can really slow things down because of the latency of the network. RMI gives you anoth-
er option. If you pass a parameter to a remote method and that parameter does not imple-
ment a remote interface, and that parameter is an instantiation of a class that implements
Serializable, then the parameter will be marshaled over the network. If the code for the
parameter is not available on the client machine, RMI will load the class from the remote
machine. Therefore, not only are the values moved across the network, but the code that
accesses those values is moved across the network as well. In essence, you’ve moved
code and data such that the object has been relocated to the client’s process.

Therefore, RMI has an architectural advantage at doing marshaling. Neither CORBA nor
DCOM approaches this technique of moving the code from one JVM to another, but both

Distributed Component Object Model (DCOM)

CHAPTER 20
453

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 453

allow you to pass by value. By default, DCOM, like CORBA, uses “pass by reference,”
whereas RMI allows both “pass by reference” and “pass by value.” In addition, RMI
allows to you to pass code.

Future versions of CORBA will have support for pass by value. It’s possible to create
your own pass by value support with DCOM, but it isn’t as straightforward as the RMI
approach. To perform pass by value in DCOM, you need to define your own custom
vtable interface, and you need to write you own custom marshaler for the custom
vtable, which involves using C programming and Raw Native Interface (RNI). There are
ways around the DCOM marshaling issue. For example, you could pack all class data in
a string and then write your own unpacker, but this is not an elegant solution.

Security and Administration
As far as security goes, DCOM has some clear architecture advantage with its tight inte-
gration with the NT security model. This gives DCOM an edge in administration and
ease of development. Therefore, the same or similar tools that are included with the OS
can manage DCOM security. In other words, if you know how to administer Windows
NT, you can learn to administer DCOM easily.

Interoperability and Bridging
It seems RMI is moving closer to interoperating with CORBA, which is a big plus for
RMI and CORBA. Of course, RMI interoperating with CORBA will degrade some of its
functionality (you would have to give up its most innovative feature, which is its ability
to transfer code and data in a pass by value call).

Already there’s a lot of bridging technologies from one distributed object architecture to
another. For example, IONA has a CORBA/COM bridge that takes a CORBA object and
makes it appear as an ActiveX control, which can then be embedded easily in a Visual
Basic program (or a Visual J++ or Delphi program, for that matter). Here’s another
example: The forthcoming CORBBeans implementation will allow CORBA distributed
objects to look like JavaBeans on the client. This, in effect, gives CORBA a local compo-
nent model and will make CORBA “toolable” on the client. Making CORBA toolable
makes it easier to use CORBA in applications such as Visual Basic by using the ActiveX
bridge to bridge the CORBA bean to look like an ActiveX control.

Persistence
CORBA seems to have a fairly straightforward persistence mechanism for reconnecting
to unique instances of an object. Java and DCOM don’t seem to provide a straightfor-
ward approach to handling persistence. DCOM does provide a flexible way to manage

Non-CORBA Approaches to Distributed Computing

PART IV
454

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 454

persistence, yet it’s not as implicit as the CORBA technique. Therefore, at this point in
time, it’s more complex to implement.

The Component Revolution
Declaring one technology the winner, and any of the other technologies the loser, is
impossible. There’s something else of greater importance that all these technologies sup-
ply—the plumbing for the component revolution.

All these technologies enable the component revolution, which allows companies to
assemble frameworks of components into working solutions. Most information technolo-
gy (IT) shops have the option to buy commercial off-the-shelf components on the basis
of what functionality they provide, not on the basis of what distributed object technology
they were built with. The IT shops have this option because there are enough bridging
tools to bridge between any two technologies at least half a dozen ways.

The component revolution is based on the following precepts:

• Whenever possible and feasible, buy before you build.

• Do not reinvent the wheel. Be distributed object/component architecture agnostic
and buy the components that best fit your organization’s objectives.

Following these precepts accomplishes the following:

• It allows IT shops to embrace and extend frameworks. Instead of focusing on the
mundane, they can focus on the IT tools that will give the organization the compet-
itive edge.

• It saves support and development costs.

• It invests money in the component industry, which will grow and prosper, thus
pushing more applications features into the mundane space and allowing more
innovation and creation of cutting-edge IT tools.

Using a Model That Works
Splitting hairs over architecture issues may be the wrong way to pick a distributed object
framework. Rather, which component model you use may depend heavily on the talent
pool at your company. If you have a department full of Visual Basic programmers, you
should consider using DCOM mostly, and RMI and CORBA when you have to connect
to third-party components and frameworks. Conversely, if you use Java a lot on both the
middle-tier and the client, you might consider using RMI and only use COM when you
want to capitalize on a huge install base of applications that have ActiveX Automation
support. If you need to connect to a lot of legacy applications that support CORBA,
CORBA is the obvious choice.

Distributed Component Object Model (DCOM)

CHAPTER 20
455

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 455

DCOM is an excellent tool to have in your arsenal of tools for creating distributed appli-
cations, as well as for enabling the next revolution in history: the component revolution.
Using the Microsoft Java SDK, you can easily write both DCOM clients and DCOM
servers, and you can integrate with existing applications and in-house components devel-
oped by Visual Basic, Delphi, and Visual C++ developers. You can still use CORBA,
DCOM, and RMI from the Microsoft JVM, so you don’t have to select just one distrib-
uted object technology.

COM AND DCOM CODING EXERCISES
The strategy of the code examples is to keep them simple. The intent is to show how to
expose and use COM objects from Java. We’ll explore how what’s covered in the archi-
tecture section applies to the code example. If you do the code examples, you’ll under-
stand the architecture better.

Without further ado, let’s create our first COM program.

Creating a Java COM Object
This code example assumes you have Microsoft’s Java SDK 3.1 or higher. The Microsoft
Java SDK is freely downloadable from its Web site. If you don’t have the Microsoft Java
SDK, go to www.microsoft.com/java and get it. Once you’ve downloaded it, follow the
install instruction closely.

For the first code example, we’re going to just create a simple COM server; then we’re
going to register that COM server in the system Registry so other programs can find it.

In your favorite editor, enter the code in Listing 20.1.

LISTING 20.1 CREATING THE HelloCOM COM PROGRAM

class HelloCOM
{
public int count = 0;

public String getHello()
{
count ++;
return “Hello from COM “ + count;

}

Save this in a file as HelloCOM.java.

Now you need to compile it. Use the Microsoft compiler; from the command line, type
this:

Non-CORBA Approaches to Distributed Computing

PART IV
456

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 456

C:\jsdk>jvc HelloCOM.java

Next, you need to register it with JavaReg by typing the command exactly as shown in
the following command line. If successful, you should get a dialog box, as shown in
Figure 20.4.

C:\jsdk>javareg /register /class:HelloCOM /progid:Acme.HelloCOM

Distributed Component Object Model (DCOM)

CHAPTER 20
457

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

FIGURE 20.4
OLE/COM Object
Viewer HelloCOM
Registration dia-
log box.

JavaREG is tool for registering Java classes as COM components in the system Registry.
This tool also enables you to configure the COM classes you create to execute remotely.

You now need to copy the HelloCOM.class file to \java\lib in the Windows directory.
You’ll need to substitute drives and directories as needed:

C:\jsdk>copy HelloCOM.class d:\winnt\java\lib\HelloCOM.class

That’s it! You just created your first COM object. Remember, the only difference
between COM and DCOM, from the programmer’s perspective, is a few Registry set-
tings and the length of the wire. Let’s do some poking around and see this first hand.

Exploring COM with OLEVIEW
OLEVIEW is the OLE/COM object viewer; it is a development, administration, and test-
ing tool. You’ll use this tool extensively to browse the COM classes you create. Reading
the Registry with RegEdit is no fun, and it’s quite time consuming. OLEVIEW allows
you to easily see the Registry entries for the COM objects you create. It also allows you

025 72315378 CH20 1.21.2000 2:10 PM Page 457

to configure the COM classes you’re going to create. This includes distributed COM acti-
vation and security settings.

Non-CORBA Approaches to Distributed Computing

PART IV
458

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

NOTE

OLEVIEW comes with Visual J++, Visual C++, and the DCOM SDK. You likely
have OLEVIEW somewhere on your machine. If you can’t find it, you can down-
load it at www.microsoft.com/oledev/olecom/oleview.htm.

Another great feature of OLEVIEW is that it allows you to instantiate a COM class into
a COM object. This allows you to test the COM classes you create simply by double-
clicking their names in the OLEVIEW program. The list of interfaces of the classes you
create is displayed in OLEVIEW, and you can activate COM classes locally or remotely.
Here’s the bottom line: OLEVIEW is a real nice tool to know if you’re doing DCOM
development.

With the above in mind let’s work with OLEVIEW to get a feel for how HelloCOM is
configured in the registry.

1. If OLEVIEW is on your path, type OLEVIEW at the DOS prompt. Otherwise, find it
and execute it.

2. Select View, ExpertMode.

3. Select Object, CoCreateInstanceFlags, CLSCTX_INPROC_SERVER.

4. Expand the node labeled Grouped by Component.

5. Expand the Java Classes mode under Grouped by Component.

6. Find the class you created in the previous exercise (HelloCOM).

7. Click this node once.

NOTE

The CLSCTX_INPROC_SERVER component will not run as a remote server. Local
and remote servers run in separate processes. Inproc is associated with a DLL, so
when the class is registered, it’s associated with the DLL that runs Java classes
(namely, msjava.dll).

Notice that under the Registry tab on the right side, the CLSID and AppID are listed.
When we executed JavaREG earlier, we used the following for the class and ProgID
arguments:

/class:HelloCOM /progid:Acme.HelloCOM

025 72315378 CH20 1.21.2000 2:10 PM Page 458

Notice how the names map to this ProgID.

Now let’s look at the information we can glean from the Registry tab:

• The inproc server is listed as msjava.dll.

• The threading model is specified as Both.

• The Java class associated with this COM object is HelloCOM.

• The ProgID is Acme.HelloCOM.

Think about all the ways you can use this information if something goes wrong. OLE-
VIEW is a great tool for debugging configuration problems.

Now let’s test this COM object. When you double-click the HelloCOM node, OLEVIEW
will try to instantiate the COM class associated with the CLSID listed. The following
events will happen when you double-click this node:

• OLEVIEW takes the ProgID and finds the CLSID (remember, the CLSID is a 128-
bit GUID that identifies our COM class) for this COM class.

• OLEVIEW calls CoCreateInstance, passing it the CLSID and the
CLSCTX_INPROC_SERVER.

• The COM library loads msjava.dll and negotiates with its IFactory to get a COM
object representing our Java class.

The bottom line is that OLEVIEW is actually loading a live version of our class. This is
a powerful tool for testing classes.

Next, notice that the node has been expanded to show all the interfaces that this COM
class supports. Notice also that it supports the following interfaces:

• IUnknown. Interface negotiation and life cycle management

• IDispatch. Dynamic invocation for scripting languages

• IMarshal. Custom marshaling

You should be familiar with these interfaces from the earlier discussion of the architec-
ture. From there, we can ascertain that Microsoft has defined some kind of custom mar-
shaler to marshal parameters to methods and return types between processes and
machines.

Now, double-click IDispatch. A dialog box should pop up. Press the View Type Info
button. An ITypeInfo viewer should pop up. The type information is missing, as you can
see in Figure 20.5, because we didn’t create a type library.

Distributed Component Object Model (DCOM)

CHAPTER 20
459

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 459

Type libraries are good to have around. Visual Basic has a tool called Object Browser in
its IDE that uses type libraries to gather meta data on components. This tool is so useful
that if a component provides these type libraries, developers will use them extensively.
Visual Basic even has a feature that as you type an object’s variable name in the editor,
the editor gives you a list of methods that the object supports. This feature is called intel-
lisense, and it makes development easier. Therefore, we definitely want to include type
libraries. But how? Keep reading.

Scripting the HelloCOM Object
We’re going to use the COM server you just created with Visual Basic.

This code example assumes you have some form of scripting language that works as an
Automation controller. If you don’t have such a language, don’t worry about it. The next
example shows you how to create an Automation controller in Java.

I chose Visual Basic for this example because many people know how to use it, and it’s
widely available. LotusScript is similar in syntax to Visual Basic. If you can’t find a
scripting language that suits your fancy, don’t sweat it. Just skip the scripting section of
this example.

Non-CORBA Approaches to Distributed Computing

PART IV
460

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

FIGURE 20.5
The OLEVIEW
dialog box’s view
type information.

025 72315378 CH20 1.21.2000 2:10 PM Page 460

From your favorite Automation controller scripting language, add a button to a form
called Command1. Then add the code from Listing 20.2.

LISTING 20.2 SCRIPTING THE HelloCOM OBJECT WITH VISUAL BASIC

Private Sub Command1_Click()
Dim helloCOM As Object
Dim count As Integer

Set helloCOM = CreateObject(“Acme.HelloCOM”)
MsgBox helloCOM.getHello
count = helloCOM.count

End Sub

Now run the program and press the Command1 button. Your output should look like
what is shown in Figure 20.6.

Distributed Component Object Model (DCOM)

CHAPTER 20
461

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

NOTE

Any Automation-capable scripting language will do. You can use Lotus Script,
which comes with Notes and Lotus 1-2-3, VBScript, and Visual Basic for
Applications (VBA), which comes with Word and Excel. Two of my favorite
Automation-capable scripting languages are Perl and Python. Both Perl and
Python provide examples for doing Automation. They’re freely available at
www.perl.org and www.python.org, respectively.

FIGURE 20.6
Output of
HelloCOM using
Visual Basic
scripting.

Notice that we use Visual Basic’s CreateObject to instantiate the COM class into an
object. Also notice that we pass CreateObject the ProgID of the COM class. You can
probably guess what Visual Basic is doing underneath, but let’s recap to make sure:

• CreateObject takes the ProgID and finds the CLSID for this COM class in the
system Registry.

• CreateObject then calls CoCreateInstance, passing it the CLSID and the CLSC-
TX_INPROC_SERVER, which tells CoCreateInstance to create this object as an in-
process COM server.

025 72315378 CH20 1.21.2000 2:10 PM Page 461

• The COM library loads msjava.dll and negotiates with IUnknown to get an
IFactory interface.

• The COM library then uses the IFactory to get a COM object representing the
Java class. (Actually, at this point, IFactory returns an IDispatch that represents
the interface to the COM object.)

See Figure 20.7 for a diagram of this sequence.

Non-CORBA Approaches to Distributed Computing

PART IV
462

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

FIGURE 20.7
Visual Basic
sequence dia-
grams.

CreateObject
(Acme.Hello DCOM)

msgBox

Invoke (“get hello”)

CoCreate Instance
(CLSID, INPROC)

Create Instance

Create

Create

Load MSJava.dLL

QueryInterface
(FactoryID)

(HelloTest) (VB Runtime) (ComLIB) (IU MS Java.dll Kown) (IFactory) (IDispatch)

VB Sequence Diagram

Now let’s consider what happens when the code example makes the following call:

MsgBox helloCOM.getHello

Here we’re taking what helloCOM.getHello returns to use as a parameter to MsgBox.
MsgBox is just a Visual Basic method that pops up a message box with a string that you
give it. Underneath, Visual Basic is calling the IDispatch.Invoke method with the name
of the method we defined in the Java class getHello. IDispatch.Invoke passes back a
return type of Variant. A variant, as you’ll remember from the architecture section, can
hold any type of value. Visual Basic then works with the variant to see what it contains
(in this case, it contains a string).

You may wonder why you’re being prepped with all this background information.
AutoIDispatch does not provide a type library. If it did, you could use JActiveX (a tool
from the Microsoft Java SDK that wraps COM objects into Java classes) to create wrap-
per functions around the COM class you created (which we cover in the code examples).
Without JActiveX, creating wrapper classes can be a little tough.

025 72315378 CH20 1.21.2000 2:10 PM Page 462

Using Java and “Raw” Dispatch Calls
Actually, using Visual Basic to do Automation is kind of like cheating, considering this is
a book on Java. However, this demonstrates how easy it is to control Java from scripting
languages.

You could do the preceding example in Java; however, we did not create a type library.
(We’ll go into the various ways of creating type libraries in other exercises.) For now the
question is this: How are you supposed to use this class if you can’t have JActiveX gen-
erate a wrapper class via a type library?

The obvious recommendation is just to use this as a regular Java class (use it like any
other java class and import HelloCOM). Although efficient, this technique does not teach
you how to work with Automation objects that do not have a type library. Also, this tech-
nique does not work when you do remote objects, which is covered in the next example.

Distributed Component Object Model (DCOM)

CHAPTER 20
463

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

NOTE

In order to do this exercise, you need the files from the examples that ship with
Microsoft Java SDK 3.1.

So let’s go through the “Raw” Dispatch Example step by step.

1. Copy the HelloCOMController.java file from the CD-ROM to a new directory.

2. Go to RegEdit and copy the CLSID for this class. You can do this by searching for
“HelloCOM” with the RegEdit utility. Use Find from RegEdits menu bar. When
you find “HelloCOM,” select Edit and copy the CLSID to the clipboard.

3. Put the CLSID in the source file like so (note that your CLSID will be different):

private final String app_id = “{68068FA0-5FF5-11D2-A9AF}”;

Now find the Java SDK examples. These are in the Microsoft Java SDK 3.1 directory:

\Samples\DCOM\Dispatch\Sample\util

The two files you want are DCOMLib.class and DCOMParam.class. Copy all the Java
*.class files from this directory to your Windows directory in the following path:

\Java\Lib\sample\util

This puts the files you need in the class path.

Listing 20.3 is on the CD-ROM. Copy this file into the class files directory.

025 72315378 CH20 1.21.2000 2:10 PM Page 463

LISTING 20.3 THE HelloCOMController CLASS

import com.ms.com.Variant;
import com.ms.com.Dispatch;
import java.util.Vector;
import sample.util.DCOMLib;
import sample.util.DCOMParam;

public class HelloCOMController
{

//CLSID shorten for appearance
private final String app_id = “{68068FA0-5FF5-11D2-111-111111}”;
private final String serverName = “localhost”;

public static void main(String[] args)
{

HelloCOMController helloController =
new HelloCOMController();

}

public HelloCOMController()
{

Object helloCOM = null;
String strHello;
int getHelloID;
Variant [] arguments;

DCOMParam appId = new DCOMParam(app_id);

appId.setServerName(serverName);

try{
helloCOM = DCOMLib.CoCreateInstanceEx(appId);

}catch(Exception e){
System.out.println(“HelloClient: Exception “+ e);

}finally{
}

arguments = new Variant[0];
getHelloID = Dispatch.getIDOfName(helloCOM,”getHello”);

Variant retVal = Dispatch.invokev(helloCOM,
getHelloID,
Dispatch.Method,
arguments,
null);

strHello = (String)retVal.toString();

System.out.println(“The hello COM servers says: “ +
strHello);

Non-CORBA Approaches to Distributed Computing

PART IV
464

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 464

}

}

Now you need to compile the code. From the command prompt enter

jvc HelloCOMController.java

Finally, run it by typing

jview HelloCOMController

You should get a message in the console that says

The hello COM server says: Hello from COM 1

Let’s do an analysis on the following snippet from the earlier code:

import com.ms.com.Variant;
import com.ms.com.Dispatch;

First, we’re importing two Microsoft classes that are used a lot with COM: Variant and
Dispatch.

Variant is used to map the Automation Variant type to Java. Variant can hold any
value, int, string, float, double, DATE, or even an IDispatch. You need the Variant
class to work with COM components that do not supply type libraries. Variant is used
exclusively by Dispatch.Invoke to pass both return values and arguments. Variant
allows you to change what types a variant has. Most Variant methods fall into two
types: coercion (toTypeXXX) and access (getTypeXXX and putTypeXXX).

The Dispatch class, a class with only static members, allows COM clients written in
Java to invoke methods and get/set properties of Automation objects. Automation objects
are COM components that support the IDispatch interface, as discussed in the architec-
ture section. IDispatch includes a lot of methods, but all of them boil down to two capa-
bilities:

• getIDsOfNames, which maps methods or property names to dispids

• invokev, which invokes methods and get/set properties

We’ll use forms of both of these methods in this example. The IDispatch class has many
forms of these two methods. This helps developers with default types, as well as doing a
subset or a frequently used superset of this functionality.

The two other classes used are DCOMLib and DCOMParam:

import sample.util.DCOMLib;
import sample.util.DCOMParam;

Distributed Component Object Model (DCOM)

CHAPTER 20
465

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 465

These classes are included with the examples that ship with the Microsoft Java SDK 3.1.
Microsoft used its J/Direct tool to create the DCOMLib classes that allow you to access the
COM library directly. These are not supported classes; however, if enough people use
them, they will probably either be supported or their functionality will be included in the
core Microsoft API. (This happened in the past with MFC for VC++. So many people
used the sample classes that they became part of MFC in future releases.)

DCOMLib contains methods for helping create DCOM objects more easily. It uses J/Direct
for importing the required COM functions and for mapping C structures needed to create
COM objects. It has one static function that we’ll cover:

public static IUnknown CoCreateInstanceEx(DCOMParam param)

DCOMParam simplifies the parameters used to create a DCOM object with
DCOMLib.CoCreateInstanceEx. It fills in common default value parameters that you
would pass to DCOMLib.CoCreateInstanceEx. Here’s an abbreviated list of some of the
methods DCOMParam defines:

public void setServerName(String server)
public String getServerName()
public void setUser(String user)
public String getUser()
public void setDomain(String domain)
public String getDomain()
public void setPassword(String password)
public String getPassword()
public int getHRESULT()

All these features will be useful when we create remote objects. As you can see by this
list of methods, you can manipulate the user name and password you use to connect. You
can also specify to which server on which domain you should connect. This is a nice
class to have around.

Let’s look more closely at HelloCOMController. This constructor has five local vari-
ables:

• helloCOM holds the Dispatch pointer to an instance of the HelloCOM COM class
we created in the first code example.

• strHello contains the hello string that we’re going to retrieve using the
getHelloString method from the HelloCOM COM class we created previously.

• getHelloID holds the dispatch identifier of the method we want to call (getHello).

• Variant[] arguments holds the list of arguments to our method (which in this case
is none).

• The DCOMParam appID holds the parameters for the call to CoCreateInstanceEx.

Non-CORBA Approaches to Distributed Computing

PART IV
466

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 466

Before we create the COM object, we must set the DCOMParam class used for the call to
CoCreateInstanceEx. HelloCOMController initializes the class DCOMParam with the
app_id we took from the Registry in step 1. Next, we’ll set the server to the local server
string constant. Here’s a snippet of what the code for this looks like:

Distributed Component Object Model (DCOM)

CHAPTER 20
467

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

NOTE

HelloCOMController uses two similar, but separate, variables: appID and app_ID.
app_ID is a String constant and appID is an instance of DCOMPARAM class.

// Create the DCOMParam and initialize it to
// the app_id we got out of the registry in step one
//

DCOMParam appId = new DCOMParam(app_id);

// Set the server to the server name
// server name equals localhost
//

appId.setServerName(serverName);

// Create the helloCOM COM Object
// Pass the appId to CoCreateInstanceEx
//

helloCOM = DCOMLib.CoCreateInstanceEx(appId);

Now that HelloCOMContoller has an IUnknown representing the HelloCOM COM object
class, it’s time to invoke its getHello method. First, we initialize arguments to a zero-
length Variant array, because the getHello method has no arguments. Next, we get the
Dispinterface ID of the getHello method. Then we use this ID to invoke the method
using Dispatch.invokev:

// We don’t need any arguments for “getHello”.
//

arguments = new Variant[0];

// Get the dispinterface identifier for “getHello”
//

getHelloID = Dispatch.getIDOfName(helloCOM,”getHello”);

// Invoke the dispinterface method
// The return type is returned as a Variant
//

Variant retVal = Dispatch.invokev(helloCOM,
getHelloID,
Dispatch.Method,
arguments,
null);

025 72315378 CH20 1.21.2000 2:10 PM Page 467

// Convert the Variant to a string
//

strHello = (String)retVal.toString();

//Write the hello message out to the console.
//

System.out.println(“The hello COM servers says: “ +
strHello);

Creating a Java DCOM Object
In this exercise, we’re going to create a remote COM object. This exercise is a duplicate
of the first. We’re going to use a different class name than the HelloCOM Java class. The
class name will be HelloDCOM. This is so you can compare the Registry settings of
HelloDCOM to HelloCOM in the next exercise.

As you did in the first example, using your favorite editor, enter the code in Listing 20.4.

LISTING 20.4 CREATING THE HelloDCOM DCOM OBJECT

class HelloDCOM
{
public int count = 0;

public String getHello()
{
count ++;
return “Hello from COM” + count;

}
}

Also, as before, you need to compile. Use the Microsoft compiler, like so:

C:\jsdk>jvc HelloDCOM.java

Next, you need to register it with JavaReg:

C:\jsdk>javareg /register /class:HelloDCOM /progid:My.HelloDCOM /surrogate

The only real difference in this step to what you did in the first exercise is the addition of
the /surrogate parameter, which is essential for doing remote objects. The JavaReg
/surrogate parameter allows the system-provided surrogate process to wrap the msja-
va.dll file in a process. This is needed because otherwise the DLL would have to run
inproc, which can’t be used with remote objects.

Again, as before, you need to copy this HelloDCOM.class file to the Windows directory:

C:\jsdk>copy HelloDCOM.class d:\winnt\java\lib\HelloDCOM.class

Non-CORBA Approaches to Distributed Computing

PART IV
468

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 468

To test this setup, let’s run the OLEVIEW program from the second exercise. Go to the
HelloDCOM class and try to instantiate. This will test to see if everything is working okay.

From OLEVIEW, select View.ExpertMode and also set the Object.CoCreateInstance
flags to CLSCTX_LOCAL_SERVER and CLSCTX_REMOTE_SERVER.

Distributed Component Object Model (DCOM)

CHAPTER 20
469

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

NOTE

It’s essential that CLSCTX_INPROC_SERVER is not selected.

Now expand the Java Classes node. Then expand the Class HelloDCOM node. If the node
opens, then the COM class you created was instantiated to a COM object. Now compare
all the parameters and settings in the Registry with the settings to HelloCOM. Go through
the steps from the second exercise with HelloDCOM.

To actually use the COM object remotely, you’re going to need to get familiar with
another tool. The name of this tool is DCOM Configuration (DCOMCNFG). DCOMCN-
FG is included with DCOM for Windows 95 and Windows NT with Service Pack 2
(SP2) or Service Pack 3. You can use DCOMCNFG to set application properties, such as
security and location. On the computer running the client application, you must also
specify the location of the server application that will be accessed or started. For the
server application, you’ll specify the user account that has permission to access and start
the application to the client computer.

Configuring the Server
Here are the steps needed to configure the server:

1. At the DOS prompt, type DCOMCNFG (or launch it any way you prefer; it’s in the
Windows \System32 directory).

2. Select Java Class: HelloDCOM in the Applications tab’s Application list box.

3. Double-click Java Class: HelloDCOM or press the Properties button.

4. Another dialog box pops up called Java Class: HelloDCOM. Ensure that the words
“DLL Surrogate” appear next to the application type in the General tab. This is
required for remote operation of Java classes.

5. Go to the Security tab.

6. Select the Use Custom Access permission.

7. Press the Edit button to edit the access permissions.

8. Add the user name with the Add button. (Press Show Users in the Add Users and
Groups dialog box.)

025 72315378 CH20 1.21.2000 2:10 PM Page 469

9. Set their permissions to Allow Access in the type of permission.

10. Select the Use Custom Launch permission.

11. Press the Edit button to edit the access permissions.

12. Add the user name with the Add button. (Press Show Users in the Add Users and
Groups dialog box.)

13. Set their permissions to Allow Access in the type of permission.

Configuring the Client
Here are the steps needed to configure the client:

1. Run the JavaReg tool on the client machine. The following line is entered as a con-
tinuous line at the DOS prompt without a line break:
C:\jsdk>javareg /register /class:HelloDCOM /progid:My.HelloDCOM
/clsid:{CLSID} /remote:servername

2. Plug in the value of the CLSID to the 128-bit CLSID associated with this class.
You can get this value by looking it up in OLEVIEW.

3. Set servername to the name of your remote machine.

Here’s an example of what it might look like:
javareg /register /class:HelloDCOM /progid:My.HelloDCOM
/clsid:{064BEED0-62FC-11D2-A9AF-00A0C9564732} /remote:azdeals08

4. Next, you can use OLEVIEW on the client to ensure that you can connect to the
remote server. This step should be familiar to you by now. This is the third time
we’ve used OLEVIEW. Go through the steps from the second exercise with OLE-
VIEW and note the differences between HelloDCOM on the client and HelloDCOM on
the server.

Testing the Configuration with OLEVIEW
To test this setup, let’s run the OLEVIEW program (again) from the second example.
You’re going to go to the HelloCOM COM class and try to instantiate it into an object just
like you did before. This will test to see if everything is working okay:

1. Run OLEVIEW on the client machine.

2. Select View.ExpertMode and also set Object.CoCreateInstance flags to
CLSCTX_REMOTE_SERVER.

3. Expand the Java Classes node. Then expand the Class: HelloDCOM node. If the
node opens, then the COM class you created was instantiated to a COM object.
This essentially tests that you have everything running okay.

Let’s recap what this actually does from the architecture standpoint:

Non-CORBA Approaches to Distributed Computing

PART IV
470

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 470

1. OLEVIEW takes the ProgID and finds the CLSID for this COM class.

2. OLEVIEW calls CoCreateInstanceEx, passing in the CLSID and the
CLSCTX_REMOTE_SERVER.

3. Based on the CLSCTX_REMOTE_SERVER, the COM library knows that this object is on
a remote machine, so it looks up the name of the machine in the Registry.

4. At this point, the COM library starts interacting with the client SCM to load the
COM server.

5. The client SCM interacts with the server SCM.

6. The server SCM loads up the default DLL surrogate, which in turn loads
msjava.dll, which then loads the classes’ IFactory COM class.

7. The COM library on the server negotiates with IUnknown from the COM server to
get an IFactory interface.

8. The COM library will then use the IFactory to get a COM object representing the
Java class. (Actually, at this point, it returns an IDispatch that represents the inter-
face to the COM object.)

Demonstrating Access
From your favorite Automation controller scripting language, add a button to a form
called Command1 and then add the code shown in Listing 20.5.

LISTING 20.5 DEMONSTRATING HelloDCOM CLASS ACCESS

Private Sub Command1_Click()
Dim helloDCOM As Object
Dim count As Integer

Set helloDCOM = CreateObject(“My.HelloDCOM”)
MsgBox helloDCOM.getHello
count = helloDCOM.count

MsgBox helloDCOM.getHello
count = helloDCOM.count

End Sub

At this point, we pass the name of the COM class’s ProgID to CreateObject. The Visual
Basic runtime library initiates a similar process, as described in previous exercises.

Notice that we use Visual Basic’s CreateObject to instantiate the DCOM class into an
object. Also notice that again we pass CreateObject the ProgID of the COM class. By
this point you should be able to guess what Visual Basic might be doing underneath, but
let’s recap one more time:

Distributed Component Object Model (DCOM)

CHAPTER 20
471

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 471

• CreateObject takes the ProgID and finds the CLSID for this COM class in the
system Registry. The Visual Basic runtime notices that the object being requested
is a remote object.

• CreateObject then calls CoCreateInstance, passing it the CLSID which tells
CoCreateInstance to create this object as an remote process COM server.

• The local machine’s SCM contacts the remote machine’s SCM.

• The remote machine’s SCM uses the COM library to load msjava.dll in a surrogate
process and then negotiates with IUnknown to get an IFactory interface.

• The COM library then uses the IFactory to get a COM object representing the
Java class. (Actually, at this point, IFactory returns an IDispatch that represents
the interface to the COM object.)

• The IDispatch reference gets marshaled back to the local machine so that the VB
application (the COM client) can begin making calls.

Now use the example you created in the previous exercise as the client and do the fol-
lowing:

1. Go to RegEdit and copy the class ID for this class. The way to do this is to search
for HelloDCOM with RegEdit using Edit, Find.

2. Put the value of the CLSID in the file, like so:

private final String app_id = “{68068FA0-5FF5-11D2-A9AF}”;

Where CLSID is the class ID you copied from RegEdit.

3. Change the name of the server:

private final String serverName = NAME_OF_REMOTE_HOST;

Here, NAME_OF_REMOTE_HOST is the name of the machine with your COM class on
it.

4. Compile and run it on the client machine.

5. Finally, move it to a different client machine and run DCOMCNFG if you have to
set up security settings for the new client machine.

Before moving on, let’s summarize what we’ve covered to this point in the coding exer-
cises.

You know how to create a local COM server and a remote COM server. You know how
to test both a local and a remote COM server with OLEVIEW. You know how to config-
ure a COM server to be a remote server with JavaReg and DCOMCNFG. In addition to
this, you know how to access COM objects that do not supply type libraries.

Non-CORBA Approaches to Distributed Computing

PART IV
472

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 472

The next thing we’re going to cover is how to create type libraries and how to use those
type libraries to generate wrapper classes with JActiveX.

You can use JActiveX to generate wrapper classes from any COM class that supplies
type libraries and supports IDispatch. In other words, you can use JActiveX to access
Visual Basic programs that support Automation and OCXs that you build with Visual
Basic. For instance, you can use JActiveX to create class wrappers with any tool that’s
able to create COM objects and type libraries, such as Delphi, Visual C++, C++ Builder,
and others. You can even use it to wrap Excel Automation services. There’s an excellent
example of using Java to control Excel in the Samples directory of the Java SDK 3.1.
(I’ve personally used JActiveX to generate class wrappers for Outlook, so my application
was an Automation controller for Outlook.)

Creating a Type Library with Visual J++
In this section, you’re going to create a class using Visual J++ 6.0. If you do not have
Visual J++, don’t worry. We’ll cover how to create type libraries with Microsoft’s Java
SDK.

Start up Visual J++ 6.0. If the New Project dialog box does not come up, do the follow-
ing:

1. Go to File, New Project.

2. From the New tab’s tree, select node Visual J++ Projects, Components.

3. Select the COM DLL icon.

4. Name the project “Hello.”

5. Press the Open button.

Once the new project is opened, do the following:

1. Double-click Class1 in the Project Explorer view.

2. Rename the class to HelloVJpp. You have to do this in the edit window and the
Project Explorer view.

3. Add a public member called count, like so:

public int count = 0;

4. Add the following method (you can right-click HelloVJpp in the class outline,
which pops up an Add Method dialog box):

public String getHello()
{

return “Hello First VJ ++ program”;
}

Distributed Component Object Model (DCOM)

CHAPTER 20
473

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 473

Now, to compile it, go to Build, Build, and you’re done. You’ve created your first Java
component with a type library.

To show you that this does indeed have a type library, let’s fire up OLEVIEW and see it:

1. Start OLEVIEW.

2. Select Hello.HelloVJpp. Make sure CLSCTX_INPROC_SERVER is selected in the
Object menu. Notice that the project name became part of the ProgID.

3. Expand the node. This tests whether it was registered correctly.

4. Select Hello.HelloVJpp again.

5. Look at the Registry tag and notice that this has a TypeLib GUID.

6. If you know how to use Visual Basic (4.0 or higher), start it up and use the Object
Browser to view the COM class you created.

It does not get much easier than this to create a type library for a Java class.

For the next exercise, let’s use JActiveX to build wrapper classes around this COM class
you created with Visual J++. Note that you can use Visual J++ to do this. Select Project,
Add COM Wrapper to automatically wrap a COM object. (For those who do not have
Visual J++, we’ll do it the JActiveX way.)

Creating a COM Wrapper with JActiveX
Among other things, the JActiveX tool can generate class wrappers for COM objects
from type libraries. JActiveX generates *.java files for the COM classes and interfaces
that are in a type library. When you compile the Java classes into *.class files, the classes
allow a program to access COM objects. You deal with Java classes and interfaces
instead of IDispatch, which makes life a lot easier. You just import and use the classes
as you would any other Java class. You can specify a type library (*.tlb) or a dynamic
link library (*.dll) that contains the type library as a resource.

Non-CORBA Approaches to Distributed Computing

PART IV
474

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

NOTE

If you specify an .ocx file and leave out the /javatlb switch, the JActiveX tool
will create a JavaBean wrapper for the ActiveX control.

JActiveX generates Java source files that use com directives. These directives appear
inside comments. The jvc compiler knows how to take these com directives and create a
class that will call the COM class (from information JActiveX receives out the type
library). Here is an example of a COM directive:

025 72315378 CH20 1.21.2000 2:10 PM Page 474

/** @com.method(vtoffset=3, dispid=3, type=METHOD, name=”getHelloString”)
@com.parameters() */

Distributed Component Object Model (DCOM)

CHAPTER 20
475

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

NOTE

Only the newer compilers that ship with the Java SDK accept com directives
(1.023.3920 or later). Earlier versions of jvc won’t work.

Let’s use the JActiveX tool to create a wrapper around the last class that you created. Go
to the directory that contains the DLL you created in the last exercise.

Now run the JActiveX tool against it. The format for JActiveX is as follows:

jactivex /d output_path file_name_of_type_lib

Here, file_name_of_type_lib can be *.tlb, *.olb, *.ocx, *.dll, or *.exe, and the /d
option specifies the output directory path. Here’s an example of what this might look like
on your machine:

C:\jsdk>jactivex /d c:\jsdk\Exercise8 Hello.dll

This action should have created two files in your output directory:

HelloVJpp.java

HelloVJpp_Dispatch.java

These classes have a lot of warnings in them. Here’s an example:

// notifyAll UNMAPPABLE: Name is a keyword or conflicts
// with another member.
// /** @com.method()
// @hidden */
// public native void notifyAll();

You can ignore these warnings. Because the COM classes were created with Java classes,
a bunch of name conflicts exist. However, because we’re more interested in the custom
methods, we don’t really care.

Listings 20.6 and 20.7 are the listings for the classes. These listings are shortened for dis-
play. The full listings can be found on the CD-ROM.

LISTING 20.6 CLASSES FOR HelloVJpp

package hello;

import com.ms.com.*;

continues

025 72315378 CH20 1.21.2000 2:10 PM Page 475

import com.ms.com.IUnknown;
import com.ms.com.Variant;

/** @com.class(classid=D130B670-63C5-11D2-A9B0-00A0C9564732,
DynamicCasts) */

public class HelloVJpp implements
IUnknown,com.ms.com.NoAutoScripting,hello.HelloVJpp_Dispatch

{

/** @com.method()
@hidden */

public native String getHello();

public static final com.ms.com._Guid clsid = new com.ms.com._Guid(...);
}

LISTING 20.7 CLASSES FOR HelloVJpp_Dispatch

package hello;

import com.ms.com.*;
import com.ms.com.IUnknown;
import com.ms.com.Variant;

// Dispatch-only interface HelloVJpp_Dispatch
/** @com.interface(iid=13076493-63C6-11D2-A9B0-00A0C9564732,

thread=AUTO, type=DISPATCH) */

public interface HelloVJpp_Dispatch extends IUnknown
{
/** @com.method(dispid=100, type=METHOD, name=”getHello”, returntype=VOID)

@com.parameters([type=STRING] return) */
public String getHello();

public static final com.ms.com._Guid iid = new com.ms.com._Guid(...);
}

Notice that there are com directives in the comments. Some of these directives specify the
IID; some are being used to demarcate methods. When the jvc compiler sees these com
directives, it knows how to generate the corresponding hooks into COM. Now all you
have to do is compile these classes. Then, with a few Registry settings, you can use the
COM object you created as a remote COM object (that is, DCOM).

Non-CORBA Approaches to Distributed Computing

PART IV
476

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

LISTING 20.6 CONTINUED

025 72315378 CH20 1.21.2000 2:10 PM Page 476

The next step is to compile the generated files with jvc. Then you’ll test this as a local
COM object. You must create a small program that exercises the classes you just created
with JActiveX:

class HelloTest
{

public static void main(String [] args)
{

hello.HelloVJpp_Dispatch helloVJpp = new hello.HelloVJpp();
System.out.println(helloVJpp.getHello());

}
}

Next, you need to compile this code example and run it (for now, run it all on the same
machine). As always, ensure that all the classes you create are in your class path. Then,
move the compiled files to client machine.

Now do the following:

1. Open up OLEVIEW and select Hello.HelloVJpp from the treeview.

2. Go to the Implementation tab.

3. Select Use Surrogate Process. (Typically, you do this with JavaReg; however,
because you’re working with a DLL instead of a Java class, you do it differently
for the server.)

4. Use DCOMCNFG to configure Hello.HelloVJpp the same way you did before.
Essentially, what you want to do is give the user name you’re going to use on the
client machine and the privileges to launch and run this DCOM server. Refer to the
previous exercise if you don’t remember how to do this.

5. Next, copy the Hello.dll file over to the client. You need it for the type library
information it contains.

6. Run regsvr32 to register Hello.dll. This sets up the pointer to the type library infor-
mation. The wrapper classes needs this type library information to function proper-
ly.

7. Finally, you need to register the Hello.HelloVJpp on the client using JavaReg:

C:\jsdk>javareg /register /class:HelloVJpp /progid:Hello.HelloVJpp
/clsid:{CLSID} /remote:servername

As you did before, set the CLSID to the 128-bit CLSID associated with this class. You
can get this value by looking it up in OLEVIEW. (Right-click the class in the treeview
and then select Copy to Clipboard.)

Set the server name to the name of your remote machine.

Distributed Component Object Model (DCOM)

CHAPTER 20
477

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 477

Note that regsvr32 registers DLLs in the Registry. Now, you may be thinking that
because the DLL is the code that contains the class, if the DLL is registered on the client,
the client will use the DLL locally. Yes, this is true. However, when you use JavaReg,
you register Hello.HelloVJpp to access the remote server. You need these two steps
because the DLL contains the TLB (type library) within itself as a Windows resource.
You need the TLB information; otherwise, the wrapper classes you generated with
JActiveX will not work. If you skip using regsvr32 to register the type library, you can
still call this remote COM object using IDispatch. You could also use this remote COM
object with Visual Basic using the CreateObject feature instead of using New.

Next, you need to use OLEVIEW on the client to test whether it’s connecting to the
DCOM server (HelloVJpp); then run the HelloTest sample program against it (use
Jview).

Non-CORBA Approaches to Distributed Computing

PART IV
478

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

NOTE

You can also create type libraries using JavaReg. In this case, the first exercise
JavaReg command-line arguments would look like this:

C:\test>javareg /register /class:HiCOM /clsid:{guid} /typelib:HiCOM.tlb

This creates the type library and puts it in the Registry for you. You may want to
try the last exercise using nothing but the Java SDK.

Other COM bridges are available besides Microsoft’s. Sun provides a unidirectional
bridge from JavaBeans to ActiveX controls. ActiveX controls are COM objects that sup-
port events and are displayable in a container. Also, Halcyon and other vendors provide
bi-directional COM/DCOM interaction with Java from non-Microsoft JVMs.

Registering Callbacks
This exercise will show you how to create a callback in DCOM. Essentially, you pass a
callback object to a COM server object. The COM server object uses this COM callback
object to make a call on the client. Therefore, the server can initiate communication with
the client. (Actually, in this scenario, both the server and the client act as server and
client to each other; however, I’ll refer to the COM object that’s actually registered in the
Registry as the server for simplicity of explanation.)

Listing 20.8 shows what the code should look like in concept.

025 72315378 CH20 1.21.2000 2:10 PM Page 478

LISTING 20.8 THE callMeAnyTime CALLBACK OBJECT USING DCOM

class Callback
{

public void callMeAnyTime (Hashtable hashtable)
{

//use hashtable, in our case just display it
}
...
...

}

class ComServerObject
{
Callback callback;
public void registerCallback(Callback callback)
{
this.callback = callback;
//return right away

}
public void queryState()
{
//fire off thread to do a query
//on the state of something and then return

}
public void gotQueryBack()
{
Hashtable queryResults;
//populate hashtable with query results

callback.callMeAnyTime(queryResults);
}
}
class ComClient
{

void getStatus()
{

Callback callback = new Callback();
IComServerObject server = new ComServerObject();
server.registerCallback(callback);
server.queryState();

}
}

The callback class will be passed to the ComServer from the ComClient via a call to
ComServer.registerCallback. Once the ComServer has the Callback that the
ComClient creates, it can use the ComClient’s IDispatch interface to make calls in the
ComClient’s address space.

Essentially, you want the ComServerObject class to be a COM object. Also, the Call-
back object needs to be accessible from DCOM.

Distributed Component Object Model (DCOM)

CHAPTER 20
479

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 479

I recommend you use the following technique to implement this callback example: First,
you do this as an all-Java solution. You test and develop the code with Java, not DCOM.
Next, you try exposing ComServerObject to COM via Visual J++ 6.0 and then use the
Visual J++ Create COM Wrapper feature to generate classes for dealing with the COM
server object. You then write and test an all-local COM object solution. Finally, you try
setting up ComServerObject as a DCOM component. You then test this as a remote solu-
tion.

The all-Java approach is shown in Listing 20.9 (the complete listing can be found on the
CD-ROM).

LISTING 20.9 THE Callback CLASS USING JAVA

class Callback
{

public void callMeAnyTime (Hashtable hashtable)
{

//use hashtable, in our case just display each element
for (Enumeration e = hashtable.elements();

e.hasMoreElements();)
{

Object object = e.nextElement();
System.out.println(“default “ + object);

}//end of for

}//end of method

}//end of Callback class

You can see by the class definition that the Callback class only contains one method:
callMeAnyTime. This method just goes through a hashtable and prints out each element
in the hashtable (using the toString of each object, which is implicitly called when
using the addition operator with any object and a string).

Listing 20.10 shows the ComClient class.

LISTING 20.10 THE ComClient CLASS

class ComClient
{

class MyCallback extends Callback
{

public void callMeAnyTime (Hashtable hashtable)
{

System.out.println(“Received callback “);
System.out.println(“ “ + hashtable);

}//end of callMeAnyTime method

Non-CORBA Approaches to Distributed Computing

PART IV
480

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 480

}//end of inner class MyCallBack

void getStatus()
{

Callback callback = new MyCallback();
ComServerObject server = new ComServerObject();
server.registerCallback(callback);
server.queryState();

}//end of getStatus

public static void main(String [] args)
{

ComClient cc = new ComClient();
cc.getStatus();

}//end of main

}//end of class

MyCallback extends the Callback object and defines a method that overrides the
callMeAnyTime method. The getStatus method creates an instance of MyCallback and
registers the Callback instance with an instance of the ComServerObject. The main
method creates an instance of the ComClient and calls the getStatus method. The main
method essentially just bootstraps and tests the ComClient.

Finally, Listing 20.11 shows the ComServerObectClass class.

LISTING 20.11 THE ComServerObjectClass CLASS

class ComServerObject
{

Callback callback;

public void registerCallback(Callback callback)
{
this.callback = callback;
//return right away

}

public void queryState()
{
SimulateQuery sq = new SimulateQuery();
sq.start();

}

public void gotQueryBack()
{
Hashtable queryResults = new Hashtable();

Distributed Component Object Model (DCOM)

CHAPTER 20
481

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

continues

025 72315378 CH20 1.21.2000 2:10 PM Page 481

//populate hashtable
...
...

callback.callMeAnyTime(queryResults);
}

class SimulateQuery extends Thread
{

public void run()
{

for (int index = 0; index < 10; index++)
{

try {sleep(2000);} catch (Exception e) {}
ComServerObject.this.gotQueryBack();

}
}//end of run

}//end of simulate query
}

Here, you define a SimulateQuery class, which is essentially a class to simulate getting a
query result from some type of database. SimulateQuery just pretends that it got some
results every two seconds.

Here’s the sequence:

1. You start the ComClient with Jview.

2. The ComClient creates an instance of MyCallback class and the ComServerObject.

3. The ComClient registers the MyCallback instance with the ComServerObject.

4. ComServerObject starts up an instance of the SimulateQuery class.

5. SimulateQuery fires ten query results set to the callback object via the
callMeAnyTime method.

Now, you need to test this program as a local class. Then, you want to start up Visual
J++ and create a project for the Callback class:

1. Create a COM DLL project.

2. Rename Class1 to Callback.

3. Cut and paste the callMeAnyTime method from Callback.java. Compile this project
into a COM DLL.

Non-CORBA Approaches to Distributed Computing

PART IV
482

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

LISTING 20.11 CONTINUED

025 72315378 CH20 1.21.2000 2:10 PM Page 482

These steps expose Callback as a COM object. Repeat this for the ComServerObject.

Next, you want to start up Visual J++ and create a project for the ComServerObject class
and add it to the same solution as the previous one:

1. Create another COM DLL project in the same solution as before.

2. Rename Class1 to ComServerObject.

3. Cut and paste all the methods and the inner class from ComServerObject.java.

4. Select the project that contains the ComServerObject class.

5. Select Project, Add COM Wrapper.

6. Select Callback from the list of COM objects available.

7. Add the import statement to the top of the ComServerObject.java file:

import callback.Callback

8. Compile this project into a COM DLL.

This changes the code to access the Callback object as a COM object instead of as a
COM class.

In order to put ComClient in the solution, you want to start up Visual J++ and create a
project for the Callback class:

1. Create an empty project and add the ComClient.java file to it.

2. Change the first line from

import Callback;

to

import callback.*;

This specifies that you want to use the Callback class as a COM object.

3. Select the project that contains the ComClient class.

4. Select Project, Add COM Wrapper.

Select ComServerObject from the list of COM objects available.

This creates the following two COM wrapper files in a package called comserverobject:

• ComServerObject.java—This is the COM wrapper.

• ComServerObject_Dispatch.java—This is the Dispatch interface.

Now we need to change the class MyCallback to implement the
callback.Callback_Dispatch interface.

Listing 20.12 defines the ComServerObjectClass class, which is what the ComClient
class looks like, and which is now DCOM enabled.

Distributed Component Object Model (DCOM)

CHAPTER 20
483

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 483

LISTING 20.12 THE ComServerObjectClass CLASS DCOM ENABLED

import comserver.*; //import the comserver wrapper classes
import callback.*; //import the callback wrapper classes
import java.util.*;
import com.ms.com.*; //for using Variant

class ComClient
{

// Note this class implements callback.Callback_Dispatch
// Instantiating this interface identifies this class as
// COM object
//

class MyCallback implements callback.Callback_Dispatch
{
...
...

//Call back method that the server uses to call the client
public void callMeAnyTime (Object object)
{

System.out.println(“Recieved callback “);
System.out.println(“ “ + object);

}

}//inner MyCallback class //////////////////////////////////////

void getStatus()
{
MyCallback callback = new MyCallback();
ComServerObject server = new ComServerObject();
server.registerCallback(callback);
server.queryState();

}

public static void main(String [] args)
{

ComClient cc = new ComClient();
cc.getStatus();

}
}

COMClient has an inner class called MyCallBack that defines an inner class that extends
callback.Callback_Dispatch. By extending callback.Callback_Dispatch we have
identified this class as a type of Callback_Dispatch so when we pass this object to the
server it can call us back. Thus, when we pass an instantiation of the call back to the
ComServerObject, it now knows how to talk to the server via DCOM. The getStatus
method creates an instance of MyCallback and registers the Callback instance with an

Non-CORBA Approaches to Distributed Computing

PART IV
484

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 484

instance of the ComServerObject. The main method creates an instance of the ComClient
and calls the getStatus method. The main method just bootstraps and tests the
ComClient.

Next, you want to make sure that the all of the classes are on the class path. Then refer to
the earlier example using Visual J++ and make the server remote. Make sure that the
COM wrapper files and the two dlls are on both the client and the server.

You do not have to use Visual J++ to create the COM dll. You can use the Microsoft Java
SDK. Instead of creating COM dll, you just create regular Java classes and compile them
normally with the Java SDK. Then you use JavaReg with the /tlb option to create type
libraries. After you compile, you use JActiveX to run against the type library you created
to give you the Java COM wrapper files. You have to do this for each of the COM
objects.

We now turn our attention to COM IDL. We’re not going to cover DCOM IDL for sever-
al reasons. To do a decent job of covering DCOM IDL, we would need to dedicate a
whole chapter. Conversely, all that using DCOM IDL would buy us over AutoIDispatch
would be the ability to do custom marshaling. However, we won’t cover it because it
involves Raw Native Interface (RNI), which is beyond the scope of this chapter. Granted,
there are valid reasons for using IDL. However, if you examine the reasons, most of the
time you’ll find that you simply don’t need to use IDL. All the reasoning and warnings
behind, it’s at least a good idea to know how the Java types map to the Microsoft IDL
types. Microsoft IDL is the common language to the COM, so we discuss it here briefly.

Creating a COM Object with IDL
There’s another way to create COM objects. This way uses JActiveX again, but you need
to write some IDL and use MIDL (Microsoft’s IDL compiler). Essentially, what you do
is create an IDL file. Compile the IDL file into a type library. Run the type library
through the JActiveX, which will generate some Java source code. You then extend the
*Impl class that JActiveX creates for you. You either extend the class that JActiveX gen-
erates directly (by editing the source) or you subclass the class that JActiveX generates.
The second technique is recommended.

For this exercise we are going to use a new (IDL) version of our Hello class. We will add
several do-nothing methods to show how to specify Java types in IDL.

Here is what our class looks like:

Distributed Component Object Model (DCOM)

CHAPTER 20
485

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 485

LISTING 20.13 THE HelloIDL CLASS DCOM ENABLED

public class HelloIDL
{

public HelloIDL()
{
}

public String sayHello(String name)
{

return “Hello “ + name;
}

public int giveInt(int number)
{

return number;
}

public Integer giveInteger(Integer number)
{

return number;
}

public float giveFloat(float number)
{

return number;
}

public byte giveByte(byte number)
{

return number;
}

public char giveChar(char number)
{

return number;
}

}

Listing 20.14 shows what the IDL for this class would look like.

LISTING 20.14 THE HelloIDLLib IDL FILE

[
uuid(c250ad52-69ce-11d2-99d6-00a0c9569583),
helpstring(“HelloIDLLib Type Library”),

Non-CORBA Approaches to Distributed Computing

PART IV
486

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 486

version(1.0)
]
library HelloIDLLib
{

importlib(“stdole32.tlb”);
[
object,
uuid(c250ad51-69ce-11d2-99d6-00a0c9569583),
dual,
pointer_default(unique),
helpstring(“IHelloIDL Interface”)

]
interface IHelloIDL : IDispatch
{
[helpstring(“giveChar Method”)]
HRESULT giveChar([in] char p1, [out, retval] char * rtn);

[helpstring(“giveInt Method”)]
HRESULT giveInt([in] long p1, [out, retval] long * rtn);

[helpstring(“giveFloat Method”)]
HRESULT giveFloat([in] float p1, [out, retval] float * rtn);

[helpstring(“giveByte Method”)]
HRESULT giveByte([in] unsigned char p1, [out, retval] unsigned char*

rtn);

[helpstring(“sayHello Method”)]
HRESULT sayHello([in] BSTR p1, [out, retval] BSTR * rtn);
}//end of interface

[
uuid(c250ad50-69ce-11d2-99d6-00a0c9569583),
helpstring(“CHelloIDL Object”)

]
coclass CHelloIDL
{

interface IHelloIDL;
};//end of co class

};//end of library

[
uuid(c250ad52-69ce-11d2-99d6-00a0c9569583),
helpstring(“HelloIDLLib Type Library”),
version(1.0)

]

Distributed Component Object Model (DCOM)

CHAPTER 20
487

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 487

The preceding are settings for the attributes of the COM library that we are creating. It is
here that we specify version information and helpstrings to identify this component.

The IDL also specifies the Universal Unique identifier (UUID) to identify our library: in
this case, c250ad51-69ce-11d2-99d6-00a0c9569583. The UUID is the same as the
GUID that we talked about earlier.

interface IHelloIDL : IDispatch
{ ...

defines the VTABLE interface definition for our class. As you can see, our interface sup-
ports IDispatch, which is the ability to do late bound calls. This interface supports the
dual interface, which means that it supports both dispinterface and VTABLE interfaces
as defined by the dual keyword in the HelloIDLLib declaration.

coclass CHelloIDL
{

interface IHelloIDL;
...

The above snippet defines our dispinterface for this component.

So let’s see how the Java methods map to this IDL file.

giveChar in Java snippet

public char giveChar(char number)
{

return number;
}

giveChar in IDL snippet

[helpstring(“giveChar Method”)]
HRESULT giveChar([in] char p1, [out, retval] char * rtn);

Here we see that char in Java corresponds to char in IDL.

We also see that return types for char in Java are char pointers in IDL.

giveInt in Java snippet

public int giveInt(int number)
{

return number;
}

giveInt in IDL snippet

Non-CORBA Approaches to Distributed Computing

PART IV
488

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 488

[helpstring(“giveInt Method”)]
HRESULT giveInt([in] long p1, [out, retval] long * rtn);

Similarly, we see that int in Java corresponds to long in IDL. And return types for int
in Java are pointer to longs in IDL.

We summarize these data type mappings in Table 20.3.

TABLE 20.3 DATA TYPE MAPPING FROM JAVA TO COM IDL

Java Data Type COM IDL Data Type

Void void

Char char

Double double

Int long

Float float

String BSTR

Pointer to interface IDispatch

Short short

Byte unsigned char

Boolean boolean

In order to use this IDL we first create a type library out of it. Then we use the type
library in conjunction with JActiveX to create an IHelloIDL interface for the class that
we want to extend. If you have done CORBA development, these steps are similar to
what you would do with CORBA. We then run the IDL through the MIDL compiler,
which then gives us a type library file.

To run it we enter MIDL HelloIDLlib.IDL at the DOS prompt. Then we run the Type
library file through JActiveX.

To Run JActiveX, enter the following at the DOS prompt:

JActiveX /D . HelloIDLLib.TLB

JActiveX would generate two Java class files.

• CHelloIDL.java is the file we need to use the COM object from the client perspec-
tive.

• IHelloIDL.java is the file we need to extend in our component class to expose it
as a COM object.

Distributed Component Object Model (DCOM)

CHAPTER 20
489

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 489

Listing 20.15 shows the CHelloIDL class generated.

LISTING 20.15 THE CHelloIDL CLASS

package helloidllib;

import com.ms.com.*;
import com.ms.com.IUnknown;
import com.ms.com.Variant;

/** @com.class(classid=C250AD50-69CE-11D2-99D6-00A0C9569583,DynamicCasts)
*/
public class CHelloIDL implements
IUnknown,com.ms.com.NoAutoScripting,helloidllib.IHelloIDL
{
/** @com.method() */
public native char giveChar(char p1);

/** @com.method() */
public native int giveInt(int p1);

/** @com.method() */
public native float giveFloat(int p1);

/** @com.method() */
public native byte giveByte(byte p1);

/** @com.method() */
public native String sayHello(String p1);

public static final com.ms.com._Guid clsid = new com.ms.com.
Guid((int)0xc250ad50, (short)0x69ce, (short)0x11d2, (byte)0x99,
(byte)0xd6, (byte)0x0, (byte)0xa0, (byte)0xc9, (byte)0x56,
(byte)0x95, (byte)0x83);

}

Notice that this class gives us the same methods as our original class. It also has COM
directives that specify that the methods are really COM methods for a COM object.
When jvc runs across these COM directives it puts hooks in the bytecode so that when
JView or IE runs across these hooks, they know how to dispatch a method call to the
COM object.

Listing 20.16 shows the IHelloIDL class generated by JActiveX.

Non-CORBA Approaches to Distributed Computing

PART IV
490

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 490

LISTING 20.16 THE IHelloIDL CLASS

IHelloIDL.java Listing

package helloidllib;

import com.ms.com.*;
import com.ms.com.IUnknown;
import com.ms.com.Variant;

// Dual interface IHelloIDL
/** @com.interface(iid=C250AD51-69CE-11D2-99D6-00A0C9569583,

thread=AUTO, type=DUAL) */
public interface IHelloIDL extends IUnknown
{
/** @com.method(vtoffset=4, dispid=1610743808, type=METHOD,

name=”giveChar”, addFlagsVtable=4)
@com.parameters([in,type=I1] p1, [type=I1] return) */

public char giveChar(char p1);

/** @com.method(vtoffset=5, dispid=1610743809, type=METHOD,
name=”giveInt”, addFlagsVtable=4)
@com.parameters([in,type=I4] p1, [type=I4] return) */

public int giveInt(int p1);

/** @com.method(vtoffset=6, dispid=1610743810, type=METHOD,
name=”giveFloat”, addFlagsVtable=4)
@com.parameters([in,type=I4] p1, [type=R4] return) */

public float giveFloat(int p1);

/** @com.method(vtoffset=7, dispid=1610743811, type=METHOD,
name=”giveByte”, addFlagsVtable=4)
@com.parameters([in,type=U1] p1, [type=U1] return) */

public byte giveByte(byte p1);

/** @com.method(vtoffset=8, dispid=1610743812, type=METHOD,
name=”sayHello”, addFlagsVtable=4)
@com.parameters([in,type=STRING] p1, [type=STRING] return) */

public String sayHello(String p1);

public static final com.ms.com._Guid iid = new com.ms.com._
Guid((int)0xc250ad51, (short)0x69ce, (short)0x11d2, (byte)0x99,
(byte)0xd6, (byte)0x0, (byte)0xa0, (byte)0xc9, (byte)0x56,
(byte)0x95, (byte)0x83);

}

CHelloIDL.java is the file we use as a client and IHelloIDL.java is the file we need to
extend in our component class.

Distributed Component Object Model (DCOM)

CHAPTER 20
491

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 491

Compile the preceding two classes and make sure they are in the class path. Change the
HelloIDL to implement IHelloIDL and add the UUID to the class file as follows:

From

public class HelloIDL
{

public HelloIDL()
{
}

...

...

To
public class HelloIDL implements helloidllib.IHelloIDL
{

private static final String CLSID =
“c250ad50-69ce-11d2-99d6-00a0c9569583”;

public HelloIDL()
{
}

...

...

Compile HelloIDL and make sure it is in the classpath.

Register the class in the register like so:

C:\msjsdk >javareg /register /class:HelloIDL /progid:DEAL.HelloIDL /
clsid:{c250ad50-69ce-11d2-99d6-00a0c9569583}

Now we need to write a simple test program to test this class. The test program uses the
class as a COM object, not a Java object. We use the CHelloIDL class. (We could now
use this COM object from any language, such as Visual Basic.) Here is the
TestHelloIDL.java class file.

import helloidllib.*;

class TestHelloIDL
{
public static void main(String [] args){

helloidllib.IHelloIDL hello = new helloidllib.CHelloIDL();
System.out.println(“Say Hello: “ + hello.sayHello(“Hello”));
System.out.println(“Say 5: “ + hello.giveInt(5));
System.out.println(“Say 5.0: “ + hello.giveFloat(5));

}//end of main
}//end of class TestHelloIDL

Non-CORBA Approaches to Distributed Computing

PART IV
492

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 492

As you can see in the main method, we assign an IHelloIDL reference and a new
instance, CHelloIDL class. We can then make calls on this COM object.

You should try to activate this object through the OLEVIEW program before you start
trying to test it with this local program. This will let you know if you have copied all the
classes to the classpath and registered the COM class correctly.

Now compile TestHelloIDL and run it.

To make this class remote you use JActiveX or DCOMCNFG like we did earlier. The
main difference between this class and the other classes we created is that this class
works with both a dispinterface or vtable interface. So you get a performance advan-
tage if you’re using a statically compiled language as opposed to a late bound language
that needs dispinterface. Of course, you only see this advantage if you used all the
classes locally.

FROM HERE
This chapter covered a brief overview of COM/DCOM and distributed object architec-
ture. After discussing some of the advantages and disadvantages of COM/DCOM tech-
nologies, we ran through some basic exercises for developing COM/DCOM objects.

This chapter completes Part IV, “Non-CORBA Approaches to Distributed Computing.”
Part V, “The CORBA Approach to Distributed Computing,” which includes Chapters 21
through 27, delves into the CORBA approach to distributed computing.

Distributed Component Object Model (DCOM)

CHAPTER 20
493

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

20

D
ISTR

IB
U

TED
C

O
M

PO
N

EN
T

O
B

JEC
T

M
O

D
EL

025 72315378 CH20 1.21.2000 2:10 PM Page 493

494

P2/V2 J Di t ib t d Obj t 72315378 M i 11 22 98 CH20 L #2

025 72315378 CH20 1.21.2000 2:10 PM Page 494

root
ch18thru20.pdf

 - 2 -

Java Distributed Objects
by Bill McCarty and Luke Cassady-Dorion ISBN: 0672315378

Sams © 1999, 936 pages

Pros ready to design distributed architectures get well-
explained, expert help, with an emphasis on CORBA.

Table of Contents
Back Cover

Synopsis by Rebecca Rohan

Interchangeable, interoperable software components are making it less time-
consuming to create sophisticated software that resides on more than one
side of a network - an advantage that Java developers can press further in
keeping CPU cycles at the most efficient spots on the network. Distributing
objects raises the complexity of projects by calling for arbitration among the
software components and participating nodes, but Java Distributed Objects
can help professionals achieve the flexible, transparent distribution necessary
to create powerful, efficient architectures. Java Distributed Objects
emphasizes CORBA, which is defined jointly by over 800 companies and de-
emphasizes Microsoft's proprietary DCOM, though servlets, CGI, and DCOM
do get some attention. An airline reservation system affords an example
throughout the book.

Table of Contents

 JAVA Distributed Objects - 4
 Introduction - 8
 Part I Basic Concepts
 Chapter 1 - Distributed Object Computing - 14
 Chapter 2 - TCP/IP Networking - 20
 Chapter 3 - Object-Oriented Analysis and Design - 41
 Chapter 4 - Distributed Architectures - 55
 Chapter 5 - Design Patterns - 73
 Chapter 6 - The Airline Reservation System Model - 90
 Part II Java
 Chapter 7 - JAVA Overview - 106
 Chapter 8 - JAVA Threads - 131
 Chapter 9 - JAVA Serialization and Beans - 149
 Part III Java’s Networking and Enterprise APIs
 Chapter 10 - Security - 170
 Chapter 11 - Relational Databases and Structured Query Language (SQL) - 190
 Chapter 12 - JAVA Database Connectivity (JDBC) - 208
 Chapter 13 - Sockets - 227

 - 3 -

 Chapter 14 - Socket-Based Implementation of the Airline Reservation
System - 248

 Chapter 15 - Remote Method Invocation (RMI) - 262
 Chapter 16 - RMI-Based Implementation of the Airline Reservation System - 279
 Chapter 17 - JAVA Help, JAVA Mail, and Other JAVA APIs - 294
 Part IV Non-CORBA Approaches to Distributed Computing
 Chapter 18 - Servlets and Common Gateway Interface (CGI) - 308
 Chapter 19 - Servlet-Based Implementation of the Airline Reservation

System - 327
 Chapter 20 - Distributed Component Model (DCOM) - 334
 Part V Non-CORBA Approaches to Distributed Computing
 Chapter 21 - CORBA Overview - 384
 Chapter 22 - CORBA Architecture - 393
 Chapter 23 - Survey of CORBA ORBs - 419
 Chapter 24 - A CORBA Server - 429
 Chapter 25 - A CORBA Client - 445
 Chapter 26 - CORBA-Based Implementation of the Airline Reservation

System - 474
 Chapter 27 - Quick CORBA: CORBA Without IDL - 489
 Part VI Advanced CORBA
 Chapter 28 - The Portable Object Adapter (POA) - 515
 Chapter 29 - Internet Inter-ORB Protocol (IIOP) - 523
 Chapter 30 - The Naming Service - 532
 Chapter 31 - The Event Service - 550
 Chapter 32 - Interface Repository, Dynamic Invocation, Introspection, and

Reflection - 573
 Chapter 33 - Other CORBA Facilities and Services - 592
 Part VII Agent Technologies
 Chapter 34 - Voyager Agent Technology - 608
 Chapter 35 - Voyager-Based Implementation of the Airline Reservation

System - 620
 Part VIII Summary and References
 Chapter 36 - Summary - 639
 Appendix A - Useful Resources - 652
 Appendix B - Quick References - 656
 Appendix C - How to Get the Most From the CD-ROM - 689

Back Cover
Learn the concepts and build the applications:

• Learn to apply the Unified Modeling Language to describe distributed
object architecture

• Understand how to describe and use Design Patterns with real-world
examples

• Advanced Java 1.2 examples including Threads, Serialization and
Beans, Security, JDBC, Sockets, and Remote Method Invocation
(RMI)

 - 4 -

• In-depth coverage of CORBA
• Covers the Portable Object Adapter (POA) and Interface Definition

Language (IDL)
• Understand and apply component-based development using DCOM
• Learn about agent technologies and tools such as Voyager

About the Authors

Bill McCarty, Ph.D., is a professor of MIS and computer science at Azusa
Pacific University. He has spent more than 20 years developing distributed
computing applications and seven years teaching advanced programming to
graduate students. Dr. McCarty is also coauthor of the well-received Object-
Oriented Design in Java.

Luke Cassady-Dorion is a professional programmer with eight years of
experience developing commercial distributed computing applications. He
specializes in Java/CORBA programming.

JAVA Distributed Objects

 Bill McCarty and Luke Cassady-Dorion

 Copyright © 1999 by Sams

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

 International Standard Book Number: 0-672-31537-8

 Library of Congress Catalog Card Number: 98-86975

 Printed in the United States of America

 First Printing: December 1998

 00 99 4 3 2

 Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

The following are trademarks of the Object Management Group ®: CORBA ®, OMG ™,
ORB™, Object Request Broker ™, IIOP™, OMG Interface Definition Language (IDL)™,
and UML™.

WARNING AND DISCLAIMER

 Every effort has been made to make this book as complete and as accurate as possible,

 - 5 -

but no warranty or fitness is implied. The information provided is on an “as is” basis. The
authors and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book or from the use of the CD or programs accompanying it.

 EXECUTIVE EDITOR

 Tim Ryan

 DEVELOPMENT EDITOR

 Gus Miklos

 MANAGING EDITOR

 Patrick Kanouse

 PROJECT EDITOR

 Carol L. Bowers

 COPY EDITORS

 Tonya Maddox Bart Reed

 INDEXER

 Rebecca Salerno

 PROOFREADER

 Kim Cofer

 TECHNICAL EDITOR

 Mike Forsyth

 SOFTWARE DEVELOPMENT SPECIALIST

 Craig Atkins

 INTERIOR DESIGN

 Anne Jones

 COVER DESIGN

 Anne Jones

 LAYOUT TECHNICIAN

 Marcia Deboy

 - 6 -

FOREWORD

Every time I give a presentation somewhere in the world, I ask a simple question of the
audience: “Raise your hand if your company is developing a distributed application.”
Depending on the type of audience, I might get from 10 percent to 90 percent of the
audience to admit that they are taking on this difficult development task. The rest are
wrong.

You see, every organization that features more than a single employee or a single
computer—or needs to share information with another organization—is developing a
distributed application. If they’re not quite aware of that fact, then they are probably not
designing their applications properly. They might end up with a “sneakernet,” or they
might find themselves with full-time personnel doing nothing but data file reformatting, or
they might end up maintaining more server applications or application servers than
necessary. Every organization builds distributed applications; that is, applications which
mirror, reinforce, or enhance the workflow of the company and its relationships with
buyers and suppliers. Because the purpose of an organization is to maximize the output
of its employees by integrating their experience and abilities, the purpose of an
Information Technology (IT) infrastructure is to maximize the output of its computing
systems by integrating their data and functionality.

The complexity of distributed application development and integration—indeed, of any
systems integration project—makes such projects difficult. The rapid pace of change in
the computer industry makes it nigh impossible.

This tome helps alleviate this problem by gathering together, in one place, descriptions
and examples of most of the relevant commercial solutions to distributed application
integration problems. By recognizing the inherent and permanent heterogeneity of
systems found in real IT shops today, this book provides a strong basis for making the
tough choices between approaches based on the needs of the reader. An easy style with
abundant examples makes it a pleasure to read, so I invite the reader to dive in without
any more delay!

 Richard Mark Soley, Ph.D.

 Chairman and CEO

 Object Management Group, Inc.

 September 1998

ABOUT THE AUTHORS

Bill McCarty, Ph.D., is a professor of MIS and computer science at Azusa Pacific
University. He has spent more than 20 years developing distributed computing
applications, and seven years teaching advanced programming to graduate students. Dr.
McCarty is also coauthor of the well-received Object-Oriented Programming in Java.

Luke Cassady-Dorion is a professional programmer with eight years of experience
developing commercial distributed computing applications. He specializes in
Java/CORBA programming.

Rick Hightower is a member of Intel’s Enterprise Architecture Lab. He has a decade of
experience writing software, from embedded systems to factory automation solutions.
Rick’s current work involves emerging solutions using middleware and component
technologies, including Java and JavaBeans, COM, and CORBA. Rick wrote Chapter 20
of this book.

 - 7 -

 About the Technical Editor

Mike Forsyth, Technical Director, Calligrafix, graduated with a computer science degree
from Heriot Watt University, Edinburgh, Scotland, and developed high speed free text
retrieval systems. He is currently developing Java servlet and persistent store solutions
using ObjectStore and Orbix in pan European Extranet projects.

ACKNOWLEDGMENTS

Luke Andrew Cassady-Dorion: As I sit looking over the hundreds of pages that form the
tome you are now holding, I am finally able to catch my breath and think about everything
that has gone into this book. Starting at ground zero, none of this could have come
together without the work done by Bill McCarty, my co-author. Bill, you have put together
an excellent collection of work; thank you. In addition, Tim Ryan, Gus Miklos, Jeff Taylor
and the countless faces that I never see have worked day and night to help this project.
To all of you, this could never have happened without your help; bravo. My family, who
has always supported everything that I did (even when I dropped out of college and
moved to California), your support means mountains to me. All of my friends, who
understood when I said that I could not go out as I had to “work on my book,” thank you,
and the next round is on me. Finally, to all of the musicians, composers and authors who
kept me company as I wrote this book. Maria Callas, Phillip Glass, Stephen Sondheim,
Cole Porter, and Ayn Rand, your work has kept me sane during this long process. Finally,
a word of advice to my readers: Enjoy this book, but know that the best computer
programmers do come up for air. Make sure that there is always time in your life for fun,
fiction, family, friends and—of course—really good food.

Bill McCarty: As with any book, a small army has had a hand in bringing about this book.
Some of them I don’t even know by name, but I owe each of them my thanks. I’m
especially grateful for the work of my co-author, Luke, who wrote the CORBA material that
forms the core of the book. I’m also grateful for the wise counsel and able assistance of my
literary agent, Margot Maley of Waterside Productions, without whom this book wouldn’t
have been completed. I thank Tim Ryan of Macmillan Computer Publishing who graciously
offered help when I needed it and who generously spent many hours helping us write a
better book. Gus Miklos, our development editor, not only set straight many crooked
constructions, but taught me much in the process. I envy his future students. My family
patiently endured untold hardships during the writing of this book; I greatly appreciate their
understanding, support, and love. My eternal thanks go to the Lord Jesus Christ, who paid
the full price of my redemption from sin and called me to be His disciple and friend. To Him
be all glory, and power, and honor now and forever.

TELL US WHAT YOU THINK!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As the Executive Editor for the Java team at Macmillan Computer Publishing, I welcome
your comments. You can fax, email, or write me directly to let me know what you did or
didn’t like about this book—as well as what we can do to make our books stronger.

 Please note that I won’t have time to help you with Java programming problems.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

 Fax:

 317-817-7070

 - 8 -

 Email: java@mcp.com

 Mail:

 Tim Ryan, Executive Editor

 Java Team
 Macmillan Computer Publishing
 201 West 103rd Street
 Indianapolis, IN 46290 USA

Introduction

 STRUCTURE OF THIS BOOK

Now that you are familiar with the aims of this book, let’s explore its structure. This will
help you map out your study of the book. As you’ll discover, you may not need to read
every chapter.

 Part I: Basic Concepts

Distributed object technologies do not stand on their own. Instead, they depend on a set
of related technologies that provide important services and facilities. You can’t thoroughly
understand distributed object technologies without a solid understanding of networks,
sockets, and databases, for example. The purpose of Part I is to acquaint you with these
related technologies and prepare you for the more advanced material in subsequent
parts of this book.

 Chapter 1, “Distributed Object Computing”

Chapter 1 sets the stage for the main topic of this book by introducing fundamental
concepts and terms related to distributed objects. It also explains the structure of this
book and provides some friendly advice intended to enhance your understanding and
application of the material. Specifically, Chapter 1 covers what distributed object systems
are; why objects should be distributed; which technologies facilitate the implementation of
distributed object systems; which related technologies distributed objects draw upon; and
who should read this book and how it should be used.

 Chapter 2, “TCP/IP Networking”

Chapter 2 introduces the basic terms and concepts of TCP/IP networking, the technology
of the Internet and Web. You’ll learn how various protocols and Internet services work
and how to perform simple TCP/IP troubleshooting.

 Chapter 3, “Object-Oriented Analysis and Design”

Chapter 3 presents an overview of object-oriented analysis and design (OOA and OOD),
including the Unified Modeling Language (UML), which is used in subsequent chapters to
describe the structure of distributed object systems.

 Chapter 4, “Distributed Architectures”

 Chapter 4 presents an evolutionary perspective on distributed computing architectures.

You’ll learn the strengths and weaknesses of a variety of system architectures.

 Chapter 5, “Design Patterns”

 Chapter 5 provides an overview of the important and useful topic of design patterns, the

themes that commonly appear in software designs. You’ll learn how to describe and use

 - 9 -

patterns and learn about several especially useful patterns.

 Chapter 6, “The Airline Reservation System Model”

Chapter 6 presents an example application that we refer to throughout subsequent
chapters, in which we implement portions of the example application using a variety of
technologies. The Airline Reservation System helps you see how technologies can be
applied to real-world systems rather than the smaller pedagogical examples included in
the explanatory chapters.

 Part II: Java

 Part II presents the Java language and APIs important to distributed object systems.

 Chapter 7, “Java Overview”

Despite the impression conveyed by media hype, Java is not the only object-oriented
language, nor is it the only language that you can use to build distributed object systems.
Programmers have successfully built distributed systems using other languages, notably
Smalltalk and C++. However, this book is unabashedly Java-centric. Here are some
reasons for this choice:

•

Java is an easy language to read and learn. Much of Java’s syntax and semantics are
based on C++, so C++ programmers can readily get the gist of a section of Java code.
Moreover, Java omits some of the most gnarly features of C++, making Java programs
generally simpler and clearer than their C++ counterparts.

•

Java provides features that are important to the development of distributed object
systems, such as thread programming, socket programming, object serialization,
reusable components (Java Beans), a security API, and a SQL database API (JDBC).
Although all these are available for C++, they are not a standard part of the language
or its libraries. We’ll briefly survey each of these features.

•

Java bytecodes are portable, giving Java a real advantage over C++ in a
heterogeneous network environment. Java’s detractors decry the overhead implicit in
the interpretation of bytecodes. But Java compiler technology has improved
significantly over the last several years. Many expect that Java’s execution speed will
soon rival, and in some cases surpass, that of C++.

•

Java is inexpensive. You don’t need to purchase an expensive IDE to learn or use
Java: You can run and modify the programs in this book using the freely available
JDK. Of course, if you decide to spend a great deal of time writing Java programs and
getting paid for doing so, an IDE is a wise investment.

•

The last reason is the best one: Java is fun. One of the authors has been
programming for almost three decades. But not since those first weeks writing Fortran
code for the IBM 1130 has programming been as much fun as the last several years
spent writing Java code. Having taught Java programming to dozens of students
who’ve had the same experience, we can confidently predict that you too will enjoy
Java.

For readers not familiar with Java, Chapter 7 presents enough of the Java language and
APIs to enable most readers—especially those already fluent in C++—to understand,
modify, and run the example programs in this book. If you find you’d prefer a more
thorough explanation of Java, please consider Object-Oriented Programming in Java, by
Gilbert and McCarty (Waite Group Press, 1997), which is designed to teach programming
and software development as well as the Java language and APIs.

 Chapter 8, “Java Threads”

 - 10 -

Chapter 8 presents threads, an important topic for distributed object systems. The
chapter deals not only with the syntax and semantics of Java’s thread facilities, but also
with several pitfalls of thread programming, including race conditions and deadlocks.

 Chapter 9, “Java Serialization and Beans”

Chapter 9 presents two additional Java APIs: serialization and Beans. Serialization is
important to creating persistent and portable objects, while beans are important to
creating reusable software components.

 Part III: Java’s Networking and Enterprise APIs

 Part III presents Java’s networking and enterprise APIs. Distributed object systems use

these APIs either directly or through the mediation of a distributed object technology.

 Chapter 10, “Security”

 Chapter 10 presents Java’s security API, including ciphers and public key encryption

systems.

 Chapter 11, “Relational Databases and Structured Query Language

(SQL)”

 Chapter 11 presents the basics of relational database technology, including an overview

of Structured Query Language (SQL).

 Chapter 12, “Java Database Connectivity (JDBC)”

 Chapter 12 presents the JDBC API, which facilitates access to SQL databases.

 Chapter 13, “Sockets”

 Chapter 13 explains socket programming and shows how to create clients and servers

that exchange data using sockets.

 Chapter 14, “Socket-Based Implementation of the Airline Reservation

System”

Chapter 14 describes a socket-based implementation of a portion of the Airline
Reservation System example presented in Chapter 6. Chapter 14 helps you place the
explanations of Chapter 13 in a real-world context.

 Chapter 15, “Remote Method Invocation (RMI)”

 Chapter 15 presents RMI and shows how to create and access remote objects.

 Chapter 16, “RMI-Based Implementation of the Airline Reservation

System”

Chapter 16 describes an RMI-based implementation of a portion of the Airline
Reservation System example presented in Chapter 6. Chapter 16 helps you place the
explanations of Chapter 15 in a real-world context.

 Chapter 17, “Java Help, Java Mail, and Other Java APIs”

 - 11 -

Chapter 17 describes two more APIs of interest to developers of distributed object
systems: Java Help and Java Mail. This chapter also surveys several Java APIs that are
currently under development.

 Part IV: Non-CORBA Approaches to Distributed Computing

 Part IV describes three non-CORBA approaches to distributed computing: RMI, Java

servlets, and DCOM.

 Chapter 18, “Servlets and Common Gateway Interface (CGI)”

Chapter 18 presents Java servlets, which provide services to Web clients. The chapter
also describes CGI and surveys the HTML statements necessary to build typical CGI
forms for Web browsers.

 Chapter 19, “Servlet-Based Implementation of the Airline Reservation

System”

Chapter 19 describes a servlet-based implementation of a portion of the Airline
Reservation System example presented in Chapter 6. Chapter 19 helps you place the
explanations of Chapter 18 in a real-world context.

 Chapter 20, “Distributed Component Object Model (DCOM)”

 Chapter 20 describes Microsoft’s DCOM and compares and contrasts it with other

distributed object technologies.

 Part V: The CORBA Approach to Distributed Computing

 Part V presents CORBA and shows how to write Java clients and servers that

interoperate using the CORBA object bus.

 Chapter 21, “CORBA Overview”

 Chapter 21 presents an overview of CORBA, the OMG, and the process whereby the

OMG ratifies a specification.

 Chapter 22, “CORBA Architecture”

 Chapter 22 describes the CORBA software universe and shows you how CORBA

describes objects in a language-independent fashion.

 Chapter 23, “Survey of CORBA ORBs”

 Chapter 23 surveys popular CORBA ORBs, related products, and development tools.

 Chapter 24, “A CORBA Server”

 Chapter 24 presents a simple CORBA server written in Java and explains its

implementation in detail.

 Chapter 25, “A CORBA Client”

 Chapter 25 presents a simple CORBA client written in Java and explains its

implementation in detail.

 - 12 -

 Chapter 26, “CORBA-Based Implementation of the Airline
Reservation System”

Chapter 26 describes a CORBA-based implementation of a portion of the Airline
Reservation System example presented in Chapter 6. Chapter 26 helps you place the
explanations of Chapters 24 and 25 in a real-world context

 Chapter 27, “Quick CORBA: CORBA Without IDL”

 Chapter 27 presents Netscape’s Caffeine and other technologies that let Java

programmers create CORBA clients and servers without writing IDL.

 Part VI: Advanced CORBA

 Part VI describes advanced CORBA features, facilities, and services.

 Chapter 28, “The Portable Object Adapter (POA)”

Chapter 28 discusses one area that is changing under CORBA 3.0. The Basic Object
Adapter (BOA) is being replaced with the Portable Object Adapter (POA). Since the POA
will eventually replace the BOA, this chapter prepares you for the upcoming change by
first discussing problems inherent in the BOA, and then discussing how the POA solves
these problems. The chapter concludes with the POA IDL and a collection of examples
showing how Java applications use the POA.

 Chapter 29, “Internet Inter-ORB Protocol (IIOP)”

 Chapter 29 presents details of the Inter-ORB Protocol and demonstrates how it supports

interoperation of CORBA products from multiple vendors.

 Chapter 30, “The Naming Service”

 Chapter 30 presents CORBA’s naming service, which enables CORBA objects to locate

and use remote objects.

 Chapter 31, “The Event Service”

 Chapter 31 presents CORBA’s event service, which enables CORBA objects to reliably

send and receive messages representing events.

 Chapter 32, “Interface Repository, Dynamic Invocation,

Introspection, and Reflection”

 Chapter 32 presents the CORBA Interface Repository and Dynamic Invocation Interface

(DII), which enable CORBA objects to discover and use new types (classes).

 Chapter 33, “Other CORBA Facilities and Services”

 Chapter 33 surveys other CORBA facilities and services that are less commonly available

than those presented in previous chapters.

 Part VII: Agent Technologies

 Part VII presents software agents, which are objects that can migrate from network node

to node.

 - 13 -

 Chapter 34, “Voyager Agent Technology”

 Chapter 34 presents software agent technology, using ObjectSpace’s Voyager as a

reference technology.

 Chapter 35, “Voyager-Based Implementation of the Airline

Reservation System”

Chapter 35 describes a Voyager-based implementation of a portion of the Airline
Reservation System example presented in Chapter 6. Chapter 35 helps you place the
explanations of Chapter 34 in a real-world context.

 Part VIII: Summary and References

 Part VIII provides a summary of the book’s contents, suggestions for further study, and

handy references.

 Chapter 36, “Summary”

 Chapter 36 recaps the book’s contents and offers suggestions for further study.

 Appendixes

 Appendix A, “Useful Resources”

 Appendix A presents a bibliography of information useful to developers of distributed

object systems.

 Appendix B, “Quick References”

 Appendix B presents quick references that summarize key information and APIs in handy

form.

 Appendix C, “How to Get the Most from the CD-ROM”

Appendix C provides a summary of the contents of the CD-ROM that accompanies this
book. It also provides system requirements, installation instructions, and a general
licensing agreement for the software on the CD-ROM. (Additional licensing terms may be
required by the individual vendors on certain software.)

 Who Should Read This Book?

This book is written for the intermediate to advanced reader. We assume that you’ve
written enough programs to know your way around the tools of the trade, such as
operating systems, editors, and command-line utilities. It’s helpful if you’ve had some
previous experience with Java. However, we provide an overview that will help you make
sense of the Java example programs even if you haven’t previously worked with Java.

We assume that you know about program variables, arrays, and files. It’s helpful if your
programming experience includes some work with an object-oriented language. But we
provide some explanation of basic object-oriented programming along with our
explanation of Java.

However, we don’t assume that you’re familiar with networks, object-oriented analysis
and design, or Unified Modeling Language (UML). This book includes chapters that
address each of these important topics.

 - 14 -

We don’t assume that your Java experience includes an understanding of advanced
features such as threads, Java Beans, serialization, or security. We also don’t assume
that you’re familiar with SQL or JDBC. Instead, we present all these topics.

 So if you’ve got a solid understanding of programming, this book contains all you need to

equip yourself to develop distributed object systems.

HOW TO USE THIS BOOK

A book can communicate ideas, but it cannot impart skills. Reading this book won’t
instantly make you a better programmer, nor a competent developer of distributed object
systems. Experience is, in the end, the only teacher of skills.

Here’s how to gain experience in an unfamiliar programming domain: You should run
each of the example programs for yourself, studying them line by line until you thoroughly
understand how they work. It’s best to type them, rather than simply copy them from the
CD-ROM. By doing so, you’ll force yourself to notice and question everything. Lest you
think this is mere idle advice, be assured that we apply this method ourselves. One of the
authors learned UNIX system programming, X-Windows, and Java exactly this way. In
the case of X-Windows he typed in, ran, and studied all the examples in three textbooks.
The method requires time and patience, but it is quite effective.

After you’ve understood a program, you should modify it to perform new, but related,
functions. Humans learn—or at least have the capacity to learn—from their mistakes. The
more mistakes you make and recognize as such, the more you’ve learned. Here’s a point
to ponder: You won’t make enough mistakes by merely reading this book. So get in front of
your keyboard and make some mistakes. That’s the way to learn.

Part I: Basic Concepts

 Chapter List

 Chapter 1: Distributed Object Computing

 Chapter 2: TCP/IP Networking

 Chapter 3: Object-Oriented Analysis and Design

 Chapter 4: Distributed Architectures

 Chapter 5: Design Patterns

 Chapter 6: The Airline Reservation System Model

 Chapter 1: Distributed Object Computing

 Overview

Somewhat oddly, the principal purpose of a system of distributed objects is to better
integrate an organization. By properly distributing pieces of software (objects) throughout
the organization, the organization becomes more cohesive, more effective, and more
efficient. As you might know from experience, the devil is in that important adverb
properly. Experience shows that scattering software to the wind is likely to bring about
disorder, ineffectiveness, and inefficiency.

 - 15 -

This book aims to help you avoid such catastrophes, by introducing you to a
comprehensive toolkit of technologies and methods for implementing distributed object
systems. Our emphasis is on the Common Object Request Broker Architecture (CORBA)
because, as we see it, it’s the most powerful technology for building distributed object
systems available today. But we don’t give other options short shrift. We describe each
technological option, present and explain simple examples showing how to use it,
compare and contrast it with other technologies, and provide a larger example that
demonstrates how to apply it to real-world-sized systems.

This chapter sets the stage for the play that follows, by introducing fundamental concepts
and terms related to distributed objects. It also explains the structure of this book and
provides some friendly advice intended to enhance your understanding and application of
the material it presents. More specifically, in this chapter you learn:

 • What distributed object systems are.

Objects are software units that encapsulate data and behavior. Objects that reside
outside the local host are called remote objects; systems that feature them are termed
distributed object systems.

 • Why objects should be distributed.

The introduction to this chapter presents a brief business case for distributed object
systems. However, the introduction doesn’t explain how distributed object technologies
actually support the business case by providing more effective and efficient
computation. That explanation is the topic of the second section of this chapter.

 • Which technologies facilitate the implementation of distributed object systems.

Before the advent of the Web, people talked about the rapidity of technological
change. Now, technology seems to change so rapidly that few dare talk about it, lest
they suffer the social embarrassment of reporting old news. In the third section of this
chapter, we’ll give you a map that will help you navigate the forest of distributed object
acronyms.

 • Which related technologies distributed objects draw upon.

Distributed objects didn’t autonomously spring into existence, and they don’t exist
within a technological vacuum. Rather, they’re a logical milestone in the progress of
computing. In the fourth section of this chapter, we’ll identify and describe the
technological progenitors and cousins that make distributed objects what they are.

 • Who should read this book and how it should be used.

Generally, this information is presented in the introduction of a book. However, we’ve
observed that most software developers are impatient to read about technology and
therefore skip book introductions. Because this information is important, we’ve put it in
this chapter, where we hope you’ll read it and follow its advice. For those who actually
read introductions, we’ve included one in this book that contains an abridged version of
this material. So, if you read the introduction, congratulations, and thanks. Be sure to
read this section anyway, because it contains information not found in the introduction.

WHAT IS A DISTRIBUTED OBJECT SYSTEM?

Simply put, distributed object computing is the product of a marriage between two
technologies: networking and object-oriented programming. Let’s examine each of these
technologies.

 - 16 -

 Distributed Systems

The word distributed in the term distributed object system connotes geographical
separation or dispersal. A distributed system includes nodes that perform computations.
A node may be a PC, a mainframe computer, or another sort of device. The nodes of a
distributed system are scattered. You refer to the node you use as the local node and to
other nodes as remote nodes. Of course, from the point of view of a user at another
node, your node is the remote node and his is the local node.

Networks make distributed computing possible: You can’t have a distributed system
without a network that connects the nodes and allows them to exchange data. One of the
great forces driving distributed systems forward is the Web, which you can think of as the
largest distributed computing system in the world. Of course, the Web is a rather unique
type of system. For example, it has no single purpose, no single designer, and no single
maintainer. The Web is actually a federation of systems, a network of networks. A unique
aspect of the Web is its popularity: A rapidly increasing proportion of computers connects
to the Web and therefore—at least potentially—to one another.

 Object-Oriented Systems

Of course, not every distributed system is “object oriented.” However, mingling objects
and distributed computing yields a synergistic result akin to that of mingling tomatoes and
basil. You can have objects that aren’t distributed, and you can distribute software that’s
not object oriented, just as can make pasta sauce with either tomatoes or basil. But, put
the two together, and something marvelous happens.

In the case of software systems, that marvelous result is standardization. You’ve
probably read many accounts that define object-oriented technology: What it is and how it
differs from non–object-oriented technology. We’ve written a few of these, and almost all
(some of our own included) make too much of too little. The real uniqueness of
objectoriented technology can be summed up in a single word: interface.

An interface is a software affordance, like the knob on your front door, the steering wheel
of your car, or a button on your television remote control. You manipulate and interact
with an affordance to operate the device of which it is a part. Software interfaces work the
same way. When you want to use the XYZ Alphabetic Sorter Object in your program, you
don’t need to know what’s inside it, how it was made, or how it works. You only need to
know its interface.

Our modern civilization rests on the notion of conveniences. If we had to understand
electronics in order to watch TV or automotive engineering to drive to the supermarket,
our lives would change radically. Yet, until object-oriented technology, the software world
required programmers to surmount analogous obstacles.

If you’re familiar with object-oriented technology, you may object to this simple—
seemingly simplistic—explanation. “What of P-I-E (polymorphism, inheritance, and
encapsencapsulation)?? you might wish to protest. As we see it, these important
properties are not ends in themselves but merely means—means intended to provide
flexible, reliable, easy-to-use interfaces. In a nutshell, because of these properties,
object-oriented programs provide more flexible, reliable, and easy-to-use interfaces than
non–object-oriented systems.

These better interfaces, in turn, provide two useful properties: interchangeability and
interoperability. Just as precision-machined components spurred an industrial revolution,
interchangeable software components—made possible by high-quality object-oriented
interfaces—have spurred a software revolution. You may not be aware that today’s
extensive markets for software components—spelling checkers, email widgets, and
database interfaces, for example—did not exist even ten years ago. Today, using an
Interactive Development Environment (IDE), you can drop a chart-drawing component
into your program rather than write one yourself, saving you and your employer both time

 - 17 -

and trouble. If your needs are simple, it may not matter a great deal which chartdrawing
component you choose to use. Any of the available choices will work in your program
because their standardized interfaces make them interchangeable.

Standardized interfaces also promote interoperability, the ability of components to work
together. Software components from different vendors can be plugged into an object bus,
which lets the components exchange data. You can build entire systems from software
components that have never previously been configured together. The components will
interoperate successfully because their interfaces are standardized.

The case for the use of object-oriented systems could be further elaborated. If you’re
interested in the topic, you should consult any of the several books by Dr. Brad Cox, which
are among the best on the subject.

 WHY DISTRIBUTE OBJECTS?

 So far, we’ve established that objects are “good” and that it’s possible, by means of

networking, to distribute them. However, the question remains: Why distribute them?

If your organization occupies a single location and has few computers, you probably don’t
need a distributed object system. However, in search of economies of scale and scope,
many organizations have grown large, occupying many locations and owning many
computers. These organizations can benefit from applying distributed object
technologies.

To see these benefits, consider the polar opposite of a distributed system: a centralized
system supported by a single mainframe computer, as illustrated in Figure 1.1. In this
configuration, the mainframe computer does all the application processing, even though
the remote systems may be PCs capable of executing millions of instructions per second.
The remote systems act as mere data entry terminals.

 As proponents of the client/server architecture have pointed out, several drawbacks

attend this monolithic architecture:

 • When the mainframe computer is unavailable, no processing can be performed

anywhere.

•

All data must be transported across the network to the central computer, which is the
sole repository of data. This applies even if the data is needed only locally. The
resulting volume of traffic requires greater network bandwidth than an architecture that
stores data near the point of origin or probable need.

 • The single mainframe computer is more costly to purchase and operate than an

equivalently powerful set of smaller computers.

In contrast to the rigid “the mainframe does it all” policy that underlies a nondistributed
system, distributed object systems take a more flexible approach: Perform the
computation at the most cost-effective location. Of course, you can err by understanding
the term cost-effective in too narrow a sense. We use the term as meaning the long-run
total cost of building and operating a system, not merely such obvious and tangible initial
costs as hardware.

 - 18 -

 Figure 1.1: A centralized system often uses resources inefficiently.

If your interest is technology rather than business, you may be put off by this mention of
cost-effectiveness. Many books on distributed computing omit discussion of the reasons for
distributing computation. Perhaps the reasons are so obvious that they go without saying.
However, it’s altogether too common for fans of technology to apply a technology just
because it’s the latest and “best.” If distributed object systems are to have a future,
software developers must build them intelligently. Only by bearing in mind the goals and
needs of the organization can developers correctly decide which computations should be
performed where. You’ll learn more about computing architectures in Chapter 4,
“Distributed Architectures.”

DISTRIBUTED OBJECT TECHNOLOGIES

A distributed object technology aims at location transparency, thus making it just as easy
to access and use an object on a remote node (called, logically enough, a remote object)
as an object on a local node. Location transparency involves these functions:

 • Locating and loading remote classes

 • Locating remote objects and providing references to them

 • Enabling remote method calls, including passing of remote objects as arguments and

return values

 • Notifying programs of network failures and other problems

The first three functions are familiar even to programmers of nondistributed systems.
Nondistributed systems must be able to locate and load classes, obtain references to
local objects, and perform local method calls. Handling nonlocal references is more
complex than handling local references, but the distributed computing technology
shoulders this burden, freeing the programmer to focus on the application. Let’s consider
each of these functions in more detail.

The first function, locating and loading remote classes, is needed by ordinary Java
applets, which may contain references to classes that the browser must download from
the host on which the applet resides. However, distributed object systems demand a
somewhat more flexible capability that can locate and download classes from several

 - 19 -

hosts. Such a capability lets system developers store classes on whatever system can
provide the classes most efficiently. Developers can even store classes on multiple
systems, possibly providing improved system performance or availability.

The second function, locating and obtaining references to remote objects, requires some
sort of catalog or database of objects and a server that provides access to the catalog.
When your program needs a particular service, it can ask the catalog server to provide it
with a reference to a suitable server object. Normally, object references are memory
pointers or handles that reference entries within object tables. You can’t simply send
such a reference across a network, because it won’t be valid at the destination node. At
the least, remote references must encode their node of origin. Languages such as Java
that support garbage collection of unused objects require mechanisms that can
determine whether remote references to an object exist. An object must not be scrapped
if it’s in use by a remote node, even if it’s not being used by the local node.

The third function, supporting method calls, requires mechanisms for obtaining a
reference to the target method as well as mechanisms for transporting arguments and
return values across the network. Because objects may contain other objects as
components, much activity may be required to perform an apparently simple method call.

The fourth function, notifying programs of network failures, may be unfamiliar to you if
you’ve programmed only nondistributed systems. You may even think that this function is
unnecessary, but it serves an important purpose. Distributed computing differs from
ordinary computing in several ways, so it’s not always possible or even desirable to
provide full location transparency. The fourth function is necessary so that the distributed
system can notify programs when location transparency fails.

Consider the case of a nondistributed system running on a standalone computer. If the
computer malfunctions, it can do no useful work and might as well be shut down.
Distributed systems operate differently. If a single node of the network malfunctions, the
other nodes can—and should—continue to operate. In a distributed environment, an
attempt to reference an object may fail, yet such a failure need not entail shutting down
the application. It may be more appropriate to simply advise the user that the requested
object is not currently available. Such a fail-soft approach is less commonly helpful in
standalone applications, where availability of objects is all or nothing.

Most approaches to distributed computing define special exceptions that are thrown
when an attempt to reference a remote object fails. As you’ll see in subsequent chapters,
writing code to handle such exceptions is one of the greatest differences between
programming distributed systems and nondistributed systems. Fortunately, due to help
provided by distributed object technologies, this code is not difficult to write.

Now that you have a foundation for understanding distributed object technologies, let’s
survey some of the specific technologies you’ll meet in subsequent chapters: Remote
Method Invocation (RMI), Microsoft’s Distributed Component Object Model (DCOM), the
Common Object Request Broker Architecture (CORBA), and ObjectSpace’s Voyager.

 Remote Method Invocation (RMI)

Sun developed RMI as a Java-based approach to distributed computing. RMI provides a
registry that lets programs obtain references to remote server objects and uses Java’s
serialization facility to transfer method arguments and return values across a network.
Though it’s Java-based, RMI is not necessarily Java only. By combining RMI with the
Java Native-code Interface (JNI), you can interface C/C++ code with RMI, providing a
bridge to non-Java legacy systems.

Moreover, Sun has announced a joint project with IBM that aims to develop technology
that will let RMI interoperate with CORBA. Because RMI is implemented using pure Java
and is part of the core Java package, no special software or drivers are needed to use
RMI. However, Microsoft has announced that it does not plan to provide RMI as part of its
implementation of Java, choosing instead to put the full weight of its considerable

 - 20 -

marketing muscle behind its own distributed object technology, DCOM.

 Distributed Component Object Model (DCOM)

Microsoft’s DCOM is an evolutionary development of Microsoft’s ActiveX software
component technology. DCOM lets you create server objects that can be remotely
accessed by Visual Basic, C, and C++ programs. Visual J++ and Microsoft’s Java
Interactive Development Environment (IDE) let you write Java programs that access
DCOM objects. However, such programs will not currently run on non-Microsoft
platforms. If other vendors choose to support DCOM, it may someday be possible to
write portable Java programs that access DCOM servers.

 Common Object Request Broker Architecture (CORBA)

The Object Management Group (OMG) is a consortium of over 800 companies that have
jointly developed a set of specifications for technologies that support distributed object
systems. CORBA specifies the functions and interfaces of an Object Request Broker
(ORB), which acts as an object bus that allows remote objects to interact. Unlike RMI,
CORBA is language-neutral. To use CORBA with a given programming language, you
employ bindings that map the data types of the language to CORBA data types. CORBA
bindings are available for COBOL, C, C++, and Java, among other languages.

Several vendors provide software that complies with CORBA. Because CORBA’s
interfaces are standard, you can build systems that include products from multiple
vendors. However, the way you write a program to access an ORB does vary somewhat
from vendor to vendor, so CORBA programs are not portable across platforms. Because
CORBA implementations are widespread and relatively mature, this book focuses on
CORBA. Moreover, you can explore CORBA without incurring significant cost: Sun freely
distributes Java IDL, an ORB, with its Java Developer’s Kit (JDK).

Missing from the CORBA bandwagon is Microsoft, which touts its own distributed object
technology, DCOM, as superior to CORBA. However, Microsoft users find no shortage of
support for CORBA among the vendors who offer CORBA products for use on Microsoft
platforms.

 Voyager

ObjectSpace offers a free software package called Voyager, which provides the ability to
create and control Java-based software agents. Agents are mobile objects that can move
from node to node. For example, an agent that requires access to a database may
relocate itself to the node that hosts the database rather than cause a large volume of
data to be transmitted across the network. The same agent may later relocate itself to the
user’s local node so that it can efficiently interact with the user.

Because Java byte codes are portable, Java offers unique developers of software agents
unique advantages. Voyager makes it easy to explore software agent technology.
Moreover, Voyager is no mere toy: Several companies have built sophisticated distributed
object systems using Voyager.

FROM HERE

You’ve learned what distributed objects are and why distributed object systems are useful.
You’ve learned about technologies important to the implementation of distributed systems,
including RMI, DCOM, CORBA, and software agents. You’ve also learned about key
enabling technologies such as Java and networking on the Web. The rest of this book
builds on this chapter as its foundation.

Chapter 2: TCP/IP Networking

 - 21 -

 Overview

The pre-Columbian Indians known as the Inca, who lived along the Pacific coast of South
America, knew the importance of communication. They linked an empire of about 12
million people with an elaborate system of roads. Two main north-south roads ran for
about 2,250 miles, one along the coast and the other inland along the Andes mountains.
The Inca roads featured many interconnecting links, as well as rock tunnels and vine
suspension bridges. Runners could carry messages, represented by means of knotted
strings, along these roads at the rate of 150 miles per day. Ironically, the Inca’s effective
transportation system made it much easier for the Spanish Conquistadors to conquer
them.

In previous eras of computing, computers were mostly standalone devices; data
communication was relatively limited. In contrast, the present era of computing is
dominated by networks and networking. Just as the Inca road system permitted rapid
delivery of information in the form of knotted strings, today’s modern networks permit
rapid delivery of digitally encoded packets of information.

Although there are a number of networking standards, the Transmission Control
Protocol/Internet Protocol (TCP/IP) family of protocols has established itself as the most
popular standard, connecting tens of millions of hosts of every imaginable manufacture
and type. In this chapter you learn

 • How the TCP/IP family of protocols is structured

The TCP/IP protocols are arranged in four layers of increasing sophistication and
power: the network access layer, the Internet layer, the transport layer, and the
application layer.

 • How the TCP/IP protocol moves data from one device to another

 TCP/IP forms data into packets and uses IP addresses to interrogate routers, which

supply a route from the source to the destination.

 • About the major TCP/IP services

 TCP/IP doesn’t merely move data, it provides a rich variety of services to users,

programmers, and network administrators.

 • How to troubleshoot TCP/IP problems

 You don’t need to be a TCP/IP guru to solve many common TCP/IP problems. You learn

here how to use commonly available tools to diagnose TCP/IP problems.

 TCP/IP PROTOCOL ARCHITECTURE

A protocol is nothing more than an agreed way of doing something. Diplomatic protocol,
for example, avoids unintentional insult of dignitaries by rigidly fixing the sequence in
which they are introduced to one another. In the world of computer networks, a
communications protocol specifies how computers (or other devices) cooperate in
exchanging messages. Some people refer to communications protocols as handshaking,
which is an accurate, though metaphorical, picture of what’s involved.

Diplomats often find it difficult to get disputing parties together to talk about and resolve
their differences. In the hardware/software world, it seems even more difficult to
introduce dissimilar computers to one another and get them to shake hands. As a
consequence, communications protocols are vastly more complex than diplomatic

 - 22 -

protocols. As you’ll see, a whole family of protocols is involved in simply moving a
message from one computer to another.

In his book, The Wealth of Nations, the great economist Adam Smith argued in favor of
core competencies. He believed that economic wealth is maximized when nations and
individuals do only what they do best. Centuries later, modern corporations struggle to
apply his advice as they decide which business functions should be maintained and
which should be outsourced.

The TCP/IP protocols apply this wisdom: That’s why they comprise a number of smaller
protocols, rather than one enormous protocol. Each protocol has a specific role, leaving
other considerations to its sibling protocols.

Unfortunately, there are so many TCP/IP protocols that the beginner is overwhelmed by
their sheer number. To simplify understanding TCP/IP protocols, each protocol is
commonly presented as belonging to one of four layers, as shown in Figure 2.1. Every
protocol in a layer has a related function. The layers near the bottom of the hierarchy
(network access and Internet) provide more primitive functions than those near the top of
the hierarchy (transport and application). Typically, the bottom layers are relatively more
concerned with technology than the top layers, which are concerned with user needs.

 Figure 2.1: The four layers of the TCP/IP protocols form a pyramid.

Note

If you’re familiar with data communications, you may know the Open Systems
Interconnect (OSI) Reference Model. This seven-layer model is presented in
many textbooks and taught in many courses. However, its structure does not
accurately match that of the TCP/IP protocols (or equally fairly, the structure
of the TCP/IP protocols does not accurately match that of the OSI Reference
Model). Consequently, this chapter ignores the OSI Reference Model,
focusing instead on the four-layer model that better describes TCP/IP.

 Let’s examine each of the four layers of the TCP/IP protocols in detail. We’ll start with the

bottom layer and work our way up the pyramid.

 Network Access Layer

The bottom layer of the TCP/IP protocol hierarchy is the network access layer. The
functions it performs are so primitive—so close to the hardware level—that they’re often
transparent to the user. These functions include

 • Restructuring data into a form suitable for network transmission

 • Mapping logical addresses to physical device addresses

Networks often impose constraints on data they transmit. One of the network access
layer’s jobs is to restructure data so that it’s acceptable to the network. Of course, it does
this in a way that permits the data to be reconstituted into its original form at the
destination.

 - 23 -

Every device attached to a network has a physical device address. Some devices may
have more than one address—a computer with multiple network cards, for example.
Physical addresses are often cumbersome in form, consisting of a series of hexadecimal
digits. Moreover, devices come and go; for example, a network interface card may fail
and have to be replaced.

Programmers who write programs that must be revised whenever a device is replaced do
not find many friends in the workplace. Therefore, programmers prefer to work with
logical addresses rather than physical addresses. TCP/IP provides a logical address,
known as an IP address or IP number, that uniquely identifies a network device. A
network device can use a special TCP/IP protocol to discover its IP address when it is
started. That way, programs can be insulated from changes in the hardware devices that
compose the network.

The good news about the network access layer is that its functions are usually
implemented in the network device’s device driver. Neither users nor application
programmers are typically much concerned with the workings of the network access
layer. Of course, without the network access layer, the jobs of the Internet and other
layers would be much more complicated.

 Internet Layer

The Internet layer, which sits atop the network access layer, provides two main
protocols: the Internet protocol (IP) and the Internet control message protocol (ICMP). All
TCP/IP data flows through the network by means of the IP protocol; the ICMP protocol is
used to control the flow of data.

 The IP Protocol

Because the TCP/IP protocols are named, in part, for the IP protocol, you might correctly
guess that the IP protocol performs some of the most important networking functions. For
example, the IP protocol

 • Standardizes the contents and format of the data packet, called a datagram, that is

transmitted across the network

 • Selects a suitable route for transmission of datagrams

 • Fragments and reassembles datagrams as required by network constraints

 • Passes data to an appropriate higher-level protocol

The IP protocol precedes every packet of data with five or six 32-bit words that specify, in
a standard format, such information as the source and destination addresses of the
packet, the length of the packet, and the TCP/IP protocol that will handle the data. By
standardizing the location and format of this data, the IP protocol makes it possible to
exchange messages between devices built by different manufacturers. The open
architecture of TCP/IP is one of the reasons it is so popular, in contrast to the limited
popularity of the several proprietary architectures promoted by vendors.

Note

An open architecture or technology is one developed and subscribed to by
multiple vendors, such as Common Object Request Broker Architecture
(CORBA), which is the product of the joint efforts of hundreds of companies. A
proprietary architecture or technology is one developed and promoted by a
single vendor, such as Microsoft’s Distributed Object Component Model
(DCOM) or Novell’s IPX.

 A central purpose of TCP/IP is to allow exchange of data among, not merely within,

 - 24 -

computer networks. To move data from one network to another, the two networks must
somehow be connected. Typically, the connection takes the form of a device, called a
gateway, that is attached to each network. The hosts, or non-gateway devices, of one
network can exchange data with the hosts of the other network by means of the IP
protocol, which routes the data through the common gateway (as shown in Figure 2.2).

 Figure 2.2: The IP protocol routes information between networks.

Hosts need not be connected via a single intermediate gateway. The IP protocol is
capable of multi-hop routing (see Figure 2.3), which passes a packet through as many
gateways as necessary in order to reach the destination system.

Another responsibility of the IP protocol is packet fragmentation. Networks typically
impose an upper limit on the size of a transmitted packet, called the maximum
transmission unit (MTU). The IP protocol hides this complexity by automatically
fragmenting and reassembling datagrams so that the network MTU is never exceeded.

The IP protocol’s final task is to pass received packets to the proper higher-level protocol.
It relies on a protocol number stored in the packet to determine the protocol to which it
should deliver the packet.

The IP protocol has two properties of particular interest. First, it is a connectionless or
stateless protocol. To understand what this means, consider the opposite: a
connectionoriented protocol. One example is the nurse who screens telephone calls
directed to your physician. You explain the reason for your call and the nurse decides
whether it’s proper to interrupt the busy physician. You wait until finally you hear the
reassuring, “Dr. Casey will speak to you now.” Only then do you begin your dialog with
the physician.

A connectionless protocol, on the other hand, imposes no screening. If your physician
used a connectionless protocol, you could simply begin talking the moment the phone
was answered. Of course, you might have dialed a wrong number; instead of your
physician, you might have reached the local pizzeria, where the employees are puzzled
and amused by your earnest questions regarding test results. To avoid mix-ups of this
sort, the IP protocol depends upon other, higher-level protocols. In other words, the
connectionless IP protocol alone won’t prevent a connection to the wrong host or
gateway.

 - 25 -

 Figure 2.3: Hosts can be connected via several intermediate gateways via IP

protocol multi-hop routing.

Second, the IP protocol is an unreliable protocol. This doesn’t mean that data sent via the
IP protocol may be received in corrupted form, only that the IP protocol itself doesn’t
verify that data has been transmitted correctly. Other, higher-level protocols are
responsible for this important task. Because of the support the IP protocol receives from
its sibling protocols, you can safely trust it with your most important data.

 The ICMP Protocol

Like the IP protocol and the protocols of the network access layer, the ICMP protocol
works behind the scenes to make networking as simple, reliable, and efficient as
possible. The ICMP protocol has four main responsibilities:

 • Ensure that source devices transmit slowly enough for destination devices and

intermediate gateways to keep pace

 • Detect attempts to reach unreachable destinations

 • Dynamically re-route network traffic

 • Provide an echo service used to verify operation of a remote system’s IP protocol

When a network device, either a host or a gateway, finds that it cannot keep up with a
source’s flow of datagrams, it sends the source an ICMP message that instructs the
source to temporarily stop sending datagrams. This helps avoid data overruns that would
necessitate retransmission of data, which would reduce network efficiency.

The ICMP protocol also provides a special message that is sent to a host that attempts to
send data to an unreachable host or port. (You learn about ports in this chapter’s
“Packets, Addresses, and Routing.”) This message enables the sending host to deal with
the error, rather than waiting indefinitely for a reply that will never come.

The ICMP protocol also enables dynamic re-routing of packets. For example, consider
the networks shown in Figure 2.4. Two gateways join the networks, allowing data to flow
from one network to the other through either gateway. The ICMP protocol provides a

 - 26 -

message that acts as a switch, telling hosts to use one gateway in preference to the
other. This message, for example, can allow one gateway to take over when the other
fails or is shut down for maintenance. The path from Host A to Host B has been
dynamically re-routed through Gateway #2 due to the broken connection between Host A
and Gateway #1.

Finally, the ICMP protocol provides a special echo message. When a host or gateway
receives an echo message, it replies by sending the data packet back to the source host.
This permits verification that the host or gateway is operational. The ping command,
which you meet in this chapter’s “Troubleshooting,” relies upon this message.

 Transport Layer

The transport layer sits atop the Internet layer. Like the Internet layer, the transport layer
provides two main protocols: the transmission control protocol (TCP) and the user
datagram protocol (UDP). Most network data is delivered by TCP. A few special
applications benefit from the lower overhead provided by UDP.

 Figure 2.4: Networks can provide multiple data paths by dynamic re-routing of

packets.

 The TCP Protocol

As the name TCP/IP suggests, the TCP and IP protocols are at the center of TCP/IP
networking. Recall that the IP protocol is an unreliable protocol that transmits data
packets from one host to another. The TCP protocol builds on these basic functions by
adding

 • Error checking and re-transmission, so that data transmission is reliable

 • Assembly of packets into a continuous stream of data in the proper sequence

 • Delivery of data to the application program that processes it

The TCP protocol provides a sending host that periodically re-transmits a packet until it
receives positive confirmation of delivery to the destination host. The receiving host uses
a checksum within the packet to verify that the packet was received correctly. If so, it
transmits an acknowledgment to the source host. If not, it simply discards the bad packet;
the source host therefore re-transmits the packet when it fails to receive a timely
acknowledgment.

 Most programs view data as a continuous stream rather than packet-sized units of data.

The TCP protocol takes responsibility for reconstituting packets into a stream. This is

 - 27 -

more difficult than it might sound because packets do not always follow a single path
from source to destination. As you can see in Figure 2.5, packets may arrive at the
destination out of sequence. The TCP protocol uses a sequence number in each packet
to reassemble the packets in the original sequence.

 Figure 2.5: Data packets may arrive out of sequence and must be reassembled.

The TCP protocol delivers the data stream it assembles to an application program. An
application listens for data on a port, which is designated by a number called the port
number, which is carried within every datagram. The TCP protocol uses the port number
to deliver the data stream. You learn more about ports in the “Ports and Sockets” section.

Every function exacts a price, however small, in overhead. Applications that do not
require all the functions provided by the TCP protocol may use the UDP protocol, which
has fewer functions and less overhead than the TCP protocol.

 The UDP Protocol

Essentially, UDP provides the important port number that enables delivery of a packet to
a particular application program. However, data transmission via UDP is unreliable and
connectionless. This means that the application program must verify that packets were
sent accurately and, if stream-oriented data are involved, reassemble them into proper
sequence.

When small amounts of data are exchanged between network devices—that is, amounts
less than the maximum size of a packet—the UDP protocol may present few
programming difficulties, yet provide improved efficiency. For example, if messages
strictly alternate between devices, following a query-response model in which one device
transmits a packet and then the other transmits a response, packet sequence may not be
an issue. In such a case, the capabilities of TCP are largely wasted.

In principle, UDP allows a system’s designer to trade off performance under less than
ideal conditions (where TCP shines) for performance under ideal conditions (where UDP
shines). When network reliability is substandard, UDP performance may be no better,
and perhaps worse, than that of TCP. As one wag put it, “UDP potentially combines the
low performance of a connectionless protocol with the inefficiency of TCP.”

Moreover, some network administrators who fear security breaches do not allow UDP
packets to cross into their networks, allowing them only on the local, highly reliable
network. Consequently, UDP remains a specialty protocol with limited application.

 Application Layer

The uppermost layer of the TCP/IP family of protocols is the application layer, which
includes every application program that uses data delivered by TCP/IP. Certain
applications, such as mail and remote login, have become highly standardized. You

 - 28 -

learn about several standard applications in this chapter’s “TCP/IP Services” section.

Other applications are highly specialized; the program used by a Web retailer to record
your purchases and debit your account is an example. This is where the real action of
distributed computing is taking place today. System designers and programmers are
working to conceive and build entirely new sorts of applications using technologies like
Java and mobile agents, which were not widely available even a few years ago.

 PACKETS, ADDRESSES, AND ROUTING

In the last section you learned what the key TCP/IP protocols do. Now take a closer look
at how TCP/IP works. This section’s goal is not to make you a TCP/IP network
administrator, but merely to give you a working knowledge of TCP/IP sufficient to
develop networkcapable software and to communicate with network administrators
responsible for configuring the systems on which your programs run. By learning a bit
more about the TCP/IP, you’ll be a more effective system developer.

 IP Addresses

Recall that the IP protocol provides every network device with a logical address, called an
IP address, which is more convenient to use than the device’s physical address. The IP
addresses provided by the IP protocol take a very specific form: Each is a 32-bit number,
commonly represented as a series of four 8-bit numbers (bytes), which range in value
from 0 to 255. For example, 192.190.268.124 is a valid IP address.

The purpose of the IP address is to identify a network and a specific host on that network.
However, the IP protocol uses four distinct schemes, known as address classes, to
specify this information.

 The value of the first of the four bytes that compose an IP address determines the form of

the address:

•

Class A addresses begin with a value less than 128. In a Class A address, the first
byte specifies the network and the remaining three bytes specify the host. About 16
million hosts can exist on a single Class A network.

•

Class B addresses begin with a value from 128 to 191. In a Class B address, the first
two bytes specify the network and the remaining two bytes specify the host. About
65,000 hosts can exist on a single Class B network.

•

Class C addresses begin with a value from 192 to 223. In a Class C address, the first
three bytes specify the network and the remaining byte specifies the host. Only 254
hosts can exist on a single Class C network (hosts 0 and 255 are reserved).

 IP addresses that begin with a value greater than 223 are used for special purposes, as

are certain addresses beginning with 0 and 127.

As you can see, a Class A address enables you to specify a much larger network than a
Class C address. Class A addresses are assigned to only the largest of organizations;
smaller organizations must make do with Class C addresses, using several such
addresses if they have more than 254 network hosts.

 Routing

IP addresses are important because of their role in routing, finding a suitable path across
which packets can be transmitted from a source host to a destination host. Every packet
contains the destination host’s IP address. Network hosts use the network part of the
destination IP address to determine how to handle a packet. If the destination host is on
the same network as the host, the host simply transmits the data packet via the local

 - 29 -

network. The destination host receives and processes the packet.

If the destination host is on a different network, the host transmits the packet to a
gateway, which forwards the packet to the destination, possibly by way of several
intermediate gateways. The host determines to which gateway it should send the packet
by searching its routing table, which lists known networks and gateways that serve them.
Generally, the routing table includes a default gateway used for destination hosts that are
on unfamiliar networks. Internally, the default gateway is known by the special IP address
0.0.0.0. Other special IP addresses are 127.0.0.1, which is used as a synonym for the
address of the host itself, and 127.0.0.0, which is used as a synonym for the local
network.

The routing table does not provide enough information for a host to construct a complete
route to the destination host. Instead, it determines only the next hop in the journey,
relying on a downstream gateway to pick up where it left off.

Hosts can be configured to use static routing, in which the routing table is built when the
host is booted, or dynamic routing, in which ICMP messages may update the routing
table, supplying new routes or closing old ones. Typically, system administrators use
static routing only for small, simple networks; larger, more complex networks are easier
to manage using dynamic routing.

 Ports and Sockets

Recall that the TCP protocol’s final task is to hand the data stream to the proper
application, identified by the port number contained in the packets that compose the data
stream. Certain port numbers, so-called well-known port numbers (see Table 2.1), are
normally reserved for standard applications.

 TABLE 2.1 Some Representative Well-Known Port Numbers and Their Associated

Applications

Port Number

Application

7

ECHO, which retransmits the received packet

21

FTP, which transfers files

23

Telnet, which provides a remote login

25

SMTP, which delivers mail messages

67

BOOTP, which provides configuration information at boot time

109

POP, which enables users to access mail boxes on remote systems

Port numbers are 16-bit numbers, providing for 65,536 possible ports. Although there are
dozens of well-known ports, these are a fraction of the available ports. The remaining
ports are dynamically allocated ports known as sockets. The combination of an IP
address and a port number uniquely identifies a program, permitting it to be targeted for
delivery of a network data stream.

 - 30 -

Well-known ports and sockets are typically used together. For example, suppose a user
on host 111.111.111.111 wants to access mail held on host 222.222.222.222. The user’s
program first dynamically acquires a socket on host 111.111.111.111. Assume that
socket 3333 is assigned; the complete source address, including IP address and port
number, is then 111.111.111.111.3333. Because the POP application uses well-known
port 109, the destination address is 222.222.222.222.109. The user’s program sends a
packet to the destination address, a packet containing a request to connect to the POP
application. The TCP/IP protocols pass the packet across the network and deliver it to the
POP application.

The POP application considers the request and decides whether to allow the user to
connect. Assuming it decides to allow the connection, it dynamically allocates a socket.
Assume that socket 4444 is assigned. The two hosts now begin a conversation involving
addresses 111.111.111.111.3333 and 222.222.222.222.4444. Port 109 is used only to
initially contact the POP application. By allocating a socket specifically for the
conversation between the hosts, port 109 is quickly made available to serve other users
who want to request a connection. Other well-known applications respond similarly.

 Hosts and Domains

Recalling the IP addresses of network hosts quickly grows tiring: Was the budget
database on host 111.123.111.123 or 123.111.123.111? Fortunately, a standard TCP/IP
service frees users and programmers from this chore. The Domain Name Service (DNS)
translates from structured host names to IP addresses and vice versa.

The structured names supported by DNS take the form of words separated by periods.
For example, one host familiar to many is the AltaVista Web search engine, known as
altavista.digital.com. The components of this fully qualified domain name
(FQDN) include the host name, altavista, and the domain name, digital.com. As
the period indicates, the domain name itself is composed of two parts: the top-level
domain, com, and the subdomain, digital.

There are six commonly used top-level domains in the U.S., as shown in Table 2.2.
Outside the U.S., most nations use top-level domains that specify a host’s nation of
origin. For example, the top-level domain ca is used in Canada, and the top-level
domain uk is used in the United Kingdom. However, there is no effective regulation of
top-level domains, so alternative schemes are in use and continue to arise. For example,
some host names within the U.S. use the domain us, following the style used by most
other nations.

 TABLE 2.2 Common Top-Level Domains Used in the U.S.

Domain

Organization Type

com

Commercial organizations

edu

Educational institutions

gov

Government agencies

mil

Military organizations

 - 31 -

 net Network support organizations and access providers

org

Non-profit organizations

Authority to establish domains is held by the Internet Resource Registries (IRR), which
hold authority for specific geographic regions. In the U.S., InterNIC holds authority to
assign IP addresses and establish domains.

Once an organization has registered a domain name with the appropriate IRR, the
organization can create as many subdomains as desired. For example, a university
might register the domain almamater.edu. It might then establish subdomains for various
university departments, such as chemistry.almamater.edu and literature.almamater.edu.
Hosts could then be assigned names within these domains. For example, hosts within the
chemistry department might include benzene.chemistry.almamater.edu and
hydroxyl.chemistry.almamater.edu; hosts within the literature department might include
chaucer.literature.almamater.edu and steinbeck.literature.almamater.edu. Of course, the
university might choose to forego the creation of subdomains (see Figure 2.6),
particularly if it has few hosts. It might then use host names such as
benzene.almamater.edu and chaucer.almamater.edu, which include no subdomain.

Of course, typing names of such length can become tiresome. Fortunately, DNS allows
users to abbreviate host names by supplying omitted domain information on behalf of the
user. For example, if a user of a host within the almamater.edu domain refers to a host
named chaucer, DNS assumes that the user means chaucer.almamater.edu. Similarly, if
a user within the ivywalls.edu domain refers to a host named chaucer, DNS takes the
user to mean chaucer.ivywalls.edu. This convention makes it much easier to refer
to hosts within one’s domain, while preserving the possibility of addressing every host.
For example, if the user within the ivywalls.edu domain wants to refer to the chaucer host
within the almamater.edu domain, the user merely specifies the fully qualified domain
name, chaucer.almamater.edu.

As you see, DNS is rather simple from the user’s standpoint. On the other hand, it is
somewhat more complex from the standpoint of the system administrator. The next section
takes a more in-depth look at several TCP/IP application layer services, including DNS.

TCP/IP SERVICES

The popularity of TCP/IP is due in part to the fact that its bottom three protocol layers do
their jobs well. However, much of the credit must go to the fourth layer, the application
layer, which provides many useful functions that make network use and programming
much more convenient.

This section surveys several representative services provided by the application layer of
most TCP/IP implementations. It’s necessary to say most because no law requires a
vendor to include any of these services in its implementation. However, Adam Smith’s
“invisible hand” (the market) tends to reward those vendors who provide rich
implementations of TCP/IP and punish those who do not. Of course, it’s the consumer
who decides whether a given implementation is rich or not, so it doesn’t always follow
that a popular operating system will support all, or even most, of these services—at least
not right out of the box.

 - 32 -

 Figure 2.6: Domain and subdomain hierarchies.

Consider Microsoft Windows 9x, one of the leading operating systems in terms of market
share. Windows 9x is designed for personal use. Consequently, it can access most of
these services, but it can provide only about half of them. For power users who want to
provide the full range of TCP/IP services, Microsoft offers its flagship operating system,
Windows NT. Because Windows NT is more expensive and more complex than Windows
9x, many Windows 9x users are reluctant to migrate to Windows NT, even though they
wish their PC could provide some of the TCP/IP services that Windows 9x cannot.

Fortunately, another solution is available. Even though Microsoft has not included, for
example, mail server protocols in Windows 9x, several shareware mail server packages
are available. The same is true of most other application layer services, so even
Windows 9x users can provide most application layer services, though they may need to
hunt down and install special software in order to do so.

 This section surveys the following application layer services:

 • Domain Name Service (DNS)

 • Telnet

 • File Transfer Protocol (FTP)

 • Mail (SMTP and POP)

 • Hypertext Transfer Protocol (HTTP)

 • Bootstrap (BOOTP and DHCP)

 • File and Print Servers (NFS)

 • Firewalls and Proxies

The point of this material is not to teach you how to install and configure these services.
For that you can consult a book such as Timothy Parker’s TCP/IP Unleashed (Sam’s
Publishing). This section provides enough information to help you identify services your
applications may require and to communicate with network administrators responsible for

 - 33 -

installing and maintaining TCP/IP services.

 Domain Name Service (DNS)

In the previous section you learned how DNS simplifies references to hosts by
substituting host names for IP addresses and allowing use of abbreviated domain names.
In this section you briefly consider how DNS works.

The main function of DNS is to map host names to IP addresses. DNS is, in effect, a
large, distributed database with records residing in thousands of Internet hosts. No one
host possesses a complete database that includes information on every host. Instead,
DNS servers are arranged in a hierarchy. This structure makes DNS more efficient and
more robust. Here’s how:

When a new domain is established, a DNS server is designated for the domain, along
with (at least) a second DNS server that acts as a backup. At all times, a domain’s DNS
server contains a complete record of the IP addresses and host names of hosts within its
domain.

Hosts within the domain know the local DNS server’s IP address. When a user specifies
a host by name, the TCP/IP protocols contact the DNS server and determine the
corresponding IP address, as you can see in Figure 2.7. The IP address is then
incorporated within the outgoing packets as the destination address; the host name never
appears in a packet.

 Figure 2.7: Hosts contact the DNS server to look up destination IP addresses.

The situation is a little more involved when the destination host is outside the local
network. In this case, the local DNS server does not contain a record identifying the
remote host. Instead, the local DNS server contacts an upstream DNS server that may
know a DNS server’s IP address for the destination domain. If so, the upstream DNS
server forwards the request to the designated DNS server (see Figure 2.8) for the
destination domain.

If the upstream DNS server does not know where to find the needed record, it forwards
the request to a DNS server further upstream. DNS servers are arranged in a hierarchy
(see Figure 2.9); somewhere within that hierarchy is a description of any host. This find-
or-forward process continues until the needed record is found or a root DNS server
acknowledges that even it does not know the destination host. In that case, the reference
fails and TCP/IP returns an error code to the requesting program. If you’re using a Web
browser, you may get the annoying “Cannot open the Internet site” message.

 - 34 -

 Figure 2.8: DNS servers forward unmatched requests to other DNS servers.

 Figure 2.9: DNS servers form a hierarchy.

 Remote Login (Telnet)

The Telnet protocol provides a simple but effective remote login facility. For example, a
user working at home can connect via modem with a host that provides a Telnet server.
By running a Telnet client on the home PC, the user can type commands to be executed
by the remote host.

Telnet is a very popular application within the UNIX community; most UNIX hosts
provide a Telnet server. However, Telnet is significantly less popular within the Microsoft
Windows community. Most Windows PCs include a Telnet client because Microsoft
includes one in its Windows operating systems. However, a standard installation of
Windows NT does not include a Telnet server.

One reason for this seems to be Microsoft’s emphasis on graphical user interfaces
(GUIs). In contrast with the Windows GUI, the text-based, command-line interface of
Telnet seems an anachronism. However, Telnet’s text-based interface offers several
advantages:

 - 35 -

 • Telnet requires very low communications bandwidth. Performance is adequate even
under conditions of line noise that constrain connection rates to 2400 baud or less.

 • Telnet is widely available on non-Microsoft systems.

•

UNIX commands can be very powerful in the hands of a skilled user. The UNIX
command shell is, in effect, a powerful programming language that enables quick and
easy automation of repetitive tasks. The DOS command shell, by contrast, offers
limited functionality.

•

Most UNIX systems afford a text-based interface to every system function. Using
Telnet, it’s possible to reconfigure the kernel or network configuration of a system and
restart the system remotely.

Microsoft does offer a beta implementation of Telnet for Windows NT and third parties
have developed Telnet implementations available as shareware. You can establish a
Telnet server even if your main sever runs a Microsoft operating system.

 File Transfer Protocol (FTP)

One of the most widely used TCP/IP applications is File Transfer Protocol (FTP), which
allows users to transfer files to and from network hosts. FTP is ubiquitous: Both UNIX
and Microsoft operating systems include FTP clients and servers. Even popular Web
browsers include built-in FTP clients.

A variety of FTP servers are available. Windows 9x sports an FTP server, although it is
not installed by default. Shareware packages allow even Windows 3.1 users to provide
FTP services.

FTP services can be provided in either of two modes: anonymous and non-anonymous.
An FTP server configured for anonymous access allows any host to access its files. An
FTP server configured for non-anonymous access requires users to provide a user ID
and password before access is granted. An FTP server can be configured to allow
anonymous access to some files and only non-anonymous access to others. Similarly,
users and anonymous users can be allowed to download (read) files, upload (create)
files, or both. Most servers allow access permissions to be set at the directory level, so
some directories restrict access more stringently than others.

Although it’s possible to download files using the HTTP protocol, FTP transmits files more
efficiently. Therefore, FTP remains an important protocol, particularly for the transmission
of large files.

 Mail (SMTP and POP)

Email was one of the first Internet applications to reach public awareness. Today, it
seems that everyone has an email address; some of us have several. Sending and
receiving email has become a national pastime.

 Mail involves two main protocols: SMTP is used to transfer email from one system to

another. POP enables users to access mail boxes remotely.

As is true of most TCP/IP applications, mail involves a client program and a server
program. Client programs are nearly universal; popular Web browsers include mail clients
and there are several popular freeware mail clients.

Mail servers are less common. One reason for this is the complicated configuration
options of the most popular UNIX mail server, sendmail. However, shareware mail
servers are available even for Windows 3.1. Many of these trade off features for ease of
configuration, making them quite simple to install and use.

 - 36 -

 Hypertext Transfer Protocol (HTTP)

The TCP/IP protocol that made the 1990s the decade of the Web is Hypertext Transfer
Protocol (HTTP). HTTP, like other standard TCP/IP application layer protocols, is a
relatively simple protocol that provides impressive capability.

HTTP was designed to solve the problem of providing access to large archives of
documents represented using a variety of formats and encoding. The clever solution of
Tim Berners-Lee was to design a simple protocol (HTTP) to transmit the data to a
browser, a client program that knows how to deal with each of the various data formats
and encoding. By putting most of the burden on the client, rather than the server, HTTP
makes it easy to install and maintain the server.

The second innovation underlying the Web is the Universal Resource Locator (URL),
which allows users to refer to documents on remote hosts. An URL (see Figure 2.10)
consists of three parts:

•

A protocol name, which identifies the protocol to be used to retrieve the document.
The HTTP protocol is usually specified, but most browsers support other common
protocols such as FTP and Telnet.

 • The name of the host that contains the document.

 • The file system path that identifies the document on the host.

 Figure 2.10: An URL includes three main parts.

Because host names are unique and because file system paths are unique within a given
host, URLs provide a simple way of uniquely identifying any document on the network. In
effect, every document becomes part of one large document, whose chapters are
designated by URLs. The resulting mega-document is called the Web.

The rest, as everyone knows, is history. Because Web (HTTP) servers are relatively easy
to set up, many companies established them. Freeware and shareware Web servers are
now available for every popular computing platform. Several companies, most notably
Netscape and Microsoft, delivered browsers capable of handling a plethora of document
types and formats. Soon, everyone, it seemed, was surfing the Web.

 Bootstrap (BOOTP and DHCP)

Recall that one of the IP protocol’s responsibilities is mapping logical addresses (IP
addresses) both to and from physical addresses (device addresses). When you boot a
host, it quickly discovers the manufacturer-assigned physical address of each network
interface by probing the ROM of the network interface. A host’s next task is to discover its
user-assigned IP addresses.

The simplest approach is to give each host a fixed IP address. However, as pointed out
earlier, this can present problems. For example, replacing a faulty network interface card
may change the IP address assigned to a host.

 TCP/IP provides two protocols that help system administrators apply a more flexible

approach: BOOTP and DHCP. BOOTP and DHCP are widely implemented among UNIX

 - 37 -

systems; Microsoft Windows supports DHCP. Each allows a system administrator to build
a table that maps physical addresses to IP numbers. A server process with access to the
table runs on a host.

When a host starts, it runs a client process that sends a broadcast message to every host
on its local network, inquiring what IP address it should use. A BOOTP or DHCP server
that receives such a message searches its mapping table and sends a reply that tells the
host its IP address.

In addition to this fixed method of assignment, DHCP allows a more sophisticated
dynamic assignment of IP addresses that’s particularly appropriate when computers are
mobile. DHCP allows the system administrator to establish a block of IP numbers that
forms a pool. When a host asks for an IP address, it’s assigned an available address
from the pool.

Of course, this dynamic method of IP address assignment is not suitable for hosts that
run server processes because such hosts generally require fixed IP numbers; that way
they can be readily contacted by clients. However, hosts that run client applications
rather than servers are well served by this approach. An advantage of DHCP is that the
pool need contain only enough IP addresses to accommodate the maximum number of
simultaneously connected computers. This avoids the need to apply for, and maintain, a
distinct IP number for every computer that might connect to the network. It’s especially
helpful for mobile computers that may connect to the network at various points, which
would otherwise require that they be configured to somehow choose an IP address
appropriate to the current connection point.

 File and Print Servers (NFS)

Users can employ the FTP protocol to copy files from a server to their system, but it’s
often useful to be able to directly access a file rather than creating a copy. The Network
File System (NFS) protocol provides this capability. Files on a system running an NFS
server can appear as if they were local files of a host running an NFS client. Users can
read and write such files using ordinary application programs. Files can even be shared,
so that multiple users can access them simultaneously.

NFS also provides for sharing of printers. Rather than allocating a printer to each user, a
cost-prohibitive approach for all but the cheapest and least capable printers, many users
can share a single printer.

NFS is mainly found on UNIX systems, although third-party implementations of NFS for
Microsoft operating systems exist. Microsoft supports its own set of network protocols
that provide similar features—Server Message Block (SMB or Samba), for example.
Several third-party implementations of SMB are available for UNIX systems, allowing
integration of Microsoft and UNIX networks.

 Firewalls and Proxies

One of the hazards of modern network life is the cracker. A cracker is anyone who
attempts to access confidential data, alter restricted data, deny use of a computing
resource, or otherwise hamper network operation. One tactic designed to thwart the
cracker is the firewall, a filter intended to block traffic that might compromise the network.
This brief discussion simply outlines the role of the firewall. To learn more about how
firewalls work, see Sharp Amoroso’s PC Week Intranet and Internet Firewall Strategies
(Ziff-Davis Press).

The idea of a firewall is to prevent remote hosts from directly accessing servers on the
local network. Instead, one host is designated as a bastion host (see Figure 2.11) that is
visible to the outside world. When a remote host wants to access a service provided on
the local network, it contacts the bastion host. The bastion host runs a proxy application
that evaluates the request. If the proxy decides to allow the access, it forwards the

 - 38 -

request to the proper server within the local network. The server performs the requested
service and sends a reply by way of the bastion host, rather than directly to the remote
host. Essentially, all traffic flows through the bastion host, which acts as a drawbridge
screening internal network resources from inappropriate outside access. Because all
traffic flows through a single point, it’s easier to monitor and control.

 Figure 2.11: A firewall protects local hosts from unauthorized access.

The bastion host often performs a similar service for requests originating within the local
network, forwarding them to outside servers. By this means, remote hosts may remain
unaware of the identities of hosts within the local network (other than the bastion host),
making it difficult to compromise network security.

 TROUBLESHOOTING

Now that you know what the TCP/IP protocols do when they’re working properly, it’s time
to learn something about troubleshooting. That way, you can cope even when they’re not
working properly. Again, don’t expect to become a networking guru by understanding and
applying the information in this section. The goal is to help you pin-point problem
sources and show you how to collect information that may expedite your network
administrator’s response to your problem reports.

 The ping Command

Both Windows 9x and UNIX, as well as most other operating systems, implement the
ping command. As you recall, ping sends ECHO packets to a remote host, which
responds by resending them to the source host. This works somewhat like the sonar
system in The Hunt for Red October. When the source host receives a return ping it
knows the remote host is operational. Moreover, it can make a crude estimate of network
performance by timing the circuit from the source to the destination and back.

 To use the ping command, you supply an argument, which can be a host name:

 ping www.mcp.com

 Alternatively, you can use an IP address:

 ping 206.246.131.227

 If the remote host is operational, you see something like this:

 C:WINDOWS>ping www. mcp. com

 - 39 -

 Pinging www.mcp.com [206.246.131.227] with 32 bytes of data:

 Reply from 206.246.131.227: bytes=32 time=220ms TTL=230
 Reply from 206.246.131.227: bytes=32 time=202ms TTL=231
 Reply from 206.246.131.227: bytes=32 time=196ms TTL=231
 Reply from 206.246.131.227: bytes=32 time=199ms TTL=231

 C:WINDOWS>

You can see from the output that it takes from 196 to 220 milliseconds for a packet to
make the complete round trip. On a high-speed local area network you might see
numbers in order of magnitude smaller than this.

 If the host name is unknown, you get a message like this:

 C:WINDOWS>ping badhost.mcp.com
 Bad IP address badhost.mcp.com.

 C:WINDOWS>

 If you suspect that the host name may not be properly recorded in the DNS database

(perhaps it’s a new host, for example), you can try again using the IP address.

 The traceroute Command

 Suppose ping cannot find a route to the remote host. In that case, its output looks

something like this:

 C:WINDOWS>ping 199.107.98.211

 Pinging 199.107.98.211 with 32 bytes of data:

 Reply from 134.24.95.73: Destination host unreachable.
 Reply from 134.24.95.73: Destination host unreachable.
 Request timed out.
 Reply from 134.24.95.73: Destination host unreachable.

 C:WINDOWS>

Of course, the problem may lie with the remote host itself, or with any of the gateways
between the local host and the remote host. The traceroute command, known to
Windows 9x users by the abbreviated name tracert, helps you discover the location of
the problem:

 C:WINDOWS>tracert 199.107.98.211

 Tracing route to bmccarty.apu.edu [199.107.98.211]
 over a maximum of 30 hops:

 1 114 ms 99 ms 99 ms elay.hooked.net [206.80.11.2]
 2 108 ms 107 ms 119 ms sgw1.la.hooked.net [206.80.11.1]
 3 118 ms 107 ms 127 ms 206.169.170.173
 4 * 750 ms 118 ms ix-sf.bdr.hooked.net [206.80.17.3]
 5 125 ms 126 ms 118 ms ix-pa-eth0.bdr.hooked.net

 - 40 -

[206.80.25.2]
 6 128 ms 116 ms 144 ms fe2-0.sjc-bb3.cerf.net [134.24.23.1]
 7 143 ms 136 ms 124 ms atm0-0-155M.sfo-bb2.cerf.net
[134.24.29.21]

 8 132 ms 123 ms 2215 ms fe9-0-0.sfo-bb1.cerf.net
[134.24.29.117]

 9 144 ms 123 ms 141 ms atm10-0-155M.lax-bb1.cerf.net
[134.24.29.41]

 10 125 ms 134 ms 128 ms fe0-0-0.lax-bb2.cerf.net
[134.24.29.77]

 11 145 ms 142 ms 150 ms azusa-la-smds.cerf.net [134.24.95.73]
 12 azusa-la-smds.cerf.net [134.24.95.73] reports: Destination
host unreachable.

 Trace complete.

The traceroute output includes one line for each intermediate gateway between the
local host and the remote host. Notice how routing fails after the twelfth hop: azusa-
lasmds.cerf.net reports that it does not know how to reach host 199.107.99.211.
The problem, therefore, is not with any of the first 11 gateways, which successfully
passed on the packet. Now you know where to focus your attention.

 The netstat Command

Another useful command is netstat, which is something of a Swiss Army knife,
providing many functions in one package. One of the most important of its functions is a
report of TCP/IP statistics. The Windows 9x version of the command gives statistics for
the IP protocol, the ICMP protocol, the TCP protocol, and the UDP protocol. To generate
the statistics, simply type the following:

 netstat s

 Here’s an excerpt from a typical report, showing the TCP statistics:

 TCP Statistics

 Active Opens = 200
 Passive Opens = 0
 Failed Connection
Attempts

 = 1
 Reset Connections = 67
 Current Connections = 1
 Segments Received = 2188
 Segments Sent = 2223
 Segments Retransmitted = 20

Notice that the report shows one failed connection attempt and 20 retransmissions out of
over 2,000 segments sent—about a 1% error rate. These statistics apply to a dial-up
modem connection. The error rate would normally be much lower over a local area
network.

By using ping, traceroute, and netstat, you can collect important and helpful
information concerning network performance—information that can help you and others
quickly determine a point of failure. You’ll find these commands very useful as you develop
programs that operate over the network. They help you determine whether a failure is due
to an error in your code or a problem with the network itself.

 - 41 -

 FROM HERE

 As you’ve learned, TCP/IP is an important enabling technology: Distributed computing

builds upon TCP/IP networking as its foundation.

 The following chapters teach you more about networking and show you how networking

fits into distributed computing:

 • Chapter 4, “Distributed Architectures,” shows how different ideas about networking

determine the architecture, or shape, of an information system.

•

Chapter 10, “Security,” explains security risks that arise when computers are
networked and presents the Java security model that attempts to control security
risks.

 • Chapter 13, “Sockets,” shows how to write programs that communicate over a TCP/IP

network.

Chapter 3: Object-Oriented Analysis and
Design

 Overview

If you’re a Star Trek fan, you’re familiar with the transporter, an amazing device that can
transport members of an orbiting starship’s crew to the surface of a planet, or back again,
in an instant. Series creator Gene Roddenberry once observed that the transporter’s
speed played a crucial role in the success of Star Trek. Without it, action-packed
episodes would have devolved into tedium, owing to lengthy and boring shuttle trips from
the Enterprise to whatever exotic planet lay below.

The operating principles of Star Trek’s transporter are simple, even if fantastic. It breaks
objects (or beings) into their molecular components, transforms these components into
energy that it temporarily stores in a pattern buffer, beams the energy to the designated
location, and ultimately re-transforms the energy into a replica of the original object. The
ship’s surgeon, Dr. McCoy, is perhaps the wisest person on board the starship, because
he alone expresses concern over the fact that his original molecules are forever lost,
wondering what subtle differences may distinguish his replicated self from the original
and what the cumulative effect of regularly scrambling his molecules may be.

Object-oriented analysis (OOA) and object-oriented design (OOD) work a little like Star
Trek’s transporter. The process of analysis seeks to break a problem into small pieces
(called requirements) so that it can be fully understood and readily communicated. The
complementary process of design seeks to assemble a system that matches its
requirements. Of course, the kind of matching performed in object-oriented design is
different from that performed by the transporter system. The transporter seeks an exact
match, a replica that duplicates every feature of the original. Object-oriented design
instead seeks a complementary match of problem with solution. After all, users seldom
have a desire to see their problems replicated (even if this is too often what actually
occurs during system development).

This chapter teaches you how to perform object-oriented analysis and design and also
introduces you to the basic tools of object-oriented analysis and design, which take the
form of diagrams. In this chapter you learn

 • How to use the object-oriented design process.

 The object-oriented design process defines a series of steps you can follow in

analyzing and designing object-oriented systems. By following these steps, you can

 - 42 -

become a more efficient and effective object-oriented systems developer.

 • How to use a problem summary paragraph to determine system requirements.

The problem summary paragraph is the first product of the object-oriented analysis
and design process. A well-written problem summary paragraph helps you quickly and
accurately determine system requirements.

 • How to identify classes and services by using Class-Responsibility-Collaboration

(CRC) cards and use-cases.

 CRC cards and use-cases are helpful and easy-to-use tools that assist you in

identifying the classes you need and the services they provide.

 • How to describe relationships by using Unified Modeling Language (UML), including

inheritance diagrams and class diagrams.

Unified Modeling Language appears poised to achieve the status of a de facto standard
for representing design information. Its inheritance diagrams and class diagrams are
generally more helpful to the developer than analysis-oriented CRC cards. Inheritance
diagrams show parent-child relationships between classes. Class diagrams show the
attributes and behaviors of classes.

 INTRODUCING THE OBJECT-ORIENTED DESIGN PROCESS

Object-oriented analysis and object-oriented design have not been around for very long.
Nevertheless, techniques (or methodologies as they’re commonly called) for OOA and
OOD have become legion. The 18–19th century clergyman-economist Thomas Malthus
may have foreseen such circumstances when he observed that populations tend to
outstrip food supplies. Although his predictions of worldwide famine failed to materialize
during his lifetime, many in the twentieth century have become persuaded that his ideas
are fundamentally sound.

In any case, we may now be witnessing the “Malthusian Effect” as it applies to OOA and
OOD techniques, which now appear to be shrinking in number. The cause: Several
originators of rival techniques have recently joined forces and begun developing the
Unified Modeling Language (UML), which many expect will combine the best features of
many popular OOA and OOD techniques.

The techniques described in this chapter loosely follow those of UML. Using the qualifier
loosely is necessary because UML is not yet fully developed. Moreover, its potential
status more resembles that of a de facto standard (one that reflects practice) rather than
a de jure standard (one that reflects what some think should be done). Consequently,
UML will doubtless continue to evolve even after it is initially published.

At the time of writing, the tools (diagrams) of UML have been described in several books,
including Martin Fowler’s UML Distilled: Applying the Standard Modeling Language
(Addison-Wesley, 1997) and Pierre-Alain Muller’s Instant UML (Wrox, 1997). However,
the process underlying UML is to be the topic of a forthcoming book. Consequently, the
process described in this chapter reflects common elements of existing analysis and
design techniques, rather than the not-yet-published UML process.

 The process, which is fully described in the following sections, consists of these steps:

 1. Determine the requirements.

 2. Identify the classes and the services they provide.

 3. Describe the relationships.

 - 43 -

Although the parts of the process are described as steps, you should not expect that
these steps are typically performed one at a time, from first to last, without repetition or
back-tracking. On the contrary, the nature of any problem-solving activity more closely
resembles an exploration rather than a program. Problem solving is an iterative activity
that much resembles what occurs when a psychologist drops a hungry rat into a cheese-
baited maze. We may be relatively certain of the goals of the activity, but the means by
which we achieve them are seldom clear at the outset. With hard work, persistence, and
a little luck, they become progressively clearer as we near the goal. The trail blazed by
the OOA/OOD processes more closely resemble that in the right panel of Figure 3.1 than
that in the left.

Actually, once the analysis and design dichotomy breaks down, it’s more usual to
consider a single process that combines analysis and design. Rather than moving
linearly from analysis to design, such a process cycles between analysis and design.

 Figure 3.1: The actual path of OOA and OOD efforts is opportunistic.

 DETERMINING THE REQUIREMENTS

In Lewis Carroll’s Alice in Wonderland, Alice naively asks the Cheshire Cat which path
she should take. When the Cat asks Alice where she’s going, she admits she doesn’t
know, prompting the Cat’s famous rejoinder: “If you don’t know where you are going,
what difference does it make which path you take?”

Analysis and design are somewhat like Alice’s journey. If your client doesn’t know what
the system should do, it doesn’t matter what you ultimately deliver. Therefore, your first
task in analysis and design is to figure out what the system should do, that is, what the
requirements are. The formal name for this process is requirements elicitation.

Alas, there is no royal road to requirements elicitation. To see why this is so, consider
that clients often do not know what they really want. Therefore, requirements elicitation
often involves more than simply asking clients what they need. Often you must first help a
client identify the real needs.

Requirements elicitation, therefore, is a communications-intensive process of learning
and discovery for both the client and the software developer. It typically involves
interviews, surveys, study of documents and existing systems, study of competitor’s
systems, and so on. The goal of requirements elicitation is an understanding that is

 • Complete—The delivered system will satisfy only the identified requirements, so these

must be as complete as possible.

 • Consistent—The requirements should contain no contradictions.

 • Correct—Perhaps it seems to go without saying that the requirements should be

 - 44 -

correct. However, achieving correctness is very difficult. For example, users may
inadvertently (or even maliciously) provide you with incorrect information. You must
keep the goal of correctness continuously in mind or risk failure.

•

Clear—An understanding that is ambiguous is no understanding at all. The difficult
work you devote to developing a complete, consistent, and correct understanding
comes to naught if people interpret it differently because you’ve been unclear.

•

Concise—Few people today enjoy novels as long as those popular during the
Victorian era. Even fewer enjoy reading business documents of comparable length.
The same phenomenon constrains the length of a business presentation. Unless your
understanding can be communicated concisely, it won’t be understood or acted upon.

Like other communications processes, the requirements elicitation process can be
improved by developing a written record of what you discover along the way. The written
record augments your limited recall of detail, helps bring others to a common
understanding of the problem, and tends to increase the objectivity of the process. By
documenting the requirements, you also make them portable. For example, they can be
beamed across the country via email, so that people who can’t be interviewed in person
can nevertheless contribute their insights and expertise. A popular form for this record is
the problem summary paragraph.

 Writing the Problem Summary Paragraph

Many software developers see the completion of a problem summary paragraph as the
first milestone on the journey to a completed system. But exactly how far down the road
should that milestone be placed? Let’s not push the term paragraph—no court has yet
decreed that problem summaries of more than one paragraph violate the laws of any
jurisdiction. If the system you’re analyzing is a large one, you may exceed the budgeted
single paragraph with complete impunity. The point of the word paragraph is to remind
you that you should strive to be concise, but sacrificing completeness in order to be
concise may not be the wisest course.

Perhaps now you begin to see why some organizations reward those involved in analysis
and design better than those involved in implementation. Whether a section of code
does, or does not, fulfill its purpose can be determined fairly easily and most qualified
observers will agree with a carefully made determination. In contrast, the quality of
system requirements is far more elusive. Improving one dimension of system
requirements quality often diminishes the quality of one or more other dimensions. For
example, it’s difficult to be both complete and concise at the same time. Achieving
completeness may require you to write more pages than many people are willing to read.
If you try to cut corners, the clarity of your writing may suffer. You must bob and weave
your way to quality, much like a pilot buzzing the Grand Canyon. Miss one turn and
you’re wall decoration for the marvelment of future tourists.

Note

If all this talk of failure depresses you, be encouraged. Recall that OOA/OOD
is an iterative process. You shouldn’t expect to get everything right at first,
only eventually. Feedback is your ally. As long as your clients spend time
reviewing and constructively criticizing your work products, your mutual
understanding of the system will converge to reality over time.

The biggest risk is that some organizational power figure, fearful of the march
of time and mindful that time is money, will push to begin implementation even
though the requirements are inadequately understood. It’s like a mother giving
birth who yields too early to the urge to push: The baby may be crushed by
the pressure. There’s a time to tough it out and a time to push. The trick is to
know which should be done when. Try at the outset of a project to help the
client understand this convergence principle, so that you can avoid a rush to
implementation.

 In the next section you begin a case study that gives you the opportunity to watch as a

 - 45 -

simple system is analyzed and designed. The case study begins with a problem
summary paragraph. The design, including all the important UML diagrams, is complete
by the end of the chapter.

 Introducing Kvetch Net

In modern free enterprise, everyone is occasionally shortchanged. In response to every-
day petty fraud, consumers fall into one of two categories: Some complain and some
don’t. In fact, some consumers are downright complaint-challenged. Others, however,
elevate the mundane act of complaint to an art. These practitioners of kvetch (the Yiddish
word for a complaint or an annoying complainer, pronounced kuh-vetch, with the accent
on the last syllable) have a valuable service to offer their less adept fellow consumers.
Kvetch Net, an Internet startup headquartered in New York, was founded to realize this
vision, potentially benefiting consumers the world over.

You’ve been invited by Ms. Yenta Luftmensh, founder of Kvetch Net, to help her build the
Web site that will serve her clients. Arriving early at her ostentatious downtown
Manhattan headquarters, you spend the morning interviewing her about her information
system needs. Ultimately, you determine that the Web site must support two
transactions:

 • A quote transaction, in which the user describes the sort of complaint needed and

receives a price quotation

 • A purchase transaction, in which the user approves the price, provides the required

electronic funds, and receives the complaint via email

 Based on the information supplied by Yenta, you develop the problem summary

paragraph shown in Figure 3.2.

 Figure 3.2: A problem summary paragraph identifies system requirements.

The rest of this chapter shows you how to develop the key diagrams that describe the
required system. You start by learning how to use CRC cards to document classes and
their services.

 IDENTIFYING CLASSES AND THEIR SERVICES

 Once you have a problem summary paragraph, you’re ready to identify the classes and

the services they provide. This is really quite easy.

First, activate the transporter. Second, put the problem statement on the transporter pad,
slide the lever to the Activate position, and watch as the problem summary paragraph
breaks into its component molecules.

 Okay, unless you have a transporter, it isn’t quite so simple—but, it’s almost that easy.

Here’s what you do:

 - 46 -

 1. Underline the action phrases (verb phrases) that appear in the problem summary

paragraph.

 2. Draw a box around the phrases (noun phrases) that denote actors and objects of

action that appear in the problem summary paragraph.

 3. Study the actors that you circled in step 2, determining which of them should be

represented as classes.

 4. Study the actions that you underlined in step 1, deciding which of them are services

provided by a class.

 5. Record your findings as one or more CRC cards.

 To get you started, Figure 3.3 shows the problem summary paragraph for the Kvetch

System, with the actions and actors indicated. Next, you learn how to identify the classes.

 Figure 3.3: The problem summary paragraph discloses candidate classes and

services.

 Identifying Classes

To identify the classes, make a list of the problem summary paragraph phrases you
circled. Table 3.1 shows such a table for the Kvetch System. Notice how synonyms
(entries that mean the same thing, although they’re expressed differently) have been
removed. For example, Kvetch System and the system refer to the same thing, so only
Kvetch System (the more specific phrase) appears in the table.

 TABLE 3.1 CANDIDATE CLASSES OF THE KVETCH SYSTEM

Candidate Class

amount

client

 - 47 -

client’s requirements

complaint

complaint database

electronic fund transfer

Kvetch System

price

Web browser

Web site

 Now, further winnow the list by casting out these entries:

 • Entries that do not need to be represented as objects or classes within the system

 • Entries that represent attributes or characteristics of other entries

Admittedly, this task is tough. You don’t really know at this point which entries need to be
represented as classes. That’s why OOA/OOD is iterative. You probably will make some
mistakes at this point, but, as you proceed, your errors will become evident. When that
happens, backtrack to this point, add the missing class or delete the unneeded class, and
retrace your forward progress.

Perhaps the biggest difference between experienced analysts and inexperienced
analysts is the number of false starts: Experienced analysts experience more false starts
than inexperienced analysts, who tend to lock onto their early impressions, refusing to
reconsider them even in the light of further information. Don’t hesitate to backtrack:
Backtracking is essential to quality work.

 Table 3.2 shows the candidate classes of the Kvetch System after the winnowing cycle.

 TABLE 3.2 CANDIDATE CLASSES OF THE KVETCH SYSTEM

Candidate Class

client

client’s requirements

complaint

complaint database

 - 48 -

electronic fund transfer

 The following candidates were discarded for the reasons given:

 • Amount—It’s really an attribute of the electronic fund transfer.

 • Kvetch System—The system doesn’t need to represent itself.

 • Price—It’s really an attribute of complaint selected by the system.

 • Web browser—It’s merely the means used by the client to access the system.

 • Web site—It turns out to be roughly synonymous with the system.

 Now that you’ve identified the classes, move on to identify the services they provide.

 Identifying Services

You saw that the circled actors and objects (noun phrases) in the problem summary
paragraph help you identify classes. The underlined actions (verb phrases) help you
identify services. You may not be familiar with the term services, even if you know
something about objects. Sometimes they’re referred to as behaviors, methods, or
responsibilities.

Among these alternatives, the term services is particularly apt because it places the
emphasis on actions performed by an object on behalf of other objects. In addition to
such public actions, most objects also have private actions, which do not concern us at
this point. We prefer services because it emphasizes exactly those behaviors and
methods that we seek.

A reason for preferring the term services over the term responsibilities, which also
emphasizes public actions, is that services recalls the popular term client-server. The
fundamental paradigm of client-server system is client objects requesting services of
server objects, exactly the thing we seek to find mentioned in the problem summary
paragraph. Table 3.3 shows the candidate services, which are the underlined phrases in
the problem summary paragraph.

 TABLE 3.3 CANDIDATE SERVICES OF THE KVETCH SYSTEM

Candidate Service

accept

accesses

authorizes

decline

 - 49 -

describe

enables

matches

modified

proposes

required

responds

saved

selects

transmitting

using

 Just as the list of candidate classes was winnowed, so now the list of candidate services

is winnowed. Table 3.4 shows the winnowed list.

 TABLE 3.4 REMAINING CANDIDATE SERVICES OF THE KVETCH SYSTEM

Candidate Service

authorizes

decline

describe

matches

proposes

selects

transmitting

 Here are the reasons entries were deleted:

 - 50 -

•

Accesses and using—The phrase accesses Kvetch Net’s Web site using a standard
Web browser constrains the technology that is used to access the system, rather than
specifying a requirement of the system.

 • Accept—It can be treated as synonymous with authorizes.

 • Enables—It describes a non-specific action of the entire system.

 • Modified and saved—They specify actions of the client that do not concern the system.

 • Required—It specifies the needs of the client rather than the actions of the client or

system.

 • Responds—It can be treated as synonymous with transmitting.

In all, about half of the candidate services were eliminated. This is good news because
fewer services points to smaller classes that are more quickly and easily implemented.
Let’s move on to a discussion of CRC cards, which helps you pair classes with related
services.

 Using CRC Cards

Class-Responsibility-Collaboration (CRC) cards are one of the most useful tools during
OOA/OOD. A CRC card is nothing more than an index card (for example, a 3⋅5 card) that
records information about a class, including

 • The name of the class

 • A brief description of what the class represents

 • The services provided by the class

 • A list of class attributes

If you like, you can begin using CRC cards at the outset, rather than building lists of
candidate classes and services. However, it’s often easier to identify services and then
match them with classes. Making lists first can make things go more smoothly.

Figure 3.4 shows a CRC card for the Kvetch System’s complaint database. Notice that
the class name and the names of services have been styled as Java identifiers; this
makes it easier to code the class in Java.

 - 51 -

 Figure 3.4: A CRC card presents key information about a class.

Notice that the back of the CRC card includes a list of attributes. Attributes hold the
characteristics of objects. For example, a simple Ball object might have attributes
reflecting its color, diameter, weight, and rebound factor.

 You may wonder how attributes are identified because you’ve seen no list of candidate

attributes for the Kvetch System.

Attributes are seldom disclosed by the problem summary paragraph. Two attributes of
the ComplaintDatabase class, price and complaint, appeared there. The
remaining attributes, circumstance (is this a complaint about food or a complaint
about rent?) and tone (should the complaint be calm or abusive?), are implicit in the
phrase matches the client’s requirements in the problem summary paragraph.

Perhaps a more complete problem summary paragraph would have mentioned them, but
no problem summary paragraph is likely to mention all the attributes. That’s another
reason OOA/OOD is an iterative process. Recall the Lewis and Clark expedition that
found a land route across the American territories to the Pacific coast. Despite the help of
Indian guide Sacagawea, they merely found a route, not the best route. Don’t expect to
do better on your own first trip through a system.

You may also be wondering how the selectComplaint service shown on the CRC
card came to be there, rather than on the CRC card of some other class. Determinations
such as this involve a combination of problem insight, technical expertise, careful
reflection, and luck. The essential function of the ComplaintDatabase class is to
provide a complaint that matches the user’s requirements. Therefore, the
selectComplaint service is implicit in the essence of the class.

This is a good time for you to try your hand at making some CRC cards. Select one of the
remaining candidate classes and make its CRC card. Do your best to identify the related
services and attributes. You may discover a need for services that do not appear in the list
of candidates: Feel free to add these. Similarly, feel free to disregard any listed services
that don’t seem to actually be needed. The same is true of classes: Add or delete classes
as you see fit.

 DESCRIBING RELATIONSHIPS

In the preceding section you learned how to identify services by studying the problem
summary paragraph. In this section you learn an alternative technique that’s especially
helpful when systems are large or complex: the use-case. You also learn how to prepare
two more UML diagrams: the class diagram and the inheritance diagram.

 Developing Use-Cases

Identifying services from a problem summary paragraph and allocating them to classes
by a combination of insight and intuition often works well, but the going gets tough when
systems become large or complex. A helpful technique in these situations is the use-case
and its accompanying collaboration diagram.

 A use-case relates to a particular use of a system, a scenario or transaction, if you will.

Consider the Kvetch System, which has the following use-cases:

 • Client Requests Quote and Accepts

 • Client Requests Quote and Declines

 - 52 -

 As the Kvetch System has been described, these two use-cases encompass all that it

must, or can, do.

A collaboration diagram (see Figure 3.5) illustrates the classes and the sequence of
actions involved in a use-case. For example, the “Client Requests Quote and Accepts”
use-case has these actions:

 1. Client sends requirements to the ComplaintDatabase, requesting that

ComplaintDatabase select a complaint and provide a quotation.

 2. Client sends an authorization to FundTransfer.

 3. FundTransfer notifies ComplaintDatabase that payment has been received

and authorizes ComplaintDatabase to transmit the complaint.

 4. Client requests and receives the purchased complaint.

 Figure 3.5: A collaboration diagram illustrates a use-case.

The collaboration diagram shows each of these four actions as a line joining the
requestor (known as the client) and the requestee (known as the server). The arrowhead
on each line points to the server, which performs the requested action. For example,
consider action 1, the selectComplaint action; Client requests this action and the
ComplaintDatabase performs it.

Generally, collaboration diagram actions have associated information flows. However, a
collaboration diagram does not show these because the diagram would otherwise quickly
become cluttered. This is an application of the principle of design abstraction, which is
summed up in the aphorism “less is more.” Human information processing capacity is
limited; to avoid overwhelming the reader, UML diagrams present a limited amount of
information. That’s why there are several kinds of UML diagrams: Each presents a few
aspects of the design, just enough to make its point. Taken together, a set of UML
diagrams describes all the important aspects of the design.

A great way to prepare collaboration diagrams is to distribute CRC cards among the
members of a team seated around a large table; then simulate each use-case as a series
of conversations among the team members. Step through the requests one by one,
having the team member who holds the CRC card for a class explain how that class will
respond to the request. Often this will quickly disclose missing or unnecessary classes,
services, data attributes, or use-case steps.

 Developing Class Diagrams

 - 53 -

CRC cards are handy during analysis but less handy during implementation. They tend to
fall out of project notebooks, get out of order, and so on. Therefore, many developers
transcribe information from CRC cards to class diagrams, which fit conveniently on
standard-size sheets of paper and can be stored in a three-ring binder with the other
diagrams and documents that pertain to a system. Moreover, as you’ll see, class
diagrams can record information pertaining to groups of classes, something that CRC
cards cannot do.

Figure 3.6 shows a class diagram for the ComplaintDatabase class. Notice that the
class diagram is divided by horizontal rules into three sections. The class name is shown
in the top section, the attributes are listed in the middle section, and the services are
listed in the bottom section.

 Figure 3.6: A class diagram is a bit different from a CRC card.

Figure 3.6 lists one service, selectComplaint. Notice how the name of the service is
followed by a pair of parentheses, which makes it clear that the name refers to a Java
method, not a field.

Some developers like to include more information on class diagrams, particularly as
analysis and design progress and implementation nears. You can easily include type
information in a class diagram by merely prefixing each attribute with its data type. For
example, if you decide that price should be represented as a float, you could write
either of these to specify the data type:

 price:float

 float price;

 The former style is recommended for UML, but the latter has the virtue of more closely

resembling Java.

 Some developers like to also include default or initial values, describing attributes like

this:

 price:float = 0.0

UML provides a standard syntax for specifying visibility or access. You use a + to
indicate public visibility, a # to indicate protected visibility, and a - to indicate private
visibility. If price is a private field, its full UML description might be as follows:

 -price:float = 0.0

UML also provides a syntax for more fully specifying the characteristics of services. The
syntax closely resembles that of a standard Java method header. Here’s an example of a
fully specified service:

 + getComplaint(circumstance:int): float

 - 54 -

This statement tells us that getComplaint is a public service that requires a single
argument, an int that describes the client’s circumstances. The service returns a
float value.

Classes in OOA/OOD are often associated with one another. A class diagram can
include multiple classes, with arrows that indicate associations between classes. Figure
3.7 shows a Kvetch System feature not previously discussed: the ability to track clients’
purchases so that regular clients can be offered special terms or sent email catalogs
describing new complaints Yenta has obtained. To support this feature, a Purchase
class has been established. The line joining it to the Client class indicates that
Clients and Purchases are related. The numbers to the right of the line show the
cardinalities of the association, that is, the number of object instances that can participate
in the association. The “1” indicates that each Purchase is associated with exactly one
Client, whereas the “asterisk” indicates that a Client can be associated with zero,
one, or more Purchases.

 Figure 3.7: A class diagram can indicate associations.

Note

If you’re familiar with the entity-relationship diagrams used to model database
relationships, you may correctly notice that class diagrams resemble them.
However, don’t push the superficial resemblance too far. Classes, which
encapsulate data and behavior, are not the same as database tables, which
merely contain data.

 Figure 3.8: A class diagram can indicate inheritance.

 - 55 -

A class diagram can also indicate that a class extends another class. (If you’re unfamiliar
with extending classes by means of inheritance, you might like to look ahead to the section
“Inheritance” in Chapter 7, “Java Overview.”) Figure 3.8 shows an example. In the figure,
the classes LandlordComplaint and RestaurantComplaint are subclasses of
Complaint, as indicated by the triangle that appears on the line joining them to the
Complaint class.

 FROM HERE

CRC cards, collaboration diagrams, and class diagrams can communicate a wealth of
information about a system in an easy-to-understand, visual format. Whenever you
create a system diagram, remember that your purpose is to communicate. Don’t develop
your own arcane and complicated system of notation when a standard notation such as
UML will serve. Feel free, however, to rearrange things and break the rules once in a
while in the interest of clarity.

Now that you’ve learned about object-oriented analysis and design, you’re ready to
develop your skills by applying its techniques to significant analysis and design problems.
The following chapters give you that opportunity:

•

Chapter 6, “The Airline Reservation System Model,” uses object-oriented analysis and
design to describe a simple distributed system. There you learn more about use-
cases. You also learn about activity diagrams.

 • Chapter 14, “Socket-Based Implementation of the Airline Reservation System,”

describes an implementation of the Airline Reservation System based on sockets.

•

Chapter 16, “RMI-Based Implementation of the Airline Reservation System,” describes
an implementation of the Airline Reservation System based on Java’s Remote Method
Invocation (RMI) facility.

•

Chapter 19, “Servlet-Based Implementation of the Airline Reservation System,”
describes an implementation of the Airline Reservation System based on Java
servlets.

•

Chapter 26, “CORBA-Based Implementation of the Airline Reservation System,”
describes an implementation of the Airline Reservation System based on Common
Object Request Broker Architecture (CORBA).

•

Chapter 35, “Voyager-Based Implementation of the Airline Reservation System,”
describes an implementation of the Airline Reservation System based on Voyager, a
mobile agent technology.

 Chapter 4: Distributed Architectures

 Overview

Charles Darwin’s 1859 book The Origin of Species inaugurated a conflict between
science and religion that continues, at least in some circles, almost a century and a half
later. Based on his five-year study of animal life in the Galapagos Islands off the Pacific
Coast of South America, Darwin concluded that modern species had evolved from a few
earlier species. To explain the evolution of species, he posited the existence of a
mechanism he called natural selection.

Regardless of whether Darwin was correct in his understanding of animal species, his
theory of natural selection helps us understand how information system architectures
change. Just as the traits of a species are determined by its genes, the characteristics of

 - 56 -

an information system architecture are determined by the technologies it employs. Just
as individuals of a species compete for scarce resources, information systems architects
strive to find new ways of creating systems that cost less to build and operate, and are
more effective in meeting user needs. The result is an evolutionary march of the sort
Darwin believed operated to produce animal species.

This chapter introduces the elements of information system architectures and
recapitulates major eras in the development of such architectures. Just as object-oriented
programming builds upon the principles of structured programming, distributed object
architectures build on the principles of their non–object-oriented forebears. By
understanding non–object-oriented architectures and the forces that shaped them, you’ll
be prepared to understand not only the current styles of distributed object architectures
presented in this chapter, but also those that have yet to be conceived.

 In this chapter you learn

 • How the management of user interface, data, and computation characterize an

architecture.

Technological change simultaneously presents new opportunities and changes user
expectations. When user interface technology, data management technology, or
computational technology change, computing architecture changes.

 • How the mainframe and file-server architectures solved problems of their era and

where they continue to be useful today.

 The venerable mainframe and file-server architectures were kings in their day. Despite

a hoary reputation, they remain appropriate architectures for some modern systems.

 • How client/server architectures led to more efficient and effective information systems.

The 1990s client/server revolution gave users a higher return on their computing
investments. You see how this was accomplished and how more modern architectures
build on the lessons of client/server computing.

 • How distributed object technologies such as object buses, mobile objects, and agents

provide the information systems architect with exciting new options.

After years of unfulfilled promises, distributed object technology now appears poised to
become the dominant architecture. You’ll see what this new technology offers and why
information systems architects have begun to favor it over other technologies.

ARCHITECTURAL ELEMENTS

An information system architecture describes the way computers are used to meet
organizational needs. For example, one very simple architecture consists of a standalone
PC. This architecture might be suitable for a one-person professional office, for instance.
A more elaborate architecture might consist of a minicomputer server connected via a
highspeed LAN to dozens of PCs that run special application software under Microsoft
Windows 9x.

Note

People generally use the terms architecture and infrastructure to refer to
distinct aspects of an information system. Architecture refers to the
technologies an information system uses and the way the technologies work
together. Infrastructure sometimes refers to the specific components and
types of components that realize an architecture; an IBM 3090 mainframe and
Compaq PCs, for example. More often, however, infrastructure refers to the
portfolio of information processing applications owned by an organization or
the mode of organization of the information systems function (centralized,
decentralized, and so on).

 - 57 -

Even from these brief descriptions, you can see that an information systems architecture
has several kinds of components including physical components, such as servers and
PCs, and logical components, such as application programs. Let’s examine each of these
kinds of components in detail. This will lay a foundation for the subsequent discussion of
architectures.

 Network Components

A very simple non-networked information system can consist of a single component— the
PC. However, a networked system like the one in Figure 4.1 always has at least three
components:

 • A Client

 • A Server

 • The network itself

 Figure 4.1: An information systems architecture has three components.

 The user operates the client, which is used to initiate requests. Clients include PCs, video

terminals, bank ATMs, and so on. The purpose of the client is to provide a user interface.

The server holds resources, such as data or programs, needed to satisfy client requests.
Servers may be mainframe computers, minicomputers, or even PCs. From the
architectural perspective, the size or power of the server doesn’t matter. What does
matter is that the server responds to client requests. Of course, the size and power of a
server are important characteristics of an information system design: The more powerful
the server, the more clients it can handle, but a server that serves only one client is
nonetheless a server. The architectural perspective is a very high-level perspective,
much like the view of a city you’d experience when flying in an airplane at an altitude of
50,000 feet. The architectural perspective draws your attention to a few prominent
characteristics of a system that experience has shown to be important and relatively long-
lived. It also helps you ignore details that don’t much matter and would otherwise tend to
get in the way of your thinking. After you’ve determined the architecture of a system, you
must decide how to realize the architecture. It is then that matters of size and power
become relevant. The network joins the client to the server. Client requests flow across
the network to the server and server responses flow across the network to the client. A
network can be a dial-up modem connection, a 100Mbps Ethernet, or any other means of
connecting computers. As with servers, the capability of the network doesn’t matter from
the standpoint of architecture. What does matter is the network’s role as a channel
between client and server.

Just as modern househusbands reverse traditional family roles, clients and servers too
can reverse their usual roles. Consider the situation shown in Figure 4.2. In Transaction
#1, computer A acts as the client and computer B is the server. In Transaction #2, B acts
as a client and C is the server. Therefore, computer B can be both a client and server as
needed for a given situation.

 - 58 -

 Figure 4.2: Clients and servers can reverse roles as needed.

The key idea distinguishing a client from a server is usually that the client acts on behalf
of a human user. The distinction can be hard to draw when each of a pair of cooperating
computers is operated by a user. For example, if two users are talking via Internet phone
software, which is the client and which is the server? And what about the situation in
which pre-programmed computers communicate entirely without human intervention?

In such cases, client and server become roles (in a logical sense) rather than physical
devices. Just as in the more usual case, the client initiates an interaction and the server
responds.

An information system architecture can be better characterized in terms of its logical
components rather than its physical components. Although the logical components are
harder to see than the physical components, they’re more central to the purpose of an
information system. For example, a system can be implemented using any of several
competing graphical user interfaces (GUIs). Which particular GUI is chosen is not much
more important than the state of origin of lumber used to construct a home. Just as the
size and strength of building components—rather than their origin—are the real concerns
of a residential architect, the characteristics of the GUI—rather than its identity—are the
real concerns of an information system architect.

Information system architectures differ in terms of the technology used to provide their
logical components. Some of the most important components of an information system
architecture are

 • User interface

 • Data management

 • Computation

 User Interfaces

Because it’s the part of the system nearest the user, a system’s user interface is
sometimes called the front end. In fact, from the limited perspective of the user, the user
interface is the system. A typical modern user interface might consist of a keyboard, a
video display, and a mouse. Alternatively, a system might employ a more specialized or
exotic user-interface technology, such as a power glove. Some day we may even have
futuristic thought-controlled interfaces such as that of the fictional Soviet fighter plane
stolen by Clint Eastwood in the movie Firefox.

 Three main user-interface technologies are used today:

 • Dumb terminals

 - 59 -

 • X-terminals

 • PCs

 In addition, some expect a fourth technology to soon capture a significant share of the

user-interface market: network computers.

 Let’s examine each of these technologies.

Introduced into widespread use in the 1960s, dumb terminals were one of the earliest
user-interface technologies. Prior to dumb terminals, ordinary folk were not computer
users: The privilege of access to expensive mainframes was the special prerogative of
professional computer programmers and operators. Instead, users communicated with
computers by filling out paper forms, the contents of which were transcribed by keypunch
operators onto punched cards that were fed into the computer in batches. Typically hours
or days elapsed before a user’s transaction was processed. Computer output, too, was
paper bound, taking the form of massive reports that were often out of date by the time
they were distributed.

The early dumb terminal was nothing more than a keyboard and a monochrome text-only
video display connected via a simple network to a mainframe server. Nevertheless, this
humble device brought about a computing revolution. No longer was data passed through
several hands, batched into the computer, and processed into reports. Instead, for the
first time, users could submit transactions that the computer processed in real-time, that
is, while the user waited. Results could be displayed on the video screen rather than on
reports, which required much time to print and distribute. However, dumb terminals were
not simple to operate: Users had to spend days or weeks in training in order to learn how
to use them.

The early 1980s saw PCs transition from hobbyists’ toys to business tools. At first they
offered an interface little different from that of the dumb terminal, but PCs soon sported
high-resolution color displays. These enabled development of GUIs that featured lines
and simulated buttons, making the PC somewhat more user-friendly than the dumb
terminal.

The Apple Macintosh and Microsoft’s Windows operating system further improved the PC
user interface by adding a computer mouse, which permitted the user to perform simple,
common operations without typing. This opened PC use to a much wider audience.
Businesses began to purchase PCs rather than dumb terminals because the higher cost
of the PC was offset by its greater ease of use and consequently lower training costs.

However, replacing a dumb terminal with a PC did not automatically afford a GUI.
Application programs had to be changed to support the new user interface technology.
This proved to be costly and time consuming. One of the most thorny issues in
information system management during the 1980s and 1990s was the struggle to
improve the user interface of so-called legacy systems built during the era of dumb
terminals.

The 1990s saw a specialization of GUIs as Web browsers. Browsers became a common
tool for interacting with computers and networks. These easy-to-use programs allowed
even novice computer users to access data from a variety of sources via a consistent
user interface.

Manufacturers of non-PC user-interface devices did not willingly cede the market to the
PC. The 1980s saw the advent of the X-terminal, which provided a graphical user
interface comparable to that of the PC, but at lower cost. X-terminals were, and remain
today, popular within the UNIX community. However, the strategic advantage of X-
terminals, their low cost, was undercut by the falling price of general-purpose PCs. The
capability of a PC to function, via emulation software, as an X-terminal further cut into the
market potential of X-terminals. For just a few dollars more than an X-terminal, one could

 - 60 -

purchase a PC that ran standard PC applications, such as word processing, as well as an
X-terminal emulator.

The 1990s brought the network computer, which combined the low cost of an X-terminal
with the capability to run standard PC applications. At the time of this writing, the market
success of the network computer remained at issue. However, the continued fall of PC
prices seemed to be hampering their widespread acceptance.

 Table 4.1 summarizes the characteristics of general-purpose user-interface technologies.

 TABLE 4.1 CHARACTERISTICS OF GENERAL-PURPOSE USER INTERFACE

TECHNOLOGIES

Technology

Characteristics

Dumb terminals

Low hardware cost

High training cost

Keyboard input

Text-based output

Windows-based
PCs

Medium-to-high hardware cost

Low training cost

Keyboard and mouse input

Text and graphical output

Run standard PC software

X-terminals

Medium hardware cost

Medium training cost

Keyboard and mouse input

Text and graphical output

Network
computers

Medium hardware cost

Low training cost

Keyboard and mouse input

Text and graphical output

 - 61 -

Run standard PC software (with assistance of appropriate
server)

 Data Management

By definition, information systems involve storage and retrieval of data. Therefore, the
technology used to manage data is a second important logical component of an
information systems architecture. Modern systems generally employ relational databases
as their data management technology.

Just as a system’s user interface is known as its front end, a system’s data management
functions are known as its back end because they’re invisible to the user. Not that
invisible implies unimportant; data management is at the heart of the essential purpose of
an information system: processing and storing data.

 Two main data management technologies are in use today:

 • Flat files

 • Relational databases

 In addition, a third data management technology is vying for a significant market share:

object-oriented databases.

 Let’s examine each of these technologies.

So-called flat files are the ordinary sort of files processed by application programs. Flat
files may be an appropriate technology for simple, standalone applications. However, flat
files suffer from two deficiencies:

 • A flat file does not include meta data that describes its contents and format.

 • A flat file does not provide a way to relate records in one file with those in another.

The result is that application programs must contain descriptions of the flat files they use
and of the relationships between them. As more and more programs are written,
changing the format of a file or revising its relationships with other files becomes
laborious and expensive.

Relational databases overcome these limitations. A relational database includes a
schema, which describes the contents of the database. Moreover, relational databases
allow relationships between files (tables in relational database parlance) to be specified
and automatically maintained. This provides applications with an important property
known as data independence. Many sorts of changes to the structure of the relational
database can be made without requiring changes to application programs. For example,
it’s typically possible to add fields to relational tables or add tables to a relational
database without affecting existing applications. This significantly lowers costs of
database operation and maintenance.

Relational databases also facilitate sharing of data by multiple concurrent users. Without
the special protection they provide, update transactions can “collide,” resulting in
corrupted data. Flat files require one-user-at-a-time access to data or elaborate (and
errorprone) application programming to avoid data corruption.

 Relational databases also generally support Structured Query Language (SQL), a

standardized language for definition, access, manipulation, and control of data within

 - 62 -

relational databases. Because many vendors have provided SQL support for their
relational databases and because SQL is standardized, programmers can write
applications for one host platform and later cost-effectively port them to a different host
platform rather than rewrite them. Chapter 11, “Relational Databases and Structured
Query Language (SQL),” presents these concepts in more detail.

One limitation of relational databases is that they provide only limited support for objects.
Most relational databases support the BLOB (Binary Large Object) data type, which can
hold a persistent external representation of an object’s attributes. An object can therefore
be stored in a relational database. For example, you can store a Java String in a
database as a BLOB item, but the BLOB item holds only the values of the fields of the
String—its text characters. The .class file that defines the behaviors of the String
class must be stored outside the database so that the Java virtual machine can access it.
Essentially, BLOB s are handy for storing objects, but not classes. They’re not fully
object-oriented.

These sorts of capabilities are provided by object-oriented databases, which are
becoming more widely used. One problem hindering acceptance of object-oriented
databases is the present lack of an accepted standard. The American National Standards
Institute (ANSI) and the International Standards Organization (ISO) have been working
for some years on a revised version of the SQL Standard that supports objects known as
SQL-3. However, the standard has not yet been finalized and implementations of the
standard are not yet widely available.

To further complicate matters, the Object Data Management Group (ODMG) has
proposed a standard that differs from the SQL-3 draft in important ways. For example,
the ODMG standard does not attempt backward compatibility with SQL-2. On the other
hand, several vendors (for example, Ardent Software and Poet Software) currently
provide implementations of databases that are ODMG-compliant.

Table 4.2 summarizes the characteristics of data management technologies. Although
object-oriented database technology is currently immature, its potential benefits seem to
ensure that it will gain a growing share of the data management technology market.

 TABLE 4.2 CHARACTERISTICS OF DATA MANAGEMENT TECHNOLOGIES

Technology

Characteristics

Flat files

Lack data independence.

Lack data sharing.

Lack standard language.

Relational databases

Provide data independence.

Provide data sharing.

Provide standard language (SQL).

Object-oriented databases

Provide data independence.

Provide data sharing.

 - 63 -

Provide elaborate support for objects.

Not yet standardized by internationally recognized
standards body.

 Computation Management

An information system consists of more than data: It also includes software programs that
manipulate the data. An information systems architect can choose from a variety of ways
to manage computation. For example, a batch-oriented COBOL system is quite different
from a distributed Java system. There are four main ways of managing computation:

 • A system can allocate processing to one unit or multiple units.

 • A system can be written in a non-portable or portable language.

 • A system can allocate processing statically or dynamically, using mobile agents.

Most systems use a single technology for management of user interface or data;
however, systems commonly utilize several technologies for management of
computation. Let’s examine each of these three technologies.

Strictly speaking, only a standalone system allocates processing to a single unit. Even a
dumb terminal contains a simple microprocessor, so a system that employs a dumb
terminal will have at least two processors: one in the dumb terminal and one in the
computer than controls it. However, programmers don’t write code that runs on the dumb
terminal’s microprocessor terminal. In a typical configuration, they write code only for the
mainframe computer that controls it. Because the programmer’s code runs only on the
mainframe, we view such a configuration as performing all its processing on a single unit.

If the dumb terminal were replaced by a PC that emulated it, nothing of significance
would change. Even though the PC contains a general-purpose microprocessor, it’s not
being used in this configuration, which is still deemed to perform all its processing on a
single unit.

However, imagine a network that links a dozen or so PCs scattered across the country,
each PC containing a relational database that records inventory and sales for its region.
One PC might run a program that queries the other PCs to locate an item in short supply.
Processing is being performed on multiple units if the remote PCs run a program that
responds to that query.

Why might this be desirable? It may be less expensive to purchase 50 ordinary
computers than to purchase a single computer that has fifty times the capacity of an
ordinary computer. Similarly, it may be easier to ensure that one of several computers is
operational at all times than to ensure that a single computer is operational at all times.
Allocating processing among several units can decrease cost and improve reliability.

Systems can also be written using a non-portable or portable language. Java, of course,
is the first portable language in widespread use. By writing programs in a portable
language, programmers hope to reduce or eliminate the cost of adapting programs to
run on platforms other than that on which they were developed.

Many companies have suffered the misfortune of constructing large information systems
that use proprietary languages or technologies, only to have the provider of the language
or technology go bankrupt or charge an exorbitant price for continued support. If these
companies had implemented their systems using a portable language they could have

 - 64 -

replaced the vendor without the high cost of porting the systems.

Mobile agents are software objects that can relocate themselves, or be relocated, from
one processor to another. Mobile agents written in a portable language are particularly
interesting and useful because they can move from a processor of one type to a
processor of another type.

Mobile agents can reduce network traffic and improve the efficiency of a system. For
example, suppose that an application requires two objects to exchange data in a lengthy
dialog. If the objects are located on separate processors, the data must flow across the
network, increasing network traffic and delaying the completion of the dialog. However, if
one of the objects is a mobile agent, it can relocate itself to the processor on which the
other object resides. The two objects can then complete their business using local data
transfers, rather than network data transfers. This decreases network traffic and greatly
increases the speed of the computation.

Now that you’ve been introduced to the technologies used for managing user interfaces,
data, and computation, you’re ready to embark on a study of specific information systems
architectures. In the following sections you learn about two traditional information systems
architectures. You also learn about client/server architectures and distributed architectures.

 TRADITIONAL ARCHITECTURES

 The two traditional information systems architectures are

 • Mainframe architecture

 • File-server architecture

To be honest, many experts consider the file-server architecture, which became popular
in the 1980s, a modern architecture rather than a traditional architecture. However, an
architecture that’s been around for over a decade seems to fit the notion of traditional in a
field where the half life of knowledge is anywhere from two to five years. Hence, the file-
server architecture is included with the mainframe architecture as a traditional
architecture.

 Mainframe Architecture

The mainframe architecture came into widespread use during the 1960s. Featuring a “big
iron” server (later versions of the mainframe architecture sometimes substituted a less
expensive minicomputer for the mainframe) and dumb terminals (see Figure 4.3), the
mainframe was sometimes aptly called a smart server/dumb client architecture. All
programs were executed by the server, which was responsible for management of the
user interface, data, and computation.

 Figure 4.3: Mainframe architecture featured a smart server and dumb clients.

 Because such systems employed dumb terminals as a user interface, they suffered from

 - 65 -

the disadvantages inherent in those primitive devices. Users found them hard to learn
and companies invested significant resources in training employees to use the systems.

Although modern uses of the mainframe architecture feature relational databases, most
systems built using the mainframe architecture used flat files to manage data. As a result,
application programs were generally large and complex. Many of these systems continue
in use today, partly because the software is so difficult to modify.

Note

Information systems experts expect large numbers of such systems to fail on
or about the year 2000 because many antiquated systems represent years
using only two digits. Such systems represent both the year 1900 and the
year 2000 as 00 and therefore cannot reliably manipulate dates subsequent to
December 31, 1999. This so-called Y2K problem may compel organizations to
finally update these outmoded systems.

Computational technology was also primitive by modern standards. All processing was
done on the mainframe server. Programs were not portable and mobile software agents
were not employed. Most programs were written in COBOL, a language designed to be
readable by non-computer professionals rather than as a tool for efficient programming.
(Of course, as it turned out, most programs were too complicated for non-programmers to
understand: COBOL didn’t achieve this design goal.)

However, the mainframe architecture had its bright points too. For one thing, during its
day it was the only affordable architecture that allowed direct use of the computer.
Computers were so expensive that organizations were fortunate to be able to afford one.
More elaborate architectures featuring multiple computers were not economically
feasible. An architect’s choices were batch processing or the mainframe architecture.

The mainframe architecture did some things well. For example, a mainframe system
could be made highly reliable. Also, data security was high because data was stored in a
single location with a single point of access. Some modern architectures composing the
mainframe architecture also scaled well: It was possible to build very large information
systems using the mainframe architecture. Table 4.3 summarizes salient characteristics
of the mainframe architecture.

 TABLE 4.3 CHARACTERISTICS OF MAINFRAME ARCHITECTURE

Component

Characteristic

Server hardware

Mainframe computer or minicomputer

Client hardware

Dumb terminals

User interface

Keyboard input, text output

Data management

Flat files

Computation
management

COBOL programs (non-portable) executed on server

Cost

Medium to high

Reliability

High

 - 66 -

Security

High

Scalability

High

Flexibility

Low

 File-Server Architecture

Decreased costs of computing hardware and advances in computing software led to a
new architecture, the file-server architecture, which became popular during the 1980s.
Many organizations had been unable to afford the high cost of the server required by the
mainframe architecture. When powerful PCs first became available, these organizations
sought ways to construct information systems using PCs.

Because they performed computation in the clients rather than the server, file-server
systems could be built using a relatively inexpensive PC as a server. The server itself did
little, functioning mainly as a repository for the common data accessed by client PCs. In
contrast to the smart server/dumb client configuration of the mainframe architecture, the
file-server architecture (see Figure 4.4) was dumb server/smart client.

 Figure 4.4: File-server architecture featured a dumb server and smart clients.

User interface management functions of file-server systems were not much more
advanced than those of mainframe systems. The file-server systems usually featured
color rather than monochrome displays, but both file-server and mainframe systems
depended heavily on keyboard input. A user had to possess typing skills in order to use
such systems.

Data management, too, was little changed: File-server systems depended on flat files just
as mainframe systems did. However, the way in which file-server systems accessed their
files was a little different because a program running on a client PC had to access files
residing on a server PC. Typically, this was accomplished by using operating system
support for file sharing that made the files appear as though they were files on the client
system's local hard drive.

This approach potentially compromised both reliability and security. Because each client
PC modified data on the server, a hardware or software failure in any client could corrupt
the central data. Moreover, clever users could circumvent application controls by
accessing the central files using, for example, a text editor, which would allow them to
change or delete any data.

However, the biggest problem with the file-server approach to data management was
efficiency. Suppose a user wanted to search the files for a given record. The application
program would read data from the server’s files, looking for the record of interest.

 - 67 -

Potentially, every record might be transmitted before the right one was found. This high
level of network traffic meant that the file-server architecture was suitable for use only
with a high-speed local network. Large information systems extending beyond the
bounds of the local network could not operate efficiently.

 Computation management was similar to that of the mainframe architecture. However,

languages other than COBOL (such as BASIC and dBASE) were commonly used.

 Table 4.4 summarizes salient features of the file-server architecture.

 TABLE 4.4 CHARACTERISTICS OF FILE-SERVER ARCHITECTURE

Component

Characteristic

Server hardware

PC

Client hardware

PCs

User interface

Keyboard input, text output

Data management

Flat files

Computation
management

Programs written in various languages (BASIC or
dBASE) executed on client

Cost

Low

Reliability

Low

Security

Low

Scalability

Low

Flexibility

Medium to high

CLIENT/SERVER ARCHITECTURE

Microsoft Windows became the predominant PC operating system during the 1990s and
relational database technology matured, giving rise to the client/server architecture you
see in Figure 4.5. In this more balanced architecture, the server and clients shared the
burden of computation, making this the first smart server/smart client architecture.

As previously discussed, transition from a textual to a graphical user interface greatly
increased ease of computer use. Many users owned PCs and required little training in
order to use systems that featured GUI.

Equally important was replacement of flat files with relational databases. Early relational
database management systems were notoriously inefficient. However, by the 1990s
database technology had improved and hardware power had increased to the point that
relational database performance was no longer a significant issue.

 - 68 -

 Figure 4.5: Client/server architecture featured a smart server and smart clients.

SQL helped make client/server systems more scalable than file-server systems because
it was no longer necessary to transmit large amounts of data across the network. Instead,
the database engine could search for a desired record and return only that record. This,
of course, was possible because both the server and client were fully programmable.
Clients were programmed in a PC language, such as C or Visual Basic. The server
commonly ran only the database engine, which executed SQL programs, but some
systems featured more elaborate server programs written in C or other languages.

Because it’s a relatively simple language, SQL also made client/server systems flexible.
So-called ad hoc queries, unanticipated queries that were not pre-programmed, had been
a common and significant thorn in the side of flat-file–based systems. Responding to
such queries involved writing a program, a costly and time-consuming process. SQL was
simple enough that programmers became much more productive; some users learned
enough SQL to be able to write their own query programs.

The absence of a costly mainframe made client/server systems more cost-effective than
their predecessors. The combination of cost-effectiveness and flexibility made migration
to the client/server architecture a priority for many organizations. Table 4.5 summarizes
salient characteristics of the client/server architecture.

 TABLE 4.5 CHARACTERISTICS OF CLIENT/SERVER ARCHITECTURE

Component

Characteristic

Server hardware

PC, minicomputer, or mainframe

Client hardware

PC

User interface

Graphical

Data management

Relational database

Computation
management

Programs written in various languages executed on
server or client

Cost

Low to medium

Reliability

High

 - 69 -

 Security High

Scalability

High

Flexibility

High

By the middle of the 1990s the rush to client/server systems had become headlong. The
slogan of the day was downsizing, which meant reducing information systems costs by
replacing the big iron mainframe with a minicomputer that acted as server in a
client/server configuration. Partly, downsizing was a product of cost pressures resulting
from increased globalization. It was thus a logical competitive response. However,
sometimes so much attention was paid to reducing costs that little attention was paid to
securing the potential benefits of the client/server architecture. Consequently, not all
client/server migrations were successful.

However, some understood that the proper slogan was rightsizing, meaning the use of
appropriate and cost-effective technologies for both client and server. Those who
adopted this perspective more often realized the considerable potential benefits of the
client/server architecture.

 Web-Server–Based Architecture

A particular form of client/server architecture has become popular since the mid 1990s—
the Web-server–based architecture shown in Figure 4.6. This architecture features a
Web server and Web browsers as clients.

Web-server–based architecture has come to play a particularly important role in
organiorganization?s internal networks. There it supports functions such as project
management, document tracking, and training.

Because they use a Web browser as a user interface, Web-server–based systems are
easier to use than those that require complete familiarity with Microsoft Windows. Thus,
they open computer use to a wider audience.

 Moreover, Web-server–based architecture is not limited merely to internal use within

organizations. It is the architecture of the World Wide Web itself. Using

Web-server–based architectures, many organizations have developed extensive Web
sites for product information, retail sales, customer support, and other purposes. Without
exaggeration, the Web-server–based architecture is the information systems architecture
of the late 1990s.

 Figure 4.6: Web-server–based architecture features Web server and Web

browser clients.

 - 70 -

 Three-Tier Architecture

One complication affecting the client/server architecture arises in those situations in
which a client accesses several different servers. If the servers use different operating
systems or database engines, the client must be equipped with proper drivers for each
such configuration. To complicate matters, vendors tend to update such drivers regularly.
Therefore, a client must be equipped not only with drivers for the right operating system
or database engine, it must be equipped with the proper versions of such drivers. When
clients are numerous and geographically dispersed, this becomes a problem of system
administration.

The solution (see Figure 4.7) is known as the three-tier client/server architecture. This
architecture features a middleware server, which it interposes between client and server.
Clients are equipped with a simple driver (a thin driver) that enables access to the
middleware server. In turn, the middleware server provides access to servers of various
types.

 Middleware servers provide other useful functions, such as protocol translation. Some

architects place application logic in middleware, which results in a very simple structure:

 • Clients are responsible for user interface.

 • Middleware servers are responsible for computation, including application logic

encoding the business rules related to a system.

 • The servers are responsible for data stored in a relational database.

 Figure 4.7: Three-tier systems simplify client configuration maintenance when

accessing multiple servers is a requirement.

When Web browsers are used as clients, this configuration simplifies the maintenance of
application programs as well as drivers. In this configuration, both the clients and the
servers are general-purpose programs. All the unique parts of the information system
reside in the middleware server, where they can be conveniently updated as required.

 DISTRIBUTED ARCHITECTURES

A distributed architecture is one that includes multiple servers. If you push the point too
far, many client/server systems fit this definition. For example, a three-tier client/server
system usually includes multiple servers. In fact, that’s the reason for having a third tier:
to facilitate access to heterogeneous servers.

But clients in such systems generally connect to only a single server at a given time. To
be considered truly distributed, a system should include multiple concurrent server
connections. One simple distributed architecture is peer-to-peer networking (see Figure

 - 71 -

4.8), in which every host potentially acts as both client and server.

Designers of distributed systems aim to place data and computation near the point of
use. This reduces network traffic and improves system response time. Reliability is
another potential advantage of a distributed system, which can continue working even
when part of the system fails. In the past, development of distributed systems has been a
difficult undertaking, owing to the novelty of the technology and the lack of adequate
tools. With the advent of Java, the Web, and Common Object Request Broker
Architecture (CORBA), this has finally changed. Table 4.6 summarizes salient
characteristics of distributed systems.

 Figure 4.8: A peer-to-peer network is a distributed system.

 TABLE 4.6 CHARACTERISTICS OF THE DISTRIBUTED ARCHITECTURE

Components

Characteristics

Server hardware

PC, minicomputer, or mainframe

Client hardware

PC

User interface

Graphical

Data management

Relational database

Computation
management

Programs written in various languages executed on
server or client

Cost

Medium

Reliability

High

Security

High

Scalability

High

Flexibility

High

 - 72 -

 Object Buses

Just as a system based on flat files can pose a maintenance problem when changes are
made to data structure or format, a distributed system can pose a maintenance problem
when hosts are added or deleted or when resources, such as data or programs, are
relocated. A directory service can provide location transparency by enabling hosts to
discover the location of resources at runtime.

When a distributed information system is object-oriented, the directory service can take
the form of an object bus. An object bus helps objects locate remote resources, including
other objects; it also enables objects to send messages to remote objects and receive
responses.

The most popular object bus is that provided by CORBA, which is the subject of Chapters
21 through 33 of this book. Object bus technologies include Java’s Remote Method
Invocation, presented in Chapter 15 and Chapter 16, and Microsoft’s DCOM, presented
in Chapter 20.

 Mobile Agents

Another innovation in distributed systems architecture is the mobile agent, an object that
can move from host to host. Mobile agents allow processing to follow use dynamically;
they can be used, for example, to balance the processing load of a system so as to avoid
overtaxing a host that’s handling many requests.

An interesting consequence of technologies like the object bus and mobile agent is that
they simplify the structure of information systems. A system built using these
technologies is adaptable, or even adaptive, so its structure can be tuned when
necessary. Therefore, such a system better fits current organizational needs than a
system built using a fixed structure.

As organizations face increased competitive pressures and environmental turbulence, the
advantages offered by the distributed architecture are crucial. Data is the lifeblood of the
modern organization, flowing to the remotest outpost and bringing opportunity and insight.
A static information system structure is akin to hardening of the arteries, restricting the vital
flow of data. Agile competitors seek information systems structures that are energetic and
long-lived, such as those built using the distributed architecture.

FROM HERE

 The following chapters provide additional details regarding specific state-of-the-art

distributed architectures:

 • Chapter 11, “Relational Databases and Structured Query Language (SQL),” more fully

presents relational database technology.

 • Chapter 15, “Remote Method Invocation (RMI),” describes a Java core technology that

provides a simple but effective object bus for Java objects.

•

Chapter 18, “Servlets and Common Gateway Interface (CGI),” describes Java
servlets, a technology designed to overcome weaknesses of the Common Gateway
Interface (CGI) commonly used in Web-server–based architectures.

•

Chapter 21, “CORBA Overview,” begins a series of chapters that describe the
Common Object Request Broker Architecture, which provides an elaborate and
sophisticated object bus.

 • Chapter 34, “Voyager Agent Technology,” introduces you to Voyager, a freely available

 - 73 -

software product that supports mobile objects and agents. In addition, Voyager is
compatible with CORBA.

Chapter 5: Design Patterns

 Overview

Feed any programmer a thimble of gin, and chances are that he will begin complaining
about unreal deadlines, being forced to release buggy software, and a general software
industry that is moving too fast for its own good. Fill up his glass again, and this time he
will probably start talking about something called the software crisis and how he cannot
get funding to properly write software. Truth be told, the software industry is in a lot of
trouble and if we don’t watch out, things are going to get much worse.

The term software crisis is used to describe the situation brought about when software
shops are forced to develop feature-packed products under unrealistic time constraints.
This crisis gets exponentially worse as the number of interdependent systems grows.

A major cause of the crisis is attributed to actions taken by major companies, including
Netscape and Microsoft. These companies, along with many others, operate under the
bizarre new concept of Internet time. Under Internet time, development schedules that
historically took 12 months are being shortened to 6 or 9 months. Chances are, these
timetables may never turn around and only by changing the manner in which we solve
problems can we overcome this crisis. In looking for solutions to the crisis, the software
community looked to other engineering disciplines and studied the manner in which they
solve problems.

When building a bridge, for example, civil engineers don’t just start throwing wood and
metal across a chasm. Instead, they study the manner that bridges were previously built,
they devise a plan for a new bridge, test models, and finally, build the real bridge. Too
often software projects neglect to study the successes and failures of the past, fail to plan
the current project, and often fail to produce a solid piece of code. In an attempt to
refocus the software industry around planning, planning, and more planning, software
engineers have turned to design patterns, anti-patterns, and the Unified Modeling
Language (UML).

Note

The UML is a collection of symbols that can be used to fully model the software
cycle. For more information on this topic, see Chapter 3, “Object-Oriented Analysis
and Design.” Anti-patterns, a relatively new term describing an old concept, are the
study of failed software projects. Anti-patterns are useful because they allow you
to show that a piece of software has a greater chance of success if it lacks design
concepts detailed by an anti-pattern.

INTRODUCING DESIGN PATTERNS

Design patterns are a tool by which the knowledge of how to build something is shared
from one software engineer to another. More precisely, they allow for a logical description
of a solution to a common software problem. A pattern should have applications in
multiple environments, and be broad enough to allow for customization upon
implementation. For example, memory management in a distributed environment is
tricky. Instead of inventing a new solution for every project, many developers look to the
reference counting pattern as a guide.

Note

Reference counting involves tracking the number of clients who have access
to a unique server object. When that count reaches zero, there are no longer
any clients of the object, and its allocated memory can be returned.

 When working with new technologies, like distributed objects, the ability to share

knowledge thorough design patterns is critical. Distributed applications introduce

 - 74 -

concerns beyond those present in standalone applications, and developers new to their
use will benefit greatly from any help. These concerns, including network traffic, server
scalability, and general reliability, can mean project failure if neglected. This chapter
covers a history of design patterns and then covers a series of patterns that applies to
distributed object development.

Like all movements in the software world, the pattern movement has a rather interesting
history. Back in 1987 two engineers, Ward Cunningham and Kent Beck, were working on
a project and were unsure if they would be able to finish on time. They turned to what
would eventually become known as patterns, and were amazed at the massive
assistance these patterns provided for the project. Cunningham and Beck first presented
their findings at the Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA) conference in 1987, where they managed to generate much excitement.

Note

OOPSLA is presented every year by the Association for Computing
Machinery (ACM). It is one of the premier conferences for individuals
specializing in object technology.

Soon after OOPSLA, a group of four individuals—Erich Gamma, Richard Helm, John
Vlissides, and Ralph Johnson—met and realized they shared a common enthusiasm for
patterns. These four engineers, now known as the Gang of Four (GOF), published in the
early ’90s a book titled Design Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley, 1995). Design Patterns, or the GOF book as it is often called, has
fueled the current patterns movement, which continues gaining momentum every day.

One final bit of pattern trivia is that the true father of patterns was not a software engineer
at all. Christopher Alexander, an architect (not a software architect) first discussed patterns
in his 1964 book, Notes on the Synthesis of Form (Harvard University Press, 1970). While
Alexander discussed patterns as they apply to building physical structures, the issues
discussed are relevant in the software community.

DEFINING PATTERN TYPES

The term pattern as it applies to the software process is rather broad and has numerous
subcategories. Further complicating matters is the fact that patterns that apply to all parts
of the software cycle are now being developed. The focus here is on patterns that
specifically apply to the development of software itself. Note, however, that there are
additional pattern categories that apply to analysis, organization, and risk management.
Although the focus of this chapter is strictly on design patterns, it is good to have a solid
understanding of other pattern categories that apply to the code writing process. These
categories are described as follows:

Architectural patterns describe how systems are organized as a whole. For example,
an architectural pattern for an Integrated Development Environment (IDE) would
discuss the manner in which the compiler, linker, text editor, and debugger all
interoperate.

Design patterns describe how to physically design code with respect to a single
function. For example, the design of a distributed parallel processing application
could take advantage of one of the many parallel processing patterns. Idioms (or
coding patterns) describe patterns specific to a single programming language. The
use of Java interfaces to describe class functionality is an example of an idiom.

 The design patterns covered in this chapter are

 Factory

 Observer

 - 75 -

 Callback

In presenting a pattern there are many criteria that should be included to provide a
complete picture to the reader. The criteria should be presented in a format that is easy
to read and allows readers to quickly obtain the needed pieces of information.

While a logical, easy-to-read format is required for pattern presentation, there is no
standard form. The format used in this book is loosely based on what is commonly
referred to as the Christopher Alexander’s Alexandrian form. Besides not having a
standard presentation format, there is no central pattern authority that guarantees a
unique pattern name and function. The relatively small size of the pattern community
helps eliminate redundancy, although some is bound to occur.

As stated earlier, a pattern must meet certain criteria to exist. Often people use the term
pattern rather loosely and incorrectly label algorithms or data structures as “design
patterns.”

Note

The ability to determine whether something is actually a design pattern comes
with time. However, algorithm and data structure confusion is common. The
main difference between a design pattern and a data structure or algorithm is
that a design pattern describes how a general problem is solved. An algorithm
or data structure is a code implementation that solves a highly specific
problem.

Note

All patterns in this chapter are implemented in Java. However, since many
examples require explicit knowledge of a specific distributed object
environment, some pseudocode is used. For example, instead of writing code
that binds to a remote CORBA server, you see a line like this: “/bind to
corba server ”.

The term “ ” refers to the process by which a client object obtains a reference
to a remote object. For example, under CORBA, if you know an object’s name
and interface you can request that the ORB bind you to that object.

 Although some variance may exist from author to author, it is generally accepted that

patterns must contain all of the following criteria:

Name—Just like every other item in the world, a logical name makes identification
much easier. The name should be concise, easy to remember, and logically describe
the function of the pattern. An attempt should also be made to ensure that the name
is not used by another pattern.

Abstract—A description of the pattern without too much regard for its implementation.
This section is usually written last and is based on the problem, context, solution, and
forces sections. The abstract is not necessarily a required criteria, but is an added
convenience to readers.

Problem—A pattern solves a problem, and this should be clearly spelled out here.
While the pattern name should hint at its function, the problem statement allows
developers to clearly identify its purpose.

Context—The pattern context identifies the environment in which the pattern is
applied. For example, a pattern for handling multiprocessing identifies a context for a
multiprocessor machine.

Forces—The forces acting on a pattern indicate conditions that make the pattern less
than optimal. Additionally, the forces section details design trade-offs that must be
made to fully exploit the pattern.

 Solution—Whereas the problem description states the problem solved by this

 - 76 -

pattern, the solution description states both the means to the end and the end itself.
The section often includes illustrations, diagrams, and detailed text descriptions.

Examples—The examples section includes one or more code implementations of the
pattern. This section is extremely important; it acts as proof that the pattern can be
successfully implemented.

 Resulting context—This section discusses both the desired results and side effects

caused by the pattern execution.

Rationale—Discussion on why the pattern solution solves the pattern problem.
Additionally present in this section are notes on why the pattern is actually needed,
and the larger role that it plays in the software lifecycle.

 Related patterns—If applicable, similar patterns and their relationships are

mentioned here.

Known uses—In addition to meeting all criteria defined in this list, the rule of three is
often applied to determine whether something is actually a pattern. This rule states
that for a pattern to be truly proven, it must exist in at least three successful systems.
The known uses section presents a discussion on known implementations of the
pattern.

Now that you have a general background on design patterns, let’s begin the design
pattern coverage. Some of the patterns discussed in this chapter do have applications
outside of distributed computing, but are not within the scope of this book.

Having covered what exactly patterns are and the problem they solve, you are ready to
dive into individual discussions on a series of patterns. The rest of this chapter changes
form to follow the previously discussed Alexandrian form for patterns. Each successive
section introduces a new pattern in our version of the Alexandrian form.

USING THE FACTORY PATTERN

 Abstract. In a distributed environment, it is not always possible to allocate memory for an

object in a foreign system. The factory pattern facilitates remote instantiation of objects.

Problem. When performing distributed object-oriented programming, it is often necessary
to instantiate an object on a foreign machine. While Java does provide the new keyword
for local object instantiation, there is no explicit keyword that allows for remote object
instantiation. It is not possible to directly instantiate a remote object unless the distributed
environment explicitly monitors usage of the new keyword and brokers requests to a
remote machine.

 Context. This pattern is applicable in distributed environments where remote object

instantiation is necessary.

Forces. Under the factory pattern, a single object becomes a dedicated “factory object.”
Since multiple simultaneous clients most likely use the factory object, it must be written to
be totally thread-safe. If usage is going to be extremely high, or if instantiation of the
target object is going to take a long while, the factory object will probably want to answer
each request in a separate thread.

Solution. Under the factory pattern, client objects do not explicitly instantiate an object.
Rather, they bind to a remote factory object, ask that object to perform the instantiation,
and then obtain the new object from the remote factory object. This pattern mirrors many
producer-to-consumer relationships in the real world. For example, if you need a shirt
made, you walk down to the tailor, have your measurements taken, pick your fabrics, and
then the tailor makes the shirt and gives it to you. Acting as the “factory object,” the tailor
accepts the burden of ensuring that the shirt meets both your requirements and the

 - 77 -

requirements of the fabric.

A factory object is passed data that acts as requirements for the remote object. The
factory object then uses that data to instantiate the remote object and returns it to the
client. Because the factory object has explicit knowledge of the remote environment, it
can ensure that the instantiated object meets both the client and environmental
requirements. In general, the factory object will have methods with parameter lists that
mirror the constructor parameter lists. These parameters are then passed directly from
the factory object method to the new object’s constructor. An exception to this rule occurs
when the factory needs to track data about the requestor, or when the object being
instantiated needs explicit data from the factory object. Figure 5.1 shows the factory
pattern in action.

Examples. Three classes are employed in the following example. A FactoryServer
object can instantiate ServerObject objects. A ClientObject object first binds to
the FactoryServer object and then asks for a ServerObject instance.
FactoryServer is in Listing 5.1, ServerObject is in Listing 5.2, and
ClientObject is in Listing 5.3.

 Figure 5.1: Factory pattern facilitates remote object instantiation.

 LISTING 5.1 FactoryServer

 public final class FactoryServer extends Thread {
 public FactoryServer() {
 waitForConnection();
 }

 private void waitForConnection() {
 // Code to wait for an incoming connection. This code
 // specific to the distributed object technology
 // currently enabling communication.
 }

 public ServerObject createServerObject(String sName) {
 return new ServerObject(sName);
 }

 public static void main(String[] args)) {
 FactoryServer server = new FactoryServer();
 }
 }

 - 78 -

 LISTING 5.2 ServerObject

 public final class ServerObject {
 private final String _sName;

 public ServerObject(String sName) {
 _sName = sName;
 }
 public String getName() {
 return _sName;
 }
 }

 LISTING 5.3 ClientObject

 public final class ClientObject {
 public ClientObject() {
 // First bind to the remote factory object
 // object. Since the binding process is
 // specific to an actual implementation, it is
 // shown here as a comment.
 FactoryServer server = // bind to factory server

 // Request that the remote factory object instantiate
 // a ServerObject object for us.
 ServerObject serverObject =
server.createServerObject("luke");

 }
 }

Resulting Context. The factory pattern does not alter the state of the factory object, but
there are memory implications that the factory server must take into account. Since many
clients instantiate objects using server memory, the factory must always ensure that
sufficient memory exists. In a Java environment, ensuring proper memory allocation is
simply a matter of starting the Java Virtual Machine (JVM) with sufficient available
memory.

 Rationale. In a distributed object environment, it is usually necessary for a client to

instantiate an object at the server. This pattern solves this need.

Known Uses. The factory pattern has been around in various forms for ages. It is used in
non-distributed applications to centralize object instantiation and is used in countless
distributed applications.

USING THE OBSERVER PATTERN

Abstract. A common requirement of distributed systems is that they possess knowledge
regarding the state of a remote object. Constantly checking that remote object for
changes consumes client resources, server resources, and bandwidth. The observer
pattern allows for client notification upon server changes.

Problem. The function of a client object is often to either represent some state present in
a corresponding server object or to take an action on a server object change. Since the
client object must have instant notification of changes to the server object’s state,
thereare two possible solutions to the notification problem. The client object could check
for changes every n units of time, or the server could notify the client only when a change

 - 79 -

occurs. Having clients constantly check for server changes is a drain on resources (both
client and server) and requires that much bandwidth be dedicated to this checking. The
observer pattern discusses a logical manner by which clients can receive notification of
server state change.

 Context. This design pattern is applicable in any environment where client objects need

constant knowledge of changes to some server-side value.

Forces. Server objects conforming to the observer pattern will spend time notifying clients
of changes to server state. When implementing the server object, decisions need to be
made about change synchronization and the manner in which resources are allocated to
telling clients about changes. In some situations the server will want to notify the client
before making the actual changes to itself. In other situations, the server object will want
to immediately reflect the change internally and then send off client notification in a
separate (possibly low-priority) thread. Additionally, since two-way communication
between client and server is required, you must ensure that external security devices
allow this. If a firewall protects the client from receiving method invocations, this pattern
cannot be used.

Solution: The observer pattern functions in a manner quite similar to the Java JDK1.1
delegation event model. Under the observer pattern, clients expose a method (via an
interface), which is then invoked to indicate a change in the server object. The client
registers with the server as an interested listener. When changes occur in the server
object, the server object sends information about the change to all clients. Figure 5.2
illustrates this process.

Note

As with any distributed object environment, the concept of clients and servers
is rather gray. Since the role of client or server may change during the
application lifecycle, role should be thought of as a transient, not persistent,
quality. Just because one piece of software is running on a Sun Sparc10 and
the other is running on a 486 does not imply that the Sparc is the server and
the 486 is the client. If the Sparc passes processing requests off to the 486,
the 486 plays the role of the server.

Examples. The following examples demonstrate a simple application in which a client
registers interest with a stock quote server. The client notifies the quote server of all
interested ticker symbols, and the server notifies the client whenever one of those values
changes. There are two classes and one interface contained in this application. The
QuoteClientI interface (see Listing 5.4) identifies the method by which the client
obtains notification of a change. The QuoteClient class (see Listing 5.5) implements
the QuoteClientI interface and listens for changes to a few ticker symbols. The
QuoteServer class (see Listing 5.6) tracks all listeners and sends notification
whenever a registered symbol has a value change.

 - 80 -

 Figure 5.2: The observer pattern facilitates client notification of changes in

server objects.

 LISTING 5.4 THE QuoteClientI INTERFACE

 /**
 * Interface to be implemented by all object interested
 * in receiving quote value changed events.
 */
 public interface QuoteClientI {
 public void quoteValueChanged(String sSymbol, double
dNewValue);

 }

 LISTING 5.5 THE QuoteClient CLASS

 /**
 * The QuoteClient class registers interest with a server
 * for tracking the values of different stocks. Whenever
 * the server detects that a stock"s value has changed, it
 * will notify the QuoteClient object by invoking the
 * quoteValueChanged() method.
 *
 */
 import java.util.*;

 public final class QuoteClient implements QuoteClientI {
 private Hashtable _hshPortfolio;

 public QuoteClient() {
 _hshPortfolio = new Hashtable();
 regWithServer();
 }

 - 81 -

 /**
 * Registers with the server our interest in receiving
 * notification when certian stocks change value.
 */
 private final void regWithServer() {
 QuoteServer server = // bind to quote server
 server.regListener("INKT", this);
 server.regListener("MOBI", this);
 server.regListener("NGEN", this);
 server.regListener("ERICY", this);

 _hshPortfolio.put("INKT", new Double(0));
 _hshPortfolio.put("MOBI", new Double(0));
 _hshPortfolio.put("NGEN", new Double(0));
 _hshPortfolio.put("ERICY", new Double(0));
 }

 /**
 * Invoked whenever the value associated with an interested
 * symbol changes.
 */
 public void quoteValueChanged(String sSymbol, double
dNewValue) {

 // display the changes
 System.out.println("\n");
 System.out.println(sSymbol+" changed value");
 System.out.println("old value:
"+_hshPortfolio.get(sSymbol));

 System.out.println("new value: "+dNewValue);

 // store the new value
 _hshPortfolio.put(sSymbol, new Double(dNewValue));
 }

 public static void main(String[] args)) {
 QuoteClient client = new QuoteClient();
 }
 }

 LISTING 5.6 THE QuoteServer CLASS

 /**
 * The QuoteServer class monitors stock feeds, and
 * notfies interested parties when a change occurs
 * to the value of a registered symbol.
 */
 import java.util.*;

 public final class QuoteServer {
 // listeners are stored in a hashtable or vectors. the
hashtable

 // uses as a key the registered symbol, and as a value a
Vector

 // object containing all listners.

 - 82 -

 private Hashtable _hshListeners;

 public QuoteServer() {
 _hshListeners = new Hashtable();

 }

 /**
 * Send changed values to all listeners. Since the manner
 * in which the QuoteServer object monitors the stock
 * feeds is beyond the scope of this pattern, it is
 * simply assumed that that method is invoked when needed.
 */
 private void sendChangeForSymbol(String sSymbol, double
dNewValue) {

 // check if there are any listeners for this symbol
 Object o = _hshListeners.get(sSymbol);
 if(o != null) {
 Enumeration listeners = ((Vector)o).elements();
 while(listeners.hasMoreElements()) {
 ((QuoteClientI)listeners.nextElement()).
 quoteValueChanged(sSymbol, dNewValue);
 }
 }
 }

 /**
 * Invoked by clients to register interest with the server for
 * a specific symbol.
 */
 public void regListener(String sSymbol, QuoteClientI client) {
 // check if we already have a vector of listeners at this
 location
 Object o = _hshListeners.get(sSymbol);
 if(o != null) {
 ((Vector)o).addElement(client);
 }
 else { // create the vector
 Vector vecListeners = new Vector();
 vecListeners.addElement(client);
 hshListeners.put(sSymbol, vecListeners);
 }
 }
 }

Resulting Context. Since the method defined by the client to indicate a server value
change can be invoked at any time, clients must be developed with this in mind. Flow
control cannot always be assumed, and any access to shared resources must be written
in a thread-safe manner.

Rationale. The observer pattern allows for client synchronization with a server value in a
manner that keeps resource use to a minimum. Since network traffic exists only when a
value changes, no bandwidth is wasted. Additionally, their resources are used more
efficiently because clients are not constantly pinging servers for change requests.

 - 83 -

Known Uses. The observer pattern has obvious parallels in the world of push media. Push
media involves pushing of content from some content source to a content listener. For
example, instead of checking The New York Times Web site every day, push media
delivers the information directly to your desktop whenever a change occurs.

USING THE CALLBACK PATTERN

Abstract. The role of a server object is often to perform some business logic that cannot
be performed by a client object. Assuming that this processing takes a significant time to
perform, a client may not be able to simply wait for a server request method to complete.
As an alternative, the server object can immediately return void from a request method,
perform the business calculations in a unique thread, and then pass the results to the
client when ready.

Problem. It is common for a client object to request some data from a server object.
Assuming that the processing only takes a second or two, the client need not concern
itself with the processing time involved. If, however, the server processing will take 10,
15, 120, or more seconds, the client could end up waiting too long for a method return
value. Having the client wait for this return value too long may cause client threads to
hang and block, which is obviously not a desirable situation. Additionally, depending on
the technology used to enable distributed computing, a timeout could occur if the server
object takes too long before returning a value.

 Context. This design pattern is applicable in any environment where server processing in

response to a client request will take an extreme amount of time.

Forces. Since two-way communication between client and server is required, it must be
ensured that external security devices allow this. If a firewall protects the client from
receiving method invocations, this pattern cannot be used.

Solution. The callback pattern functions by allowing the client to issue a server request
and then having the server immediately return without actually processing the request.
The server object then processes the request and passes the results to the client. In most
situations, the server performs all processing in a separate thread to allow additional
incoming connections to be accepted.

This solution has obvious parallels to our earlier shirt-making example. When you visit
the tailor, you give him your measurements and fabric preferences. The tailor then makes
your shirt, but most likely spends at least a few weeks doing the work. Your options are to
either wait for a return value (obviously not the best use of your time), or to instruct the
tailor to perform a callback to you when the shirt is ready.

Examples. In this example you implement a server class that has the capability to figure
out very large prime numbers. Perhaps you will have an application that requires client
access to large prime numbers, but will not have client machines capable of performing
the processing. Assuming this situation, the processing is offloaded to a more powerful
server that performs the calculation in a unique thread and returns the value when it is
found.

There are three classes that compose this example. CallbackClient (see Listing 5.7)
binds to a server, requests a large prime number, and takes action upon notification that
the value arrived. CallbackServer (see Listing 5.8) waits for client requests and spins
each off into a separate thread using the CallbackProcessor inner-class.
CallbackProcessor (see Listing 5.8) discovers the required number and returns it
when found. If CallbackProcessor is unable to provide the correct value, a null
value is returned.

 LISTING 5.7 THE CallbackClient CLASS

 - 84 -

 /**
 * The CallbackClient class will bind to a server object
 * request that a large prime number be calculated, and
 * then respond to the results when delieved by the server.
 */
 public final class CallbackClient {

 public CallbackClient() {
 CallbackServer server = // bind to server
 server.findLargestPrimeNumberGreaterThan(100000, this);
 }

 /**
 * Invoked by the server when the target prime number is
found.

 * Accepts a Long object and not a long base-type to allow
 * for the passing of a null value if an impossible
 * request was performed.
 */
 public void primeNumberFound(Long lValue) {
 if(lValue == null) System.out.println("number not
found");

 else System.out.println("number found: "+lValue);
 }
 }

 LISTING 5.8 THE CallbackServer CLASS

 /**
 * The CallbackServer class finds very
 * large prime numbers. Since the calculations
 * often take much time, clients are not required to
 * wait for a return value. Instead, the CallbackServer
 * class notified the client when the value has been
 * found. All requests are performed in a
 * unique thread to allow for maximum information
 * processing.
 */
 public final class CallbackServer {

 public CallbackServer() {
 }

 public void findLargestPrimeNumberGreaterThan
 (long lBase, CallbackClient client) {
 CallbackProcessor processor = new CallbackProcessor
 (lBase, client);
 processor.start();
 // immediately return
 }
 /**
 * Inner class used to process requests in a
 * unique thread.

 - 85 -

 */
 class CallbackProcessor extends Thread {
 private long _lBase;
 private CallbackClient _client;

 public CallbackProcessor(long lBase, CallbackClient
client) {

 _lBase = lBase;
 _client = client;
 }

 public void run() {
 long lFoundValue = //
 spend a lot of time figuring out the needed prime numer
 _client.primeNumberFound(new Long(lFoundValue));
 }
 }
 }

Resulting Context. Since the method defined by the client to indicate a return value from
the server can be invoked at any time, clients must be developed with this in mind. Flow
control cannot always be assumed, and any access to shared resources must be written
in a thread-safe manner.

Rationale. Waiting for the return value of a distributed method invocation is not always
possible due to a variety of constraints imposed by the system. The callback pattern
offers a solution to that problem.

 Known Uses. A common situation that requires the use of the callback patterns is when

queries are executed against old systems that take a long time to generate a response.

I once found myself in a situation where I had to write a Java applet front end to an ancient
DOS-based application. The only public interface exposed by the DOS application dictated
that I write queries to an input directory and wait for a response to be written to an output
directory. Through use of the callback pattern, I was able to eliminate the network
overhead generated when the client would often have to wait at least a minute for a
response to be generated.

 USING THE SHARED INSTANCE PATTERN

Abstract. Creation of a remote object often takes a long time due to both potential
database queries and object registration requirements defined by the distributed object
technology. For example, in a CORBA environment a remote object must register itself
with the ORB before it can be exported. Long database queries combined with potentially
slow object registration can cause a rather long delay to occur between the time that a
client issues a request and the time that the request is answered. CORBA, detailed in
Chapters 22 through 33, is a technology that allows code written in multiple languages,
running on multiple machines to communicate and share processing. CORBA technology
is taking the computing world by storm, and is one of this book’s major focuses.

In addition to long creation time, server objects take up memory; if the server runs out of
memory, it could crash the whole system. Assuming a stateless remote object, it is
possible to take this creation hit once and then allow clients to share the instance.

Note

When talking about remote objects, the terms statefull and stateless refer to
the remote object’s capability to be changed by a client. When a method is
invoked on a statefull object, that object’s member data can change. When a
method is invoked on a stateless object, none of that object’s member data

 - 86 -

changes.

Problem. In a distributed environment, speed is an issue that developers must constantly
consider. Method invocations on a distributed object involve network traffic, and server
implementations must deal with the fact that clients could create thousands of objects at
the server. All of these server objects take up memory, and can take a long time to
instantiate. If possible, the number of server objects created should be minimized, thus
allowing for reduced resource usage and reduced response time to client queries.

Context. This pattern has applications in any distributed environment where multiple
clients need access to the same server object. In general, this object must be stateless.
In some situations it may be possible for clients to share a statefull object, but much care
has to be taken to ensure that dirty data is never seen.

Note

Dirty data refers to data that has been altered by one client and that another
client thinks contains historical information. For example, if two clients
reference the same remote object and one alters the remote object’s data,
that new data is called dirty until everyone references the same information.

Forces. The shared instance pattern achieves its greatest success when a single server
object is shared by lots of clients. If a server object is only going to be occasionally used
by one or two clients, it is not worth the work required to track usage.

Solution. Serving shared instances to multiple clients places three major requirements on
the server developer. First of all, the server must be able to ensure that two queries are
identical. The second requirement comes into play once a query is identified as already
executed. At this point, the server must be able easily locate the unique response
objects. If either of these first two requirements is ignored, it is quite possible that the
wrong query results will be returned to the user, which could be a major security risk. The
final requirement that must be heeded by developers involves identifying when no clients
have access to the shared server object. At some point, the server must be able to
destroy the shared object and the only safe time to do this is when no clients are
accessing the object.

The first requirement of uniquely identifying queries can easily be achieved by
aggregating query parameters into a holder class and overloading that class’s equals()
method. If the query does not accept any parameters, you need not bother with this
requirement. Listing 5.9 shows an example query holder class that might be used for
searching a database of people.

 LISTING 5.9 THE PersonQuery CLASS

 public final class PersonQuery {
 private String _sFirstName;
 private String _sMiddleName;
 private String _sLastName;

 // getter methods
 public String getFirstName() { return _sFirstName; }
 public String getMiddleName() { return _sMiddleName; }
 public String getLastName() { return _sLastName; }

 // setter methods
 public void setFirstName(String sFirstName) {
 _sFirstName = sFirstName; }
 public void setMiddleName(String sMiddleName) {
 _sMiddleName = sMiddleName; }
 public void setLastName(String sLastName) {

 - 87 -

 _sLastName = sLastName; }

 // overload equals()
 public boolean equals(Object compare) {
 // make sure that a PersonQuery object was passed
 if(!(compare instanceof PersonQuery)) return false;

 PersonQuery personCompare = (PersonQuery)compare; //
 cast once to save time
 // check all fields
 if(! personCompare.getFirstName().equals(getFirstName()))
 return false;
 if(!
personCompare.getMiddleName().equals(getMiddleName()))

 return false;
 if(! personCompare.getLastName().equals(getLastName()))
 return false;

 return true; // all good
 }
 }

Once a query has been identified as unique, a server object must then decide if the
object to be served in response already exists. To facilitate discovery of the response
objects, a hashtable that uses the query as a key can be used.

 All query results in Listing 5.10 are stored in a hashtable. The query object is used as the

key and the query results are used as a value.

 LISTING 5.10 THE SharedInstance CLASS

 import java.util.*;

 public class SharedInstance {
 private Hashtable _hshResults;

 public SharedInstance() {
 _hshResults = new Hashtable();
 }

 public Person[] executeQuery((PersonQuery query) {
 // check if the query has already been performed
 if(_hshResults.containsKey(query)) return
 _(Person[])hshResults.get(query);

 // query has not been performed
 Person[] returnValue == // get from database
 // register the return value with the distributed object
 technology

 _hshResults.put(query, returnValue); // store the results

 - 88 -

 return returnValue; // return the results
 }
 }

It is easy for Java programmers to forget about that time long, long ago when they
actually had to properly dispose of allocated memory. Java does provide a garbage
collector that usually destroys any allocated unused object, but functionality is not always
the same in a distributed environment. Unless the distributed object technology explicitly
provides a distributed garbage collector, you as the developer are charged with this
responsibility. If a remote object is given to a single client, it is easy to tie the lifecycle of
the remote object to the lifecycle of the client. In situations where the remote object is
shared between many clients, that number of clients must be explicitly tracked.

Listing 5.11 expands on Listing 5.10 to include support for something called reference
counting. Reference counting involves tracking client references to a server object. When
an object is served to a client, that object’s reference count is incremented by 1. When
the client is done with the remote object, that object’s reference count is decreased by 1.
When an object’s reference count is 0, the server can destroy the object.

 LISTING 5.11 SharedInstanceWithReferenceCounting AND PERSON

CLASSES

 import java.util.*;

 public class SharedInstanceWithReferenceCounting {
 private Hashtable _hshResults;

 public SharedInstanceWithReferenceCounting() {
 _hshResults = new Hashtable();
 }

 /**
 * Adds one to each object"s reference count
 */
 private void addToReferenceCount(Person[] persons)) {
 int iLength = persons.length;
 for(int i=0; i<iLength; i++) {
 persons[i].addToReferenceCount();
 }
 }

 /**
 * Adds one to each object"s reference count
 */
 private void subtractfromReferenceCount(Person[] persons)) {
 int iLength = persons.length;
 for(int i=0; i<iLength; i++) {
 if(persons[i].subtractfromReferenceCount())
 destroyObject(persons[i]);
 }
 }

 /**
 * Does any needed clean-up and destroying of objects

 - 89 -

 */
 private final void destroyObject(Person person) {
 // destroy
 }

 public Person[] executeQuery((PersonQuery query) {
 Person[] returnValue == null;

 // check if the query has already been performed
 if(_hshResults.containsKey(query)) returnValue =
(Person[])

 _hshResults.get(query);
 else returnValue = // get from database

 // register the return value with the distributed object
 technology

 // add to the reference count
 addToReferenceCount(returnValue);

 _hshResults.put(query, returnValue); // store the results

 return returnValue; // return the results
 }

 /**
 * Invoked by the client to indicate that he is done with all
 objects
 */
 public void doneWithObjects(Person[] persons)) {
 subtractfromReferenceCount(persons);
 }
 }

 class Person {
 private int _iRefCount = 0;

 public Person() {
 }

 /**
 * Adds one to the reference count
 */
 public void addToReferenceCount() {
 _iRefCount++;
 }
 /**
 * Subtracts one from the reference count.
 *
 * @return true If the refernce count is zero after
subtraction

 * @return false If the reference count is non-zero after

 - 90 -

 subtraction
 */
 public boolean subtractfromReferenceCount() {
 _iRefCount";
 return (_iRefCount == 0);
 }
 }

 Examples. In covering this pattern, code examples were provided in the solution section.

These examples taken together provide for a working example of this pattern.

Resulting Context. Use of this pattern has obvious memory implications at the server
level. Users must employ reference counting (as discussed earlier) to ensure that objects
are destroyed when no longer in use.

Rationale. The shared instance pattern provides a method to speed delivery of remote
objects to clients. Objects that take a long time to create can be created only once and
then shared between multiple clients.

Known Uses. As with all other patterns covered in this chapter, the shared instance pattern
is employed in many of the solutions that I have developed in the past few years. Most
recently, I developed a piece of software to view hospital patient records. All incoming data
was fed into the system via legacy system gateways, and my software provided read-only
access to the data. Creating the graph of objects that compromised a single record was an
involved process that took around four seconds. Through use of the shared instance
pattern, I was able to reuse the same objects with multiple clients.

 FROM HERE

The software industry is definitely heading toward a lot of trouble in the next few years.
Unless all computers shut down in the year 2000, we will soon find ourselves forced to
develop amazing feature-rich applications in hardly any time at all. Only by using patterns
and other development technologies will we be able to rapidly develop the needed
software.

 As you continue your exploration, the following chapters aid in your understanding of the

material in this chapter:

 • Chapter 6, “The Airline Reservation System Model,” uses the UML use-case notation

to describe an airline reservation system.

 • Chapter 15, “Remote Method Invocation (RMI),” describes a Java core technology that

provides a simple but effective object bus for Java objects.

 • Chapter 21, “CORBA Overview,” provides a solid description of what CORBA is and how

it can be used in your applications.

Chapter 6: The Airline Reservation System
Model

 Overview

Contained within the pages of this book is detailed information on five different
technologies that allow for distributed communication between applications. Even though
all of these technologies enable this level of communication, each takes a radically
different approach. Further complicating matters is the fact that there is no one perfect
distributed object technology for all development efforts; only a careful analysis of the

 - 91 -

problem and a detailed knowledge of the technologies shows a best solution.

Given that choosing the best distributed object technology can often make or break a
project, this book spends significant time teaching you how to make this decision. This
knowledge is imparted in two complementary manners. First a discussion of the
differences between the competing technologies is presented, and then you use each
technology to implement a common piece of software.

This chapter presents a formal definition of that common piece of software, an airline
reservation system. The definition is then implemented throughout the book in chapters
immediately following coverage of each technology. The formal definition of the airline
reservation system is presented using the Unified Modeling Language (UML), which is
covered in Chapter 3, “Object-Oriented Analysis and Design.” Chapter 3 provides a solid
introduction to the UML. This chapter does, however, spend some time covering aspects
of the UML that apply to use-cases and activity diagrams.

Note

The UML is a tool used to formally model the entire software process. By using the
UML you can model a development effort from the beginning of the requirements
gathering to the final implementation models. The UML is quickly becoming the de
facto standard for modeling software, and proficiency in it will most likely become
an essential job skill in the next five years.

 DEFINING THE MODEL

As you can imagine, the software used to drive real-world airline reservations is complex.
It needs to respond to thousands of simultaneous users and interact with constantly
changing flight data. The airline reservation software developed for this book, however,
only models a small number of transactions. The software supports multiple users, but
has not been stress tested to handle thousands of users.

In adherence with the development methods defined by the UML, we first simulate a user-
based requirements gathering step. We then analyze the requirements and build the
necessary use-cases and activity diagrams for the system.

GATHERING REQUIREMENTS

In an actual development project, the first step is to start talking to your user base to
figure out exactly what its needs are. Unfortunately, this step is often ignored and
software is developed according only to how developers feel the product should work.
Although projects developed without user input may be fun for developers, they often
have the downside of not being used.

Although not all systems are developed in the manner they should be, we have the luxury
here of pretending that we live in a perfect world. Thus, you can perform every step in the
manner that it should logically happen. In addition to pretending that we live in a perfect
development world, this book also gets to play both sides in a dialog with users. Of
course, nothing in real life is so easy. We get to ignore the fact that users often can’t find
time to meet with you, or have difficulty communicating what they need.

 Our airline reservation system has the following capabilities:

 Search for a flight

 View all open seats on a given flight

 Make a flight reservation

 Search for an active reservation

 - 92 -

Of the items in the list, the two that involve searching are those that probably benefit most
from user input. Only the individuals answering the phones and making reservations all
day know how customers want to search for a flight.

 After talking with reservation operators, the following items are ranked as the desired

criteria used when searching for a flight:

 Departure location

 Arrival location

 Departure date

 Departure time

 Number of required seats

The reservation operators also stated that they need the ability to specify whether queries
should be strict as to departure and arrival times, or whether they should be flexible if a
lower-cost flight exists. When allowing for flexibility, the operator should be able to specify
a range of 1–48 hours, which defines the permitted flexibility.

 The other search exposed by our system is the capability to search for an existing

reservation. To perform that search, at least one of the following criteria are needed:

 Reservation number

 Full name

 Date and approximate time of flight

 Credit card number used to book flight

All searches return a collection of reservations that match the specified pattern. The
burden of verifying the user, once flight data is obtained, is placed on the airline itself. In
most situations, the caller is asked to verify his name and credit card number used to book
the flight.

DEVELOPING THE USE-CASE

As discussed in Chapter 3, a use-case is a tool used for modeling a unique function in a
system. Use-cases should be easy to read, unambiguous, and generally provide a
detailed explanation of the highlighted function.

It is really important that a use-case not leave any question unanswered. Remember that
the functions as they are defined in use-cases become your software. If you mean one
thing, but the developers interpret your comments in a different manner, the costs can be
rather large.

Another important use-case development requirement to keep in mind is that use-cases
model a single function in a system. That function has a distinct starting point and a
distinct end value. A common mistake made by people when developing use-cases is to
model the entire system as one large use-case. Modeling a system as a single use-case
leads to confusion, and should only be done if the system exposes a single function.

 It should be noted that the term used to describe the entity executing a use-case is Actor.

 - 93 -

A use-case is performed by an Actor that may or may not be an actual person. In fact, in
many situations the Actor performing a use-case is another piece of software.

A use-case is implementation-independent and, in fact, does not necessarily need to be
implemented in software. One could easily write a use-case that models the process of
driving a car, or even walking the dog. Although it might be rather exciting to model our
entire lives via use-cases, doing so here would move this book into the self-help section,
which is not a desired outcome of the “Actor writes a computer book” use-case. The use-
cases developed in this chapter are implemented throughout the book in Java using
each of the highlighted distributed object technologies.

Finally, use-cases apply to the general use of a system and not a specific interaction with
the system. For example, a use-case titled “Actor searches for a reservation using a
reservation number” is probably a valid use-case. A use-case titled “Actor searches for a
reservation using reservation number #1013-42” is a use-case scenario since it
represents a distinct interaction with the system. Use-case scenarios are useful for
modeling how special conditions are handled.

 Use-Case Notation

Just as the UML provides symbols for modeling all parts of the software process, a series
of UML symbols exist that are used with use-cases. The airline-reservation system use-
cases do not take advantage of every symbol (most use-cases don’t), but as a reference
they are all addressed here.

The first step when developing a series of use-cases is to identify the system that is
being modeled. A square, with the name of the system written above it, denotes a single
system. Figure 6.1 shows a model of the airline reservation system.

 Figure 6.1: The square symbol denotes an entire system.

After identifying the system being modeled, use-cases that identify unique functions
within the system are added. A use-case is denoted using an ellipse or oval with a logical
name placed below it. The names applied to both use-cases and systems should be
logical, easy-to-read names, and not obscure variable-like names. For example, a use-
case that models a reservation search by reservation number should be titled “Search for
a Reservation by Reservation Number,” not named resSearchByNum . Figure 6.2
shows a single use-case that becomes part of our system.

 Figure 6.2: The ellipse or oval symbol denotes a use-case.

 Use-Case Relationships

Within a given system, situations may arise where two or more use-cases share some
features, or where two or more use-cases use each other. For these reasons, it is
possible to model three different relationships between use-cases. These relationships

 - 94 -

are defined as follows:

 • Grouping—Similar to Java packages, the grouping relationship exists when multiple

use-cases perform common tasks in a system.

 • Uses—Similar to object composition, the uses relationship exists when multiple use-

cases interact with each other.

 • Extends—Similar to Java inheritance, the extends or generalization relationship allows

one use-case to inherit functionality from a parent use-case.

The grouping relationship is defined using the UML package symbol. This symbol, shown
in Figure 6.3, looks much like a file folder with a logical name near its top. There are zero
functional implications presented by the grouping relationship. However, it does aid the
logical grouping of use-cases. Systems with hundreds or thousands of use-cases employ
this relationship to make their documents easier to understand.

 Figure 6.3: The use-case grouping relationship is modeled with the package

symbol.

The uses relationship is employed when one use-case takes advantage of functionality
present in other use-cases. This relationship, shown in Figure 6.4, is modeled using a
straight line ending in a triangle. The triangle points to the use-case being used and the
line has the word <<uses>> written next to it.

 Figure 6.4: The uses relationship allows one use-case to take advantage of

functionality exposed by another usecase.

The extends relationship can be thought of in terms similar to Java or C++ inheritance.
This relationship is used when one use-case needs to inherit functionality from a parent
use-case. For example, one use-case might be used to model making a standard airline
reservation. Two additional use-cases could extend this parent use-case and model the
situation when reservations are made using frequent flyer miles or a bounce pass (a
ticket voucher or discount coupon given to passengers who volunteer to leave a over-
booked flight). The extends relationship, shown in Figure 6.5, is shown using a line with
a triangle at the end of it. The triangle points to the parent use-case and the line has the
word <<extends>> written next to it.

 - 95 -

 Figure 6.5: The extends relationship allows one use-case to inherit functionality

exposed by another use-case.

 Use-Case Actors

As was earlier stated, an Actor performs a use-case. The Actor may or may not be an
actual person; regardless, it is modeled using a stickman. Directly below the stickman,
the Actor is labeled with a logical name. Figure 6.6 shows two potential Actors in our
reservation system.

 Figure 6.6: The stickman symbol denotes an Actor.

The development of a use-case is one of the most important tasks in a given software
development project. Because use-cases drive the entire development process, it is
critical that they unambiguously describe exactly what the software should do.

The development of a use-case is an iterative process that involves the user-base
(client), project managers, and developers or development managers. Project managers
through a dialog with the user base come up with initial copies of the use-cases. Often
the project manager first interviews the user base to determine its needs. He then
generates usecases and presents them to the client. This presentation process often
involves physically acting out the use-case with different people playing the roles
represented by different systems.

Once some level of agreement has been reached between the project manager and the
client, a dialog between the project manager and the development manager begins. It is
the duty of the development manager to ensure that all use-cases are technologically
feasible. If, for example, the project manger writes a use-case titled “Actor thinks about an
item and it materializes in his hand,” the development manager needs to use this
opportunity to put his foot down. This example does, however, bring up another point,
which is that the project manager must be either technically savvy or must work with the
development manager earlier in the use-case development process. If the project
manager is going to write pipe-dream use-cases, the development manger must reel him in
before the client gets any far-off ideas.

 MAKING ACTIVITY DIAGRAMS

In addition to the use of use-cases when modeling system functions, activity diagrams
are used to model an execution path through the system. An activity diagram shows the
order in which actions occur, as well as the different conditional situations that may affect
the execution order. For example, one could specify that in a reservation system a flight
search precedes the making of a reservation, and that a failed search leads to no

 - 96 -

reservation. It is useful to build activity diagrams after writing use-cases because the use-
cases become the actions modeled by the activity diagram.

An activity diagram start point is shown as a single black dot. A line is used to show the
first action or conditional to be executed after starting. The end point of an activity
diagram is shown using a black dot surrounded by a black circle. Figure 6.7 shows an
activity diagram start and end point.

An action in an activity diagram is a single function performed by the system. For
example, searching in our reservation system for a flight is a distinct action. When
transitioning use-cases into activity diagrams, each use-case often becomes an action.
An action (shown in Figure 6.7) is modeled in an activity diagram using a rectangle with
rounded corners.

A conditional in an activity diagram is used to alter the executing path based on some
condition. For example, if no matching flights are found after a flight search is performed,
another search is performed. If, however, the search did locate flights, the diagram shows
a transition to a flight selection action. As shown in Figure 6.7, conditionals are
represented using a diamond.

While conditionals and actions form the meat of an activity diagram, they are all tied
together using transitions. Transitions, shown in Figure 6.7, use a solid line with an arrow
pointing to the destination.

 Figure 6.7: An activity diagram shows start points, end points, actions,

conditionals, and transitions.

AIRLINE RESERVATION SYSTEM SERVER MODEL

Now that we have covered the technical aspects of use-case development, let’s turn our
user interviews into use-cases. Figure 6.8 shows the use-case diagram that depicts our
system. We model the server functionality in this section. The next section models the
client functionality. In developing use-cases for client/server applications, it is common to
create one set of use-cases that model server functionality and another that model client
functionality. As you are developing thin-client applications, all business logic (see
following Note) is placed at the server level, and server use-cases comment on this.
Client-side use-cases spend time focusing on usability issues.

The following sections contain text descriptions for each use-case. The descriptions
conform to the following outline, which allows readers to easily pick out key pieces of
information. Note, however, that the outline is by no means a UML requirement. It is
instead my preferred manner of developing a use-case. Also note that not all use-cases
make use of every element in the outline; for example, some use-cases need no data for
completion.

 - 97 -

Note

The term business logic refers to any code that exists to represent a
transaction performed in the target domain. For example, any logic in a
banking environment that applies interest to accounts is considered business
logic. Code that obtains the name associated with an account is not
considered business logic.

 Figure 6.8: The airline reservation server described using use-case notation.

 • Actor—Name of the Actor performing the use-case.

 • Desired Outcome—Desired return value and changes to state caused by this use-

case assuming an affirmative executing.

 • Entered When—Discussion of pre-conditions and general entry point for the use-

case.

 • Finished When—Conditions that must be achieved for the use-case to complete.

•

Description—Detailed description of the use-case, along with any additional
information that may be needed. This section is also used to discuss general issues of
how the use-case fits into the global picture of the system under development.

 • Data Needed—Required information for execution to occur. This section is omitted if

no data is sent to the use-case.

•

Comments—Any additional information not presented under Description. This section
is often used for notes on a future version of the use-case, client thoughts on the use-
case, or any other additional information. This section may be omitted if not needed.

Diving into the use-case development, wherever possible we move through the system in
a manner similar to that followed by an actual user. This workflow begins when an Actor
searches for a flight, and ends when a reservation is booked or cancelled.

 - 98 -

 Actor Searches for a Flight

 Actor. Reservation client.

 Desired Outcome. Actor finds a collection of flights that meet his search criteria. Note that

this collection may include zero flights if his criteria does not match any active schedules.

 Entered When. Actor invokes search function in the server.

 Finished When. A collection of flight entities are returned to the Actor. An empty

collection is returned if no flights meet the specified criteria.

Description. The purpose of this function is to identity a single flight path from point A to
point B. If the Actor desires round-trip information, multiple searches are performed. The
server does support simultaneously exposing multiple flight schedules, but it is the
burden of the client software to present the data in an easy-to-read fashion. In
representing a single flight path, the following data elements are presented for each leg
of the journey: origin airport code, origin time, origin date, arrival airport code, arrival time,
and arrival date. Further information on the value expected for each element is contained
in Table 6.1.

 TABLE 6.1 DATA ELEMENTS USED WHEN SEARCHING FOR A FLIGHT

Name

Description

Origin airport
code

Unique airport code identifying the point of origin.

Origin time

Time of day (24-hour clock) of departure.

Origin date

Date (must be year 2000-compliant) of departure.

Arrival airport
code

Unique airport code identifying the arrival location.

Arrival time

Time of day (24-hour clock) of arrival.

Arrival date

Date (must be year 2000-compliant) of arrival.

Data Needed. Data is passed to this function detailing date of origin, time of origin, airport
code of origin, airport of destination, number of needed seats, and a range of 0–48 hours,
specifying a flexibility in schedule allowed by the Actor if a lower price exists. Again,
values for these data elements are detailed in Table 6.1.

 Actor Selects a Flight

 Actor. Reservation client.

 - 99 -

 Desired Outcome. Actor selects a target flight from the collection of available flights
presented to him.

 Entered When. Flight collection is notified of choice flight.

 Finished When. Both Actor and server have confirmed the choice flight, and additionally

those flights that are not selected.

Description. This use-case is important because it acts as a signal to the system that the
Actor has selected a single flight. Any flights that were part of the original collection of
flights are no longer candidates for selection once this use-case has exited.

 Data Needed. Collection of flights that meet the original search criteria. See “Actor

Searches for a Flight” for additional information.

 Actor Looks at Available Seats

 Actor. Reservation client.

 Desired Outcome. Collection of available seats is returned to the Actor.

 Entered When. Actor requests seat configuration information for a unique flight.

 Finished When. Seat information has been returned to the Actor.

Description. At a given point in time, any flight returned from “Actor Searches for a Flight”
has at least one available seat. This function allows viewing of all unreserved and
unlocked seats.

 Data Needed. The seat block to be locked.

Comments. It is important to note that the system is multiuser and more than one Actor
may be making reservations on the same flight at the same time. Due to this fact, a
search has to be coupled with an immediate request from the Actor to lock access to the
desired block of seats. See “Actor Locks Access to a Seat” for further information.

 Actor Locks Access to a Seat

 Actor. Reservation client.

 Desired Outcome. A collection of seats is reserved in the system for a specific user.

 Entered When. Actor obtains a collection of available seats on a unique flight.

 Finished When. Actor identifies the desired seats as a subset of the available collection

obtained from “Actor Looks at Available Seats.”

Description. The multiuser nature of the reservation system requires that desired seats
on a flight be locked before the actual reservation is made. This locking prevents another
Actor from viewing the desired seats as available before the actual reservation is made.
Since many exception situations may occur after the seats are locked and could prevent
the reservation from being made, seat locks not turned into reservations become
unlocked after 20 minutes.

 Actor Makes Reservation

 - 100 -

 Actor. Reservation client.

 Desired Outcome. A reservation is made in the system.

 Entered When. Actor requests access to the parts of the system that allow for making

reservations.

 Finished When. A reservation that meets the Actor’s requested flight criteria is made and

a reservation number is returned to the Actor.

Description. Most other use-cases aid in the gathering of the data needed to make an
actual reservation; in this use-case the actual reservation is made in the system. A
reservation is not limited to a unique flight, but can act as an umbrella under which
multiple flights are collected.

Data Needed. In order to make a reservation, the Actor must include all of the following
pieces of information: flight and seat information for all flights, method of payment, and
passenger demographics. Passenger demographics to be collected include name, billing
address, mailing address, and frequent flyer number. Information describing the expected
values of each data element is contained in Table 6.2.

 TABLE 6.2 DATA ELEMENTS USED WHEN SEARCHING FOR A FLIGHT

Name

Description

Name

Both the first and last name of the passenger.

Billing address

Address to which the reservation was billed.

Mailing address

Address at which the passenger accepts mail; usually this
matches the billing address.

Frequent flyer
number

Alphanumeric ID of the passenger’s frequent flyer account.

Comments. Since locked seats revert to the available pool if they are not turned into a
reservation after 20 minutes, the reservation must occur within 20 minutes of the seat
locking. As part of the reservation process, all credit card payments must be verified
against available funds. If the credit card is denied, the Actor is either prompted to enter
another card or to cancel the reservation. See “Actor Cancels Reservation” for
information on reservation canceling.

 Actor Cancels Reservation

 Actor. Reservation client.

 Desired Outcome. Reservation in progress, or already made, is cancelled.

 Entered When. The system receives a request to cancel at least one flight owned by a

reservation.

 - 101 -

Finished When. The flight(s) is cancelled, seats are returned to the available pool, and (if
applicable) a refund less cancellation fees is generated. If certain flights on a reservation
are to be kept, the entire reservation is still cancelled and the flights that remain are
moved to a new reservation.

Description. A user may cancel a reservation at any point after a seat lock has been
obtained and before the flight takes place. The most important part of the cancellation
process involves removing the lock that has been placed on reserved seats.

 Data Needed. The reservation and flights to be cancelled.

Comments. To facilitate historical information gathering, nothing is ever deleted from the
database itself. A cancelled flight, therefore, is simply tagged as cancelled and not
deleted from the system.

 Actor Searches for an Active Reservation

 Actor. Reservation client.

Desired Outcome. A collection of reservations is returned to the Actor based upon search
criteria. If there are no active reservations that meet the specified criteria, the returned
collection is empty.

 Entered When. Actor requests that a search be performed.

 Finished When. The collection of available flights is returned to the Actor. If no flights

meet the specified criteria, an empty collection is returned.

Description. It is a common occurrence that an Actor wants to obtain information on an
active reservation after the reservation has been made. This function allows searching of
the system for reservations that have either not occurred, or have occurred within the
past 60 days. After 60 days, historical information is moved to a data warehouse and is
obtained using another application.

Data Needed. To search for a reservation, an Actor must provide the name under which
the reservation was made, in addition to any of the following data elements: credit card
number used to book the reservation, date of any leg of any flight in the reservation, or
time of any leg of any flight in the reservation. Due to that fact that some searches are
more limiting than others, this function only returns the top 50 available reservations that
match the search criteria.

Comments. This function does present security issues, since reservation information
should not be given out if the requestor is not the same individual who booked the flight (or
is not a trusted third party). It is up to the reservation operator to follow an authentication
procedure to determine if the information requestor is approved for information
dissemination.

AIRLINE RESERVATION SYSTEM CLIENT MODEL

Now that server functionality has been modeled, we can concentrate on modeling client
functionality. Where the server use-cases concentrate on modeling the business logic of
our system, the client use-cases can concentrate on modeling usability issues. As with
the server use-cases, the client use-cases follow the outline specified earlier in this
chapter.

The decision to model the client and server separately was made due to the nature of the
n-tier application we are building. All business logic in an n-tier environment is placed at
the server level, and a thin client attaches to the server to allow access to its functionality.

 - 102 -

The server, in turn, connects to other servers and the persistence mechanism (database,
flat file, and so forth).

As an example of how the client and server differ, consider modeling the ability to search
for a flight. In the real world, users rarely have a reservation consisting of a single flight
but instead book at least one flight in each direction, and potentially more. At the server
level, the only consideration when providing flight data is to obtain the single flight that
best matches the specified criteria. At the client level, searching for a flight involves
searching for multiple flights, displaying them all onscreen, and choosing certain flights
to be used in a reservation. Client use-cases can also take into consideration issues
regarding the User Interface (UI). The client-side use-cases are shown in Figure 6.9 and
described in the following pages.

 Figure 6.9: The reservation client use-cases.

 Actor Searches for a Flight

 Actor. Human user of client software.

 Desired Outcome. Collection of flights meeting search criteria is returned to the user.

 Entered When. Actor clicks the UI element titled “Flight Search.”

 Finished When. Reservations are returned to the user and are displayed onscreen.

Description. When searching for the flights necessary to make a reservation, the Actor
may want to simultaneously search for multiple fights. For example, if the flight is round-
trip, the Actor wants to search for one flight from origin to destination and another flight
from destination back to origin. Additionally, Actors may want to create reservations for
flights between multiple cities. For this reason, the screen that supports searching for
flights should allow multiple, simultaneous search results to be displayed onscreen at the
same time. Since the server only supports executing a single search, the client software
has to break up all searches, execute each in a separate thread, and show all results
onscreen.

Data Needed. Data is passed to this function detailing date of origin, time of origin,
airport code of origin, airport of destination, number of needed seats, and a range of 0–
48 hours, specifying a flexibility in schedule allowed by the Actor if a lower price exists.
Further information on the expected values for these data elements is found in Table 6.1.

 Actor Selects a Flight

 - 103 -

 Actor. Human user of client software.

 Desired Outcome. Flights desired by the Actor are selected.

 Entered When. Actor clicks a UI element adjacent to the target flight(s) and then clicks a

UI element titled “Select Flights.”

 Finished When. Flight selection is communicated to the server and UI is updated to show

available seats.

 Description. After viewing the results of each search, the Actor has the option to either

perform another search or to begin making flight reservations.

 Data Needed. Logically, to select a flight, the Actor must have some collection of

available flights from which to choose.

 Actor Selects Seats on Flight

 Actor. Human user of client software.

 Desired Outcome. A collection of seats on the desired number of flights is reserved for

the Actor.

 Entered When. The UI element titled “Select Flights” mentioned in “Actor Selects a Flight”

is clicked.

 Finished When. The Actor clicks UI elements identifying all desired seats and clicks a UI

element titled “Choose Seats.”

Description. After choosing flights to place under a reservation umbrella, the next step in
making a reservation is to pick seats. In this function, the UI displays seat plans for each
of the planes and visually identifies each available seat.

 Data Needed. To select desired seats, the Actor must be presented with a list of available

seats.

 Actor Makes Reservation

 Actor. Human user of client software.

 Desired Outcome. A reservation is made and the unique reservation number is returned.

 Entered When. The UI element “Choose Seats” (mentioned in “Actor Selects Seats on

Flight”) is clicked.

 Finished When. Actor enters demographic and payment data and clicks the UI element

titled “Make Reservation”; the unique reservation is returned.

Description. The final steps in making a reservation are to enter passenger
demographics, payment information, and to click the UI element titled “Make
Reservation.” Passenger demographics collected include billing address, mailing
address, and frequent flyer number. A unique flight number is given to the Actor upon
successful booking of the reservation. Further information on the expected values for
these elements is found in Table 6.2.

 Data Needed. Billing address, mailing address, frequent flyer number, payment

 - 104 -

information, and flight data.

Comments. In most situations this use-case terminates according to the description
under “Finished When.” If the server rejects payment information, the server asks the
Actor to either enter new payment information or to cancel the reservation. See “Actor
Cancels Reservation” for information on reservation canceling.

 Actor Cancels Reservation

 Actor. Human user of client software.

 Desired Outcome. A reservation either in progress of being made, or already made but

not taken is cancelled.

Entered When. Actor clicks any of the many “Cancel Reservation” UI elements present at
various stages of the reservation process. The elements first appear once “Actor Selects
a Flight” has completed execution. The element is also present when viewing the results
of “Actor Searches for an Active Reservation,” assuming the reservation has yet to occur.

Finished When. Reservation is cancelled and (where applicable) any of the following
occur: Seats are returned to the available pool, a refund is generated, a new reservation
is generated with flights not cancelled.

Description. When an Actor clicks any “Cancel Reservation” button he is presented with a
list of flights present on that reservation. The Actor then clicks a UI element next to each
flight to be cancelled and then clicks a UI element titled “Process Cancellation.” If less
than 100% of all flights in the reservation are cancelled, a new reservation is generated
and reservation number is returned to the user.

 Data Needed. Reservation and flights to be cancelled.

 Actor Searches for an Active Reservation

 Actor. Human user of client software.

 Desired Outcome. Actor obtains data on a series of reservations that match his specified

search criteria.

 Entered When. Actor clicks the UI element titled “Reservation Search.”

 Finished When. The search results are returned to the Actor.

Description. It is a common occurrence that an Actor wants to obtain information on an
active reservation after the reservation was made. This function allows searching of the
system for reservations that have either not occurred or have occurred within the past 60
days. After 60 days, historical information is moved to a data warehouse and is obtained
by another application.

Data Needed. To search for a reservation, an Actor must provide the name under which
the reservation was made as well as any of the following data elements: credit card
number used to book the reservation, date of any leg of any flight in the reservation, or
time of any leg of any flight in the reservation (see Table 6.3). Due to the fact that some
searches are more limiting than others, this function only returns the top 50 available
reservations that match the search criteria. Once the search results are obtained, the
following data elements for each flight are displayed in a multi-list: departure time,
departure date, arrival time, arrival date, flight duration, number of layovers. From this
multi-list, the Actor may click a UI element that alters the display causing full flight details
to be displayed for a unique flight.

 - 105 -

 TABLE 6.3 DATA ELEMENTS USED WHEN SEARCHING FOR A FLIGHT

Name

Description

Departure time

Time (24-hour clock) of the flight departure.

Departure date

Date (must be year 2000-compliant) of the flight departure.

Arrival time

Time (24-hour clock) of the flight arrival.

Arrival date

Date (must be year 2000-compliant) of the flight arrival.

Flight duration

Length (in hours and minutes) of the flight.

Number of layovers

Total number of layovers experienced during the flight as a
whole.

Comments. This function presents security issues because reservation information
should not be given out if the requestor is not the same individual who booked the flight
(or is not a trusted third party). It is up to the reservation operator to follow an
authentication procedure to determine if the information requestor is approved for
information dissemination.

Although we now have a complete picture of the server functionality, there is one
additional step that aids developers. We develop the activity diagram for the system in
this last step. The diagram, shown in Figure 6.10, depicts the flow of action in the system
as a whole.

 Figure 6.10: An activity diagram for the reservation system depicts the flow of

work executed within the application as a whole.

The use-cases presented in this chapter exist as a final product that has been approved by
the client (user-base), product manager, and development manager. At this point it is
possible to turn them over to the programming staff for modeling and code development.
What is important to keep in mind is that the UML is used not only for use-case
development, but also for class modeling, object and state modeling, architecture design,
and all other steps in the development process. These steps are rather implementation-
specific and are illustrated in the chapters of the book where the software is actually
implemented.

FROM HERE

 This chapter introduces the concepts behind using the UML to model a system in an

 - 106 -

implementation-independent fashion. Those concepts were then applied to model an
airline reservation system. Later in this book the specifications are turned into more UML
models, and then into actual software. Each of those implementations is found in one of
the following chapters:

 • Chapter 14, “Socket-Based Implementation of the Airline Reservation System.”

 • Chapter 16, “RMI-Based Implementation of the Airline Reservation System.”

 • Chapter 19, “Servlet-Based Implementation of the Airline Reservation System.”

 • Chapter 26, "CORBA-Based Implementation of the Airline Reservation System.”

 • Chapter 35, “Voyager-Based Implementation of the Airline Reservation System.”

Part II: Java

 Chapter List

 Chapter 7: Java Overview

 Chapter 8: Java Threads

 Chapter 9: Java Serialization and Beans

 Chapter 7: JAVA Overview

 Overview

In 1891 Dutch physician Eugene Dubois discovered on the island of Java the fossil
remains of a prehistoric human being, now thought to have lived 500,000 to 1.5 million
years ago. Java man (as the species is called in utter disregard of sex) had a large face.
His forehead was low and sloped, with heavy ridges above the eyes. His chinless jaw
was massive and contained teeth that were huge in comparison to ours. He was short,
barely over five feet tall, and his brain size was smaller than that of more modern
humans.

In contrast, modern Java man and Java woman—the Java software developer—stand at
the apex of human evolution. Their physical prowess is exceeded only by their intellectual
acumen: Both are simply superior and entirely without peer. Does this sound like you?

If you’re not a Java man or Java woman, this chapter introduces you to Java and helps
you read and understand the Java sample programs used throughout this book’s
subsequent chapters. The chapter may not provide all that’s required to transform you
into Java man or Java woman, though hefting this tome will certainly help build your
biceps.

Consider this chapter, if you will, “Teach Yourself Java in 24 Minutes.” If you’re already a
Java man or Java woman, you don’t need to read it. However, you might skim it as a
refresher, reading only the sections on interesting or unfamiliar topics.

 In this chapter you learn

 • What makes Java such a unique programming language.

 - 107 -

 Java is the first portable programming language to come into widespread use. You see
here how it enables programmers to “write once and run anywhere.”

 • How to use the basic Java development tools included in the Java Developer’s Kit

(JDK).

You don’t have to purchase an expensive suite of tools in order to write Java
programs. Sun Microsystems provides a free JDK that includes all the tools you need
to develop Java programs.

 • How to read and write programs that use Java’s object-oriented and procedural

constructs.

 Java includes a full range of object-oriented facilities as well as the more traditional

flow-of-control facilities.

 • How to read and write programs that use Java’s graphical user interface (GUI) library.

 Java’s Abstract Windowing Toolkit (AWT) makes it easy to write GUI programs that run

on multiple platforms.

 WHAT’S DIFFERENT ABOUT JAVA?

Within just a few years of its initial public release, Java has established itself as a signifi-
cant programming language. At the time of this writing, pollsters estimate that there are
500,000 to 1,000,000 Java programmers. Why have so many programmers found Java a
worthy object of attention? What’s different about Java?

 Such questions are not easily answered because Java is really quite a remarkable lan-

guage. However, three characteristics stand out:

 • Java programs are portable.

 • Java applets automate distribution of code.

 • Java is thoroughly object-oriented.

 Let’s take a closer look at these characteristics.

 Software Portability

Most computer programs are not portable. They are written and designed to be run on a
specific computing platform. Coaxing them to run on another platform is regularly more
difficult and costly than writing a new program for the target platform.

To be fair, the UNIX community has long taken software portability seriously. There, the
art of writing portable software has become an art. However, for the most part, the sort of
portability that has been achieved is compile-time portability: Many UNIX programs can
be successfully recompiled and run on a variety of platforms. The point is that the
programs must be recompiled, which often takes minutes or even hours. Moreover, the
process is not perfect: Often a programmer must tweak the code before it compiles and
runs properly. This sort of portability is a genuine boon, but falls short of the incessant
user demands: “faster, cheaper, better.”

Java programs are portable in a different sense; they are run-time portable, meaning that
a Java executable file can be run, without recompilation, on any platform that supports
Java. The technique that makes this possible is the bytecode.

 - 108 -

Note

Although Java programs are portable across platforms, you may have some
trouble moving Java programs from one release of Java to another. See the
upcoming section “Java Releases.”

 Bytecodes

Most programming languages require source programs to be compiled and linked (see
Figure 7.1) before execution. Both the object code and the executable code are basically
machine code for the target platform; the object code is somewhat more abstract than the
machine code, but fundamentally little different. As a consequence, both the object code
and the executable code are specific to the target platform. If you want to port the
program to a new platform, you work with the source code; the object and executable
code are of no value to you.

 Figure 7.1: Non-Java source code must be compiled and linked.

However, Java takes a different approach as you see in Figure 7.2. In a single step, the
Java compiler produces bytecodes, a sort of machine-independent object code. The trick
is that bytecodes are not directly executed by the native hardware; they are instead
executed by a Java Virtual Machine (JVM), which functions as an interpreter. (This is
gen-erally true, but it’s possible to put a JVM on a chip. In fact, several companies have
done so or are doing so.)

 - 109 -

 Figure 7.2: Java bytecodes are portable.

Interpretive languages are not novel: Several implementations of BASIC and Pascal
featured interpreters, although they did not generally support runtime portability. Java’s
particular novelty lies elsewhere—in the special technologies employed to reduce the
overhead inherent in interpretation. Normally, interpreted code runs about an order of
magnitude more slowly than machine code. However, Java designers intended from the
start for Java to rival C as a language for writing efficient application code.

Early Java compilers and virtual machines did not incorporate facilities devoted to boost-
ing the execution speed of bytecodes, such as just-in-time compilation or hotspot opti-
mization. At the time of this writing, these facilities are just coming into widespread use.
Just-in-time compilation has significantly narrowed the speed gap between Java and C,
and hotspot optimization holds the promise of effectively eliminating it. The result: a
language that produces portable code and yet exacts no performance penalty. This is
truly a winning combination.

Portable bytecodes, however, do not in themselves solve all the problems of making soft-
ware portable. Most programs, whether written in Java, C, or another language, are not
complete. They depend upon libraries of pre-written code that must be available when
the program is linked (static binding) or executed (dynamic binding).

 Libraries

Java provides an elaborate suite of class libraries that programmers can reference,
sparing the programmer the need to write code to perform common operations. Because
Java’s class libraries are written in Java, they are portable. The combination of a pro-
grprogram?s bytecodes, the Java class libraries, and a Java Virtual Machine for the
target platform (see Figure 7.3) are all that’s needed to run a Java program.

 Figure 7.3: Java provides an extensive portable class library.

 Applets

 A second outstanding Java characteristic is a new kind of program called an applet.

Ordinary Java programs are referred to as applications, to avoid confusion.

An applet is stored as bytecodes on a Web server, which are referenced by a Web page
using a special HTML tag. When a Java-equipped browser requests the Web page that
contains the applet, it discovers the applet and requests it as well. The browser then
loads and executes the applet.

The applet is free to draw within a designated area of the screen. Moreover, it can
interact with the user by displaying user-interface controls. The applet can even open a
network connection to the Web server that stores it, enabling access to databases and
other resources.

 Because most computer users know how to use a Web browser, they’re comfortable

interacting with an applet; as long as the user’s browser is Java-equipped, it doesn’t mat-

 - 110 -

ter whether the user has an IBM PC, a Macintosh PC, or some other computer. The
Java applet is portable, just as other kinds of Java programs are portable.

Note

Portability is easier to achieve in principle than in practice. At the time of this
writing, the JVMs in browsers are somewhat buggy and implement somewhat
different Java subsets and dialects. Moreover, Sun and Microsoft are
embroiled in a legal dispute over Microsoft’s alleged responsibilities as a Java
licensee to provide a compatible Java implementation in Internet Explorer.

However, incompatibilities between browser implementations of Java may
soon be alleviated. Sun’s Java plug-in technology lets users run a standard
Sun JVM in Microsoft Internet Explorer or Netscape Navigator. Moreover,
Netscape has announced that it will incorporate a third-party JVM, possibly
Sun’s, in future versions of Netscape Navigator.

Applets solve one difficult application maintenance problem: software distribution. Every
time the user accesses a page containing an applet, the browser downloads a fresh copy
of the applet (assuming that the browser’s cache doesn’t intervene). If the applet has
recently been changed, the user will effortlessly receive the new version of the applet.
Thus, the user never runs out-of-date software.

Of course, this solution is not without complications. For one thing, some browsers may
cache copies of files downloaded via the network. When this is the case, a user may
unknowingly execute an out-of-date applet. Moreover, downloading itself is not without
problems. The Java bytecode file is a very compact program representation;
nevertheless, the overhead of downloading a large applet every time it’s accessed may
be objectionable. This could be avoided by means of a simple date and time stamp.
Presumably, future versions of popular Web browsers will incorporate mechanisms that
compare the date and time stamp of a cached applet with that of the applet residing on
the server, and download the applet only if it has been updated.

 Object-Oriented Programming and Program Quality

A final salient characteristic of Java is its support of object-oriented programming.
Although C++ possesses object-oriented features, it’s possible to write non–object-
oriented software using C++. As a consequence, many C++ programmers are really C
programmers in disguise, using C++ to write programs just like those they previously
wrote in C. This approach to programming fails to realize the benefits inherent in object-
oriented programming. Java, on the other hand, compels programmers to understand
and use objects. The result is better program structure and higher program
maintainability.

Bjarne Stroustrup, the designer of C++, saw backward compatibility with C as a critical
language design issue. As a result, C++ is burdened with certain C facilities that have
proven problematical. Although Java borrows much from C and C++, the designers of
Java rejected the need for backward compatibility. The high similarity with C and C++
makes Java an easy language for C and C++ programmers to learn, and yet many
troublesome C and C++ facilities, such as pointers, are not found in Java. Consequently,
Java programs are potentially more reliable than comparable C or C++ programs. So far,
experience with Java bears this out.

 Objects and Their Properties

Because object-orientation is so fundamental to Java, it’s worthwhile to spend some time
reviewing its fundamentals. This will facilitate understanding the remainder of the chapter,
which presents the syntax and semantics of Java.

The fundamental concept of object-oriented programming is the object. An object is
simply a program unit, including both data and code, that is divided into two parts:
interface and implementation. This separation of interface and implementation is called

 - 111 -

encapsulation. An object’s interface is simply that portion that is publicly visible to, and
therefore usable by, other objects. The implementation of an object is its hidden inner
workings— those parts that are necessary to support the functions provided by the
object’s interface, but are not directly accessed by other objects. In addition to
encapsulation, objects are also characterized by inheritance and polymorphism, topics
addressed shortly.

The constituent parts of an object—the data and the code—have special object-oriented
names. The data of an object describe it. Therefore, the data is called the object’s
attributes, which are stored in Java program variables called fields. An object’s code
typically consists of a set of relatively small procedures, each supporting a single
operation, service, or behavior. (Unfortunately, object-oriented terminology remains
rather inconsistent.) In Java, these procedures are called the object’s methods, which
consist of executable program statements.

 Figure 7.4: Objects encapsulate data and code.

For example, consider an object designed to access an email server, as is shown in
Figure 7.4. Its interface might include data (such as the name of the email server and the
ID of the user), code (such as a procedure to send an email message), and a procedure
(to receive email messages). Its implementation might include data, such as the IP
number of the email server, and code, such as a procedure to transmit the body of an
email message.

 Object Messages

Operations in non–object-oriented programs are invoked by calling a function or
procedure, which performs a computation and may return a result. Because a function or
procedure is unique within a non–object-oriented program, it’s clear which function or
procedure is meant.

Object-oriented programs are somewhat more complex. Each object has its own
methods (though a single, shareable copy of a method may be held in memory). Calling a
method begs an important question: which method?

 - 112 -

 Figure 7.5: Objects send and receive messages.

Instead, object-oriented programmers talk of one object sending a message to another as
you see in Figure 7.5. The sending object sends a message to a receiving object. The
receiving object handles the message by executing a method that corresponds to the
message. As shown in the figure, the receiving object may return a response (called a
return value) to the sending object.

However, the difference between calling a procedure and sending a message is more
than mere terminology. Even though objects may run in different processes or different
computers-circumstances that preclude the simple procedure call—they can send
messages to one another. The operation of sending a message outwardly resembles a
procedure call but may be implemented quite differently.

 Object Inheritance

In principle, objects are all that’s needed for object-oriented programming. Many
programs, however, work with objects that differ only in the values of their fields. The
labor-saving concepts of class and inheritance were introduced to facilitate creation of
such objects.

A class is a template that defines the common fields and methods of similar objects. In
object-oriented programming, a program consists primarily of definitions of classes.
Program statements can create an object that’s an instance or member of a specified
class.

For example, suppose you had to create objects representing purchases. Each such
object may include a purchase date, a customer number, a stock number, a quantity, and
a price. By creating a class named Purchase and specifying that instances of the class
have exactly these data attributes, it becomes simple to create a new Purchase object.

Inheritance is a simple extension of this concept. Suppose you find that you need a set of
objects that each represent a time purchase. A time purchase has all the attributes of a
Purchase, plus two additional attributes: the interest rate and the final due date. Rather
than create an entirely separate class that includes the five attributes of a Purchase
plus the two new attributes, it’s possible to extend the Purchase class, creating a new
TimePurchase class that includes all the attributes of a Purchase (see Figure 7.6)
plus the two new attributes. Conceptually, each instance of TimePurchase contains
within it all the fields and methods of a Purchase. When one class extends another, the
original class is called the parent class or superclass and the new class is called the child
class or subclass.

 Figure 7.6: Inheritance lets you extend class capabilities.

 - 113 -

If an inherited method fails to meet a programmer’s need, the programmer can redefine
the method in the child class. The new definition of the method overrides the definition in
the parent class.

Inheritance increases the productivity of programmers; with it, they can pick up where
other programmers have left off. Inheritance also facilitates the creation and marketing of
reusable software components. In Java, you can extend a class even if you have only its
bytecodes; the source code is not necessary. This facilitates the production and sale of
class libraries because vendors do not have to publicize proprietary details of the source
code and yet programmers can extend the function of class library members.

 Inheritance provides one payoff—the ability to extend classes—to users of objectoriented

technology. Polymorphism provides another.

 Object Polymorphism

Non–object-oriented code suffers from complicated flow of control, which tends to worsen
as the code is revised and adapted. For example, consider a payroll system for a large
company with many employee bargaining units (unions), each with different dues and
policies. When the system computes an employee’s pay, it must determine the
bargaining unit to which the employee belongs and deduct the proper dues. Because
bargaining units may negotiate various work and compensation policies, the system must
also consider an employee’s bargaining unit affiliation when computing overtime pay.
Other computations, such as vacation time accrual, also require consideration of
bargaining unit membership.

 Each computation takes a form something like this:

 if (member of unit #1)
 Compute per unit #1 policies
 else if (member of unit #2)
 Compute per unit #2 policies
 ...
 else if (member of unit #N)
 Compute per unit #N policies

Now consider what happens when a new bargaining unit is formed. A programmer must
study each computation and revise it to include proper conditional statements to handle
the new unit. If the system is sufficiently large and complex, the programmer is likely to
err somewhere. Even if the programmer doesn’t err, updating the payroll system is
laborious and expensive.

Polymorphism provides a better way. In object-oriented programming the word
polymorphism, which means many forms, refers to the capability of objects to respond
distinctively to identical messages. Here’s how it works:

In the object-oriented payroll system, each employee is represented by an object. Like all
objects, this object belongs to a class. One simple way to solve the payroll system
problem is to establish one class for each bargaining unit. Each such class is then a
subclass of the Employee class and inherits common fields and methods. However, the
computations that require consideration of bargaining unit affiliation are implemented in
each subclass.

Now, when the program sends a ComputeOvertimePay message to an object, the
object knows the pertinent bargaining unit (that is, it knows its own class identity) and its
policies (that is, it implements the relevant computations in its own distinctive way). The

 - 114 -

message sender doesn’t need to test what bargaining unit applies because the message
receiver knows how to perform each necessary computation. Each subclass of
Employee handles the same ComputeOvertimePay message polymorphically—in its
own fashion.

It’s much simpler to add a new bargaining unit to an object-oriented system. The
programmer simply creates a class to represent the new bargaining unit. The new class
handles all the necessary messages, so the programmer doesn’t need to search the
code and revise flow-of-control statements. As a result, the programmer is more likely to
make the change quickly and properly.

Now that you know something about object-oriented programming, briefly consider the
tools available to Java programmers. After doing so, you begin your survey of the Java
language and libraries.

JAVA DEVELOPMENT TOOLS

Sun includes all the basic tools needed for Java programming in the free Java
Developer’s Kit (JDK). These free tools are not very elaborate, so many programmers
prefer to purchase an Interactive Development Environment (IDE) for Java. However,
even the most sophisticated IDEs provide the same three major components provided by
the JDK: a compiler, an interpreter, and an appletviewer.

 Java Compiler

Writing a Java program involves using an editor to prepare a source code file that has the
extension .java. You must not use .JAVA as an extension. Java hails from the UNIX
world, where file names are case sensitive; it hasn’t lost this trait even when ported to
operating systems that are not case sensitive, such as Microsoft Windows.

 You use the Java compiler, known as javac, to transform your source code into

bytecodes. Using the JDK, you do this at a command-line prompt:

 javac MyJavaProgram.java

 If the source code is error-free, the compiler produces the file MyJavaProgram.class .

If you’re unaccustomed to working with a command-line prompt, you may want to get a
Java IDE. However, many programmers used to IDEs find that they quickly become
adept at using commands. Some actually grow to prefer using commands because of the
freedom it affords.

 Java Interpreter

 To run a Java application—not a Java applet—you invoke the Java interpreter, known as
java :

 java MyJavaProgram

Notice that the program name does not specify the extension .class. Because its
argument must be a .class file containing bytecodes, the Java interpreter doesn’t
require the extension. Moreover, including the extension causes an unexpected result. If
you enter the following code, the Java interpreter assumes you want to run the file
MyJavaProgram.class.class —probably not what you intended:

 java MyJavaProgram.class

 - 115 -

 Java Appletviewer

As mentioned, Java applets can be run from Web pages loaded by Web browsers.
However, this method often proves inconvenient during program development. Many
browsers have a habit of caching applets. An unwary programmer may modify and
recompile source code yet have the browser execute an old version of the applet. Worse
yet, at the time of this writing, browser-based implementations of Java are rather buggy.
Many Java programmers prefer to use the appletviewer program included in the JDK.

 To execute a Java applet, you merely run appletviewer on the HTML file that contains

this applet:

 appletviewer MyWebPage.html

The appletviewer program brings up a window that contains only the applet: It ignores the
HTML text, pictures, and styles specified in the file. Consequently, many Java
programmers work with a skeleton HTML file that contains only those HTML tags
necessary to run the applet. Here’s an example:

 <APPLET CODE=MyJavaApplet WIDTH=400 HEIGHT=300>
 </APPLET>

 The APPLET tag’s CODE attribute names the .class file that contains the applet. The
WIDTH and HEIGHT attributes specify the size of the window in which the applet runs.

JAVA RELEASES

At the time of this writing, there have been two major releases of Java and a third is
imminent (see Table 7.1). Even though Java aims at making programs portable across
platforms, you can encounter problems due to the evolution of Java and its libraries.

 TABLE 7.1 MAJOR JAVA RELEASES

Release

Date

Java
1.0

December, 1995

Java
1.1

January, 1997

Java
1.2

December, 1998 (anticipated)

Java 1.1 introduced so many changes that Java 1.1 applets generally will not run in
browsers equipped with Java 1.0, which includes the majority of browsers at the time of
this writing. Programmers who want to develop applets to be hosted by public Web pages
are all but compelled to use Java 1.0, even though Java 1.1 made many important
improvements to the language and its libraries. Programmers writing for intranets find
these incompatibilities less troublesome because they have greater control of the
browser versions their users employ.

 - 116 -

Sun has released a free product called Java Plug-in that ameliorates some of these
difficulties. Java Plug-in lets Microsoft’s Internet Explorer or Netscape’s Navigator use
Sun’s Java virtual machine and library classes, rather than the Microsoft or Netscape
version. Moreover, when a new version of the Java virtual machine or classes becomes
available, the Plug-in automatically downloads and installs it. However, the Java virtual
machine and classes are relatively large, so the download may be time consuming when
a modem connection is used. Thus, Java Plug-in is of most value to intranet
programmers. Those programming for public Web access are left with only the lowest-
common-denominator approach: using Java 1.0.

The examples in this book are based on Java 1.1 because that’s the version of Java
familiar to most programmers. Don’t try to run the examples using an IDE or browser that
supports only Java 1.0—they simply won’t work. If your IDE or browser supports Java
1.2, all should be well: Java 1.2 is backward-compatible with Java 1.1.

You’re finally ready to embark on your whirlwind tour of the Java language and its libraries.
The goal is to prepare you to read the Java program examples used throughout this book.
If you’ve never written Java programs, you’ll probably require further study before writing
complete applications on your own.

JAVA CLASSES

A Java program, just as programs written in other object-oriented languages, consists of
a collection of classes. At run-time, these classes are used to instantiate objects that
perform the program’s functions. Listing 7.1 shows a simple Java program. Let’s dissect
the program, piece by piece.

A typical Java program begins with a series of import statements. Strictly speaking,
import statements are not required; they’re merely a convenience to the programmer.
For example, this program uses several classes, including java.awt.Button and
java.awt.TextField . These names are long and rather cumbersome, so most Java
programmers prefer to refer to Button and TextField. The import statements allow
such abbreviated references. The following import statement tells Java that the
programmer wants to abbreviate names of classes that begin with java.awt:

 import java.awt.*;

 LISTING 7.1 JavaApplet.java—A SIMPLE JAVA APPLET

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;

 public class JavaApplet extends Applet
 {
 // Fields
 private Button theButton = new Button("Click on me.");
 private TextField theText = new TextField(25);

 // Method
 public void init()
 {
 add(theButton);
 add(theText);
 theButton.addActionListener(new ButtonHandler());

 - 117 -

 }

 // Inner class
 class ButtonHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 theText.setText("Hello, user!");
 }
 }
 }

 Because this mechanism resembles the wildcard filename specification provided by

many operating systems, some programmers attempt to go too far:

 import *.*.*;

The Java compiler will reject such an import statement: You can omit only the last
word of a class name. The remainder of the name is called the package. Java uses the
package name to find the class file; if the package cannot be found, Java rejects the
class reference.

 Class Header

 The definition of a class, which begins with the class header, follows the import

statements:

 public class JavaApplet extends Applet

Following the class header is the class body, which begins with an opening brace () and
extends through the final closing brace () on the last line of the program. Let’s dissect the
class header before examining the contents of the class body.

The Java compiler recognizes the class header by the keyword class, which is followed
by the name of the class, JavaApplet. The Java compiler requires that each source file
contain only one main class and that the name of the class be the same as that of the
source file, except that the source filename has the .java extension. The JavaApplet
class must be contained in the JavaApplet.java file. This relationship between class
name and source filename helps programmers trace through programs that consist of
many classes, which would otherwise be a great chore.

The keyword public indicates that the JavaApplet class and its object instances are
freely accessible to other classes and objects. You almost always give a program’s main
class public accessibility.

Finally, the keyword extends and the following class name indicate that the
JavaApplet class is a subclass of Applet. Therefore, it inherits fields and methods
from Applet; these give it many capabilities before you write a single line of code.

 Class Body

 Coming to the body of the class, you first find these lines:

 // Fields
 private Button theButton = new Button("Click on me.");

 - 118 -

 private TextField theText = new TextField(25);

 The first line is a comment, meaning that it is ignored by the compiler. It helpfully points

out that the following two lines define fields, which are program variables.

 Fields

The first field, theButton, can refer to a Button object and the second, theText, can
refer to a TextField object. Button and TextField are Java library classes.
Button provides a clickable user-interface button and TextField provides an input
block.

Each field is initialized so that it holds a reference to a valid object. Java’s new operator
constructs object instances, using arguments that specify object characteristics. Here, the
argument to the Button constructor specifies the text that appears on the button; the
argument to the TextField constructor specifies the number of characters that the
input block accommodates. Figure 7.7 shows the applet’s user interface.

 Figure 7.7: Java programs look and feel like ordinary programs when executing.

When you declare a Java field, the type you specify can name a class within Java’s
libraries, your program, or a so-called primitive type. Primitive types are simple numeric
or Boolean values. Table 7.2 describes Java’s primitive types. Because primitive values
are not objects, you don’t use the new operator to construct them. For example, you
could write the following to define a field that holds the number of hairs on a human head
(typically in the tens of thousands):

 int theNumberOfHairs = 25378;

 TABLE 7.2 JAVA’S PRIMITIVE TYPES

Type

Description

boolean

true value

byte

8-bit signed integer

char

16-bit unsigned integer

double

64-bit floating-point number

float

32-bit floating-point number

int

32-bit signed integer

 - 119 -

 long 64-bit signed integer

short

16-bit signed integer

The keyword private specifies that only the enclosing class can access the fields
theButton and theText. This marks them as part of the implementation of the class,
rather than the interface. You could make the fields public, in which case they would be
part of the interface, accessible everywhere. Java provides a third access specifier,
protected, which allows access only from within the enclosing class or one of its
subclasses. If you don’t specify one of the three access keywords, Java assigns package
access, which allows access by classes within the same package.

 In all, Java provides four levels of access:

 • package Allows access by classes within the package.

 • private Allows access only by the class.

 • protected Allows access only by the class and its subclasses.

 • public Allows unrestricted access.

You specify protected access using the keyword protected or private access using the
keyword private. Java assigns package access by default when you specify neither
public, protected, nor private.

 You can specify the package to which your class belongs by including a package

statement as the first statement of the class:

 package TheGreatExperiment;

If you omit the package statement, as is the custom in small programs, Java assumes
an unnamed package that consists of all the classes within the same directory as the
current class.

You can also define fields with constant values. By including the keywords static
final in the declaration of a field, you tell the Java compiler that the value of the field
should not change during program execution. For example, here’s a constant that
represents the number of sides of a square:

 static final int SIDES_SQUARE = 4;

If you erroneously write a statement that assigns a value to a static final field (such
as SIDES_SQUARE), the compiler will reject your program. For example, a program
containing the preceding declaration and the following statement would not compile:

 SIDES_SQUARE = 5;

 Methods

 The second section of code within the class body defines a method, that is, a procedure

that responds to a message. The message header is the line:

 - 120 -

 public void init()

This tells us the init method is publicly accessible and does not return a value. You
specify the accessibility of a method in the same way as a field. However, fields are
generally part of the implementation and have private access; methods are a mixed
bag, some are part of the interface and some are part of the implementation.

 Between a matched opening brace and closing brace are the statements that compose

the method’s body:

 add(theButton);
 add(theText);
 theButton.addActionListener(new ButtonHandler());

Each of these statements sends a message. The first two statements send the add
message and the third sends the addActionListener message. You can spot the
name of the message by looking for the open parenthesis that immediately follows it. The
third statement sends its message to the Button object to which the field theButton
refers. The first two statements give no receiver; in such a case the message is sent to
the current instance of the enclosing class; here, to the JavaApplet object.

The add message places a control on the screen. Thus, the effect of the first statement
is to place the button on the screen and the effect of the second statement is to place the
input block on the screen. The argument of the add message specifies the control that’s
to be placed on the screen. Messages can take zero, one, or more arguments.

The third statement tells the button the identity of an object that will handle user
interactions with the button. The message argument specifies the object, which is
constructed on-the-fly by using the new operator. The type of the message handler is
ButtonHandler, a second class in the JavaApplet program, as you’ll see presently.

 Assignments and Operators

In addition to statements that send messages, Java also provides assignment
statements. Assignments use operators to compute a value and assign it to a variable.
Here’s a simple assignment statement:

 x = 2 * y + 1;

Java borrows many operators from C and C++. These are summarized in Table 7.3.
Notice that several of the operators have different meanings, depending on the type of
operand. The table gives the precedence for each operator. This determines how
operators and operands are grouped. You can use parentheses to explicitly specify the
grouping. For example, look at the following statements:

 x = 2;
 y = 3;
 z1 = x * y + 4;
 z2 = x * (y + 4);

 The value of z1 is 10 , but z2 is 14 because the addition operator in parentheses now

takes precedence over the multiplication.

 Java’s operators are mostly left associative. The expression

 y = x1 * x2 * x3; is interpreted as y = ((x1 * x2) * x3);

 - 121 -

However, assignment operators are right associative, making it possible to write an
expression such as the following, which assigns the value of z to y and then assigns
the same value to x:

 x = y = z;

Readers unfamiliar with C or C++ may at first be puzzled by several Java operators,
especially the increment and decrement operators, which simply increase or decrease a
value by 1. For example, the statement

 x++;

 increases the value of x by 1. These operators behave oddly when used within an

expression. For example, consider the following snippet of code:

 x = 1;
 y = 1;
 z = ++x + y++;

The subexpression ++x increments x and the subexpression y++ increments y; the
expression assigns the value 2 to each of these variables. The value of y is trickier to
determine. When the increment operator is placed before a variable, it returns the
incremented value of the variable, but when it is written after a variable, it returns the
unincremented value of the variable. The subexpression ++x returns the value 2 and
the subexpression y++ returns the value 1. Therefore, the expression assigns the value
3 to z. The decrement operator (") functions analogously.

 Java’s assignment operators are also unusual. For example, you can use the +=

operator to increment a variable:

 x += 2;

 The expression has the same meaning as this:

 x = x + 2;

 Java’s other assignment operators function analogously (see Table 7.3).

 TABLE 7.3 JAVA OPERATORS

Precedence

Operator

Operand
Type

Description

1

++

numeric

increment

- -

numeric

decrement

+, -

numeric

unary plus,
unary minus

 - 122 -

 ~ integral bitwise complement

!

boolean

logical complement

(type)

any

type cast

2

*, /, %

numeric

multiplication, division, remainder

3

+, -

numeric

addition, subtraction

+

String

concatenation

4

<<

integral

left shift

>>

integral

right shift (signed)

>>>

integral

right shift (unsigned)

5

<, <=

numeric

less than, less than or equal

>, >=

numeric

greater than, greater than or equal

instanceof

object, type

type comparison

6

==

any

equality

!=

any

inequality

7

&

integral

bitwise AND

&

boolean

logical AND

8

^

integral

bitwise XOR

^

boolean

logical XOR

9

|

integral

bitwise OR

|

boolean

logical OR

10

&&

boolean

conditional AND

11

||

boolean

conditional OR

12

?:

boolean,
any, any

conditional operator

13

=, += , -= ,
=, /= , %= ,
<<= , >>= ,
>>>= , &= ,
|= , ^=

variable, any

assignment

 - 123 -

 Characters and Strings

Java provides the String class and character and String literals for representing
text. Java uses the Unicode character set, a 16-bit representation that provides over
65,000 characters—enough to represent the alphabets of the world’s major languages.
Unicode greatly facilitates writing programs for the international market.

 You write character literals as in C/C++—by surrounding a character with single quotation

marks:

 char c = "A";

 Alternatively, you can use the integer value of the desired Unicode character.

 String literals are written like C/C++ strings, by surrounding text with double quotation

marks:

 String s = "Hello Mom";

 This avoids the need to use the new operator to construct Strings, an otherwise

cumbersome process.

To represent common control characters, Java provides escape sequences similar to
those of C/C++. For example, you can write a character literal containing a carriage
return as "\r" . You can write a new line character as \n or a tab character as \t .

 The concatenation operator () joins Strings or a String and a char :

 String s = "Hello Mo" + "m";

The Java idiom for converting a numeric value to text is simple but sometimes hard to
recall. You use the concatenation operator to join the numeric value to a String, which
can be empty:

 int n = 12; // arbitrary value
 String s = "" + n;

 Java provides methods that extract numeric values from text. For example, the
parseInt method of the Integer class extracts an int value from a String:

 String s = "123"; // arbitrary value
 int n = Integer.parseInt(s);

 Return Values

A method can return a value of any type, either object or primitive, by executing a
return statement that specifies the returned value. However, the type of the value
returned must be compatible with the type specified in the method header. As you saw,
the init method does not return a value and therefore its method header specifies
void as the method’s return type. Here’s an example method that doubles the value of
its int argument:

 public int doubler(int x)

 - 124 -

 {
 return x + x;
 }

 Local Variables

Methods can define variables, known as local variables, that exist only during the
execution of the method and cannot be accessed outside the method. Local variables are
useful for storing intermediate results and clarifying code. For example, the doubler
method could be written like this:

 public int doubler(int x)
 {
 int y;
 y = x + x;
 return y;
 }

 Inner Classes

A class can, within its body, define other classes, called inner classes. For example, the
JavaApplet class defines an inner class named ButtonHandler , which handles
messages denoting button clicks:

 // Inner class
 class ButtonHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)

 {
 theText.setText("Hello, user!");
 }
 }

The remarkable thing about an inner class is that it can freely access fields of the
enclosing class. For example, the ButtonHandler class accesses the JavaApplet
field named theText. Notice that the header of the ButtonHandler class uses an
unfamiliar keyword, implements. The implements keyword is used because an
ActionListener is not a class, but a special entity known as an interface.

 Interfaces

An interface resembles a class; however, an interface has only constant fields and its
methods include only an interface—the implementation is omitted. Java programmers
use interfaces to create the “tongues and grooves” that join software units. When a
programmer writes that a class implements an interface, the compiler ensures that every
method named in the interface is implemented by the class; otherwise the class is
considered abstract and cannot be instantiated. In effect, a class that implements an
interface is advertising its capability to handle certain messages.

For example, the ButtonHandler class implements the ActionListener interface,
a built-in interface that contains a single method, actionPerformed . Consistent with
ButtonHandler ’s declaration, it implements the actionPerformed method. You
learn more about the actionPerformed method and its role in event handling shortly.

 - 125 -

 Constructors

When the new operator instantiates an object, the numeric fields of the object are set to
0 and the object fields are set to refer to a non-existent object named null . You’ll
often prefer some other initial values, which you can establish by coding a constructor. A
constructor closely resembles a method, but its name is always the same as that of the
enclosing class, and the header of a constructor never specifies a return type. After all,
the purpose of a constructor is to initialize an object, not return a value.

 Here’s a simple example of a class that has a constructor:

 public class Ball
 {
 private float theRadius; // radius in centimeters

 public Ball(int size_in_inches)
 {
 theRadius = 2.54 * size_in_inches;
 }
 }

The Ball class contains a single field, theRadius, which holds the radius of a ball. The
constructor accepts a single int argument, which it converts from inches to centimeters
and stores in the field.

The JavaApplet class, like other applets, has no constructor. Instead, it uses an init
method to initialize itself. A browser always calls an applet’s init method after it
constructs the applet.

Before you lose track of the JavaApplet example program, perhaps you’d like to run it.
Listing 7.2 shows the HTML you need. Be sure to compile the Java source program
before running the applet.

 LISTING 7.2 WebPage.html—A WEB PAGE THAT HOSTS AN APPLET

 <APPLET CODE=JavaApplet WIDTH=400 HEIGHT=100>
 </APPLET>

FLOW OF CONTROL

 Like its ancestors, C and C++, Java provides a variety of flow of control statements,

including if-else, switch, for , while, and do-while.

 Conditional Statements

The if statement evaluates an expression and conditionally executes a statement.
When combined with an else , the if can execute one or the other of a pair of
statements, based on the value of an expression. You may nest if-else statements
and use braces to group multiple statements for conditional execution. Unlike C/C++, an
if expression must have boolean type; it cannot be numeric. The familiar C/C++
idiom of treating 0 as false and other values as true doesn’t work in Java.

 For example, the following if-else statement increments top and bottom if x is 0;

otherwise it decrements them:

 - 126 -

 if (x == 0)
 {
 top++;
 bottom++;
 }
 else
 {

 top--;
 bottom--;
 }

Whereas the if performs a two-way conditional branch, the switch statement
performs a multi-way conditional branch. The switch statement includes an integer
expression and a series of case statements; it evaluates the expression and then
executes the case statement that has a matching value. The switch statement may
also include a default statement; if no case statement within the switch has a
matching value, the switch executes the default statement. Like C/C++, once a
case statement is executed, control flows to the following case or default
statement. To prevent this, you can use a break statement to transfer control to the
statement following the switch. Altogether too often, programmers neglect to include
break statements where needed, resulting in program bugs.

 Here’s a typical switch statement, with a complement of case and break statements

and a default statement:

 int y = 0;
 switch (num / 100)
 {
 case 0:
 y = 1;
 break;
 case 1:
 y = 2;
 break;
 case 2:
 y = 8;
 break;
 default:
 y = 32;
 break;
 }

 Loop Control Statements

Like C/C++, Java provides three sorts of loops. The for statement is especially
convenient for writing counted loops in which the number of iterations is fixed. The for
typically includes three expressions:

 • An initilization expression, which is executed when the loop is entered.

 • A Boolean test expression, which is executed before each iteration. When the test

expression evaluates to false, iteration ceases.

 - 127 -

 • An update expression, which is executed at the end of each iteration.

 Here’s an example for loop that sums the numbers from 1 to n:

 int i;
 int sum = 0;
 for (i = 1; i <= n; i++)
 {
 sum += i;
 }

 Loop variables that exist only for the duration of the for can be defined inside the for ,

like this:

 for (int i = 1; i <= n; i++)

The do and do-while statements are essentially simpler forms of the for statement. The do
statement features a test expression. If the expression evaluates false, the do
statement terminates; otherwise, the body of the do executes and the test expression is
reevaluated. Iteration continues until the test expression evaluates to false. Here’s a do
that sums the numbers from 1 to n, just as the previous for statement did:

 int i = 1;
 int sum = 0;
 while (i <= n)
 {
 sum += i;
 i++;
 }

Notice that the initialization and update expressions that were incorporated within the
for are performed by auxiliary statements rather than the do . The do is most useful
when the loop requires no initialization and update operations because other program
statements have already established the proper initial conditions and iteration.

The do-while resembles the do , but its test expression is not evaluated until the
completion of the first iteration. Therefore, a do-while always executes its body at least
once. Here’s a do-while loop that computes the same result as the previous loops.
Notice that the computation fails if the initial value of n is less than 1:

 int i = 0;
 int sum = 0;
 do
 {
 i++;
 sum += i;
 } while (i <= n)

 Program Exceptions

Java provides an elegant mechanism for dealing with unexpected program conditions:
the exception. When a Java virtual machine encounters a problem it throws an exception,
a special object that records information about the problem. A try-catch statement
can be used to trap exceptions thrown within a block of code:

 - 128 -

 try
 {
 // statements that cause exception to be thrown
 }
 catch (IOException ex)
 {
 // statements the deal with the exception
 }

The catch functions somewhat like a method, including an argument (here ex) that
has a type that subclasses Exception. Java’s libraries define many such subclasses.
It’s also possible to associate multiple catch blocks with a single try ; the first catch
block with an argument matching the type of the actual exception executes.

If a statement that could throw a given exception is not within a try block with a catch
for that exception, the Java compiler will reject the program unless special steps are
taken. The header of the method enclosing the statement must be tagged with a throws
clause that advertises the possibility of the uncaught exception. This allows the compiler
to efficiently check that statements that invoke the method are enclosed within an
appropriate try-catch or that the enclosing method also throws the exception.

 Java’s exception mechanism ensures that programmers deal with the most likely sources

of unexpected program termination. As a result, Java programs tend to be highly reliable.

 USER INTERFACE

When programming the client side of a system, the user interface is paramount. Most
modern systems employ a graphical user interface, but you can write Java programs that
use either a text-based or graphical style of user interface.

 Text-Based User Interfaces

Java’s System class mediates access to the three standard input/output streams
provided by most operating systems: input, output, and error. The System.in object
models the input stream; its read method lets you read a Unicode character from the
input stream:

 character data = System.in.read();

 If the input stream is at end of file, the read method returns the value "1 , which

corresponds to no Unicode character.

The System.out and System.err objects model the output and error streams,
respectively. Their print and println methods let you write text. Each takes a single
argument, which must be a String or capable of conversion to a String. Unlike the
print method, the println method adds a line termination sequence to its output
and flushes the output buffer. For example, the following statement writes the familiar
“Hello World!” message to the output stream:

 System.out.println("Hello World!");

 Abstract Window Toolkit (AWT) Interfaces

For writing GUI programs, Java provides the Abstract Window Toolkit (AWT). The AWT
uses the facilities of the host platform to create and display buttons and other
userinterface controls. Therefore, the AWT preserves the familiar look and feel of the

 - 129 -

host platform, making users feel thoroughly at home. However, experience shows that
writing portable programs using the AWT is difficult (though by no means impossible),
owing to subtle differences from platform to platform in the behavior of native controls.

The AWT classes are too extensive to be thoroughly covered in the space of a single
chapter. The most important aspects of the AWT are summarized in Table 7.4, which
shows key AWT classes, and Table 7.5, which shows key AWT event listeners. You
should be able to understand the user-interface aspects of the example programs by
reading the explanations and referring to these tables. If you’re interested in a more
detailed presentation of Java and the AWT, consider Object-Oriented Programming in
Java, by Gilbert and McCarty (Waite Group Press, 1997).

 TABLE 7.4 KEY AWT CLASSES

Class

Description

Button

Clickable button

Canvas

Surface for drawing

Checkbox

On/off button

Choice

Drop-down list

Dialog

Dialog box

FileDialog

Dialog box for opening/saving files

Frame

Top-level window

Label

Static text

List

Scrollable list

Menu

Clickable menu

MenuItem

Clickable menu item

Panel

Container for controls

Scrollbar

Standard scrollbar

ScrollPane

Container with integral scrollbars

TextArea

Multi-line text box

TextField

Single-line text box

Window

A generic window

 - 130 -

 TABLE 7.5 KEY AWT EVENT LISTENERS

Listener

Description

ActionListener

Listens for mouse click on a control

AdjustmentListener

Listens for change to scrollbar position

FocusListener

Listens for change in focus (user tabbing to next control)

ItemListener

Listens for user selection from list

KeyListener

Listens for key press

MouseListener

Listens for mouse click within a window

MouseMotionListener

Listens for mouse movement within a window

TextListener

Listens for changes to contents of a text control

WindowListener

Listens for reposition, resize, or close of window

Despite the intention to be brief, one useful but unusual AWT characteristic must be
mentioned. In order to facilitate writing portable programs, the AWT lets programmers
avoid hard-coding sizes and positions of controls and other user-interface objects. Most
AWT programs use one or more layout managers to automatically position their controls.
By dividing a window into regions controlled by different layout managers, programmers
can create a portable screen layout that functions well over a wide range of video monitor
resolutions. Table 7.6 summarizes the most popular of the AWT’s layout managers.

 TABLE 7.6 POPULAR AWT LAYOUT MANAGERS

Layout
Manager

Description

BorderLayout

Places controls in one of five positions: north (top), south (bottom),
west (left), east (right), or center.

CardLayout

Places controls on a panel within a group of panels that resembles
index cards. The user can click a card for access, bringing it to the
front of the group.

FlowLayout

Places controls in rows, filling each from left to right and then

 - 131 -

moving down to the next row.

GridBagLayout

Places controls according to parameters that specify size, location,
and so on.

GridLayout

Places controls in a horizontal row, vertical column, or matrix of
equally sized cells.

 Java Foundation Classes

To overcome limitations of the AWT, Sun created the Java Foundation Classes (JFC,
also known as Swing). Unlike the AWT, JFC does not utilize native peer components of
the host platform. It is a pure-Java facility whose behavior—by design—is consistent
across platforms. Because it requires architectural improvements made subsequent to
Java 1.0, JFC can be used only with Java 1.1 or later.

Our example programs use the AWT rather than JFC for a number of reasons. First—and
primarily—more programmers are familiar with the AWT than JFC. Second, AWT-based
code tends to be simpler than JFC-based code. Devoting less space to presentation of
user-interface issues is consistent with this book’s emphasis on the non-client aspects of
distributed systems. Third, Sun intends JFC as an alternative to, rather than a replacement
of, the AWT. Finally, at the time of this writing, the current beta version of JFC is rather
slow and buggy. Even though it appears that JFC represents the future of clientside Java,
the AWT is chosen as the vehicle for presenting user-interface code.

 FROM HERE

This chapter has taken you on a whirlwind tour of the Java language and its libraries.
Obviously, there’s much more to Java than could be presented in a single chapter. This
chapter’s goal was to jump-start your ability to read Java programs so that you’ll be able
to understand the many Java example programs used throughout subsequent chapters.

You need to understand a few advanced Java facilities before jumping into the examples.
The following chapters provide additional details regarding the Java language and its
libraries:

•

Chapter 8, “Java Threads,” presents threads, explaining why they’re useful in building
distributed systems and how to create and use them. It also discusses thread
synchronization, alerting you to some subtle pitfalls that can cause your programs to
fail.

 • Chapter 9, "Java Serialization and Beans," presents serialization and Java Beans, both

of which are especially important to building distributed systems.

 Chapter 8: JAVA Threads

 Overview

Unlike other popular programming languages, Java has threads—not clothes, of course,
but lightweight processes capable of concurrent, asynchronous execution. Java’s easy
access to threads makes it simpler than ever to build efficient, threaded client servers. In
this chapter, you’ll learn:

 • How concurrency can improve program performance

 - 132 -

 Concurrent programs can do several things at once. Often, a concurrent program can
outperform an equivalent nonconcurrent program.

 • How to create and manage threads

 Java provides extensive capabilities for creating and controlling threads as part of its

core API.

 • How to avoid pitfalls of concurrency

 Concurrent programs may contain subtle bugs that cause them to hang or produce

incorrect results. You’ll learn how to recognize and avoid such problems.

 CONCURRENCY

We’re all familiar with concurrency—which is simply performing several tasks at the same
time—in our daily lives. When the boss asks where the Mulligan report is, we’d better
have it ready. The reply “It’s not ready: I’ve been working on the Needham analysis”
won’t cut the mustard. We’re expected to do several things at once and do them well.

However, until recently, computers couldn’t rise to this expectation. For example, you
couldn’t run your word processor and spreadsheet at the same time. If the boss asked for
a copy of the Mulligan report while you were working with a spreadsheet, you had to shut
down the spreadsheet, launch the word processor, print the report, shut down the word
processor, launch the spreadsheet, and resume work. No wonder days seemed so
frantic.

Microsoft Windows changed that, giving desktop computer users the power of
concurrency. Provided your computer has enough memory, you can run your word
processor and spreadsheet at the same time. The programs can even cooperate, sharing
data in a way that lets you insert a spreadsheet into your report so that the report stays up-
to-date, even if you change the formulas in the spreadsheet. As you know from experience,
con-currency provides enormous potential for improved efficiency.

 THREADS

Running multiple programs—a feat called multitasking—is not the only form of
concurrency. In fact, it’s not the most powerful form, because it’s hobbled by several
constraints. In multitasking, each program lives in its own address space. To exchange
data with other programs, a program must use a rather elaborate protocol that
overcomes the lack of access to a common area of memory (for example, UNIX shared
memory). You can’t simply call another program’s procedures. Moreover, from the
perspective of an operating system, launching a program is a major event, requiring
exclusive access to many shared resources. Consequently, it takes many clock ticks to
launch a new program, and other programs must stand down during that interval.

You can write a concurrent system as a suite of programs, but this architecture suffers
from the constraints of multitasking. Your system will probably have a fixed number of
tasks—running copies of a program—because it’s so costly to launch a new task. What’s
more, you’ll probably spend quite a bit of time programming the system, coaxing tasks
that live in private address spaces to cooperate with one another.

Now, imagine a better way. Instead of multiple programs that share no common memory,
suppose you could have a single program with multiple parts that execute concurrently.
The parts would cooperate without coaxing, because they’re part of the same program
and share common data and procedures. Also, because they’re part of a single program,
they could come and go without major operating system overhead. Such an architecture
would make it easy to create fast, efficient servers because you could instantiate one of
your hypothetical parts each time a client requests service. That way, multiple clients

 - 133 -

could be processed concurrently.

 Sound too good to be true? It’s not: You’ve just imagined Java’s threads, which are quite

real. Let’s see how to actually create and use them.

 Creating Threads

Java provides the java.lang.Thread class to model threads, which it supports using
facilities of the host platform. This poses a few unfortunate consequences, because
threads do not behave consistently across platforms. We’ll take up these problems and
propose some workarounds later in the chapter.

The most obvious way to create a thread is by instantiating an instance of the Thread
class. However, the most straightforward way is to first create an instance of a class that
implements the Runnable interface. The sample program ThreadCreation shows how
to create a pair of threads. Copy it from the book’s CD-ROM (you’ll find both the Java and
HTML source files) and run it on your own system. Its screen displays two single-digit
counters—one that counts up and one that counts down (see Figure 8.1). The counters
run asynchronously, because each has its own thread.

 Figure 8.1: Threaded programs perform tasks concurrently.

Listing 8.1 shows the Java code for the ThreadCreation program, which consists of an
Applet subclass, ThreadCreation , that defines two fields, a method, and an inner
class. Let’s look at the inner class, Digit, because it’s the heart of the program.

 LISTING 8.1 ThreadCreation.java —INSTANTIATING A THREAD

 import java.applet.*;
 import java.awt.*;

 public class ThreadCreation extends Applet
 {
 Digit theUpCounter = new Digit(+1);
 Digit theDownCounter = new Digit(-1);

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theUpCounter);
 add(theDownCounter);
 Thread t1 = new Thread(theUpCounter);
 Thread t2 = new Thread(theDownCounter);
 t1.start();
 t2.start();
 }

 class Digit extends TextField implements Runnable

 - 134 -

 {
 int theStep;
 int theState = 0;

 public Digit(int step)
 {
 theStep = step;
 setFont(new Font("SansSerif", Font.BOLD, 96));
 setEditable(false);
 }
 public void run()
 {
 while (true)
 {
 theState += theStep;
 if (theState < 0) theState = 9;
 if (theState > 9) theState = 0;
 setText("" + theState);
 try
 {
 Thread.sleep(500);
 }
 catch (Exception ex) { ; }
 }
 }
 }
 }

The inner class Digit extends TextField and implements Runnable. You may have
expected that it would extend Thread; it’s possible to create a thread by extending
Thread, but Digit demonstrates the more common approach. The Runnable
interface requires its implementing class to define one method: run . As you’ll see in a
moment, the run method functions as a gateway for threads; when you want a class to
be able to run as a thread, you should specify that the class implements Runnable and
define a run method.

A class can implement as many interfaces as you choose, but it can only extend a single
base class. By implementing Runnable, your class is free to extend a base class that
provides fields and methods useful to your application. For example, the Digit class
extends TextField, which gives it the ability to display itself on the screen as a text box.
Because the Java language—not its libraries—provides thread capabilities, you don’t
need to extend Thread.

Looking more closely at the Digit class, you can see that it defines two fields, a
constructor, and a method. One field, theState, holds the current value of the counter,
which is initialized to zero. The other field, theStep, holds the increment/decrement
value by which the counter is adjusted each time it steps.

The constructor accepts an argument that specifies the step value; the constructor copies
the value of the argument to the field theStep. It then configures itself, via methods
inherited from TextField, to use a large font and to disallow user editing of its contents.

The run method steps the counter. It consists of an endless loop that steps the value of
theState and wraps the value when it falls outside single-digit range. It then updates
the contents of the TextField to reflect the new value of theState. Finally, it invokes

 - 135 -

the Thread.sleep method from within a try-catch block.

The Thread.sleep method puts a program “on hold” for a specified interval; Digit
uses the value 500, which means 500 milliseconds. By calling Thread.sleep, Digit
courteously gives other programs and threads a chance to run; otherwise, it might
monopolize the system, making the system seem sluggish to users. Because its nap
might be interrupted (by an InterruptedException), Digit must call
Thread.sleep within a try-catch or throw the exception to its caller. Digit
handles the exception itself, because the exception is relatively inconsequential; the
precise timing of the counting is not important. In effect, Digit ignores the exception,
because the catch block contains no executable statements. Although Digit runs as
a thread, it does not create the Thread in which it runs; the ThreadCreation applet
performs this task in its init method.

Let’s examine ThreadCreation. Its two fields are instances of Digit, one counting up by
one and the other counting down by one, as specified by the argument passed to the
constructor. The init method establishes a horizontal GridLayout (one row and an
unspecified number of columns) as the applet’s layout manager and adds each Digit
to the applet’s window.

The init method then creates two Thread objects, one for each instance of Digit.
The Thread constructor imposes restrictions on the class it accepts as an argument.
The class must extend Thread or implement Runnable. Because Digit implements
Runnable, it’s acceptable as an argument to Thread’s constructor. Once you create a
thread, it simply sits idle until started via the start method; therefore, init is used to
send a start message to each new Thread.

In response to a start message, a Thread begins executing its run method
asynchronously: The calling program and the thread execute in parallel. (Unless your
computer has multiple CPUs, it can’t perform parallel computation; it merely causes the
calling program and the thread to execute in turn. However, given a fast computer, this
presents the illusion of parallel computation.)

You can invoke start several times on the same instance of Thread. Each thread will
then share access to the fields of the shared instance. This makes it easy for threads to
share information; however, as you’ll soon see, it also opens the way for certain kinds of
subtle program bugs that don’t affect nonthreaded programs.

 Thread Characteristics

 Thread objects, like other objects, possess attributes that store their characteristics.

Here are the most important characteristics of a thread:

 • The thread group to which the thread belongs

 • The priority of the thread

 • The name of the thread

 • The type of the thread

 • The status of the thread

The ThreadChars program, shown as Listing 8.2, shows how to access these
characteristics. This program follows the general pattern established by ThreadCreation.
It consists of an applet that has two fields: a TextArea for displaying output and an
instance of DummyThread, which is a subclass of Thread. The program’s init method

 - 136 -

sets up the user interface and starts the thread. Then, it commences sending messages
to the DummyThread and displaying the responses. Notice that the init method does
not need to create the Thread instance. As you’ll see, DummyThread extends Thread
rather than implementing Runnable, so the initializer of the field theThread creates
the Thread.

 LISTING 8.2 ThreadChars.java —THREAD CHARACTERISTICS

 import java.applet.*;
 import java.awt.*;

 public class ThreadChars extends Applet
 {
 TextArea theOutput = new TextArea();
 DummyThread theThread = new DummyThread();

 public void init()
 {
 setLayout(new BorderLayout());
 add(theOutput);
 theOutput.setFont(new Font("Monospaced", Font.BOLD, 12));
 theOutput.setEditable(false);
 theThread.start();
 theOutput.append("\nActive Count: " +
theThread.activeCount());

 theOutput.append("\n");
 theOutput.append("\nName : " +
theThread.getName());

 theOutput.append("\nPriority : " +
theThread.getPriority());

 theOutput.append("\nAlive : " +
theThread.isAlive());

 theOutput.append("\nDaemon : " +
theThread.isDaemon());

 ThreadGroup t = theThread.getThreadGroup();
 while (t != null)
 {
 theOutput.append("\n");
 theOutput.append("\nName : " + t.getName());
 theOutput.append("\nGroup Count : " +
t.activeGroupCount());

 theOutput.append("\nMax Priority: " +
t.getMaxPriority());

 t = t.getParent();
 }
 }
 class DummyThread extends Thread
 {
 public void run()
 {
 while (true)
 {
 try
 {
 Thread.sleep(500);

 - 137 -

 }
 catch (Exception ex) { ; }
 }
 }
 }
 }

The inner class DummyThread consists of little more than a run method. An instance of
DummyThread has no function beyond mere existence: We simply want to probe it in
the init method of ThreadChars. That’s why DummyThread extends Thread rather
than implementing Runnable; it doesn’t need to inherit any capability from another base
class.

Figure 8.2 shows the output of the ThreadChars program. The first paragraph displays
the number of active threads in the Java virtual machine. The second paragraph displays
the characteristics of the DummyThread instance. Each subsequent paragraph
describes the characteristics of a thread group, from DummyThread’s immediate parent
to the root of the thread group hierarchy.

 Figure 8.2: Threads are members of thread groups.

Java associates threads as thread groups for convenience. Thread groups let you send a
single message to a group of threads rather than sending a message to each member of
the group. A thread group can also impose restrictions on its members and their children.
For example, thread groups restrict the maximum priority their members and their
children can assume.

Thread priority governs access to the CPU. When a thread of higher priority is ready to
run, it preempts lower priority threads. Your application may run poorly unless you assign
thread priorities properly. Generally, high-priority tasks that consume little CPU time
(such as user interaction) should run as high-priority threads, whereas low-priority tasks,
as well as tasks that are CPU intensive, should run as low-priority threads.

 In addition to group membership and priority, threads have names. However, names are

mainly useful for debugging, because they don’t normally appear in user-oriented output.

Threads are of two varieties: daemon and nondaemon. Daemon threads typically perform
background tasks of low priority. When the last nondaemon thread terminates, Java
automatically terminates any remaining daemon threads.

 Using and Controlling Threads

 In addition to their relatively fixed characteristics, threads have characteristics that reflect

their state. A thread can be in any of several states:

 • Alive or dead

 - 138 -

 • Sleeping or awake

 • Suspended or nonsuspended

 • Interrupted or noninterrupted

You kill a thread by sending it a stop message. However, this unfriendly act may not
allow the thread an opportunity to put its affairs in order, leaving the program in an
inconsistent state. Therefore, Sun has deprecated use of the stop message. You’ll
learn a better way to terminate a thread in the next section, “Pitfalls and Solutions.” You
can test whether a thread is alive by sending it the isAlive message. You can free the
resources associated with a thread by sending it the destroy message.

 A thread sleeps when it receives a sleep message. It awakens after the specified time

interval expires or when it’s interrupted.

You can suspend a thread—temporarily block it from execution—by sending it a
suspend message. You can subsequently allow it to execute by sending it a resume
message.

You can interrupt a thread by sending it the interrupt message, which throws it an
InterruptedException . The isInterrupted method lets you determine whether
a thread has been interrupted.

 Java provides messages that let you set the characteristics of a thread:

 • setName(String name) lets you set the name of a thread.

 • setPriority(int priority) lets you set the priority of a thread.

•

setDaemon(boolean daemon) lets you change the daemon status of a thread.
Sending true as the argument makes the thread a daemon, and sending false
makes the thread a nondaemon.

You can send the setMaxPriority message to a thread group, changing the
restrictions it imposes on its members and their children. Also, you can send the
setDaemon message to a thread group, thereby changing the daemon status of every
member of the group.

 PITFALLS AND SOLUTIONS

Subsequent chapters present sample programs that use Java’s thread capabilities, so we
won’t take time to present such practical examples here. (If you’re eager to see a useful
application of threads, see Chapter 13, “Sockets,” which shows how to create a threaded
Internet server.) Instead, we’ll focus here on some of the pitfalls that accompany thread
use, showing you both the pit and the path around it.

 Stopping a Thread

Java’s Thread class includes a stop method that terminates a running thread.
However, Java 1.2 deprecates the method, because abruptly terminating a thread may
leave program data in an inconsistent state. The ThreadStopper program, shown in
Listing 8.3, demonstrates the proper technique for terminating a thread: You should allow
the thread to terminate itself.

 - 139 -

 LISTING 8.3 ThreadStopper.java —HOW TO SAFELY STOP A THREAD

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;

 public class ThreadStopper extends Applet
 {
 TextArea theOutput = new TextArea();
 DummyThread theThread = new DummyThread(theOutput);
 Button theStop = new Button("Stop");
 Button theSuspend = new Button("Suspend");

 Button theResume = new Button("Resume");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theOutput, BorderLayout.CENTER);
 Panel p = new Panel();
 p.setLayout(new GridLayout(1, 0));
 add(p, BorderLayout.SOUTH);
 p.add(theStop);
 p.add(theSuspend);
 p.add(theResume);
 theOutput.setFont(new Font("Monospaced", Font.BOLD, 12));
 theOutput.setEditable(false);
 theStop.addActionListener (new Stopper());
 theSuspend.addActionListener(new Suspender());
 theResume.addActionListener (new Resumer());
 theThread.start();
 }

 class Stopper implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 theThread.stopThread();
 }
 }

 class Suspender implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 theThread.suspend();
 }
 }

 class Resumer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)

 - 140 -

 {
 theThread.resume();
 }
 }

 class DummyThread extends Thread
 {
 TextArea theOutput;
 boolean isStopPending = false;

 public DummyThread(TextArea out)
 {
 theOutput = out;
 }

 public void stopThread()
 {
 isStopPending = true;
 }

 public void run()
 {
 while (! isStopPending)
 {
 theOutput.append("\nRunning...");
 try
 {
 Thread.sleep(1000);
 }
 catch (Exception ex) { ; }
 }
 theOutput.append("\nStopped.");
 }
 }
 }

Examine the DummyThread inner class and notice that it includes a boolean variable
called isStopPending . This variable is initialized to false and set to true by the
stopThread method. You might prefer to name such a method stop ; however, the
Thread.stop method is final and thus cannot be overridden.

DummyThread’s run method includes a conditional while rather than the
unconditional while of previous examples. When the while discovers that
isStopPending is true , it exits. Therefore, you can view its output—the
DummyThread appends messages to a text block set up by the applet, which passes a
reference to the text block to DummyThread’s constructor.

As you can see from DummyThread’s user interface, DummyThread not only lets you
stop a thread, it lets you suspend and resume it (see Figure 8.3). Let’s see how the user
interface and the suspend/resume feature work.

The user interface includes three buttons: one to stop the thread, one to suspend it, and
one to resume it. Once you stop the thread, it cannot be restarted; you must exit and
launch the program again.

 - 141 -

 Figure 8.3: Threads can be stopped, suspended, and resumed.

The init method creates a BorderLayout to control the placement of controls and
puts the TextArea (a multiline text box) at the center of the applet’s window so that it
fills the available space. Next, the method creates a Panel (an invisible container) and
places it along the bottom edge of the applet’s windows, allowing it to expand horizontally
but not vertically. A GridLayout governs the placement of controls within the Panel;
the Panel’s constructor parameters (1,0) instruct it to place the controls in a single row.
The method then adds the buttons to the Panel, styles the TextArea, sets an
ActionListener for each button, and starts the thread.

 Each ActionListener merely sends an appropriate message to the Thread:

 • The Stop button’s ActionListener sends a stopThread message.

 • The Suspend button’s ActionListener sends a suspend message.

 • The Resume button’s ActionListener sends a resume message.

When you use this method of stopping a thread (or more accurately, prompting a thread
to stop itself), the thread can perform any desired clean up of program variables before it
exits its run method and terminates. You should never send a thread the stop
message.

 Platform Variation

Like AWT, Java’s threads use facilities of the host platform. Specifically, the host
platform's scheduler determines when threads are preempted and which thread is
scheduled for execution. Because hosts do not schedule threads consistently, the
behavior of Java’s threads varies across platforms.

Here’s an example of the inconsistency that most often proves troublesome. Assume that
a thread of priority 4 is running as the highest-priority thread. Then, the program creates
a new thread of equal priority. When does the new thread run? On some platforms (for
example, Microsoft Windows) the two equal-priority threads share access to the CPU; on
others (for example, Sun Solaris) the first thread continues running until it voluntarily
relinquishes the CPU. The former type of platform is said to schedule threads
preemptively, whereas the latter schedules them nonpreemptively. Programmers often
refer to preemptive scheduling as round-robin scheduling, because it allows every thread
its turn.

Platforms that implement a nonpreemptive schedule can prove troublesome for threaded
programs. Usually a nonpreemptive schedule works adequately because a task runs for
only a short time before it requires input or writes output. Depending on how the host
handles input/output buffering, these time-consuming operations may cause the task to
relinquish the CPU, allowing other tasks to run. Alternatively, a courteous thread may
invoke the yield method from time to time; the yield method lets other tasks of equal
priority have access to the CPU.

 - 142 -

However, in the worst case, a long-running thread may block other threads from
accessing the CPU for an extended period; such threads are said to be CPU-starved, or
simply starved. The consequence, from the perspective of the user, may be a sluggish
and unresponsive program, particularly if the starved tasks are responsible for processing
user interactions.

You can avoid thread starvation by writing software only for platforms that provide a
preemptive schedule; of course, this solution is not in keeping with the Java spirit of “write
once, run anywhere.” You can also avoid thread starvation by writing your own thread
scheduler that suspends and resumes Java threads in a round-robin fashion. However,
that involves a great deal of work.

A more realistic way of avoiding thread starvation is to write courteous threads that
invoke yield regularly. Of course, you must be careful to do this consistently; even one
discourteous thread can cause program performance problems. If you’re part of a large
programming team, it may be worthwhile to invest resources in implementing a
scheduler. Even if programmers neglect to include appropriate yield methods, program
threads won’t experience starvation.

 Safety (Races)

Thread starvation is not the only—or greatest—risk in developing threaded programs.
When a thread violates the conditions that computer scientists refer to as safety, serious
data corruption can result. If you’ve worked with electronic hardware, you may know the
term race condition, which refers to the same phenomenon.

Let’s look at an example of a safety failure. Listing 8.4 shows the Unsafe class, which
includes unsafe threads. The init method of Unsafe creates and starts two threads
that share a single instance of EvenCounter, an inner class that’s roughly similar to the
DummyThread inner class of previous examples. However, EvenCounter counts in
steps of two, always displaying even values. Moreover, it doesn’t display its counter
value; it merely displays the word even when the count is even or odd when the count is
odd.

 LISTING 8.4 Unsafe.java—AN UNSAFE PROGRAM

 import java.applet.*;
 import java.awt.*;

 public class Unsafe extends Applet
 {
 EvenCounter theCounter = new EvenCounter();

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theCounter);
 Thread t1 = new Thread(theCounter);
 Thread t2 = new Thread(theCounter);
 t1.start();
 t2.start();
 }

 class EvenCounter extends TextField implements Runnable
 {

 - 143 -

 int theState = 0;

 public EvenCounter()
 {
 setText("Even");
 setFont(new Font("SansSerif", Font.BOLD, 32));
 setEditable(false);
 }

 public void run()
 {
 while (true)
 {
 theState += 1;
 try
 {
 Thread.sleep(500);
 }
 catch (Exception ex) { ; }
 theState += 1;
 if (theState%2 == 1) setText("Odd");
 }
 }
 }
 }

The applet’s output indicates that the count is odd (see Figure 8.4). This may seem
contradictory: If the EvenCounter, which starts at 0, counts by two, how could it ever
contain an odd value? Because EvenCounter is not thread safe, its data becomes
corrupted during execution. After running for a few moments, the counter value becomes
odd. Let’s see why that occurs.

 Figure 8.4: Unsafe threads can corrupt data.

The EvenCounter class seems quite ordinary. It contains an int state variable,
theState, that holds the counter. The class constructor simply sets the initial text, styles
the font, and prevents the user from editing the text within the control.

As usual, the run method does the real work. It increments the counter by one, sleeps
for 500 milliseconds, increments the counter by one, and updates the text. Notice that the
text does not reflect the current state of the counter: Once the text is changed to odd, it
never reverts to even.

This occurs because the operation of stepping the counter is nonatomic: It occurs as two
discrete steps. Between the two steps another thread can access and update the
counter, thus corrupting its data. The phenomenon is similar to the familiar database
update anomaly. Admittedly, the sample program is contrived. It uses sleep so that the
interval between the two nonatomic steps is quite wide. Moreover, the program could
have updated the int state variable in a single step. However, Java operations on

 - 144 -

objects, as well as on some primitives (for example, long), are inherently nonatomic.
What’s more, the wide time interval simply causes a failure quickly and reliably; in the
real world, the same result will occur every so often by chance.

If you feel you must try Unsafe before you’re ready to accept our results, you can run it
yourself. Because Java threads behave differently across platforms, it’s possible you
won’t be able to duplicate our results, which were obtained using JDK 1.1.6 under
Microsoft Windows 95. If you don’t get an odd result, you should tweak the sleep interval;
most platforms will exhibit a race condition for some sleep interval.

At this point you may protest that if the bug is so hard to reproduce, it can’t be worth
worrying about. On the contrary, users exercise a program far more heavily than an
individual developer. If your program has hundreds of users who log several hours per
day of execution time, once a week a user will see an occurrence that would take you
about 5,000 hours of testing to reproduce. If the consequences of the data corruption are
sufficiently severe, such a subtle bug may render an entire system unusable. Don’t
mistake rare for irrelevant.

Because thread-related bugs are so difficult to detect by using execution-based testing,
many software development organizations are supplementing their execution-based
testing with techniques such as software walkthroughs or inspections. A group of
programmers who know what to look for (for example, nonatomic updates) can often find
thread-related problems more quickly and inexpensively than a skilled testing team.

 Synchronization

Now that you know how thread safety can fail, you’re probably interested in how to fix an
unsafe program. Just as the problem of thread safety resembles the problem of database
update anomalies, the solution to thread safety problems resembles that of the database
update anomaly problems: a lock. Java provides the synchronized keyword, which
can be used to write a synchronized statement or method. Let’s examine synchronized
methods first.

Listing 8.5 shows the Safe class, a modified version of Unsafe that’s not susceptible
to race conditions. The statements of the run method have been moved to a new
method, update, that’s specified as synchronized. For each object instance, Java will
allow only one thread at a time to execute a synchronized method. Of course, several
threads can execute the same method of several objects without restriction, because
separate objects do not share fields.

 LISTING 8.5 Safe.java—A SAFE PROGRAM

 import java.applet.*;
 import java.awt.*;

 public class Safe extends Applet
 {
 EvenCounter theCounter = new EvenCounter();

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theCounter);
 Thread t1 = new Thread(theCounter);
 Thread t2 = new Thread(theCounter);
 t1.start();
 t2.start();

 - 145 -

 }

 class EvenCounter extends TextField implements Runnable
 {
 int theState = 0;

 public EvenCounter()
 {
 setText("Even");
 setFont(new Font("SansSerif", Font.BOLD, 32));
 setEditable(false);
 }

 public void run()
 {
 while (true)
 {
 update();
 }
 }

 private synchronized void update()
 {
 theState += 1;
 try
 {
 Thread.sleep(500);
 }
 catch (Exception ex) { ; }
 theState += 1;
 if (theState%2 == 1) setText("Odd");
 }
 }
 }

Synchronizing the update operation makes the operation atomic, which prevents the data
corruption of race conditions (see Figure 8.5). No other thread can access the state
variable during the interval between the increments. If a thread attempts such access, the
Java virtual machine puts the thread on a waiting list so that it can take its turn when the
first thread exits the synchronized method.

 Figure 8.5: Safe threads avoid corrupting data.

 Liveness (Deadlocks)

Altogether too often, the solution to one problem leads one to the embrace of another
problem. Synchronized methods are not bad, but a program that holds multiple locks
(due to concurrently executing multiple synchronized methods) is subject to a

 - 146 -

phenomenon known as deadlock. A simple example of a non–software-related deadlock
occurs when you’re waiting for a friend to call you while your friend is waiting for you to
call him. When a software deadlock occurs, threads cannot execute, and the program
appears to hang.

Listing 8.6 shows the Deadlock class, which loosely illustrates Dijkstra’s Dining
Philosopher’s problem (Dijkstra is a computer scientist famous for his work in concurrent
systems and program correctness). The program uses synchronized statements merely
to provide examples of their use; it could as easily have been written using synchronized
methods. Either mechanism gives rise to the same problem.

 LISTING 8.6 Deadlock.java —A PROGRAM THAT DEADLOCKS

 import java.applet.*;
 import java.awt.*;

 public class Deadlock extends Applet
 {
 String thePasta = "Pasta";
 String theFork = "Fork";
 Counter theCounter1 = new Counter("Philosopher #1",
 thePasta, theFork);
 Counter theCounter2 = new Counter("Philosopher #2",
 theFork, thePasta);

 public void init()
 {
 setLayout(new GridLayout(1, 0));
 add(theCounter1);
 add(theCounter2);
 Thread t1 = new Thread(theCounter1);
 Thread t2 = new Thread(theCounter2);
 t1.start();
 t2.start();
 }

 class Counter extends TextField implements Runnable
 {
 int theState = 0;
 String theName;
 String theResource1, theResource2;

 public Counter(String name, String res1, String res2)
 {
 theName = name;
 theResource1 = res1;
 theResource2 = res2;
 setFont(new Font("SansSerif", Font.BOLD, 32));
 setEditable(false);
 }

 public void sleep()
 {
 try

 - 147 -

 {
 Thread.sleep(2000);
 }
 catch (Exception ex) { ; }
 }

 public void run()
 {
 while (true)
 {
 Loop1:
 while (true)
 {
 synchronized (theResource1)
 {
 System.out.println(theName +
 " acquired " +
 theResource1);
 sleep();
 while (true)
 {
 synchronized (theResource2)
 {
 System.out.println(theName +
 " acquired " +
 theResource2);
 theState += 1;
 break Loop1;
 }
 }
 }
 }
 setText("" + theState);
 sleep();
 }
 }
 }
 }

The synchronized statement uses a busy flag associated with each object. Unless a
running thread can obtain exclusive access to the object named in the synchronized
statement (as indicated by the object’s busy flag), it skips the statement body. If it can
obtain exclusive access, it sets the busy flag to exclude other threads and then executes
the statement body. It tests and sets the busy flag atomically; therefore, race conditions
are excluded. Because the synchronized statement skips its body when it cannot acquire
exclusive access, it’s usually executed within a loop that causes it to continue trying until
access is acquired. Although this sample program doesn’t do so, it’s customary to invoke
sleep at the bottom of the loop so that the loop doesn’t consume too much CPU time.

The Counter inner class of the Deadlock class performs the familiar task of updating
a counter. However, it updates the counter only after acquiring exclusive access to each
of two objects: one representing pasta, and the other representing a fork. To understand
what’s going on, picture two philosophers seated opposite one another at a dining table.
Each has one hand tied behind his back. On the table between them is a plate of pasta
and a fork. If one grabs the fork and the other grabs the pasta, neither can eat: Deadlock

 - 148 -

has occurred. Run the program for yourself and you’ll see that it hangs, usually before
updating the counter a single time. (Again, our results are based on JDK 1.1.6 and
Microsoft Windows 95. Your experience may vary.)

The Deadlock class instantiates two Counter objects—one that first grabs the pasta
and then the fork, and another that first grabs the fork and then the pasta. The result:
deadlock. Study the loops within the Counter class for a bit. They may seem complex
at first, but you’ll soon figure out that the outer loop acquires access to the first resource,
and the inner loop acquires access to the second resource. A labeled break within the
inner loop escapes both loops when access to both resources is achieved.

How can you avoid this deadlock? Easily: The NoDeadlock sample program on this
book’s CD-ROM shows how. You simply cause both threads to access their resources in
the same order. Change the lines

 Counter theCounter1 = new Counter("Philosopher #1",
 thePasta, theFork);
 Counter theCounter2 = new Counter("Philosopher #2",
 theFork, thePasta);

 to read

 Counter theCounter1 = new Counter("Philosopher #1",
 theFork, thePasta);
 Counter theCounter2 = new Counter("Philosopher #2",
 theFork, thePasta);

Now, both philosophers first attempt to grab the fork: One loses and one wins. The one
who wins now grabs the pasta, eats his fill, and relinquishes the fork and pasta. Again,
the philosophers compete to grab the fork and pasta. However, one philosopher is as
likely to win the contest as the other. Therefore, over time, each eats his fill of pasta. No
deadlock results as long as all threads access resources in the same order.

You should avoid nested synchronized statements, as well as nested calls to
synchronized methods, when you can. However, when you must acquire multiple
resources, you should acquire them in a consistent order. That way, you’ll avoid
deadlock.

Java provides three methods— wait , notify, and notifyAll—that provide still more
control over synchronization than synchronized methods and statements, but these
methods are more complicated than the techniques we’ve covered here. Synchronized
methods and statements should prove adequate for most of your distributed computing
needs. However, if you need to squeeze every ounce of performance from a program, you
should consult the JDK documentation that explains these methods.

FROM HERE

This chapter was designed to expand your knowledge of threads, an aspect of Java that
many programmers fail to understand and appreciate, and therefore fail to apply. As
you’ve learned, Java’s capabilities for creating and managing threads set it apart from
other popular languages, particularly for server development. Related chapters include
the following:

 • Chapter 9, “Java Serialization and Beans,” which presents serialization and Java

Beans, additional important topics that are unfamiliar to many Java programmers.

 • Chapter 13, “Sockets,” which applies the principles explained in this chapter, showing

how threads can be used to improve the performance of Java-based servers.

 - 149 -

Chapter 9: JAVA Serialization and Beans

 Overview

People have long wondered how what they eat affects their health. One of the first
modern companies to capitalize on this concern was the Kellogg Company, founded in
1900 by Dr. John Kellogg and his brother, W. K. Kellogg, who jointly developed a way to
make flakes of corn, wheat, and other grains that patients at Dr. Kellogg’s sanitarium
enjoyed as a breakfast food. A sanitarium patient, C. W. Post, later founded a rival cereal
company.

More recently, Francis Moore Lappe wrote Diet for a Small Plant, which presents the
personal and social advantages of a diet based largely on beans and grains. According to
Lappe, the world could easily sustain its present population and more if nations ceased
squandering their resources on meat-based agriculture.

This chapter promotes a healthy diet for Java programmers. In homage to the Kellogg
brothers, we’ll take up serialization. Also, in homage to Ms. Lappe, we’ll investigate the
advantages of Java Beans. In this chapter you learn:

 • How to use serialization to store and retrieve objects.

 Writing objects to a file presents some subtle complications. However, Java’s

serialization facility makes object persistence easy to achieve.

 • How to use Java archive files (JARs) to store classes, objects, and data files.

It’s often more convenient and even more efficient to store classes, objects, and data
in a single file. Java’s jar tool lets you pack files into a JAR that can be used by
appletviewer and most browsers.

 • How to use Java Beans to establish runtime connections among components.

Java Beans let your program decide at runtime what messages should go to what
objects. By delaying the binding of message senders to message receivers, you
increase your program’s flexibility. Java Beans are an important tool for builders and
users of reusable components.

 SERIALIZATION

Ordinary objects lead a risky life. An object’s existence can be blotted out in a twinkling of
an eye by a power failure or system malfunction. Sure, when computing service is
restored you can create new objects, but your newborn objects probably won’t have the
same state as those that existed before the failure. If they contained important data, that
data has been lost.

Though they face risk of oblivion at any moment, ordinary objects lead dull and
uninteresting lives: They don’t get out much, spending all their time hanging with the
same small clique. Ordinary objects inhabit a single Java virtual machine and cannot be
transported (or transport themselves) from one system to another. They spend their
existence trapped within a system, exchanging data primarily with fellow objects of their
host Java virtual machine.

However, Java’s serialization facility lets you create persistent objects that can live in a
state of hibernation when computing ceases and can be awakened to thrive in any host
Java virtual machine, not merely their “hometown.” Serialization is so simple to use that
your objects need never suffer untimely death or boredom: They can easily save their
state to disk and travel the computing universe.

 - 150 -

 Persistence

Persistent objects are often described as frozen objects that can be reconstituted at the
point of need. Granted, if you have no bucket, it’s easier to transport an ice cube than a
pint of water. What’s more, frozen implies immobile, which correctly describes the
hibernative state of a stored persistent object. However, frozen also carries negative
connotations we’d prefer not to associate with persistent objects.

Persistent objects might be better described as dehydrated. An ordinary object exists,
along with its class, in a Java virtual machine. In this state, the class and the object are
tightly bound together. For example, when the object receives a message, it consults its
class to determine the method statements it should execute. This architecture allows a
single copy of the method, stored within the class, to be available to many objects,
making efficient use of potentially scarce system memory.

A class, of course, is persistent. It can exist as a .class file that can be stored on disk
(or other permanent media) and copied from one system to another. Java’s serialization
facility confers a similar capability on objects. Using it, you can write an object’s state to a
file and subsequently reconstitute the object by reading the file. Just as dehydrated foods
are not palatable without water, you cannot use a stored object without its .class file,
which must be available when the object is reconstituted.

 The Serializable Interface

Without Java’s serialization facility, you’d find it difficult to create persistent objects. Most
objects contain nonprimitive fields—that is, fields that refer to other objects. Java virtual
machines implement such references as handles, which identify objects by their location
within an object table maintained by the Java virtual machine. If you naively copy the
fields of an object that contains nonprimitive fields to a disk file, you accomplish little. You
can’t use the file to reconstitute the object in a new Java virtual machine, because the
object’s nonprimitive fields no longer refer to the proper locations within the object table.
Instead, an object and the objects it references must be saved and reconstituted as a
unit.

 Java’s serialization facility solves this and other problems of serialization. It includes two

main components:

 • The Serializable interface

 • Special java.io classes that let you read and write objects

The distinguishing mark of a persistent object is that it implements the Serializable
interface. For example, the header of the Kellogg class could specify that Kellogg
objects are serializable, like this:

 public class Kellogg implements Serializable

Generally, when you implement an interface, you must be concerned with implementing
the methods it specifies. However, the Serializable interface is a null interface. It
specifies no methods; therefore, an implementing class doesn’t need to implement any
particular methods. When you specify that a class implements Serializable, you’re
simply marking the class as eligible for processing by serialization methods. When you
request that an object be written or read, the serialization facility inspects the object’s
class to determine whether the class implements Serializable. If it does, the
serialization facility performs the requested operation; otherwise, it throws an exception.
When you specify that a class implements Serializable, you give the serialization
facility permission to read or write its objects.

 - 151 -

The java.io package provides two classes— ObjectInputStream and
ObjectOutputStream —used to read and write objects. We didn’t present the
java.io package in Chapter 7, “Java Overview,” because its capabilities are extensive,
requiring many pages of explanation. However, the java.io package provides the
same basic input/output functions included in most programming languages. Assuming
you’ve written input/output programs in some language, you’ll have little trouble following
a sample program. Bear in mind that the java.io package provides a lot of power
beyond what’s demonstrated here. If you’re interested in more sophisticated input/output
functions, you should consult the JDK documentation or a Java textbook.

 The StoreObject Applet

Figure 9.1 shows the StoreObject applet, which lets you write an object to disk. You
should run the applet for yourself using the files on the CD-ROM. Type a message into
the text box and then click the Store button. The applet creates a disk file named temp
that contains the state of the TextField object, including the text you typed. You can
retrieve the text by running the RetrieveObject applet, which you’ll meet momentarily.
First, let’s examine how the StoreObject applet works.

 Figure 9.1: The StoreObject applet lets you store an object.

Listing 9.1 shows the source code of the StoreObject applet. As you can see, the applet
includes two fields: a TextField that lets the user type a message and a Button that
lets the user tell the applet to store the TextField. The applet’s init method contains
no surprises. It sets up a layout manager for the applet window, places the user interface
components, and sets up an ActionListener for the Button.

 LISTING 9.1 StoreObject.java —STORING AN OBJECT

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.io.*;

 public class StoreObject extends Applet
 {
 TextField theMessage = new TextField();
 Button theStoreButton = new Button("Store");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theMessage, BorderLayout.CENTER);
 add(theStoreButton, BorderLayout.SOUTH);
 theStoreButton.addActionListener(new StoreHandler());
 }

 class StoreHandler implements ActionListener
 {

 - 152 -

 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 FileOutputStream out = new
FileOutputStream("temp");

 ObjectOutputStream sout = new
ObjectOutputStream(out);

 sout.writeObject(theMessage);
 sout.close();
 System.out.println("Stored");
 }
 catch (IOException ex) { ; }
 }
 }
 }

The interesting part of the applet is the inner class, StoreHandler, which functions as
the ActionListener for the Button. Its actionPerformed method writes the
TextField to disk, using an instance of ObjectOutputStream . Here are the steps it
follows:

1.

Create a FileOutputStream object bound to a disk file named temp . Java’s
FileOutputStream class represents a file open for output. The constructor lets
you specify the name of the file. If the file does not exist, the FileOutputStream
class creates it.

2.

Create an ObjectOutputStream object bound to the FileOutputStream
object. The FileOutputStream class includes no methods for writing objects.
However, it’s easy to create an ObjectOutputStream , which can write objects.
You simply pass a reference to a FileOutputStream to the
ObjectOutputStream constructor.

3.

Write the TextField to the ObjectOutputStream . Writing an object to an
ObjectOutputStream is child’s play. Simply pass a reference to the object as an
argument of the writeObject method.

Although StoreObject writes only a single object to its ObjectOutputStream ,
your programs can write as many objects as you like. However, it’s up to the program
that reads the file to determine when to stop reading. You need to write some control
information that helps the reading program determine what to do next. You’ll see how
to do this in a moment.

4.

Close the ObjectOutputStream . When you’re done writing objects to an
ObjectOutputStream , you should close it. Most operating systems allow only a
limited number of open files; file handles are a scarce resource that should be
returned to the operating system when no longer needed. Moreover, closing a file
ensures that its data is written from memory. Until a file is closed, termination of the
program may leave the file in an incomplete state.

5.

Display a message announcing completion of the operation. If you’re using
appletviewer, you’ll see the message in the DOS window you used to launch
appletviewer. Browsers display System.out messages in various ways. Consult
your browser documentation for details.

 The processing steps are enclosed within a try-catch block because input/output

operations sometimes fail. For example, a disk may be full and unable to accommodate

 - 153 -

additional data. When an input/output error occurs, Java throws an IOException. The
catch intercepts this exception. Of course, its response is relatively naive: It does
nothing at all. This seems appropriate for a demonstration; however, it’s seldom
appropriate for a production program. A catch within a production program would likely
include statements that report the exception or attempt to recover from it.

As mentioned, sometimes you may want to write control information to an
ObjectOutputStream along with objects. By creating your ObjectOutputStream
from a DataOutputStream , rather than a FileOutputStream , your
ObjectOutputStream will inherit useful methods:

 FileOutputStream out = new FileOutputStream("temp");
 DataOutputStream dout = new DataOutputStream(out);
 ObjectOutputStream sout = new ObjectOutputStream(dout);

Table 9.1 shows some of the most useful methods of DataOutputStream . These
methods write data using a platform-independent binary format: Files written using them
can be read on any Java platform.

 TABLE 9.1 KEY DataOutputStream METHODS

Method

Function

write(int b)

Writes a single byte

writeBytes(String
s)

Writes a String as a series of bytes

writeChar(int c)

Writes a Unicode character

writeChars(String
s)

Writes a String as a series of Unicode characters

writeDouble(double
d)

Writes a double-precision floating-point number

writeFloat(float f)

Writes a single-precision floating-point number

writeInt(int n)

Writes a 32-bit integer

writeLong(long l)

Writes a 64-bit integer

 The RetrieveObject Applet

Figure 9.2 shows the RetrieveObject applet, which lets you retrieve an object stored by
the StoreObject applet. The files needed to run RetrieveObject are on the CD-ROM. To
operate the applet, click Retrieve. The applet will read the stored TextField object and
add it to the applet window, where you can view it.

 - 154 -

 Figure 9.2: The RetrieveObject applet lets you retrieve a stored object.

Listing 9.2 shows the source code of the RetrieveObject applet. As with the StoreObject
applet, the important processing takes place in the actionPerformed method of the
applet’s inner class.

 LISTING 9.2 RetrieveObject.java —RETRIEVING AN OBJECT

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.io.*;

 public class RetrieveObject extends Applet
 {
 Button theRetrieveButton = new Button("Retrieve");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theRetrieveButton, BorderLayout.NORTH);
 theRetrieveButton.addActionListener(new
RetrieveHandler());

 }

 class RetrieveHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 FileInputStream in = new FileInputStream("temp");
 ObjectInputStream sin = new ObjectInputStream(in);
 Object c = sin.readObject();
 sin.close();
 if (c instanceof Component)
 {
 add((Component) c, BorderLayout.CENTER);
 invalidate();
 validate();
 System.out.println("Retrieved");
 }
 }
 // Possible IOException or ClassNotFoundException
 catch (Exception ex)
 {

 - 155 -

 System.err.println(ex);
 }
 }
 }
 }

 Here are the processing steps used to restore the TextField:

 1. Create a FileInputStream bound to the disk file temp.

 2. Create an ObjectInputStream bound to the FileInputStream .

 3. Read the object and store it in a program variable, c.

4.

Close the ObjectInputStream . Because the ObjectInputStream and
FileInputStream are bound, the close method also closes the
FileInputStream .

5.

Check whether the object has the expected type in order to avoid a possible
ClassCastException in the following step. The object should be a TextField,
but the applet expects nothing more of an object than the ability to be added to an
applet window. Consequently, the applet checks for membership in the Component
class, which is an ancestor class of TextField. Any Component can be added to
an applet window.

6.

If the object has the proper type, add it to the applet window and adjust the window
layout. The invalidate and validate message pair causes the applet’s layout
manager to adjust the layout of the applet to accommodate the new Component.

 7. Display a message announcing successful completion.

As in the StoreObject applet, the try-catch block guards against an IOException.
Here, the catch uses a println to display a message when an IOException is
thrown. Again, this response seems appropriate for a demonstration program; application
programs normally require more sophisticated error handling.

You can use the DataInputStream class to read primitive data written to a disk file.
Create the DataInputStream instance in much the same way as a
DataOutputStream :

 FileInputStream out = new FileInputStream("temp");
 DataInputStream dout = new DataInputStream(out);
 ObjectInputStream sout = new ObjectInputStream(dout);

You can use the methods shown in Table 9.2 to read primitive data contained in a
DataInputStream . When you’re reading multiple values from a stream, you may
encounter the EOFException, a subclass of IOException that denotes reading past
the end of a file.

 TABLE 9.2 KEY DataInputStream METHODS

Method

Function

 - 156 -

int readByte()

Reads a byte

char readChar()

Reads a Unicode character

double
readDouble()

Reads a double-precision floating-point number

float
readFloat()

Reads a single-precision floating-point number

int readInt()

Reads a 32-bit integer

long readLong()

Reads a 64-bit integer

 Recursive Serialization and transient Fields

Java’s serialization facility automatically handles the complications that arise when one
object refers to another. When an object refers to other objects, Java serializes them
recursively so that the entire community of objects can be reconstituted. For example, if
you ask Java to serialize object x, which refers to objects a and b, Java will serialize x, a,
and b.

Sometimes you don’t need to store every member of the community. For example, some
objects may be redundant: It may be possible to recreate them by using the values of the
other objects’ fields. It’s wasteful to write such redundant objects to the file. By specifying
the keyword transient in the declaration of a field, you notify Java that it need not
serialize the field. When the stored object is recreated, any transient fields receive the
default initial value appropriate to their type. If you prefer some other value, you must
assign it after recreating the object.

JAVA ARCHIVES (JARS)

When transferring files over a network, establishing the connection to transfer a file often
requires significant time. By bundling files together, file transfer can be expedited. Java’s
archive files (JARs) meet this need.

The jar utility, patterned after the UNIX tar utility, creates and manipulates JARs. For
example, to bundle all the class files in the current directory and the file named temp
within a JAR named MyJar.jar, type this:

 jar cf MyJar.jar *.class temp

 Assuming you receive no error messages, you can then safely remove the archived files:

 del *.class
 del temp

 To retrieve the files, type this:

 jar xf MyJar.jar

 - 157 -

 Table 9.3 shows the parameters of the jar utility. You generally use the f parameter
and either the c, t, or x parameter.

 TABLE 9.3 PARAMETERS OF THE jar UTILITY

Parameter

Function

c

Creates a new JAR.

t

Lists the contents of a JAR.

x

Extracts the files within a JAR.

f

Used with the c, t, or x parameter to specify the filename.
Otherwise, input is read from the standard input stream.

v

Specifies verbose output.

Java applets can be bundled with their resources (sound clips, images, data files, and so
on) in a JAR file using a special HTML tag. Browsers transparently access images and
sound clips from JARs. Programs that use data files contained in JARs must be specially
written. Listing 9.3 shows the RetrieveJar applet, which demonstrates the technique.

 LISTING 9.3 RetrieveJar.java —RETRIEVING A RESOURCE FROM A JAR FILE

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.io.*;

 public class RetrieveJar extends Applet
 {
 Button theRetrieveButton = new Button("Retrieve");

 public void init()
 {
 setLayout(new BorderLayout());
 add(theRetrieveButton, BorderLayout.NORTH);
 theRetrieveButton.addActionListener(new
RetrieveHandler());

 }

 class RetrieveHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {

 - 158 -

 ObjectInputStream in = new ObjectInputStream(
 getClass().getResourceAsStream("temp"));
 Object c = in.readObject();
 in.close();
 if (c instanceof Component)
 {
 add((Component) c, BorderLayout.CENTER);
 invalidate();
 validate();
 System.out.println("Retrieved");
 }
 }
 // Possible IOException or ClassNotFoundException
 catch (Exception ex)
 {
 System.err.println(ex);
 }
 }
 }
 }

The program closely follows the model of the RetrieveObject applet. The important line is
the one that instantiates the ObjectInputStream , which has been modified as
follows:

 ObjectInputStream in = new ObjectInputStream(
 getClass().getResourceAsStream("temp"));

Java classes are loaded by a special object known as the ClassLoader. This line uses
the ClassLoader that loaded the applet to access the resource held in the file named
temp, which contains the stored object. The remainder of the program works as before.

To run the RetrieveObject applet, use the HTML shown in Listing 9.4. The ARCHIVE tag
tells the browser that the applet’s classes and resources are located in the JAR file
MyJar.jar. Applets stored in a JAR can be digitally signed by using the javakey utility. A
user can grant digitally signed applets permission to perform a variety of operations that
unsigned applets are not allowed to perform. Chapter 10, “Security,” explains this
mechanism further.

 LISTING 9.4 RetrieveObject.html —RUNNING AN APPLET FROM A JAR FILE

 <APPLET CODE=RetrieveJar ARCHIVE=MyJar.jar WIDTH=400 HEIGHT=50>
 </APPLET>

 JAVA BEANS

Software is time consuming and expensive to develop; therefore, one of the most
soughtafter benefits of object-oriented software development is the ability to reuse
software. Software reuse aims to exploit the common functionality that typical software
systems share. If this functionality can be isolated into reusable components,
organizations can construct systems quickly and cheaply.

Microsoft’s Visual Basic capitalized on this vision, inaugurating an extensive market for
software components. Visual Basic programmers often write complete systems
containing almost no code. They design a user interface, select and place ActiveX
controls (components), and add a little code as glue to integrate the user interface with

 - 159 -

the controls.

If Java is to compete with Visual Basic as a vehicle for high productivity software
development, it must provide an analogous software component model. Java Beans fill
this role. They’re reusable software components you can place in the window of a Java
program, including components such as spinners, text boxes for date entry, and
miniature spreadsheets. Java IDEs, such as Symantec’s Visual Caf´e for Java and
Inprise’s JBuilder, allow a programmer to simply drag and drop a Java Bean into a
program. The programmer can customize the Bean by using a property sheet to set its
properties, working in much the same way as a Visual Basic programmer. Each Bean
includes meta-information that tells the IDE what properties and methods the Bean
provides.

 Toolsmiths, Programmers, and Users

 Three people work with any Bean:

 • The toolsmith, who builds the IDE or the Bean.

 • The programmer, who writes a program that incorporates the Bean.

 • The user, who operates the application the programmer wrote.

Each of the three has a unique perspective. The toolsmith must understand how Beans
describe themselves and how they can be integrated with an IDE. The programmer must
understand Bean properties and methods but can rely on the work of the toolsmith to
ensure that the Bean properly installs itself within his IDE. The user doesn’t even need to
be aware that the Bean exists as a reusable component; all the user cares about is that
the program responds properly to every keystroke or mouse gesture.

This section takes the middle road, somewhere between the concerns of the toolsmith
and the programmer. You’ll learn enough about Bean internals to develop a sound model
of how Beans work. However, the main purpose of the section is to equip you to program
using Beans. When all goes well, it’s all but trivial to program using a Bean: You simply
drag the Bean, drop it into a window, set its properties, and forget it. However, as you
know, all does not always go well. You need to know enough about Beans to debug the
code your IDE generates so that you can find and fix problems. This section will give you
the necessary background knowledge.

 Properties, Methods, and Events

Java’s messaging infrastructure acts like a network of highways connecting your
program's objects as a cooperative community. However, you may sometimes have the
urge to take your Chevy Blazer four-wheeling offroad, exploring connections. As a matter
of necessity, Beans are able to do exactly that.

AWT components notify other objects of user interaction by firing events. Each type of
component fires events that correspond to the types of interactions it supports: A Button
fires an ActionEvent when the user clicks it, and a Scrollbar fires an
AdjustEvent when the user drags its thumb.

Beans must be able to inform an IDE of the properties and methods they possess as well
as the data type of each property, method argument, and method return type. Beans
solve this problem using the Java reflection API and a special API called java.beans.

Beans come in a variety of types, each type providing a distinct service. Consequently,
they cannot use the ordinary AWT messaging system. Beans require a flexible
messaging infrastructure, one that does not limit the communication between a Bean and

 - 160 -

its clients (that is, the objects that exchange messages with it). Beans solve this problem
by using the publish/subscribe design pattern.

 Let’s investigate how Beans use the Java APIs and the publish/subscribe design pattern.

Then we’ll look at some sample programs that use Beans.

 Bean Properties

Like other objects, a Bean has fields and methods. Of course, most Beans don’t directly
expose their fields. Instead, Beans provide properties that correspond to their
encapsulated characteristics. Every Bean property has corresponding get and set
methods. For example, suppose a Bean provides a property named girth. Such a Bean
would have a getGirth method that allows you to access the value of the girth
property and a setGirth method that allows you to set its value.

Java IDEs discover Bean properties in two ways. First, the Java reflection API lets an
object examine another object to learn what methods it exposes. The details of the
reflection API are relevant to the toolsmith, not the programmer, so we’ll skip the details.

What matters is that the IDE can identify every get and set method of a Bean by
simply reflecting it. The reflection API also provides the argument and return data types.
Therefore, the IDE is easily able to determine the properties of a Bean.

The second way to discover Bean properties lets a toolsmith tell a programmer more than
the name and data type of each Bean property. The toolsmith can design a BeanInfo
object that describes the Bean. When an IDE examines a Bean, it looks for the Bean’s
BeanInfo object. If it finds one, it uses the information in the BeanInfo object to build
a description of the Bean.

 The Publish/Subscribe Design Pattern

Once an IDE knows the properties of a Bean, it must integrate the Bean within the user
interface. The publish/subscribe design pattern provides the necessary glue.
Publish/subscribe works much like the familiar AWT message paradigm. When a Bean
property changes, the Bean fires an event. Of course, Beans don’t fire events to every
program object: In order to receive events, a client object must first subscribe.

Figure 9.3 shows the ColorSelector applet, which demonstrates Bean operation. The
applet includes a text box, a scrollbar, and a color swatch. Entering a number (0–255) in
the text box changes the color of the swatch. Similarly, manipulating the scrollbar
changes the color of the swatch.

 Figure 9.3: Objects of the ColorSelector program communicate via property

change events.

The text box and scrollbar are Beans that fire events when they’re manipulated. The
scrollbar listens to events fired by the text box and moves its thumb to correspond to the
value in the text box. Similarly, the text box listens to the scrollbar and updates its value
to correspond to the position of the scrollbar’s thumb. The color swatch is an ordinary
object, not a Bean. It listens to the text box and the scrollbar and updates its background
color whenever either fires an event.

 Listing 9.5 shows the source code of the ColorSelector applet. The applet includes fields

 - 161 -

that represent the text box, scrollbar, and color swatch. Its init method places them in
the applet window and uses the addPropertyChangeListener message to
subscribe each to the proper events. Inner classes do the rest.

 LISTING 9.5 ColorSelector.java —COMMUNICATING VIA PROPERTY CHANGE

EVENTS

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.beans.*;

 public class ColorSelector extends Applet
 {
 TextSelector theText = new TextSelector();
 ScrollSelector theScroll = new ScrollSelector();
 ColorCanvas theCanvas = new ColorCanvas();

 public void init()
 {
 setLayout(new GridLayout(0, 1));
 Panel p = new Panel();
 p.add(new Label("Color: "));
 p.add(theText);
 add(p);
 add(theScroll);
 add(theCanvas);
 theText.addPropertyChangeListener(theScroll);
 theText.addPropertyChangeListener(theCanvas);
 theScroll.addPropertyChangeListener(theText);
 theScroll.addPropertyChangeListener(theCanvas);
 }

 class TextSelector extends TextField
 implements ActionListener, PropertyChangeListener
 {
 PropertyChangeSupport theSupport = new
PropertyChangeSupport(this);

 Integer theOldColor = null;

 public TextSelector()
 {
 super(3);
 addActionListener(this);
 }

 public int getColor()
 {
 return Integer.parseInt(getText());
 }

 public void setColor(int color)
 {

 - 162 -

 setText("" ++ color);
 Integer newcolor = new Integer(color);
 theSupport.firePropertyChange("Color", theOldColor,
newcolor);

 theOldColor = newcolor;

 }

 public void actionPerformed(ActionEvent evt)
 {
 setColor(getColor());
 }

 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 setText("" ++ ((Integer) value).intValue());
 }
 }

 public void addPropertyChangeListener(PropertyChangeListener q)
 {
 theSupport.addPropertyChangeListener(q);
 }

 public void removePropertyChangeListener(PropertyChangeListener
q)

 {
 theSupport.removePropertyChangeListener(q);
 }
 }

 class ScrollSelector extends Scrollbar
 implements AdjustmentListener, PropertyChangeListener
 {
 PropertyChangeSupport theSupport = new
PropertyChangeSupport(this);

 Integer theOldColor = null;

 public ScrollSelector()
 {
 super(Scrollbar.HORIZONTAL);
 setMinimum(0);
 setMaximum(260);
 setValue(255);
 setVisibleAmount(5);
 addAdjustmentListener(this);
 }

 public int getColor()

 - 163 -

 {
 return getValue();
 }

 public void setColor(int color)
 {
 setValue(color);
 Integer newcolor = new Integer(color);
 theSupport.firePropertyChange("Color", theOldColor,
newcolor);

 theOldColor = newcolor;
 }

 public void adjustmentValueChanged(AdjustmentEvent evt)
 {
 setColor(getColor());
 }

 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 setValue(((Integer) value).intValue());
 }
 }

 public void
addPropertyChangeListener(PropertyChangeListener q)

 {
 theSupport.addPropertyChangeListener(q);
 }

 public void
removePropertyChangeListener(PropertyChangeListener q)

 {
 theSupport.removePropertyChangeListener(q);
 }
 }

 class ColorCanvas extends Canvas implements
PropertyChangeListener

 {
 public void propertyChange(PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 int red = ((Integer) value).intValue();
 setBackground(new Color(red, 0, 0));
 }
 }

 - 164 -

 }
 }

The TextSelector class models the text box. Although you may see nothing out of the
ordinary, TextSelector is a Bean. It contains a PropertyChangeSupport object
that helps it manage event subscriptions and get / methods for a property named
Color. Color is an int that represents the amount of red (0–255) in an RGB color
value. The class delegates addPropertyChangeListener and
removePropertyChangeListener messages to its PropertyChangeSupport
object.

Examine the setColor method. You’ll see that it sends the firePropertyChange
message to the PropertyChangeSupport object. That’s how client objects are
notified of changes to the Color property of TextSelector. The message has three
arguments: The first specifies the name of the property, the second specifies the old
value of the property, and the third specifies the new value of the property. The second
and third arguments must be objects; therefore, the int property value is wrapped
within an Integer.

Recall that the TextSelector listens for changes in the scrollbar’s properties. The
propertyChange method executes when the scrollbar is adjusted. The method
extracts the property name and the new property value from the
PropertyChangeEvent and appropriately updates the value of the text box.

If you examine the ScrollSelector and ColorCanvas classes, you’ll find they work
similarly. ScrollSelector simply handles the AdjustmentEvent of Scrollbar
rather than the ActionEvent of TextField, which is handled by TextSelector.
ColorCanvas is not a Bean. Therefore, it has no properties and fires no events.
However, it does receive PropertyChangeEvent s fired by the TextSelector and
ScrollSelector . In response, it updates its background color to an appropriate hue
of red.

 Constrained Properties

Beans can provide a more sophisticated type of property known as a constrained
property. When a constrained property changes, any listener can veto the change by
throwing an appropriate exception. Constrained properties are useful for implementing
validation mechanisms. When a programmer loads your Bean into a Java IDE, the
programmer can change the Bean’s properties. By establishing constrained properties,
you can prevent the programmer from specifying invalid values for the Bean’s properties.
Constrained properties can spare the programmer hours of debugging time when, for
example, he tries to set your Bean’s height property to a negative value.

The text box of the ColorSelector applet did not constrain its value. Of course, the only
valid values for the red component of an RGB value are 0–255. Figure 9.4 shows a
revised version of the ColorSelector applet, known as ChangeVetoer, that constrains the
Color property to valid values. If you type an invalid color value—such as 900—into the
text box, the applet ignores your color change request. If, on the other hand, you type a
valid color value—such as 255—into the text box, the applet adjusts the position of the
scrollbar and the color of the swatch to match your choice.

 - 165 -

 Figure 9.4: Listening objects can reject “vetoable” property change events.

Listing 9.6 shows the source code of the ChangeVetoer applet. Because changes to the
text box can be vetoed by the scrollbar, the applet subscribes the scrollbar to the text
box’s messages by using the addVetoableChangeListener message. You may
prefer to have the color swatch veto invalid changes to the text box or have both the color
swatch and the scrollbar do so. The change of the message sent to the scrollbar is the
only change to the applet’s init method.

 LISTING 9.6 ChangeVetoer.java —VETOING PROPERTY CHANGES

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.beans.*;

 public class ChangeVetoer extends Applet
 {
 TextSelector theText = new TextSelector();
 ScrollSelector theScroll = new ScrollSelector();
 ColorCanvas theCanvas = new ColorCanvas();

 public void init()
 {
 setLayout(new GridLayout(0, 1));
 Panel p = new Panel();
 p.add(new Label("Color: "));
 p.add(theText);
 add(p);
 add(theScroll);
 add(theCanvas);
 theText.addVetoableChangeListener(theScroll);

 theText.addPropertyChangeListener(theCanvas);
 theScroll.addPropertyChangeListener(theText);
 theScroll.addPropertyChangeListener(theCanvas);
 }

 class TextSelector extends TextField
 implements ActionListener, PropertyChangeListener
 {
 PropertyChangeSupport theSupport
 = new PropertyChangeSupport(this);
 VetoableChangeSupport theVetoableSupport
 = new VetoableChangeSupport(this);
 Integer theOldColor = null;

 public TextSelector()
 {
 super(3);
 addActionListener(this);

 - 166 -

 }

 public int getColor()
 {
 try
 {
 return Integer.parseInt(getText());
 }
 catch (NumberFormatException ex)
 {
 return 0;
 }
 }

 public void setColor(int color)
 {
 Integer newcolor = new Integer(color);
 try
 {
 theVetoableSupport.fireVetoableChange(
 "Color", theOldColor, newcolor);
 theSupport.firePropertyChange("Color",
 theOldColor, newcolor);
 setText("" ++ color);
 theOldColor = newcolor;
 }
 catch (PropertyVetoException ex)
 {
 if(theOldColor != null)
 setColor(theOldColor.intValue());
 }
 }

 public void actionPerformed(ActionEvent evt)
 {
 setColor(getColor());
 }

 public void propertyChange(
 PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 setText("" ++ ((Integer) value).intValue());
 }
 }

 public void addPropertyChangeListener(
 PropertyChangeListener q)
 {

 - 167 -

 theSupport.addPropertyChangeListener(q);
 }

 public void removePropertyChangeListener(
 PropertyChangeListener q)
 {
 theSupport.removePropertyChangeListener(q);
 }

 public void addVetoableChangeListener(
 VetoableChangeListener q)
 {
 theVetoableSupport.
 addVetoableChangeListener(q);
 }

 public void removeVetoableChangeListener(
 VetoableChangeListener q)
 {
 theVetoableSupport.
 removeVetoableChangeListener(q);
 }
 }

 class ScrollSelector extends Scrollbar
 implements AdjustmentListener,
 VetoableChangeListener
 {
 PropertyChangeSupport theSupport =
 new PropertyChangeSupport(this);
 Integer theOldColor = null;

 public ScrollSelector()
 {
 super(Scrollbar.HORIZONTAL);
 setMinimum(0);
 setMaximum(260);
 setValue(255);
 setVisibleAmount(5);
 addAdjustmentListener(this);
 }

 public int getColor()
 {
 return getValue();
 }

 public void setColor(int color)
 {
 setValue(color);
 Integer newcolor = new Integer(color);
 theSupport.firePropertyChange("Color",

 - 168 -

 theOldColor, newcolor);
 theOldColor = newcolor;
 }

 public void adjustmentValueChanged(
 AdjustmentEvent evt)
 {
 setColor(getColor());
 }

 public void vetoableChange(
 PropertyChangeEvent evt)
 throws PropertyVetoException
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 int n = ((Integer) value).intValue();
 if (n < 0 || n > 255)
 throw new PropertyVetoException(
 "Color out of range", evt);
 setValue(((Integer) value).intValue());
 }
 }

 public void addPropertyChangeListener(
 PropertyChangeListener q)
 {

 theSupport.addPropertyChangeListener(q);
 }

 public void removePropertyChangeListener(
 PropertyChangeListener q)
 {
 theSupport.removePropertyChangeListener(q);
 }
 }

 class ColorCanvas extends Canvas implements
 PropertyChangeListener
 {
 public void propertyChange(
 PropertyChangeEvent evt)
 {
 Object value = evt.getNewValue();
 if (evt.getPropertyName().equals("Color")
 && value instanceof Integer)
 {
 int red = ((Integer) value).intValue();
 setBackground(new Color(red, 0, 0));

 - 169 -

 }
 }
 }
 }

The TextSelector class is more thoroughly revised. It now includes two support
objects: one for VetoableChangeListener objects (such as the scrollbar) and one for
PropertyChangeListener objects (such as the color swatch). Its setColor method
now fires two events. The first is sent to listeners who may veto a change. The second is
sent to ordinary listeners. If a listener vetoes the change, the try-catch handles the
PropertyVetoException . Notice that the method does not send the
firePropertyChange message if an exception occurs.

You can easily follow the model of these sample programs to create your own simple
Beans. Moreover, you should now be able to understand the code your IDE generates
when you add a Bean to your program. This will prove handy when your programs—or the
Beans they contain—malfunction.

 FROM HERE

This chapter concludes your study of advanced Java facilities. To see Java’s serialization
facility in use, see Chapter 15, “Remote Method Invocation (RMI),” which explains how
serialization is important to Java distributed computing.

To study how Java Beans are being used to develop enterprise systems, see Chapter 17,
“Java Help, Java Mail, and Other Java APIs,” which describes key Java initiatives to
facilitate development of enterprise-scale Java systems.

 To see how JARs can be digitally signed, see Chapter 10, “Security,” which also explains

how signed applets can be granted broad privileges to access local resources.

Part III: Java’s Networking and Enterprise APIs

 Chapter List

 Chapter 10: Security

 Chapter 11: Relational Databases and Structured Query Language

(SQL)

 Chapter 12: Java Database Connectivity (JDBC)

 Chapter 13: Sockets

 Chapter 14: Socket-Based Implementation of the Airline

Reservation System

 Chapter 15: Remote Method Invocation (RMI)

 Chapter 16: RMI-Based Implementation of the Airline Reservation

System

 Chapter 17: Java Help, Java Mail, and Other Java APIs

 - 170 -

Chapter 10: Security

 Overview

Clifford Stoll’s book The Cuckoo’s Egg alerted the public to the danger posed by
computer hackers. Unfortunately, the danger is real and grows greater by the moment:
The ubiquitous Internet has greatly simplified the work of the would-be hacker, who no
longer needs to discover the phone number of a dial-in modem in order to connect to a
target system. If you implement systems that support remote access, you need a basic
understanding of computer security and familiarity with Java’s facilities for secure
computing. In this chapter you’ll learn:

 • How Java was designed to thwart viruses, hackers, and other security threats

 From the first, Java was designed to provide a safe and reliable computing vehicle,

immune to both casual and determined attacks or breaks in its security system.

 • How to use Java’s security tools to strike a balance between flexibility and security

When users can access only the resources they need, security is enhanced. However,
security comes at a price: A rigid security policy may hamper users’ productivity,
particularly if their needs change. Java lets you tailor a security policy that’s neither too
rigid nor too lax.

 • How to write programs that work with encrypted data

 The Java Cryptography Extension (JCE) lets you write programs that encrypt and

decrypt data using several popular algorithms.

 • How to write programs that work with public and private encryption keys

The java.security package of Java 1.2 includes classes and interfaces that let
you work with public key encryption so that you can securely share data over a
network.

Note

Most of the examples in this book are based on the Java 1.1 release.
However, Java 1.2 significantly changes and upgrades Java’s security
facilities. Consequently, this chapter focuses on Java 1.2 and presents
sample programs based on the Java 1.2 release. These programs were
written and tested using the beta 4 release of Java 1.2. They will not operate
correctly under Java 1.1.

At the time of this writing, the current release of the Java Cryptography Extension
(JCE) was early access release 2. The JCE API had not been frozen, so you
should consult the CD-ROM and the latest information available from Sun to
determine whether API changes affect the sample programs of this chapter. Also,
the U.S. government has placed export restrictions on cryptographic technology
that may prevent programmers outside the U.S. from obtaining the JCE. Consult
the Javasoft Web site for the latest information on availability of the JCE.

 SECURITY RISKS AND COUNTERMEASURES

When Sun introduced Java, the media fixated on Java applets. Netscape’s early
announcement of applet support within its Navigator browser excited almost everyone.
Downloading cross-platform executable content was big news. Much press coverage
focused on claims—some made by Sun and some made by others—that Java’s security
mechanisms were virtually impenetrable and that applets posed no risk to the
downloader.

 - 171 -

Soon, researchers began reporting successful breaches of Java security. Most attacks
exploited obscure code or design errors that affected only a single implementation of
Java, usually Netscape’s Navigator or Microsoft’s Internet Explorer. However, a few
attacks exposed weaknesses in the security model; the new security features of Java 1.2
address some of these.

 Fundamentally, attacks comprise four basic categories:

 • Attacks that modify code or data

 • Attacks that compromise confidentiality of information

 • Attacks that acquire so many system resources that they deny legitimate users access

to the resources (denial of service attacks)

 • Attacks that annoy or antagonize users

 Java’s security model is designed to prevent all such attacks.

JAVA’S SECURITY MODEL

 Java’s security model includes three main components:

 • The Byte Code Verifier, which examines the byte codes of a class before executing

them

 • The Class Loader, which restricts the classes that can be loaded into a Java virtual

machine

 • The Security Manager, which restricts access to potentially dangerous operations

By examining the byte codes of a class, the Byte Code Verifier can ensure that all byte
codes represent legal Java virtual machine operations, that the class never compromises
type safety of operands, that stack underflow and overflow cannot occur, and that the
class methods observe all access specifiers (, private, and protected). This
verification rules out many types of potential attacks.

Java’s Class Loader manages name spaces that prevent the programs running within a
Java virtual machine from interfering with one another. Even if programs use identical
class names, the Class Loader knows which class file each program should use. The
Class Loader also ensures that users cannot load system classes. This prevents a
spoofing attack wherein, for example, a user loads a system class that redefines the way
the Java virtual machine performs file input/output.

Java’s Security Manager controls access to critical system resources and operations. For
example, the Security Manager prevents an applet from loading a substitute Class Loader
that might inappropriately expand the applet’s capabilities. Similarly, the Security Manager
controls access to files. In Java 1.1, the Security Manager provided a sandbox in which
applets ran. The sandbox restricted applets’ access in many ways. For example, applets
were not allowed to access files on the local system or open network connections to hosts
other than the server that transmitted them. Java 1.2 provides a much more flexible
Security Manager that allows you to define your own sandbox, which can be as rigid or
flexible as you choose. Moreover, you can define a set of sandboxes, applying a different
sandbox to each program. The next section explains how the new Security Manager works.

JAVA 1.2 SECURITY POLICIES

 - 172 -

The Java 1.2 Security Manager lets you establish policies that govern access to system
resources and operations. Under Microsoft Windows, these policies are stored in the file
java.policy, which resides in the lib subdirectory of the standard JDK installation. The file
contains one or more grant commands, which have the following syntax:

 grant [SignedBy "signer_names"] [, CodeBase "URL"] {{
 permission permission_class_name ["target name"]
 [, " action"] [, SignedBy "signer names"];
 permission ...
 };

Each grant command specifies the permissions granted to a class or set of classes.
The first SignedBy clause maps to a set of public keys that identify code signers. Java
uses these keys to verify the authenticity of the classes. If you omit the SignedBy
clause, Java does not check whether the specified class is signed or not.

You specify classes by using the CodeBase clause, which contains a URL. Typically,
the URL specifies the http or file protocol. The CodeBase clause is optional: If you
omit the CodeBase clause, the grant applies to every class. Rather than specify the
URL of a class, you can specify the URL of a directory, in which case the grant applies
to every class stored in the specified directory. For example, the default Microsoft
Windows java.policy file contains the following entry:

 grant codebase "file:${java.home}/lib/ext" {{
 permission java.security.AllPermission;

 This grant applies to classes that reside in the /lib/ext subdirectory of the standard JDK

(represented by the Java system property java.home).

You specify permissions by naming the built-in Java class that enforces the policy. Table
10.1 lists some of the most important permission classes. By subclassing Permission,
you can create your own permission classes and use them to create and enforce even
more flexible security policies. Consult the JDK documentation for details.

 TABLE 10.1 COMMONLY USED PERMISSION CLASSES

Class

Function

java.io.
FilePermission

Controls access to files

java.io.
SocketPermission

Controls access to sockets

java.lang.
RuntimePermission

Controls access to threads and other system
resources and operations

java.util.
PropertyPermission

Controls access to properties

 - 173 -

The target and action subclauses let you specify permissions more precisely. Each
permission class determines the syntax and semantics of its target and action
subclauses, which vary from one permission class to another. For example, the
java.io.FilePermission class lets you specify a path in the target subclause
and an operation (“read,” “write,” “execute,” or “delete”) in the action subclause. The
JDK documentation for each permission class describes the class’s target and
action subclauses.

The second SignedBy clause specifies the signer of the permissions class. If Java
cannot verify the signature of the permission class, the grant of that permission has no
effect. The second SignedBy clause thwarts spoofing attacks; it should be used
whenever the permission class does not reside within the Java runtime installation.

 The following grant command gives local applets (and applications) all permissions,

approximating their behavior under Java 1.1:

 grant codebase "file:*" {{
 permission java.security.AllPermission;

 Of course, you may prefer a more rigid policy, particularly if others are able to load

applets onto your computer. To allow local classes to access files, use this command:

 grant codebase "file:*" {{
 permission java.io.FilePermission "<<ALL FILES>>",
 "read,write,execute,delete";

 You can limit local classes to accessing files in a particular directory. Here’s an example:

 grant codebase "file:*" {{
 permission java.io.FilePermission "c:/temp/*",
 "read,write,execute,delete";

This command allows access only to files within the c:/temp directory. Notice that the
directory is specified using a potentially platform-dependent form. As yet, Java does not
support a platform-independent syntax. The preceding command does not confer ability
to access files in subdirectories of c:/temp. You can allow such access by specifying this:

 grant codebase "file:*" {{
 permission java.io.FilePermission "c:/temp/-",
 "read,write,execute,delete";

 The dash allows recursive access to files and directories in and below c:/temp.

SECURITY TOOLS

Java 1.2 provides several tools that help you configure Java’s security facilities. For
example, the java.policy file is an ordinary text file that you can edit using a standard text
editor. However, if you prefer, you can use policytool, a Java application that gives you a
graphical user interface to the java.policy file.

In Java 1.1, you used javakey to write digital signatures, generate paired keys, and
manage a database (the keystore) that associates entities with their digital keys. Java 1.2
provides a replacement tool, keytool, with enhanced functionality. You use keytool from
the command line, using any of about a dozen command line options, each of which
takes several options. To see these, simply type

 - 174 -

 keytool -help

 at the command-line prompt. Consult the JDK documentation for up-to-date information

on keytool and its options.

The jarsigner tool lets you add a digital signature to a Java archive (JAR) file. Like the
policy tool, it accesses the digital signature database (keystore) maintained by keytool. You
can also use the jarsigner tool to verify the signature on a JAR. Consult the JDK
documentation for details on how to use this command-line tool.

THE JAVA CRYPTOGRAPHY EXTENSION (JCE)

Using the Java Cryptography Extension (JCE), you can write programs that encrypt and
decrypt data and use passwords to protect against unauthorized access. To use the JCE,
you need to include a line in your java.security file that names the SunJCE classes as
providers of cryptographic services. Generally, your java.security file should contain only
a single policy command. Near the middle of the file, find the following line:

 policy.url.1=file:${java.home}/lib/security/java.policy

 After it, add this line:

 policy.url.2=file:${user.home}/.java.policy

If your java.security file contains several policy lines, you should add the new line
following the last of these. Make the number following policy.url. the next
consecutive number in the series. Your java.security file may already contain a line like
the new line. If so, don’t add the new line to the file.

 In this section, you’ll learn how to perform a variety of cryptographic tasks, including

encryption and decryption of text, streams, and objects.

 The Enigma Applet

Figure 10.1 shows the Enigma applet, a simple applet that demonstrates encryption and
decryption. When you click the Encode button, the applet encrypts the contents of the
Input text box and displays the cipher text in the Output text box. You can copy the cipher
text, paste it into the Input text box, and click the Decode button. The result should be the
original text.

 Figure 10.1: The Enigma applet demonstrates encryption/decryption.

Listing 10.1 shows the source code of the Enigma applet. The applet defines two
constants' ALGORITHM and TRANSFORMATION —that it uses to specify a cryptographic
algorithm and related transformation. The DES algorithm, a popular cryptographic
algorithm, is among several that JCE supports. The applet also defines a SecretKey,
which it uses to hold a randomly generated key for encrypting and decrypting the data,
and a Cipher, which performs encryption and decryption. The try-catch near the

 - 175 -

end of the init method contains statements that instantiate the Cipher object and
generate the SecretKey.

 LISTING 10.1 Enigma.java—ENCRYPTING AND DECRYPTING DATA

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.security.*;
 import javax.crypto.*;

 public class Enigma extends Applet
 {
 static final String ALGORITHM = "DES";
 static final String TRANSFORMATION = ALGORITHM +
"/ECB/PKCS5Padding";

 TextArea theInputText = new TextArea(10, 64);
 TextArea theOutputText = new TextArea(10, 64);
 Button theEncodeButton = new Button("Encode");
 Button theDecodeButton = new Button("Decode");

 SecretKey theKey;
 Cipher theCipher;

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 p1.setLayout(new GridLayout(0, 1));
 p2.setLayout(new GridLayout(1, 0));
 add(p1, BorderLayout.CENTER);
 add(p2, BorderLayout.SOUTH);
 p1.add(new Label("Input:"));
 p1.add(theInputText);
 p1.add(new Label("Output:"));
 p1.add(theOutputText);
 p2.add(theEncodeButton);
 p2.add(theDecodeButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theInputText.setFont(f);
 theOutputText.setFont(f);
 theOutputText.setEditable(false);
 theEncodeButton.addActionListener(new Encoder());
 theDecodeButton.addActionListener(new Decoder());

 try
 {
 theCipher = Cipher.getInstance(TRANSFORMATION);
 KeyGenerator generator =
KeyGenerator.getInstance(ALGORITHM);

 theKey = generator.generateKey();

 - 176 -

 }
 catch (Exception ex) { fatalError(ex); }
 }

 public void fatalError(Exception ex)
 {
 System.err.println("Fatal error:\n" ++ ex.toString());
 theOutputText.setText("Fatal error:\n" ++ ex.toString());
 ex.printStackTrace();
 }

 // inner classes omitted
 }

Listing 10.2 shows the inner classes of the Enigma applet, which perform encryption and
decryption in response to user interaction. The Cipher.init method initializes the
Cipher, which operates in either ENCRYPT_MODE or DECRYPT_MODE. The doFinal
method performs the cryptographic operation appropriate to the mode of Cipher. The
Encode class generates a cipher text (a sequence of bytes that may include
nonprintable characters). It converts the bytes to an appropriate display format by using
the byteArrayToHexString method of the Hex utility class. The Decode class
deals with the complementary operation—generating clear text from a sequence of bytes.
It uses the hexStringToByteArray method to convert the displayed cipher text to its
original binary format.

 LISTING 10.2 Enigma.java—INNER CLASSES

 class Encoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theCipher.init(Cipher.ENCRYPT_MODE, theKey);
 byte [] text == theInputText.getText().getBytes();
 byte [] codedtext == theCipher.doFinal(text);

theOutputText.setText(Hex.byteArrayToHexString(codedtext));

 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Decoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {

 theCipher.init(Cipher.DECRYPT_MODE, theKey);
 String chars = theInputText.getText();
 byte [] text == Hex.hexStringToByteArray(chars);
 byte [] codedtext == theCipher.doFinal(text);

 - 177 -

 theOutputText.setText(new String(codedtext));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 The EnigmaStream Applet

Figure 10.2 shows the EnigmaStream applet, which uses the CipherInputStream
and CipherOutputStream classes to encrypt and decrypt a data stream. When you
type some text in the Input text box and click the Encode button, the applet encodes your
text and writes it to a disk file. When you click the Decode button, the applet reads the
file, decrypts its contents, and displays them.

 Figure 10.2: The EnigmaStream applet encrypts and decrypts a stream.

The full source code for the EnigmaStream applet resides on the CD-ROM. In the interest
of conserving space, let’s focus on the EnigmaStream applet’s inner classes, which do
the interesting cryptographic work. These are shown in Listing 10.3.

 LISTING 10.3 EnigmaStream.java —INNER CLASSES

 class Encoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theCipher.init(Cipher.ENCRYPT_MODE, theKey);
 byte [] text == theInputText.getText().getBytes();
 CipherOutputStream out = new CipherOutputStream(

 new FileOutputStream("EnigmaStream.bin"),
 theCipher);
 out.write(text);
 out.close();
 theOutputText.setText("");
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Decoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {

 - 178 -

 try
 {
 theOutputText.setText("");
 theCipher.init(Cipher.DECRYPT_MODE, theKey);
 CipherInputStream in = new CipherInputStream(
 new FileInputStream("EnigmaStream.bin"),
 theCipher);
 int c;
 byte [] b == new byte [8];
 c = in.read(b);
 while (c != -1)
 {
 theOutputText.append(new String(b));
 c = in.read(b);
 }
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

The Encoder class, like its relative in the Enigma applet, initializes a Cipher object by
sending the Cipher object an init message. It places the contents of the Input text
box in a byte array. It then instantiates a CipherOutputStream object, passing the
constructor a FileOutputStream object and a reference to the Cipher object. Data
written to the CipherOutputStream is automatically encrypted using the Cipher.

The Decoder class initializes the Cipher for decryption and instantiates a
CipherInputStream . It then reads the stream, which is automatically decrypted, byte
by byte. (Though reading byte by byte is simple, you may prefer to use buffered reads,
which offer improved performance.)

 The BlackBox Applet

Figure 10.3 shows the BlackBox applet, which shows how you can encrypt and decrypt
an object, and how you can store an encrypted object in a file. When you click the
Serialize button, the applet encrypts and stores the text box that appears in the upper-left
part of the applet window. When you click the De-Serialize button, the applet reads the
stored text box and adds it to the upper-right part of the applet window. By typing some
text into the text box before you click Serialize, you can verify that the reconstituted text
box faithfully preserves the state information of the original.

 Figure 10.3: The BlackBox applet reads and writes an encrypted object.

Again, in the interest of conserving space, only the inner classes of the BlackBox applet
are shown. The complete source code resides on the CD-ROM. The Serializer class
uses the SealedObject class to encrypt the text box, which it writes to a disk file by
using an ObjectOutputStream .

 LISTING 10.4 BlackBox.java —INNER CLASSES

 - 179 -

 class Serializer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theCipher.init(Cipher.ENCRYPT_MODE, theKey);
 SealedObject dark = new SealedObject(theTextField,
theCipher);

 ObjectOutputStream out = new ObjectOutputStream(
 new FileOutputStream("BlackBox.bin"));
 out.writeObject(dark);
 out.close();
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class DeSerializer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)

 if (! isCallable) return;

 try
 {
 theCipher.init(Cipher.DECRYPT_MODE, theKey);
 ObjectInputStream in = new ObjectInputStream(
 new FileInputStream("BlackBox.bin"));
 SealedObject obj = (SealedObject) in.readObject();
 in.close();
 TextField t = (TextField) obj.getObject(theCipher);
 thePanel.add(t);
 invalidate();
 validate();
 isCallable = false;
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

Its cousin, the DeSerializer class, reads the stored object by using an
ObjectInputStream . It casts the object returned by readObject to a
SealedObject. By sending the SealedObject the getObject message and
providing the appropriate Cipher as an argument, it decrypts the object, which it adds
to the applet window. The class uses the flag variable isCallable to prevent the user
from instantiating multiple copies of the stored object, because the user interface
provides room for only the original text box and one copy.

 The Password Applet

Figure 10.4 shows the Password applet, which demonstrates how you can use a
password to authenticate access. The SecretKey used by the previous applets is a
long text string that’s cumbersome—in fact, nearly impossible—for humans to recall or

 - 180 -

manipulate. By mapping a simple password to a SecretKey, you facilitate human
interaction. To operate the applet, you enter a password and some text. When you click
the Encode button, the applet encrypts the text using a key that corresponds to the
password you entered. When you click the Decode button, the applet uses the current
contents of the Password text box to attempt to decode the cipher text. As you can see
for yourself, the decryption succeeds only when you enter the same password originally
used to encrypt the data.

Listing 10.5 shows the source code of the Password applet. Notice that the Password
applet imports a package, javax.crypto.spec , that the previous applets did not use.
The applet also includes two unfamiliar fields—a String that contains salt, and an int
that specifies an iteration count. The cryptographic algorithm uses these fields to convert
the password to a key. The salt should be a random String of eight characters that
don’t need to be printable. The iteration count is usually a number in the range of 5–25;
you can use larger values, but at some cost in the amount of computation required to
generate the key.

 Figure 10.4: The Password applet uses a password to grant access to

encrypted data.

 Note The term salt refers to a random string that the cryptographic algorithm uses

to convert the password to a key.

 LISTING 10.5 Password.java —USING A PASSWORD TO GENERATE A KEY

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import javax.crypto.*;
 import javax.crypto.spec.*;

 public class Password extends Applet
 {
 static final String TRANSFORMATION = "PBEWithMD5AndDES";

 TextField thePassword = new TextField();
 TextArea theTextArea = new TextArea(10, 64);
 Button theEncodeButton = new Button("Encode");
 Button theDecodeButton = new Button("Decode");

 SecretKey theKey;
 Cipher theCipher;
 String theSalt = "saltsalt"; // must have length of 8
characters

 int theIterations = 17;
 byte [] theCipherText;;

 PBEParameterSpec parmspec = new
PBEParameterSpec(theSalt.getBytes(),

 - 181 -

 theIterations);

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 p1.setLayout(new GridLayout(0, 1));
 p2.setLayout(new GridLayout(1, 0));

 add(p1, BorderLayout.NORTH);
 add(theTextArea, BorderLayout.CENTER);
 add(p2, BorderLayout.SOUTH);
 p1.add(new Label("Password:"));
 p1.add(thePassword);
 p1.add(new Label("Text:"));
 p2.add(theEncodeButton);
 p2.add(theDecodeButton);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 thePassword.setFont(f);
 theTextArea.setFont(f);
 theEncodeButton.addActionListener(new Encoder());
 theDecodeButton.addActionListener(new Decoder());

 try
 {
 theCipher = Cipher.getInstance(TRANSFORMATION);
 }
 catch (Exception ex) { fatalError(ex); }
 }

 public void fatalError(Exception ex)
 {
 System.err.println("Fatal error:\n" ++ ex.toString());
 theTextArea.setText("Fatal error:\n" ++ ex.toString());
 }

 // inner classes omitted
 }

Listing 10.6 shows the inner classes of the Password applet, where most of the
cryptographic processing takes place. The PBEKeySpec object keyspec encapsulates
the user-selected password. The getInstance method returns an instance of an
appropriate factory for generating keys based on the transformation specified as an
argument. (This, of course, is an example of the factory design pattern presented in
Chapter 5, “Design Patterns.”) The factory generates an appropriate key in response to
the generateSecret message. Otherwise, the Encoder class functions much like the
analogous inner classes of previous applets in this chapter.

 LISTING 10.6 Password.java —INNER CLASSES

 class Encoder implements ActionListener
 {

 - 182 -

 public void actionPerformed(ActionEvent evt)
 {

 try
 {
 PBEKeySpec keyspec = new PBEKeySpec(
 thePassword.getText());
 SecretKeyFactory factory =
 SecretKeyFactory.getInstance(
 TRANSFORMATION);
 theKey = factory.generateSecret(keyspec);
 theCipher.init(Cipher.ENCRYPT_MODE, theKey,
 parmspec);
 byte [] text == theTextArea.getText().getBytes();
 theCipherText = theCipher.doFinal(text);
 theTextArea.setText("<Cipher text stored.>");
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class Decoder implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 if (theCipherText == null) return;
 PBEKeySpec keyspec = new PBEKeySpec(
 thePassword.getText());
 SecretKeyFactory factory =
 SecretKeyFactory.getInstance(
 TRANSFORMATION);
 theKey = factory.generateSecret(keyspec);
 theCipher.init(Cipher.DECRYPT_MODE, theKey,
parmspec);

 theCipherText = theCipher.doFinal(theCipherText);
 theTextArea.setText(new String(theCipherText));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

As usual, the Decoder class reverses the process. It generates a SecretKey from the
password using the same process as the Encoder class. Once the key is in hand,
decryption follows a pattern that should by now be familiar to you.

JAVA 1.2 SECURITY FEATURES

The previous applets of this chapter have used the JCE. However, Java 1.2 provides
some useful security features of its own. In this section, you’ll learn how to compute a
message digest and how to use a public key to exchange secure data.

 - 183 -

 The MessageDigester Applet

A message digest is a hash total, or checksum, that reflects the contents of a message.
Good algorithms for generating message digests yield a digest value that’s sensitive to
changes in the message and yet does not disclose information about the message. By
comparing a transmitted message digest with a computed message digest, you can
ensure that no one has tampered with the contents of the message.

Figure 10.5 shows the MessageDigester applet, which demonstrates how you can use
classes of the java.security package to compute a message digest. To operate the
applet, you click the Choose File button. A file dialog box pops up, letting you select a file.
When you close the dialog box, the applet computes and displays a message digest for
the file you selected.

 Figure 10.5: The MessageDigester applet authenticates the contents of a

message.

Listing 10.7 shows the source code for the MessageDigester class. The class includes a
constant that specifies the algorithm used to compute the message digest. The SHA-1
algorithm, a popular algorithm for computing digests, is among several provided by the
java.security package. Other than defining the algorithm constant, the class
contains no cryptographic processing; it merely provides a user interface. The
cryptographic processing is performed by the Chooser inner class.

 LISTING 10.7 MessageDigester.java —COMPUTING A MESSAGE DIGEST

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.io.*;
 import java.security.*;

 public class MessageDigester extends Applet
 {
 static final String ALGORITHM = "SHA-1";
 TextField theFileName = new TextField(64);
 TextField theDigest = new TextField(64);
 Button theChooseButton = new Button("Choose File");

 public void init()
 {
 setLayout(new GridLayout(0, 1));
 add(new Label("File Name:"));
 add(theFileName);
 add(new Label("Digest:"));
 add(theDigest);
 add(new Label(""));
 add(theChooseButton);

 - 184 -

 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theFileName.setFont(f);
 theDigest.setFont(f);
 theFileName.setEditable(false);
 theDigest.setEditable(false);
 theChooseButton.addActionListener(new Chooser());
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 // inner classes omitted
 }

Listing 10.8 shows the source code of the Chooser inner class, which provides the file
dialog box for selecting a file and computes the message digest. To obtain the Frame
reference that the FileDialog constructor requires, the actionPerformed method
uses a little trick. It recursively examines the parent containers of the applet window,
starting with the most immediate parent. When it discovers a Frame, it uses the Frame
in the FileDialog constructor call. (It returns silently if no Frame is found. This is not
a recommended coding technique, but it keeps the present example as simple as
possible.)

 LISTING 10.8 MessageDigester.java —INNER CLASS

 class Chooser implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 Container c = getParent();
 while (c != null)
 {
 if (c instanceof Frame) break;
 c = c.getParent();
 }
 if (c == null) return;
 FileDialog fd = new FileDialog((Frame) c,
 "Choose A File", FileDialog.LOAD);
 fd.show();
 String file = fd.getFile();
 if (file != null)
 {
 try
 {
 String dir = fd.getDirectory();
 theFileName.setText(dir + file);
 MessageDigest digester =
 MessageDigest.getInstance(ALGORITHM);
 FileInputStream in = new FileInputStream(
 dir + file);
 int b = in.read();

 - 185 -

 while (b != -1)
 {
 digester.update((byte) b);
 b = in.read();
 }
 in.close();
 byte [] digest == digester.digest();
 theDigest.setText(
 Hex.byteArrayToHexString(digest));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
 }

If the user chooses a file using the file dialog box, the actionPerformed method
accesses the directory and filename using getDirectory and getFile. It then
instantiates a MessageDigest object for the SHA-1 algorithm. Next, it binds the
specified file to a FileInputStream object and reads the contents of the file, byte by
byte. The update message gives the MessageDigest object the opportunity to view
each byte of the file. When the read loop reaches the end of the file, the digest
message prompts the MessageDigest to compute the final digest value. Like keys, the
digest is a byte array that must be converted to printable form before being displayed.
The byteArrayToHexString method performs this service.

 The MessageSigner Applet

Message digests pose a problem: You must transmit both the message and the digest in
a secure fashion. Otherwise, someone may modify the message and generate a new
digest that reflects the surreptitious change. Public key cryptography presents one
popular method of countering this threat.

In public key cryptography, keys are generated in pairs: a public key and a private key. A
message sender signs a message using a private key that’s known only to the sender.
The result is a special type of message digest. The sender transmits the message and
the digest to recipients, who already know the sender’s public key. Recipients use the
public key to verify that the message digest was computed using its private key
counterpart. Because the private key is known only to the sender, recipients infer that the
message was actually transmitted by the sender. Of course, the message can be clear
text or encrypted text; its format doesn’t matter to the signing and verification algorithms.

Figure 10.6 shows the MessageSigner applet, which demonstrates the signing and
verification of messages by means of public key cryptography. To operate the applet, you
first click the Generate Keys button to generate a public/private key pair. Then, you click
the Choose File button and use a file dialog box to select a file to be used as a message.
When you click the Generate Signature button, the applet generates and displays a
digest that recipients can use, with the public key, to authenticate the source of the
message. Finally, when you click the Verify Signature button, the applet uses the public
key and digest to verify the authenticity of the message.

 - 186 -

 Figure 10.6: The MessageSigner applet authenticates the source and contents

of a message.

Listing 10.9 shows the source code of the MessageSigner applet. Notice that the applet
imports the java.security.spec package, which the MessageDigest applet did not
require. The MessageSigner applet uses a different algorithm than the MessageDigest
applet. DSA is the popular Digital Signature Algorithm, which is based on the SHA-1
message digest algorithm. The java.security package supports several other
algorithms.

 LISTING 10.9 MessageSigner.java —SIGNING A DOCUMENT

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.io.*;
 import java.security.*;
 import java.security.spec.*;

 public class MessageSigner extends Applet
 {
 static final String ALGORITHM = "DSA";
 static final int KEY_MODULUS = 1024;
 static final byte [] SEED ==
 { (byte) 1, (byte) 2, (byte) 6, (byte) 6, (byte) 0 };

 TextField theFileName = new TextField(64);
 TextField thePublicKey = new TextField(64);
 TextField thePrivateKey = new TextField(64);
 TextField theSignature = new TextField(64);
 TextField theResult = new TextField(64);
 Button theGenerateButton = new Button("Generate Keys");
 Button theChooseButton = new Button("Choose File");
 Button theSignButton = new Button("Generate
Signature");

 Button theVerifyButton = new Button("Verify Signature");

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 add(p1, BorderLayout.CENTER);
 add(p2, BorderLayout.SOUTH);

 - 187 -

 p1.setLayout(new GridLayout(0, 1));
 p1.add(new Label("File Name:"));
 p1.add(theFileName);
 p1.add(new Label("Public Key:"));
 p1.add(thePublicKey);
 p1.add(new Label("Private Key:"));
 p1.add(thePrivateKey);
 p1.add(new Label("Signature:"));
 p1.add(theSignature);
 p1.add(new Label(""));
 p1.add(new Label("Result:"));
 p1.add(theResult);
 p2.setLayout(new GridLayout(1, 0));
 p2.add(theGenerateButton);
 p2.add(theChooseButton);
 p2.add(theSignButton);
 p2.add(theVerifyButton);

 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theFileName.setFont(f);
 thePublicKey.setFont(f);
 thePrivateKey.setFont(f);
 theSignature.setFont(f);
 theFileName.setEditable(false);
 thePublicKey.setEditable(false);
 thePrivateKey.setEditable(false);
 theSignature.setEditable(false);
 theResult.setEditable(false);
 theGenerateButton.addActionListener(new Generator());
 theChooseButton.addActionListener(new Chooser());
 theSignButton.addActionListener(new Signer());
 theVerifyButton.addActionListener(new Verifier());
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 // inner classes omitted
 }

The applet defines a modulus value for the algorithm, which must be 512, 768, or 1024
for Sun’s implementation of DSA. A larger modulus generates a more secure key, but at
the cost of greater computing time. The applet also defines a random seed value. The
SecureRandom class converts the specified value to a cryptographically secure random
value. The main class primarily deals with the user interface. The interesting work is done
by three of the four inner classes: Generator, Signer, and Verifier. The Chooser
inner class merely provides the file dialog box.

Listing 10.10 shows the source code of the Generator inner class. Its
actionPerformed method uses the static KeyPairGenerator.getInstance
method to obtain a reference to a KeyPairGenerator , which it initializes and uses to
generate a public/private key pair. The method then uses the byteArrayToHexString

 - 188 -

method to encode the keys for display. Coincidentally, the method displays a description
of each key, including the format and length of the key, on System.out.

 LISTING 10.10 MessageSigner.java — INNER CLASS

 class Generator implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 KeyPairGenerator generator =
 KeyPairGenerator.getInstance(ALGORITHM);
 generator.initialize(KEY_MODULUS,
 new SecureRandom(SEED));
 KeyPair keypair = generator.generateKeyPair();
 PublicKey pubkey = keypair.getPublic();
 PrivateKey privkey = keypair.getPrivate();
 byte [] bytes == pubkey.getEncoded();

thePublicKey.setText(Hex.byteArrayToHexString(bytes));

 System.out.println("Public Key Format:" ++
 pubkey.getFormat() + " Length==" ++
 thePublicKey.getText().length());
 bytes = privkey.getEncoded();

thePrivateKey.setText(Hex.byteArrayToHexString(bytes));

 System.out.println("Private Key Format:" ++
 privkey.getFormat() + " Length==" ++
 thePrivateKey.getText().length());
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

Listing 10.11 shows the Signer inner class, which computes the message signature by
using the private key. The program doesn’t save the value of the private key generated
by the Generate class. Instead, the Signer class recovers the value of the private key
from the contents of the text box that displays the value of the private key. Sun’s
implementation of DSA stores private keys in the PKCS#8 format; therefore, the
actionPerformed method uses the PKCS8EncodedKeySpec constructor and the
KeyFactory.generatePrivate method to instantiate a duplicate private key. The
method then instantiates a Signature object and sends the object a sequence of
update messages, one for each byte of the message. Finally, the method uses the
sign message to obtain a signature from the Signature object.

 LISTING 10.11 MessageSigner.java — INNER CLASS

 class Signer implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {

 - 189 -

 String file = theFileName.getText();
 String hex = thePrivateKey.getText();
 byte [] bytes == Hex.hexStringToByteArray(hex);
 KeyFactory factory =
KeyFactory.getInstance(ALGORITHM);

 KeySpec keyspec = new PKCS8EncodedKeySpec(bytes);
 PrivateKey pkey = factory.generatePrivate(keyspec);
 Signature dsa = Signature.getInstance(ALGORITHM);
 dsa.initSign(pkey);
 FileInputStream in =
 new FileInputStream(file);
 int b = in.read();
 while (b != -1)
 {
 dsa.update((byte) b);
 b = in.read();
 }
 in.close();
 byte [] signature == dsa.sign();
 theSignature.setText(
 Hex.byteArrayToHexString(signature));
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

Listing 10.12 shows the MessageSigner class, which verifies a message signature. It
reconstructs a public key using a technique parallel to that used in the Generator
method. The main difference is that Sun’s DSA implementation stores public keys in the
X509 format, rather than the PKCS#8 format it uses for private keys. Again, this method
uses the update message to update an instance of Signature, which verifies the
signature upon receiving the verify message. The verify message returns true if
the signature is authentic.

 LISTING 10.12 MessageSigner.java — INNER CLASS

 class Verifier implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 String hex = thePublicKey.getText();
 byte [] bytes == Hex.hexStringToByteArray(hex);
 KeyFactory factory =
KeyFactory.getInstance(ALGORITHM);

 KeySpec keyspec = new X509EncodedKeySpec(bytes);
 PublicKey pkey = factory.generatePublic(keyspec);
 Signature dsa = Signature.getInstance(ALGORITHM);
 dsa.initVerify(pkey);
 String file = theFileName.getText();
 FileInputStream in =
 new FileInputStream(file);
 int b = in.read();

 - 190 -

 while (b != -1)
 {
 dsa.update((byte) b);
 b = in.read();
 }
 in.close();
 hex = theSignature.getText();
 bytes = Hex.hexStringToByteArray(hex);
 if(dsa.verify(bytes))
 theResult.setText("Verified okay.");
 else
 theResult.setText("Verification failed.");
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 FROM HERE

This chapter provided an overview of Java’s security facilities and showed you how use
them to implement common security functions. You learned how to encrypt and decrypt
messages, how to use passwords, how to compute and verify message digests, and how
to compute and verify digital signatures. The following chapters describe non-Java
security facilities that are important to developers of distributed systems:

 • Chapter 20, “Distributed Component Object Model (DCOM),” describes Microsoft’s

Component Object Model, including its security facilities.

 • Chapter 33, “Other CORBA Facilities and Services,” describes the security facilities of

the Common Object Request Broker Architecture (CORBA).

Chapter 11: Relational Databases and
Structured Query Language (SQL)

 Overview

If you’re new to databases, you might suppose that a relational database is a database
owned by someone’s cousin, or that Structured Query Language is an obscure, ritualistic
idiom used by tourists to request directions. However, relational databases and
Structured Query Language have nothing to do with family relations or tourist information.
Instead, they’re the dominant vehicles for managing data in modern software systems. In
this chapter you’ll learn:

 • Why relational databases are important to distributed systems

 Relational databases offer several advantages over flat-file data storage or object-

oriented databases.

 • How Structured Query Language (SQL) makes relational databases easy to use

 Because many vendors have implemented SQL databases on a variety of platforms,

SQL helps you build portable applications.

 • How to use SQL to define relational databases

 - 191 -

 SQL’s Data Definition Language (DDL) and Data Control Language (DCL) let you

define and configure relational databases.

 • How to use SQL to access and manipulate data held in a relational database

 SQL’s Data Manipulation Language (DML) lets you write portable queries that extract or

modify database data.

 DATABASE CONCEPTS

A database, in the simplest sense, is merely an organized collection of data. In the early
days of programming, a database consisted of a collection of files whose organization
was implicit in the application programs that maintained the files. As the art of
programming developed, programmers began to separate data management code from
application code. By writing somewhat general data management software, they were
able to use it to support multiple application systems, thus decreasing the cost of
developing new applications. Eventually, data management software packages, called
database management systems (or DBMSs) became commercially available. Soon
thereafter, the term database came to refer to the DBMS as well as the data managed by
the DBMS, in much the same way that we refer to a microwave oven as simply a
microwave.

 Currently, you can store application data in any of three main ways:

 • In flat files (that is, ordinary sequential or random-access files)

 • In a relational database

 • In an object-oriented database

 Each of these poses advantages or potential advantages. Let’s take a minute to go over

them.

 Flat Files

As mentioned, the earliest way of storing application data was flat files. Because flat files
are ancient (at least in the software sense of the word), you might wonder whether they
have any value today. Here are some instances when you may want to use flat files to
store application data:

 • When the structure of the data is simple and static, the volume of data is small, and

the data is accessed by one process at a time on a single, secure system

 • When the cost of a database is prohibitive

 • When you require extremely high performance

When the structure of the data is simple and static and the volume of data is small, flat
files may be an appropriate data management vehicle. However, if you must provide
remote access to the data, or if the data must be shared, you’re advised to use a
relational or object-oriented database. Remote access and data sharing can be difficult to
implement, especially for applications programmers, who often lack training and
experience in the subtleties of network and concurrent programming.

 You’re also advised to use a database when the structure of your data may change from

time to time. When you use flat files, your application programs must organize the data.

 - 192 -

Changes to the way file data is formatted or structured often require expensive and time-
consuming changes to applications programs. Occasionally, a seemingly minor change
in data structure requires that an entire system be rewritten. Databases were invented to
solve this very problem, so you should use one when the risk of change is substantial.

For some applications, modern databases seem prohibitively expensive. An industrial-
strength database may cost thousands of dollars, putting it beyond the reach of some
small organizations or nonprofit organizations. In such a case, using flat files may be the
only feasible alternative. However, you should thoroughly explore the options before
writing your own data management software, which you may discover costs even more to
build than buy. Some shareware and freeware databases offer impressive functionality at
little or no cost. By building your application around a database, you may decrease the
cost of system development and ownership.

A database contains a schema that stores meta information. The meta information
contained in the schema describes the location and format of every item of data stored in
the database. Application programs that access the database use a special API that finds
data using the schema and converts it to the requested format, regardless how the data
is actually stored. This approach provides data independence: When the structure or
format of the data within the database changes, the database can often continue to
provide the data in a way acceptable to old programs, which therefore don’t need to be
modified to accommodate the change. The result is decreased cost of ownership—
something users’ managers greatly enjoy.

Modern databases are relational or object oriented. More accurately, most modern
databases are somewhat relational and somewhat object oriented. To understand the
difference, let’s explore the notion of a relational database.

 Relational Databases

Just as your kitchen blender dices carrots and celery into small, uniform pieces, a
relational database dices data. By storing the structure of data in its schema and dividing
data into the smallest possible atoms, relational databases achieve great flexibility.
Because the unit of data is so small, it’s virtually guaranteed that the schema contains
everything important about the structure of the data. A complete schema lets the
database API rearrange data into any requested form that’s consistent with the nature of
the data.

In practice, the structure of a relational database resembles that of the familiar spread-
sheet, consisting of cells grouped in rows and columns (see Figure 11.1). Each row
contains information about a single thing, or entity. Each column of the database contains
cells that specify a particular entity characteristic, known as an attribute. For instance, an
employee database might contain a row for each employee of a company. The first
column might specify the employee number, the second might specify the employee
name, and so on. Every row of a database has exactly the same structure: If the first
column specifies employee number, the first cell in every row must contain an employee
number.

 Figure 11.1: A relational database resembles a spreadsheet with rows and

columns.

 - 193 -

 Unfortunately, several terms are used to describe common database components. Rows
are sometimes referred to as records, and columns are sometimes referred to as fields.

Most databases contain a variety of information. To accommodate this, databases
generally include multiple tables, each with the familiar spreadsheet structure. For
example, the database shown in Figure 11.1 includes tables describing employees,
customers, and vendors.

Although a relational database is adept at storing the primitive attributes that comprise an
object, it may be less capable of storing an encapsulated object that includes attributes
and methods. This capability is the distinctive talent of object-oriented databases, which
are becoming increasingly popular.

 Object-Oriented Databases

Having an object-oriented database is like having object serialization on wheels. Rather
than write objects to disk files via streams, you write them to a database that can catalog
and manage them. Relational databases sometimes handle complex interobject
relationships clumsily, but object-oriented databases were written with this requirement
in mind. In sophisticated application domains such as CAD/CAM, object-oriented
databases rule, and they’re steadily making inroads into more mundane domains such as
business information systems.

In response to the growing enthusiasm for object-oriented databases, most vendors of
relational databases have provided some degree of object-oriented support within their
databases. As a result, it’s somewhat difficult to precisely characterize an object-oriented
database. However, relational databases possess one important characteristic that hasn’t
yet been mentioned: They support Structured Query Language (SQL).

RELATIONAL DATABASE STRUCTURE

Because relational databases are vastly better standardized than object-oriented
databases, the remainder of this chapter will focus on relational databases and on SQL in
particular. When you’re finished with the chapter, you’ll know how to use SQL to perform
common database tasks, such as defining tables and accessing, deleting, and updating
data. Before presenting the fundamentals of SQL, let’s dig a little deeper into the
structure of relational databases.

 Keys and Indexes

One of the basic properties of objects is identity. In an object-oriented system, you can
ask whether two variables refer to the same object or different objects, and you can
expect a correct, meaningful response. Relational databases store rows, which closely
resemble objects. However, rows contain only data, whereas objects encapsulate data
and the operations that act upon the data. If you recall that every object has a distinct
identity, the similarity between rows and objects may suggest to you that each database
row should have a distinct identity.

Often, one column of a database table contains values that are unique to each table row.
For example, a table containing data about employees might include a column that holds
an employee number that’s unique to each employee. In such a case, you may designate
the unique-valued column as the primary key of the table. Primary keys pose advantages
beyond mere identification of records. Many databases provide indexes that speed
retrieval of table rows. A database that indexes its employee table by employee number
lets programs quickly access the row for a given employee by means of the employee
number. Without a primary key, access requires a potentially time-consuming serial scan
of the table rows.

 When a table contains no unique-valued column, you have several alternatives. You

could simply define no primary key, but the advantage of immediate access to rows is

 - 194 -

usually too great a prize to forego. Fortunately, two other alternatives present
themselves: using a compound key and using an artificial key. A compound key is a
series of columns that, taken together, are unique to every row. For example, suppose a
company has two employment offices, each of which assigns serial employee numbers.
Two employees could possibly have the same number. However, if the database stores a
column that identifies the employment office that processed the employee, the problem of
“nonuniqueness” vanishes. The combination of employment office and employee number
is unique to each employee.

The other alternative is the artificial key, which is simply an assigned value, usually a
number. In building an employee information system, you might be tempted to use the
social security number column as the primary key of the employee table. However,
experience shows that supposedly unique social security numbers are sometimes not
unique at all. By assigning your own number, you can ensure that every employee has a
unique identifier. Using the earlier example of a company with two employment offices,
you might simply assign one block of numbers for use by one office and another block for
use by the other. The resulting employee numbers would be unique in themselves,
without recourse to a compound key that combines the employment office identifier with
the employee number.

Generally, every table of a database should have a primary key. In addition, some tables
may have foreign keys. A foreign key is simply a column that contains values that are
primary key values of some database table. For example, suppose your sales database
includes two tables: a customer table and a transaction table. The customer table
contains the name and address of each customer, and the transaction table shows the
items and quantities purchased by each customer, along with the date of purchase and
the price paid.

You could store the customer name and address in each transaction row; however, it’s
more efficient to store only the primary key of the customer table, which is the customer
ID (as you can see in Figure 11.2). Given the customer ID, you can look up the
customer’s name and address, so you lose nothing by this abbreviation of content. On
the contrary, you gain a great deal: Your database now stores each customer’s name
and address only once, rather than in each row describing a purchase by the customer.
When a customer changes address, you can update a single row, rather than searching
the database for all the transaction rows that pertain to the customer. This reduced
redundancy improves database performance: The database occupies less storage
space, and queries are processed more quickly. Those of you who have extensive
database experience recognize this as database normalization.

 Figure 11.2: Foreign keys help control data redundancy.

 Constraints

 Recall that a relational database schema contains a description of a database, including

its contents, format, and organization. Modern relational database schemas store not

 - 195 -

only what is, but what’s allowed. When you specify a database constraint, the database
checks the result of each operation before performing the operation. If the result would
violate a constraint, the database rejects the operation. This helps ensure that database
data is always valid.

Databases constrain the value of database data. For instance, a database will not let you
store a nonnumeric value in a numeric field. In addition to such common-sense
constraints that function automatically, SQL lets you specify several additional types of
constraints. One type of constraint restricts the ability to add table rows that omit
specified columns. Such a constraint might prevent you from adding a row to an
employee table unless the employee name column is included. Thanks to the constraint,
your database won’t contain any nameless employees, which might cause the payroll
application to choke.

Another important type of constraint concerns the relationship between primary keys and
foreign keys. Such a constraint might preclude you from adding a transaction that pertains
to a nonexistent customer. The constraint is useful because the value of the foreign key
customer number of the transaction table does not have a matching value in the customer
table (where it’s the primary key).

SQL CONCEPTS

SQL is an ANSI/ISO standardized language for defining and using relational databases.
Although a few dialectical differences exist among major implementations of SQL, most
relational database vendors provide a SQL interpreter that lets programmers write more-
or-less portable SQL programs (or queries, as they’re called). Incompatibilities generally
arise from the use of vendor-specific SQL extensions, rather than bread-and-butter SQL
syntax.

 SQL includes three sublanguages:

 • Data Definition Language (DDL), which lets you define and revise the structure of

relational databases

 • Data Control Language (DCL), which lets you specify data security and integrity

mechanisms that safeguard data

 • Data Manipulation Language (DML), which lets you read and write data

Most dialectical differences affect DCL, because security and integrity mechanisms vary
somewhat from vendor to vendor. Consequently, vendors have sometimes elected to go
their own way rather than implement orthodox DCL. In comparison, DDL and DML are
relatively standard from vendor to vendor. Differences in platform characteristics, such as
character collating sequence, intrude on portability more than differences in SQL syntax
or semantics.

You can use SQL in a variety of ways. Most vendors provide a command-line shell that
lets you type SQL queries and send them to the SQL interpreter for processing.
Interactive SQL, as this method of use is called, is convenient for developing and
debugging queries, but it provides no simple way to get query results into program
variables. Consequently, most application systems use embedded SQL. Embedded SQL
lets your programs send SQL queries to the SQL interpreter and receive results in
program variables. Some vendors implement embedded SQL using subroutine calls,
whereas others use macros that are expanded into source code by a macro
preprocessor. Java’s mechanism for sending and receiving SQL queries is JDBC, which
is the subject of the next chapter.

Experts may disagree concerning the characteristics that an object-oriented database
must possess. However, implementation of SQL is a defining characteristic of relational
databases. Because almost every non-SQL database is touted as “object-oriented,” it

 - 196 -

makes sense to refer to SQL databases and non-SQL databases rather than SQL
databases and object-oriented databases. This is especially true because, as
mentioned, SQL database vendors are including more object-oriented facilities in their
databases.

However, the internal architecture of SQL-oriented databases is usually quite different
from that of object-oriented databases. Even if both camps eventually provide functional
support of SQL, important performance differences will probably remain. If you’re
interested in storing data, you should seek a suitable SQL-oriented database. If you’re
interested in storing objects, you should, if possible, seek an object-oriented database
that provides significant SQL functionality and, where possible, use standard SQL
queries rather than vendor-proprietary API calls. This approach will yield tremendous
dividends if your application is ever rehosted.

Work continues on an updated SQL standard that provides object-oriented facilities.
However, it seems that it will take some time to finalize the standard and an even longer
period for vendors to gear up to support it. In the meantime, the choice of database vendor
for distributed systems development will be somewhat problematical.

DATA DEFINITION LANGUAGE

Now that you have a solid understanding of the fundamentals of relational databases,
you’re ready to learn some SQL. Of course, merely reading one chapter won’t make you
proficient in SQL; the goals are for you to have a solid understanding of what SQL can do
and to be able to read most common SQL statements. Like learning to program in Java,
learning to program in SQL requires practice and therefore time. Because our goals are
limited, the chapter presents some of the SQL statements in abbreviated form. You
should consult your database documentation to discover what further options your
database supports. Better yet, get a copy of a book on SQL that explains the SQL
standard. That way, you won’t be tempted to use vendor-specific statements and options
that may hamper the portability of your application.

 Creating a Database

Let’s begin with DDL, the Data Definition Language, which you use to define the structure
of a database. The most basic DDL statement is the Create Database statement,
which you use to create a new database. Unfortunately, the options involved in database
creation vary somewhat from vendor to vendor; consequently, the Create Database
statement is one of the least standard SQL statements. You’ll need to consult your
database documentation or your database administrator to determine the proper syntax.
You may even find that your database doesn’t support the Create Database
statement. To give you an idea what to expect, here’s the syntax used by Microsoft SQL
Server:

 Create Database name
 [On {{ default | device } [== size] [, device [== size]]
....]

 [Log On device [== size] [, device [== size]]]
 [For Load]

The square brackets (]) indicate optional clauses. The curly braces }) indicate
alternatives from which you must choose. Italicized tokens are names or values you must
specify.

As you can see, the SQL Server form of the Create Database statement lets you
name the database and create database regions on multiple devices, which are not
physical devices but rather specially formatted areas controlled by SQL Server. Using the
Log On clause, you can specify a set of devices to hold the database log, which records
significant events. The For Load clause tells SQL Server that you plan to load a

 - 197 -

database backup image into the database; this clause lets SQL Server forego some of
the work it would normally perform in preparation for use of the database.

 Creating Tables

 Once you’ve created a database, you’re ready to create one or more tables. The Create
Table statement has the following form:

 Create Table name
 (columnname datatype [null || not null] [, ...]))

 Each table includes a series of columns, each having a data type. Table 11.1

summarizes some of the most useful SQL data types.

 TABLE 11.1 COMMONLY USED SQL DATA TYPES

Data Type

Description

BIT(n)

A fixed-length series of exactly n Boolean (true/false) values

BIT VARYING(
n)

A series of as many as n Boolean values

CHARACTER(n)

A fixed-length string of exactly n characters (abbreviated CHAR
)

CHARACTER
VARYING

A string of text characters

DATE

A date

DECIMAL(p,q)

A decimal number having p digits, of which q are specified as
assumed decimal digits (abbreviated DEC)

FLOAT(p)

A floating-point number of precision p

INTEGER

A signed integer of implementation-defined size (abbreviated
INT)

SMALLINT

A signed integer of an implementation-defined size not larger
than that of INTEGER

TIME

A time of day, including hours, minutes, and seconds

TIMESTAMP

A date and time, indicating a specific time of a specific day

The NULL option specifies that the column doesn’t need to be present when you add the
database row; the NOT NULL option specifies that the column must be present. If you
don’t specify either NULL or NOT NULL, the SQL interpreter handles rows that lack data

 - 198 -

in an implementation-defined manner. That is, some database engines reject a row that
contains a NULL column, whereas other database engines accept such a row. So that
you can migrate your program from one database engine to another, you should always
specify either NULL or NOT NULL. Doing so will cause your program to behave properly
regardless of the database engine you use.

 Recall that most database tables have a primary key. You can specify the primary key

using the following Create Table clause:

 Primary Key (columns)

 Here, columns is a comma-separated list of columns that comprise the primary key.

 Some database tables have one or more foreign keys. You can specify a foreign key

using the following Create Table clause:

 Foreign Key (columns) References table

As before, columns is a comma-separated list of columns that comprise the foreign key.
Also, table names the table whose primary key matches the values of the foreign key
of Create Table. You can include multiple Foreign Key clauses in a Create
Table. If the column of the created table has a different name than the primary key of
the referenced table, you can use the following form of the Foreign Key clause:

 Foreign Key (columns) References table (columns)

 As an example, here’s a Create Table statement that creates a simple invoice detail

file:

 Create Table InvoiceDetail
 (InvoiceNo Char(5) Not Null,
 LineNo Char(2) Not Null,
 CustomerNo Char(5) Not Null,
 InvoiceDate Date Not Null,
 ItemNo Char(5) Not Null,
 Qty INT Not Null,
 UnitPrice DEC(10,2) Not Null)
 Primary Key (InvoiceNo, LineNo)
 Foreign Key (InvoiceNo) References Invoice
 Foreign Key (CustomerNo) References Customer
 Foreign Key (ItemNo) References Item

 This statement creates a table named InvoiceDetail that includes seven columns:

 • InvoiceNo: A five-character string

 • LineNo: A two-character string

 • CustomerNo: A five-character string

 • InvoiceDate: A date

 • ItemNo: A five-character string

 - 199 -

 • Qty : An integer

 • UnitPrice: A 10-digit decimal number with two decimal digits

 The primary key of the InvoiceDetail table is a compound key consisting of
InvoiceNo and LineNo. The table has three foreign keys:

 • InvoiceNo references a like-named column that’s the primary key of the Invoice

table.

 • CustomerNo references a like-named column that’s the primary key of the

Customer table.

 • ItemNo references a like-named column that’s the primary key of the Item table.

 None of the columns of the InvoiceLine table is optional; therefore, each column

specification includes the Not Null option.

The Alter Table statement lets you alter the structure of an existing table. Its clauses
and options are similar to those of the Create Table statement. The Drop Table
statement lets you delete the table and the information it contains. Obviously, you should
use the Drop Table statement with caution. Its form is simply this:

 Drop table

DATA MANIPULATION LANGUAGE

Once you’ve created your database and its tables, you’re ready to begin using them. The
statements you use to add and maintain data derive their form from the statements you
use to retrieve data. So, you’ll first learn how to read database data. Later in the chapter,
you’ll learn how to write it.

 Select

To read data, you use the Select statement. The Select statement offers a rich
variety of clauses and options. To help you quickly get a grasp of SQL, this chapter
focuses on the most basic forms. If you want to write efficient and sophisticated Select
statements, you’ll find this art a lifelong study.

 The most basic Select statement has the following form:

 Select * From table

 This Select statement retrieves every column of every row in the specified table. You

shouldn’t use this simple form for three reasons:

•

You probably need only a subset of the table rows and columns: This query is
inefficient, wasting computer and network resources to provide and transmit unneeded
data.

•

You’ll receive the columns in an implementation-defined sequence. Worse yet, the
result of the query will change when you add or drop table columns. Such changes
may cause programs that use this form of Select statement to malfunction.

 • You’ll often need data from several database tables, but this form of Select

statement returns data from only a single table.

 - 200 -

 Here’s a slightly more sophisticated form of the Select statement that avoids the cited

problems:

 Select columns From tables [Where condition]

 Both columns and tables are comma-separated lists. For instance, here’s a Select

statement that returns only the ItemNo and Qty columns from the InvoiceLine table:

 Select ItemNo, Qty From InvoiceLine

 Here’s a Select statement that should cause you to appreciate the power of relational

databases and SQL:

 Select CustomerName, InvoiceDate From InvoiceLine, Customer
 Where InvoiceLine.CustomerNo = Customer.CustomerNo

This statement retrieves data from two tables: InvoiceLine and Customer. The dot
notation used in InvoiceLine.CustomerNo lets you refer to the CustomerNo column
of the InvoiceLine table, even though the Customer table contains an identically named
column. Because the two tables are related (CustomerNo is a foreign key of the
InvoiceLine table, referring to the primary key of the Customer table), the SQL interpreter
can join them. The query makes it easy to access the CustomerName column with
InvoiceLine data; it’s almost as though CustomerName were a column of the InvoiceLine
table. Such teamwork between the relational model and SQL makes relational databases
extremely useful. They let you control data redundancy—for example, by storing
CustomerName only once—but let you conveniently access data spread across several
tables. Of course, many such tables may contain the foreign key CustomerNo; therefore,
redundancy is not eliminated but merely reduced.

 Expressions

Suppose you need the dollar amount of an invoice line. The InvoiceLine table contains
the quantity (Qty) and unit price (UnitPrice), but you need their product. No problem: The
Select statement supports expressions using the familiar arithmetic operators (+, ,*,
and /). To get the dollar amount of each invoice line, you can write:

 Select Qty*UnitPrice From Invoice

Of course, this Select statement, like the previous Select statements you’ve seen,
returns every row of the table. Let’s see how to limit the data returned by a Select
statement so that you don’t waste computer resources.

 Predicates

You’ve seen the Where clause used in a simple join that combined data from two tables.
You can also use the Where to limit the rows returned by a query. For example, suppose
you need to know the customer numbers of customers who’ve purchased expensive
items costing over $1,000. The following statement does the trick (although it has a small
flaw you’ll discover momentarily):

 Select CustomerNo From InvoiceLine Where UnitPrice >= 1000.00

 Table 11.2 summarizes the most useful SQL comparison operators. You can also use
And , Or , and Not to combine comparison expressions.

 TABLE 11.2 COMMONLY USED SQL COMPARISON OPERATORS

 - 201 -

Operator

Meaning

=

Equal to

>

Greater than

<

Less than

>=

Greater than or equal to

<=

Less than or equal to

!=

Not equal to (same as <>)

<>

Not equal to (same as !=)

 Sorting and Grouping

The queries that you’ve seen so far return their result in arbitrary order. Often, you’d
prefer that results be presented in a specified order. You can achieve this by using the
Order By clause. For example, to return an alphabetical list of customers, you could
write:

 Select CustomerName From Customer Order By CustomerName

Of course, this query won’t work correctly if the CustomerName column contains values
such as “John Zylingu.” The SQL interpreter simply sorts the data using the specified
column, putting John near the middle of the alphabet (John) rather than near the end
(Zylingu). If you want to sort by customer name, the CustomerName column should
contain values such as “Zylingu, John,” or you should define separate columns for the
customer's first and last names. If you store the names separately, you can use a query
like this one to sort the names:

 Select CustomerFirstName, CustomerLastName From Customer
 Order By CustomerLastName, CustomerFirstName

 Recall the earlier query that returned customers who’ve purchased expensive items.

Suppose you modified it to present the list alphabetically:

 Select CustomerName From InvoiceLine, Customer
 Where InvoiceLine.CustomerNo = Customer.CustomerNo
 And UnitPrice >= 1000.00
 Order By CustomerName

The SQL interpreter presents the results alphabetically, but a customer who purchased
several items appears in the list several times, once for each row of InvoiceLine. This is
the flaw mentioned earlier. You can prevent this duplication by using the Group By
clause:

 - 202 -

 Select CustomerName From InvoiceLine, Customer
 Where InvoiceLine.CustomerNo = Customer.CustomerNo
 And UnitPrice >= 1000.00
 Group By CustomerName

 The Group By sorts the rows in the specified order, but returns only a single row for

each value of CustomerName.

 Aggregate Functions

If you need the total sales to customers who’ve purchased at least one expensive item,
you need some way to total the amount of each sale. SQL provides a set of aggregate
functions for such purposes. The aggregate functions are summarized in Table 11.3.

 TABLE 11.3 SQL AGGREGATE FUNCTIONS

Function

Return Value

Avg([Distinct]
expression)

The average of (distinct) values of the numeric
expression

Count([Distinct]
expression)

The number of (distinct) non-null values of the
expression

Count(*)

The number of table rows

Max(expression)

The largest value of the expression

Min(expression)

The smallest value of the expression

Sum([Distinct]
expression)

The total of (distinct) values of the numeric expression

 For example, suppose you want the total amount of purchases by each customer who

has purchased at least one expensive item. You can use the following query:

 Select CustomerName, Sum(Qty*UnitPrice) From InvoiceLine,
Customer

 Where InvoiceLine.CustomerNo = Customer.CustomerNo
 And UnitPrice >= 1000.00
 Group By CustomerName

You may have correctly guessed that the result of a query is itself a table. Some queries
can return multiple identical rows; several aggregate functions let you ignore such
duplicates by specifying the Distinct option. For example, the following query tells you
how many distinct items have been sold by counting the number of distinct values of
ItemNo that appear in the result:

 - 203 -

 Select Count(Distinct ItemNo) From InvoiceLine

 You can use aggregate functions to report the maximum, minimum, and average unit

price by using the following query:

 Select Max(Qty * UnitPrice), Min(Qty * UnitPrice),
 Avg(Qty * UnitPrice) From InvoiceLine

The Where clause lets you specify which table rows are processed by a query. The
similar Having clause lets you specify which groups are processed. For example,
suppose you want a list of customers who have purchased more than $10,000 in total.
The following query does just that:

 Select CustomerName from InvoiceLine, Customer
 Where InvoiceLine.CustomerNo = Customer.CustomerNo
 Group by CustomerNo
 Having Sum(Qty * UnitPrice) > 10000.00

 Subqueries

SQL lets you use the result of a query, called a subquery, as a value within another
query. For example, suppose you want a list of products with higher than average price.
Assuming that the Product table contains a row for each product, you could determine
the average product price by using a query like this one:

 Select Avg(UnitPrice) From Product

 Suppose the result is $12.50. You could then get the desired list of costly products by

using the following query:

 Select ProductNo From Product Where UnitPrice > 12.50

 A subquery lets you get this result in a single step:

 Select ProductNo From Product
 Where UnitPrice > (Select Avg(UnitPrice) From Product)

 The SQL interpreter processes the subquery first and then uses the result to process the

main query.

SQL provides several keywords that you can use in Where and Having clause
conditions that involve subqueries (see Table 11.4). As an example of using these
keywords, here’s a query that finds the products that have no sales:

 Select ItemNo From Product
 Where Not Exists
 (Select ItemNo From InvoiceLine
 Where ItemNo = Product.ItemNo)

 TABLE 11.4 COMPARISONS AND COMPARISON MODIFIERS USED WITH

SUBQUERIES

Function

Comparison Evaluation

 - 204 -

All

The condition is true only if it’s true for every value returned by the
subquery

Any

The condition is true if it’s true for any value returned by the subquery

Exists

The condition is true if the subquery returns at least one row

In

The condition is true if the specified value is among those returned by the
subquery

Not
Exists

The condition is true if the subquery returns no rows

Not In

The condition is true if the specified value is not among those returned by
the subquery

 The subquery

 (Select ItemNo From InvoiceLine
 Where ItemNo = Product.ItemNo)

is called a correlated subquery, because it refers to one of the columns specified in the
main query, namely Product.ItemNo . A correlated subquery is executed multiple
times, once for each row processed by the main query. This subquery returns all the
invoice lines with the same item number as the current row of the main query. The Not
Exists predicate is true exactly when no matching invoice lines are found. Therefore,
only products without sales are reported.

 Suppose you want to find which customers have purchased items more expensive than

any purchased by customer 123. Here’s a suitable query, which uses the All keyword:

 Select CustomerNo From InvoiceLine
 Where UnitPrice > All
 (Select UnitPrice From InvoiceLine
 Where CustomerNo = 123)
 Group By CustomerNo

Here’s how the query works. Notice that it consists of two parts: an outer (or main) query
and a subquery, each with a corresponding Select statement. You can readily
recognize the subquery because it’s contained within parentheses:

 (Select UnitPrice From InvoiceLine Where CustomerNo = 123)

Except for the parentheses, the subquery looks like an ordinary query. It even works in
familiar fashion: The subquery simply returns the unit prices of items purchased by
Customer 123.

The main query uses the results of the subquery to determine which rows it returns. To
see how this works, suppose Customer 123 has purchased items with unit prices of $5,
$0.02, and $215. The subquery returns exactly these values. Next, the main query
compares unit prices of all purchases with these three unit prices, using the comparison

 - 205 -

operation > All. The comparison operation is true only for unit prices greater than all
three of the values returned by the subquery. Therefore, the main query returns only unit
prices of $215.01 and greater.

Perhaps you think the query should use the Any keyword. The peculiarities of English
usage do sometimes make it difficult to choose correctly between the All and Any
keywords. To see which is correct, consider this alternative query using the Any
keyword:

 Select CustomerNo From InvoiceLine
 Where UnitPrice > Any
 (Select UnitPrice From InvoiceLine
 Where CustomerNo = 123)
 Group By CustomerNo

Notice that Table 11.4 describes the Any modifier as returning a true value when the
associated expression is true for any value returned by the subquery. Now suppose that
customer 123 purchased a machine washer for $0.02 and a nuclear accelerator for $215
million. The condition UnitPrice > Any would be true for any UnitPrice above
$0.02. The alternative condition—the one used in the original query— UnitPrice >
All would be true for any UnitPrice above $215 million. Because the query is
intended to report customers who’ve purchased an item more expensive than any
purchased by customer 123, the condition using All is correct.

Often you’ll find that a query expressed in English using the word all calls for the Any
keyword and that a query expressed using the word any calls for the All keyword.
Simply recall the definition of the Any and All modifiers and think through the query
carefully. Don’t blindly use the same word in the query that’s used in the English
explanation.

You can learn a great deal more about queries, but it’s now time to move on to learn how
to write data to the database. You’ll find the next section easy going, because the
statements that write data are patterned after the now-familiar statements that read data.

 ADVANCED DATA MANIPULATION LANGUAGE

 SQL allows you to perform any of three basic operations that alter the contents of a

database. You can perform the following tasks:

 • Insert a new row into a table

 • Modify the column values of an existing table row

 • Delete a table row

 In this section, you’ll learn how to perform each of these operations.

 Inserting a Table Row

 To add a table row, you use the Insert statement, which has the following form:

 Insert Into table (columns)
 Values (values)

 Here, columns is a comma-separated list of columns and values is a comma-

separated list of values. The first column in the list takes the first value in the list as its

 - 206 -

value, and each succeeding column takes the corresponding value as its value. The
number of columns and values must therefore be equal.

 Here’s a sample Insert statement, which adds a new row to the InvoiceLine table:

 Insert Into InvoiceLine
 (InvoiceNo, LineNo, CustomerNo, InvoiceDate,
 ItemNo, Qty, UnitPrice)
 Values (101, 01, 203, 11/20/1998, 402, 12, 100.00)

Notice that the Insert statement provides a value for each column of the InvoiceLine
table (look back to the InvoiceLine Create Table statement if you’re unconvinced).
Because the Create Table statement includes the Not Null option on several
fields, the SQL Interpreter would reject the following query statement, which fails to
specify values for several required columns:

 Insert Into InvoiceLine (InvoiceNo) Values (101)

You can populate a database table using data from another table by writing an Insert
statement that uses a Select statement to provide column values. Here’s the general
form of such an Insert statement:

 Insert Into table (columns)
 Select columns From tables
 Where condition

Suppose, for example, your database contains a table named Backup that has the same
structure as the InvoiceLine table. You can add the sales for a particular day to the
Backup table, like this:

 Insert Into Backup (InvoiceNo, LineNo, CustomerNo, InvoiceDate,
 ItemNo, Qty, UnitPrice)
 Select InvoiceNo, LineNo, CustomerNo, InvoiceDate,
 ItemNo, Qty, UnitPrice
 From InvoiceLine
 Where InvoiceDate = 11/20/1998

 Modifying Column Values

 You can modify the column values of an existing table by using the Update statement,

which has the following general form:

 Update table
 Set column = value [, column = value]
 Where condition

 For example, here’s a query that raises the unit price of every product by 10 percent:

 Update Product
 Set UnitPrice = UnitPrice * 1.1

 Suppose you want to raise the price of only expensive products (those with a unit price in

excess of $1,000). The following query does just that:

 Update Product

 - 207 -

 Set UnitPrice = UnitPrice * 1.1
 Where UnitPrice > 1000.00

You might correctly guess that it’s possible to use subqueries within Update statements.
Here’s an Update statement that raises the prices of products with higher-than-average
prices:

 Update Product
 Set UnitPrice = UnitPrice * 1.1
 Where UnitPrice > (Select Avg(UnitPrice) From Product)

 Deleting a Table Row

 To delete a table row, you use the Delete statement, which has the following general

form:

 Delete From table
 Where condition

 For example, to delete the inexpensive products (those priced at $1,000 or less) from the

Product table, use the following query:

 Delete From Product
 Where UnitPrice <= 1000.00

DATA CONTROL LANGUAGE

In addition to Data Definition Language and Data Manipulation Language, SQL provides
a third sublanguage: Data Control Language (DCL). SQL’s Data Control Language lets
you perform the following tasks:

 • Create user IDs for database users

 • Specify the privileges available to each user ID (for example, the ability to access a

given database table)

 • Group database operations into transactions

 • Configure database operating parameters

 • Create and restore backups of the database or its tables

Data control operations are generally performed by a database administrator, rather than a
software developer. Moreover, data control operations often involve vendor-specific
extensions to the standard SQL language. Therefore, DCL is often vendor specific, rather
than standardized across platforms. Consequently, this chapter doesn’t attempt to survey
DCL. You should consult your database documentation to determine which operations are
supported as well as the syntax of the commands used to perform those operations.

FROM HERE

This chapter explained the fundamentals of relational database technology and the SQL
language for accessing relational databases. You learned how to create relational
databases and how to access and modify the data they hold. The following chapters
provide additional information about relational databases:

 - 208 -

 • Chapter 12, “Java Database Connectivity (JDBC),” describes Java’s API for access to

relational databases.

 • Appendix B, “Quick References,” summarizes the syntax of key SQL statements for

handy reference.

You’ll also use your knowledge of relational databases in understanding the sample airline
reservation system programs, many of which store their data in a simple relational
database. Despite the growing popularity of object-oriented databases, relational
databases remain the most popular means of storing information.

Chapter 12: JAVA Database Connectivity
(JDBC)

 Overview

You’ve probably seen a ship in a bottle: a fully rigged eighteenth or nineteenth century
sailing vessel contained in a bottle having a mouth so small you marvel at how the builder
got the components inside and assembled them. Before Sun released the Java Database
Connectivity (JDBC) API, having a relational database and a Java program was a little
like having a ship in a bottle: You knew where your data was but couldn’t get to it. JDBC
lets your Java programs perform SQL queries and process the results returned by the
SQL interpreter. Using JDBC, it’s a snap to access a relational database. In this chapter
you learn:

 • How to use JDBC to query a relational database

 JDBC makes it simple to issue a SQL query and access the results.

 • How to use JDBC to determine the structure of the result set returned by a query

 JDBC makes available a host of information describing the results of a query. You can

use this information to avoid hard-coding that may cause maintenance headaches.

 • How to use JDBC to update the contents of a database

JDBC lets you add, change, and delete SQL table rows. You can also group SQL
statements that alter database contents into transactions, which helps avoid
inconsistent database contents.

The sample programs in this chapter relate to the airline reservation system described in
Chapter 6, “The Airline Reservation System Model.” None of these sample programs
comprises a complete airline reservation system transaction or operation; instead, they
focus on data management. More complete sample programs in subsequent chapters will
build on the sample programs in this chapter.

JDBC DRIVERS

 To access a database via JDBC, you need a software driver. JDBC lets you work with

four types of drivers:

•

Type 1 drivers use a bridge to connect to the relational database. You must generally
install the bridge on each client machine, making systems that use Type 1 drivers
cumbersome to maintain. Sun’s JDK includes the JDBC-ODBC bridge, which lets you
access a relational database via ODBC, a Microsoft-designed standard way of
accessing databases. Because most databases support ODBC, you can access them

 - 209 -

using the JDBC-ODBC bridge. However, ODBC drivers generally provide access to
only a fraction of a database’s API, are sometimes inefficient, and often are not thread-
safe. Consequently, using the JDBC-ODBC bridge is a great way to learn about JDBC
but not a great way to write applications.

•

Type 2 drivers are native API drivers written mainly in C or C++ that use a proprietary
protocol to access the database. They provide efficient access to the full database
API. However, you need a different version of a Type 2 driver for every client platform.
Each database vendor provides its own Type 2 drivers; therefore, you need a separate
driver for each type of database engine your application accesses.

•

Type 3 drivers are native API drivers that use a network protocol to communicate with
a middleware server that mediates access to a database. Because Type 3 drivers are
not vendor specific, you need only a single Type 3 driver no matter how many types of
database engines your application accesses. However, you need a different version of
the driver for every client platform.

•

Type 4 drivers are pure Java drivers that communicate directly with a database. You
need a different version of the driver for each database engine. However, because a
Type 4 driver is pure Java, it will run on any client platform.

As you can see, you should not generally use a Type 1 driver. Nevertheless, in this
chapter we’ll use the JDBC-ODBC bridge. The JDBC-ODBC bridge has two advantages
that are important to us: It’s included in the JDK, and it can access almost any type of
database. By using the JDBC-ODBC bridge, you can easily run the sample programs
yourself.

Even though our examples use a Type 1 driver, you’ll learn all you need to know about
accessing relational databases using JDBC. If you want to experiment with more
sophisticated drivers, consult Sun’s Java Web site, which provides a list of JDBC-
compliant drivers. You can try different drivers without changing program logic. If you like,
you can even preload selected JDBC drivers each time a JVM launches. This lets you
change the type of driver your application uses without modifying and recompiling the
application. Consult your driver documentation to determine how to preload your driver.

READING TABLE DATA: PASSENGERLIST

Let’s begin with a simple example that shows you how to read data from a relational
table. The CD-ROM includes a sample Microsoft Access database named Airline.mdb.
Even if you don’t have Access installed on your system, you can access the database so
long as you have the proper ODBC driver installed. The driver is included with Microsoft
Office, Microsoft Visual C++, and other products. Therefore, if you run Microsoft
Windows, it’s probably already installed on your Windows 9x/NT system. If not, you may
be able to download it from Microsoft’s Web site.

The database contains three simple tables: Passenger, Flight, and Seat. These tables
hold a subset of the data needed by the airline reservation system we use as an example
throughout this book.

 Copy the database from the CD-ROM to your system. In order to access the database

via ODBC, you must configure a data source name (DSN). Here’s how to do so:

 1. Open the Windows Control Panel and double-click the ODBC applet. This launches

the ODBC Data Source Administrator. Click the User DSN tab (see Figure 12.1).

 - 210 -

 Figure 12.1: The ODBC Data Source Administrator lets you create DSNs.

 2. Click the Add button to launch the Create New Data Source dialog box shown in

Figure 12.2.

 Figure 12.2: The Create New Data Source dialog box lets you identify the data

source of your new DSN.

3.

Select Microsoft Access Driver and click Finish. This launches the ODBC Microsoft
Access 97 Setup dialog box. Type Airline as the data source name and then type a
suitable description, as shown in Figure 12.3.

 Figure 12.3: The ODBC Microsoft Access 97 Setup dialog box lets you

associate a DSN with a database.

4.

Click the Select button and then use the Select Database dialog box to select the file
that contains your database. Click OK to return to the ODBC Microsoft Access 97
Setup dialog box. Click OK to return to the ODBC Data Source Administrator. Finally,
click OK to exit. Your database is now ready for access via ODBC.

 Using appletviewer, run the PassengerList applet by using the PassengerList.html file.

Type a SQL query in the Query field and press Enter. The applet displays the query

 - 211 -

results in its Result field, as you can see in Figure 12.4.

 Figure 12.4: The PassengerList applet lets you execute queries and view

results.

 Opening a Database Connection

Let’s see how the PassengerList applet works. Listing 12.1 shows its source code. Apart
from the TextField and TextArea that comprise the applet’s user interface, the
PassengerList class defines four fields, including three constants and a field that
references a Connection.

 LISTING 12.1 PassengerList.java —READING A DATABASE

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.sql.*;
 public class PassengerList extends Applet
 {
 static final String DB = "jdbc:odbc:airline";
 static final String USER = "";
 static final String PASSWORD = "";
 TextField theQuery = new TextField();
 TextArea theResult = new TextArea(20, 64);
 Connection theConnection;
 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 add(p1, BorderLayout.NORTH);
 add(theResult, BorderLayout.CENTER);
 p1.setLayout(new GridLayout(0, 1));
 p1.add(new Label("Query:"));
 p1.add(theQuery);
 p1.add(new Label("Result:"));
 theResult.setEditable(false);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theQuery.setFont(f);
 theResult.setFont(f);
 theQuery.addActionListener(new QueryHandler());
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 theConnection =
 DriverManager.getConnection(DB, USER, PASSWORD);

 - 212 -

 }
 catch (ClassNotFoundException ex1) { fatalError(ex1); }
 catch (SQLException ex2) { fatalError(ex2); }
 }
 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }
 // Inner class omitted
 }

The constants specify which database the program accesses and the user ID and
password used to log on. The name of the database has the form of a special URL. The
first component of the URL is the protocol name, jdbc . Every JDBC driver defines the
structure of the remaining components of the URL. The JDBC-ODBC bridge uses the
format jdbc:odbc:dsn , where dsn is the data source name that identifies the
database.

The init method creates a Connection object and binds it to the field
theConnection . As you’ll see, the Connection object encapsulates the database.
JDBC programs send several types of messages to the Connection object.

Let’s explore the init method. It begins with the usual sort of code that establishes the
applet’s user interface. The last part of the method includes a try-catch that opens a
connection to the database. The static method Class.forName loads the named class
into the JVM (if the class has not already been loaded). The init method uses the
Class.forName method to load the JDBC-ODBC driver, the full class name of which is
sun.jdbc.odbc.JdbcOdbcDriver . The init method then uses the static
DriverManager.getConnection method to open a connection to the database,
which it stores in the field theConnection . The getConnection method checks the
URL that specifies the database and selects an appropriate driver from among those
loaded.

Several errors can occur while attempting to open the database. For example, the
JDBCODBC driver may not be present or the database may be inaccessible. Two catch
statements deal with these possibilities by invoking a utility method that prints a stack
trace that identifies the error. Because you launch appletviewer from a command window,
it displays stack traces there.

 Executing a SQL Statement

The inner class QueryHandler contains the statements that create and execute the
SQL query and that display the results. Its actionPerformed method creates and
generates the query, which is encapsulated within a Statement object obtained by
sending the createStatement message to the Connection object obtained from
DriverManager.getConnection in the init method. The Statement object
understands several important messages, including the executeQuery message that
sends a query to the database. The query is a String argument of the executeQuery
message, which returns the results encapsulated within a ResultSet object.

The actionPerformed method uses the displayResult utility method to display
the contents of the ResultSet. It then closes the Statement. This action frees
resources that are no longer needed. Notice that the database connection remains open:
By pressing Enter in the Query field, you can repeatedly invoke the actionPerformed
method. See Listing 12.2.

 LISTING 12.2 PassengerList.java —INNER CLASS

 - 213 -

 class QueryHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 String query = theQuery.getText();
 Statement stmt = theConnection.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 displayResult(rs);
 stmt.close();
 }
 catch (SQLException ex) { fatalError(ex); }
 }

 public void displayResult(ResultSet rs)
 {
 try
 {
 ResultSetMetaData rsmd = rs.getMetaData();
 int cols = rsmd.getColumnCount();
 theResult.setText("");
 while (rs.next())
 {
 theResult.append("\n");
 for (int i = 1; i <= cols; i++)
 {
 String text = rs.getString(i);
 if (text == null) text = "";
 theResult.append(text + ":");
 }
 }
 rs.close();
 }
 catch (SQLException ex) { fatalError(ex); }
 }
 }

 Displaying Query Results

The displayResult method obtains a ResultSetMetaData object by sending the
getMetaData message to the ResultSet object. It uses the ResultSetMetaData
object to determine the structure of the ResultSet that contains the query result. The
ResultSetMetaData class supports many useful methods, which you’ll explore in the
next section, “Learning About Result Sets: MetaData.” The displayResult method
uses only one of these: getColumnCount , which returns a count of the number of
columns (fields) in the ResultSet.

To access a row of the ResultSet, you send the ResultSet the next message. The
ResultSet returns true if it found a row or false if you’ve accessed all the rows.
The while loop processes each row of the ResultSet. It uses the column count to
control a for loop that iterates over the columns of the ResultSet. Most ODBC

 - 214 -

database drivers require you to access columns sequentially. The for loop uses the
getString message to obtain the value of each database column as a String. A
family of get messages lets you get column values as other data types (see Table
12.1). However, most database data types can be conveniently converted to String, so
it’s often expeditious to use getString, whatever the actual data type of the column.

 TABLE 12.1 DATA ACCESS METHODS OF ResultSet

Method

Meaning

getDouble(int col)

Gets the value of a column as a double

getFloat(int col)

Gets the value of a column as a float

getInt(int col)

Gets the value of a column as an int

getLong(int col)

Gets the value of a column as a long

getObject(int col)

Gets the value of a column as an Object

getShort(int col)

Gets the value of a column as a short

getString(int col)

Gets the value of a column as a String

getTime(int col)

Gets the value of a column as a Time

getTimeStamp(int col)

Gets the value of a column as a TimeStamp

getUnicodeStream(int
col)

Gets the value of a column as an InputStream of
Unicode characters

wasNull()

Returns true if the last column accessed had the
SQL value null

The displayResult method appends the value of each column to the contents of the
TextArea. After processing all the rows, it closes the ResultSet. Notice that the method
uses a try-catch to handle SQLException errors, which are thrown when the SQL
interpreter finds an error or another problem occurs.

LEARNING ABOUT RESULT SETS: METADATA

As previously mentioned, the ResultSet class makes a lot of useful information
available via its getResultSetMetaData method, which returns a
ResultSetMetaData object. Figure 12.5 shows the window of the MetaData applet. It
lets you enter a query and then describes the result set the query returns. Let’s analyze
how the applet works.

 Listing 12.3 shows the source code of the MetaData applet, which resembles the source

code of the PassengerList applet. As before, the class includes fields that identify the

 - 215 -

database and the logon user ID and password. Another field holds a reference to the
database Connection object. As before, the interesting part of the program is the inner
class that handles ActionEvents.

 Figure 12.5: Result set meta data describes the contents of a result set.

 LISTING 12.3 MetaData.java —LEARNING ABOUT A ResultSet

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.sql.*;

 public class MetaData extends Applet
 {
 static final String DB = "jdbc:odbc:airline";
 static final String USER = "";
 static final String PASSWORD = "";

 TextField theQuery = new TextField();
 TextArea theResult = new TextArea(20, 64);

 Connection theConnection;

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p1 = new Panel();
 add(p1, BorderLayout.NORTH);
 add(theResult, BorderLayout.CENTER);
 p1.setLayout(new GridLayout(0, 1));
 p1.add(new Label("Query:"));
 p1.add(theQuery);
 p1.add(new Label("Result:"));
 theResult.setEditable(false);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 theQuery.setFont(f);
 theResult.setFont(f);
 theQuery.addActionListener(new QueryHandler());
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 - 216 -

 theConnection =
 DriverManager.getConnection(DB, USER, PASSWORD);
 }
 catch (ClassNotFoundException ex1) { fatalError(ex1); }
 catch (SQLException ex2) { fatalError(ex2); }
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 // Inner class omitted
 }

Listing 12.4 shows the MetaData class, the inner class of the MetaData applet. The
actionPerformed method closely resembles that of the PassengerList applet;
however, this QueryHandler class defines the displayResult method differently.

 LISTING 12.4 MetaData.java —EXECUTING A QUERY

 class QueryHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 String query = theQuery.getText();
 Statement stmt = theConnection.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 displayResult(rs);
 stmt.close();
 }
 catch (SQLException ex) { fatalError(ex); }
 }

 public void displayResult(ResultSet rs)
 {
 try
 {
 ResultSetMetaData rsmd = rs.getMetaData();
 int cols = rsmd.getColumnCount();
 println("Columns=" ++ cols);
 println("");
 for (int col = 1; col <= cols; col++)
 {
 println("Name=" ++
 rsmd.getColumnName(col));
 println("Label=" ++
 rsmd.getColumnLabel(col));
 println("Max Width=" ++
 rsmd.getColumnDisplaySize(col));
 println("DB Type=" ++

 - 217 -

 rsmd.getColumnTypeName(col));
 println("JDBC Type=" ++
 getJDBCTypeName(rsmd.getColumnType(col)));
 println("Signed=" ++
 rsmd.isSigned(col));
 println("Precision=" ++
 rsmd.getPrecision(col));
 println("Scale=" ++
 rsmd.getScale(col));
 println("Currency Value=" ++
 rsmd.isCurrency(col));
 println("Auto Increment=" ++
 rsmd.isAutoIncrement(col));
 println("Case Sensitive=" ++
 rsmd.isCaseSensitive(col));
 println("Read Only=" ++
 rsmd.isReadOnly(col));
 int nullable =
 rsmd.isNullable(col);
 switch (nullable)
 {
 case rsmd.columnNoNulls:
 println("Null OK=No");
 break;
 case rsmd.columnNullable:
 println("Null OK=Yes");
 break;
 default:
 println("Null OK=Unknown");
 }
 println("Searchable=" ++
 rsmd.isSearchable(col));
 println("Writable=" ++
 rsmd.isWritable(col));
 println("Definitely Writable=" ++
 rsmd.isDefinitelyWritable(col));
 println("");

 }
 rs.close();
 }
 catch (SQLException ex) { fatalError(ex); }
 }

 // Utility methods omitted
 }

Rather than display the contents of the result set rows, this method describes the result
set table by using various ResultSetMetaData messages. Table 12.2 summarizes
these methods and their functions. The QueryHandler class includes two utility
methods (not shown here) in order to conserve space; they’re included on the CD-ROM.
The getJDBCTypeName method works with the getColumnType method, which
returns an int corresponding to the JDBC data type of a column. The getColumnType

 - 218 -

method simply returns a String that describes the data type corresponding to its int
argument.

The println is not the familiar System.out.println , although it does have a
similar purpose. The println utility method appends its String argument to the
contents of the TextArea called theResult, and then appends a line termination
sequence.

 TABLE 12.2 KEY ResultSetMetaData METHODS

Method

Meaning

int
getColumnDisplaySize(int
col)

Returns the maximum display size of the specified
column

String
getColumnLabel(int
col)

Returns the suggested column heading of the
specified column

String
getColumnName(int col)

Returns the name of the specified column

int getColumnType(int
col)

Returns the JDBC type of the specified column

String
getColumnTypeName(int
col)

Returns the vendor-specific name of the type of the
specified column

int getPrecision(int
col)

Returns the number of digits (numeric column) or
characters (nonnumeric column) of the specified
column

int getScale(int col)

Returns the implied decimal point of the specified
column

boolean
isAutoIncrement(int
col)

Returns true if the value of the specified column
is generated by the database, which assigns
consecutive values

boolean
isCaseSensitive(int
col)

Returns true if the specified column is case
sensitive

boolean isCurrency(int
col)

Returns true if the specified column holds a
currency value

boolean
isDefinitelyWritable(int
col)

Returns true if the specified column is writable

int isNullable(int
col)

Returns a value that indicates whether the
specified column can contain SQL null as its value

 - 219 -

boolean isReadOnly(int
col)

Returns true if the specified column is read-only

boolean
isSearchable(int col)

Returns true if the specified column can be used
in a Where clause

isSigned(int col)

Returns true if the specified column can
accommodate a signed numeric value

isWritable(int col)

Returns true if a new value can be written to the
specified column

 UPDATING A DATABASE: PASSENGERUPDATE

Using JDBC to update a relational database is a little more difficult than using it to read
the database. Listing 12.5 shows the source code of the PassengerUpdate applet, which
lets you add new passengers to the Passenger table or change the names of existing
passengers. The applet does not let you delete a passenger, but you could easily add
this function.

The user interface portion of the PassengerUpdate applet is somewhat different from that
of the previous applets in this chapter. It provides two TextField objects—one for
entering a passenger number and the other for entering a passenger name. When you
enter a passenger number, the FetchHandler inner class accesses the database and
displays the passenger’s name. When you enter a passenger name, the
UpdateHandler inner class tries to update the passenger’s name. If this attempt fails,
the UpdateHandler adds a new passenger with the specified number and name.

 LISTING 12.5 PassengerUpdate.java —WRITING A DATABASE

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.sql.*;

 public class PassengerUpdate extends Applet
 {
 static final String DB = "jdbc:odbc:airline";
 static final String USER = "";
 static final String PASSWORD = "";

 TextField thePassenger = new TextField();
 TextField theName = new TextField();

 Connection theConnection;

 public void init()
 {
 setLayout(new GridLayout(0, 1));
 Panel p1 = new Panel();
 add(new Label("PassengerNo:"));
 add(thePassenger);
 add(new Label("Name:"));
 add(theName);

 - 220 -

 Font f = new Font("Monospaced", Font.PLAIN, 12);
 thePassenger.setFont(f);
 theName.setFont(f);
 thePassenger.addActionListener(new FetchHandler());
 theName.addActionListener(new UpdateHandler());
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 theConnection =
 DriverManager.getConnection(DB, USER, PASSWORD);
 }
 catch (ClassNotFoundException ex1) { fatalError(ex1); }
 catch (SQLException ex2) { fatalError(ex2); }
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 // Inner classes not shown
 }

Listing 12.6 shows the FetchHandler inner class of the PassengerUpdate applet. Its
actionPerformed method is somewhat different from those you’ve seen previously in
this chapter. It creates a SQL statement that uses a Where clause to access only a
single row of the Passenger table. Notice how the value of the local variable
passengerno, a String containing the passenger number, is joined with literals that
specify the SQL keywords of the query. Notice, too, that the passenger number is
enclosed in single quotes. This is not strictly necessary, because the passenger number
is numeric. However, this is a common technique for dealing with text values, which may
contain spaces or special characters.

 LISTING 12.6 PassengerUpdate.java— INNER CLASS

 class FetchHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theName.setText("");
 String passengerno = thePassenger.getText();
 String query =
 "Select Name " ++
 "From Passenger " ++
 "Where PassengerNo = "" ++
 passengerno +
 """;
 Statement stmt = theConnection.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 if (rs.next())
 {
 String name = rs.getString(1);

 - 221 -

 theName.setText(name);
 }
 stmt.close();
 }
 catch (SQLException ex) { fatalError(ex); }
 }
 }

The UpdateHandler inner class appears as Listing 12.7. Its actionPerformed method
constructs a SQL Update statement that loads each table column with its proper value.
Notice that a Where clause restricts the update to a single table row. The String
containing the Update statement is passed as an argument of the executeUpdate
method, which processes the query. Unlike executeQuery, which returns a
ResultSet, executeUpdate returns an int that holds the number of table rows
updated.

If no table rows were updated, the passenger is new. Therefore, the actionPerformed
method constructs an appropriate SQL Insert statement and issues it in the same
manner as the Update statement. As usual, the method closes the Statement when
it’s done.

 LISTING 12.7 PassengerUpdate.java — INNER CLASS

 class UpdateHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 try
 {
 String passengerno = thePassenger.getText();
 String name = theName.getText();
 String query =
 "Update Passenger " ++
 "Set Name = "" ++
 name +
 "" " ++
 "Where PassengerNo = "" ++
 passengerno +
 """;
 Statement stmt = theConnection.createStatement();
 int n = stmt.executeUpdate(query);
 if (n == 0)
 {
 query = "Insert Into Passenger " ++
 "(PassengerNo, Name) " ++
 "Values ("" ++
 passengerno +
 "", "" ++
 name +
 "")";
 n = stmt.executeUpdate(query);
 }
 stmt.close();
 }
 catch (SQLException ex) { fatalError(ex); }

 - 222 -

 }
 }

USING DATABASE-AWARE OBJECTS: PASSENGERAPPLET

When writing distributed applications that use a relational database, you may want to
encapsulate information about the database within your program objects so that they can
be used more transparently. The Passenger class, shown in Listing 12.8, demonstrates
one way to do so. The class provides accessor methods that get a passenger number
(getPasengerNo) or passenger name (getName). It also provides a mutator method
that changes a passenger name (setName).

 LISTING 12.8 Passenger.java —A DATABASE-AWARE OBJECT

 import java.sql.*;

 public class Passenger
 {
 String thePassengerNo;
 String theName;

 public Passenger()
 {
 this("", "");
 }

 public Passenger(String passenger_no, String name)
 {
 thePassengerNo = passenger_no;
 theName = name;
 }

 public String getPassengerNo()
 {
 return thePassengerNo;
 }

 public String getName()
 {
 return theName;
 }

 public void setName(String name)
 {
 theName = name;
 }

 public static Passenger getInstance(Connection db,
 String passenger_no) throws SQLException
 {
 String query =
 "Select Name " ++
 "From Passenger " ++

 - 223 -

 "Where PassengerNo = "" ++
 passenger_no +
 """;
 Statement stmt = db.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 rs.next();

 String name = rs.getString(1);
 rs.close();
 stmt.close();
 return new Passenger(passenger_no, name);
 }

 public void dbWrite(Connection db)
 throws SQLException
 {
 String query =
 "Update Passenger " ++
 "Set Name = "" ++
 theName +
 "" " ++
 "Where PassengerNo = "" ++
 thePassengerNo +
 """;
 Statement stmt = db.createStatement();
 int n = stmt.executeUpdate(query);
 if (n == 0)
 {
 query = "Insert Into Passenger " ++
 "(PassengerNo, Name) " ++
 "Values ("" ++
 thePassengerNo +
 "", "" ++
 theName +
 "")";
 n = stmt.executeUpdate(query);
 }
 stmt.close();
 }
 }

The class provides two other public methods: getInstance, which retrieves a
Passenger object from the database, and dbWrite, which stores a Passenger
object in the database. The getInstance method is static, so you can call it without
first creating a Passenger object. It simply retrieves the name of the specified
passenger from the database and then constructs and returns a Passenger object.

The code of the dbWrite method resembles that of the actionPerformed method of
the PassengerUpdate applet. It first tries to update an existing row of the Passenger
table; failing that, it adds a new row.

Listing 12.9 shows the PassengerApplet applet, which demonstrates how to use the
Passenger class. Notice that the applet includes a Passenger field. As usual, the
init method opens the database connection. The getInstance and dbWrite

 - 224 -

methods of the Passenger class are written to accept a reference to an open database
connection so that a single connection is shared among the classes and threads of the
program. Because ODBC drivers are often not thread-safe, it’s especially important that a
single connection be shared among the classes and threads when the JDBC-ODBC
bridge is used. As usual, the applet defers most processing to its inner classes.

 LISTING 12.9 PassengerApplet.java —AN APPLET THAT USES THE
Passenger CLASS

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.sql.*;

 public class PassengerApplet extends Applet
 {
 static final String DB = "jdbc:odbc:airline";
 static final String USER = "";
 static final String PASSWORD = "";

 TextField thePassengerNo = new TextField();
 TextField theName = new TextField();

 Passenger thePassenger;
 Connection theConnection;

 public void init()
 {
 setLayout(new GridLayout(0, 1));
 Panel p1 = new Panel();
 add(new Label("PassengerNo:"));
 add(thePassengerNo);
 add(new Label("Name:"));
 add(theName);
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 thePassengerNo.setFont(f);
 theName.setFont(f);
 thePassengerNo.addActionListener(new FetchHandler());
 theName.addActionListener(new UpdateHandler());
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 theConnection =
 DriverManager.getConnection(DB, USER, PASSWORD);
 }
 catch (ClassNotFoundException ex1) { fatalError(ex1); }
 catch (SQLException ex2) { fatalError(ex2); }
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 - 225 -

 // Inner classes not shown
 }

Listing 12.10 shows the inner classes of the PassengerApplet applet. The
actionPerformed method uses the getInstance method to retrieve the specified
passenger from the database. If the passenger does not exist, the getInstance
method throws an SQLException. The PassengerApplet applet simply reports the
exception. Instead of reporting the exception, it might instantiate a default passenger
object.

 LISTING 12.10 PassengerApplet.java —INNER CLASSES

 class FetchHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theName.setText("");
 thePassenger = Passenger.getInstance(
 theConnection,
 thePassengerNo.getText());
 theName.setText(thePassenger.getName());
 }
 catch (SQLException ex) { fatalError(ex); }
 }
 }

 class UpdateHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 thePassenger.dbWrite(theConnection);
 }
 catch (SQLException ex) { fatalError(ex); }
 }
 }

The UpdateHandler class uses the dbWrite method to update an existing table row or
add a new table row. Because the dbWrite method handles the distinction internally, it’s
all the same to the UpdateHandler .

DEFINING TRANSACTIONS: PASSENGERTRANSACTION

Because the dbWrite method of the Passenger class uses a two-step process to
update the database, it’s vulnerable to a database anomaly similar to those that affect
concurrent threads. If two users simultaneously access the same passenger record, one
user may unknowingly undo a change posted by another. Recall that solving the problem
affecting threads involved using synchronization to make the nonatomic operations
behave atomically.

 - 226 -

The solution to the database anomaly is similar. JDBC allows you to define a transaction
that consists of a group of database operations. The transaction is not permanently
posted to the database until you send the database a commit message. If a program
terminates without sending a commit message, the database automatically rolls back
any pending changes.

The CD-ROM contains an applet called PassengerTransaction that demonstrates the
technique. Here, you’ll see just those parts that differ significantly from other examples in
this chapter.

Listing 12.11 shows the try-catch block of the applet’s init method, where the
applet opens the database connection. Notice that two new messages are sent:
setTransactionIsolation and setAutoCommit . The former chooses a policy
that governs transaction behavior. Although JDBC provides a number of alternative levels
of transaction isolation, not all databases implement these. You’ll need to consult your
database documentation to determine which isolation levels are available to you.

The setAutoCommit message turns off autocommit, a JDBC facility that automatically
posts database changes as they occur. Unless you turn off autocommit, your transactions
will be ineffective, because they’ll be posted as a single operation when the database is
closed. In that case, an error relating to any transaction will cause the database to roll
back every transaction.

 LISTING 12.11 PassengerTransaction.java —DEFINING A DATABASE

TRANSACTION

 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 theConnection =
 DriverManager.getConnection(DB, USER, PASSWORD);
 theConnection.setTransactionIsolation(
 Connection.TRANSACTION_READ_COMMITTED);
 theConnection.setAutoCommit(false);
 }
 catch (ClassNotFoundException ex1) { fatalError(ex1); }
 catch (SQLException ex2) { fatalError(ex2); }

Listing 12.12 shows the fatalError method of the PassengerTransaction applet.
Notice that it has been modified to immediately roll back any pending changes whenever
an error occurs.

 LISTING 12.12 PassengerTransaction.java —HANDLING EXCEPTIONS

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 try
 {
 System.err.print("Attempting database rollback...");
 theConnection.rollback();
 System.err.println("Okay.");
 }
 catch (SQLException ex2)
 {
 ex2.printStackTrace();

 - 227 -

 }
 }

The last change necessary to establish transactions appears in Listing 12.13, which
shows how to update the database when transactions are in effect. Notice that the last
statement in the try block sends the commit message to the database. Because
processing is complete, no further errors are likely. Committing the completed updates
prevents them from being rolled back in the event of a subsequent error.

 LISTING 12.13 PassengerTransaction.java —UPDATING THE DATABASE

 try
 {
 String passengerno = thePassenger.getText();
 String name = theName.getText();
 String query = // details omitted
 Statement stmt = theConnection.createStatement();
 int n = stmt.executeUpdate(query);
 if (n == 0)
 {
 query = // details omitted
 n = stmt.executeUpdate(query);
 }
 stmt.close();
 theConnection.commit();
 }

FROM HERE

In this chapter, you’ve learned about the JDBC facility for accessing relational databases
using Java. You’ve learned how to read and write database tables, how to determine the
contents of a result set, and how to establish transactions that help prevent database
anomalies.

 Appendix B, “Quick References,” provides additional information about relational

databases and summarizes the syntax of key SQL statements for handy reference.

Chapter 13: Sockets

 Overview

As a child, you may have constructed a tin-can telephone system. By running a fishing
line from one tree house to another, you may even have constructed a tin-can telephone
network that let you contact your friends from the comfort and seclusion of your own
treetop fortress. This simplest of information-exchange devices works similarly to
sockets, an information exchange facility provided by TCP/IP networks. In this chapter
you learn:

 • How sockets let you exchange data among networked hosts

Although sockets are low-level mechanisms for data exchange, they’re simple to use
and operate efficiently. When you want to exchange large volumes of data or when
your data has a simple structure, the socket is an appropriate vehicle.

 • How to write socket-based clients and servers

 - 228 -

 Using the java.net library, you can easily write simple, yet powerful clients and

servers that let your applications exchange data over TCP/IP networks.

 • How to use threads and timeouts to construct efficient and robust clients and servers

When servers must respond to several—perhaps many—concurrent clients, you
should use a threaded server so that the clients can contact the server even when it’s
processing a request. Because networks are not perfectly reliable, data exchanges
sometimes fail. The Java 1.1 socket timeout facility helps your applications cope with
such real-world problems.

 • How to use datagrams to efficiently exchange simple messages

The datagram protocol is a lower level protocol than sockets. It performs less error
checking and provides fewer features than sockets, but it provides very efficient data
exchange.

 SOCKETS AND THE JAVA.NET API

Sockets let you send and receive messages—called datagrams—over a TCP/IP network.
You can use either of two types of sockets: Internet Protocol (IP) sockets or User
Datagram Protocol (UDP) sockets. IP sockets send and receive IP datagrams, whereas
UDP sockets send and receive UDP datagrams. IP sockets are the garden-variety
socket; UDP sockets are less often used. In this chapter, you’ll learn how to work with
both types.

Java’s java.net package supports socket input and output. Because java.net is a
core Java package, it’s available to every standard Java virtual machine. The classes
and methods of java.net are easy to use, but powerful.

Before beginning our study of sockets, let’s take time to understand their pros and cons.
Even if you find that sockets don’t meet your application’s needs, you should spend the
time to understand them thoroughly. All other TCP/IP data exchange facilities are built
using sockets, which are the fundamental mechanisms of TCP/IP data transfer. You’ll
find a knowledge of sockets helpful in understanding how other data transfer
mechanisms work.

 Pros and Cons of Sockets

Sockets are the assembly language of TCP/IP data transfer, whereas other mechanisms,
such as Remote Method Invocation (RMI) and Common Object Request Broker
Architecture (CORBA), are the high-level languages. Just as assembly language
programs—in principle—run faster and use memory more efficiently than high-level
language programs, sockets offer better performance than other transfer mechanisms.

However, beware the word offer, because what is offered is not always achieved. Some
assembly language programs are just as slow and fat as high-level language programs.
Similarly, some applications that use sockets function less efficiently than some
applications that use higher-level data transfer mechanisms.

If you can’t be certain of the benefits of assembly language and sockets, you can be
relatively certain of the cost. An assembly language program is almost always more
difficult and expensive to write than an equivalent high-level language program. That’s
why assembly language programs have become as rare as Studebakers (a popular car
during the 1940s). Similarly, if the data you want to transfer is simple—a line of ASCII
text, for instance—sockets will serve you well. However, if you need to transfer an entire
community of objects, you can expect to spend a great deal of time at the keyboard.
Moreover, because your application will be large and complex, you can expect it to

 - 229 -

contain a relatively large number of troublesome bugs.

Sockets model network data transfers as streams of bytes. When your data is simple,
sockets are an ideal choice. But when your data is complex, you should consider other
options, such as RMI or CORBA. However, RMI, CORBA, and other high-level protocols
do not transfer data as efficiently as sockets. When the volume of data is small, this
inefficiency poses no problem. However, when an application must transfer large
volumes of data, the choice of data transfer protocol is complicated. You can aim for high
efficiency, trading off the increased development and maintenance effort associated with
socket programming for potentially improved performance, or you can use a higher-level
protocol and hope that the efficiency is acceptable.

Several factors should guide your choice. First, consider your training and skills and
those of other development staff members. If you’re not familiar with socket
programming, for example, writing an application that uses sockets will pose special
risks. Second, consider the possibility of improving system performance by means of
more powerful hardware. If your application is very large, you may not have this option.
Often, though, a more powerful server or a faster network can compensate for some
programming shortcuts that, in the end, offer better value.

When neither of these considerations leads to a clear decision, we suggest you use a
high-level protocol such as RMI or CORBA rather than sockets. By using a high-level
protocol, you operate on a higher level of abstraction—one closer to the users’ problems
than to the technology applied to solve it. You’re therefore more likely to build a correct
application—one that actually solves the users’ problems. Socket programming may
confront you with so many technology-oriented choices that you inadvertently lose sight
of the users’ problems: Many projects have taken this sad path.

Once you’ve built a working system, you can assess its performance. You might find that
it performs acceptably, in which case you’ve made a winning choice. Of course, you
might find that performance is unacceptable. In that case, you can replace some or all of
the data transfers with socket-based interaction. The work spent to implement data
transfer using high-level protocols is not wasted, however. It will act as a functional
specification that guides your implementation of socket-based data transfer. As a result,
you’re much more likely to implement a reliable data transfer than if you had originally
programmed the application to use sockets.

Now that you know when to apply sockets and when to choose another data transfer
mechanism, let’s begin our study of sockets. We’ll first examine four java.net classes
that you’ll often use in network data transfers: URL , InetAddress, Socket, and
ServerSocket.

 The URL Class

If your application needs to transfer data in only one direction, you may prefer to use the
HTTP protocol rather than the IP or UDP protocol. The HTTP protocol, the protocol used
by Web clients and servers, allows a client to download information from a Web server.
The client sends the server a Uniform Resource Locator (URL) that specifies the desired
document, and the server responds by transmitting the document. The URL class
encapsulates a URL, letting you easily contact a server and download a document. You
can create a URL by using the following constructor:

 public URL(String url) throws MalformedURLException

The String argument specifies the document that the URL refers to. For example, the
Macmillan Computer Publishing Web site is http://www.mcp.com . You can create a
URL that refers to the Macmillan Web site by writing this:

 URL macmillan = new URL("http://www.mcp.com");

 - 230 -

The constructor throws an exception if the format of its argument does not represent a
valid URL. Therefore, you must enclose the statement in a try-catch block or specify
that the method that encloses the statement should throw the
MalformedURLException (or one of its ancestor classes, such as Exception).

Once you’ve constructed a URL that points to a Web document, you can fetch the
document by using the openStream method, which returns an InputStream
containing the document contents. You simply read the InputStream to access the
document contents. Some types of documents can be read more easily: The
getContent method returns an Object that encapsulates the document contents.
However, getContent succeeds only if the Java virtual machine contains an
appropriate content handler for the type of document accessed.

Table 13.1 summarizes key methods and constructors of the URL class. You’ll learn
more about URLs in Chapter 18, “Servlets and Common Gateway Interface (CGI),” which
describes the Java servlet API.

 TABLE 13.1 KEY METHODS OF THE URL CLASS

Method

Return Value

boolean
equals(Object x)

Returns true if the URL refers to the same document
as the specified object, x, which should be a URL.

Object
getContent()

Returns an object that encapsulates the document that
the URL refers to. This method fails if the type of
document content cannot be handled.

String getFile()

Returns the file portion of the URL.

String getHost()

Returns the host portion of the URL.

int getPort()

Returns the port portion of the URL.

String
getProtocol()

Returns the protocol portion of the URL.

getRef()

Returns the reference portion (the HTML name tag) of
the URL.

InputStream
openStream()

Returns an InputStream that encapsulates the
document content.

 The InetAddress Class

The InetAddress class represents the address of an Internet host. You use
InetAddress to construct Socket and DatagramPacket objects, which you’ll meet
in later sections of this chapter. The InetAddress class has no constructor; instead, it
provides three static methods that each return an instance of InetAddress:

 - 231 -

 • InetAddress getLocalHost() , which returns an InetAddress that represents

the local host (the one running the Java program).

 • InetAddress getByName(String host), which returns an InetAddress of

the specified host, if the host’s address can be determined. For example,

 getByName("www.mcp.com")

 returns the Internet address of the Macmillan Web server.

•

InetAddress [] getAllByName(String host), which returns an array
containing all the Internet addresses of the specified host. A host has multiple
addresses if it has multiple network interfaces, because each interface has a unique
address.

 Each of these methods throws UnknownHostException if it’s unable to determine the

Internet address of the host.

 The Socket Class

An Internet host has a set of numbered ports that it can use to communicate with other
hosts. The Socket class encapsulates a port, providing methods that let you use the
port to send and receive data. You can create a Socket by using the constructor

 Socket(String host , int port)

 or

 Socket(InetAddress address, int port)

 For example, to open a socket that sends to port 80 of the host www.mcp.com, you write

this:

 Socket mcp = new Socket("www.mcp.com", 80;)

The Socket class also provides more specialized constructors, but you’ll seldom use
them. The Socket constructors throw exceptions if they fail; your programs need to
include a try-catch block or a throws clause to handle them.

Once you’ve created a socket, you can use the getInputStream method to get an
associated InputStream and getOutputStream to get an associated
OutputStream. By using ordinary input/output methods to read and write these
streams, you can perform socket input and output as simply as file input and output.

If you’ve worked with InputStream and OutputStream, you’ve probably discovered
that their cousins— BufferedInputStream and PrintStream—are more convenient
to use.

You could wrap the InputStream returned by getInputStream in a
BufferedInputStream and the OutputStream in a PrintStream, but this quickly
grows tiresome. An easier, more object-oriented approach is to wrap the Socket in a
new class that provides the appropriate stream wrappers. Listing 13.1 shows the
BetterSocket class, which does just that. The BetterSocket class does not extend
the Socket class; instead, it includes a field that references a Socket. This makes it
possible to construct a BetterSocket from a Socket. The BetterSocket class

 - 232 -

does not offer the full range of methods provided by the Socket class: You could revise
BetterSocket to define each of them, giving each method a body that forwards the
corresponding message to the Socket instance and returns the result. However, the
Socket class has many methods; therefore, defining corresponding BetterSocket
methods would be tedious. Instead, the BetterSocket class provides an accessor
method, getSocket, that returns a reference to the Socket instance. You can
accomplish any desired Socket operation by getting a reference to the Socket
instance and sending the Socket the appropriate message.

In addition to wrapping the Socket streams in a BufferedInputFile and
PrintStream, BetterSocket provides readLine and println methods that
make it easy to send lines of text over the Socket data streams. You’ll see how this
works in an upcoming sample program. Notice also the close method that releases a
Socket that’s no longer needed.

 LISTING 13.1 BetterSocket.java —AN IMPROVED SOCKET CLASS

 import java.net.*;
 import java.io.*;

 public class BetterSocket
 {
 Socket theSocket;
 BufferedReader theReader;
 PrintWriter theWriter;

 public BetterSocket(String host, int port)
 throws UnknownHostException, IOException
 {
 this(new Socket(host, port));
 }

 public BetterSocket(Socket s)
 throws UnknownHostException, IOException
 {
 theSocket = s;
 theReader = new BufferedReader(
 new InputStreamReader(
 theSocket.getInputStream()));
 theWriter = new PrintWriter(
 theSocket.getOutputStream(), true);
 }

 public Socket getSocket()
 {
 return theSocket;
 }

 public void close()
 throws IOException
 {
 theSocket.close();
 }

 - 233 -

 public String readLine()
 throws IOException
 {
 return theReader.readLine();
 }

 public void println(String s)
 throws IOException
 {
 theWriter.println(s);
 }
 }

 The ServerSocket Class

The last of the classes we’ll study before looking at a sample program is
ServerSocket. The ServerSocket class, as you may have guessed, is used by
server programs. It has a method, accept, that lets a program wait for a request sent by
a client and then returns a Socket that the client and server can use to exchange data.
Obligingly, the Socket object on the client side automatically switches to communicate
using the new Socket. Figure 13.1 illustrates the operation of a ServerSocket.

 To create a ServerSocket, you use the following constructor:

 ServerSocket(int port)

This constructor throws an IOException if it fails; otherwise, your ServerSocket is
ready for use. When you send the ServerSocket the accept message, it blocks until
a client request arrives and then returns a Socket. For example, to create a
ServerSocket that listens on port 1234 for a client request, you could write:

 Figure 13.1: The ServerSocket returns a Socket that’s used to exchange

data between a client and server.

 ServerSocket server = new ServerSocket(1234);
 Socket client = server.accept();

 You’ll soon meet some additional ServerSocket methods, but let’s press on to study our

first sample program.

 A SIMPLE SOCKET-BASED CLIENT AND SERVER

In this section, you’ll see a simple socket-based client and a simple socket-based server.
The client is implemented as an applet, and the server is implemented as a server. As
presented, the client and server must run on the same computer, but you can easily

 - 234 -

change them to run on separate computers. You should initially run the client and server
on the same computer, running the applet using appletviewer to satisfy yourself that it
works. Only then should you consider running the client and server on different
computers or running the client using a Web browser. You may find that you need to
adjust the security configuration of your browser, particularly if you modify the applet to
access a remote server.

 The Socket-Based Client Applet

Figure 13.2 shows the SimpleClient applet, which connects to the SimpleServer
application you’ll meet in the next section. The application is a fortune cookie system (the
type popular on UNIX systems) that provides a random message of the day. The client
sends one of two messages—”hello” or “bye”—triggered by buttons on its window. In
response, the server sends three random messages (fortune cookies). That way, you can
choose the message you prefer and ignore the others, a feature not provided by run-of-
the-mill fortune cookie servers.

 Figure 13.2: The SimpleClient applet models a typical network client.

First, let’s see how to run the application so you can try it for yourself; then we’ll study its
source code. Here are the steps you should follow. The following instructions assume
you’re using Windows 9x/NT (you’ll need to adapt them if you’re using some other
operating system):

 1. Copy the source files SimpleClient.java, SimpleServer.java, and SimpleClient.html

from the CD-ROM to your hard drive.

 2. Compile the two Java source files.

 3. Start the server by typing this:

 java SimpleServer

 Soon, the server should respond with a “ready” message.

 4. Open a new DOS window and start the client by typing this:

 appletviewer SimpleClient.html

 5. Click the Hello button or the Bye button and observe the server response.

 6. When you’re done, exit the appletviewer by clicking the window’s close box. Exit the

server by pressing Ctrl+C.

If anything goes wrong, you’ll see a Java stack trace in either the server window or client
window. One possible source of problems is the port number, which is hard-coded as
1234. If this port is unavailable, the application will fail. Fixing this is simple: Choose
another port number, change both the client and server source files, recompile them, and
run the application.

 Listing 13.2 shows the source code of the SimpleClient applet. Let’s study it carefully.

 - 235 -

Notice that the port number on which the server listens is hard-coded as a constant.
Notice also that the applet contains a BetterSocket as a field. The init method is
straightforward, dealing exclusively with user-interface issues. The class also includes a
fatalError method that prints a stack trace and closes the BetterSocket.

 LISTING 13.2 SimpleClient.java —A SIMPLE SOCKET-BASED CLIENT

 import java.applet.*;
 import java.awt.*;

 import java.awt.event.*;
 import java.net.*;
 import java.io.*;

 public class SimpleClient extends Applet
 {
 public static final int PORT = 1234;

 Button theHelloButton = new Button("Hello");
 Button theByeButton = new Button("Bye");
 TextArea theResponse = new TextArea(5, 64);

 BetterSocket theSocket;

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p = new Panel();
 add(p, BorderLayout.NORTH);
 add(theResponse, BorderLayout.SOUTH);
 p.setLayout(new GridLayout(1, 0));
 p.add(theHelloButton);
 p.add(theByeButton);
 theResponse.setEditable(false);
 theHelloButton.addActionListener(new HelloHandler());
 theByeButton.addActionListener(new ByeHandler());
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 try
 {
 theSocket.close();
 }
 catch (Exception ex1) { ; }
 }

 class HelloHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try

 - 236 -

 {
 theResponse.setText("");
 theSocket = new BetterSocket(
 getCodeBase().getHost(), PORT);
 theSocket.println("Hello");
 theResponse.append(theSocket.readLine() + "\n");
 theResponse.append(theSocket.readLine() + "\n");
 theResponse.append(theSocket.readLine() + "\n");
 theSocket.close();
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class ByeHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theResponse.setText("");
 theSocket = new BetterSocket(
 getCodeBase().getHost(), PORT);
 theSocket.println("Bye");
 theResponse.append(theSocket.readLine() + "\n");
 theResponse.append(theSocket.readLine() + "\n");
 theResponse.append(theSocket.readLine() + "\n");
 theSocket.close();
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
 }

The ActionListener s—HelloHandler and ByeHandler—do the interesting work.
Each is similar to the other, so we’ll focus on HelloHandler. Its actionPerformed
method instantiates a BetterSocket, using the host address and port number. It
obtains the host address by using the Applet method getCodeBase, which returns a
URL that specifies the host that served the applet. The URL.getHost method returns
the host portion of the URL. The actionPerformed method sends a println
message to the BetterSocket, causing it to transmit the message argument—the
String “Hello”—to the server. The actionPerformed method then reads the
server’s three-line response, displays the results, and closes the socket.

 That’s all there is to it: As promised, sockets are really quite simple to use. Let’s move on

to study the server program.

 The Socket-Based Server

Listing 13.2 shows the server program that works with the client you just studied. The
server’s static main method instantiates a SimplerServer object and invokes its
init method. The init method’s first task is to access the server’s cookies. To store
the cookies, the server uses two text files—one containing “Hello” fortune cookies and
one containing “Bye” fortune cookies. The init method reads these files and stores the

 - 237 -

cookies in two Vectors—one containing “Hello” messages and the other containing
“Bye” messages.

 LISTING 13.3 SimpleServer.java —A SIMPLE SOCKET-BASED SERVER

 import java.net.*;
 import java.io.*;
 import java.util.*;

 public class SimpleServer
 {
 public static final int PORT = 1234;

 ServerSocket theSocket;
 BetterSocket theClient;

 Vector theHello = new Vector();
 Vector theBye = new Vector();

 public static void main(String [] args))
 {
 new SimpleServer().init();
 }

 public void init()
 {
 try
 {
 BufferedReader in;
 String line;

 in = new BufferedReader(
 new InputStreamReader(
 new FileInputStream("hello.txt")));
 while ((line = in.readLine()) != null)
 theHello.addElement(line);
 in.close();

 in = new BufferedReader(
 new InputStreamReader(
 new FileInputStream("bye.txt")));
 while ((line = in.readLine()) != null)
 theBye.addElement(line);
 in.close();
 theSocket = new ServerSocket(PORT);
 while (true)
 {
 System.err.println("Server is ready.");
 theClient = new BetterSocket(
 theSocket.accept());
 System.err.println("Server processing request.");
 String s = theClient.readLine();
 System.out.println("Read " ++ s + " from

 - 238 -

client..");
 if (s.equalsIgnoreCase("hello"))
 sendGreeting(theHello);
 else if (s.equalsIgnoreCase("bye"))
 sendGreeting(theBye);
 else
 System.err.println("Invalid request: " ++ s);
 theClient.close();
 System.err.println("Processing complete.");
 }
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 public void sendGreeting(Vector v)
 throws IOException
 {
 int size = v.size();
 for (int i = 0; i < 3; i++)
 {
 int n = (int) (Math.random() * size);
 theClient.println((String) v.elementAt(n));
 }
 }
 }

The server then creates a ServerSocket and enters an endless loop that processes
client requests indefinitely. In the loop, it displays a “ready” message and then invokes
the accept method. The accept method blocks execution until the ServerSocket
receives a client request; then it returns a Socket. The init method wraps the Socket
in a BetterSocket to simplify handling the input and output streams. Then it reads the
command—”Hello” or “Bye”—sent by the client by using the readLine method. It tests
the contents of the command String and passes an appropriate argument to the
sendGreeting method, which sends the server’s response. Finally, it closes the socket
and loops, issuing another accept message that readies the server to process another
client request.

The sendGreeting method uses the Math.random method to generate random
numbers it uses to pick fortune cookies. It sends each fortune cookie to the client by
using the println method. As you can see, the server is only a little more complex
than the client.

Socket programming is so easy that you may wonder how it could possibly lead to the
complications cited earlier in the chapter. The sample application features quite simple
interaction between the client and server. The client sends one of two possible messages,
and the server responds, in either case, with a three-line response. It’s not socket
programming as such that can become complicated, it’s the client-server dialog. When
clients and servers exchange dozens of message types, each requiring transmission of
structured data, such as arrays or objects, programs rapidly become complicated.
Therefore, the original advice stands. Use sockets only for simple data transfers; choose
another technology when the data structure is more sophisticated than a simple byte
stream.

 - 239 -

 THREADS AND TIMEOUTS

In order to create efficient and robust servers, you need to know about two socket
programming techniques: multithreaded servers and socket timeouts. This section
explains these techniques and presents examples of their use.

 A Socket-Based Multithreaded Server

The server described in the previous section presents a flaw that we ignored in the
interest of presenting a simple initial example. During the time the server is processing a
client’s request, it is unavailable to other clients. In some applications, this poses no
problem. However, in others, rapid server response is critical. In this case, you need a
different program structure: a multithreaded server.

Listing 13.4 shows the ThreadedServer application, a simple multithreaded server. Let’s
examine ThreadedServer, focusing on the points of difference between it and
SimpleServer.

 LISTING 13.4 ThreadedServer.java —A MULTITHREADED SERVER

 import java.net.*;
 import java.io.*;
 import java.util.*;

 public class ThreadedServer
 {
 // Change the following literal if a port conflict occurs
 public static final int PORT = 1234;
 ServerSocket theSocket;

 Vector theHello = new Vector();
 Vector theBye = new Vector();

 public static void main(String [] args))
 {
 new SimpleServer().init();
 }

 public void init()
 {
 try
 {
 // Statements that load cookie vectors
 // omitted.

 theSocket = new ServerSocket(PORT);
 while (true)
 {
 System.err.println("Server is ready.");
 Socket s = theSocket.accept();
 Thread rp =
 new Thread(new RequestProcessor(s));
 rp.start();
 }

 - 240 -

 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }
 // Inner class omitted
 }

ThreadedServer contains an inner class, RequestProcessor , that processes client
requests. You’ll meet it in a moment. For now, direct your attention to the init method.
There you’ll see the statement that creates the ServerSocket, followed by the
“endless” while loop. The contents of the loop are somewhat different than in
SimpleServer. ThreadedServer instantiates a Thread object based on the inner class
RequestProcessor and launches the Thread by sending it a start message.
While the Thread processes the latest client request, the init method loops back and
issues a new accept message, readying itself to handle a new client request. By
handling new requests and request processing in parallel, the multithreaded server
outperforms the simple server described earlier.

Listing 13.5 shows ThreadedServer’s inner class, RequestProcessor . Its constructor
saves the Socket reference it receives as an argument, wrapping it in a
BetterSocket for ease of use. Its run method begins execution when the associated
Thread receives a start message. As you can see, the run method contains the
same statements that SimpleServer uses to handle client requests. The thread structure
of the server, not its logic, is the source of its efficiency. Notice that Listing 13.5 does not
show the sendGreeting method, which is unchanged from the version that appeared
earlier in SimpleServer. The CD-ROM version of ThreadedServer contains the code for
the sendGreeting method so that you can run ThreadedServer yourself. Just follow
the same instructions given earlier, replacing references to SimpleServer with
ThreadedServer.

 LISTING 13.5 ThreadedServer.java — INNER CLASS

 class RequestProcessor implements Runnable
 {
 BetterSocket theClient;

 public RequestProcessor(Socket s)
 throws UnknownHostException, IOException
 {
 theClient = new BetterSocket(s);
 }

 public void run()
 {
 try
 {
 System.err.println("Server processing request.");
 String s = theClient.readLine();
 System.err.println("Read " ++ s + " from
client..");

 if (s.equalsIgnoreCase("hello"))
 sendGreeting(theHello);
 else if (s.equalsIgnoreCase("bye"))

 - 241 -

 sendGreeting(theBye);
 else
 System.err.println("Invalid request: " ++ s);
 theClient.close();
 System.err.println("Processing complete.");
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 // sendGreeting method omitted
 }
 }

 Network Glitches

Network connections do not always function perfectly. A client might successfully contact
a server, but a network outage might prevent the server from returning its response.
Unless the client program anticipates this possibility, it could appear to be hung, because
it’s waiting indefinitely for a server response that never arrives.

Servers can suffer a similar fate if a client connects but fails to transmit the proper
command. The CD-ROM includes two programs—BadServer and BadClient—that
simulate network outages. BadServer contains the lines

 System.err.println("Sleeping...");
 Thread.sleep(10000);
 System.err.println("Awake!");

right after its call to accept. The lines cause the server to become unavailable for a
period of 10 seconds (10,000 milliseconds), thus mimicking a 10-second network outage.
By running BadServer and SimpleClient, you can see how a network outage “hangs”
SimpleClient.

 The second program, BadClient, includes similar statements in its processing, just before

it transmits a command. You can use it to see how network outages affect a server.

Of course, our real purpose is not merely to study the adverse consequences of a
network outage. We want to prevent outages from causing programs to hang or appear
to hang. The next two subsections show how to do this.

 A Socket-Based Client with a Timeout Interval

To ameliorate the consequences of a network outage, you can specify a timeout interval
for your sockets. When you issue a socket read or write, a clock begins counting down
the interval. If the clock reaches zero before the read or write completes, the socket
throws an exception that notifies your program that something has gone wrong. You
specify a timeout using the message

 setSoTimeout(int interval)

 where interval specifies the timeout interval in milliseconds.

 - 242 -

The CD-ROM includes the client applet TimeoutClient, which is based on SimpleApplet.
TimeoutClient uses a timeout counter to recover from network outages. Listing 13.6
shows the pertinent source code that includes the call to setSoTimeout.

 LISTING 13.6 TimeoutClient.java (PARTIAL LISTING)—A CLIENT WITH A

TIMEOUT INTERVAL

 class HelloHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theResponse.setText("");
 theSocket = new BetterSocket(
 getCodeBase().getHost(), PORT);
 Socket s = theSocket.getSocket();
 s.setSoTimeout(1000);
 theSocket.println("Hello");
 theResponse.append(theSocket.readLine() + "\n");
 theResponse.append(theSocket.readLine() + "\n");
 theResponse.append(theSocket.readLine() + "\n");
 theSocket.close();
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

You can use TimeoutClient with BadServer to see how it handles simulated network
outages. TimeoutClient simply prints a stack trace when its timeout interval expires. A
real application would probably take more a appropriate action that’s application
dependent.

 A Socket-Based Server with a Timeout Interval

Listing 13.7 presents the pertinent part of a server—TimeoutServer—that uses a timeout
interval to avoid tying up resources devoted to clients it can’t access. The CD-ROM
includes the complete source code of the server application, which you can use with
BadClient to study simulated network outages.

 LISTING 13.7 TimeoutServer.java (PARTIAL LISTING)—A SERVER WITH

TIMEOUT INTERVAL

 theSocket = new ServerSocket(PORT);
 while (true)
 {
 System.err.println("Server is ready.");
 Socket s = theSocket.accept();
 s.setSoTimeout(5000);
 Thread rp =
 new Thread(new RequestProcessor(s));
 rp.start();
 }

 - 243 -

DATAGRAMS

As mentioned near the beginning of this chapter, you can use either of two types of
sockets: IP sockets or UDP sockets. Up to this point, the sample programs have used IP
sockets. In this section, you’ll learn how to use UDP sockets.

UDP sockets don’t provide the automatic handshaking provided by the accept method
of the Socket class. Moreover, TCP/IP doesn’t guarantee that a host will receive UDP
packets (often called datagrams) in the same sequence in which the originating host sent
them. Therefore, UDP packets are primarily useful only for brief data transfers that
involve quite simple data structures. Moreover, some organizations’ network
administrators configure firewalls to block UDP packets from outside their organization. If
you want to use UDP packets across the Internet, you should check with your network
administrator before writing code. You could save yourself a great deal of time.

 A Datagram Client

Listing 13.8 shows the DatagramClient applet, a simple applet that sends and receives
datagrams. As usual, the outer class sets up the user interface, which includes two
buttons—one labeled “Hello” and one labeled “Bye.” Clicking a button causes the applet
to send a message to a server, which you’ll study in a moment. The server returns a
response that the applet displays.

 LISTING 13.8 DatagramClient.java —A DATAGRAM-BASED CLIENT

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.net.*;
 import java.io.*;

 public class DatagramClient extends Applet
 {
 public static final int SEND_PORT = 1234;
 public static final int LISTEN_PORT = 1235;

 Button theHelloButton = new Button("Hello");
 Button theByeButton = new Button("Bye");
 TextArea theResponse = new TextArea(5, 64);

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p = new Panel();
 add(p, BorderLayout.NORTH);
 add(theResponse, BorderLayout.SOUTH);
 p.setLayout(new GridLayout(1, 0));
 p.add(theHelloButton);
 p.add(theByeButton);
 theResponse.setEditable(false);
 theHelloButton.addActionListener(new HelloHandler());
 theByeButton.addActionListener(new ByeHandler());
 }

 public void fatalError(Exception ex)

 - 244 -

 {
 ex.printStackTrace();
 }

 // Inner classes omitted
 }

The interesting parts of the applet are the HelloHandler and ByeHandler inner
classes, which are shown in Listing 13.9. Because the inner classes are similar, let’s look
at only the HelloHandler class. Its actionPerformed method is invoked when the
user clicks the “Hello” button. By sending the getBytes method to a String
constructed using a literal, the actionPerformed method constructs a byte array
containing the message “Hello.” The method then creates two DatagramSocket s: the
first for receiving a datagram, and the second for sending a datagram. The method
creates a DatagramPacket using a constructor that specifies the byte array that
contains the message, the length of the buffer, the Internet address of the destination
host, and the port from which the datagram will be sent. Having created the datagram,
the method sends it using the send message.

To receive the server’s response, the method creates a byte array big enough to hold
the response. It then creates a DatagramPacket using a simple form of the constructor
that specifies only the buffer and its length. By sending the receive message, the
method gets the server response and places it in the buffer. Finally, the method displays
the response and closes the DatagramSocket s.

 LISTING 13.9 DatagramClient.java —INNER CLASSES

 class HelloHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theResponse.setText("");
 byte [] buffer = new String("Hello").getBytes();
 DatagramSocket in =
 new DatagramSocket(LISTEN_PORT);
 DatagramSocket out
 = new DatagramSocket();
 DatagramPacket dg;
 dg = new DatagramPacket(
 buffer, buffer.length,
 InetAddress.getByName(null), SEND_PORT);
 System.err.print("Sending datagram....");
 out.send(dg);
 System.err.println("sent.");
 buffer = new byte[255];
 dg = new DatagramPacket(
 buffer, buffer.length);
 in.receive(dg);
 theResponse.setText(new String(buffer));
 in.close();
 out.close();
 }

 - 245 -

 catch (Exception ex) { fatalError(ex); }
 }
 }

 class ByeHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theResponse.setText("");
 byte [] buffer = new String("Bye").getBytes();
 DatagramSocket in =
 new DatagramSocket(LISTEN_PORT);
 DatagramSocket out
 = new DatagramSocket();
 DatagramPacket dg;
 dg = new DatagramPacket(
 buffer, buffer.length,
 InetAddress.getByName(null), SEND_PORT);
 out.send(dg);
 buffer = new byte[255];
 dg = new DatagramPacket(
 buffer, buffer.length);
 in.receive(dg);
 theResponse.setText(new String(buffer));
 in.close();
 out.close();
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
 }

 As you can see, the datagram client turns out to be a simple program. Let’s examine the

datagram server, which you’ll discover is equally simple.

 A Datagram Server

Listing 13.10 shows the DataServer application, a UDP-based server. Notice that the
application defines two ports: one on which to receive and another on which to transmit.
The complementary client applet, which you’ll meet momentarily, uses these same two
ports but in a mirrored fashion—the client listens on the port to which the server transmits
and transmits on the port to which the server listens.

 LISTING 13.10 DatagramServer.java —A DATAGRAM-BASED SERVER

 import java.net.*;
 import java.io.*;
 import java.util.*;

 public class DatagramServer
 {

 - 246 -

 public static final int LISTEN_PORT = 1234;
 public static final int SEND_PORT = 1235;

 Vector theHello = new Vector();
 Vector theBye = new Vector();

 public static void main(String [] args))
 {
 new DatagramServer().init();
 }

 public void init()
 {
 try
 {
 BufferedReader in;
 String line;

 in = new BufferedReader(
 new InputStreamReader(
 new FileInputStream("hello.txt")));
 while ((line = in.readLine()) != null)
 theHello.addElement(line);
 in.close();
 in = new BufferedReader(
 new InputStreamReader(
 new FileInputStream("bye.txt")));
 while ((line = in.readLine()) != null)
 theBye.addElement(line);
 in.close();

 DatagramSocket socket =
 new DatagramSocket(LISTEN_PORT);
 byte [] buffer = new byte[255];
 DatagramPacket dg =
 new DatagramPacket(buffer, buffer.length);
 while (true)
 {
 System.err.println("Server is ready.");
 socket.receive(dg);
 System.err.println("Server processing request.");
 String s = new String(buffer);
 System.err.println("Read " ++ s + " \nfrom client "
++

 dg.getAddress() + ".");
 if (s.startsWith("Hello"))
 sendGreeting(theHello);
 else if (s.startsWith("Bye"))
 sendGreeting(theBye);
 else
 System.err.println("Invalid request: " ++ s);
 System.err.println("Processing complete.");
 }

 - 247 -

 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 public void sendGreeting(Vector v)
 throws IOException
 {
 String s = "";
 int size = v.size();
 for (int i = 0; i < 3; i++)
 {
 int n = (int) (Math.random() * size);
 s += v.elementAt(n) + "\n";
 }
 DatagramSocket out =
 new DatagramSocket();
 DatagramPacket dg =
 new DatagramPacket(s.getBytes(), s.length(),
 InetAddress.getByName(null), SEND_PORT);
 out.send(dg);
 out.close();
 }
 }

Before sending or receiving a UDP packet, your program must construct a
DatagramPacket object. The init method constructs such an object, using a byte
array capable of holding 255 bytes. The longest message that the program can handle is
determined by the size of this DatagramPacket buffer. To listen, the server sends the
receive message to its DatagramSocket . It extracts the transmitted String from
the byte array buffer and handles processing in much the same fashion as its IP-packet
cousin servers.

In its sendGreeting method, the server constructs a DatagramSocket for
transmitting the response to the client and a DatagramPacket to hold the response. It
uses the InetAddress.getByName method with a null argument to get the host
address of the client, which in this demonstration must be the same as that of the server.
In a real server, you could use the DatagramPacket methods getAddress and
getPort to obtain the host address and port number from which the received packet
originated. Sending the assembled datagram is easily accomplished by using the send
method.

As you can see, using UDP sockets is only a bit more complicated than using IP sockets.
Where the client/server interaction is quite simple, the lower overhead of UDP sockets may
pay performance dividends.

 FROM HERE

In this chapter, you’ve learned about sockets—the most fundamental facility for
exchanging data among networked hosts. You learned how to write socket-based clients
and servers and how to use threads and timeouts to construct efficient, robust systems.
You also learned how to use low-overhead datagrams to increase the efficiency of
simple, connectionless data exchanges. The following chapters provide additional
information about sockets:

 - 248 -

 • Chapter 14, “Socket-Based Implementation of the Airline Reservation System,” shows

how the airline reservation system example can be implemented using sockets.

•

Chapter 15, “Remote Method Invocation (RMI),” describes a Java core package that
implements a socket-based protocol that simplifies exchanging data among networked
hosts.

 • Chapter 18, “Servlets and Common Gateway Interface (CGI),” describes the Java

servlet API. URLs play an important role in the servlet API.

Chapter 14: Socket-Based Implementation of
the Airline Reservation System

 Overview

In the previous chapter, you learned about Java’s network API and socket programming.
In this chapter, you’ll see an example of a larger socket-based program—the Airline
Reservation System of Chapter 6, “The Airline Reservation System Model.” You’ll find the
source code for the program on the CD-ROM. By studying the program, you’ll learn more
about using sockets to exchange data across networks.

To refresh your recall of the Airline Reservation System, you should turn back to Chapter
6 and skim it quickly, focusing on the functional requirements of the system. In this
section, we’ll focus on the differences between the requirements presented in Chapter 6
and the program described in this chapter.

Note

Even though it includes over 1,100 lines of source code, the sample program
presented in this chapter doesn’t fully satisfy all the requirements described in
Chapter 6.

 The sample program implements only the following three transactions, which are based

on those given in Chapter 6:

 • Search Flights, which returns each flight stored in the database.

 • Search Seats, which returns the reservation information for a specified passenger

identified by passenger number.

•

Book Seat, which enters a reservation for a specified passenger and flight. The
transaction makes several simplifying assumptions. The passenger and flight must
already exist as entities; the transaction does not create new passengers or flights.
The reservation number must be unique; attempting to add a reservation with the
same number as an existing reservation updates the existing reservation.

 The sample program does not implement the visual interface for seat selection described

in Chapter 6. Nor does it implement the reservation pool locking mechanism.

Fully implementing the requirements given in Chapter 6 is possible, but it would increase
the size of the program by a factor of 2 or 3. A good way to learn more about socket
programming is to extend the program to include the unimplemented transactions and
features described in Chapter 6.

 Let’s begin our tour of the program by looking at the application classes. Later, we’ll look at

the client and server classes that provide the user interface and network connectivity.

APPLICATION CLASSES

 - 249 -

 The sample program includes three application classes:

 • Flight, which models a flight

 • Passenger, which models a passenger

 • Reservation, which models a reservation

 Let’s examine each of these in turn.

 The Flight Class

Because top-level Java classes are always stored in a file that has the same name as the
class, you can correctly infer that the Flight class is stored in the file Flight.java. You’ll
find that file on the CD-ROM in the directory for this chapter.

 Note All the code from here until the next section, “The Passenger Class,” is

found in the file Flight.java in the chapter14/listings directory of the CD-ROM.

 The Flight class defines these fields:

 String theFlightNo;
 String theOrigin;
 String theDestination;
 String theDeparture;
 String theArrival;
 int theSeats;
 int theReservations;

The FlightNo field uniquely identifies a flight. All the fields except two are String
objects. The integer field theSeats contains the seating capacity of the flight; the
integer field theReservations contains the number of seats currently booked.

 The class has two constructors—one that lets you create a Flight by specifying only

the flight number and another that lets you specify values for each field:

 public Flight(String flight_no)
 {
 this(flight_no, "", "", "", "", 0, 0);
 }

 public Flight(String flight_no, String origin,
 String destination, String departure,
 String arrival, int seats, int reservations)
 {
 theFlightNo = flight_no;
 theOrigin = origin;
 theDestination = destination;
 theDeparture = departure;
 theArrival = arrival;
 theSeats = seats;
 theReservations = reservations;

 - 250 -

 }

 The Flight class has four main types of methods:

 • Accessor and mutator methods

 • Static methods that return one or more instances of Flight

 • A method, dbWrite, that writes a Flight instance to the database

 • Methods that convert a Flight instance to or from a String representation

The accessor and mutator methods present nothing remarkable; they simply provide
access to the state data stored in a Flight object. Therefore, let’s move on to the static
methods of the Flight class—getInstance and getFlights. These methods are
static, so they can be used even if you have no reference to a Flight instance. They
provide the usual way of obtaining flight data from the database. The getInstance
method returns the Flight object having a specified flight number:

 public static Flight getInstance(Connection db,
 String flight_no) throws SQLException
 {
 String query =
 "Select Origin, Destination, Departure, " +
 "Arrival, Seats, Reservations " +
 "From Flight " +
 "Where FlightNo = "" +
 flight_no +
 """;
 Statement stmt = db.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 rs.next();
 String origin = rs.getString(1);
 String destination = rs.getString(2);
 String departure = rs.getString(3);
 String arrival = rs.getString(4);
 int seats = rs.getInt(5);
 int reservations = rs.getInt(6);
 rs.close();
 stmt.close();
 return new Flight(flight_no, origin,
 destination, departure, arrival, seats,
 reservations);
 }
 The similar getFlights method returns an array that contains every flight:

 public static Flight [] getFlights((Connection db)
 throws SQLException
 {
 Vector f = new Vector();
 String query =
 "Select FlightNo, Origin, Destination, " +
 "Departure, Arrival, Seats, Reservations " +

 - 251 -

 "From Flight ";
 Statement stmt = db.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next())
 {
 String flight_no = rs.getString(1);
 String origin = rs.getString(2);
 String destination = rs.getString(3);
 String departure = rs.getString(4);
 String arrival = rs.getString(5);
 int seats = rs.getInt(6);
 int reservations = rs.getInt(7);
 Flight flight = new Flight(flight_no, origin,
 destination, departure, arrival, seats,
 reservations);
 f.addElement(flight);
 }
 rs.close();
 stmt.close();
 int n = f.size();
 Flight [] flights == new Flight[n];
 for (int i = 0; i < n; i++)
 {
 flights[i] == (Flight) f.elementAt(i);
 }
 return flights;
 }

Notice how getFlights uses a Vector to collect the flights and then creates an array
with exactly the proper size, copying the elements of the Vector into the array. Notice
also the use of the getInt method to obtain values of the proper type for the numeric
fields theSeats and theReservations .

 The dbWrite method writes a Flight instance into a SQL database. It first attempts

to update an existing table row; failing that, it creates a new table row:

 public void dbWrite(Connection db)
 throws SQLException
 {
 String query =
 "Update Flight " +
 "Set Origin = "" +
 theOrigin +
 "", " ++
 "Destination = "" +
 theDestination +
 "", " ++
 "Departure = "" +
 theDeparture +
 "", " +
 "Arrival = "" +
 theArrival +
 "", " +

 - 252 -

 "Seats = "" +
 theSeats +
 "", " +
 "Reservations = "" +
 theReservations +
 "" " +
 "Where FlightNo = "" +
 theFlightNo +
 """;
 Statement stmt = db.createStatement();
 int n = stmt.executeUpdate(query);
 if (n == 0)
 {
 query = "Insert Into Flight " +
 "(FlightNo, Origin, Destination, Departure, " +
 "Arrival, Seats, Reservations) " +
 "Values ("" +
 theFlightNo +
 "", "" +
 theOrigin +
 "", "" +
 theDestination +
 "", "" +
 theDeparture +
 "", "" +
 theArrival +
 "", "" +
 theSeats +
 "", "" +
 theReservations +
 "")";
 n = stmt.executeUpdate(query);
 }
 stmt.close();
 }

Finally, the Flight class provides a method, packAsString, that packs the field
values of a Flight instance into a String and a static method, unpackFromString
, that in turn returns a Flight instance it creates by parsing field values from a String:

 public String packAsString()
 {
 String s = theFlightNo;
 s += "," ++ theOrigin;
 s += "," ++ theDestination;
 s += "," ++ theDeparture;
 s += "," ++ theArrival;
 s += "," ++ theSeats;
 s += "," ++ theReservations;
 return s;
 }

 public static Flight unpackFromString(String s)

 - 253 -

 {
 StringTokenizer st = new StringTokenizer(s, ",");
 Flight f = new Flight(st.nextToken());
 f.setOrigin(st.nextToken());
 f.setDestination(st.nextToken());
 f.setDeparture(st.nextToken());
 f.setArrival(st.nextToken());
 f.setSeats(Integer.parseInt(st.nextToken()));
 f.setReservations(Integer.parseInt(st.nextToken()));
 return f;
 }

 The Passenger Class

Note

All the code from here until the next section, “The Reservation Class,” is
found in the file Passenger.java in the chapter14/listings directory of the CD-
ROM.

 The design of the Passenger class resembles that of the Flight class, so we’ll

present only the most salient parts. The Passenger class defines the following fields:

 String thePassengerNo;
 String theName;
 String theAddress;
 String theCity;
 String theState;
 String theZip;
 String theCreditCard;

Like the Flight class, the Passenger class defines two constructors. One requires
only a passenger number; the other requires values for each field. The Passenger
class also provides an accessor and mutator method for each of its fields.

The Passenger class provides two database methods: a static method, getInstance,
that returns the instance of Passenger having a specified passenger number and a
method, dbWrite, that writes a Passenger instance to the database. Here’s the
getInstance method, which resembles the similarly named method of the Flight
class:

 public static Passenger getInstance(Connection db,
 String passenger_no) throws SQLException
 {
 String query =
 "Select Name, Address, City, State, Zip, " +
 "CreditCard " +
 "From Passenger " +
 "Where PassengerNo = "" +
 passenger_no +
 """;
 Statement stmt = db.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 rs.next();
 String name = rs.getString(1);
 String address = rs.getString(2);

 - 254 -

 String city = rs.getString(3);
 String state = rs.getString(4);
 String zip = rs.getString(5);
 String credit_card = rs.getString(6);
 rs.close();
 stmt.close();
 return new Passenger(passenger_no, name, address,
 city, state, zip, credit_card);
 }

 Here’s the dbWrite method, which resembles the similarly named method of the
Flight class:

 public void dbWrite(Connection db)
 throws SQLException
 {
 String query =
 "Update Passenger " +
 "Set Name = "" +
 theName +
 "", Address = "" +
 theAddress +
 "", City = "" +
 theCity +
 "", State = "" +
 theState +
 "", Zip = "" +
 theZip +
 "", CreditCard = "" +
 theCreditCard +
 "" " +
 "Where PassengerNo = "" +
 thePassengerNo +
 """;
 Statement stmt = db.createStatement();
 int n = stmt.executeUpdate(query);
 if (n == 0)
 {
 query = "Insert Into Passenger " +
 "(PassengerNo, Name, Address, " +
 "City, State, Zip, CreditCard) " +
 "Values ("" +
 thePassengerNo +
 "", "" +
 theName +
 "", "" +
 theAddress +
 "", "" +
 theCity +
 "", "" +
 theState +
 "", "" +

 - 255 -

 theZip +
 "", "" +
 theCreditCard +
 "")";
 n = stmt.executeUpdate(query);
 }
 stmt.close();
 }

The Passenger class also defines packAsString and unpackFromString
methods. These are not shown because they closely resemble the similarly named
methods of the Flight class, which we covered in the preceding section.

 The Reservation Class

Note

All the code from here until the next section, “The SuperSocket Class,” is
found in the file Reservation.java in the chapter14/listings directory of the CD-
ROM.

 The third and final application class of the sample program is the Reservation class.

This class defines three fields:

 String theReservationNo;
 String theFlightNo;
 String thePassengerNo;

The Reservation class defines three constructors. Two resemble those of the Flight
and Passenger classes: One of these requires only a reservation number, and the
other requires values for each of the three fields of the Reservation class. The
additional method takes a Connection instance as an argument and uses the
Connection to check whether the specified flight has an available seat. If no seat is
available, the method throws a FlightBookedException ; otherwise, it reduces the
count of available seats:

 public Reservation(Connection db,
 String reservation_no, String flight_no,
 String passenger_no)
 throws FlightBookedException, SQLException
 {
 Flight flight = Flight.getInstance(db, flight_no);
 int seats = flight.getSeats();
 int reservations = flight.getReservations();
 if (reservations >= seats)
 throw new FlightBookedException();
 flight.setReservations(reservations + 1);
 flight.dbWrite(db);
 theReservationNo = reservation_no;
 theFlightNo = flight_no;
 thePassengerNo = passenger_no;
 }

 The BookedFlightException class is a simple methodless class that extends the
Exception class.

 - 256 -

Of course, the method the Reservation class uses to manage available sets is not an
entirely adequate approach. Unless a constructed Reservation instance is
subsequently booked, the corresponding seat is forever lost. Passengers might
appreciate the extra leg room, but the airline’s shareholders would not. The pool
mechanism described in Chapter 6 is a simple solution to this problem.

Like the previous classes, the Reservation class defines accessor and mutator
methods for its fields. It also defines three static methods: one that returns a specified
Reservation instance, one that returns all Reservation instances associated with a
specified flight, and one that returns all Reservation instances associated with a
specified passenger. These follow the design of similar methods of the Flight and
Passenger classes and are therefore not shown here. Similarly, the dbWrite,
packAsString, and unpackFromString methods of the Reservation class are
not shown. See the file Reservation.java in the chapter14/listings directory of CD-ROM
for their contents.

 THE SuperSocket CLASS

To transfer data across the network, the program uses the SuperSocket class, which
performs a function similar to that of the BetterSocket class of Chapter 13, “Sockets.”
SuperSocket uses an ObjectInputStream and an ObjectOutputStream to
serialize an object, transmit it over the network, and deserialize it. Rather than associate
ObjectStream objects directly with the socket, the program associates them with byte
arrays, using the ByteArrayInputStream and ByteArrayOutputStream classes.
This is necessary because in JDK 1.1.6, associating an ObjectStream with a socket
causes the socket to hang.

 The SuperSocket class always transfers a Vector whose elements must be

serializable objects. The readVector and writeVector methods do the real work:

 Note The code for this section is found in the file SuperSocket.java in the

chapter14/listings directory of the CD-ROM.

 public Vector readVector()
 throws IOException, ClassNotFoundException
 {
 int n = theInput.readInt();
 byte [] buffer == new byte[n];
 theInput.read(buffer);
 ByteArrayInputStream bytes =
 new ByteArrayInputStream(buffer);
 ObjectInputStream in =
 new ObjectInputStream(bytes);
 Object x = in.readObject();
 in.close();
 return (Vector) x;
 }

 public void writeVector(Vector x)
 throws IOException
 {
 ByteArrayOutputStream bytes =
 new ByteArrayOutputStream();
 ObjectOutputStream out =
 new ObjectOutputStream(bytes);

 - 257 -

 out.writeObject(x);
 byte [] buffer == bytes.toByteArray();
 out.close();
 theOutput.writeInt(buffer.length);
 theOutput.write(buffer);
 }

 To see how to use SuperSocket, we first need to move on and consider the Server

class.

THE Server CLASS

The Server class provides a simple, single-threaded server that provides remote clients
access to the data contained in the application’s SQL database. The main method of the
Server class instantiates an instance of Server. The constructor opens a database
connection and initiates listening for client requests:

 Note All the code from here until the next section, “The RemoteClient Class,” is

found in the file Server.java in the chapter14/listings directory of the CD-ROM.

 public Server()
 {
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 theConnection =
 DriverManager.getConnection(DB, USER, PASSWORD);

 theSocket = new ServerSocket(PORT);
 while (true)
 {
 System.err.println("Server is ready.");
 Socket s = theSocket.accept();
 theClient = new SuperSocket(s);
 processRequest();
 }
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

When the program receives a client request, the processRequest method uses
SuperSocket.readObject to obtain the Vector that specifies the requested
transaction:

 Vector v = theClient.readVector();
 String opcode = (String) v.elementAt(0);
 System.out.println(opcode);

It then tests the contents of the String object opcode and invokes a method to
process the requested transaction. Here’s the method that processes requests to search
for a flight:

 - 258 -

 public Vector searchFlights()
 {
 Vector out = new Vector();
 try
 {
 Flight [] flights ==
 Flight.getFlights(theConnection);
 for (int i = 0; i < flights.length; i++)
 {
 String s = flights[i].packAsString();
 out.addElement(s);
 }
 }
 catch (SQLException ex)
 {
 out.addElement("***Error***");
 }
 return out;
 }

Each request-processing method returns a Vector that’s transmitted as a response to
the client by the processRequest method, which invokes
SuperSocket.writeVector . The response contains packed String objects that
encode Flight instances.

 Here’s the method that handles a request to search by passenger number for a specified

reservation:

 public Vector searchSeats(Vector v)
 {
 Vector out = new Vector();
 try
 {
 String passenger = (String) v.elementAt(1);
 Reservation [] res ==
 Reservation.getPassenger(
 theConnection, passenger);
 if (res == null || res.length == 0)
 out.addElement("***No such record***");
 else
 {
 for (int i = 0; i < res.length; i++)
 {
 String s = res[i].packAsString();
 out.addElement(s);
 }
 }
 }
 catch (SQLException ex)
 {
 System.out.println(ex);
 out.addElement("***Error***");

 - 259 -

 }
 return out;
 }

 Here’s the final request-processing method, the one that handles a request to book a

seat:

 public Vector bookSeat(Vector v)
 {
 Vector out = new Vector();
 try
 {
 String flight_no =
 (String) v.elementAt(1);
 String passenger_no =
 (String) v.elementAt(2);
 String res_no =
 (String) v.elementAt(3);
 Reservation res = new Reservation(
 theConnection, res_no, flight_no,
 passenger_no);
 res.dbWrite(theConnection);
 out.addElement("***Added ok***");
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 out.addElement("***Error***");
 }
 return out;
 }

 THE RemoteClient CLASS

The RemoteClient class provides a crude user interface, shown in Figure 14.1, for
accessing the remote server. It presents the same controls for each of the three
supported transactions. Actually, you don’t need to enter data for the Search Flights
transaction; you only need to enter the passenger number for the Search Seats
transaction. The Book Seat transaction requires a reservation number, flight number, and
passenger number. The program performs no input validation.

 Figure 14.1: The RemoteClient application interface lets you access the

application database over a TCP/IP network.

 In the interest of brevity, we’ll omit discussion of the user interface methods, which

merely invoke the processing methods when the user interacts with the application. See

 - 260 -

the RemoteClient.java file in the chapter14/listings directory of the CD-ROM for the
contents of the user interface methods. The RMI-based example program we present in
Chapter 16, “RMI-Based Implementation of the Airline Reservation System,” has a similar
user interface to the one featured in the RemoteClient class; that chapter contains a
detailed explanation of the user interface. Three processing methods each handle one of
the three supported transactions. The searchFlights method handles the Search
Flights transaction:

 Note All the code from this section is found in the file RemoteClient.java in the

chapter14/listings directory of the CD-ROM.

 public void searchFlights()
 {
 try
 {
 theResults.setText("");
 theSocket = new SuperSocket(
 HOST, PORT);
 theSocket.getSocket().setSoTimeout(TIMEOUT);
 Vector v = new Vector();
 v.addElement("Search Flights");
 theSocket.writeVector(v);
 v = theSocket.readVector();
 theSocket.close();
 for (int i = 0; i < v.size(); i++)
 {
 String s = (String) v.elementAt(i);
 theResults.append(s + "\n");
 }
 }
 catch (Exception ex) { fatalError(ex); }
 }

 The searchSeats method handles the Search Seats transaction:

 public void searchSeats()
 {
 try
 {
 theResults.setText("");
 theSocket = new SuperSocket(
 HOST, PORT);
 theSocket.getSocket().setSoTimeout(TIMEOUT);
 Vector v = new Vector();
 v.addElement("Search Seats");
 v.addElement(thePassengerNo.getText());
 theSocket.writeVector(v);
 v = theSocket.readVector();
 theSocket.close();
 for (int i = 0; i < v.size(); i++)
 {
 String s = (String) v.elementAt(i);
 theResults.append(s + "\n");
 }

 - 261 -

 }
 catch (Exception ex) { fatalError(ex); }
 }

 Finally, the bookSeat method handles the Book Seat transaction:

 public void bookSeat()
 {
 try
 {
 theResults.setText("");
 theSocket = new SuperSocket(
 HOST, PORT);
 theSocket.getSocket().setSoTimeout(TIMEOUT);
 Vector v = new Vector();
 v.addElement("Book Seat");
 v.addElement(theFlightNo.getText());
 v.addElement(thePassengerNo.getText());
 v.addElement(theReservationNo.getText());
 theSocket.writeVector(v);
 v = theSocket.readVector();
 theSocket.close();
 for (int i = 0; i < v.size(); i++)
 {
 String s = (String) v.elementAt(i);
 theResults.append(s + "\n");
 }
 }
 catch (Exception ex) { fatalError(ex); }
 }

To run the sample program for yourself, you must use Windows 9x or NT, because UNIX
does not provide support for the Microsoft Access database Airline.mdb. First copy the
files from the chapter14/listings directory of the CD-ROM to your local hard drive. If you
prefer, you can copy only the source files and compile them yourself. Use the Control
Panel ODBC Administrator tool to create a DSN named “airline,” referring to the
Airline.mdb file in this chapter. Be sure not to use the similarly named file for Chapter 12,
“Java Database Connectivity (JDBC).” Then, start the server in one DOS window by
typing

 java Server

 Finally, start the client in another DOS window by typing

 java RemoteClient

If you get an error message indicating that the client or server was unable to open its
socket, you should suspect a port conflict. Change the value of the PORT field in both the
Server.java and RemoteClient.java files from 1234 to a port that your system does not use.

 FROM HERE

 In this chapter, you’ve seen a complete application of modest size that uses sockets to link

a client program with a remote server. In the next chapter, you’ll learn how Java’s Remote

 - 262 -

Method Invocation (RMI) API makes it easier to create such applications.

 Chapter 15: Remote Method Invocation (RMI)

 Overview

According to German folklore, everyone has a doppelgänger, a spirit double that
resembles its original in every detail. One’s doppelgänger, however, is normally invisible.
Remote Method Invocation (RMI) allows objects in different Java virtual machines of
different hosts to send and receive messages. To perform this feat, RMI employs doppel-
gängers that appear as local objects even though they reside on remote hosts. In this
chapter you’ll learn:

 • How RMI makes it easy to implement distributed applications

 Implementing a distributed application using sockets can be a chore. RMI makes it

almost as easy to implement a distributed application as a nondistributed application.

 • How RMI makes it possible for local objects and remote objects to interact

A remote object can be accessed outside its host Java virtual machine. You’ll see how
Java’s serialization facility allows remote objects to accept method calls and return
method results.

 • How to create remote objects

A remote object requires only a few more lines of code than an ordinary object. You can
easily create remote objects that act as servers, processing requests sent by clients on
other hosts. You’ll also see how such remote objects can call back their clients to inform
them of state changes.

REMOTE PROCEDURE CALLS

Transferring data is a basic computational operation. Java’s message-method paradigm
transfers data from a calling object to a called object within a single Java virtual machine.
In Chapter 13, “Sockets,” you learned how to cross virtual machine boundaries using
sockets to transfer data from one host to another. Consider that both paradigms—
method calls and sockets—achieve the same goal: the transfer of data. Now consider
which is easier to use. Most certainly you’ll agree that it’s easier to invoke a method than
to send a message over a socket. Wouldn’t you like to send data to a remote host as
easily as you invoke a method? RMI provides that convenience.

One of the cornerstones of early evolutionary biology was Haeckel’s theory that
ontogeny— the development of an embryo—recapitulates phylogeny—the evolutionary
development of the embryo’s species. Adherents of the theory pointed to apparent
parallels between the development of human embryos and those of animal species, such
as the “fish stage” of human embryo development, in which the embryo develops “gill
slits.” Subsequent research determined that the alleged recapitulation of “gill slits” was
merely superficial: At no point does a human embryo develop gills, a fish tail, or fins.
Consequently, very few modern embryologists subscribe to Haeckel’s view.

However, ontogeny often recapitulates phylogeny in the software world. Often, study of a
technology’s ancestors can reveal much about the technology. The immediate
technological forerunner of RMI is Remote Procedure Call (RPC). Although RPC is a
non–object-oriented technology, understanding how it works will help you understand
how RMI works and why RMI is an improvement over other technologies.

 Like RMI, RPC aims to make transferring data to a remote host simple. RPC presents

 - 263 -

remote data transfers as procedure calls, the basic data transfer mechanism of non–
object-oriented programs. Procedure calls differ from method calls in that the arguments
and return values of a procedure always have primitive type, never object type. As you’ll
soon see, RMI simply extends the basic RPC model by allowing arguments and return
values to have object type.

 To see how RPC works, consider a simple procedure call such as the following:

 float side = fsqrt(area);

This procedure call invokes the sqrt procedure, sending the value of area as an
argument and storing sqrt ’s return value in side . Consider how you might perform
this operation if the code for the sqrt procedure resides on a remote host. Assume that
the remote host is already equipped with a suitable socket-based server that processes
client requests. You could follow this procedure:

 1. Get the Internet address of the remote host.

 2. Open a socket connection to the server.

3.

Convert the value whose square root you require into ASCII and send the message
SQRT number, where number is the value. (Of course, you could send the value in
binary, but that makes it more difficult to troubleshoot the transfer process.)

 4. Read the server response and convert the value it contains from ASCII to floating

point.

The inconvenient part of the procedure is converting the argument value from floating
point to ASCII (known as marshaling the argument) and converting the return value from
ASCII to floating point (known as unmarshaling the return value). The server must
perform complementary operations—unpacking the argument value, computing its
square root, and marshaling the return value. RPC takes on these tasks, making it easier
to transfer data from one host to another. In Figure 15.1, the local object is termed the
client, and the remote object is termed the server, because remote objects generally act
as servers. However, later in this chapter, you’ll see how remote objects can initiate
interactions via the callback mechanism.

 Figure 15.1: RPC automatically marshals and unmarshals arguments and return

values.

REMOTE METHOD INVOCATION

RMI goes RPC one better by automatically marshaling and unmarshaling objects as well
as primitive values. To do this, it uses Java’s serialization facility—simply serializing
argument and return values, transmitting them over the network, and deserializing them
for use. Therefore, any object that implements the Serializable interface can be sent

 - 264 -

by RMI as a method argument or return value.

RMI also provides a registry service that runs on the server. The registry service
maintains a database of named remote objects. When a client wants to use a remote
object, it asks by name for a reference to the remote object. The registry scans its
database and returns a reference to the requested object. Figure 15.2 shows how RMI’s
registry works.

 To get a reference to a remote object via the registry, you use the static lookup method

of the Naming class:

 Server server = (Server) Naming.lookup(URL);

The method returns a reference to the remote object as an Object, which you then cast
to the appropriate type in this example). The URL is a String that specifies the name of
the host on which the registry and remote object run and the symbolic name of the
remote object. The URL must specify “rmi” as its protocol field. For example, to look up a
reference to a remote object known as fred on a host known as bedrock, you’d use
this:

 Server server = (Server) Naming.lookup("rmi://bedrock/fred");

 Figure 15.2: The RMI registry supplies references to remote objects.

You can specify the host using a host name or IP address. For testing, you may want to
use the host name localhost or the IP address 127.0.0.1, both of which refer to the
local host (the one on which your program is running).

With RMI, once you have a reference to a remote object, you can use it just as you would
a local object. For example, suppose you create a Calculator class that includes a
sqrt method that uses a special, high-speed algorithm for computing square roots. If a
client has a reference—call it theCalculator —to a remote Calculator object, it
could calculate a square root like this:

 float root = theCalculator.sqrt(number);

One small difference distinguishes Calculator’s sqrt method from that of a local
object: Calculator.sqrt may throw a RemoteException . Contact with remote
objects is subject to network outages and other complications that don’t affect local
objects. Java can’t handle this contingency; the proper response is application
dependent. Therefore, Java throws an exception, which your program can catch and
handle.

 Stubs and Skeletons

 - 265 -

As mentioned in the chapter introduction, RMI works its magic by means of
doppelgängers. Actually, every remote object uses a pair of doppelgängers (local objects
that stand in for the remote object) known as a stub and skeleton, as shown in Figure
15.3.

The stub and local object reside on the local host, whereas the skeleton and remote
object reside on the remote host. The local object can easily communicate with the stub
because they’re in the same Java virtual machine. Likewise, the remote object can easily
communicate with the skeleton because they’re in the same Java virtual machine. The
stub acts as a surrogate for the server so that the client can access the server
transparently. When the stub receives a message from the client, it forwards it across the
network to the server, obtains the server’s response, and returns it to the client. The
skeleton performs a similar function on behalf of the server.

 Figure 15.3: Local and remote objects communicate via stubs and skeletons.

It’s easy to program RMI clients and servers because their doppelgängers handle most of
the complications of remote access. You need to bear in mind only these few
considerations:

 • A remote method call can throw a RemoteException , which your program must

handle.

•

All objects sent via RMI as arguments or return values must implement the
Serializable interface. If an argument or return value cannot be serialized, the
remote method call fails.

•

Objects are not automatically remote: You must make them so. You’ll learn how to do
so presently. If your program sends a nonremote object as argument or receives one
as a return value, the program actually receives a copy of the object. Remote object
references can be transferred from host to host, but nonremote object references
cannot.

 The Stub and Skeleton Compiler Tool: rmic

If you’ve ever been had by a smooth-talking salesman, you may be apprehensive
concerning the stub and skeleton. Shifting the programming burden from client and
server to stub and skeleton would accomplish little if the stub and skeleton were difficult
to program. Fortunately, they’re not: Java provides a tool, rmic , that automatically
generates stubs and skeletons from a compiled .class file.

 Let’s say you’ve written and compiled a class for remote use—call it the
FrisbeeServer class. Before using the class, you run the rmic tool, like this:

 rmic FrisbeeServer

 - 266 -

The rmic tool scans the FrisbeeServer.class file and creates two new .class files:
FrisbeeServer_Stub.class and FrisbeeServer_Skel.class. Any client that remotely
accesses a FrisbeeServer object requires access to the FrisbeeServer_Stub
class, which you should distribute along with the other classes that comprise the client. If
you recompile the FrisbeeServer class, you should rerun rmic to generate a revised
stub and skeleton. Strictly speaking, this isn’t always necessary; however, it’s difficult to
predict what changes to the server necessitate a change to the stub or skeleton. It’s
better to be safe than sorry.

 Pros and Cons of RMI

Before looking at some sample RMI programs, let’s consider the pros and cons of RMI.
As you’ll soon see, relative to sockets, RMI applications are easier to develop and
maintain. Moreover, RMI may help overcome firewall limitations that make it difficult for
socket-based programs to communicate outside a protected domain. If RMI cannot
connect to a remote object using its ordinary protocol, it automatically attempts to
connect using an HTTP-based protocol. If a local proxy server lets Web clients access
Web servers outside the firewall, RMI can contact the remote object using HTTP. The
HTTP protocol is as much as an order of magnitude slower than RMI’s ordinary protocol,
but slow communication is often better than no communication.

At the time of this writing, Sun and IBM had recently announced that they will cooperate
to develop a way for RMI to communicate across a network using the same InternetORB
protocol (IIOP) supported by CORBA. A limited release of code for the new interface was
planned for release by press time. Support for IIOP may makes it possible for RMI-based
objects and CORBA-based objects to interoperate. Should this occur, RMI’s ease of use
could make it the development path of choice even for CORBA systems.

RMI also makes it simple to move behavior from one host to another—a difficult feat to
accomplish using sockets. Software agents that migrate from host to host can choose to
execute on the host that offers the best mix of local resources, thus minimizing the
amount of data that must be transported across the network and thereby improving
throughput and response time.

RMI does pose some possible cons. Some have found Java’s serialization facility
inefficient, requiring large amounts of memory and CPU cycles to serialize and
deserialize large objects. Of course, this is not a limitation of RMI in principle, merely a
potential performance bottleneck of RMI’s current implementation. If you plan to transfer
large objects across the network, you’re advised to do some simple benchmarking before
choosing RMI as your application architecture.

RMI is also a proprietary technology, solely directed by Sun. Those who prefer open
standards may shy away from RMI on this account, just as they avoid other proprietary
technologies such as Microsoft’s Distributed Component Object Model (DCOM).
Microsoft, a Java licensee, has announced that it will not support RMI—those who work
with Microsoft software may have reason to avoid RMI owing to Microsoft’s cold shoulder.
Some feel that Sun’s own attitude toward RMI is lukewarm; that Sun is more committed
to its IDL implementation of CORBA. As evidence, they point out that Sun originally
promised IIOP support for RMI in June of 1997. Sun has yet (at the time of this writing) to
fulfill this promise. Of course, Sun’s real strategy at any moment is anyone’s guess and
likely, in any case, to change over time.

A commonly cited disadvantage of RMI is that it’s a Java-only architecture. In fairness to
RMI, Java provides the Java Native Interface (JNI) facility that allows C and C++ programs
to invoke methods on Java objects. Because you can use JNI to build a Java interface to a
non-Java legacy system, it’s possible to overcome the Java-only limitation.

A SIMPLE RMI PROGRAM

 - 267 -

Now that you’ve absorbed the necessary background information, let’s study an RMI
program and learn how to implement and run remote objects. Our example is a simple
program designed to assist the customers of Bennie the Bookie’s Wagering Service. The
program, shown in Figure 15.4, displays a list of ongoing sports games and lets the user
obtain the current score directly from Bennie’s server. Don’t try to run the program just
yet: Some special instructions are required to make it operate.

 Figure 15.4: RMIClient displays game scores obtained from a remote server.

 The program consists of six source files, each of which is located in the chapter15/listings

directory of the CD-ROM:

 • Score.java, which contains the Score class that encapsulates a game score

 • Scores.java, which contains the Scores class that encapsulates a collection of game

scores

 • ScoresServerInterface.java, which contains the ScoresServerInterface interface

that defines the methods exported by the remote object

 • RMIClient.java, which contains the main code for the client applet

 • RMIServer.java, which contains the main code for the remote object

 • RMIClient.html, which contains the HTML code used to run the client applet

Listing 15.1 shows the Score class, which presents little that is remarkable. Notice that
the class is marked as implementing the Serializable interface, which permits it to
be processed by RMI.

 Listing 15.1 Score.java—A Class that Encapsulates a Game Score

 import java.io.Serializable;

 class Score implements Serializable
 {
 String theHomeCity;
 String theHomeTeam;
 String theVisitorTeam;
 int theHomeScore;
 int theVisitorScore;
 int theQuarter;

 public Score(String homecity, String hometeam,
 String visitorteam, int homescore, int visitorscore,
 int quarter)
 {
 theHomeCity = homecity;
 theHomeTeam = hometeam;

 - 268 -

 theVisitorTeam = visitorteam;
 theHomeScore = homescore;
 theVisitorScore = visitorscore;
 theQuarter = quarter;
 }

 public String getKey()
 {
 return theHomeCity + " vs " + theVisitorTeam;
 }

 public String toString()
 {
 String s = theHomeTeam;
 s += " vs " + theVisitorTeam;
 s += " at " + theHomeCity;
 s += ": " + theHomeScore;
 s += "-" + theVisitorScore;
 s += " (" + theQuarter + "Q)";
 return s;
 }
 }

Listing 15.2 shows the Scores class, which also implements Serializable. The class
encapsulates a Hashtable that provides keyed access to stored game scores. The
key, provided by the getKey method of the Score class, consists of the names of the
competing teams. The class provides a method () to obtain an array containing the keys
of all games in progress and methods to access and update the game scores (getScore
and putScore).

 LISTING 15.2 Scores.java—A CLASS THAT ENCAPSULATES A COLLECTION OF

GAME SCORES

 import java.io.Serializable;
 import java.util.*;

 public class Scores implements Serializable
 {
 Hashtable theScores = new Hashtable();

 public String [] getGames(()
 {
 int elemcount = theScores.size();
 String [] games == new String [elemcount];
 Enumeration elements = theScores.elements();
 for (int i = 0; i < elemcount; i++)
 {
 Score score = (Score) elements.nextElement();
 games [i] == score.getKey();
 }
 return games;
 }

 - 269 -

 public void putScore(Score score)
 {
 String key = score.getKey();
 theScores.remove(key);
 theScores.put(key, score);
 }
 public Score getScore(String key)
 {
 return (Score) theScores.get(key);
 }
 }

 The Server Interface

Listing 15.3 shows ScoresServerInterface , an interface that specifies the methods
exported by the remote object. The fetchGames method returns an array containing the
keys of the games in progress, and the getScore method returns the current score of a
specified game. Notice that the interface extends the Remote interface. Every remote
object must define a similar interface extending Remote that identifies its exported
methods.

 LISTING 15.3 ScoresServerInterface.java —AN INTERFACE TO A REMOTE

OBJECT

 import java.rmi.*;

 public interface ScoresServerInterface extends Remote
 {
 public String [] fetchGames(() throws RemoteException;
 public Score fetchScore(String game) throws RemoteException;
 }

 The Client

Listing 15.4 shows the RMIClient class. Notice that the class defines a String field
named URL , which refers to the host on which the remote object resides. It also “scores”
the symbolic name by which the remote object is known. As you’ll see later, the server
registers itself using this symbolic name. The remainder of the RMIClient class simply
establishes the user interface. Its inner classes, as usual, handle the processing.

 LISTING 15.4 RMIClient.java —A SIMPLE RMI-BASED CLIENT APPLET

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.rmi.*;
 import java.rmi.server.*;

 public class RMIClient extends Applet
 {
 static final String URL = "rmi://localhost/scores";
 Button theFetchGames = new Button("Fetch Games");
 Button theFetchScore = new Button("Fetch Score");
 Choice theGames = new Choice();

 - 270 -

 TextArea theScore = new TextArea(20, 64);

 FetchScoreHandler theFetchScoreHandler =
 new FetchScoreHandler();

 public void init()
 {
 setLayout(new BorderLayout());
 Panel p = new Panel();
 add(theGames, BorderLayout.NORTH);
 add(theScore, BorderLayout.CENTER);
 add(p, BorderLayout.SOUTH);
 p.setLayout(new GridLayout(1, 0));
 p.add(theFetchGames);
 p.add(theFetchScore);
 theScore.setEditable(false);
 theScore.setFont(new Font(
 "Monospaced", Font.BOLD, 12));
 theGames.addItemListener(
 new GameHandler());
 theFetchGames.addActionListener(
 new FetchGamesHandler());
 theFetchScore.addActionListener(
 theFetchScoreHandler);
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 // Inner classes omitted
 }

Listing 15.5 shows the inner classes of the RMIClient class: GameHandler,
FetchGamesHandler , and FetchScoresHandler . Both FetchGamesHandler
and FetchScoreHandler invoke methods remotely. Because the two methods are
similar, let’s examine only FetchScoreHandler .

 LISTING 15.5 RMIClient.java —INNER CLASSES

 class GameHandler implements ItemListener
 {
 public void itemStateChanged(ItemEvent evt)
 {
 String choice = theGames.getSelectedItem();
 theFetchScoreHandler.fetchScore(choice);
 }
 }

 class FetchGamesHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)

 - 271 -

 {
 try
 {
 theGames.removeAll();
 ScoresServerInterface server =
 (ScoresServerInterface) Naming.lookup(URL);
 String [] games == server.fetchGames();
 for (int i = 0; i < games.length; i++)
 {
 theGames.addItem(games[i]);
 }
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 class FetchScoreHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 fetchScore(theGames.getSelectedItem());
 }

 public void fetchScore(String game)
 {
 try
 {
 ScoresServerInterface server =
 (ScoresServerInterface) Naming.lookup(URL);
 Score score = server.fetchScore(game);
 theScore.setText(score.toString());
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
 }

FetchScoreHandler’s actionPerformed method is invoked when the user clicks
the Fetch Score button, requesting an updated score for the currently selected game.
The actionPerformed method in turn invokes the fetchScore method (which is
organized as a method separate from actionPerformed so that it can be called by the
actionPerformed method of the GameHandler class). To access the remote
method, fetchScore obtains a reference to the remote object by using the
Naming.lookup method. It casts the returned instance of Object to a
ScoresServerInterface and invokes the fetchScore method of the remote
object. It uses the Score object returned by the remote object to update the output
TextArea. Of course, these statements are enclosed in a try-catch block that
handles a possible RemoteException .

Notice that only a few statements accomplish all the work needed to access the remote
object. As promised, programming an RMI client is easy. Let’s move on to see an RMI
server. Then we’ll show you how to run the program.

 The Server

 - 272 -

Listing 15.6 shows the RMI-based server. Notice that the server extends the base class
UnicastRemoteObject , which implements appropriate remote semantics for Object
methods such as hashCode, equals, and toString. If the operation of these methods
is not important to your class, it’s not necessary that the class extend
UnicastRemoteObject . The server defines a field that contains its symbolic name
“scores,” the name the client uses to access the server.

 LISTING 15.6 RMIServer.java —A SIMPLE RMI-BASED SERVER

 import java.rmi.*;
 import java.rmi.server.*;

 public class RMIServer extends UnicastRemoteObject
 implements ScoresServerInterface
 {
 static final String SERVERNAME = "scores";

 Scores theScores = new Scores();

 public static void main(String [] args))
 {
 System.setSecurityManager(new RMISecurityManager());
 try
 {
 RMIServer server = new RMIServer();
 Naming.rebind(SERVERNAME, server);
 System.out.println("Server ready.");
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 public RMIServer() throws RemoteException
 {
 theScores.putScore(new Score("Denver", "Broncos",
 "Dolphins", 6, 0, 1));
 theScores.putScore(new Score("Dallas", "Cowboys",
 "Packers", 6, 6, 2));
 }

 public String [] fetchGames(() throws RemoteException
 {
 return theScores.getGames();
 }

 public Score fetchScore(String game) throws RemoteException
 {
 return theScores.getScore(game);
 }
 }

 - 273 -

 }

Before creating an instance of the RMIServer class, the main method installs a
security manager. The security manager prevents client objects from misusing their
access to the server. Its default policies are adequate for most applications. Next, the
main method creates the server instance and enters it in the registry, which binds the
symbolic name to the server.

The constructor adds two sample records to the database maintained by the Scores
object. Notice that the constructor may throw a RemoteException , as indicated by its
throws clause.

Following the constructor are the implementations of the two methods exported by the
remote object in its interface. Notice that the only thing that distinguishes these methods
from methods of a nonremote object is the throws clause in the method header. The
server-side skeleton, as always, performs the hard parts.

 Running the RMI-Based Program

Running the RMI-based program is somewhat more complicated than running an
ordinary program. Recall that the program is configured to run both the server and the
client on a single host. If you want to run them on separate hosts, you must revise the
host name in both source files and recompile them. Here are the steps you should follow
to run the program on your own Windows 9x/NT system:

 1. Compile all the .java files. You can do this in a single step:

 javac *.java

 2. Process the RMIServer.class file through the rmic tool:

 rmic RMIServer

 3. Start the registry:

 start rmiregistry

 4. Start the server:

 java RMIServer

 5. Open a second DOS window and start the client:

 appletviewer RMIClient.html

 You should be able to use the Fetch Games button and the Fetch Score button to query

the scores database.

Note

The current release of the JDK includes a known bug that causes some systems
to incorrectly report an access error when the server starts. If you encounter this
bug, check the Javasoft Web site (http://www.javasoft.com) or the JDK
release notes for a workaround. Besides the solutions suggested there, you may
find that dialing up your ISP resolves the problem.

CALLBACKS

 - 274 -

A problem with the current version of the sample application is that the user must click
Fetch Score to obtain an updated game score. Of course, the user doesn’t know when a
new score is available and therefore has little recourse other than to periodically click
Fetch Score, hoping to see a new result. Given a little more elaborate programming, an
RMI remote object can invoke a method on its client. Let’s look at an improved version of
the sample application that uses this technique to automatically update scores as soon
as they’re received. Figure 15.5 shows the new version of the program in operation.
Notice that it lacks the buttons of the previous version, because its automatic operation
renders them pointless.

Listing 15.7 shows the AutoScoresServerInterface , which specifies the sole
method exported by the revised server. The addScoresClient method allows a client
to subscribe to the regularly updated scores provided by the server. A subscriber must
implement the AutoScoresClientInterface , which appears as shown in Listing
15.8. The server sends clients an updateScores message whenever an updated score
is available. In the interest of brevity, the server takes the expedient route of sending the
entire updated scores database. A somewhat more sophisticated server might transmit
only the updated score.

 Figure 15.5: The AutoScoresClient automatically receives and displays updated

scores.

 LISTING 15.7 AutoScoresServerInterface.java —THE SERVER INTERFACE

 import java.rmi.*;

 public interface AutoScoresServerInterface extends Remote
 {
 public void addScoresClient(AutoScoresClientInterface client)
 throws RemoteException;
 }

 LISTING 15.8 AutoScoresClientInterface.java —THE CLIENT INTERFACE

 import java.rmi.*;

 public interface AutoScoresClientInterface extends Remote
 {
 public void updateScores(Scores scores)
 throws RemoteException;
 }

Listing 15.9 shows the revised client. Notice the symbolic name of the revised server,
“autoscores.” Notice also that the client is considerably simpler than before. By
eliminating much of the user interface, we’ve streamlined the entire application. In order
to receive callbacks from the server, the client must export itself as a remote object.
Because the client class extends Applet rather than UnicastRemoteObject , it uses
the static UnicastRemoteObject.export method to export itself. If the operation of
the hashCode, equals, or toString methods were important, the client should
provide overriding implementations of these methods. None of these methods is
important to this application; therefore, the AutoScoresClient relies on the semantics

 - 275 -

inherited from Object, even though these are inadequate for remote objects.

 LISTING 15.9 AutoScoresClient.java —THE CLIENT APPLET

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.rmi.*;
 import java.rmi.server.*;

 public class AutoScoresClient extends Applet
 implements AutoScoresClientInterface
 {
 static final String URL = "rmi://localhost/autoscores";

 Choice theGames = new Choice();
 TextArea theScore = new TextArea(20, 64);

 Scores theScores;

 public void init()
 {
 setLayout(new BorderLayout());
 add(theGames, BorderLayout.NORTH);
 add(theScore, BorderLayout.CENTER);
 theScore.setEditable(false);
 theScore.setFont(new Font(
 "Monospaced", Font.BOLD, 12));
 theGames.addItemListener(
 new GameHandler());
 try
 {
 UnicastRemoteObject.exportObject(this);
 AutoScoresServerInterface server =
 (AutoScoresServerInterface) Naming.lookup(URL);
 server.addScoresClient(this);
 }
 catch (Exception ex) { fatalError(ex); }
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 public void updateScores(Scores scores)
 {
 theScores = scores;
 String [] games == theScores.getGames();
 String selected = theGames.getSelectedItem();
 theGames.removeAll();
 for (int i = 0; i < games.length; i++)

 - 276 -

 {
 theGames.addItem(games[i]);
 }
 if (selected != null)
 {
 theGames.select(selected);
 showScore();
 }
 }

 public void showScore()
 {
 String selected = theGames.getSelectedItem();
 Score score = theScores.getScore(selected);
 theScore.setText(score.toString());
 }

 class GameHandler implements ItemListener
 {
 public void itemStateChanged(ItemEvent evt)
 {
 showScore();
 }
 }
 }

Once the client has obtained a reference to the remote server, it sends the server an
addScoresClient message, requesting that it be added to the server’s list of clients
that are notified of updated scores. The client also implements the updateScores
method, which the server invokes to communicate the updated scores.

Listing 15.10 shows the AutoScoresServer , the remote object that provides the
updated scores. Most of the complexity of the server results not from RMI, but from the
requirement that it provide updated scores. Otherwise, it would closely resemble the
RMIServer class presented earlier.

 LISTING 15.10 AutoScoresServer.java —THE SERVER

 import java.rmi.*;
 import java.rmi.server.*;
 import java.util.*;

 public class AutoScoresServer extends UnicastRemoteObject
 implements AutoScoresServerInterface, Runnable
 {
 static final String SERVERNAME = "autoscores";
 Scores theScores = new Scores();
 Vector theClients = new Vector();

 public static void main(String [] args))
 {
 System.setSecurityManager(new RMISecurityManager());
 try

 - 277 -

 {
 AutoScoresServer server = new AutoScoresServer();
 Naming.rebind(SERVERNAME, server);
 System.out.println("Server ready.");
 new Thread(server).start();
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 public AutoScoresServer() throws RemoteException
 {
 theScores.putScore(new Score("Denver", "Broncos",
 "Dolphins", 6, 0, 1));
 theScores.putScore(new Score("Dallas", "Cowboys",
 "Packers", 6, 6, 2));
 }

 public void run()
 {
 try
 {
 System.out.println("Counting down to update...");
 Thread.sleep(60000);
 theScores.putScore(new Score("Denver", "Broncos",
 "Dolphins", 7, 6, 2));
 System.out.println("Updating.");
 updateScores();
 System.out.println("Updated.");
 }
 catch (Exception ex) { ; }
 }

 public void updateScores()
 throws RemoteException
 {
 Enumeration clients = theClients.elements();
 while (clients.hasMoreElements())
 {
 AutoScoresClientInterface client =
 (AutoScoresClientInterface) clients.nextElement();
 client.updateScores(theScores);
 }
 }

 public void addScoresClient(
 AutoScoresClientInterface client)
 throws RemoteException
 {
 theClients.addElement(client);

 - 278 -

 client.updateScores(theScores);
 }
 }

The addScores method processes requests to join the list of clients notified of updates.
The method simply adds a remote reference to a requesting client to a Vector. It then
sends the client an updateScores message that provides the client the current scores.
Notice again that the remote reference is handled the same way as a local reference;
only the throws clause in the method header distinguishes addScoresClient and
updateScores from methods that deal solely with local references.

To provide the updated score, the server’s main method spawns a new thread. The run
method executed by the thread pauses for one minute (60,000 milliseconds) and then
posts a revised score to the scores database and transmits the change to all registered
clients. To help you observe this behavior, the run method includes several
System.out.println calls.

As you can see, RMI is as simple as it is powerful. With just a few lines of extra code, you
can create distributed objects that invoke remote methods and perform callbacks. The next
section reveals that even more is in store.

RMI-BASED SOFTWARE AGENTS

The CD-ROM contains a sample program that shows how to use RMI to implement
software agents that can migrate from host to host. Figure 15.6 shows the program’s
output. We won’t take up the topic of agents at this point—they’re covered in Chapter 34,
“Agents.” However, you might enjoy studying the program now, thereby gaining a preview
of what’s to come in Chapter 34. Like other RMI programs, the implementation is simple
and straightforward. Here are the instructions for running the program:

 1. Compile all the .java files from the chapter15/listings directory of the CD-ROM.

 You can do this in a single step:

 javac *.java

 Figure 15.6: A software agent can migrate from host to host.

 2. Process the SimpleAgent.class file through the rmic tool:

 rmic SimpleAgentHost

 3. Start the registry:

 - 279 -

 start rmiregistry

 4. Start the first instance of the server:

 java SimpleAgentHost agenthost1

 5. Open a second DOS window and start the second instance of the server:

 java SimpleAgentHost agenthost2

 6. Open a third DOS window and start the client:

 java SimpleAgent

 The agent should quickly move from the client process to the first server and then the

second server.

FROM HERE

In this chapter, you’ve learned how RMI works and the advantages it offers. You’ve
learned how to create RMI-based servers that process client requests and issue
callbacks to keep clients informed of state changes. The following chapters provide
additional information about RMI and other distributed computing technologies:

 • Chapter 16, “RMI-Based Implementation of the Airline Reservation System,” shows

how the Airline Reservation System example can be implemented using RMI.

•

Chapter 18, “Servlets and Common Gateway Interface (CGI),” describes the Java
Servlet API. Using servlets is another simple way of implementing a distributed
system.

 • Chapter 20, “Distributed Component Object Model (DCOM),” describes Microsoft’s

proprietary distributed computing model.

•

Chapter 21, “CORBA Overview,” provides an introduction to the Common Object
Request Broker Architecture, an alternative technology for distributed computing. The
remaining chapters of Part V, “The CORBA Approach to Distributed Computing,”
present CORBA in depth.

 • Chapter 34, “Voyager Agent Technology,” describes agent technology and ObjectSpace

Voyager, a freeware package for developing Java-based agents.

Chapter 16: RMI-Based Implementation of the
Airline Reservation System

 Overview

In the previous chapter, you learned about Java’s Remote Method Invocation (RMI) API.
In this chapter you’ll see an example of a larger RMI-based program: the Airline
Reservation System of Chapter 6, “The Airline Reservation System Model.” You’ll find the
source code for the program on the CD-ROM. By studying the program, you’ll learn more
about using sockets to exchange data across networks.

 To refresh your recall of the Airline Reservation System, you should turn back to Chapter

 - 280 -

6 and skim it quickly, focusing on the functional requirements of the system. You should
also refresh your recollection of the socket-based implementation of the Airline
Reservation System presented in Chapter 14, “Socket-Based Implementation of the
Airline Reservation System,” because the RMI-based program described in this chapter
is functionally equivalent to the socket-based program described in Chapter 14.

One of the advantages of using RMI over sockets is that RMI lets you work at a higher
level of abstraction. For example, you don’t have to code serialization routines or
command dispatchers. As a result, your code is more compact. The RMI-based program
described in this chapter consists of a little over 800 lines, whereas the socket-based
program has over 1,100 lines. Research has demonstrated that the time required to write
a line of code is approximately the same, regardless which programming language or API
is used. This implies that the smaller size of RMI programs translates into increased
programmer productivity: A programmer using RMI should be almost 1.5 times as
productive as one using sockets.

 Here are the three transactions implemented by the sample program:

 • Search Flights, which returns each flight stored in the database.

 • Search Seats, which returns the reservation information for a specified passenger

identified by passenger number.

•

Book Seat, which enters a reservation for a specified passenger and flight. The
transaction makes several simplifying assumptions. The passenger and flight must
already exist as entities; the transaction does not create new passengers or flights.
The reservation number must be unique; attempting to add a reservation with the
same number as an existing reservation updates the existing reservation.

Like the sample program of Chapter 14, the sample program of this chapter does not
implement the visual interface for seat selection described in Chapter 6. Also, it doesn’t
implement the reservation pool locking mechanism. However, near the end of this
chapter, we’ll show you how to implement such a mechanism.

As before, let’s begin our tour of the program by looking at the application classes. Later,
we’ll look at the client and server classes that provide the user interface and network
connectivity.

 APPLICATION CLASSES

The application classes are not much different from those presented in Chapter 14. The
biggest difference is that we’ve omitted the methods to pack and unpack field values as
Strings. Because RMI handles serialization automatically, we don’t need to provide
these methods.

Note

Because the classes are changed very little, they’re not shown here. You can
examine them by copying them from the CD-ROM to your system’s hard
drive.

Recall that every RMI server must define an interface that specifies the methods that the
server makes available to its clients. Therefore, every RMI server has two source files:
one defining the class, and one defining its interface. Let’s examine the interface first.

 The Server Interface

 The server supports three transactions and provides a method for each transaction:

 Note The following code is found in the file ServerInterface.java in the chapter16/

listings directory of the CD-ROM.

 - 281 -

 public interface ServerInterface extends Remote
 {
 public Flight [] searchFlights(()
 throws RemoteException, SQLException ;
 public Reservation [] searchSeats((
 String passenger_no)
 throws RemoteException, SQLException ;
 public void bookSeat(String flight_no,
 String passenger_no, String res_no)
 throws RemoteException, SQLException,
 FlightBookedException ;
 }

These three methods are all that the application requires, because the server can invoke
methods on the application objects to perform most of its processing. Notice that the
interface extends Remote and that each method may throw the RemoteException , in
addition to any exceptions thrown by application processing, such as SQLException
and FlightBookedException . Notice also that two of the methods return arrays.
Because a Java array is an object, an array is serializable and can be passed as a
remote method argument or return value, as long as the elements of the array are
primitive or serializable.

Notice also that none of the application classes has been revised to extend the
UnicastRemoteObject class. Therefore, RMI will pass instances of the application
classes by value, rather than by reference. If several clients request access to the same
Flight instance, for example, each receives its own instance rather than a reference to
a single instance. This behavior is appropriate for the Airline Reservation System, which
uses a SQL database to centrally store its persistent state.

However, some applications require that there be only one object instance associated
with each real-world entity. To accommodate this requirement, simply define any such
objects as extending UnicastRemoteObject . Alternatively, you can invoke the static
exportObject method of the UnicastRemoteObject class, passing a reference to
the object instance that you want passed by reference, not value. Doing so registers the
instance reference as a remote reference. Of course, in either case, you must use the
rmic utility to generate the skeleton class required by the RMI runtime system.

 The Server Class

 Note All the code from here until the next section, “The Client Class,” is found in the

file Server.java in the chapter16/listings directory of the CD-ROM.

In addition to the three methods specified in its interface, the server class defines several
fields, a main method, and a constructor. The class header specifies that the class
extends the UnicastRemoteObject class and that it implements the
ServerInterface :

 public class Server extends UnicastRemoteObject
 implements ServerInterface

 The class defines four constant fields:

 static final String SERVERNAME = "ARServer";
 static final String DB = "jdbc:odbc:airline";
 static final String USER = "";

 - 282 -

 static final String PASSWORD = "";

The SERVERNAME field specifies the name under which the server registers itself in the
RMI registry. The DB field specifies the JDBC URL of the database, including the DSN
“airline.” Because the DSN was created without user ID and password, these are
specified as null Strings. Defining these four values as constants makes it easier to
revise them.

 The only nonstatic field of the server class is the field used to hold the database

connection once the database is opened:

 Connection theConnection;

 The main method performs these functions:

 • It installs a security manager that prevents clients from misusing server resources.

 • It registers the server instance in the RMI registry.

 • It displays a console message announcing that the server is ready.

 Here’s the source code for the main method:

 public static void main(String [] args))
 {
 System.setSecurityManager(new RMISecurityManager());
 try
 {
 Server server = new Server();
 Naming.rebind(SERVERNAME, server);
 System.out.println("Server ready.");
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 The constructor is responsible for opening a connection to the database:

 public Server() throws Exception
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 theConnection =
 DriverManager.getConnection(DB, USER, PASSWORD);
 }

The forName call can throw a NoClassDefFoundException , and the
getConnection call can throw a SQLException; therefore, the constructor specifies
that it can throw an Exception, a common superclass of
NoClassDefFoundException and SQLException.

 The searchFlights method is one of the three methods exported by the server, as

specified in its interface. This method simply invokes the getFlights method of the

 - 283 -

Flight class, which returns an array containing an instance of Flight for each row of
the Flight database table:

 public Flight [] searchFlights(()
 throws RemoteException, SQLException
 {
 Flight [] flights ==
 Flight.getFlights(theConnection);
 return flights;
 }

The searchSeats method works similarly. It simply invokes the getPassenger
method of the Reservation class, which returns an array containing an instance of
Reservation for each row of the Reservation database table:

 public Reservation [] searchSeats((
 String passenger_no)
 throws RemoteException, SQLException
 {
 Reservation [] res ==
 Reservation.getPassenger(
 theConnection, passenger_no);
 return res;
 }

The final exported method, bookSeat, invokes the Reservation constructor to create
a new instance of Reservation that has the appropriate values for reservation
number, flight number, and passenger number. It then uses the dbWrite method of the
Reservation class to create a table row that contains the specified values:

 public void bookSeat(String flight_no,
 String passenger_no, String res_no)
 throws RemoteException, SQLException,
 FlightBookedException
 {
 Reservation res = new Reservation(
 theConnection, res_no, flight_no,
 passenger_no);
 res.dbWrite(theConnection);
 }

 The Client Class

Just as the RMI-based server class is much simpler than the socket-based server class,
the RMI-based client class is much simpler than the socket-based client class. The client
is implemented as an application, rather than an applet; therefore, its class header
specifies that the class extends the Frame class:

 public class RemoteClient extends Frame

 The class defines two fields involved with accessing the RMI server and several user

interface fields. A constant field specifies the URL of the server:

 Note All the code from here until the section on “The Locking Mechanism” is found

 - 284 -

in the file RemoteClient.java in the chapter16/listings directory of the CD-
ROM.

 public static final String URL = "rmi://127.0.0.1/ARServer";

The protocol, of course, is RMI. Notice that the server host is specified using an IP
number rather than a host name. However, either can be used. The final component of
the URL is the symbolic name of the server object, ARServer. Recall that the server
registered itself using that name.

 Another field holds the remote reference to the server object:

 ServerInterface theServer;

 This field is initialized in the default constructor.

 Here are the user interface–related fields of the class:

 Button theSearchFlights = new Button("Search Flights");
 Button theSearchSeats = new Button("Search Seats");
 Button theBookSeat = new Button("Book Seat");

 TextField theFlightNo = new TextField();
 TextField thePassengerNo = new TextField();
 TextField theReservationNo = new TextField();

 TextArea theResults = new TextArea();

The socket-based sample program of Chapter 14 is relatively complicated; therefore, we
can’t offer significant explanation of its user interface. Because the RMI-based program is
simpler, let’s look more thoroughly at its user interface, which is quite similar to that used
by the socket-based sample program. Figure 16.1 shows the application window, which
holds three TextField objects, a TextArea object, and three Button objects.

 Figure 16.1: The RMI-based client and server are simpler than their socket-

based counterparts.

The TextField objects allow the user to enter a flight number, passenger number, and
reservation number. Not every transaction uses every value. Table 16.1 summarizes the
values used by each transaction. If you fail to provide a required input value, the
program generally throws an exception. You’ll discern this by the stack trace the
program displays on the console. If you provide unneeded input values, the program
ignores them.

 TABLE 16.1 INPUT VALUES USED BY AIRLINE RESERVATION SYSTEM

TRANSACTIONS

 - 285 -

Transaction

Input Value(s)

Book Seat

Flight number, passenger number, reservation number

Search Flights

Passenger number

Search Seats

(None)

 Before examining the default constructor, which lays out the application window, take a

quick look at the main method, which is quite short:

 public static void main(String [] args))
 {
 new RemoteClient();
 }

 The main method simply instantiates a RemoteClient object. The object’s default

constructor does the rest. Now, take a look at the constructor (you’ll see the rest shortly):

 public RemoteClient()
 {
 super("Airline Reservation System (Remote Client)");
 setLayout(new BorderLayout());
 Panel p;
 p = new Panel(new GridLayout(0, 1));
 add(p, BorderLayout.NORTH);
 p.add(new Label("Flight No:"));
 p.add(theFlightNo);
 p.add(new Label("Passenger No:"));
 p.add(thePassengerNo);
 p.add(new Label("Reservation No:"));
 p.add(theReservationNo);
 p.add(new Label("Results:"));
 add(theResults, BorderLayout.CENTER);
 p = new Panel(new GridLayout(1, 0));
 add(p, BorderLayout.SOUTH);
 p.add(theSearchFlights);
 p.add(theSearchSeats);
 p.add(theBookSeat);
 theResults.setEditable(false);
 theSearchFlights.addActionListener(
 new ButtonHandler());
 theSearchSeats.addActionListener(
 new ButtonHandler());
 theBookSeat.addActionListener(
 new ButtonHandler());
 addWindowListener(new WindowHandler());
 setSize(600, 400);

 - 286 -

 setVisible(true);

The default constructor uses the super constructor to pass an argument to the
constructor of its superclass, Frame, which uses the argument to set the window title.
Then, the constructor establishes a BorderLayout layout manager that divides the
screen into three areas: north (the top of the window), center, and south (the bottom of
the window). The program does not use the east and west areas. The constructor then
creates a Panel that establishes a multirow GridLayout layout manager for the north
area and places the three TextField objects in the Panel, with three Label objects
that describe the TextField objects and a fourth Label that describes the TextArea
that appears in the center area of the window, immediately below the north area.

Next, the constructor adds the TextArea, referenced by the field theResults, to the
center area of the window. In the south area of the window, the constructor places a
Panel controlled by a second GridLayout—this one specifying a multicolumn layout.
The constructor places the three Button objects in this Panel, causing them to appear
in the south area of the screen.

To prevent user editing of the contents of the TextArea, the constructor invokes the
setEditable message. The constructor then establishes an ActionListener for
each of the three Button objects, using instances of the ButtonHandler inner class.
Finally, the constructor invokes setSize to set the size of the application window to a
value appropriate to a standard VGA monitor; it then makes the application window
visible by invoking setVisible.

 The constructor also obtains a reference to its remote server:

 try
 {
 theServer =
 (ServerInterface) Naming.lookup(URL);
 }
 catch (Exception ex) { fatalError(ex); }

The static lookup method of the Naming class returns a reference to an object that
implements the Remote interface. Because the object must be a reference to a Server
instance that implements the ServerInterface , the constructor casts the returned
value to a ServerInterface . This operation fails with a ClassCastException if
returned objects fail to implement the ServerInterface . This might occur, for
instance, if you use an incorrect URL, causing the RMI runtime to connect to the wrong
server. If some other RMI-related error occurs, the call can throw a RemoteException
. If you want to handle the two types of exceptions differently, you can associate distinct
catch statements with the try .

 The three transaction-handling methods are simple, just as they are in the server. Here’s

the searchFlights method:

 public void searchFlights()
 throws Exception
 {
 theResults.setText("");
 Flight [] flights ==
 theServer.searchFlights();
 for (int i = 0; i < flights.length; i++)
 {
 theResults.append(flights[i] ++ "\n");

 - 287 -

 }
 }

Notice that the searchFlights method simply invokes the corresponding
searchFlights method on the server object and processes the result the server
returns.

 The searchSeats and bookSeat methods work similarly:

 public void searchSeats()
 throws Exception
 {
 theResults.setText("");
 Reservation [] seats ==
 theServer.searchSeats(thePassengerNo.getText());
 for (int i = 0; i < seats.length; i++)
 {
 theResults.append(seats[i] ++ "\n");
 }
 }

 public void bookSeat()
 throws Exception
 {
 theResults.setText("");
 theServer.bookSeat(theFlightNo.getText(),
 thePassengerNo.getText(),
 theReservationNo.getText());
 }

 The ButtonHandler inner class dispatches button-related events by invoking the

appropriate transaction-handling method:

 class ButtonHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 String cmd = evt.getActionCommand();
 if (cmd.equals("Search Flights"))
 searchFlights();
 else if (cmd.equals("Search Seats"))
 searchSeats();
 else if (cmd.equals("Book Seat"))
 bookSeat();
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

 It uses the getActionCommand method to obtain the default action String

associated with the Component—in this case a Button—that generated the

 - 288 -

ActionEvent. By default, this method returns the label that appears on the face of the
Button. The method uses the equals method to test for a match between a String
literal and the action String.

Note

Many programmers—and several Java authors—mistakenly use the equals
operator (=) to perform such comparisons. When the operands of the equals
operator are object references, the operator tests whether the references refer
to the same object. Two String objects can be different objects, even
though they contain precisely the same characters. Therefore, as in the code
example, you should use the equals method rather than the equals operator
when comparing the contents of String objects.

 A second inner class, WindowHandler , lets the user close the application by clicking

the application window’s close box:

 class WindowHandler extends WindowAdapter
 {
 public void windowClosing(WindowEvent evt)
 {
 setVisible(false);
 System.exit(0);
 }
 }

Finally, the class defines a simple error-handling routine, fatalError, called by several
of the methods in the class. The WindowHandler method attempts no recovery, but
neither does it shut down the application. It simply displays a message on the console
and returns:

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 RUNNING THE SAMPLE PROGRAM

To run the sample program, copy the source files from the chapter16/listings directory on
the CD-ROM to your local hard drive. Because the application classes of the sample
program use an Access database, you must run the program using Windows 9x or
Windows NT. It won’t operate under UNIX, for example.

 Enter the following commands at a DOS prompt:

 javac *.java
 rmic Server
 start rmiregistry
 java Server

 Once the server displays a message indicating that it’s ready, start the client by entering

the following command in a second DOS window:

 java RemoteClient

If the RMI facility throws unexpected exceptions, look back to Chapter 15, “Remote Method
Invocation (RMI)” for troubleshooting hints. Also examine the release notes that
accompany the JDK or Java Interactive Development Environment you’re using. If you

 - 289 -

have a network, you can run the client and server on separate hosts. After you’ve
successfully launched and operated the client and server on a single host, change the host
name in the client’s source file, recompile the client, and run the client and server on
separate hosts.

THE LOCKING MECHANISM

To facilitate comparison with the socket-based sample program of Chapter 14, the
sample program we’ve presented here doesn’t implement the locking protocol described
in Chapter 6, which specifies the application’s requirements. However, it’s instructive to
see how to perform such an operation, because many applications require a similar
facility.

One simple way to implement the required locking protocol is to create within the Airline
database a new database table called LockedSeat, which stores information on seats
held pending completion of a reservation. Here’s a simple lockSeat method that places
a hold on a seat by inserting a record into the LockedSeat database table. The method
also increments the reservation count maintained in the Flight table of the Airline
database, which is described in Chapter 12, “Java Database Connectivity (JDBC),” and
used in subsequent chapters:

 public lockSeat(Connection db)
 throws FlightBookedException, SQLException
 {
 Flight flight = Flight.getInstance(db, flight_no);
 int seats = flight.getSeats();
 int reservations = flight.getReservations();
 if (reservations >= seats)
 throw new FlightBookedException();
 flight.setReservations(reservations + 1);
 flight.dbWrite(db);

 Statement stmt = db.createStatement();
 query = "Insert Into LockedSeat " +
 "(ReservationNo, FlightNo, " +
 "PassengerNo, TimeStamp) " +
 "Values ('" ++
 theReservationNo +
 "', '" +
 theFlightNo +
 "', '" +
 thePassengerNo +
 "', '" +
 new Timestamp(new Date()) +
 "')";
 stmt.executeUpdate(query);
 stmt.close();

 db.commit();
 }

Notice that the method throws a BookedFlightException if no seats are available.
Moreover, various SQL errors can throw a SQLException. Notice that the LockedSeat
table includes a column that holds a timestamp value. In a moment, you’ll see why this
column is needed. As its last operation, the method invokes the commit method to close

 - 290 -

the current database transaction. The commit method causes the operations of
incrementing the reservation count and inserting the new row in the LockedSeat table to
function atomically, thereby avoiding database anomalies. For the call to commit to
work properly, you must turn off autocommit after opening the database connection. You
must also add a similar call to commit after each database update in every method of
the Reservation, Flight, and Passenger classes.

 The lockSeat method does not create a Reservation table row; that’s the function

of the bookSeat method:

 public void bookSeat(Connection db)
 throws SQLException, NoLockException
 {
 Statement stmt = db.createStatement();
 String query;
 int n;

 query = "Delete From LockedSeat" +
 " Where ReservationNo ='" +
 theReservationNo +
 "'";
 n = stmt.executeUpdate(query);
 if (n == 0) throw new NoLockException();

 query = "Insert Into Reservation " +
 "(ReservationNo, FlightNo, PassengerNo) " +
 "Values ('" +
 theReservationNo +
 "', '" +
 theFlightNo +
 "', '" +
 thePassengerNo +
 "')";
 n = stmt.executeUpdate(query);

 stmt.close();

 db.commit();
 }

The bookSeat method deletes the lock record from the LockedSeat table. If no such
record exists, the method throws an application exception, NoLockException .
Otherwise, the reservation count in the Flight table would be incorrect. The method then
inserts a new row into the Reservation table and commits its database changes.

The timestamp column in the LockedSeat table is necessary to cope with locked seats
that are somehow never booked. A simple way to avoid falsely seeming to run out of
seats is to periodically delete any stale locks. The following reaper method does just
that:

 public void reaper(Connection db)
 {
 Statement stmt = db.createStatement();
 while (true)

 - 291 -

 {
 try
 {
 Thread.sleep(NAPLENGTH);
 Timestamp cutoff =
 new Timestamp(new Date() -30 * 60 * 1000);
 query = "Select ReservationNo, " +
 "FlightNo, TimeStamp " +
 "From LockedSeat";
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next())
 {
 String res_no = rs.getString(1);
 String flight_no = rs.getString(2);
 Timestamp ts = rs.getTimestamp(3);
 if (ts.before(cutoff))
 {
 query = "Delete From LockedSeat" +
 " Where ReservationNo ='" +
 res_no +
 "'";
 n = stmt.executeUpdate(query);

 Flight flight = Flight.getInstance(db,
flight_no);

 int reservations = flight.getReservations();
 flight.setReservations(reservations -1);
 flight.dbWrite(db);
 db.commit();
 }
 }
 rs.close();
 }
 catch (Exception ex) { ex.printStackTrace(); }
 }
 }

The reaper method is designed to run as a thread. It awakens every thirty minutes and
deletes any locks held thirty minutes or longer, resetting the available seat counter within
the Flight table as appropriate. You can use this technique to implement numerous useful
routines for periodically pruning your SQL databases.

THE LOCKING MECHANISM

To facilitate comparison with the socket-based sample program of Chapter 14, the
sample program we’ve presented here doesn’t implement the locking protocol described
in Chapter 6, which specifies the application’s requirements. However, it’s instructive to
see how to perform such an operation, because many applications require a similar
facility.

One simple way to implement the required locking protocol is to create within the Airline
database a new database table called LockedSeat, which stores information on seats
held pending completion of a reservation. Here’s a simple lockSeat method that places
a hold on a seat by inserting a record into the LockedSeat database table. The method
also increments the reservation count maintained in the Flight table of the Airline

 - 292 -

database, which is described in Chapter 12, “Java Database Connectivity (JDBC),” and
used in subsequent chapters:

 public lockSeat(Connection db)
 throws FlightBookedException, SQLException
 {
 Flight flight = Flight.getInstance(db, flight_no);
 int seats = flight.getSeats();
 int reservations = flight.getReservations();
 if (reservations >= seats)
 throw new FlightBookedException();
 flight.setReservations(reservations + 1);
 flight.dbWrite(db);

 Statement stmt = db.createStatement();
 query = "Insert Into LockedSeat " +
 "(ReservationNo, FlightNo, " +
 "PassengerNo, TimeStamp) " +
 "Values ('" ++
 theReservationNo +
 "', '" +
 theFlightNo +
 "', '" +
 thePassengerNo +
 "', '" +
 new Timestamp(new Date()) +
 "')";
 stmt.executeUpdate(query);
 stmt.close();

 db.commit();
 }

Notice that the method throws a BookedFlightException if no seats are available.
Moreover, various SQL errors can throw a SQLException. Notice that the LockedSeat
table includes a column that holds a timestamp value. In a moment, you’ll see why this
column is needed. As its last operation, the method invokes the commit method to close
the current database transaction. The commit method causes the operations of
incrementing the reservation count and inserting the new row in the LockedSeat table to
function atomically, thereby avoiding database anomalies. For the call to commit to
work properly, you must turn off autocommit after opening the database connection. You
must also add a similar call to commit after each database update in every method of
the Reservation, Flight, and Passenger classes.

 The lockSeat method does not create a Reservation table row; that’s the function

of the bookSeat method:

 public void bookSeat(Connection db)
 throws SQLException, NoLockException
 {
 Statement stmt = db.createStatement();
 String query;
 int n;

 - 293 -

 query = "Delete From LockedSeat" +
 " Where ReservationNo ='" +
 theReservationNo +
 "'";
 n = stmt.executeUpdate(query);
 if (n == 0) throw new NoLockException();

 query = "Insert Into Reservation " +
 "(ReservationNo, FlightNo, PassengerNo) " +
 "Values ('" +
 theReservationNo +
 "', '" +
 theFlightNo +
 "', '" +
 thePassengerNo +
 "')";
 n = stmt.executeUpdate(query);

 stmt.close();

 db.commit();
 }

The bookSeat method deletes the lock record from the LockedSeat table. If no such
record exists, the method throws an application exception, NoLockException .
Otherwise, the reservation count in the Flight table would be incorrect. The method then
inserts a new row into the Reservation table and commits its database changes.

The timestamp column in the LockedSeat table is necessary to cope with locked seats
that are somehow never booked. A simple way to avoid falsely seeming to run out of
seats is to periodically delete any stale locks. The following reaper method does just
that:

 public void reaper(Connection db)
 {
 Statement stmt = db.createStatement();
 while (true)
 {
 try
 {
 Thread.sleep(NAPLENGTH);
 Timestamp cutoff =
 new Timestamp(new Date() -30 * 60 * 1000);
 query = "Select ReservationNo, " +
 "FlightNo, TimeStamp " +
 "From LockedSeat";
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next())
 {
 String res_no = rs.getString(1);
 String flight_no = rs.getString(2);
 Timestamp ts = rs.getTimestamp(3);
 if (ts.before(cutoff))

 - 294 -

 {
 query = "Delete From LockedSeat" +
 " Where ReservationNo ='" +
 res_no +
 "'";
 n = stmt.executeUpdate(query);

 Flight flight = Flight.getInstance(db,
flight_no);

 int reservations = flight.getReservations();
 flight.setReservations(reservations -1);
 flight.dbWrite(db);
 db.commit();
 }
 }
 rs.close();
 }
 catch (Exception ex) { ex.printStackTrace(); }
 }
 }

The reaper method is designed to run as a thread. It awakens every thirty minutes and
deletes any locks held thirty minutes or longer, resetting the available seat counter within
the Flight table as appropriate. You can use this technique to implement numerous useful
routines for periodically pruning your SQL databases.

Chapter 17: JAVA Help, JAVA Mail, and Other
JAVA APIs

 Overview

Before distributed systems, users’ lives were simple, as were programmers’ lives. When
Marge, the accounts payable clerk, clicked the wrong button on the posting screen, she
picked up the phone and called Fred, the applications programmer responsible for the
accounts payable system. Or, if she was sufficiently anxious to justify a high-calorie
snack, she’d stop by Fred’s office, which was near the lunchroom that contained the
vending machines. Fred knew from experience how to handle Marge when she was
stressed out. He’d ask her about her grandchildren and chat about other trivialities,
inquiring what had prompted her call or visit only after her stress index was well below
redline.

Such friendships between users and programmers were once common. However, the
symbiotic relationship between users and programmers was disrupted when distributed
systems geographically separated users from programmers. A distributed system that
fails to address the social implications of dispersed staff may fail, even though it’s
technically perfect.

This chapter presents two Java APIs that, at the time of this writing, are in early release
status: Java Help and Java Mail. The Help and Mail APIs can help you build distributed
systems that partially compensate for the absence of Fred, the friendly programmer.
Also, a section at the end of this chapter highlights some other Java APIs that haven’t yet
been fully released. In this chapter you learn

 • How to use Java Help to build application help files

 - 295 -

 Java Help lets you build a pure Java help facility that includes features such as nested
folders, hyperlinks, indexes, full-text searches, and context-sensitive help.

 • How to use Java Mail to send Internet mail messages

Java Mail lets your applications send and receive mail by interfacing with standard
Internet mail servers. Using the Java Mail API, you can build applications that notify
you when, or even before, something goes wrong, helping you respond rapidly to
problems so that they don’t escalate into catastrophes.

 • What other Java APIs are under development

 Sun has many other Java APIs under development. You’ll learn what they are and how

they can help you build better distributed applications.

JAVA HELP

The Java Help API lets you include stylish, modern help facilities in your applications. It
supports nested folders of help information, hyperlinks that let the user jump from topic to
topic, indexes, full-text searches, and context-sensitive help. The Java Help API is in
early release, meaning that the API is subject to change. Therefore, this section
emphasizes the architecture and operation of Java Help, rather than the API. You’ll learn
how to build basic help facilities for Java applications and applets. The more exotic help
capabilities, however, are discussed, not demonstrated.

Java Help uses the Java Foundation Classes (also known as JFC or Swing) rather than
the Abstract Window Toolkit (AWT) classes. Therefore, to explore Java Help, you’ll need
JDK 1.1 and the Swing packages or JDK 1.2, which includes Swing as an integral
component. If you want to use Java Help with applets, check your Web browser vendor’s
Web site and the Sun Web site for information on downloading and installing browser
support for JDK 1.1 and Swing or JDK 1.2. You may want to use Sun’s Java Activator,
which provides such support for Netscape Navigator and Microsoft Internet Explorer.

Sun implemented Java Help as a Java extension, meaning that Java Help is distributed
as a JAR file containing packages with names that begin with javax. Doing so avoids a
restriction imposed by Web browsers: Most Web browsers treat packages with names
that begin with java as core packages and prevent you from accessing such packages
lest you thereby commit a security breach. Because they’re named differently than Java
core packages, you can access Java extension packages freely and therefore use Java
Help with both applications and applets. Check the Java Mail release notes for
information on installing Java Mail for access by Web browsers.

Java Help provides an attractive user interface that resembles Microsoft’s Windows
Explorer (see Figure 17.1). The left panel, called the navigator, lets the user access a
hierarchy of folders containing help topics.

 Figure 17.1: The Java Help facility provides an Explorer-style user interface.

 The right panel shows the contents of the currently selected folder. Icons let the user

move forward and backward through the topics, access a history of viewed topics, hide or

 - 296 -

show the left panel, or print a topic. (JDK 1.1 does not support printing of topics.) Tabs in
the left panel let the user choose from among multiple views (the help file in the figure
has only a single tab and provides only a single view). For example, you can provide one
view organized as a table of contents, another organized as an index, and another that
performs a full-text search. Let’s see how you build a Java Help facility.

 A basic Java Help facility, called a help set, includes the following elements, as shown in

Figure 17.2:

 • The HelpSet file, which identifies the opening topic, the map file, and the views

provided by the help set.

 • A Java program (application or applet) that launches a help viewer.

 • Topic pages, which contain the information the user will access. Each topic page

resides in an HTML file.

 • The map file, which provides pseudonyms for each HTML file.

•

View files, which describe a view—a way of accessing the help topics. A help set can
have multiple views, each described by a distinctively formatted view file. For example,
the view file for a table of contents view specifies the hierarchical structure of topics,
whereas the view file for an index view specifies the index entries and the related
topics.

 For convenience, the various files are normally stored within a JAR file. Let’s begin our

study of Help facility implementation by examining a topic page.

 Figure 17.2: A Help facility includes a structured set of files.

 Help Topic Pages

Java Help uses HTML to specify the contents of a help topic page. For example, Listing
17.1 shows the HTML file that generated the topic page shown in Figure 17.1. This is a
particularly simple topic page. More sophisticated pages can include colors, hyperlinks,
images, and other familiar HTML devices. (Hyperlinks within topics should normally use
relative, rather than absolute, addresses to facilitate installation of the help facility.)

Because the topic page is known by a URL, its content can even be dynamically
generated by a server. For the ultimate in sophistication, you can embed Java applets in
topics, giving your help topic multimedia or interactive capabilities not possible using
ordinary HTML.

 LISTING 17.1 Title.html—TOPIC FILE

 - 297 -

 <HTML>
 <HEAD>
 <TITLE>This is the title page.</TITLE>
 </HEAD>
 <BODY>
 <H1>This is title page.</H1>
 </BODY>
 </HTML>

 Map File

The map file establishes pseudonyms, called topic IDs, for the URLs that identify the
HTML files containing topic information. Topic IDs afford compact references to the
HTML files and facilitate renaming files or reorganizing directories. Topic IDs are
particularly helpful when your program provides context-sensitive help, because your
program can reference topics indirectly. This often lets you update or change help
content without recompiling and redistributing your program. Listing 17.2 shows the map
file used by the help demonstration on the CD-ROM. Each entry has the simple form ID
=URL . Notice that all the URLs in the example are relative URLs.

 LISTING 17.2 Map.jhm—THE MAP FILE

 toplevelfolder=images/toplevel.gif

 top=Title.html
 intro=Intro.html
 section0101=Section0101.html
 section0102=Section0102.html
 section0201=Section0201.html
 section0202=Section0202.html

Java 1.2 supports a new URL protocol, jar: , that lets you access files within a JAR file.
This protocol is handy for use within a map file when you choose to place your topic files
within a JAR.

 Here’s a typical jar: URL:

 jar:file:/c:/helpstuff/helpfile.jar!topic1.html

This URL references a JAR file named c:/helpstuff/helpfile.jar on the local
hard drive by using the file: protocol. When this URL is used, Java will open the JAR
file and extract the file topic1.htm.

 View Files

Each view file describes a different structure or organization of the help topics. You write
view files using XML, which you can consider to be a superset of HTML. The main
difference between HTML and XML is that HTML’s tags and attributes are standard,
whereas XML’s tags and attributes are application dependent.

 Listing 17.3 shows the view file used by the help program example. Notice that the file

uses two types of tags:

 • The toc tag encloses every line but the first. It specifies that this file describes the

help set’s table of contents. A single help set can have more than one table of

 - 298 -

contents, each described in its own file. A help set can also have one or more index
views. Files describing index views use the index and indexitem tags.

•

The tocitem describes an item within the table of contents. Items can be nested.
For example, in Listing 17.3, the top item is the parent of every other item. Notice
that some items have associated IDs and some don’t. The items with IDs are defined
in the map file, which relates each such item to an HTML document that describes its
content and appearance.

 LISTING 17.3 HelpDemoTOC.xml —THE TABLE OF CONTENTS FILE

 <?xml version="1.0" encoding=="ISO-8859-1" standalone=="yes" ??>
 <toc>
 <tocitem id=top>JavaHelp Demo

 <tocitem id=intro>Introduction</tocitem>

 <tocitem>Chapter #1
 <tocitem id=section0101>Section #1</tocitem>
 <tocitem id=section0102>Section #2</tocitem>
 </tocitem>

 <tocitem>Chapter #2
 <tocitem id=section0201>Section #1</tocitem>
 <tocitem id=section0202>Section #2</tocitem>
 </tocitem>

 </tocitem>
 </toc>

 HelpSet File

The most important file used by Java Help is the HelpSet file, which describes the overall
structure of the help set. Like the view files, the HelpSet file is written using XML. Listing
17.4 shows the HelpSet file used by the help program example.

 LISTING 17.4 HelpDemo.hs—THE HELPSET FILE

 <?xml version="1.0" encoding=="ISO-8859-1" standalone=="yes" ??>
 <helpset>
 <title>JavaHelp Demo</title>
 <homeID>top</homeID>
 <map>
 <data>Map.jhm</data>
 </map>
 <view>
 <name>TOC</name>
 <label>Table Of Contents</label>
 <type>javax.javahelp.JHelpTOCNavigator</type>
 <data>HelpDemoTOC.xml</data>
 </view>
 </helpset>

 This HelpSet file uses the following XML tags:

 - 299 -

 • helpset, which defines the file as one describing a help set.

 • title, which specifies a title by which this help set is known.

•

homeID, which specifies the topic that’s initially present. Here, the topic named top is
identified as the initial topic. The map file identifies the HTML file corresponding to this
ID.

 • map, which specifies the name of the map file associated with the help set. The map

tag encloses a data tag that specifies the URL of the map file.

 • data, which specifies a URL. The data tag is used with the map and view tags.

 • view, which describes a view. If a help set contains multiple views, its HelpSet file

contains multiple view tags.

 • name, which names the view.

 • label, which specifies a label that appears on the tab in the navigator.

 • type, which specifies the name of the Java Help class that handles the view.

 The Java Help API provides three classes commonly used to process views:

 • javax.javahelp.JHelpTOCNavigator, which handles table of contents views

 • javax.javahelp.JHelpIndexNavigator, which handles index views

 • javax.javahelp.JHelpSearchNavigator, which handles full-text search views.

 We don’t present the latter two classes here. Consult the documentation that

accompanies the Java Help distribution for information about them.

 A Helpful Applet

Listing 17.5 shows a simple applet, HelpApplet, that launches a help viewer on
command. Figure 17.1 showed the appearance of this applet. Let’s examine its source
code and see how it works.

 LISTING 17.5 HelpApplet.java —AN APPLET WITH HELP

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.net.*;
 import javax.javahelp.*;
 import com.sun.java.swing.*;

 public class HelpApplet extends JApplet
 {
 JButton theLauncher = new JButton("Launch Help");

 public void init()

 - 300 -

 {
 getContentPane().setLayout(new BorderLayout());
 getContentPane().add(theLauncher,
 BorderLayout.NORTH);
 JLabel lbl = new JLabel(
 "For help, click on the Launch Help button.");
 Font f = new Font("Helvetica", Font.BOLD, 12);
 lbl.setFont(f);
 getContentPane().add(lbl, BorderLayout.SOUTH);
 theLauncher.addActionListener(new Launcher());
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }

 class Launcher implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 URL url = new URL(getCodeBase(),
 "HelpDemo/HelpDemo.hs");
 HelpSet hs = new HelpSet(
 getClass().getClassLoader(), url);
 JHelp jh = new JHelp(hs);
 jh.setVisible(true);
 getContentPane().add(jh, BorderLayout.CENTER);
 invalidate();
 validate();
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }
 }

You may notice some unfamiliar features as you study the HelpApplet class. As we
mentioned, the Java Help API uses the Swing user-interface classes. Therefore, it
seemed appropriate to use these rather than the usual AWT classes in the applet itself.
It’s possible to mix Swing components and AWT components. However, in beta releases
of Swing and JDK 1.2, this was a frequent source of bugs. Therefore, whether by habit or
cautiousness, we continue to use one or the other rather than both.

 In comparing a Swing-based program to a non–Swing-based program, two differences

stand out:

•

Swing includes many components that extend the capabilities of similar AWT
components. These are named with a J prefix. For example, Swing includes JApplet,
JLabel, JButton, and JTextField components rather than Applet, Label,
Button, and TextField components.

 • You generally don’t directly add components to a Swing container; instead, you add

 - 301 -

components to the container’s content pane, which you access by using the
getContentPane method.

Apart from these differences, a Swing-based program looks much the same as an
AWTbased program. Of course, further differences arise if you choose to take advantage
of Swing capabilities that have no AWT counterpart. If you’re interested in learning about
these, you might enjoy Java 1.2 Interactive Course (Waite Group Press, 1999), which
was co-authored by one of the authors of this book.

 The heart of the applet, contained within the actionPerformed method of its inner

class, can be found in the following lines:

 URL url = new URL(getCodeBase(),
 "HelpDemo/HelpDemo.hs");
 HelpSet hs = new HelpSet(
 getClass().getClassLoader(), url);
 JHelp jh = new JHelp(hs);
 jh.setVisible(true);

The first statement constructs a URL that refers to the HelpSet file. Although it’s usual to
enclose help files within a JAR, the help example doesn’t do so, because that makes
them more cumbersome to examine. The URL references a subdirectory, HelpDemo,
that contains the HelpSet file, HelpDemo.hs. You can copy the files from the CD-ROM to
try the applet yourself. Be sure to recursively copy the subdirectory and its contents along
with the .class and .html files for the applet.

The second statement, which appears on the third and fourth lines, constructs a
HelpSet object. Doing so requires a reference to a ClassLoader instance that can
load the proper view classes and the URL of the HelpSet file. Getting the ClassLoader
is actually easier than it seems. The value null tells the HelpSet constructor to use
the default ClassLoader. Here, we’ve gone to some extra trouble to write code that will
work even in odd circumstances where nondefault ClassLoaders are at work. Under
normal circumstances, the value returned by getClass().getClassLoader() will be
null . However, if a special ClassLoader is in use, the expression returns a
reference to that ClassLoader.

The third and fourth statements, which appear on the last two lines, construct a JHelp
object from the HelpSet object and make the JHelp visible. Because the view is a
table of contents view, the created JHelp object is an instance of
javax.javahelp.TOCNavigator , the appropriate help viewer for a table of contents.
The remaining statements of the actionPerformed method add the JHelp to the
applet window and reformat the applet window as needed to accommodate the JHelp.

That’s all there is to it. Simply clicking the Launch Help button loads and displays the help
viewer. Of course, in a real application you might want to consider some issues we’ve
swept under the carpet in the interests of brevity and simplicity:

•

In this applet, nothing prevents the user from clicking the Launch Help button multiple
times, creating a new JHelp instance each time. If a JHelp is active, you should
reuse it rather than create a new instance.

•

Creating the JHelp requires parsing the help files, which is a time-consuming
process. You may prefer to create the JHelp during program initialization and simply
display it when the user requests help.

•

You may prefer to display help in a separate window rather than in the applet window.
To do this, you can create a JFrame and place the JHelp within it. The next
example, an application that offers help, demonstrates this technique.

 - 302 -

 A Helpful Application

Applications and applets are rather dissimilar. Swing exaggerates the differences
somewhat, so an example of a help-equipped application is in order. Figure 17.3 shows
how the sample application looks, and Listing 17.6 contains its source code.

 Figure 17.3: Java Help supports applications and applets.

 LISTING 17.6 HelpApplication.java —AN APPLICATION WITH HELP

 import java.awt.*;
 import java.awt.event.*;
 import java.net.*;
 import javax.javahelp.*;
 import com.sun.java.swing.*;

 public class HelpApplication extends JFrame
 {
 JButton theLauncher = new JButton("Launch Help");

 public static void main(String [] args))
 {
 new HelpApplication().init();
 }

 public HelpApplication()
 {
 super("HelpApplication");
 }

 public void init()
 {
 getContentPane().setLayout(new BorderLayout());
 getContentPane().add(theLauncher, BorderLayout.NORTH);
 getContentPane().add(
 new Label("Click on the button for help."),
 BorderLayout.CENTER);
 theLauncher.addActionListener(new Launcher());
 addWindowListener(new WindowHandler());
 pack();
 setVisible(true);
 }

 public void fatalError(Exception ex)

 - 303 -

 {
 System.err.println(ex);
 }
 // Inner classes omitted
 }

As usual, we’ve deferred the inner classes to a subsequent listing, which we’ll explain
momentarily. As you can see, the logic of the HelpApplication class is typical for an
application, although some Swing-related differences are evident. For example, the class
extends JFrame and adds components to its main container by using the
getContentPane method you saw in the HelpApplet class.

Listing 17.7 shows the inner classes of HelpApplication . The first inner class,
WindowHandler , handles the event generated when the user clicks the close box of
the main application window.

 LISTING 17.7 HelpApplication.java —INNER CLASSES

 class WindowHandler extends WindowAdapter
 {
 public void windowClosing(WindowEvent evt)
 {
 setVisible(false);
 System.exit(0);
 }
 }

 class Launcher implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 URL url = new URL("file", "",
"HelpDemo/HelpDemo.hs");

 HelpSet hs = new HelpSet(
 getClass().getClassLoader(), url);
 JHelp jh = new JHelp(hs);
 JFrame frame = new JFrame("Help Window");
 frame.getContentPane().add(jh);
 frame.pack();
 frame.setDefaultCloseOperation(
 WindowConstants.DISPOSE_ON_CLOSE);
 frame.setVisible(true);
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

The second inner class, Launcher, responds to a click on the Launch Help button by
popping up a help viewer. The initial statements of its actionPerformed method
resemble those of the similar method of the HelpApplet. However, HelpApplication
creates a JFrame that presents its help viewer in a window separate from its main
window. It uses the pack method to size the pop-up window and the

 - 304 -

setDefaultCloseOperation to specify that the help window closes automatically
when the user clicks its close box. You can use this same technique to launch a separate
help window for use with an applet.

That completes our tour of the Java Help facility. You should now be able to create your
own help sets and launch appropriate help viewers from Java applets or applications.
Bear in mind that the Java Help API has not yet been finalized. You should consult the
Javasoft Web site for the latest available information about Java Help.

 In the next section, you’ll learn how to send Internet mail messages from your application.

JAVA MAIL

At the time of this writing, the Java Mail API is in early release and can be downloaded
from the Javasoft Web site. Java Mail requires the Java Activation Framework (JAF), so
be sure to download and install both products. Without JAF, many Java Mail operations
fail silently, issuing NullPointerException errors.

 The sample program, called TinyMail, sends a mail message via an SMTP mail server.

Three main classes of the Java Mail API do the real work:

•

Session, which represents properties that define the interface between the mail client
and the network. The Session class also acts as a factory for creating Transport
objects.

 • Message, which represents a mail message.

 • Transport, which represents the transport agent that sends a message. The primary

method of the Transport class is send, which transmits a message.

Tables 17.1 and 17.2 summarize the methods of the Session class and the Message
class, respectively, used in the example program, along with several other important
methods. These classes as well as other classes of the Java Mail API provide many
additional methods. Consult the Java Mail API documentation for the latest information.

 TABLE 17.1 KEY METHODS OF THE Session CLASS

Method

Function

static Session
getDefaultInstance(s)

Returns a Session instance Properties
p, Authenticator created using the
specified properties and authentication.

Properties
getProperties()

Returns the properties associated with the
Session.

Transport getTransport()

Returns a Transport object that implements
the protocol associated with the Session.

setDebug(boolean debug)

Sets or resets the debug flag, as specified.

 - 305 -

 TABLE 17.2 KEY METHODS OF THE Message CLASS

Method

Function

void setFrom(Address
from)

Sets the sender (from) address of the
message.

void setRecipients(
 MessageRecipientType
type,
 Address recipient)

Adds a recipient address to the message.

void setSentDate(Date
date)

Sets the sent data of the message.

void setSubject(String
subj)

Sets the subject of the message.

Listing 17.8 shows the source code of the TinyMail class. The class provides a non-
GUI interface that lets the user type the name of the SMTP (mail) host, the from address,
the to address (receipt), the subject, and the message. Because most users have a mail
client on their PC, you’ll probably never implement a program with a user interface like
TinyMail’s. Instead, you’re more likely to write a program that obtains the host name and
other information programmatically. Such a program may be used, for instance, to alert a
system administrator of a system problem.

 LISTING 17.8 TinyMail.java —AN SMTP MAIL CLIENT

 import java.io.*;
 import javax.mail.*;
 import javax.mail.internet.*;
 import java.net.*;
 import java.util.*;

 public class TinyMail {
 static final String MAILER = "TinyMail";
 public static void main(String[] args))
 {
 new TinyMail();
 }

 public TinyMail()
 {
 String theSMTPHost;
 String theSender;
 String theRecipient;
 String theSubject;

 - 306 -

 BufferedReader in =
 new BufferedReader(new InputStreamReader(System.in));

 try {
 System.out.print("SMTP Host: ");
 System.out.flush();
 theSMTPHost = in.readLine();

 System.out.print("From: ");
 System.out.flush();
 theSender = in.readLine();

 System.out.print("To: ");
 System.out.flush();
 theRecipient = in.readLine();

 System.out.print("Subject: ");
 System.out.flush();
 theSubject = in.readLine();

 Properties props = new Properties();
 props.put("mail.smtp.host", theSMTPHost);
 Session session =
 Session.getDefaultInstance(props, null);

 Message msg = new MimeMessage(session);
 msg.setFrom(new InternetAddress(theSender));
 msg.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(theRecipient, false));
 msg.setSubject(theSubject);

 getMessageText(in, msg);

 msg.setHeader("X-Mailer", MAILER);
 msg.setSentDate(new Date());

 Transport.send(msg);
 System.out.println("\nMailed okay.");
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 public void getMessageText(BufferedReader in, Message msg)
 throws MessagingException, IOException
 {
 String line;
 StringBuffer buffer = new StringBuffer();
 System.out.println("Enter message (Ctl-Z ends)");
 while ((line = in.readLine()) != null)

 - 307 -

 {
 buffer.append(line);
 buffer.append("\n");
 }
 msg.setText(buffer.toString());
 }
 }

The program is quite simple. It establishes a BufferedReader associated with
System.in, the default program input stream. It prompts the user for necessary data,
reads the user’s responses, and stores the responses in program variables.

When all the necessary information has been read, the program creates a Session
object, using the SMTP host name as the only explicit property. Then, the program
creates a MimeMessage object. MimeMessage is a subclass of message that provides
several additional methods, including setHeader, which allows specification of a mail
message header, and setText, which allows specification of the mail message body.
Finally, the program uses the send method to transmit the message.

The Java Mail API also has the capability to manipulate folders and messages stored by an
Internet Mail Application Protocol (IMAP) server. Because the Java Mail API is in early
release at the time of this writing, you should consult the Javasoft Web site for the latest
information on this and other capabilities.

 FORTHCOMING JAVA APIS

 Apart from Java Help and Java Mail, Sun has several other Java APIs of interest to

developers of distributed systems. These APIs are at varying stages of development:

•

Enterprise JavaBeans (EJB), a component architecture for building reusable server-
side software components. The EJB architecture is CORBA compliant. It provides a
mapping between CORBA protocols and EJB protocols so you can access
CORBAAPIs from Java. EJB also supports Java’s Remote Method Invocation (RMI).
An early access release of EJB is available.

•

Java Naming and Directory Interface (JNDI), which provides a single point of access to
the potentially many naming and directory services used within an organization. JNDI
lets you access directory services such as the Lightweight Directory Services Protocol
(LDAP), Novell’s NetWare Directory Services (NDS), and Sun’s Network Information
Service (NIS) in a common, Java-oriented way. JNDI can provide access to security
certificates, e-mail addresses, databases, network file systems, and other resources
and services. At the time of this writing, version 1.1 of the JNDI specification and code
were available.

•

Java Media APIs, including Java Media Framework (JMF), Java Sound API, Java
Speech API, and Java Telephony API. JMF supports streaming of audio and video
media over networks and control and synchronization of playback. At the time of this
writing, the Java Sound API provides 32-channel high-quality audio output and can
operate under Musical Instrument Digital Interface (MIDI) control. The Java Speech
API provides text-to-speech and speech recognition capabilities. The Java Telephony
API is a programming interface for computer-telephony applications. These APIs are
in various stages of development.

•

Java Transaction API (JTA), which defines a high-level transaction management
interface and manager for distributed transaction systems. The JTAAPI specification
is available for review.

 • Java Transaction Service (JTS), which defines a low-level transaction management

specification intended for use by vendors who provide transaction management

 - 308 -

systems. The revised JTS specification includes a standard Java mapping of the
CORBA Object Transaction Service. The specification and Java mappings are
available for download.

 Consult the Javasoft Web site for the latest information on these APIs.

 FROM HERE

You learned how to use the Java Help API and the Java Mail API to add help and mail
facilities to your applications. This chapter is the final chapter of Part III, “Java’s Networking
and Enterprise APIs,” which describes Java and Java facilities for distributed computing.
Part IV, “Non-CORBA Approaches to Distributed Computing,” describes two non-Java
approaches to distributed computing: the Common Gateway Interface (CGI) and
Microsoft’s Distributed Component Object Model (DCOM). If you’re a Java fan, don’t skip
Part IV, thinking that it contains no Java. Chapter 18, “Servlets and Common Gateway
Interface (CGI),” and Chapter 19, “Servlet-Based Implementation of the Airline Reservation
System,” describe and demonstrate Java servlets, which support CGI and offer advantages
over more common CGI technologies.

Part IV: Non-CORBA Approaches to
Distributed Computing

 Chapter List

 Chapter 18: Servlets and Common Gateway Interface (CGI)

 Chapter 19: Servlet-Based Implementation of the Airline

Reservation System

 Chapter 20: Distributed Component Object Model (DCOM)

Chapter 18: Servlets and Common Gateway
Interface (CGI)

 Overview

Two of the greatest tennis stars of all time were Australians Rod Laver and Ken
Rosewall. During the 1970s, they played opposite one another in tournament after
tournament. You never knew who’d win Wimbledon, for instance, but most years you
could be sure it would be either Laver or Rosewall. Though they were fellow countrymen,
the two were otherwise quite unalike. Laver was tall with a devastatingly powerful first
serve. Rosewall, at only 5 feet and 6 inches, seemed barely tall enough to peer over the
net; yet he moved with such agility that no passing shot seemed beyond his reach.
Nevertheless, in tennis just as in basketball, height has its advantages: In comparison to
Laver’s serve, Rosewall’s was merely a “servlet.”

In this chapter, you’ll learn about servlets of a different variety: small Java programs that
run on a server, providing HTML documents to remote clients. Some, particularly
Microsoft, have impugned the potential of client-side Java (not that we agree with them,
mind you). However, even detractors acknowledge that server-side Java is a technology
to reckon with. In this chapter you learn:

 • How to use the URLConnection class to obtain data from a Web server

 - 309 -

The URLConnection class makes it a snap to download information from a server,
whether the server is an ordinary Web server, a CGI-based Web server, or a Java
servlet-based Web server.

 • How to use HTML forms to transfer data to a server using the Common Gateway

Interface (CGI)

HTML pages called forms can contain user interface controls such as pushbuttons and
check boxes. You can define a button that triggers the transmission of the values of a
page’s controls to a server, which can process the data and return a response for
display by the Web client. Because Web clients are ubiquitous, HTML forms let a user
access a server, no matter what hardware platform or operating system the user runs.

 • How to write a servlet that processes a Web client’s GET request

To access a Web page, a Web client sends a GET request via the HTTP protocol to a
Web server. You’ll learn how to use a servlet to receive and process a Web client’s
GET request.

 • How to write a servlet that processes a Web client’s POST request

 To send the contents of a Web form to a Web server, a Web client uses the POST

request. You’ll learn how to use a servlet to receive and process POST requests.

USING THE URLCONNECTION CLASS

Recall that the URL class, which you met in Chapter 13, “Sockets,” lets you download the
document identified by a URL. Its cousin class URLConnection provides access to
many attributes that describe the document and the server response that provided it. You
don’t use a constructor to obtain an instance of URLConnection ; instead, you use the
openConnection method of the URL class. Once you have a URLConnection
instance, you can invoke any of the methods summarized in Table 18.1. The
getHeaderField method returns the value of a specified field of the server’s response
header. Table 18.2 describes the most commonly used fields.

 TABLE 18.1 KEY METHODS OF THE URLConnection CLASS

Method

Function

Object
getContent()

Returns an object that represents the contents of the
document associated with the URLConnection, if an
appropriate content handler is available.

String
getContentEncoding()

Returns a String that describes the type of encoding
used by the document associated with the
URLConnection.

int
getContentLength()

Returns the length (in bytes) of the document associated
with the URLConnection.

String
getContentType()

Returns a String that describes the type of encoding
used by the document associated with the
URLConnection.

 - 310 -

long getDate()

Returns a long that holds the creation date and time of
the server’s response.

long
getExpiration()

Returns a long that holds the expiration date and time of
the server’s response.

String
getHeaderField(String
name)

Returns a String that holds the value of the specified
field of the response header returned by the server. (See
Table 18.2 for the names of the response header fields.)

String
getHeaderField(int
n)

Returns a String that holds the value of the specified
field of the response header returned by the server.
Response header fields are numbered beginning with 0.

long
getIfModifiedSince()

Returns a long that holds the modification date and time
that force refetching of the document associated with the
URLConnection .

InputStream
getInputStream()

Returns an InputStream that contains the bytes of the
document associated with the URLConnection.

long
getLastModified()

Returns a long that holds the date and time at which the
document associated with the URLConnection was last
modified.

 TABLE 18.2 KEY SERVER RESPONSE HEADER FIELDS

Field

Meaning

Allowed

The request methods (for example, GET , PUT , and POST
) that the user can issue for this URL

Content-Encoding

The type of encoding of the response message (for
example, x-zip-compressed)

Content-Language

The language of the response message

Content-Length

The length (in bytes) of the response message

Content-Transfer-
Encoding

The type of encoding used for MIME messages

Content-Type

The MIME type and subtype of the content of this message
(for example, text/plain)

Cost

The cost of retrieving the document

Date

The creation time (GMT) of the document

 - 311 -

 Derived-From The version of the document from which this document
derives

Expires

The time (GMT) at which the document expires and should
be refetched

Last-Modified

The time (GMT) at which the document was last modified

Message-ID

A unique identifier for this message

Public

The request methods anyone can issue for this URL

Title

The title of this document

URI

The URI (Universal Resource Identifier; for practical
purposes, the term is synonymous with URL) or URL of the
document

Version

The version of the document

WWW-Authenticate

The authorization method used by the server

WWW-Link

The HTML link reference of the document

Figure 18.1 shows the output of WebClient, a simple applet that uses the URL and
URLConnection classes to download a Web page and its description. The applet
doesn’t render the HTML contents of the document, it merely displays them. To operate
the applet, you merely type a URL in the text box and press Enter. Let’s see how the
applet works.

 Figure 18.1: The WebClient applet displays the attributes and content of a Web

document.

Listing 18.1 shows the source code of the WebClient applet, except for the inner class
URLHandler, which provides an actionPerformed method that handles
ActionEvents associated with the TextField used to input a URL. The main point of
interest is the array theHeaders, which contains the names of the response field
headers the applet retrieves. Otherwise, most of the code is user interface oriented.

 LISTING 18.1 WebClient.java —AN APPLET THAT DISPLAYS WEB DOCUMENT

CONTENTS AND CHARACTERISTICS

 - 312 -

 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.io.*;
 import java.net.*;
 import java.util.Date;

 public class WebClient extends Applet
 {
 TextField theURL = new TextField(32);
 TextArea theData = new TextArea(6, 64);
 TextArea theContent = new TextArea(10, 64);

 String [] theHeaders = {
 "Allowed",
 "Content-Encoding",
 "Content-Language",
 "Content-Length",
 "Content-Transfer-Encoding",
 "Content-Type",
 "Cost",
 "Date",
 "Derived-From",
 "Expires",
 "Last-Modified",
 "Message-ID",
 "Public",
 "Title",
 "URI",
 "Version",
 "WWW-Authenticate",
 "WWW-Link",
 };

 public void init()
 {
 Font f = new Font("Monospaced", Font.PLAIN, 12);
 setFont(f);
 Panel p1 = new Panel();
 Panel p2 = new Panel();
 setLayout(new BorderLayout());
 add(p1, BorderLayout.NORTH);
 add(p2, BorderLayout.CENTER);

 p1.setLayout(new GridLayout(0, 1));
 p1.add(new Label("URL:"));
 p1.add(theURL);

 p2.setLayout(new GridLayout(0, 1));
 Panel p3 = new Panel();
 Panel p4 = new Panel();

 - 313 -

 p2.add(p3);
 p2.add(p4);

 p3.setLayout(new BorderLayout());
 p3.add(new Label("URL Data:"),
 BorderLayout.NORTH);
 p3.add(theData, BorderLayout.CENTER);
 p4.setLayout(new BorderLayout());
 p4.add(new Label("URL Content:"),
 BorderLayout.NORTH);
 p4.add(theContent, BorderLayout.CENTER);

 theURL.addActionListener(new URLHandler());
 theData.setEditable(false);
 theContent.setEditable(false);
 }

 public void println(String s)
 {
 theData.append(s + "\n");
 }

 public void fatalError(Exception ex)
 {
 ex.printStackTrace();
 }
 // Inner class omitted
 }

Listing 18.2 shows the URLHandler inner class of the WebClient class. The
actionPerformed method retrieves and displays the document contents and
characteristics. To do so, it constructs a URL using the text input by the user. It invokes
the openConnection method to obtain a URLConnection and calls several
URLConnection methods that provide document characteristics. It uses a simple for
loop to obtain and display the response header fields. It displays the document
characteristics in the upper TextArea, theData, by using the println method of its
enclosing class.

 LISTING 18.2 WebClient.java — INNER CLASS

 class URLHandler implements ActionListener
 {
 public void actionPerformed(ActionEvent evt)
 {
 try
 {
 theData.setText("");
 theContent.setText("");
 URL url = new URL(theURL.getText());
 URLConnection connect =
 url.openConnection();
 println("Content Encoding: " +
 connect.getContentEncoding());

 - 314 -

 println("Length: " +
 connect.getContentLength());
 println("Type: " +
 connect.getContentType());
 println("Date: " +
 new Date(connect.getDate()));
 println("Expiration: " +
 new Date(connect.getExpiration()));
 println("Last Modified: " +
 new Date(connect.getLastModified()));
 for (int i = 0; i < theHeaders.length; i++)
 {
 String header =
 connect.getHeaderField(theHeaders[i]);
 println(theHeaders[i] + ": " +
 header);
 }
 BufferedReader in =
 new BufferedReader(
 new InputStreamReader(
 url.openStream()));
 String line;
 while ((line = in.readLine()) != null)
 {
 theContent.append(line + "\n");
 }
 in.close();
 }
 catch (Exception ex) { fatalError(ex); }
 }
 }

To obtain the document contents, the actionPerformed method uses the
URL.openStream method. It wraps the returned InputStream reader within a
BufferedReader , which provides the convenient readLine method for reading the
stream one line at a time. The method simply appends each line of input to the lower
TextArea, theContent.

Generally, your programs will need to access only a few (if any) document characteristics.
Therefore, your programs using URLConnection and URL to access a document won’t
usually be this long. Notice that you can download the contents of a URL with less than a
dozen lines of code. URL is simple to use, but powerful.

COMMON GATEWAY INTERFACE (CGI)

The WebClient program from Listing 18.2 demonstrates one of the two fundamental
capabilities of a Web client: the ability to download information from a Web server by
issuing an HTTP GET request. Modern Web clients also have the capability to upload
data to a Web server, using techniques referred to as the Common Gateway Interface (or
CGI). CGI defines two methods for uploading data: GET and POST . The POST method
is more powerful and secure than the GET method, which is not implemented by Java
servlets. Therefore, we’ll omit discussion of using the GET method to upload data.

 To use the POST method, you define an HTML page that includes tags that specify user

 - 315 -

interface controls. Your page can include pushbuttons, input boxes, radio buttons, and so
on. When the user clicks a designated submit button, the Web client uploads the values
of the controls to the Web server. The Web server processes the incoming data and
generally returns a response in the form of an HTML page that the Web client displays.
Let’s discuss how to build such a form.

 The source code of a typical HTML page includes several structural tags in the following

form:

 <HTML>
 <HEAD>
 <TITLE>This is the title</TITLE>
 </HEAD>
 <BODY>
 ... the body of the page is defined here ...
 </BODY>
 </HTML>

 To create an HTML form, you follow this same pattern. Within the body of the HTML

document, you define a form using a pair of tags like these:

 <FORM METHOD=POST ACTION=" url">
 ... the body of the form goes here ...
 </FORM>

url specifies the protocol (HTTP), the host name, and possibly the port of the Web
server in the same fashion as a URL used to access a document. However, the path and
document part of url do not refer to a document to be fetched; instead, they refer to a
program the Web server runs (possibly a Java servlet) to process the form’s input. The
path and name don’t need to be the actual path and name of the file containing the
program. Most Web servers provide a table that translates between a “document” path
and name specified by the user and the actual path and name of the program that should
be run.

Within the body of the form, you use HTML tags to define the controls you want. You can
also include ordinary HTML text, images, and so on. Table 18.3 summarizes HTML tags
you can use to include various input elements within a form. Most of the tags support
attributes that modify their appearance or function. The purpose in presenting this
information is to help you read HTML forms prepared by others. If you want to create
your own HTML forms, you might consult a book on basic HTML. An easier approach is
to use an HTML editor that lets you build forms using a point-and-click, WYSIWYG
interface, such as Adobe’s PageMill or Microsoft’s FrontPage.

 TABLE 18.3 SUMMARY OF FORM INPUT ELEMENTS

Tag and Attribute

Input Element

<INPUT TYPE=TEXT ">

Defines a text box.

<INPUT TYPE=CHECKBOX
">

Defines an on/off check box.

<INPUT

Defines a radio button. All controls that have the

 - 316 -

TYPE=RADIOBUTTON "> same name are considered part of a single set of
radio buttons, only one of which can be in the “on”
state at any time.

<INPUT TYPE=SUBMIT ">

Defines a submit button.

<INPUT TYPE=RESET ">

Defines a reset button.

<INPUT TYPE=HIDDEN ">

Defines a hidden field, the value of which is
transmitted to the Web server. It cannot be
manipulated by the user.

<TEXTAREA COLS=cols
ROWS=rows ">

Defines a multiline text box.

<SELECT SIZE=n ">

Defines a drop-down list box. Used with CHOICE.

<OPTION ">

Specifies an item within the drop-down list box
created by SELECT. Must be nested between the
<SELECT> and </SELECT> tags that define the
list box.

Form input elements include a NAME attribute, which specifies a name for the control,
and a VALUE attribute, which specifies a default initial value of an input field or the text
that appears on a button. Every form must include a submit button that initiates the data
upload. You should usually also include a reset button that restores the values of all
controls to their initial values.

Listing 18.3 shows the simple HTML form you’ll use later in this chapter to run a Java
servlet that processes form input. Study the tags and attributes used in the form and try
to determine how it should operate. Figure 18.2 shows how the form looks.

Use a Web browser (not the appletviewer, which cannot display HTML text) to verify your
conclusions. Then, experiment by replacing the tags and attributes to see what sorts of
forms you can create. Use a WYSIWYG HTML editor such as PageMill or FrontPage if
you have one. Of course, your forms won’t operate until you build an appropriate Java
servlet, which you’ll learn how to do later in this chapter.

 LISTING 18.3 TestPoster.java —A SIMPLE HTML FORM

 <HTML>
 <HEAD>
 <TITLE>Poster Test Page</TITLE>
 </HEAD>
 <BODY>
 <FORM ACTION="http://127.0.0.1:8080/servlet/poster" METHOD==POST>
 <H1>Poster Test Page</H1>
 <P>Name:
 <INPUT TYPE=TEXT NAME=name>
 <P>Type:
 <P> <INPUT TYPE=RADIO NAME=type VALUE=Human> Human
 <P> <INPUT TYPE=RADIO NAME=type VALUE=Clone> Clone
 <P> <INPUT TYPE=RADIO NAME=type VALUE=Replicant> Replicant
 <P>Status:

 - 317 -

 <P> <INPUT TYPE=CHECKBOX NAME=status VALUE=Off-world> Off-world
 <P> <INPUT TYPE=SUBMIT>
 <INPUT TYPE=RESET>
 </FORM>
 </BODY>
 </HTML>

 Figure 18.2: A simple input form, such as the Poster Test Page example, can

upload data to a Web server.

SERVLETS: SERVER-SIDE JAVA

Now that you’ve learned a bit about the client side of Web data exchange, let’s shift focus
to the server side. In this section you’ll learn how to write servlets. First you’ll learn how to
write a servlet that handles a GET request; later in this chapter, you’ll learn how to write a
servlet that handles a POST request. Along the way, you’ll learn how to access
initialization arguments, request context data, and examine the servlet context.

Most servlets are instances of the HttpServlet class, which extends the
GenericServlet class. These classes provide much of the functionality of a servlet:
All you must do is provide the application-dependent functions. Table 18.4 summarizes
key GenericServlet methods, and Table 18.5 summarizes key HttpServlet
methods.

The most important servlet methods are the doGet and doPost methods. To create a
servlet, you provide overriding implementations of these methods. When your doGet or
doPost method gets control, it receives two arguments: one, an
HttpServletRequest , encapsulates the HTTP request, and the other, an
HttpServletResponse , encapsulates the server response. By invoking methods on
these objects, your program can inspect the request and construct and send an
appropriate response.

 TABLE 18.4 SUMMARY OF KEY GenericServlet METHODS

Method

Function

void destroy()

The network service automatically calls this
method whenever it removes the servlet.

 - 318 -

 String
getInitParameter(String
name)

Returns the value of the specified initialization
parameter from the servlet’s properties file.

Enumeration
getInitParameterNames()

Returns the names of the servlet’s initialization
parameters.

ServletContext
getServletContext()

Returns a ServletContext object describing
the servlet’s context.

String getServletInfo()

Returns a description of the servlet.

void
init(ServletConfig
config)

Initializes the servlet. Servlet classes that
override init should call super.init so that
the servlet can be properly initialized.

void log(String msg)

Writes a message to the servlet log.

 TABLE 18.5 SUMMARY OF KEY HttpServlet METHODS

Method

Function

void doGet(
HttpServletRequest
request,
HttpServletResponse
response)

Processes an HTTP GET request.

void doPost(
HttpServletRequest
request,
HttpServletResponse
response)

Processes an HTTP POST request.

The HttpServletRequest class extends the ServletRequest class, which
provides many useful methods. Table 18.6 summarizes these. The
HttpServletRequest provides several additional methods that may be of value,
including methods that handle Web browser cookies. Consult the Servlet Development
Kit documentation or the Java 1.2 JDK documentation for further information.

 TABLE 18.6 SUMMARY OF KEY ServletRequest METHODS

Method

Function

 - 319 -

 Object
getAttribute(String
name)

Returns the value of the specified request
attribute.

String
getCharacterEncoding()

Returns the name of the character set used to
encode the request.

int getContentLength()

Returns the length of the request.

String getContentType()

Returns the media type of the request.

ServletInputStream
getInputStream()

Returns a ServletInputStream associated
with the request.

String
getParameter(String
name)

Returns the value of the specified request
parameter.

Enumeration
getParameterNames()

Returns an Enumeration containing the names
of the request parameters.

String []
getParameterValues(
String name)

Returns the values of the specified request
parameter.

String getProtocol()

Returns a description of the request protocol.

BufferedReader
getReader()

Returns a BufferedReader associated with the
request.

String getRemoteAddr()

Returns the Internet address of the client.

String getRemoteHost()

Returns the host name of the client.

String getServerName()

Returns the host name of the server.

int getServerPort()

Returns the port number of the server.

 The HttpServletReponse class and its parent class, ServletResponse , provide

many useful methods. The most important of these are shown in Table 18.7.

 TABLE 18.7 KEY HttpServletResponse AND ServletResponse METHODS

Method

Function

PrintWriter getWriter()

Returns a PrintWriter for writing text
responses.

ServletOutputStream
getOutputStream()

Returns a ServletOutputStream for writing
binary responses.

 - 320 -

void
setContentType(String
type)

Sets the content type of the response.

IMPLEMENTING A SERVLET

Now that you’re acquainted with the main method used to implement servlets, let’s
examine a sample servlet. Figure 18.3 shows the output of a servlet known as
SimpleServlet, as rendered by a Web browser. Don’t try to run the servlet just yet. It
requires the servletrunner utility (or a compatible Web server) as a host; the servletrunner
utility is the topic of the next section. Listing 18.4 shows the source code of the servlet.

Note

Listing 18.4 was compiled with JDK 1.1.6 with the Servlet Development Kit
2.0. The Servlet Development Kit is not presently bundled with JDK 1.1 (now
at release 7) or JDK 1.2 (now at beta 4), so it’s necessary to separately
download and install it. No special measures are necessary to work with the
Servlet Development Kit: Simply follow the installation instructions provided
with the download.

 Figure 18.3: The SimpleServlet transmits a static HTML page.

 LISTING 18.4 SimpleServlet.java —A SERVLET THAT HANDLES AN HTTP GET

REQUEST

 import javax.servlet.*;
 import javax.servlet.http.*;
 import java.io.*;

 public class SimpleServlet extends HttpServlet
 {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<HEAD>\n");
 out.println(
 "<TITLE>A SimpleServer Page</TITLE>\n");
 out.println("</HEAD>\n");
 out.println("<BODY>\n");
 out.println(
 "<H1>SimpleServlet was here.</H1>\n");
 out.println("</BODY>\n");
 out.close();
 }

 - 321 -

 public String getServletInfo()
 {
 return (
 "I"m a little servlet, 29 lines long.");
 }
 }

The servlet extends the HttpServlet class, overriding the doGet method to provide
its application-specific processing, which merely transmits a static HTML page. Notice
that the method can potentially throw a ServletException ; many servlet-related
methods throw this exception, which requires you to program a try-catch block or a
throws clause.

The first task performed by this servlet, and most other servlets, is to set the content type
of its output. Most servlets return HTML text to the requesting client; therefore, “text/html”
is the most commonly used argument value. Next, the servlet uses the getWriter
method to obtain a reference to a PrintWriter that encapsulates the response that
will be transmitted to the client. Using the PrintWriter.println method, it writes a
series of HTML tags that comprise the static output shown in Figure 18.3. Finally, the
servlet closes the PrintWriter and exits its doGet method.

 The servlet also implements the getServletInfo method, which returns a String

that describes the servlet. All servlets should implement this method.

To run the servlet, you need the servletrunner utility or a compatible Web server. So that
you can run the servlet, let’s examine the servletrunner utility that’s included in the Servlet
Development Kit.

THE servletrunner UTILITY

The servletrunner utility, like most JDK utilities, is a command-line program that accepts
several command arguments. To see these, type servletrunner -h , which causes
servletrunner to display the following menu of options:

 D:\JDO\Chapters\Ch18\Listings>servletrunner -h
 Usage: servletrunner [options]
 Options:
 -p port the port number to listen on
 -b backlog the listen backlog
 -m max maximum number of connection handlers
 -t timeout connection timeout in milliseconds
 -d dir servlet directory
 -s filename servlet property file name
 -r dir document root directory
 java.exe: No error

Most of these options have default values. For example, the port defaults to 8080, and
the servlet property filename defaults to servlet.properties. Unless you place your servlet
.class files and HTML documents in the JDK directory tree, you’ll need to specify the
servlet and document root directories. The easiest way to use servletrunner is to navigate
to the directory that contains your servlet’s .class file and launch servletrunner from its
own DOS window, giving explicit values to the -d and -r options:

 servletrunner -d c:\servlets -r c:\servlets

 - 322 -

 Once servletrunner has initialized itself, you can use a Web browser to access your
servlet by using the following URL:

 http://localhost:8080/servlet/SimpleServlet

 If you find that SimpleServer is too laborious to type, you can use the servlet.properties

file to establish a pseudonym for your servlet. Simply include a line like the following:

 servlet.simple.code=SimpleServlet

This entry establishes simple as a pseudonym for SimpleServer, allowing you to use the
URL http://localhost:8080/servlet/simple to access the SimpleServlet servlet.
Try it for yourself before reading on.

A PARAMETERIZED SERVLET

The servlet.properties file also lets you establish parameter name-value pairs that can
help you initialize a servlet. They let you change a servlet’s initial state without
recompiling it. The multiline entry used for this purpose will look like this:

 servlet.pseudonum.initArgs=\
 name =value, \
 name =value, \
 ...
 name=value

Here, pseudonym is the pseudonym of the servlet, and each line after the first
associates a value with the specified name. Notice the backward slash (\) that ends each
line (other than the last). As an example, the following entry for the servlet named coins
gives values for some common U.S. coins:

 servlet.coins.initArgs=\
 penny=1, \
 nickel=5, \
 dime=10, \
 quarter=25

To see how to access these initialization parameters within a servlet, see Listing 18.5.
The servlet uses the getInitParameterNames method to obtain an Enumeration
containing the names of its initialization parameters. Then it uses the
getInitParameter method to obtain the value of each, including the value in the
HTML page it returns to the client. The servlet.properties file on the CD-ROM contains
entries for the ParameterizedServlet servlet. If you run the servlet, you should see output
like that shown in Figure 18.4.

 LISTING 18.5 ParameterizedServlet.java —A SERVLET THAT ACCESSES

INITIALIZATION PARAMETERS

 import javax.servlet.*;
 import javax.servlet.http.*;
 import java.io.*;
 import java.util.Enumeration;

 public class ParameterizedServlet extends HttpServlet
 {
 public void doGet(HttpServletRequest request,

 - 323 -

 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<HEAD>\n");
 out.println(
 "<TITLE>A SimpleServer Page</TITLE>\n");
 out.println("</HEAD>\n");
 out.println("<BODY>\n");
 out.println(
 "<H1>Parameters:</H1>");
 out.println("<DL>\n");
 Enumeration parms = getInitParameterNames();
 while (parms.hasMoreElements())
 {
 String pname = (String) parms.nextElement();
 String pval = getInitParameter(pname);
 out.println("<DT>" ++ pname + ":");
 out.println("<DD><I>" ++ pval + "</I><P>");
 }
 out.println("</DL>\n");
 out.println("</BODY>");
 out.close();
 }

 public String getServletInfo()
 {
 return (getClass().getName());
 }
 }

 Figure 18.4: The ParameterizedSer vlet accesses initialization parameters.

 A SERVLET THAT HANDLES POST REQUESTS

The PostServlet program example handles an HTTP POST request. PostServlet logs its
input to a disk file and returns a reply to the client. You can use PostServlet as a model
for more complex servlets that handle HTML form-based input, storing results in a file or
database. Listing 18.6 shows the source code for PostServlet.

Following in the footsteps of SimpleServlet, the first task of PostServlet is to set the
content type of its response, which again is “text/html.” PostServlet then accesses an
initialization parameter that identifies the directory that contains its data file. It uses the

 - 324 -

Java system property file.separator (which usually specifies a slash or backward
slash) to join the directory name and the filename. The servlet then calls
getParameterNames to obtain an Enumeration over the names of parameters
included in its request data. Each parameter holds the value of an HTML form control. By
using the getParameterValues method, the servlet obtains the data associated with
each control. It writes the data to its disk file and returns a grateful response to the client.

 LISTING 18.6 PostServlet.java —A SERVLET THAT HANDLES POST

REQUESTS

 import javax.servlet.*;
 import javax.servlet.http.*;
 import java.io.*;
 import java.util.Enumeration;

 public class PostServlet extends HttpServlet
 {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 String dir = getInitParameter("dir");
 String sep = System.getProperties().
 getProperty("file.separator");

 PrintWriter fout =
 new PrintWriter(
 new FileWriter(dir + sep + "data.txt", true));
 Enumeration parms =
 request.getParameterNames();
 while (parms.hasMoreElements())
 {
 String pname = (String) parms.nextElement();
 fout.print(pname + "=");
 String [] pval ==
 request.getParameterValues(pname);
 for (int i = 0; i < pval.length; i++)
 {
 if (i > 0) fout.print(",");
 fout.print(pval[i]);
 }
 fout.println();
 }
 fout.close();

 out.println("<HEAD>\n");
 out.println(
 "<TITLE>A PostServer Page</TITLE>\n");
 out.println("</HEAD>\n");
 out.println("<BODY>\n");

 - 325 -

 out.println(
 "<H2>Thanks for the yummy data!</H2");
 out.println("</BODY>");
 out.close();
 }

 public String getServletInfo()
 {
 return (getClass().getName());
 }
 }

The HTML file shown earlier in Listing 18.3 provides an HTML form suitable for use by
PostServlet so that you can try it yourself. Figure 18.5 shows the output PostServlet
returns to its clients.

 Figure 18.5: The PostServlet servlet thanks the user for the data received.

CLIENT REQUEST AND SERVLET CONTEXT INFORMATION

The CD-ROM contains the sample program RequestInfo, which transmits a formatted
page that describes the client’s request. Figure 18.6 shows the output of the RequestInfo
servlet. You may find RequestInfo useful in debugging HTML forms, because it displays
the name and value of each control on the form.

 Figure 18.6: The RequestInfo servlet dumps the client request.

The CD-ROM also contains the sample program ContextDumper, which transmits a
formatted page that describes the servlet context, including a list of active servlets. The
list of active servlets is obtained using this code:

 ServletContext context =
 getServletContext();
 Enumeration servlets =

 - 326 -

 context.getServletNames();
 while (servlets.hasMoreElements())
 {
 String name =
 (String) servlets.nextElement();
 out.println(name + "
");
 }

Sun advises that the getServletNames method may leave the servletrunner or Web
server in an inconsistent state. Therefore, you should not run the ContextDumper servlet
in a production environment. Most Web servers that support servlets provide a built-in
facility that performs an operation similar to that of ContextDumper.

 Figure 18.7 shows the output of the ContextDumper servlet.

 Figure 18.7: The ContextDumper servlet dumps the current servlet context.

SERVLET CONSIDERATIONS

Java servlets are becoming increasingly popular, but their use is not yet widespread.
Consequently, it’s too early to make a thorough and accurate assessment of servlet
technology. However, here are some issues to consider:

•

Virtually any Web browser can access a servlet. Consequently, applications using a
servlet-based architecture support essentially every common computing platform and
architecture.

•

The HTML form-based user interface, although widely available, is a “least common
denominator” user interface, offering relatively few features. Of course, it’s possible to
use Java servlets with other sorts of front ends. HTML form-based user interfaces are
simply easier to construct and more popular than alternative types of user interfaces.

 • Servlets appear to be more secure and perform more efficiently that CGI programs

written in C, C++, or Perl.

 • Because they’re written in Java, servlets are relatively simple to create and are portable

across server platforms.

 FROM HERE

You learned how to use the URLConnection class to download data from a Web
server. You’ve learned how to construct and use HTML forms that transmit their contents
to a Web server. What’s more, you’ve learned how to write Java servlets that handle GET
and POST requests.

 Chapter 19, “Servlet-Based Implementation of the Airline Reservation System,” provides

additional information about servlets. It shows how servlets might be used to implement

 - 327 -

this book’s running sample application system.

Chapter 19: Servlet-Based Implementation of
the Airline Reservation System

 Overview

In the previous chapter, you learned about Java’s servlet facility. In this chapter, you’ll
see an example of a larger servlet-based program—one that implements the Airline
Reservation System of Chapter 6, “The Airline Reservation System Model.” The program
is similar in function to the RMI-based program presented in Chapter 16, “RMI-Based
Implementation of the Airline Reservation System.” You’ll find the source code for this
chapter’s program in the chapter19/listings directory of the CD-ROM. By studying the
program, you’ll learn more about using servlets to provide data and transactions to
remote users.

To refresh your recall of the Airline Reservation System, you should turn back to Chapter
6 and skim it quickly, focusing on the functional requirements of the system. You should
also refresh your recollection of the socket-based implementation of the Airline
Reservation System presented in Chapter 14, “Socket-Based Implementation of the
Airline Reservation System,” because the servlet-based program described in this
chapter is functionally equivalent to the socket-based program described in Chapter 14.
As you’ll see, it’s much easier to write applications using servlets than either sockets or
RMI.

 Here are the three transactions implemented by the sample program in this chapter:

 • Search Flights, which returns each flight stored in the database.

 • Search Seats, which returns the reservation information for a specified passenger

identified by passenger number.

•

Book Seat, which enters a reservation for a specified passenger and flight. The
transaction makes several simplifying assumptions. The passenger and flight must
already exist as entities; the transaction does not create new passengers or flights.
The reservation number must be unique; attempting to add a reservation with the
same number as an existing reservation updates the existing reservation.

Like the sample program of Chapter 16, the sample program of this chapter does not
implement the visual interface for seat selection described in Chapter 6. Nor does it
implement the reservation pool locking mechanism. You could implement such a
mechanism by elaborating on the solution sketched near the end of Chapter 16.

We won’t need to study the application classes, because they’re unchanged from the
versions presented with the RMI version of the program in Chapter 16. You can examine
them by copying them from the CD-ROM to your system’s hard drive. So, let’s dive in and
study the servlet classes themselves. The program design assigns each of the three
supported transactions to a distinct servlet; each of the next three sections presents one of
these servlets.

THE SEARCHFLIGHTS SERVLET

The SearchFlights servlet displays a list of flights contained in the SQL database. You
can see the servlet’s output in Figure 19.1. The SearchFlights transaction requires no
input data; therefore, the SearchFlights servlet implements the doGet method, which
handles the clients’ HTTP GET requests. To access the servlet, first compile the source
file (SearchFlights.java) and then launch the servletrunner utility (or your servlet-capable
Web server). You can access the servlet by pointing your Web browser to the following

 - 328 -

URL:

 http://localhost:8080/servlet/SearchFlights

(If you’re using a Web server, you may need to use a different URL: See your Web
server’s documentation.) The output of the SearchFlights servlet is formatted as a data
dump. However, if your HTML skills are up to the task, you can easily revise the servlet to
generate output that includes tags that format the data into an HTML table, making the
data easier to read.

 Figure 19.1: The SearchFlights servlet displays a complete list of flights.

Note

All the code from here until the next section, “The SearchSeats Servlet,” is
found in the file SearchFlights.java in the chapter19/listings directory of the
CDROM.

Let’s walk through the source code of the SearchFlights servlet. Like most Java
programs, it begins with a set of imports. Because SearchFlights is a servlet, it imports
two servlet packages:

 import javax.servlet.*;
 import javax.servlet.http.*;
 import java.io.*;
 import java.sql.*;

 The class header specifies that SearchFlights extends the HttpServlet class:

 public class SearchFlights extends HttpServlet

The class defines only three fields—the familiar fields used to establish a database
connection using the JDBC-ODBC bridge (for a refresher on JDBC, see Chapter 12,
“Java Database Connectivity (JDBC)”):

 static final String DB = "jdbc:odbc:airline";
 static final String USER = "";
 static final String PASSWORD = "";

 The class defines only two methods: getServletInfo and doGet. The
getServletInfo method returns a String describing the servlet:

 public String getServletInfo()
 {
 return (getClass().getName());
 }

 Like the doGet methods of other servlets, the doGet method of SearchFlights may

throw a ServletException or IOException:

 - 329 -

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException

 The first tasks of the doGet method are to specify that its response stream will contain

HTML and to open the response stream:

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 Because the first part of the output HTML page will be the same whether the transaction

succeeds or fails, doGet next sends the first part of the page:

 out.println("<HTML>");
 out.println("<HEAD>");
 out.println(
 "<TITLE>Search Flights Results Page</TITLE>");
 out.println("</HEAD>");
 out.println("<BODY>");

Most of the remaining processing of the doGet method occurs inside a try statement.
Let’s first look at the associated catch statement, which completes the output HTML
page by sending an error message:

 catch (Exception ex)
 {

 out.println("<H2>Error:</H2>");
 out.println(ex);
 }
 out.println("</BODY>");
 out.println("</HTML>");
 out.close();

 The three statements following the catch statement are executed even if the try

statement succeeds. They finish the output page and close the response stream.

The statements within the body of the try statement open a connection to the database
and execute the Flight.getFlights method, passing a reference to the open
database. After closing the database connection, the program formats the output lines
that comprise the body of the HTML page:

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection db =
 DriverManager.getConnection(DB, USER, PASSWORD);

 Flight [] flights ==
 Flight.getFlights(db);

 db.close();

 out.println("<H2>Flight Information:</H2>");

 - 330 -

 for (int i=0; i < flights.length; i++)
 out.println(flights[i] ++ "
");

A more sophisticated version of the servlet might open the database connection only
once rather than every time it processes a transaction. You could accomplish this by
defining the database connection reference as a static field and opening the database
connection only if the field has a null value. If you’re using the JDBC-ODBC bridge and
you make this change, you must also specify that the servlet implements
SingleThreadModel , a marker interface that requires no methods. A servlet that
implements SingleThreadModel will run as a single thread; this avoids problems that
might otherwise arise because many ODBC drivers are not thread safe.

As you can see, servlets are easy to write, and they’re very flexible. However, bear in
mind that the client performs only user interface processing: The servlet does all the real
work. Nevertheless, you can create fully distributed applications using servlets, because
servlets can easily communicate with one another using a fully object-oriented protocol
such as RMI or CORBA’s IIOP. One simple architecture associates a “gateway” server
with each client. The gateway server provides a set of servlets that act on behalf of the
client, contacting remote servers as needed to satisfy requests. Figure 19.2 depicts this
configuration.

 Figure 19.2: Servlets can cooperate to provide a fully distributed architecture.

 THE SEARCHSEATS SERVLET

The SearchSeats servlet lists all seat reservations associated with a specified passenger.
Figure 19.3 shows the input HTML page associated with the SearchSeats servlet, and
Figure 19.4 shows a sample output HTML page.

 Figure 19.3: The SearchSeats servlet processes a request sent by an HTML

form.

 - 331 -

 Figure 19.4: The SearchSeats servlet returns an HTML page that lists the seats

reserved by a specified passenger.

 Note The following code is found in the file SearchSeats.html in the

chapter19/listings directory of the CD-ROM.

 Here’s the HTML source code used to create the test page that exercises the

SearchSeats servlet:

 <HTML>
 <HEAD>
 <TITLE>Search Seats Test Page</TITLE>
 </HEAD>
 <BODY>
 <FORM ACTION="http://127.0.0.1:8080/servlet/SearchSeats"
 METHOD=POST>
 <H1>Search Seats Test Page</H1>
 <P>Passenger No:
 <INPUT TYPE=TEXT NAME=passenger_no>
 <P>
 <INPUT TYPE=SUBMIT>
 <INPUT TYPE=RESET>
 </FORM>
 </BODY>
 </HTML>

 Note All the code from here until the next section, “The BookSeat Servlet,” is found

in the file SearchSeats.java in the chapter19/listings directory of the CD-ROM.

Let’s study the source code of the servlet itself. The servlet imports the same packages
and defines the same fields as the SearchFlights servlet. However, because the
SearchSeats servlet requires a passenger number as input, it implements the doPost
method rather than the doGet method implemented by the SearchFlights servlet:

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException

 Like the SearchFlights servlet, SearchSeats first specifies its response type, opens its

response stream, and transmits the first page of the output HTML page:

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<HTML>");
 out.println("<HEAD>");

 - 332 -

 out.println(
 "<TITLE>Search Seats Results Page</TITLE>");
 out.println("</HEAD>");
 out.println("<BODY>");

 Next, SearchSeats obtains the value of the passenger number input by the user:

 String passenger_no =
 request.getParameter("passenger_no");

 Notice that the HTML source code for the input form specifies passenger_no as the

name of the input text field (refer to Figure 19.3).

 The main processing of SearchSeats closely resembles that of SearchFlights; however, it

invokes Reservation.getPassenger rather than Flight.getFlights :

 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection db =
 DriverManager.getConnection(DB, USER, PASSWORD);

 Reservation [] seats ==
 Reservation.getPassenger(
 db, passenger_no);

 db.close();

 out.println("<H2>Seat Information:</H2>");
 for (int i=0; i < seats.length; i++)
 out.println(seats[i] ++ "
");
 }
 catch (Exception ex)
 {
 System.err.println(ex);
 out.println("<H2>Error:</H2>");

 out.println(ex);
 }

 out.println("</BODY>");
 out.println("</HTML>");
 out.close();

THE BOOKSEAT SERVLET

The BookSeat servlet creates and makes a database record of a fight reservation. Figure
19.5 shows the HTML input form, and Figure 19.6 shows sample output. The following
input form provides the flight number, passenger number, and reservation number that
specify the flight reservation:

 Note The following code is found in the file BookSeat.html in the chapter19/listings

directory of the CD-ROM.

 - 333 -

 <HTML>
 <HEAD>
 <TITLE>Book Seat Test Page</TITLE>
 </HEAD>
 <BODY>
 <FORM ACTION="http://127.0.0.1:8080/servlet/BookSeat"
 METHOD=POST>
 <H1>Book Seat Test Page</H1>
 <P>
 Flight No:
 <INPUT TYPE=TEXT NAME=flight_no>
 <P>
 Passenger No:
 <INPUT TYPE=TEXT NAME=passenger_no>
 <P>
 Reservation No:
 <INPUT TYPE=TEXT NAME=reservation_no>
 <P>
 <INPUT TYPE=SUBMIT>
 <INPUT TYPE=RESET>
 </FORM>
 </BODY>
 </HTML>

 Note All the code from here until the end of the chapter is found in the file

BookSeat.java in the chapter19/listings directory of the CD-ROM.

 Figure 19.5: The BookSeat servlet requires the user to enter flight number,

passenger number, and reservation number information.

 Figure 19.6: The BookSeat servlet records a flight reservation.

The BookSeat servlet closely resembles the SearchSeats servlet. Both implement the
doPost method and receive parameter values from an HTML input form. The BookSeat
servlet receives three such parameters:

 - 334 -

 String flight_no =
 request.getParameter("flight_no");
 String passenger_no =
 request.getParameter("passenger_no");
 String reservation_no =
 request.getParameter("reservation_no");

The main processing of the BookSeat servlet, which is enclosed within the usual
trycatch block, instantiates a Reservation object, invokes its dbWrite method,
and outputs a confirmation message:

 Reservation res = new Reservation(
 db, reservation_no, flight_no, passenger_no);
 res.dbWrite(db);
 db.close();

 out.println("Seat Booked.");

FROM HERE

In this chapter, you’ve seen a complete application of modest size that uses servlets to
display and update database data. As you can see, using servlets is very easy. Yet,
servlets are enormously powerful and flexible. Moreover, because they’re written in Java,
they’re also portable. Here’s a preview of what’s coming up:

 • Chapter 20, “Distributed Component Object Model (DCOM),” describes Microsoft’s

proprietary distributed computing model.

 • Chapter 21, “CORBA Overview,” begins the first of two parts of this book that present

the Common Object Request Broker Architecture (CORBA).

Chapter 20: Distributed Component Model
(DCOM)

 Overview

Developing distributed components with Java and DCOM simplifies developing
distributed applications. If you’re already familiar with COM, CORBA, or RMI, it won’t
take you long to understand DCOM. Even if you don’t have a good background with the
Component Object Model (COM), the Microsoft Java virtual machine (JVM), the run-time
environment for Java, makes it painless to develop both COM and DCOM components.

Note

Chapter 15, “Remote Method Invocation (RMI),” and Chapter 16, “RMI-Based
Implementation of the Airline Reservation System,” cover Remote Method
Invocation (RMI). Part V of this book, “The CORBA Approach to Distributed
Computing,” provides a detailed discussion of the Common Object Request
Broker Architecture (CORBA).

 This chapter covers the following:

 • An overview of DCOM

 • A brief architecture review

 - 335 -

 • A comparison of DCOM to other technologies

 • Code examples

The exercises are provided to help you become comfortable with the technology and to
drive home the concepts in the architecture section. After completing the code examples,
we’ll compare DCOM to other technologies such as CORBA and RMI. After you complete
this chapter and the exercises, you should have a solid understanding of DCOM and be
able to develop DCOM clients and servers in Java. In addition, you can use most of the
techniques and design patterns from the other chapters of this book with DCOM.

No matter what your background, you’ll probably at some point have to deal with
COM/DCOM. Understanding DCOM may be a great skill to master as you conquer your
next distributed applications. This is especially true if you have to interface with
commercial off-the-shelf components and applications or existing in-house applications
that use DCOM.

Windows NT is prevalent in the client/server market, and DCOM is heavily integrated with
the NT operating system. Therefore, DCOM is important to understand because of the
proliferation of Windows NT and the size of the COM component market.

Note

DCOM currently ships with the Microsoft Windows NT 4.0 and Windows 98
operating systems. DCOM is also available for download for the Windows 95
operating system. In addition, there are efforts to make DCOM available on many
UNIX platforms.

OVERVIEW OF COM AND DCOM

The Component Object Model (COM) provides a means to create extensible services
called components. As components mature (evolve) and add new features and functions,
the services they provide remain backward compatible with older incarnations of the
components they replace. This enables older applications (COM clients) to treat new
components like older components. Therefore, when you upgrade the component, older
client applications should continue working.

Note

Even within Windows NT and Windows 95, there’s a trend to provide more
operating system services in the form of COM services because of their
flexible nature. If you’ve ever installed software that uses new DLLs that make
older applications stop working, you’ll realize the importance of this trend.

COM uses object-oriented techniques, namely polymorphism, to accomplish the
extensible component architecture. COM compares to a local procedure call (LPC)
roughly the way C++ compares to C—one being procedural and one being object
oriented. Therefore, a remote procedure call (RPC) is to DCOM as C is to C++. DCOM
groups data and methods into objects, which you can use through various interfaces.

DCOM may be viewed as COM with a longer wire. Therefore, the terms DCOM and COM
are often used interchangeably throughout the text. Even though the first few iterations of
COM did not have distributed support, the design for distributed objects was included.
COM was designed from the ground up to support distributed computing. Therefore, you
can use a legacy COM client with a DCOM server just by changing a few Windows NT
Registry settings.

The major difference between DCOM and COM is that DCOM uses RPC as shown in
Figures 20.1 and 20.2. Therefore, the use of DCOM can be transparent to the COM
client; DCOM servers can work with an older COM client. For that matter, you can use
most existing COM servers that predate the release of DCOM as DCOM servers, again,
just by changing a few Registry settings.

 - 336 -

 Figure 20.1: The regular Component Object Model (COM).

 Figure 20.2: COM with a long wire (DCOM).

In addition to this transparent mode of operation for interfacing with older COM services,
DCOM adds the ability for the client to ask to connect to a specific server. Also, DCOM
adds security features, which are important for secure distributed computing. Again, LPC
is based on RPC, so architecturally, the usage model and techniques for using DCOM
are similar in nature to COM.

Only the core operating system runs in kernel mode while most of the operating system
runs in separate processes in the user mode. Applications that want to use those
operating system processes have to go through the LPC manager, which resides in the
kernel. The LPC manager marshals the request from the application to the OS process.
Therefore,

Windows NT is designed from the ground up using the client/server architecture, which is
also referred to as the services architecture. COM is an object-oriented extension to LPC.
Therefore, LPC in not an afterthought; it’s a core part of Windows/NT.

COM/DCOM TOOL SUPPORT

Many development tools support COM. Microsoft’s Visual Basic, which is heavily
centered on COM, commands a hefty portion of the programming language market.
Other prominent tools that support COM are Visual C++, C++ Builder, Delphi, and others.
Most of these tools support both the creation of COM components and the hosting of
COM objects. Development tool support is a major strength of DCOM.

In addition to these tools, Microsoft has made sure that Java integrates well with DCOM.
For instance, Java classes can be treated like COM objects. Visual J++ 6.0 is a rapid
application development (RAD) tool, and it integrates with COM seamlessly. Also, Sun
provides an ActiveX bridge to expose JavaBeans as ActiveX controls (an ActiveX control
is a type of COM component).

 You can use the Java classes you create as scriptable components, which can be

 - 337 -

scripted using Visual Basic, VBScript, JScript, Perl, Python, and other tools. Therefore,
you can use the classes you build, for example, inside of a Web browser, an Excel
spreadsheet, or as part of an Active Server Page. Essentially, you can use your Java
classes anywhere you can use Automation. Automation enables users to take control of
components and applications through easy-to-use scripting languages such as Visual
Basic. We’ll discuss Automation later in the chapter.

You may wonder why all this matters to Java. It’s simple really. There are a lot of COM
components out there and chances are you’ll need to integrate them in one of your
projects. For that matter, there are a lot of COM component developers in the market,
and you may need to integrate their skills in your next project.

 Note Many of the Java application server providers, such as WebLogic’s Tengah and

Bluestone’s Sapphire, provide DCOM support.

DCOM ARCHITECTURE

 All distributed object architecture must provide the following basic features:

 • Interface definition

 • Directory services

 • Marshaling

 • Object persistence

 • Security

Interface negotiation is important to distributed systems. It allows distributed objects the
opportunity to communicate and evolve separately without breaking the existing contract.
Directory services provide a means of finding, activating, and connecting to remote
objects. Marshaling is a means to make the object appear to be in a local process, yet
communicate the invocation of methods along with their parameters over process and
machine boundaries. Marshaling allows access to interfaces from remote sites and
moves data to and from the client process and the server process. Marshaling is just a
means of formatting data between clients and components so they can communicate
clearly at the bit and byte level.

Object persistence is saving an object state to a persistent storage, such as a flat file or
database. It’s also how to connect to a unique instance of an object; for example, when
the object is already running in another process. Finally, security is needed to protect
access to components at various levels. The rest of this section briefly discusses these
architectural issues in order to help you understand the DCOM architecture well enough
to write Java/DCOM programs effectively.

 Interfaces

Defining an interface between a client and a component is like defining a contract
between two people. The interface exposes a collection of methods that state what
behavior and functionality the component will provide.

In DCOM, you don’t deal with objects directly. Instead, you deal with interfaces to objects.
A DCOM interface is a collection of methods that define a service contract. Actually, what
you get is an interface pointer that points to a vtable (a vtable is a collection of
pointers to methods). Java does not support interface pointers or any pointers for that
matter (see the following note). However, Microsoft allows Java developers to access
COM objects in a natural way. The interface defines the behavior of an object

 - 338 -

independently of any one implementation of an object. DCOM is a binary interoperability
agreement for how clients interact with interfaces via pointers and local and remote
proxies. Proxies act as surrogate objects that are involved in marshaling the parameters
to and from the components.

Note

Microsoft JVM is a precursor to COM+. The way DCOM is handled in Java is
like a precursor to the way DCOM will be handled in other languages with the
introduction of COM+. COM+ will make DCOM programming a lot easier. For
example, let’s compare getting a pointer to an interface in Java to doing the
same thing in C++:

 IHelloDCOM pHelloDCOM;
 CoCreateInstance (CLSID_HelloDCOM, NULL,
 CLSCTX_INPROC_SERVER,
 IID_HelloDCOM,
 (void **) &pHelloDCOM);

 Here’s the equivalent Java code:

 IHelloDCOM helloDCOM = (IHelloDCOM) new HelloDCOM();

As you know, there are no pointers in Java. Therefore, instead of dealing with
pointers, the Microsoft JVM handles all the low-level complexity. The Microsoft
JVM also allows you to cast an interface to an object instead of using the
IUnknown interface negotiation, which makes programming COM in Java
much easier than doing it in C++ in many cases. Actually, Java’s multiple
interfaces inheritance model maps nicely to working with IUnknown.

DCOM provides standard interfaces for dealing with objects. One such interface is
IUnknown. Every DCOM object must support IUnknown. Also, Java classes, via the
Microsoft JVM, support a lot of other standard interfaces. So what’s a COM object? A
COM object is a component that supports one or more interfaces; a COM interface refers
to a collection of related methods. There are standard interfaces and there are
userdefined interfaces. COM objects are accessed only through interfaces. A COM class
implements one or more interfaces, and COM objects are runtime instantiations of COM
classes.

IDispatch is a standard interface, which all COM objects that support late binding
(Automation) must have. Java classes in the Microsoft JVM, by default, support
Automation via the IDispatch interface.

 COM works with many computer programming languages. However, there’s a special

language for describing interfaces called the Interface Definition Language (IDL).

 Note Java classes also support the following interfaces:

IConnectionPointContainer , IDispatchEx,
IExternalConnection , IMarshal, IProvideClassInfo ,
IProvideClassInfo2 , ISupportErrorInfo and, of course,
IUnknown.

 Interface Definition Language (IDL)

IDLs are high-level, English-like languages for describing which interfaces an object
supports. You can define an interface via IDL independent of any programming language.
DCOM, like CORBA, has an IDL, which unlike CORBA’s IDL, is based on the existing
DCE standard IDL for RPC. Before Windows NT 4.0, Microsoft had two types of IDL. One
was called IDL, and one was called ODL. ODL works with Automation, which was known

 - 339 -

as OLE Automation and for a brief while as ActiveX Automation. Since Windows NT 4.0
was released, there’s only one type of IDL. Therefore, ODL has been merged into IDL.

IDL is a special C-like language for specifying DCOM interfaces. You compile it with
Microsoft’s IDL compiler (MIDL) to create a type library. You then use another tool to
create Java or C++ stubs and proxies, which act as surrogate objects involved in
marshaling the parameters between the COM client and the COM components.

Note

A DCOM stub equates to a CORBA or RMI skeleton. A DCOM proxy equates
to an RMI or CORBA stub. Therefore, stub in CORBA speak is the client,
whereas stub in DCOM speak is the server.

DCOM’s IDL, unlike CORBA IDL, does not support inheritance, which is a key ingredient
to object-oriented design. Instead, DCOM supports containment, delegation, and
aggregation. It also uses interface negotiation), which provides the key feature of
inheritance (that is, polymorphism). Therefore, DCOM can support many interfaces.

The good news is you don’t have to know IDL to do DCOM programming. Microsoft and
others have a lot of development tools that can create type libraries and COM objects;
most of the tools approach the power of using IDL without the hassle. Visual Basic,
Visual C++, Visual J++, and Inprise’s Delphi all have the ability to create type libraries, so
you never have to use IDL. Also, with the release of COM+, there will be even less
reason to use IDL.

One of the keys to COM’s success is ease of use. DCOM is not tied to IDL the way
CORBA is. In fact, there’s nothing special about IDL. It’s just a C-like language for
creating proxies and stubs. Again, you don’t have to use IDL to do DCOM programming.
For Java programming, you never have to touch IDL. Even if you use the Microsoft Java
SDK and JVM and no fancy integrated development environment (IDE), you don’t have to
write any IDL. Toward the end of the chapter we’ll go through the process of creating
COM and DCOM objects without using IDL.

Check out Part V of this book for a detailed look at CORBA IDL. CORBA syntax and
structure is different than DCOM, but the intent is similar. COM IDL, like Latin, may be a
dead language in a few years.

 Invocation

Invocation is the means to invoke a method on an object. Dynamic invocation is the
ability to call an object from a late bound language, such as a scripting language. A
scripting language typically is not compiled. Rather, scripting languages are associated
with interpreted languages. Conversely, compiled languages, such as C++, use static
invocation. Java is an interpreted language with statically compiled language features; it’s
a hybrid, so to speak. Therefore, Java can work with both vtable and Dispinterface
interfaces (IDispatch-based interfaces) in Microsoft’s JVM.

DCOM, like CORBA, provides both static and dynamic invocation of objects. The type
library provides the meta data to do the dynamic invocation and introspection similar to
CORBA’s interface repository or Java’s introspection mechanism. (For more on CORBA
dynamic invocation, introspection, and reflection, see Chapter 32, “Interface Repository,
Dynamic Invocation, Introspection, and Reflection.”) The type libraries are analogous, in
many respects, to CORBA’s interface repository, and dynamic invocation is needed for
languages that require late binding.

 Note Meta data is a term used to describe data that, instead of representing some

entity, serves to describe other data.

 Directory Services and Activation

 - 340 -

As mentioned earlier, object location provides a means of finding, activating, and
connecting to remote objects. Once a COM client knows a component’s name, it can use
the COM library to look up the component’s class that corresponds to a unique identifier.
It can then determine whether the COM object should be run locally or remotely (if
remotely, it can work with the remote machine to activate the component).

COM uses the Registry and the COM library to perform object lookup. When a COM
client tries to create a COM object, the COM libraries look up the associated COM class
implementation in the Registry. (This is somewhat analogous to the way RMI uses the
RMIRegistry or CORBA uses COSNaming.) The COM class implementation is
executable code called by the server. The executable code that the COM class is
associated with could be a dynamic link library, executable file, or a Java class. (See the
section on COM servers for more details.) The COM libraries load the COM server and
work with the server to create the object (the instance of the COM class) and then return
an interface pointer to the COM client. With DCOM, the COM libraries are updated to
create COM objects on remote machines.

In order to create remote objects, the COM libraries read the network name of the remote
server machine from the Registry to create remote COM objects. Alternatively, the name
can be passed to the COM libraries’ CoCreateInstanceEx function call. We’ll cover a
code example that uses CoCreateInstanceEx with the name of the server passed as
a parameter.

For remote components (that is, DCOM components), the COM libraries use the service
control manager (SCM, pronounced “scum”), to perform object activation. In this
scenario, when a COM client attempts to create a COM component, the COM library
looks up the COM object in the Windows NT Registry as usual. What it finds in the
Registry is information on how to instantiate the COM object just as before. However, if
the COM class configuration in the Registry specifies a remote server, the COM library
will collaborate with SCM. SCM’s job is to contact the SCM on the remote server. The
remote SCM then works with the COM library on the remote machine to instantiate the
object and return an instance to the client application.

Note

CoCreateInstanceEx is an extended version of CoCreateInstance of
the original COM library. CoCreateInstance is the standard way to look up
COM objects in the Registry. CoCreateInstanceEx adds parameters for
security and remote machine specification.

 Identifiers for Locating Objects

You can find an interface by looking it up in the Windows Registry by its name or its
globally unique identifier (GUID). GUIDs are guaranteed to be unique. The GUIDs for
interfaces are called interface identifiers (IIDs). The GUIDs for COM classes are called
class identifiers (CLSIDs). All calls to CoCreateInstance need the CLSID to uniquely
identify the class the COM client is requesting. CLSID are listed in the Registry with a list
of the IIDs they support.

DCOM uses the remote server name and CLSID to interact with the COM client’s SCM.
As shown in Figure 20.3, the SCM uses this identifier when it connects to the remote
SCM on the server machine and requests creation of the COM object on the client’s
behalf.

 - 341 -

 Figure 20.3: DCOM activation.

 Note Unlike CORBA, DCOM has no objectId. Instead, if you want to connect to

the same unique instance of an object, you use a moniker.

DCOM has two other types of identifiers called the application identifier (AppID) and the
program identifier (ProgID). The AppID was added to COM as part of its security support.
The AppID essentially represents a COM server process namespace that’s shared by
multiple CLSIDs. All COM objects in this server process namespace have the same
security settings. The AppID concept is like a container for CLSID associated with a
process to avoid a lot of excessive Registry keys that all contain the same server name.
We’ll work with these different identifiers in the code samples.

ProgID is a user friendly name of the component that’s associated with the CLSID.
Therefore, in Visual Basic, for example, you can pass the name of the ProgID to
CreateObject, and CreateObject will look up the ProgID in the Registry and get the
corresponding CLSID.

With the release of Windows NT 5.0, COM adds a central store for COM classes. All
activation-related information about a component can be stored in the Active Directory of
the domain controller. The COM libraries will get activation information, such as the
remote server name, transparently from the Active Directory. Reconfiguring the
component will be a simple matter of changing the setting for the component in the
Active Directory. Then, Active Directory proliferates these changes to all the clients
connected to the portion of the Active Directory that contains the component’s
information. This further closes the gaps between CORBA’s activation model and
DCOM’s. This is really a leapfrog contest between CORBA, RMI, and DCOM.

 Object Persistence and Unique Instances of Objects

As mentioned earlier, CORBA provides an objectId to connect to specific instances of
an object. This object reference is used by various CORBA services. The object
reference can be used to reload the state of an object. Essentially, you can covert the
object reference to a string and copy it to a file or some other type of persistent storage.
Then, a year later you can use that object reference to instantiate that object to the state
you left it a year ago, assuming of course, that some other client did not change the state
of that object in the last year. CORBA clients use the object reference to connect to a
particular instance of an object. Conversely, COM objects, by default, are stateless
objects. COM objects do not have object identifiers. Instead, they use monikers to
connect to a particular instance.

COM’s instance-naming mechanism is extremely flexible but at the price of complexity.
An IMoniker specifies an instance for COM. Monikers, also referred to as instance
names, for COM objects are themselves COM objects. This explains their flexibility and,
for that matter, their complexity (compared to the CORBA approach). The standard COM
interface for these naming objects is IMoniker.

 If the COM object that the moniker is referring to is not already running in a server

 - 342 -

process, IMoniker can create and initialize a COM object instance to the state it had
before. If, on the other hand, the COM object that IMoniker is referring to is running in
an existing COM server process, IMoniker can connect to the running instance of the
COM object via the COM server.

The COM library maintains a list of currently running, explicitly named COM object
instances called the running object table (ROT), which IMoniker uses to find the
running COM object instances. Essentially, if the COM object instance is not in the ROT,
IMoniker initializes a new one usually from some type of persistent storage. (With
acronyms such as SCM and ROT, it makes you wonder who comes up with this stuff and
what their fixation is with nasty sounding acronyms!) There are a few monikers built in to
COM, such as the File moniker, the URL moniker, and the Class moniker.

 DCOM Servers

Once you create a COM object, you need a server to serve the objects up to the world. A
COM server is container that holds COM objects. In essence, a COM server is either a
class, a dynamic link library, or an executable file that contains COM classes, which in
the case of Java, relates to Java classes. The COM server has the ability to turn classes
into objects. The server implements the IClassFactory interface, which provides a
standard way to request having a COM class instantiated into a COM object.

You won’t need to create servers because MIDL (a fancy IDE) generates them for you. In
addition, COM clients won’t need to deal with IClassFactory directly, because the
COM library handles this when you call CoCreateInstance or the extended version,
CoCreateInstanceEx .

The COM client asks the COM library for a given class via a CLSID. The CLSID can be
looked up in the Registry. The COM library goes to the Registry and looks up the CLSID.
The COM library then instantiates a server, which must provide an IClassFactory
interface so that the COM server can create the object on behalf of the COM library. In
order for the COM client to ask the COM library for a class, the COM client has to find the
CLSID in the Registry. Therefore, the server must register a CLSID for every COM object
it’s able to create.

 Here are the three types of COM servers:

 • In-process servers. In the same process (DLL, OCX, INPROC)

 • Local servers. Local, separate process (EXE)

 • Remote servers. Separate process on a remote machine

In-process servers execute in the same process context as the client. Fundamentally, an
in-process server is a DLL, which means, among other things, that if there’s a bug in the
in-process server, it could bring down the client process. For example, OCXs always run
in the context of the client. (ActiveX controls are sometimes referred to as OLE controls.
An OLE control is an ActiveX control, but an ActiveX control is not necessarily an OCX.)
An OCX is a DLL with a different extension that supports Automation and events.
(Automation is dynamic invocation support for late-bound languages.) Local Java classes
that are exported as COM objects run in this mode, unless they’re using a surrogate
process.

Local servers run in a separate process from their clients but still on the same machine.
Basically, local servers run over LPC. An example of a local server is Excel (and just
about every other Office Suite application for the Windows market). Most Office Suite
applications support Automation and OLE.

 - 343 -

Remote servers execute in a separate process on another machine. The clients use RPC
to talk to the remote server. However, a client does not have to know that the server is
remote. This may be completely transparent to the client. Java classes that have been
exported as COM objects can be run in this mode only if they use a surrogate process,
which can be the default surrogate process provided by the COM library. This process is
covered in the code examples.

 The COM library supplies three ways for COM clients to attach to a remote server and

request a COM object:

 • The server name is associated with the ProgID of the object in the Windows

Registry.

•

An explicit parameter is passed to CoCreateInstanceEx ,
CoGetInstanceFromFile , CoGetInstanceFromStorage , or
CoGetClassObject specifying the server name.

 • Monikers are used.

As mentioned earlier, COM clients are backward compatible with DCOM servers;
therefore, all a COM client has to know is the CLSID of the component it wants to use.
The COM client calls CoCreateInstance , and the COM libraries create the
component on the remote server as configured in the Registry. Therefore, older COM
clients, which predate the release of DCOM, can transparently use remote COM objects.
However, newer clients have the flexibility to specify the server they want to connect to,
which is essential with some applications. The newer servers can specify the server
name as a parameter to CoCreateInstanceEx . Table 20.1 shows a list of calls used
when creating objects from persistent storage.

 TABLE 20.1 DCOM COMPONENTS USED TO REQUEST COM OBJECTS

DCOM API Calls

Description

CoCreateInstance

Creates an interface pointer to a stateless COM object.

CoCreateInstanceEx

Creates an interface pointer to a stateless COM object.

CoGetInstance
FromFile

Creates a new instance from a file. The COM object is
initialized from the file.

CoGetInstance
FromStorage

Creates a new instance from storage. The COM object is
initialized from the storage.

 Marshaling

A key concept to local/remote transparency is marshaling, which means to take an
interface pointer to a COM object in one process and allow a client in another process to
call member functions through that interface pointer. RMI, CORBA, and DCOM do some
form of marshaling. There are two ways to achieve marshaling in COM: COM standard
marshaling and COM custom marshaling.

 - 344 -

COM marshaling allows a client in one process to make interface method calls on COM
objects in another process. The COM objects in the other process can be down the hall
or on the other side of the globe. The COM clients are not aware of the differences
between local and remote calls. Marshaling involves taking an interface pointer in a
server’s process and making that interface pointer available to the client process.
Therefore, marshaling involves setting up interprocess communication (either RPC or
LPC). Next, marshaling must take the arguments to an interface method call, as passed
from the client, and serialize those arguments to the remote object’s process.

Different argument types are marshaled differently. A simple value such as an int is
marshaled by copying the value. However, a more complex object, such as
java.lang.String , is marshaled by copying the data pointed to it. The arguments to
method calls must be moved to the server’s address space, which again, may be across
the hall or around the world. In order to use nonstandard, user-defined COM interfaces,
you must define your own marshaling. Microsoft defines custom marshaling for its Java
implementation.

Custom marshaling is fundamental for certain applications. However, Microsoft
recognized that most applications do not need or desire to optimize their marshaling
mechanism. Therefore, COM offers standard marshaling for the built-in standard COM
interfaces. With standard marshaling, COM furnishes a generic proxy and a generic stub
that communicate through standard RPC for each standard COM interface.

On the other hand, each custom interface must implement an interface marshaler that
knows how to marshal all the arguments of those functions of the interface properly. The
interface marshaler actually performs the transportation, serialization, and deserialization
of the argument structures among the processes. COM’s architecture allows developers
to plug in their own marshalers for their own custom interfaces. Therefore, COM objects
can use these interfaces’ custom marshalers to transparently handle marshaling as if the
interface was supplied with COM. If a COM object supports IMarshal, it supports
custom marshaling. The Microsoft JVM supports IMarshal, so it does some level of
custom marshaling for Java.

An example of custom marshaling is the Microsoft Active Data Connector (ADC), which
uses optimized marshaling to move an entire row set of OLE data, thus reducing network
traffic for accessing rows in a database.

Note

You probably won’t ever need to write your own custom marshaler because
DCOM/Java integration centers around IDispatch. IDispatch is a built-in
interface. Therefore, COM provides a marshaler for it. In addition, Microsoft
provides a special optimized marshaler for Java COM objects.

 Standard Interfaces

IUnknown is the ubiquitous interface. IUnknown is used for interface negotiations, life
cycle management, and containment and delegation. All COM objects must implement
IUnkown’s QueryInterface() , AddRef(), and Release() methods.

Interface negotiation is the ability to ask a COM object at runtime which other interfaces it
supports. Because all COM objects must implement the IUnknown interface, all COM
objects support interface negotiation. Therefore, COM clients can access any COM
object and use QueryInterface to determine which interfaces the COM object
supports. The ability to query the interface supported allows COM clients to decide, at
runtime, which interface to use.

QueryInterface allows the COM object to pass an interface pointer to other COM
objects, which don’t even have to be on the same machine. COM uses
QueryInterface to aggregate many COM objects. It allows components to evolve
overtime and yet still be backward compatible with older clients, while new clients are
allowed to access new features through new interfaces.

 - 345 -

This interface negotiation feature gives COM architectural appeal. COM objects describe
their features at a high level of abstraction. This permits COM clients the ability to query
the COM object to see whether it supports a particular interface (a feature-set). Compare
this to a CORBA object’s single interface model. The ability of a COM client to request
the feature-set of a COM object allows for flexibility that you would expect for a
component object model. In other words, COM objects should be allowed to mature and
develop new features without breaking old clients.

Life cycle management is the ability to create and destroy components. IUnknown
supports two methods for performing life cycle management: AddRef() and
Release(). COM uses reference counting to control a COM object’s lifetime. The COM
system is not responsible for the life cycle of the object. Rather, the individual object is
responsible for its own life cycle. Therefore, reference counting works a lot like memory
management (that is, objects are destroyed when they’re no longer being used).

When clients first get an interface pointer to an object, they must call AddRef(). When
the clients are done with the interface pointer, they must call Release(). Therefore,
when the client is finished with the COM object, it calls Release(), and if the object
determines that there are no other clients, it will destroy itself. This puts a lot of
responsibility on the client—especially considering that in a distributed environment the
client machine may crash, be rebooted, turned off abruptly, or otherwise disconnected
before the COM client is able to call Release(). COM components can be connected to
many clients, in different processes on different machines, and the COM object has to
wait for all clients to release their reference before the COM object can be freed. Once all
the COM objects associated with a COM server are freed, the COM server can exit.

DCOM has many features for optimizing and enhancing the life cycle management of
remote COM objects. As mentioned earlier, clients might disconnect prematurely;
therefore, remote operations need a way to tell whether the client is still alive. Pinging is
one way to detect whether clients are still around. On the server machine, each remote
object being hosted has a ping period. If the ping period ends without receiving a ping
from the client, that remote COM object can be terminated. The ping period is
approximately six minutes in length. DCOM does not ping per COM object. Rather, it
uses sets of pings grouped by certain criteria for optimization.

No chapter about Java DCOM would be complete without a section on Dispinterface
and IDispatch. COM objects can support a Dispinterface , which is a dispatch
interface. Dispinterface works differently from a vtable interface. vtable
interfaces, or regular COM interfaces, have some limitations. COM clients of such
interfaces have to bind to the interface methods based on absolute locations of the
methods in the vtable. This scheme works for compiled code such as C++, but it does
not work for interpreted languages such as VBScript, Python, JScript, and Perl.

Of course, vtable access is much faster; the only downside is that creating your own
custom vtable-based interface requires you to write your own custom marshaler, which
is less than straightforward with Java. On the other hand, if you use IDispatch and a
Dispinterface , you don’t have to worry about custom marshaling. IDispatch is a
standard built-in interface; therefore, Microsoft provides the marshaling.

The speed issues are really just noise if you’re doing remote servers. If you’re doing
remote servers, most of your speed issues are due to network latency. CORBA, DCOM
using IDispatch, and RMI execute at similar speeds. Here’s an example of what a
Dispinterface might look like:

 dispinterface HelloCOM
 {
 properties:
 [id(0)] long count;;

 - 346 -

 methods:
 [id(1)] BSTR getHelloMessage((void);
 };

The count property is assigned a dispID of zero, and the getHelloMessage
method is assigned a dispID of one. A COM client, called an Automation controller,
can use dispIDs to get/set properties and to invoke the method call. In the code
examples, we’re going to write a Java program that uses IDispatch to do just this. In
the sample program, instead of accessing a COM object directly through a wrapper class,
we control a COM object by passing dispID to IDispatch. IDispatch has the
methods for invoking methods and properties given a dispID using
IDispatch::Invoke .

As referenced in Table 20.2, a variant is a class that can contain any kind of data.
Invoke uses variants to pass arguments to methods, to return properties and for
method returns. We’ll cover variants further in the code examples.

 TABLE 20.2 IDispatch METHODS FOR ACCESSING A Dispinterface

Member Method

Description

Invoke

Gets or sets a property or invokes a method given a dispID.
You can pass an array of variants for arguments. Invoke
returns a variant.

GetIDsOfNames

Given a string representing the name of a property, method, or
method argument, it returns the corresponding dispID.

GetTypeInfoCount

Determines whether Type info is available.

GetTypeInfo

Retrieves Type information.

If all this talk about IDispatch and Dispinterface has you worried, relax. As this
chapter has mentioned many times before (and will mention again), if you use the
Microsoft JVM and Java SDK, you don’t have to write any IDL. The Microsoft JVM makes
all Java classes look like COM objects and all COM objects look like Java classes. We’ll
explore how the Microsoft JVM does this magic in the next section.

 Java and DCOM

 Java programmers do not need to create interface definition files (IDL/ODL) to create

COM objects. Also, special tools such as IDL compilers are not necessary.

 Microsoft’s JVM allows you to create two types of COM objects with Java:

 • COM objects that implement only IDispatch and do not contain any type

informa•

 • COM objects that implement any COM interface (that is, custom, dual, or

Dispinterface)

 - 347 -

The first type that uses IDispatch, as mentioned before, is great for scripting
languages such as Perl, Python, VBScript, JScript, and so on. The Microsoft JVM
implements IDispatch automatically for all Java objects. Microsoft refers to this feature
as AutoIDispatch . Before AutoIDispatch , Java programmers had to write their
own IDL files. Now all we have to do is create a Java class. Any public methods or
member variables are automatically exposed via Automation. Anything that makes my job
easier, I like.

 The second type of COM object is for use with strongly typed languages such as C++

and Java.

 To implement a COM object in Java using AutoIDispatch, follow these steps:

 1. Write a Java class and compile it. The class must have public members and

methods.

 2. Register the class using JavaReg.

There may be times when you don’t want a class to be scriptable—perhaps to hide
certain properties to the outside world—yet still make them accessible from other Java
classes internal to the package. The Microsoft JVM allows you to turn off the
AutoIDispatch on a class-by-class basis. The class that doesn’t want scripting just
has to implement the com.ms.com.NoAutoScripting interface. This interface, like
java.io.Serializable , doesn’t contain any methods. Like Serializable, it tells
the VM that this object can be serialized. NoAutoScripting just tells the VM not to
expose IDispatch for this class.

Note

Visual J++ 6.0 automates COM creation. If you create a COM DLL in Visual
J++ 6.0, the inproc server name is not msjava.dll. Instead, the name of
the DLL is NameOfClass.dll . There’s an example on how to use Visual
J++ to create COM objects in the coding exercises.

This completes our survey of COM/DCOM architecture. We now take a look at some of the
differences between COM/DCOM and other distributed object technologies, such as RMI
and CORBA. We then move on to the coding examples.

COMPARING DCOM TO RMI AND CORBA

I don’t think it’s fair to advocate any one distributed object framework (DCOM, RMI, or
CORBA) over another, because each object framework has advantages that give it an
edge for certain types of applications. Also, using one distributed object framework does
not preclude using another.

Note

Different CORBA ORB vendors implement different CORBA services, and not
all CORBA service implementations are equal. This comparison does not
point out specific differences between vendors. Therefore, as we cover
CORBA services, features, and architecture advantages, make sure the ORB
you’re considering supports the particular services, features, and
implementations you need—don’t base buying a particular CORBA ORB on
this discussion alone.

 Ease of Development and IDL

Java’s transparent DCOM support clearly gives it an architectural advantage—namely,
you don’t have to learn another language to create DCOM/Java components.
Conversely, when you develop a CORBA component, you typically start by creating an
IDL file. Then you have to derive your client and server from another class. However, it

 - 348 -

should be noted that there are tools, such as Inprise’s Caffeine, that allow you to reduce
some CORBA complexity by allowing you to define your interfaces in Java.

As mentioned earlier, you don’t need IDL to create Java DCOM components. However,
there are times when you do need to create IDL files (for example, when you want to
provide custom marshaling, or you want to create vtable components). Concerning
comparisons of the IDL languages (Microsoft’s IDL to CORBA’s IDL), it has been stated
that CORBA’s IDL seems more thought out and easier to use. CORBA (possibly) has a
cleaner IDL syntax because it doesn’t extend an existing IDL like Microsoft extends RPC
IDL for DCOM.

Java’s RMI has no IDL; it does not need one because it provides only Java-to-Java
communication. You define your remote interfaces in Java. You then create an
implementation class in Java that implements the remote interface you defined. Although
it doesn’t have an IDL to deal with like CORBA does, the inheritance model of defining a
remote object is a bit more complicated than the DCOM approach. RMI is bit less
complicated than the CORBA approach (unless you use something like Inprise’s
Caffeine). Again, I have seen demonstrations of IDEs that make RMI development fairly
trivial. (I’ve always used Notepad, Javac, and RMIC to do RMI development.)

There seems to be a lot of work by various companies to make CORBA and RMI
development easier. Therefore, any advantage DCOM has in development ease of use
may be short lived.

 Directory Services

RMI is currently lacking a solid default directory service. However, there are third-party
tools that implement Java naming and directory interface, which give RMI a robust
directory service. CORBA has an advanced directory service called COSNaming, which
provides transparent location of objects, depending on your CORBA vendor COSNaming
implementation. DCOM’s current directory service lacks a truly distributed transparent
nature like CORBA’s COSNaming. This lack of support appears to be more of different
approaches to solve a similar problem than a missing feature or an architecture
advantage.

However, in Windows NT 5.0, DCOM can be used in connection with Active Directory.
Activation-related information about a component will be stored in the Active Directory of
the domain controller. The COM libraries will get activation information, such as the
remote server name, transparently from the Active Directory. Active Directory will
proliferate configuration changes to all the clients that are registered to receive a
component’s information.

 Marshaling

RMI has good support for marshaling—both in ease of use and overall feature-set. With
RMI, if an object defines a remote interface, it’s passed by reference. Passed by
reference means that when the client calls a method of a remote interface, the call is
marshaled over the wire. However, RMI can pass objects by value.

Imagine defining a remote hashtable type of class that contains results to a query. Every
time your client accesses the remote hashtable object, the call goes over the wire, which
can really slow things down because of the latency of the network. RMI gives you another
option. If you pass a parameter to a remote method and that parameter does not
implement a remote interface, and that parameter is an instantiation of a class that
implements Serializable, then the parameter will be marshaled over the network. If
the code for the parameter is not available on the client machine, RMI will load the class
from the remote machine. Therefore, not only are the values moved across the network,
but the code that accesses those values is moved across the network as well. In
essence, you’ve moved code and data such that the object has been relocated to the
client’s process.

 - 349 -

Therefore, RMI has an architectural advantage at doing marshaling. Neither CORBA nor
DCOM approaches this technique of moving the code from one JVM to another, but both
allow you to pass by value. By default, DCOM, like CORBA, uses “pass by reference,”
whereas RMI allows both “pass by reference” and “pass by value.” In addition, RMI
allows to you to pass code.

Future versions of CORBA will have support for pass by value. It’s possible to create your
own pass by value support with DCOM, but it isn’t as straightforward as the RMI
approach. To perform pass by value in DCOM, you need to define your own custom
vtable interface, and you need to write you own custom marshaler for the custom
vtable, which involves using C programming and Raw Native Interface (RNI). There are
ways around the DCOM marshaling issue. For example, you could pack all class data in
a string and then write your own unpacker, but this is not an elegant solution.

 Security and Administration

As far as security goes, DCOM has some clear architecture advantage with its tight
integration with the NT security model. This gives DCOM an edge in administration and
ease of development. Therefore, the same or similar tools that are included with the OS
can manage DCOM security. In other words, if you know how to administer Windows NT,
you can learn to administer DCOM easily.

 Interoperability and Bridging

It seems RMI is moving closer to interoperating with CORBA, which is a big plus for RMI
and CORBA. Of course, RMI interoperating with CORBA will degrade some of its
functionality (you would have to give up its most innovative feature, which is its ability to
transfer code and data in a pass by value call).

Already there’s a lot of bridging technologies from one distributed object architecture to
another. For example, IONA has a CORBA/COM bridge that takes a CORBA object and
makes it appear as an ActiveX control, which can then be embedded easily in a Visual
Basic program (or a Visual J++ or Delphi program, for that matter). Here’s another
example: The forthcoming CORBBeans implementation will allow CORBA distributed
objects to look like JavaBeans on the client. This, in effect, gives CORBA a local
component model and will make CORBA “toolable” on the client. Making CORBA
toolable makes it easier to use CORBA in applications such as Visual Basic by using the
ActiveX bridge to bridge the CORBA bean to look like an ActiveX control.

 Persistence

CORBA seems to have a fairly straightforward persistence mechanism for reconnecting
to unique instances of an object. Java and DCOM don’t seem to provide a straightforward
approach to handling persistence. DCOM does provide a flexible way to manage
persistence, yet it’s not as implicit as the CORBA technique. Therefore, at this point in
time, it’s more complex to implement.

 The Component Revolution

Declaring one technology the winner, and any of the other technologies the loser, is
impossible. There’s something else of greater importance that all these technologies
supply— the plumbing for the component revolution.

All these technologies enable the component revolution, which allows companies to
assemble frameworks of components into working solutions. Most information technology
(IT) shops have the option to buy commercial off-the-shelf components on the basis of
what functionality they provide, not on the basis of what distributed object technology
they were built with. The IT shops have this option because there are enough bridging

 - 350 -

tools to bridge between any two technologies at least half a dozen ways.

 The component revolution is based on the following precepts:

 • Whenever possible and feasible, buy before you build.

 • Do not reinvent the wheel. Be distributed object/component architecture agnostic and

buy the components that best fit your organization’s objectives.

 Following these precepts accomplishes the following:

•

It allows IT shops to embrace and extend frameworks. Instead of focusing on the
mundane, they can focus on the IT tools that will give the organization the competitive
edge.

 • It saves support and development costs.

•

It invests money in the component industry, which will grow and prosper, thus pushing
more applications features into the mundane space and allowing more innovation and
creation of cutting-edge IT tools.

 Using a Model That Works

Splitting hairs over architecture issues may be the wrong way to pick a distributed object
framework. Rather, which component model you use may depend heavily on the talent
pool at your company. If you have a department full of Visual Basic programmers, you
should consider using DCOM mostly, and RMI and CORBA when you have to connect to
third-party components and frameworks. Conversely, if you use Java a lot on both the
middle-tier and the client, you might consider using RMI and only use COM when you
want to capitalize on a huge install base of applications that have ActiveX Automation
support. If you need to connect to a lot of legacy applications that support CORBA,
CORBA is the obvious choice.

DCOM is an excellent tool to have in your arsenal of tools for creating distributed
applications, as well as for enabling the next revolution in history: the component
revolution. Using the Microsoft Java SDK, you can easily write both DCOM clients and
DCOM servers, and you can integrate with existing applications and in-house components
developed by Visual Basic, Delphi, and Visual C++ developers. You can still use CORBA,
DCOM, and RMI from the Microsoft JVM, so you don’t have to select just one distributed
object technology.

COM AND DCOM CODING EXERCISES

The strategy of the code examples is to keep them simple. The intent is to show how to
expose and use COM objects from Java. We’ll explore how what’s covered in the
architecture section applies to the code example. If you do the code examples, you’ll
understand the architecture better.

 Without further ado, let’s create our first COM program.

 Creating a Java COM Object

This code example assumes you have Microsoft’s Java SDK 3.1 or higher. The Microsoft
Java SDK is freely downloadable from its Web site. If you don’t have the Microsoft Java
SDK, go to www.microsoft.com/java and get it. Once you’ve downloaded it, follow
the install instruction closely.

 - 351 -

 For the first code example, we’re going to just create a simple COM server; then we’re
going to register that COM server in the system Registry so other programs can find it.

 In your favorite editor, enter the code in Listing 20.1.

 LISTING 20.1 CREATING THE HelloCOM COM PROGRAM

 class HelloCOM
 {
 public int count = 0;

 public String getHello()
 {
 count ++;
 return "Hello from COM " + count;
 }

 Save this in a file as HelloCOM.java.

 Now you need to compile it. Use the Microsoft compiler; from the command line, type

this:

 C:\jsdk>jvc HelloCOM.java

Next, you need to register it with JavaReg by typing the command exactly as shown in
the following command line. If successful, you should get a dialog box, as shown in
Figure 20.4.

 C:\jsdk>javareg /register /class:HelloCOM /progid:Acme.HelloCOM

 Figure 20.4: OLE/COM Object Viewer HelloCOM Registration dialog box.

JavaREG is tool for registering Java classes as COM components in the system
Registry. This tool also enables you to configure the COM classes you create to execute
remotely.

 You now need to copy the HelloCOM.class file to \java\lib in the Windows directory. You’ll

need to substitute drives and directories as needed:

 C:\jsdk>copy HelloCOM.class d:\winnt\java\lib\HelloCOM.class

 - 352 -

That’s it! You just created your first COM object. Remember, the only difference between
COM and DCOM, from the programmer’s perspective, is a few Registry settings and the
length of the wire. Let’s do some poking around and see this first hand.

 Exploring COM with OLEVIEW

OLEVIEW is the OLE/COM object viewer; it is a development, administration, and testing
tool. You’ll use this tool extensively to browse the COM classes you create. Reading the
Registry with RegEdit is no fun, and it’s quite time consuming. OLEVIEW allows you to
easily see the Registry entries for the COM objects you create. It also allows you to
configure the COM classes you’re going to create. This includes distributed COM
activation and security settings.

Note

OLEVIEW comes with Visual J++, Visual C++, and the DCOM SDK. You
likely have OLEVIEW somewhere on your machine. If you can’t find it, you
can download it at www.microsoft.com/oledev/olecom/oleview.htm
.

Another great feature of OLEVIEW is that it allows you to instantiate a COM class into a
COM object. This allows you to test the COM classes you create simply by doubleclicking
their names in the OLEVIEW program. The list of interfaces of the classes you create is
displayed in OLEVIEW, and you can activate COM classes locally or remotely. Here’s the
bottom line: OLEVIEW is a real nice tool to know if you’re doing DCOM development.

 With the above in mind let’s work with OLEVIEW to get a feel for how HelloCOM is

configured in the registry.

 1. If OLEVIEW is on your path, type OLEVIEW at the DOS prompt. Otherwise, find it

and execute it.

 2. Select View, ExpertMode.

 3. Select Object, CoCreateInstanceFlags, CLSCTX_INPROC_SERVER.

 4. Expand the node labeled Grouped by Component.

 5. Expand the Java Classes mode under Grouped by Component.

 6. Find the class you created in the previous exercise ().

 7. Click this node once.

Note

The CLSCTX_INPROC_SERVER component will not run as a remote server.
Local and remote servers run in separate processes. Inproc is associated
with a DLL, so when the class is registered, it’s associated with the DLL that
runs Java classes (namely, msjava.dll).

Notice that under the Registry tab on the right side, the CLSID and AppID are listed.
When we executed JavaREG earlier, we used the following for the class and ProgID
arguments:

 /class:HelloCOM /progid:Acme.HelloCOM

 Notice how the names map to this ProgID.

 Now let’s look at the information we can glean from the Registry tab:

 - 353 -

 • The inproc server is listed as msjava.dll.

 • The threading model is specified as Both.

 • The Java class associated with this COM object is HelloCOM.

 • The ProgID is Acme.HelloCOM.

 Think about all the ways you can use this information if something goes wrong.

OLEVIEW is a great tool for debugging configuration problems.

Now let’s test this COM object. When you double-click the HelloCOM node, OLEVIEW
will try to instantiate the COM class associated with the CLSID listed. The following
events will happen when you double-click this node:

 • OLEVIEW takes the ProgID and finds the CLSID (remember, the CLSID is a 128bit

GUID that identifies our COM class) for this COM class.

 • OLEVIEW calls CoCreateInstance , passing it the CLSID and the

CLSCTX_INPROC_SERVER .

 • The COM library loads msjava.dll and negotiates with its IFactory to get a COM

object representing our Java class.

 The bottom line is that OLEVIEW is actually loading a live version of our class. This is a

powerful tool for testing classes.

 Next, notice that the node has been expanded to show all the interfaces that this COM

class supports. Notice also that it supports the following interfaces:

 • IUnknown. Interface negotiation and life cycle management

 • IDispatch. Dynamic invocation for scripting languages

 • IMarshal. Custom marshaling

You should be familiar with these interfaces from the earlier discussion of the
architecture. From there, we can ascertain that Microsoft has defined some kind of
custom marshaler to marshal parameters to methods and return types between
processes and machines.

Now, double-click IDispatch. A dialog box should pop up. Press the View Type Info
button. An ITypeInfo viewer should pop up. The type information is missing, as you
can see in Figure 20.5, because we didn’t create a type library.

 - 354 -

 Figure 20.5: The OLEVIEW dialog box’s view type information.

Type libraries are good to have around. Visual Basic has a tool called Object Browser in
its IDE that uses type libraries to gather meta data on components. This tool is so useful
that if a component provides these type libraries, developers will use them extensively.
Visual Basic even has a feature that as you type an object’s variable name in the editor,
the editor gives you a list of methods that the object supports. This feature is called intel-
lisense, and it makes development easier. Therefore, we definitely want to include type
libraries. But how? Keep reading.

 Scripting the HelloCOM Object

 We’re going to use the COM server you just created with Visual Basic.

This code example assumes you have some form of scripting language that works as an
Automation controller. If you don’t have such a language, don’t worry about it. The next
example shows you how to create an Automation controller in Java.

I chose Visual Basic for this example because many people know how to use it, and it’s
widely available. LotusScript is similar in syntax to Visual Basic. If you can’t find a
scripting language that suits your fancy, don’t sweat it. Just skip the scripting section of
this example.

Note

Any Automation-capable scripting language will do. You can use Lotus Script,
which comes with Notes and Lotus 1-2-3, VBScript, and Visual Basic for
Applications (VBA), which comes with Word and Excel. Two of my favorite
Automation-capable scripting languages are Perl and Python. Both Perl and
Python provide examples for doing Automation. They’re freely available at
www.perl.org and www.python.org , respectively.

 From your favorite Automation controller scripting language, add a button to a form called

Command1. Then add the code from Listing 20.2.

 LISTING 20.2 SCRIPTING THE HelloCOM OBJECT WITH VISUAL BASIC

 Private Sub Command1_Click()
 Dim helloCOM As Object
 Dim count As Integer

 Set helloCOM = CreateObject("Acme.HelloCOM")
 MsgBox helloCOM.getHello
 count = helloCOM.count
 End Sub

 - 355 -

 Now run the program and press the Command1 button. Your output should look like what

is shown in Figure 20.6.

 Figure 20.6: Output of HelloCOM using Visual Basic scripting.

Notice that we use Visual Basic’s CreateObject to instantiate the COM class into an
object. Also notice that we pass CreateObject the ProgID of the COM class. You
can probably guess what Visual Basic is doing underneath, but let’s recap to make sure:

 • CreateObject takes the ProgID and finds the CLSID for this COM class in the

system Registry.

•

CreateObject then calls CoCreateInstance , passing it the CLSID and the
CLSCTX_INPROC_SERVER , which tells CoCreateInstance to create this object as
an inprocess COM server.

 • The COM library loads msjava.dll and negotiates with IUnknown to get an IFactory

interface.

•

The COM library then uses the IFactory to get a COM object representing the Java
class. (Actually, at this point, IFactory returns an IDispatch that represents the
interface to the COM object.)

 See Figure 20.7 for a diagram of this sequence.

 Figure 20.7: Visual Basic sequence diagrams.

 Now let’s consider what happens when the code example makes the following call:

 MsgBox helloCOM.getHello

Here we’re taking what helloCOM.getHello returns to use as a parameter to
MsgBox. MsgBox is just a Visual Basic method that pops up a message box with a string
that you give it. Underneath, Visual Basic is calling the IDispatch.Invoke method
with the name of the method we defined in the Java class getHello.
IDispatch.Invoke passes back a return type of Variant. A variant, as you’ll

 - 356 -

remember from the architecture section, can hold any type of value. Visual Basic then
works with the variant to see what it contains (in this case, it contains a string).

You may wonder why you’re being prepped with all this background information.
AutoIDispatch does not provide a type library. If it did, you could use JActiveX (a tool
from the Microsoft Java SDK that wraps COM objects into Java classes) to create
wrapper functions around the COM class you created (which we cover in the code
examples). Without JActiveX, creating wrapper classes can be a little tough.

 Using Java and “Raw” Dispatch Calls

Actually, using Visual Basic to do Automation is kind of like cheating, considering this is a
book on Java. However, this demonstrates how easy it is to control Java from scripting
languages.

You could do the preceding example in Java; however, we did not create a type library.
(We’ll go into the various ways of creating type libraries in other exercises.) For now the
question is this: How are you supposed to use this class if you can’t have JActiveX
generate a wrapper class via a type library?

The obvious recommendation is just to use this as a regular Java class (use it like any
other java class and import HelloCOM). Although efficient, this technique does not
teach you how to work with Automation objects that do not have a type library. Also, this
technique does not work when you do remote objects, which is covered in the next
example.

 Note In order to do this exercise, you need the files from the examples that ship

with Microsoft Java SDK 3.1.

 So let’s go through the “Raw” Dispatch Example step by step.

 1. Copy the HelloCOMController.java file from the CD-ROM to a new directory.

2.

Go to RegEdit and copy the CLSID for this class. You can do this by searching for
“HelloCOM” with the RegEdit utility. Use Find from RegEdits menu bar. When you
find “HelloCOM,” select Edit and copy the CLSID to the clipboard.

 3. Put the CLSID in the source file like so (note that your CLSID will be different):

 private final String app_id = "{68068FA0-5FF5-11D2-A9AF}";

 Now find the Java SDK examples. These are in the Microsoft Java SDK 3.1 directory:

 \Samples\DCOM\Dispatch\Sample\util

 The two files you want are DCOMLib.class and DCOMParam.class . Copy all the

Java *.class files from this directory to your Windows directory in the following path:

 \Java\Lib\sample\util

 This puts the files you need in the class path.

 Listing 20.3 is on the CD-ROM. Copy this file into the class files directory.

 LISTING 20.3 THE HelloCOMController CLASS

 - 357 -

 import com.ms.com.Variant;
 import com.ms.com.Dispatch;
 import java.util.Vector;
 import sample.util.DCOMLib;
 import sample.util.DCOMParam;

 public class HelloCOMController
 {
 //CLSID shorten for appearance
 private final String app_id = "{68068FA0-5FF5-11D2-111-
111111}";

 private final String serverName = "localhost";

 public static void main(String[] args))
 {
 HelloCOMController helloController =
 new HelloCOMController();
 }

 public HelloCOMController()
 {
 Object helloCOM = null;
 String strHello;
 int getHelloID;
 Variant [] arguments;;

 DCOMParam appId = new DCOMParam(app_id);

 appId.setServerName(serverName);

 try{
 helloCOM = DCOMLib.CoCreateInstanceEx(appId);
 }catch(Exception e){
 System.out.println("HelloClient: Exception "+ e);
 }finally{
 }

 arguments = new Variant[0];
 getHelloID = Dispatch.getIDOfName(helloCOM,"getHello");

 Variant retVal = Dispatch.invokev(helloCOM,
 getHelloID,
 Dispatch.Method,
 arguments,
 null);

 strHello = (String)retVal.toString();

 System.out.println("The hello COM servers says: " +
 strHello);
 }
 }

 - 358 -

 Now you need to compile the code. From the command prompt enter

 jvc HelloCOMController.java

 Finally, run it by typing

 jview HelloCOMController

 You should get a message in the console that says

 The hello COM server says: Hello from COM 1

 Let’s do an analysis on the following snippet from the earlier code:

 import com.ms.com.Variant;
 import com.ms.com.Dispatch;

 First, we’re importing two Microsoft classes that are used a lot with COM: Variant and
Dispatch.

Variant is used to map the Automation Variant type to Java. Variant can hold any
value, int , string, float, double, DATE , or even an IDispatch. You need the
Variant class to work with COM components that do not supply type libraries.
Variant is used exclusively by Dispatch.Invoke to pass both return values and
arguments. Variant allows you to change what types a variant has. Most Variant
methods fall into two types: coercion XXX) and access XXX and putTypeXXX).

The Dispatch class, a class with only static members, allows COM clients written in
Java to invoke methods and get/set properties of Automation objects. Automation objects
are COM components that support the IDispatch interface, as discussed in the
architecture section. IDispatch includes a lot of methods, but all of them boil down to
two capabilities:

 • getIDsOfNames , which maps methods or property names to dispids

 • invokev, which invokes methods and get/set properties

We’ll use forms of both of these methods in this example. The IDispatch class has
many forms of these two methods. This helps developers with default types, as well as
doing a subset or a frequently used superset of this functionality.

 The two other classes used are DCOMLib and DCOMParam:

 import sample.util.DCOMLib;
 import sample.util.DCOMParam;

These classes are included with the examples that ship with the Microsoft Java SDK 3.1.
Microsoft used its J/Direct tool to create the DCOMLib classes that allow you to access
the COM library directly. These are not supported classes; however, if enough people
use them, they will probably either be supported or their functionality will be included in
the core Microsoft API. (This happened in the past with MFC for VC++. So many people
used the sample classes that they became part of MFC in future releases.)

DCOMLib contains methods for helping create DCOM objects more easily. It uses
J/Direct for importing the required COM functions and for mapping C structures needed
to create COM objects. It has one static function that we’ll cover:

 - 359 -

 public static IUnknown CoCreateInstanceEx(DCOMParam param)

DCOMParam simplifies the parameters used to create a DCOM object with
DCOMLib.CoCreateInstanceEx . It fills in common default value parameters that you
would pass to DCOMLib.CoCreateInstanceEx . Here’s an abbreviated list of some of
the methods DCOMParam defines:

 public void setServerName(String server)
 public String getServerName()
 public void setUser(String user)
 public String getUser()
 public void setDomain(String domain)
 public String getDomain()
 public void setPassword(String password)
 public String getPassword()
 public int getHRESULT()

All these features will be useful when we create remote objects. As you can see by this
list of methods, you can manipulate the user name and password you use to connect.
You can also specify to which server on which domain you should connect. This is a nice
class to have around.

 Let’s look more closely at HelloCOMController . This constructor has five local

variables:

 • helloCOM holds the Dispatch pointer to an instance of the HelloCOM COM class

we created in the first code example.

•

 strHello contains the hello string that we’re going to retrieve using the
getHelloString method from the HelloCOM COM class we created previously.

 • getHelloID holds the dispatch identifier of the method we want to call (getHello).

 • Variant[] arguments holds the list of arguments to our method (which in this case

is none).

 • The DCOMParam appID holds the parameters for the call to CoCreateInstanceEx

.

Before we create the COM object, we must set the DCOMParam class used for the call to
CoCreateInstanceEx . HelloCOMController initializes the class DCOMParam
with the app_id we took from the Registry in step 1. Next, we’ll set the server to the
local server string constant. Here’s a snippet of what the code for this looks like:

Note

HelloCOMController uses two similar, but separate, variables: appID
and app_ID. app_ID is a String constant and appID is an instance of
DCOMPARAM class.

 // Create the DCOMParam and initialize it to
 // the app_id we got out of the registry in step one
 //
 DCOMParam appId = new DCOMParam(app_id);

 // Set the server to the server name

 - 360 -

 // server name equals localhost
 //
 appId.setServerName(serverName);

 // Create the helloCOM COM Object
 // Pass the appId to CoCreateInstanceEx
 //
 helloCOM = DCOMLib.CoCreateInstanceEx(appId);

Now that HelloCOMContoller has an IUnknown representing the HelloCOM COM
object class, it’s time to invoke its getHello method. First, we initialize arguments to a
zerolength Variant array, because the getHello method has no arguments. Next,
we get the Dispinterface ID of the getHello method. Then we use this ID to
invoke the method using Dispatch.invokev :

 // We don"t need any arguments for "getHello".
 //
 arguments = new Variant[0];

 // Get the dispinterface identifier for "getHello"
 //
 getHelloID = Dispatch.getIDOfName(helloCOM,"getHello");

 // Invoke the dispinterface method
 // The return type is returned as a Variant
 //
 Variant retVal = Dispatch.invokev(helloCOM,
 getHelloID,
 Dispatch.Method,
 arguments,
 null);
 // Convert the Variant to a string
 //
 strHello = (String)retVal.toString();

 //Write the hello message out to the console.
 //
 System.out.println("The hello COM servers says: " +
 strHello);

 Creating a Java DCOM Object

In this exercise, we’re going to create a remote COM object. This exercise is a duplicate
of the first. We’re going to use a different class name than the HelloCOM Java class.
The class name will be HelloDCOM. This is so you can compare the Registry settings of
HelloDCOM to HelloCOM in the next exercise.

 As you did in the first example, using your favorite editor, enter the code in Listing 20.4.

 LISTING 20.4 CREATING THE HelloDCOM DCOM OBJECT

 class HelloDCOM
 {

 - 361 -

 public int count = 0;

 public String getHello()
 {
 count ++;
 return "Hello from COM" + count;
 }
 }

 Also, as before, you need to compile. Use the Microsoft compiler, like so:

 C:\jsdk>jvc HelloDCOM.java

 Next, you need to register it with JavaReg:

 C:\jsdk>javareg /register /class:HelloDCOM /progid:My.HelloDCOM
/surrogate

The only real difference in this step to what you did in the first exercise is the addition of
the /surrogate parameter, which is essential for doing remote objects. The JavaReg
/surrogate parameter allows the system-provided surrogate process to wrap the
msjava.dll file in a process. This is needed because otherwise the DLL would have to run
inproc, which can’t be used with remote objects.

 Again, as before, you need to copy this HelloDCOM.class file to the Windows

directory:

 C:\jsdk>copy HelloDCOM.class d:\winnt\java\lib\HelloDCOM.class

To test this setup, let’s run the OLEVIEW program from the second exercise. Go to the
HelloDCOM class and try to instantiate. This will test to see if everything is working
okay.

From OLEVIEW, select View.ExpertMode and also set the
Object.CoCreateInstance flags to CLSCTX_LOCAL_SERVER and
CLSCTX_REMOTE_SERVER .

 Note It’s essential that CLSCTX_INPROC_SERVER is not selected.

Now expand the Java Classes node. Then expand the Class HelloDCOM node. If the
node opens, then the COM class you created was instantiated to a COM object. Now
compare all the parameters and settings in the Registry with the settings to HelloCOM.
Go through the steps from the second exercise with HelloDCOM.

To actually use the COM object remotely, you’re going to need to get familiar with
another tool. The name of this tool is DCOM Configuration (DCOMCNFG). DCOMCNFG
is included with DCOM for Windows 95 and Windows NT with Service Pack 2 (SP2) or
Service Pack 3. You can use DCOMCNFG to set application properties, such as security
and location. On the computer running the client application, you must also specify the
location of the server application that will be accessed or started. For the server
application, you’ll specify the user account that has permission to access and start the
application to the client computer.

 Configuring the Server

 Here are the steps needed to configure the server:

 - 362 -

 1. At the DOS prompt, type DCOMCNFG (or launch it any way you prefer; it’s in the

Windows \System32 directory).

 2. Select Java Class: HelloDCOM in the Applications tab’s Application list box.

 3. Double-click Java Class: HelloDCOM or press the Properties button.

4.

Another dialog box pops up called Java Class: HelloDCOM. Ensure that the words
“DLL Surrogate” appear next to the application type in the General tab. This is
required for remote operation of Java classes.

 5. Go to the Security tab.

 6. Select the Use Custom Access permission.

 7. Press the Edit button to edit the access permissions.

 8. Add the user name with the Add button. (Press Show Users in the Add Users and

Groups dialog box.)

 9. Set their permissions to Allow Access in the type of permission.

 10. Select the Use Custom Launch permission.

 11. Press the Edit button to edit the access permissions.

 12. Add the user name with the Add button. (Press Show Users in the Add Users and

Groups dialog box.)

 13. Set their permissions to Allow Access in the type of permission.

 Configuring the Client

 Here are the steps needed to configure the client:

 1. Run the JavaReg tool on the client machine. The following line is entered as a

continuous line at the DOS prompt without a line break:

 C:\jsdk>javareg /register /class:HelloDCOM /progid:My.HelloDCOM
 /clsid:{CLSID} /remote:servername

 2. Plug in the value of the CLSID to the 128-bit CLSID associated with this class. You

can get this value by looking it up in OLEVIEW.

 3. Set servername to the name of your remote machine.

 Here’s an example of what it might look like:

 javareg /register /class:HelloDCOM /progid:My.HelloDCOM
 /clsid:{064BEED0-62FC-11D2-A9AF-00A0C9564732} /remote:azdeals08

4.

Next, you can use OLEVIEW on the client to ensure that you can connect to the
remote server. This step should be familiar to you by now. This is the third time we’ve
used OLEVIEW. Go through the steps from the second exercise with OLEVIEW and

 - 363 -

note the differences between HelloDCOM on the client and HelloDCOM on the
server.

 Testing the Configuration with OLEVIEW

To test this setup, let’s run the OLEVIEW program (again) from the second example.
You’re going to go to the HelloCOM COM class and try to instantiate it into an object just
like you did before. This will test to see if everything is working okay:

 1. Run OLEVIEW on the client machine.

 2. Select View.ExpertMode and also set Object.CoCreateInstance flags to

CLSCTX_REMOTE_SERVER.

3.

Expand the Java Classes node. Then expand the Class: HelloDCOM node. If the
node opens, then the COM class you created was instantiated to a COM object. This
essentially tests that you have everything running okay.

 Let’s recap what this actually does from the architecture standpoint:

 1. OLEVIEW takes the ProgID and finds the CLSID for this COM class.

 2. OLEVIEW calls CoCreateInstanceEx , passing in the CLSID and the

CLSCTX_REMOTE_SERVER .

 3. Based on the CLSCTX_REMOTE_SERVER , the COM library knows that this object is

on a remote machine, so it looks up the name of the machine in the Registry.

 4. At this point, the COM library starts interacting with the client SCM to load the COM

server.

 5. The client SCM interacts with the server SCM.

 6. The server SCM loads up the default DLL surrogate, which in turn loads msjava.dll,

which then loads the classes’ IFactory COM class.

 7. The COM library on the server negotiates with IUnknown from the COM server to

get an IFactory interface.

8.

The COM library will then use the IFactory to get a COM object representing the
Java class. (Actually, at this point, it returns an IDispatch that represents the
interface to the COM object.)

 Demonstrating Access

 From your favorite Automation controller scripting language, add a button to a form called

Command1 and then add the code shown in Listing 20.5.

 LISTING 20.5 DEMONSTRATING HelloDCOM CLASS ACCESS

 Private Sub Command1_Click()
 Dim helloDCOM As Object
 Dim count As Integer

 Set helloDCOM = CreateObject("My.HelloDCOM")
 MsgBox helloDCOM.getHello

 - 364 -

 count = helloDCOM.count

 MsgBox helloDCOM.getHello
 count = helloDCOM.count
 End Sub

At this point, we pass the name of the COM class’s ProgID to CreateObject. The
Visual Basic runtime library initiates a similar process, as described in previous
exercises.

Notice that we use Visual Basic’s CreateObject to instantiate the DCOM class into an
object. Also notice that again we pass CreateObject the ProgID of the COM class.
By this point you should be able to guess what Visual Basic might be doing underneath,
but let’s recap one more time:

•

CreateObject takes the ProgID and finds the CLSID for this COM class in the
system Registry. The Visual Basic runtime notices that the object being requested is a
remote object.

•

 CreateObject then calls CoCreateInstance , passing it the CLSID which tells
CoCreateInstance to create this object as an remote process COM server.

 • The local machine’s SCM contacts the remote machine’s SCM.

 • The remote machine’s SCM uses the COM library to load msjava.dll in a surrogate

process and then negotiates with IUnknown to get an IFactory interface.

•

The COM library then uses the IFactory to get a COM object representing the Java
class. (Actually, at this point, IFactory returns an IDispatch that represents the
interface to the COM object.)

 • The IDispatch reference gets marshaled back to the local machine so that the VB

application (the COM client) can begin making calls.

 Now use the example you created in the previous exercise as the client and do the

following:

 1. Go to RegEdit and copy the class ID for this class. The way to do this is to search for

HelloDCOM with RegEdit using Edit, Find.

 2. Put the value of the CLSID in the file, like so:

 private final String app_id = "{68068FA0-5FF5-11D2-A9AF}";

 Where CLSID is the class ID you copied from RegEdit.

 3. Change the name of the server:

 private final String serverName = NAME_OF_REMOTE_HOST ;

 Here, NAME_OF_REMOTE_HOST is the name of the machine with your COM class on

it.

 4. Compile and run it on the client machine.

 5. Finally, move it to a different client machine and run DCOMCNFG if you have to set

 - 365 -

up security settings for the new client machine.

 Before moving on, let’s summarize what we’ve covered to this point in the coding

exercises.

You know how to create a local COM server and a remote COM server. You know how to
test both a local and a remote COM server with OLEVIEW. You know how to configure a
COM server to be a remote server with JavaReg and DCOMCNFG. In addition to this,
you know how to access COM objects that do not supply type libraries.

 The next thing we’re going to cover is how to create type libraries and how to use those

type libraries to generate wrapper classes with JActiveX.

You can use JActiveX to generate wrapper classes from any COM class that supplies
type libraries and supports IDispatch. In other words, you can use JActiveX to access
Visual Basic programs that support Automation and OCXs that you build with Visual
Basic. For instance, you can use JActiveX to create class wrappers with any tool that’s
able to create COM objects and type libraries, such as Delphi, Visual C++, C++ Builder,
and others. You can even use it to wrap Excel Automation services. There’s an excellent
example of using Java to control Excel in the Samples directory of the Java SDK 3.1.
(I’ve personally used JActiveX to generate class wrappers for Outlook, so my application
was an Automation controller for Outlook.)

 Creating a Type Library with Visual J++

In this section, you’re going to create a class using Visual J++ 6.0. If you do not have
Visual J++, don’t worry. We’ll cover how to create type libraries with Microsoft’s Java
SDK.

 Start up Visual J++ 6.0. If the New Project dialog box does not come up, do the following:

 1. Go to File, New Project.

 2. From the New tab’s tree, select node Visual J++ Projects, Components.

 3. Select the COM DLL icon.

 4. Name the project “Hello.”

 5. Press the Open button.

 Once the new project is opened, do the following:

 1. Double-click Class1 in the Project Explorer view.

 2. Rename the class to HelloVJpp. You have to do this in the edit window and the

Project Explorer view.

 3. Add a public member called count, like so:

 public int count = 0;

 4. Add the following method (you can right-click HelloVJpp in the class outline, which

pops up an Add Method dialog box):

 public String getHello()

 - 366 -

 {
 return "Hello First VJ ++ program";
 }

 Now, to compile it, go to Build, Build, and you’re done. You’ve created your first Java

component with a type library.

 To show you that this does indeed have a type library, let’s fire up OLEVIEW and see it:

 1. Start OLEVIEW.

 2. Select Hello.HelloVJpp . Make sure CLSCTX_INPROC_SERVER is selected in

the Object menu. Notice that the project name became part of the ProgID.

 3. Expand the node. This tests whether it was registered correctly.

 4. Select Hello.HelloVJpp again.

 5. Look at the Registry tag and notice that this has a TypeLib GUID.

 6. If you know how to use Visual Basic (4.0 or higher), start it up and use the Object

Browser to view the COM class you created.

 It does not get much easier than this to create a type library for a Java class.

For the next exercise, let’s use JActiveX to build wrapper classes around this COM class
you created with Visual J++. Note that you can use Visual J++ to do this. Select Project,
Add COM Wrapper to automatically wrap a COM object. (For those who do not have
Visual J++, we’ll do it the JActiveX way.)

 Creating a COM Wrapper with JActiveX

Among other things, the JActiveX tool can generate class wrappers for COM objects from
type libraries. JActiveX generates *.java files for the COM classes and interfaces that are
in a type library. When you compile the Java classes into *.class files, the classes allow a
program to access COM objects. You deal with Java classes and interfaces instead of
IDispatch, which makes life a lot easier. You just import and use the classes as you
would any other Java class. You can specify a type library (*.tlb) or a dynamic link library
(*.dll) that contains the type library as a resource.

 Note If you specify an .ocx file and leave out the /javatlb switch, the JActiveX

tool will create a JavaBean wrapper for the ActiveX control.

JActiveX generates Java source files that use com directives. These directives appear
inside comments. The jvc compiler knows how to take these com directives and create a
class that will call the COM class (from information JActiveX receives out the type
library). Here is an example of a COM directive:

 /** @com.method(vtoffset=3, dispid=3, type=METHOD,
name="getHelloString")

 @com.parameters() */

 Note Only the newer compilers that ship with the Java SDK accept com directives

(1.023.3920 or later). Earlier versions of jvc won’t work.

 Let’s use the JActiveX tool to create a wrapper around the last class that you created. Go

to the directory that contains the DLL you created in the last exercise.

 - 367 -

 Now run the JActiveX tool against it. The format for JActiveX is as follows:

 jactivex /d output_path file_name_of_type_lib

Here, file_name_of_type_lib can be *.tlb, *.olb, *.ocx, *.dll, or *.exe, and the /d
option specifies the output directory path. Here’s an example of what this might look like
on your machine:

 C:\jsdk>jactivex /d c:\jsdk\Exercise8 Hello.dll

 This action should have created two files in your output directory:

 HelloVJpp.java

 HelloVJpp_Dispatch.java

 These classes have a lot of warnings in them. Here’s an example:

 // notifyAll UNMAPPABLE: Name is a keyword or conflicts
 // with another member.
 // /** @com.method()
 // @hidden */
 // public native void notifyAll();

You can ignore these warnings. Because the COM classes were created with Java
classes, a bunch of name conflicts exist. However, because we’re more interested in the
custom methods, we don’t really care.

 Listings 20.6 and 20.7 are the listings for the classes. These listings are shortened for

display. The full listings can be found on the CD-ROM.

 LISTING 20.6 CLASSES FOR HelloVJpp

 package hello;

 import com.ms.com.*;
 import com.ms.com.IUnknown;
 import com.ms.com.Variant;

 /** @com.class(classid=D130B670-63C5-11D2-A9B0-00A0C9564732,
 DynamicCasts) */
 public class HelloVJpp implements

IUnknown,com.ms.com.NoAutoScripting,hello.HelloVJpp_Dispatch

 {

 /** @com.method()
 @hidden */
 public native String getHello();

 public static final com.ms.com._Guid clsid = new
com.ms.com._Guid(...);

 }

 - 368 -

 LISTING 20.7 CLASSES FOR HelloVJpp_Dispatch

 package hello;

 import com.ms.com.*;
 import com.ms.com.IUnknown;
 import com.ms.com.Variant;

 // Dispatch-only interface HelloVJpp_Dispatch
 /** @com.interface(iid=13076493-63C6-11D2-A9B0-00A0C9564732,
 thread=AUTO, type=DISPATCH) */

 public interface HelloVJpp_Dispatch extends IUnknown
 {
 /** @com.method(dispid=100, type=METHOD, name="getHello",
returntype=VOID)

 @com.parameters([type=STRING] return)) */
 public String getHello();

 public static final com.ms.com._Guid iid = new
com.ms.com._Guid(...);

 }

Notice that there are com directives in the comments. Some of these directives specify
the IID; some are being used to demarcate methods. When the jvc compiler sees these
com directives, it knows how to generate the corresponding hooks into COM. Now all
you have to do is compile these classes. Then, with a few Registry settings, you can use
the COM object you created as a remote COM object (that is, DCOM).

The next step is to compile the generated files with jvc. Then you’ll test this as a local
COM object. You must create a small program that exercises the classes you just
created with JActiveX:

 class HelloTest
 {
 public static void main(String [] args))
 {
 hello.HelloVJpp_Dispatch helloVJpp = new
hello.HelloVJpp();

 System.out.println(helloVJpp.getHello());
 }
 }

Next, you need to compile this code example and run it (for now, run it all on the same
machine). As always, ensure that all the classes you create are in your class path. Then,
move the compiled files to client machine.

 Now do the following:

 1. Open up OLEVIEW and select Hello.HelloVJpp from the treeview.

 2. Go to the Implementation tab.

 - 369 -

3.

Select Use Surrogate Process. (Typically, you do this with JavaReg; however,
because you’re working with a DLL instead of a Java class, you do it differently for
the server.)

 4. Use DCOMCNFG to configure Hello.HelloVJpp the same way you did before.

Essentially, what you want to do is give the user name you’re going to use on the
client machine and the privileges to launch and run this DCOM server. Refer to the
previous exercise if you don’t remember how to do this.

 5. Next, copy the Hello.dll file over to the client. You need it for the type library

information it contains.

6.

Run regsvr32 to register Hello.dll. This sets up the pointer to the type library
information. The wrapper classes needs this type library information to function
properly.

 7. Finally, you need to register the Hello.HelloVJpp on the client using JavaReg:

 C:\jsdk>javareg /register /class:HelloVJpp

/progid:Hello.HelloVJpp
 /clsid:{CLSID} /remote:servername

As you did before, set the CLSID to the 128-bit CLSID associated with this class. You
can get this value by looking it up in OLEVIEW. (Right-click the class in the treeview and
then select Copy to Clipboard.)

 Set the server name to the name of your remote machine.

Note that regsvr32 registers DLLs in the Registry. Now, you may be thinking that
because the DLL is the code that contains the class, if the DLL is registered on the client,
the client will use the DLL locally. Yes, this is true. However, when you use JavaReg, you
register Hello.HelloVJpp to access the remote server. You need these two steps
because the DLL contains the TLB (type library) within itself as a Windows resource. You
need the TLB information; otherwise, the wrapper classes you generated with JActiveX
will not work. If you skip using regsvr32 to register the type library, you can still call this
remote COM object using IDispatch. You could also use this remote COM object with
Visual Basic using the CreateObject feature instead of using New.

 Next, you need to use OLEVIEW on the client to test whether it’s connecting to the

DCOM server (); then run the HelloTest sample program against it (use Jview).

 Note You can also create type libraries using JavaReg. In this case, the first

exercise JavaReg command-line arguments would look like this:

 C:\test>javareg /register /class:HiCOM /clsid:{guid} /typelib:HiCOM.tlb

 This creates the type library and puts it in the Registry for you. You may want

to try the last exercise using nothing but the Java SDK.

Other COM bridges are available besides Microsoft’s. Sun provides a unidirectional
bridge from JavaBeans to ActiveX controls. ActiveX controls are COM objects that
support events and are displayable in a container. Also, Halcyon and other vendors
provide bi-directional COM/DCOM interaction with Java from non-Microsoft JVMs.

 Registering Callbacks

 - 370 -

This exercise will show you how to create a callback in DCOM. Essentially, you pass a
callback object to a COM server object. The COM server object uses this COM callback
object to make a call on the client. Therefore, the server can initiate communication with
the client. (Actually, in this scenario, both the server and the client act as server and
client to each other; however, I’ll refer to the COM object that’s actually registered in the
Registry as the server for simplicity of explanation.)

 Listing 20.8 shows what the code should look like in concept.

 LISTING 20.8 THE callMeAnyTime CALLBACK OBJECT USING DCOM

 class Callback
 {
 public void callMeAnyTime (Hashtable hashtable)
 {
 //use hashtable, in our case just display it
 }
 ...
 ...
 }

 class ComServerObject
 {
 Callback callback;
 public void registerCallback(Callback callback)
 {
 this.callback = callback;
 //return right away
 }
 public void queryState()
 {
 //fire off thread to do a query
 //on the state of something and then return
 }
 public void gotQueryBack()
 {
 Hashtable queryResults;
 //populate hashtable with query results
 callback.callMeAnyTime(queryResults);
 }
 }
 class ComClient
 {
 void getStatus()
 {
 Callback callback = new Callback();
 IComServerObject server = new ComServerObject();
 server.registerCallback(callback);
 server.queryState();
 }
 }

 The callback class will be passed to the ComServer from the ComClient via a call to

 - 371 -

ComServer.registerCallback . Once the ComServer has the Callback that the
ComClient creates, it can use the ComClient’s IDispatch interface to make calls in
the ComClient’s address space.

 Essentially, you want the ComServerObject class to be a COM object. Also, the
Callback object needs to be accessible from DCOM.

I recommend you use the following technique to implement this callback example: First,
you do this as an all-Java solution. You test and develop the code with Java, not DCOM.
Next, you try exposing ComServerObject to COM via Visual J++ 6.0 and then use the
Visual J++ Create COM Wrapper feature to generate classes for dealing with the COM
server object. You then write and test an all-local COM object solution. Finally, you try
setting up ComServerObject as a DCOM component. You then test this as a remote
solution.

 The all-Java approach is shown in Listing 20.9 (the complete listing can be found on the

CD-ROM).

 LISTING 20.9 THE Callback CLASS USING JAVA

 class Callback
 {
 public void callMeAnyTime (Hashtable hashtable)
 {
 //use hashtable, in our case just display each
element

 for (Enumeration e = hashtable.elements();
 e.hasMoreElements();)
 {
 Object object = e.nextElement();
 System.out.println("default " ++ object);
 }//end of for

 }//end of method
 }//end of Callback class

You can see by the class definition that the Callback class only contains one method:
callMeAnyTime . This method just goes through a hashtable and prints out each
element in the hashtable (using the toString of each object, which is implicitly called
when using the addition operator with any object and a string).

 Listing 20.10 shows the ComClient class.

 LISTING 20.10 THE ComClient CLASS

 class ComClient
 {
 class MyCallback extends Callback
 {
 public void callMeAnyTime (Hashtable hashtable)
 {
 System.out.println("Received callback ");
 System.out.println(" " ++ hashtable);
 }//end of callMeAnyTime method

 - 372 -

 }//end of inner class MyCallBack

 void getStatus()
 {
 Callback callback = new MyCallback();
 ComServerObject server = new ComServerObject();
 server.registerCallback(callback);
 server.queryState();
 }//end of getStatus

 public static void main(String [] args))
 {
 ComClient cc = new ComClient();
 cc.getStatus();
 }//end of main
 }//end of class

MyCallback extends the Callback object and defines a method that overrides the
callMeAnyTime method. The getStatus method creates an instance of
MyCallback and registers the Callback instance with an instance of the
ComServerObject . The main method creates an instance of the ComClient and
calls the getStatus method. The main method essentially just bootstraps and tests
the ComClient.

 Finally, Listing 20.11 shows the ComServerObectClass class.

 LISTING 20.11 THE ComServerObjectClass CLASS

 class ComServerObject
 {
 Callback callback;

 public void registerCallback(Callback callback)
 {
 this.callback = callback;
 //return right away
 }

 public void queryState()
 {
 SimulateQuery sq = new SimulateQuery();
 sq.start();
 }

 public void gotQueryBack()
 {
 Hashtable queryResults = new Hashtable();
 //populate hashtable
 ...
 ...

 callback.callMeAnyTime(queryResults);
 }

 - 373 -

 class SimulateQuery extends Thread
 {

 public void run()
 {

 for (int index = 0; index < 10; index++)
 {
 try {sleep(2000);} catch (Exception e) {}
 ComServerObject.this.gotQueryBack();
 }
 }//end of run

 }//end of simulate query
 }

Here, you define a SimulateQuery class, which is essentially a class to simulate
getting a query result from some type of database. SimulateQuery just pretends that it
got some results every two seconds.

 Here’s the sequence:

 1. You start the ComClient with Jview.

 2. The ComClient creates an instance of MyCallback class and the

ComServerObject .

 3. The ComClient registers the MyCallback instance with the ComServerObject

.

 4. ComServerObject starts up an instance of the SimulateQuery class.

 5. SimulateQuery fires ten query results set to the callback object via the

callMeAnyTime method.

 Now, you need to test this program as a local class. Then, you want to start up Visual

J++ and create a project for the Callback class:

 1. Create a COM DLL project.

 2. Rename Class1 to Callback.

 3. Cut and paste the callMeAnyTime method from Callback.java. Compile this project

into a COM DLL.

 These steps expose Callback as a COM object. Repeat this for the
ComServerObject .

 Next, you want to start up Visual J++ and create a project for the ComServerObject

class and add it to the same solution as the previous one:

 1. Create another COM DLL project in the same solution as before.

 - 374 -

 2. Rename Class1 to ComServerObject.

 3. Cut and paste all the methods and the inner class from ComServerObject.java .

 4. Select the project that contains the ComServerObject class.

 5. Select Project, Add COM Wrapper.

 6. Select Callback from the list of COM objects available.

 7. Add the import statement to the top of the ComServerObject.java file:

 import callback.Callback

 8. Compile this project into a COM DLL.

 This changes the code to access the Callback object as a COM object instead of as a

COM class.

 In order to put ComClient in the solution, you want to start up Visual J++ and create a

project for the Callback class:

 1. Create an empty project and add the ComClient.java file to it.

 2. Change the first line from

 import Callback;

 to

 import callback.*;

 This specifies that you want to use the Callback class as a COM object.

 3. Select the project that contains the ComClient class.

 4. Select Project, Add COM Wrapper.

 Select ComServerObject from the list of COM objects available.

 This creates the following two COM wrapper files in a package called
comserverobject :

 • ComServerObject.java —This is the COM wrapper.

 • ComServerObject_Dispatch.java —This is the Dispatch interface.

 Now we need to change the class MyCallback to implement the
callback.Callback_Dispatch interface.

 Listing 20.12 defines the ComServerObjectClass class, which is what the
ComClient class looks like, and which is now DCOM enabled.

 - 375 -

 LISTING 20.12 THE ComServerObjectClass CLASS DCOM ENABLED

 import comserver.*; //import the comserver wrapper classes
 import callback.*; //import the callback wrapper classes
 import java.util.*;
 import com.ms.com.*; //for using Variant

 class ComClient
 {

 // Note this class implements
callback.Callback_Dispatch

 // Instantiating this interface identifies this class
as

 // COM object

//

 class MyCallback implements callback.Callback_Dispatch
 {
 ...
 ...
 //Call back method that the server uses to call the
client

 public void callMeAnyTime (Object object)
 {
 System.out.println("Recieved callback ");
 System.out.println(" " + object);
 }

 }//inner MyCallback class
//////////////////////////////////////

 void getStatus()
 {
 MyCallback callback = new MyCallback();
 ComServerObject server = new ComServerObject();
 server.registerCallback(callback);
 server.queryState();
 }

 public static void main(String [] args))
 {
 ComClient cc = new ComClient();
 cc.getStatus();
 }
 }

COMClient has an inner class called MyCallBack that defines an inner class that
extends callback.Callback_Dispatch . By extending
callback.Callback_Dispatch we have identified this class as a type of
Callback_Dispatch so when we pass this object to the server it can call us back.
Thus, when we pass an instantiation of the call back to the ComServerObject , it now
knows how to talk to the server via DCOM. The getStatus method creates an
instance of MyCallback and registers the Callback instance with an instance of the
ComServerObject . The main method creates an instance of the ComClient and

 - 376 -

calls the getStatus method. The main method just bootstraps and tests the
ComClient.

Next, you want to make sure that the all of the classes are on the class path. Then refer
to the earlier example using Visual J++ and make the server remote. Make sure that the
COM wrapper files and the two dlls are on both the client and the server.

You do not have to use Visual J++ to create the COM dll. You can use the Microsoft Java
SDK. Instead of creating COM dll, you just create regular Java classes and compile them
normally with the Java SDK. Then you use JavaReg with the /tlb option to create type
libraries. After you compile, you use JActiveX to run against the type library you created
to give you the Java COM wrapper files. You have to do this for each of the COM objects.

We now turn our attention to COM IDL. We’re not going to cover DCOM IDL for several
reasons. To do a decent job of covering DCOM IDL, we would need to dedicate a whole
chapter. Conversely, all that using DCOM IDL would buy us over AutoIDispatch
would be the ability to do custom marshaling. However, we won’t cover it because it
involves Raw Native Interface (RNI), which is beyond the scope of this chapter. Granted,
there are valid reasons for using IDL. However, if you examine the reasons, most of the
time you’ll find that you simply don’t need to use IDL. All the reasoning and warnings
behind, it’s at least a good idea to know how the Java types map to the Microsoft IDL
types. Microsoft IDL is the common language to the COM, so we discuss it here briefly.

 Creating a COM Object with IDL

There’s another way to create COM objects. This way uses JActiveX again, but you need
to write some IDL and use MIDL (Microsoft’s IDL compiler). Essentially, what you do is
create an IDL file. Compile the IDL file into a type library. Run the type library through the
JActiveX, which will generate some Java source code. You then extend the *Impl class
that JActiveX creates for you. You either extend the class that JActiveX generates
directly (by editing the source) or you subclass the class that JActiveX generates. The
second technique is recommended.

 For this exercise we are going to use a new (IDL) version of our Hello class. We will add

several do-nothing methods to show how to specify Java types in IDL.

 Here is what our class looks like:

 LISTING 20.13 THE HelloIDL CLASS DCOM ENABLED

 public class HelloIDL
 {

 public HelloIDL()
 {
 }

 public String sayHello(String name)
 {
 return "Hello " + name;
 }

 public int giveInt(int number)
 {
 return number;
 }

 - 377 -

 public Integer giveInteger(Integer number)
 {
 return number;
 }

 public float giveFloat(float number)
 {
 return number;
 }

 public byte giveByte(byte number)
 {
 return number;
 }

 public char giveChar(char number)
 {
 return number;
 }

 }

 Listing 20.14 shows what the IDL for this class would look like.

 LISTING 20.14 THE HelloIDLLib IDL FILE

 [
 uuid(c250ad52-69ce-11d2-99d6-00a0c9569583),
 helpstring("HelloIDLLib Type Library"),
 version(1.0)
]
 library HelloIDLLib
 {
 importlib("stdole32.tlb");
 [
 object,
 uuid(c250ad51-69ce-11d2-99d6-00a0c9569583),
 dual,
 pointer_default(unique),
 helpstring("IHelloIDL Interface")
]
 interface IHelloIDL : IDispatch
 {
 [helpstring(("giveChar Method")]
 HRESULT giveChar([in] char p1,, [out, retval] char ** rtn);

 [helpstring(("giveInt Method")]
 HRESULT giveInt([in] long p1,, [out, retval] long ** rtn);

 [helpstring(("giveFloat Method")]
 HRESULT giveFloat([in] float p1,, [out, retval] float ** rtn);

 - 378 -

 [helpstring(("giveByte Method")]
 HRESULT giveByte([in] unsigned char p1,, [out, retval] unsigned
char**

 rtn);

 [helpstring(("sayHello Method")]
 HRESULT sayHello([in] BSTR p1,, [out, retval] BSTR ** rtn);
 }//end of interface

 [
 uuid(c250ad50-69ce-11d2-99d6-00a0c9569583),
 helpstring("CHelloIDL Object")
]
 coclass CHelloIDL
 {
 interface IHelloIDL;
 };//end of co class
 };//end of library

 [
 uuid(c250ad52-69ce-11d2-99d6-00a0c9569583),
 helpstring("HelloIDLLib Type Library"),

 version(1.0)
]

 The preceding are settings for the attributes of the COM library that we are creating. It is

here that we specify version information and helpstrings to identify this component.

The IDL also specifies the Universal Unique identifier (UUID) to identify our library: in this
case, c250ad51-69ce-11d2-99d6-00a0c9569583 . The UUID is the same as the
GUID that we talked about earlier.

 interface IHelloIDL : IDispatch
 { ...

defines the VTABLE interface definition for our class. As you can see, our interface
supports IDispatch, which is the ability to do late bound calls. This interface supports
the dual interface, which means that it supports both dispinterface and VTABLE
interfaces as defined by the dual keyword in the HelloIDLLib declaration.

 coclass CHelloIDL
 {
 interface IHelloIDL;
 ...

 The above snippet defines our dispinterface for this component.

 So let’s see how the Java methods map to this IDL file.

 giveChar in Java snippet

 - 379 -

 public char giveChar(char number)
 {
 return number;
 }

 giveChar in IDL snippet

 [helpstring(("giveChar Method")]
 HRESULT giveChar([in] char p1,, [out, retval] char ** rtn);

 Here we see that char in Java corresponds to char in IDL.

 We also see that return types for char in Java are char pointers in IDL.

 giveInt in Java snippet

 public int giveInt(int number)
 {
 return number;

 }

 giveInt in IDL snippet

 [helpstring(("giveInt Method")]
 HRESULT giveInt([in] long p1,, [out, retval] long ** rtn);

 Similarly, we see that int in Java corresponds to long in IDL. And return types for int

in Java are pointer to longs in IDL.

 We summarize these data type mappings in Table 20.3.

 TABLE 20.3 DATA TYPE MAPPING FROM JAVA TO COM IDL

Java Data Type

COM IDL Data Type

Void

void

Char

char

Double

double

Int

long

Float

float

String

BSTR

 - 380 -

 Pointer to
interface

IDispatch

Short

short

Byte

unsigned char

Boolean

boolean

In order to use this IDL we first create a type library out of it. Then we use the type library
in conjunction with JActiveX to create an IHelloIDL interface for the class that we want
to extend. If you have done CORBA development, these steps are similar to what you
would do with CORBA. We then run the IDL through the MIDL compiler, which then gives
us a type library file.

 To run it we enter MIDL HelloIDLlib.IDL at the DOS prompt. Then we run the Type library

file through JActiveX.

 To Run JActiveX, enter the following at the DOS prompt:

 JActiveX /D . HelloIDLLib.TLB

 JActiveX would generate two Java class files.

 • CHelloIDL.java is the file we need to use the COM object from the client

perspective.

 • IHelloIDL.java is the file we need to extend in our component class to expose it

as a COM object.

 Listing 20.15 shows the CHelloIDL class generated.

 LISTING 20.15 THE C CLASS

 package helloidllib;

 import com.ms.com.*;
 import com.ms.com.IUnknown;
 import com.ms.com.Variant;

 /** @com.class(classid=C250AD50-69CE-11D2-99D6-
00A0C9569583,DynamicCasts)

 */
 public class CHelloIDL implements
 IUnknown,com.ms.com.NoAutoScripting,helloidllib.IHelloIDL
 {
 /** @com.method() */
 public native char giveChar(char p1);

 /** @com.method() */
 public native int giveInt(int p1);

 /** @com.method() */

 - 381 -

 public native float giveFloat(int p1);

 /** @com.method() */
 public native byte giveByte(byte p1);

 /** @com.method() */
 public native String sayHello(String p1);

 public static final com.ms.com._Guid clsid = new com.ms.com.
 Guid((int)0xc250ad50, (short)0x69ce, (short)0x11d2,
(byte)0x99,

 (byte)0xd6, (byte)0x0, (byte)0xa0, (byte)0xc9, (byte)0x56,
 (byte)0x95, (byte)0x83);
 }

Notice that this class gives us the same methods as our original class. It also has COM
directives that specify that the methods are really COM methods for a COM object. When
jvc runs across these COM directives it puts hooks in the bytecode so that when JView or
IE runs across these hooks, they know how to dispatch a method call to the COM object.

 Listing 20.16 shows the IHelloIDL class generated by JActiveX.

 LISTING 20.16 THE IHelloIDL CLASS

 IHelloIDL.java Listing

 package helloidllib;

 import com.ms.com.*;
 import com.ms.com.IUnknown;
 import com.ms.com.Variant;

 // Dual interface IHelloIDL
 /** @com.interface(iid=C250AD51-69CE-11D2-99D6-00A0C9569583,
 thread=AUTO, type=DUAL) */
 public interface IHelloIDL extends IUnknown
 {
 /** @com.method(vtoffset=4, dispid=1610743808, type=METHOD,
 name="giveChar", addFlagsVtable=4)
 @com.parameters([in,type=I1] p1,, [type=I1] return)) */
 public char giveChar(char p1);

 /** @com.method(vtoffset=5, dispid=1610743809, type=METHOD,
 name="giveInt", addFlagsVtable=4)
 @com.parameters([in,type=I4] p1,, [type=I4] return)) */
 public int giveInt(int p1);

 /** @com.method(vtoffset=6, dispid=1610743810, type=METHOD,
 name="giveFloat", addFlagsVtable=4)
 @com.parameters([in,type=I4] p1,, [type=R4] return)) */
 public float giveFloat(int p1);

 /** @com.method(vtoffset=7, dispid=1610743811, type=METHOD,

 - 382 -

 name="giveByte", addFlagsVtable=4)
 @com.parameters([in,type=U1] p1,, [type=U1] return)) */
 public byte giveByte(byte p1);

 /** @com.method(vtoffset=8, dispid=1610743812, type=METHOD,
 name="sayHello", addFlagsVtable=4)
 @com.parameters([in,type=STRING] p1,, [type=STRING]
return)) */

 public String sayHello(String p1);

 public static final com.ms.com._Guid iid = new com.ms.com._
 Guid((int)0xc250ad51, (short)0x69ce, (short)0x11d2,
(byte)0x99,

 (byte)0xd6, (byte)0x0, (byte)0xa0, (byte)0xc9, (byte)0x56,
 (byte)0x95, (byte)0x83);
 }

 CHelloIDL.java is the file we use as a client and IHelloIDL.java is the file we

need to extend in our component class.

 Compile the preceding two classes and make sure they are in the class path. Change the
HelloIDL to implement IHelloIDL and add the UUID to the class file as follows:

 From

 public class HelloIDL
 {

 public HelloIDL()
 {
 }
 ...
 ...

 To
 public class HelloIDL implements helloidllib.IHelloIDL
 {
 private static final String CLSID =
 "c250ad50-69ce-11d2-99d6-00a0c9569583";

 public HelloIDL()
 {
 }
 ...
 ...

 Compile HelloIDL and make sure it is in the classpath.

 Register the class in the register like so:

 C:\msjsdk >javareg /register /class:HelloIDL
/progid:DEAL.HelloIDL /

 - 383 -

 clsid:{c250ad50-69ce-11d2-99d6-00a0c9569583}

Now we need to write a simple test program to test this class. The test program uses the
class as a COM object, not a Java object. We use the CHelloIDL class. (We could now
use this COM object from any language, such as Visual Basic.) Here is the
TestHelloIDL.java class file.

 import helloidllib.*;

 class TestHelloIDL
 {
 public static void main(String [] args)){
 helloidllib.IHelloIDL hello = new helloidllib.CHelloIDL();
 System.out.println("Say Hello: " ++ hello.sayHello("Hello"));
 System.out.println("Say 5: " ++ hello.giveInt(5));
 System.out.println("Say 5.0: " ++ hello.giveFloat(5));
 }//end of main
 }//end of class TestHelloIDL

 As you can see in the main method, we assign an IHelloIDL reference and a new

instance, CHelloIDL class. We can then make calls on this COM object.

You should try to activate this object through the OLEVIEW program before you start
trying to test it with this local program. This will let you know if you have copied all the
classes to the classpath and registered the COM class correctly.

 Now compile TestHelloIDL and run it.

To make this class remote you use JActiveX or DCOMCNFG like we did earlier. The main
difference between this class and the other classes we created is that this class works with
both a dispinterface or vtable interface. So you get a performance advantage if
you’re using a statically compiled language as opposed to a late bound language that
needs dispinterface. Of course, you only see this advantage if you used all the classes
locally.

 FROM HERE

This chapter covered a brief overview of COM/DCOM and distributed object architecture.
After discussing some of the advantages and disadvantages of COM/DCOM
technologies, we ran through some basic exercises for developing COM/DCOM objects.

This chapter completes Part IV, “Non-CORBA Approaches to Distributed Computing.” Part
V, “The CORBA Approach to Distributed Computing,” which includes Chapters 21 through
27, delves into the CORBA approach to distributed computing.

Part V: Non-CORBA Approaches to
Distributed Computing

 Chapter List

 Chapter 21: CORBA Overview

 Chapter 22: CORBA Architecture

 - 384 -

 Chapter 23: Survey of CORBA ORBs

 Chapter 24: A CORBA Server

 Chapter 25: A CORBA Client

 Chapter 26: CORBA-Based Implementation of the Airline

Reservation System

 Chapter 27: Quick CORBA: CORBA Without IDL

Chapter 21: CORBA Overview

 Overview

Computer technology has evolved in a rather interesting fashion. As development moved
from the military into the private sector, two camps of developers formed. One camp was
comprised of individuals working in academia, producing—in an ad hoc manner—
software that ran on various UNIX platforms. The other camp was comprised of
individuals working for software corporations, attempting to develop software for home
and business markets. With all this development occurring, one might think that all forces
would join together and produce complementary software. Unfortunately, this did not
occur, and virtually everyone out there decided on their own proprietary manner to solve
a problem.

All this development gave us more operating systems than we can shake a stick at, more
network transport protocols than anyone knows what to do with, and way too many
opinions on what solution is the best. The truth of the matter is that most solutions are
pretty similar in that they all solve a common problem and take about the same time to
function.

This chapter takes a look at a technology called CORBA, which is an attempt to link
together all the disparate development projects that occur around the world. In covering
this material, the following topics are addressed:

 • What CORBA really is, and what components make up the CORBA universe

 • How an entity (specification) enters the CORBA universe

 • Details on each of the various entities in the CORBA universe

 • How the OMG came into existence, and the problems it solves

THE PUSH TOWARD OPEN COMPUTING

As with many things in this world, software quality does not matter as much as software
marketing. Those companies with the best marketing departments found their software in
use by more and more people. As a prime example of this, many people argue that until
Windows 95 came out, the Macintosh Operating System ran circles around Windows 3.1.
Microsoft marketing did not let this hold it back, and it worked hard to make sure that
regardless of quality, Windows was the dominant operating system.

Although marketing departments did push forward many proprietary platforms, and—in
some cases—achieve a large market presence, there has been a shift in the past few
years from the proprietary computer world to one that is more open.

 - 385 -

Under an open computing model, companies agree to develop software that adheres to a
standard; therefore, companies can develop similar pieces of software based on the
same standard. To keep from favoring a single vendor, the standard is often maintained
by an independent third party. As you consider the implications of this, think about what
would happen if the same thing happened with natural languages.

There are thousands and thousands of natural languages currently in use right now all
over the world. Of those languages, most business transactions are conducted in
English, Spanish, French, German, Russian, Chinese, and Japanese. Companies
wishing to do business in multiple countries are forced to spend millions on translation
services. If everyone were to learn a common language, this problem would go away,
and business would no longer be conducted in some proprietary language but rather in
one common open language.

Note

Many attempts at getting the world to speak a common second language
have been launched but none have achieved too much success. A language
called Esperanto did achieve some success, but its popularity is fading.

As part of the push toward open standards for computing, a specification called Common
Object Request Broker Architecture (CORBA) has been developed and is supported by
an incredibly large developer population. CORBA is a standard maintained by the largest
software consortium in the world—the Object Management Group (OMG). With over 800
members, the OMG’s membership list is a who’s who of the software industry, even
boasting the membership of Microsoft, who pushes a competitive standard called DCOM.

Note

Not content to use CORBA at Microsoft, it decided to develop its own
technology called Distributed Component Object Model (or DCOM). DCOM is
a technology that allows for distributed object communication between
multiple Win32 systems. Support for various flavors of UNIX along with the
Macintosh Operating System has been announced but not fully released.
DCOM is covered in Chapter 20, “Distributed Component Object Model
(DCOM).”

CORBA is rather amazing in that it allows for easy communication between objects written
in multiple languages, all running on different machines. For example, one could write a
Java application that runs on a Macintosh and talks to a collection of COBOL objects
running on a VMS machine.

CORBA FOR UPPER MANAGEMENT

When jumping into a new technology, I always find it useful to read a high level
description of that technology. I like to call this description the upper management
perspective, because it describes the technology without getting too specific. For those
readers lucky enough to have worked only for companies with highly intelligent upper
management, you’ll have to pretend for a moment. If you find yourself asking upper
management to move to a CORBA development model in the future, this section should
provide a good starting point for your discussions.

CORBA is a specification for a technology that allows objects on one machine to
communicate with objects running on any number of different machines. The objects can
be written in virtually any language (including non–object-oriented languages such as
COBOL and C) and can run on virtually any machine in existence. CORBA is currently
the only technology that supports such a broad range of languages and hardware
environments.

Note

To state that CORBA objects can be implemented in a non–object-oriented
language may generate some level of confusion. As you’ll learn in upcoming
chapters, CORBA allows non–object-oriented legacy code to parade as a
CORBA object.

 - 386 -

CORBA, as in independent entity, only specifies how individual objects communicate with
each other. No inherent support exists for locating objects, services, or functions such as
security. Complementing CORBA, and forming the Object Management Architecture
(OMA), are three other entities charged with adding functionality. These entities—
CORBAservices, CORBAdomains, and CORBAfacilities—are specifications for specific
pieces of functionality that can aid the CORBA developer.

With all this excitement surrounding CORBA and open computing in general, the
question that begs asking is “Why”? If we never looked to open computing before, why do
so now? Why not let companies such as Microsoft, Novell, and Sun duke it out with
competing proprietary standards? A detailed answer to this question could fill a book on
its own, but the main reason is that only through open standards will the needed level of
software reuse ever be obtained. Software reuse doesn’t mean that code is copied and
pasted from one application into another, but rather that compiled code is easily reused
between multiple applications.

Software development efforts being undertaken today place more and more requirements
on the developer and throw in shorter deadlines for good measure. The software
community is also forced to face a growing developer shortage that shows no signs of
slowing. To meet these new deadlines, developers must be able to leverage both existing
in-house code and code developed by third-party vendors.

Application-level reuse has existed for a long while now (for example, you don’t write a
new database server for each new application), but this reuse must move to all levels of a
development effort. By writing code that adheres to an open model, developers produce
code that is both reusable in-house and by other companies. If a component-centric
development model continues to gain popularity, chances are that application
development will take on a very new face. Developers and programmers will actually
write components, analysts will identify business needs, and power users will string
together components to form entire applications.

As you begin to learn about CORBA, it’s important to stress that the OMG produces
absolutely no software—its purpose is to produce specifications. Once the OMG has
certified a specification, various third-party vendors produce the software that conforms to
the specification. As we begin our exploration into the world of CORBA, we’ll first look at
the manner in which an idea becomes an OMG specification.

 OMG SPECIFICATION PROCESS

As was earlier stated, the purpose of the OMG is to produce specifications for the
technologies that make up the Object Management Architecture. Through its members,
along with the developer community as a whole, specifications are developed, voted
upon, and implemented in a fully functional form. The process by which an idea moves
into an accepted specification is well defined and allows for a logical progression.

The first step in developing a specification is for a request for proposal (or RFP) to be
issued. The RFP details the problem that needs to be solved and any additional
information that members might need in order to produce a solution. The RFP is first
issued by an OMG task force electronically, and then it’s formally presented at a task
force technical meeting. Electronic distribution of the RFP occurs at least three weeks
before the physical meeting where it’s presented. This lag time allows members to fully
study the RFP before having to discuss it in person.

After an RFP has been formally presented, all parties intending to respond have at least
60 days to issue a letter of intent (or LOI). This 60-day waiting period is not etched in
stone as an OMG requirement, but it has become the de facto standard. Once the LOI
deadline has passed, an initial submission deadline is set. This time period (at least 12
weeks after the LOI deadline) gives submitters time to both prepare a specification and
an implementation. Although the OMG only produces specifications, no proposals are
accepted if they’re not paired with a fully functional implementation. By forcing the
development of an implementation along with the specification, the OMG is assured that

 - 387 -

an impossible-to-implement specification is not submitted. All submissions are formally
presented to the voting body.

If there’s a single submission, chances are that it will become an official OMG standard.
Assuming that conflicting submissions exist, one will either be chosen or some
submitters may choose to merge the solutions themselves. In any situation, the OMG
member body must vote upon a specification before it becomes a standard. A single
submission is not a guarantee of standardization, because it may fail to fully solve the
problem.

As you begin to work more and more with CORBA, you may decide that you want to take
an active role in determining its future. The OMG membership is always open and
demands only a modest fee. If, however, you’re not ready to commit to being a member,
you can still be a part of the specification process. The OMG Web site contains all
current RFPs, and any person in the world is welcome to submit a proposal.

 Note All OMG specifications can be tracked online at

http://www.omg.org/schedule/ .

 With an understanding of how the OMG functions, you’re now ready to dive under the

covers and learn about what really makes the CORBA universe tick.

 OBJECT MANAGEMENT ARCHITECTURE

The CORBA universe, as defined by the OMG, is comprised of four different entities.
These entities include a specification for distributed object communication as well as
many specifications for add-on functionality. The following list describes all entities in
detail:

•

ORB: The Object Request Broker (or ORB) is the piping that connects all
developments within the CORBA universe. It specifies how all objects written in any
language running on any machine can communicate with each other.

•

CORBAservice: A CORBAservice is a specification for some added CORBA
functionality with implications in a horizontal arena. A CORBAservice will usually
define some object-level functionality that you need to add to an application but do not
want to produce in-house. Because all vendors producing a given

CORBAservice conform to the specifications produced by the OMG, you can easily
swap one vendor’s solution for another vendor’s solution. An example of a
CORBAservice is the event service that allows events to be delivered from one source
object to a collection of listener objects.

•

CORBAfacility: Like a CORBAservice, a CORBAfacility is also a specification for some
added CORBA functionality. However, the implications can be either horizontal or
vertical. A CORBAfacility differs in that it specifies functionality at a higher level than a
CORBAservice. For example, CORBAfacilities define functionality for transactions
such as email and printing.

•

CORBAdomain: A CORBAdomain is a specification for some level of CORBA added
functionality with applications in a unique industry or domain. A CORBAfacility used in
finance might calculate derivative prices, and a CORBAfacility used in healthcare
might match up patient records contained in heterogeneous systems.

All the technologies in the previous list are housed under the umbrella term Object
Management Architecture (OMA). The OMA is rather amazing in that it’s fully backed by
over 800 independent (and often competing) technology vendors. In the next few
sections, we’ll take a look at each of the currently available CORBAservices,
CORBAfacilities, and CORBAdomains.

 - 388 -

 CORBAservices

CORBAservices add functionality to a CORBA application at the server level. They
provide services to objects that are necessary for various tasks, including event
management, object lifecycle, and object persistence. New CORBAservices are
constantly being produced, but at the time of this writing, only the following 15 services
are in existence (a full list of available CORBAservices can be found on the OMG Web
site at http://www.omg.org):

 • Collection Service: This service provides access to a variety of data structures.

•

Concurrency Control Service: This service enables multiple clients to coordinate
access to shared resources. For example, if two clients are attempting to withdraw
funds from the same back account, this service could be used to ensure that the two
transactions do not happen at the same time.

 • Event Service: This service enables events to be delivered from multiple event

sources to multiple event listeners.

 • Externalization Service: This service enables an object (or objects) or a graph to be

written out as a stream of bytes. This is similar to object serialization in JDK1.1.

 • Licensing Service: This service enables control over intellectual property. It allows

content authors to ensure that their efforts are not being used by others for profit.

 • Life Cycle Service: This service defines conventions for creating, deleting, copying,

and moving objects.

•

Naming Service: This service allows objects to be tagged with a unique logical name.
The service can be told of the existence of objects and can also be queried for
registered objects.

•

Persistent Object Service: This service enables objects to be stored in some medium.
This medium will usually be a relational or object database, but it could be virtually
anything.

•

Property Service: This service enables name/value pairs to be associated with an
object. For example, some image file could be tagged with name/value pairs
describing its content.

 • Query Service: This service enables queries to be performed against collections of

objects.

 • Relationship Service: This service enables the relationship between entities to be

logically represented.

 • Security Service: This service enables access to objects to be restricted by user or by

role.

•

Time Service: This service is used to obtain the current time along with the margin of
error associated with that time. In general, it’s not possible to get the exact time from a
service due to various factors, including the time delta that occurs when messages are
sent between server and client.

•

Trader Object Service: This service allows objects to locate certain services by
functionality. The object will first discuss with the trader service whether a particular
service is available; then it negotiates access to those resources.

 • Transaction Service: This service manages multiple, simultaneous transactions across

 - 389 -

a variety of environments.

CORBAservices are always being developed by the OMG; chances are that by the time
you read this list, there will be a few more services. Already steps are being taken to
finalize firewall and fault tolerance services. For additional information on
CORBAservices, take a look at Chapter 30, “The Naming Service,” Chapter 31, “The
Event Service,” and Chapter 33, “Other CORBA Facilities and Services.”

 CORBAfacilities

As stated earlier, CORBAfacilities add additional functionality to an application at a level
closer to the user. Facilities are similar to services in that they both aid a CORBA
application; however, CORBAfacilities need not be simply targeted at a broad audience.
CORBAfacilities are categorized into horizontal and vertical services.

 Vertical CORBAfacilities

A vertical CORBAfacility has specific applications in a unique industry or domain.
Obvious parallels exist between a vertical CORBAfacility and a CORBAdomain; however,
CORBAdomains usually have much broader applications within the domain. The
following list describes the eight existing vertical CORBAfacilities:

 • Accounting: This facility enables commercial object transactions.

 • Application Development: This facility enables communication between application

development objects.

 • Distributed Simulation: This facility enables communication between objects used to

create simulations.

 • Imagery: This facility enables interoperability between imaging devices, images, and

image data.

 • Information Superhighways: This facility enables multiuser application communication

across wide area networks.

 • Manufacturing: This facility enables interoperability between objects used in a

manufacturing environment.

 • Mapping: This facility enables communication between objects used for mapping.

 • Oil and Gas Industry Exploitation and Production: This facility enables communication

between objects used in the petroleum market.

 Horizontal CORBAfacilities

Horizontal CORBAfacilities are broad in their function and should be of use to virtually
any application. Due to their broad scope, there are four categories of horizontal
CORBAfacilities. This list of categories is not at all static and can be added to at some
point in the future:

 • User Interface: All facilities in this category apply to the user interface of an

application.

 • Information Management: All facilities in this category deal with the modeling,

definition, storage, retrieval, and interchange of information.

 • System Management: All facilities in this category deal with management of

 - 390 -

information systems. Facilities should be neutral in vendor support, because any
system should be supported.

 • Task Management: All facilities in this category deal with automation of various user-or

system-level tasks.

The User Interface common facilities apply to an application’s interface at many levels.
As shown in the following list, this includes everything from physically rendering object to
the aggregation of objects into compound documents:

 • Rendering Management: This facility enables the physical display of graphical objects

on any medium (screen, printer, plotter, and so forth).

 • Compound Presentation Management: This facility enables the aggregation of

multiple objects into a single compound document.

 • User Support: This facility enables online help presentation (both general and context

sensitive) and data validation.

 • Desktop Management: This facility supports the variety of functions needed by the

user at the desktop.

 • Scripting: This facility exists to support user automation scripts.

The Information Management common facilities enable the myriad functions required in a
data ownership situation. These facilities, defined in the following list, range in function
from information management to information storage:

 • Information Modeling: This facility supports the physical modeling of data storage

systems.

 • Information Storage and Retrieval: This facility enables the storage and retrieval of

information.

 • Compound Interchange: This facility enables the interchange of data contained in

compound documents.

 • Data Interchange: This facility enables the interchange of physical data.

 • Information Exchange: This facility enables the interchange of information as an entire

logical unit.

 • Data Encoding and Representation: This facility enables document encoding

discovery and translation.

 • Time Operations: This facility supports manipulation and understanding of time

operations.

The System Management common facilities aid in the difficult task of managing a
heterogeneous collection of information systems. These facilities, defined in the following
list, range in function from managing resources to actually controlling their actions:

 • Management Tools: This facility enables the interoperation of management tools and

collection management tools.

 • Collection Management: This facility enables control over a collection of systems.

 • Control: This facility enables actual control over system resources.

 - 391 -

 The Task Management common facilities assist with the automation of user-and system-

level tasks:

 • Workflow: This facility enables tasks that are directly part of a work process.

 • Agent: This facility supports manipulation and creation of software agents.

 • Rule Management: This facility enables objects to both acquire knowledge and to also

take action based on that knowledge.

 • Automation: This facility allows one object to access the key functionality of another

object.

Like CORBAservices, CORBAfacilities are constantly growing, and they’re definitely an
important piece of the OMA. Full details on all facilities are always available on the OMG
Web site at http://www.omg.org , as are details on new and upcoming facilities.

 CORBAdomains

CORBAdomains are solutions that target an individual industry. They differ from vertical
CORBAfacilities in that they often fully model some specific business process. Most
CORBAdomains are developed and maintained by different task forces within the OMG
itself. For example, the CORBAmed task force oversees all developments targeted at the
healthcare industry. Covering all CORBAdomains in this section would be rather tedious
(most readers will likely only have interest in less than 10 percent of what is covered). What
you should know, however, is that virtually every industry is represented by a collection of
CORBAdomain solutions. Some of the represented domains are healthcare, finance,
manufacturing, and telecomm.

OMG HISTORY AND BACKGROUND

In the computer world, it’s often hard to get even a handful of developers to work together
in a productive manner. There are often squabbles and people who refuse to accept that
another idea may work better. This inability to function as a large group extends to all
reaches of the software community, and it’s almost commonplace to hear two people
from the same company represent conflicting viewpoints on a major technological issue.
Assuming that the situation does not get out of hand, conflicting viewpoints can create
important new developments. If everyone agreed on things, we might have all agreed
that the abacus was the pinnacle of computing.

Given that developers often cannot agree on many points, it’s really amazing that the
OMG has managed to collect well over 800 members so far. This strong membership
does owe a tip of the hat to the history leading up to the OMG’s inception and the
manner in which it was formed.

The OMG was formed in 1989 by representatives from 3Com Corporation, American
Airlines, Canon Inc., Data General, Hewlett-Packard, Philips Telecommunications N.V.,
Sun Microsystems, and Unisys Corporation with the express goal of furthering global
component-based development. The founding companies and most of the software
community knew that components were the key to the future, but without a standard, one
vendor’s components would not work with another vendor’s components.

When the founding companies decided that a standard for distributed computing was
necessary, they also decided that this standard must be open and therefore not
controlled by a single company. When a single company attempts to further a standard,
that standard is often directed to further the direct needs of the company and not the
industry as a whole. Microsoft’s DCOM is an example of a distributed object technology
benefiting mostly one vendor. DCOM runs wonderfully on Win32 platforms but will not run

 - 392 -

on Macintosh or UNIX machines at all.

Note

Microsoft has announced intentions to port DCOM to both Macintosh and
UNIX platforms, but a version that is as fully functional as the Win32 port has
yet to be seen.

The formation of the OMG in 1989 as a not-for-profit organization started the movement
for an open model for distributed computing. Soon after its inception, the OMG released
the first draft of the Object Management Architecture in the fall of 1990. That’s when the
CORBA movement started to make itself really known. As the CORBA 1.1 specification
became known and realized in commercial implementations, the OMG members were
hard at work on the CORBA 2.0 specification.

 Note The first functional version of CORBA was 1.1; the 1.0 specification was

basically a working draft.

One of the main weaknesses of the CORBA 1.1 specification was that it produced
applications that could not interoperate across ORBs from different vendors. An
application was written to support one and only one ORB, and code written to one ORB
could not easily communicate with another ORB. For developers working only with in-
house development, this did not prove to be too much of a problem. However, if a
development shop was using ORB A and wanted to access objects written by a third-
party vendor, which was using ORB B, chances were the code would not interoperate. In
an attempt to solve this problem, CORBA 2.0 added an important new feature to the
CORBA universe: the Internet Inter-ORB Protocol (IIOP). IIOP is a protocol that allows
ORB-to-ORB communications to occur over the Internet’s TCP/IP backbone. In time, this
could very well lead to an Internet that’s fully populated by available CORBA objects. Full
details on IIOP are covered in Chapter 29, “Internet Inter-ORB Protocol (IIOP).”

 Note This book generally refers to the CORBA 2.0 specification, because it is widely

implemented. The most recent version from the OMG is CORBA 2.3.

 MOVING FORWARD

Having read this chapter, you should have a very solid understanding of what CORBA is
all about. Moving into a new technology can be a challenge; fortunately, CORBA adds
few technical hurdles to be crossed. Moving to a CORBA world means learning a few
new technologies, but most importantly, it means learning about working in a distributed
universe. CORBA applications execute on machines scattered all over the world and add
concerns not present with applications that execute on a single machine. All of a sudden,
you’re forced to consider network usage, enterprisewide fault tolerance, and a host of
other concerns that do not exist when an application exists on one machine.

What you should know going into all of this is that distributed objects are the future of
computing. As more and more computers attach themselves to the Internet, more and
more computers become candidates for CORBA applications. Chances are that in the very
near future, you’ll be running all forms of consumer applications—from home banking to
recipe management—as CORBA applications executing on your home computer and all
kinds of servers scattered around the world. Only by mastering distributed object skills now
will you prepare yourself for the job market of the future.

FROM HERE

 As you continue on your exploration of CORBA, the following chapters will prove

interesting:

 • Chapter 22, “CORBA Architecture”

 • Chapter 28, “The Portable Object Adapter (POA)”

 - 393 -

 • Chapter 29, “Internet Inter-ORB Protocol (IIOP)”

Chapter 22: CORBA Architecture

 Overview

Approximately 100 years ago, L. L. Zamenhof invented a natural language called
Esperanto. Esperanto was developed not to replace the native tongue of any speaker but
to be a common tongue shared between all speakers. Zamenhof realized that it was not
possible for everyone to agree on a common native language, and also that asking most
of the world to learn French, English, or Spanish as a second language would create
barriers. Asking someone to learn a second language that’s already the native tongue of
an existing group of people puts one group at a disadvantage. Native speakers always
have an edge over those who learn the language as a second language due to the many
idiosyncrasies present in any language. In developing a common, easy-to-learn second
language, Zamenhof saw a world where everyone continued to use their native tongues
but used Esperanto for all multinational dealings.

Even though Esperanto was developed as a solution to a natural language crisis, it has
many parallels in the software movements of today. There’s not currently one perfect
programming language for all problems but rather a collection of languages that all serve
a unique purpose. Some of Java’s biggest proponents argue that it’s the best language
for all development efforts, but as anyone who has developed advanced software—for
example, medical imaging software—will tell you, Java is not a silver bullet. C, C++, Lisp,
COBOL, Fortran, and many other languages all play important roles in modern
computing and will not be replaced any time soon.

Because different programming languages all solve different problems, developers
should be encouraged to take their pick of languages when solving a given problem. A
single application will most likely need to solve many business problems, and chances
are that the application will be best written in more than one language. For example, an
application might need to search the Internet for weather data, store the data in a
COBOL-based legacy system, and build some complex graphical representations of the
data. The Internet surfing component could be easily implemented in Java, the legacy
storage would have to be written in COBOL, and the graphical processing would likely be
best written in C. These languages have few, if any, inherent constructs for
interlanguage communication and would be best served by a new language that all could
use as a common second language.

CORBA, as you learned in Chapter 21, “CORBA Overview,” is a tool for enabling
multilanguage, multiplatform communication. Two important technologies, Interface
Definition Language (IDL) and the Object Request Broker (ORB), facilitate this broad
level of communication. The first technology, IDL, is the Esperanto of software. It’s a
language that allows for the description of a block of code without regard to its
implementation language. The second technology, the ORB, acts as a highway over
which all communication occurs. For example, a Java application to support fingering
could expose a single method called finger() that accepts a username as a
parameter. The function would be described in IDL, and any application wishing to finger
a user would attach to the Java finger application, invoke its method, and obtain a return
value. All this communication would occur across the ORB, which transparently manages
most details associated with remote object communication.

 Note finger is a UNIX application that allows users to find information about other

users.

In Chapter 21, we looked at CORBA from the perspective of a high-level manager who
has probably not seen a line of code since COBOL was trendy. This high-level
introduction is useful in that it provides a solid introduction to the technology, but it
probably left you looking for a lot more. In this chapter, we’ll dive under the hood and

 - 394 -

figure out exactly what makes the whole CORBA universe tick.

Note

The term CORBA universe is often used to encompass all entities that are
used in CORBA development. This includes the ORB, BOA, and any other
software developed for the OMA.

 In digging around the CORBA universe, you’ll learn the following topics:

 • The technologies that form the CORBA universe

 • How to describe an object in a language-independent fashion

 • How to work around the shortcomings of IDL

As was stated earlier, CORBA exists due to two important technologies: IDL and the ORB.
In this first section, we’ll look at exactly how these two technologies allow CORBA
development to occur as well as at some secondary technologies that aid in the process.

CORBA TECHNOLOGIES

At first glance, IDL looks somewhat like C++ or Java. This commonality is rooted in a
desire to make learning the syntax rather easy, but you should note that IDL is not a
programming language at all. There are constructs for describing method signatures, but
absolutely no constructs for describing things such as flow control. IDL exists for one and
only one purpose: to describe class functionality. As an example, let’s return back to the
earlier example of a finger application. Listing 22.1 contains the CORBA IDL used to
describe that method. Note that nowhere in the code is any actual functionality present;
rather, we only specify method parameters and return values.

 LISTING 22.1 CORBA IDL DEFINING AN INTERFACE IMPLEMENTED BY AN

OBJECT THAT SUPPORTS FINGERING

 interface FingerServer {
 string finger(in string userName);
 };

After documenting the functionality in IDL, we must write Java code to implement the
functionality, and the two are to be distributed as a remote server. Before getting into the
inner details of IDL and the ORB, we’ll take a look at what’s needed to turn the IDL in
Listing 22.1 into a full application. If you don’t understand everything at first, don’t worry—
by the time you finish this chapter, everything will make complete sense.

 The IDL Compiler: Stubs and Skeletons

An important tool in the arsenal of any CORBA developer is an IDL compiler. The IDL
compiler, as shown in Figure 22.1, accepts an IDL file as input and then writes out two
important files: the stub and the skeleton. The stub file is given to the client as a tool to
describe server functionality, and the skeleton file is implemented at the server. The two
files are written using the programming languages in place at the client and the server.
For example if the server is developed using Java, we need a Java skeleton; if the client
is developed using C++, we need a C++ stub. There are mappings available from IDL to
virtually every language out there, and the CORBA environment allows for clients and
servers to be written in any combination of supported languages. What should be noted
is that an ORB vendor does not need to support all available languages on all platforms.
If you want to mix and match languages and platforms, you must find a vendor with a
product that supports your project. Chapter 23, “Survey of CORBA ORBs,” covers the
languages and platforms supported by a number of different ORBs.

 - 395 -

 Figure 22.1: The IDL compiler turns IDL into stubs and skeletons.

Note

A compiler is often thought of as the tool that turns a language such as C++
into a native executable; however, the term compiler actually applies to any
translator. In this case, the IDL compiler acts as a software translator.

The stub and skeleton files, although special in terms of CORBA development, are
perfectly standard files in terms of their target language. Each file exposes the same
methods specified in the IDL; invoking a method on the stub file causes the method to be
executed in the skeleton file. The fact that the stub file appears as a normal file in the
client allows the client to manipulate the remote object with the same ease with which a
local object is manipulated. In fact, until you begin to optimize remote object access to
minimize network traffic, there’s no need to even regard the remote object as anything
special.

Note

Even though CORBA allows remote objects to masquerade as local objects,
projects often end with a stage in which code is reworked to minimize the
times that a remote object is accessed. Each time a remote object is
accessed, network traffic is generated, and too many accesses can cause an
application to become slow. Chapter 24, “A CORBA Server,” and Chapter 25,
“A CORBA Client,” examine optimization to minimize network traffic.

Now that you fully understand what the output of the IDL compiler is, we’ll generate Java
stubs and skeletons for the IDL in Listing 22.1. As with most development efforts in this
book, the code is generated using the Inprise Visibroker suite of CORBA tools. This suite
includes an ORB, an IDL compiler, and some advanced tools that will be covered later in
this chapter. The Inprise (formally Borland) suite of tools was chosen due to the fact that,
especially in the Java space, it’s a market leader. Netscape has integrated the client
libraries into its browser, and many other major companies have announced support as
well. The Inprise tool set came about as a result of Inprise’s purchase of Visigenic, a
pioneer in the field of Java and CORBA development. If you haven’t done so already,
take the time to install the Inprise software contained on the accompanying CD-ROM.

The IDL compiler is invoked from the command line using the command idl2java
fileName.idl. Listing 22.2 contains the client stub, and Listing 22.3 contains the
server skeleton produced by running the code in Listing 22.1 through the IDL-to-Java
compiler. In this first example, the code is provided as a reference, but you’ll usually not
need to pay too much attention to it. The skeleton file is usually extended and directly
implemented, whereas the stub file is simply compiled with the client.

 LISTING 22.2 THE STUB CLASS IS AUTOMATICALLY GENERATED BY THE IDL

COMPILER

 public class _st_FingerServer extends
 org.omg.CORBA.portable.ObjectImpl implements
FingerServer {

 public java.lang.String[] __ids() {
 return __ids;
 }

 - 396 -

 private static java.lang.String[] ___ids = {
"IDL:FingerServer:1.0" }};

 public java.lang.String finger(java.lang.String userName) {
 try { org.omg.CORBA.portable.OutputStream _output =
 this._request("finger", true);
 _output.write_string(userName);
 org.omg.CORBA.portable.InputStream _input =
 this._invoke(_output, null);
 java.lang.String _result;
 _result = _input.read_string();
 return _result;
 }
 catch(org.omg.CORBA.TRANSIENT _exception) {
 return finger(userName);
 }
 }
 }

 LISTING 22.3 THE SKELETON CLASS IS AUTOMATICALLY GENERATED BY THE

IDL COMPILER

 abstract public class
 _FingerServerImplBase extends org.omg.CORBA.portable.Skeleton
 implements FingerServer {
 protected _FingerServerImplBase(java.lang.String name) {
 super(name);
 }

 protected _FingerServerImplBase() {
 }

 public java.lang.String[] __ids() {
 return __ids;
 }

 private static java.lang.String[] ___ids = {
"IDL:FingerServer:1.0"};

 public org.omg.CORBA.portable.MethodPointer[] __methods() {
 org.omg.CORBA.portable.MethodPointer[] methods ==
 { new org.omg.CORBA.portable.MethodPointer("finger",
0, 0),};

 return methods;
 }

 public boolean_execute(org.omg.CORBA.portable.MethodPointer
method,

 org.omg.CORBA.portable.InputStream
input,

 org.omg.CORBA.portable.OutputStream
output) {

 switch(method.interface_id) {
 case 0: {

 - 397 -

 return _FingerServerImplBase._execute(this,
method.method_id,

 input,
output);

 }
 }
 throw new org.omg.CORBA.MARSHAL();
 }

 public static boolean execute(FingerServer self, int_method_id,

org.omg.CORBA.portable.InputStream_input,

org.omg.CORBA.portable.OutputStream_output) {

 switch(_method_id) {
 case 0: {
 java.lang.String userName;
 userName = _input.read_string();
 java.lang.String _result = _self.finger(userName);
 _output.write_string(_result);
 return false;
 }
 }
 throw new org.omg.CORBA.MARSHAL();
 }
 }

The next step after generating the stub and skeleton files is to actually implement server
functionality by extending the skeleton. Listing 22.4 contains the code for the
FingerServerImplementation class. Once you’ve looked it over, we’ll step through
it and figure out exactly what’s happening.

 LISTING 22.4 THE FingerServerImplementation CLASS

 import java.io.*;
 import org.omg.CORBA.*;

 public class FingerServerImplementation extends
_FingerServerImplBase {

 public FingerServerImplementation(String name) {
 super(name);
 }

 /**
 * Invoked by the client when a finger request
 * is issued.
 *
 * @param userName The user to be fingered
 * @return Any available data on the fingered user. If
 * an exception is raised during the finger process,
 * the phrase "exception occurred". If anything else
 * happens that keeps the application from functioning,
 * a "command not processed" message is returned..

 - 398 -

 */
 public String finger(String userName) {
 // attempt to execute a finger command
 try{ Process returnValue =
 Runtime.getRuntime().exec("finger
"+userName);

 InputStream in = returnValue.getInputStream();
 StringBuffer sbReturnValue;
 int iValue = -1;
 while((iValue = in.read()) != -1) {
 System.out.print((char)iValue);
 }
 System.out.println(returnValue.exitValue());
 }
 catch(Exception e) { return "exception occurred"; }

 return "command not processed";
 }

 public static void main(String[] args)) {
 // obtain references to the ORB and the BOA
 ORB orb = ORB.init();
 BOA boa = orb.BOA_init();
 // create a new FingerServerImplementation object
 FingerServerImplementation fingerServer =
 new FingerServerImplementation("Finger
Server");

 // notify the ORB that the
 // FingerServerImplementation object is ready
 boa.obj_is_ready(fingerServer);

 // wait for an incoming connection
 boa.impl_is_ready();
 }
 }

The first section of the FingerServerImplementation class that you want to pay
attention to is the class signature. FingerServerImplementation is declared to
extend FingerServerImplBase , which you’ll remember from Listing 22.3 as the
server skeleton. By extending the skeleton class, you provide an implementation for all
public methods, but you also allow certain CORBA-specific tasks to be managed in the
skeleton parent class itself.

Another important piece of the FingerServerImplementation class is the
implementation of the finger() method. What’s interesting about this method is that,
even though it accepts a parameter from a remote object and also sends a return value
back to that remote object, no CORBA-specific code is contained in it.

The final section of the FingerServerImplementation class that needs attention is
the main() method. This method does contain CORBA-specific code and, later on in
this chapter when we cover the ORB in detail, we’ll address all CORBA-specific
development. What you should note now about the main() method is that it first obtains
a reference to the ORB and then creates a new FingerServerImplementation
object and registers that object with the ORB. Finally, the application enters a wait state,

 - 399 -

where it simply waits for a client to invoke a method. This wait state is entered when the
boa.impl_is_ready() method is executed and is only necessary in servers without a
GUI. If the server has a GUI, the GUI keeps the server active until a request is issued.

To complete the exploration of this application, take a look at the client software
contained in Listing 22.5. Stop for a minute, study the code, and pay specific attention to
the manner in which remote objects are manipulated. Once we’ve interacted with the
ORB to obtain a reference to the remote object, that object is manipulated in the same
manner as a local object. If the application were written in a manner such that the client
altered the state of the server object, that state would remain constant across all method
invocations.

 LISTING 22.5 A FingerClient OBJECT ISSUES FINGER REQUESTS AGAINST A

REMOTE FingerServer OBJECT

 import org.omg.CORBA.*;

 /**
 * The FingerClient class binds to a FingerServer object
 * and attempts to finger a user.
 */
 public class FingerClient {

 public static void main(String[] args)) {
 // connect to the ORB
 ORB orb = ORB.init();
 // obtain a reference to a FingerServer object
 FingerServer fingerServer =
 FingerServerHelper.bind(orb, "Finger Server");
 // finger a user
 String sResult = fingerServer.finger("lukecd");
 // print out the results of the finger command
 System.out.println(sResult);
 }
 }

To run these two applications, first install the Inprise Visibroker ORB software and launch
the application called OSAgent. Depending on your hardware and the manner in which
you performed the Visibroker install, this application may be set up as an NT Service or
something that’s launched from the command line. If the OSAgent is running an NT
Service, it’s likely already running. If you’re running it from the command line, make sure
it’s in your system’s PATH environment variable and then type

 osagent

 The OSAgent application is basically the ORB itself and must be running for the

applications to function.

 With the OSAgent active, first run the server by typing

 java FingerServerImplementation

 Now, open an alternate command window and type

 java FingerClient

 - 400 -

This launches the client software. The client software should bind to the server, finger the
user “lukecd,” and print out the results. If you’re running the server on a machine that
does not have finger installed, you should get back some error message. Assuming the
command is successsful, you'll obtain data on the user "lukecd." Note that the client will
immediately exit after invoking operations on the server, but the server will remain
running. When a CORBA server enters a wait loop by invoking
boa.impl_is_ready(), that server stays active until it is quit.

For all the trepidation that you may have had entering into a CORBA development effort,
you must admit that it’s really not all that complicated. A lot of hype surrounds CORBA,
but this does not mean things must get complicated. In just a few pages of code, you can
develop a simple application!

 Now that we’ve developed a simple application, we’ll continue our exploration of CORBA

technologies with a look at the ORB and the BOA.

 The Object Request Broker (ORB) and the Basic Object

Adapter (BOA)

As was stated earlier, the ORB is the highway over which all CORBA communication
occurs. In the previous example, every time the FingerClient application invokes the
finger() method on the remote FingerServer object, the ORB gets involved. All
issues regarding interacting between the local and remote objects are managed
completely by the ORB; this includes marshaling of method parameters and return
values, along with object location management and any other nitty-gritty details.

Note

The term marshal refers to the process when data formatted to be readable
by one language or architecture is translated so that it’s readable by a
different one. This could be as simple as translating a C-style string into a
Java-style string or as complicated as byte-order reversing.

Data marshaling is a process that happens automatically via the ORB, and other than
knowing that it happens, you don’t need to spend too much time thinking about it. The
server also takes care of the issue of object location management, which is a great
benefit to the developer. Object location management deals with locating remote objects
when the client asks for them. In the client code in Listing 22.5, a reference to the remote
object is obtained with the following line of code:

 FingerServer fingerServer =
 FingerServerHelper.bind(orb, "Finger Server");

What’s interesting about this method is that we don’t ask for an object on a specific
machine or IP address, but rather we ask the ORB for an object that implements the
FingerServer interface and has the logical name “Finger Server.” As you’ll remember,
when the server is started, the constructor passes the logical name “Finger Server” to its
parent, thus telling the ORB that the server is named “Finger Server.” The ORB matches
up the request for an object with its internal registry of existing objects.

The fact that the ORB makes object location something that developers need not worry
about means that the finger application previously developed could be run on more than
one machine in the same fashion as it’s run on one. Figure 22.2 depicts a common
server architecture in a CORBA environment. The ORB is running on its own machine,
the server is on another, and two instances of the client application are running on the
other two machines.

 - 401 -

 Figure 22.2: A common architecture for a CORBA environment.

In addition to dealing with the ORB during your development efforts, you’ll also deal with
an entity called the Basic Object Adapter (or BOA). An Object Adapter, in general,
defines how an object is activated into the CORBA universe. An Object Adapter is a
required feature in a CORBA application because it manages communication with the
ORB for many objects. Although any Object Adapter could be used, the CORBA
specification defines the Basic Object Adapter, which must be provided by all vendors.
The BOA is fully featured, and according to the Object Management Group (OMG), it
“can be used for most ORB objects with conventional implementations.” In Listing 22.4,
the line of code boa.obj_is_ready() is invoked with a FingerServer object as a
parameter, which asks the BOA to tell the ORB that the FingerServer object is ready
to accept remote method invocations.

Note

Although the BOA is currently the desired Object Adapter, the CORBA 3.0
specification deprecated it in favor of the new Portable Object Adapter (or
POA). The POA is covered in detail in Chapter 28, “The Portable Object
Adapter (POA).”

 Interacting with the ORB and BOA

To provide developer access to both the ORB and BOA, two important Java classes are
presented. The first such class, org.omg.CORBA.ORB , represents the ORB singleton.
Second, the class org.omg.CORBA.BOA is provided, which represents the BOA.

Note

The term object singleton refers to any object that has one and only one
instance in a given environment. At any one point in time, regardless of the
number of active clients and servers, there’s only one ORB object.

The following lines of code highlight two important methods in the ORB class. The first
method, init(), is a static method that obtains a reference to the ORB singleton. This
method is overloaded to function in different environments, including those that require
special parameters as well as situations in which the client is a Java applet. Due to
certain security restrictions placed on the applet developer by the strict browser security
model (often called the security sandbox), it’s not always possible for the applet to
connect to an ORB on any machine. In Chapter 25, we fully examine how the Inprise
ORB allows applet clients to connect to the server.

The second method, highlighted at the bottom of this code, shows the two overloaded
versions of the BOA_init() method. This method, invoked on the ORB, obtains a
reference to the BOA. The following are the overloaded versions of the ORB class’s

 - 402 -

init() method:

 public static org.omg.CORBA.ORB init();

 public static org.omg.CORBA.ORB init(java.lang.String[],
 java.util.Properties);

 public static org.omg.CORBA.ORB init(java.applet.Applet);

 public static org.omg.CORBA.ORB init(java.applet.Applet,
 java.util.Properties);

 public org.omg.CORBA.BOA BOA_init();

 public org.omg.CORBA.BOA BOA_init(java.lang.String,
java.util.Properties);

Once a reference to the BOA has been obtained, it’s used to facilitate communication
with the ORB. These lines highlight four important BOA methods. The two versions of the
obj_is_ready() method tell the ORB that the object parameter is ready to interact
with remote clients. Before an object can be exported, this method must be called;
otherwise, an error will occur.

The third method highlighted by this code is one that Java developers might not expect to
see. deactivate_obj() accepts as a parameter an activated object and tells the ORB
that the object parameter can no longer be used by remote clients. As Java developers,
we’re accustomed to not having to manage an object’s life cycle, but once we enter into a
distributed environment, it does become an issue. If you fail to deactivate all activated
objects, the server will eventually enter an out-of-memory state. Chapter 24 and Chapter
25 spend significant time discussing how to best implement distributed memory
management.

The fourth important method, impl_is_ready() , tells the ORB that the server is
ready to accept client requests. In Listing 22.4, the FingerServer application invokes
this method once it is fully ready to accept requests. The following is a list of important
methods in the BOA class:

 public abstract void obj_is_ready(org.omg.CORBA.Object);

 public abstract void obj_is_ready(org.omg.CORBA.Object,
java.lang.String,

 byte[]);

 public abstract void deactivate_obj(org.omg.CORBA.Object);

 public abstract void impl_is_ready();

Although the ORB and BOA are, by far, not the only objects that you’ll need to exist in the
CORBA universe, they are the major ones. As you learn more about CORBA in these next
few chapters, you’ll learn about other objects that are supplied to aid CORBA development.

CORBA IDL AND THE CORBA OBJECT MODEL

In the previous section, we looked briefly at CORBA IDL, the language used to describe
objects for remote access. In this next section, we examine IDL in detail—first by looking
at each supported construct and its Java equivalent and then by looking at the

 - 403 -

shortcomings of the language.

 IDL Constructs

As has been stated over and over, IDL allows developers to describe code such that
virtually any programming language can understand it. The example of COBOL code
invoking methods on a Java object is often used, but this example also implies that the
COBOL application fully understands the methods exposed by the Java application. If the
Java application has a method that returns a java.awt.Image object, the COBOL
application must be able to fully understand that object. Unfortunately, it’s not possible to
wave a magic wand and magically have all legacy applications understand modern
programming constructs. Many of those legacy applications were written before
computers could even display any form of image. To allow all languages to
intercommunicate, IDL allows lowest-common-denominator communication, which
basically means that all methods must accept as parameters, and return as a return
value, either a byte, some form of number, or a string. This, of course, does present
some challenges to the developer, but there are possible workarounds. As a conclusion
to this section, we’ll look at an application that allows image data to be passed from client
to server.

 IDL Data Types

All communication with CORBA objects is performed using any of the data types
supported by IDL. If some entity does not have a CORBA equivalent, it must be
abstracted using one of the supported data types. Table 22.1 contains all data types,
along with their Java equivalent. The only type that may not be familiar to you is the any
data type. An any , as its name implies, is a holder class that can reference any entity in
the CORBA universe.

 TABLE 22.1 IDL-TO-JAVA MAPPING

IDL

Java

char

char

octet

byte

boolean

boolean

TRUE

true

FALSE

false

string

java.lang.String

short

short

long

int

float

float

double

double

 - 404 -

any

CORBA.Any

 module

Starting at the highest level, the first IDL construct that we examine is the module. The
module, like its Java equivalent the package, allows for the logical grouping of entities.
Listing 22.6 contains an IDL snippet that makes use of the module construct. Note that
the construct starts with the keyword module and is immediately followed by the logical
name associated with it. The entire module is delimited by curly braces, and a
semicolon immediately follows the closing brace.

 LISTING 22.6 THE IDL module CONSTRUCT MAPS TO THE JAVA PACKAGE

CONSTRUCT

 module userData {
 interface Person {
 string getName();
 };

 };

If your application design calls for subpackages, the module should be placed inside of
another module. Listing 22.6 contains an example that would map into the Java package
org.luke.userData .

 LISTING 22.6 USING SUBMODULES TO CREATE A MULTILEVEL PACKAGE

STRUCTURE

 module org {
 module luke {
 module userData {
 interface Person {
 string getName();
 };
 };
 };
 };

 interface

As you may have guessed from the development we’ve done in this chapter, the
interface keyword maps to a Java interface. This should not be confused with
mapping directly to a Java class, because it’s quite possible that many Java classes
might implement the interface defined by a single IDL interface or one Java class might
implement many IDL interfaces. When the idl2java compiler compiles an IDL interface,
the Java interface is named interfaceNameOperations . In most situations, you’ll
not deal directly with this interface. You simply extend the skeleton class, which in turn
implements the interfaceNameOperations interface.

Interface inheritance is supported and, like much of IDL, uses syntax borrowed from C++.
Listing 22.7 contains two interfaces, ParentInterface and ChildInterface ,
where ChildInterface inherits ParentInterface .

 - 405 -

 LISTING 22.7 INHERITANCE IN IDL USES A SYNTAX SIMILAR TO C++

 interface ParentInterface {
 string parentMethod();
 };
 interface ChildInterface : ParentInterface {
 string childMethod();
 };

 Operations

An interface as a whole is comprised of a collection of operations. An operation maps
directly into a Java method; however, an IDL operation signature is slightly more
complicated. All parameters passed into an operation must be specified as either “in,”
“inout,” or “out” parameters. This specification tells the ORB exactly how it needs to
manage data as it travels from client to server, and potentially back again. Table 22.2
discusses how each of the modifiers function, and Listing 22.8 contains some IDL that
uses each modifier.

 In keeping with the goal of supporting the lowest-common-denominator programming

language, there’s no support for method overloading in IDL.

 TABLE 22.2 IDL OPERATION MODIFIERS

Parameter
Modifier

Function

in

Specifies a parameter that passes data into a method but is not
changed by the method invocation

inout

Specifies a parameter that passes data into a method and is
potentially changed during the method invocation

out

Specifies a parameter that does not pass data into the method
but is potentially modified by the method execution

 LISTING 22.8 PARAMETER MODIFIERS IN CORBA IDL

 interface ParameterModifierExample {
 string getDataForIn(in string name);
 void getDataForInout(in string name, inout results);
 void getDataForOut(in string name, out results);
 };

 attribute

In addition to associating methods with an interface, it’s also possible to specify an
attribute exposed by the interface. An attribute maps to a private member variable, which
is obtained using getter and setter methods. Listing 22.9 contains some IDL that makes

 - 406 -

use of the attribute keyword. The mapping of this IDL to Java is shown in Listing
22.10.

 LISTING 22.9 ATTRIBUTES IN IDL ARE USED TO MODEL THE NONBEHAVIORAL

ASPECTS OF AN OBJECT

 interface AttributeDemo {
 attribute string attribute1;
 attribute long attribute2;
 };

 LISTING 22.10 IDL ATTRIBUTES MAP TO PRIVATE INSTANCE VARIABLES WITH

PUBLIC GETTER AND SETTER METHODS

 public class AttributeDemoImplementation
 extends AttributeDemoImplBase {
 private String attribute1;
 private int attribute2;

 public String attribute1() {
 return attribute1;
 }

 public void attribute1(String attribute1) {
 this.attribute1 = attribute1;
 }

 public int attribute2() {
 return attribute2;
 }
 public void attribute2(int attribute2) {
 this.attribute2 = attribute2;
 }
 }

 struct

In addition to specifying CORBA entities using the interface keyword, it’s also
possible to specify an entity using the struct keyword. Although a struct may have
little meaning to the Java developer, those of us with experience in C/C++ have an
intimate understanding of its use. A struct is basically a collection of data that includes
no behavior at all. A struct maps directly into a Java class with public member
variables matching all struct attributes. Listing 22.11 contains a simple struct
defined using IDL. Listing 22.12 contains the mapping of that struct into Java.

 LISTING 22.11 THE struct CONSTRUCT IS USED TO CREATE ENTITY OBJECTS

 struct StructDemo {
 string attribute1;
 string attribute2;
 long attribute3;
 };

 LISTING 22.12 AN IDL struct MAPS TO A CLASS WITH PUBLIC MEMBER

 - 407 -

VARIABLES

 public class StructDemo {
 public String attribute1;
 public String attribute2;
 public int attribute3;
 }

 enum

The enum construct allows for the creation of enumerated data types. For example, if
you have an interface called “rainbow,” you might want to model each of its colors
using a data type that can only take on a value of red, orange, yellow, green, blue, indigo,
or violet. A CORBA enum maps to a Java class with public final static int
member variables matching each element in the enumerated data type. Listing 22.13
contains the IDL for the rainbow example, and Listing 22.14 contains the Java code that
maps to the color enum .

 LISTING 22.13 ENUMERATED DATA TYPES ARE CREATED IN CORBA USING THE
enum CONSTRUCT

 enum Color {red, orange, yellow, green, blue, indigo, violet};
 interface Rainbow {
 attribute Color color1;
 attribute Color color2;
 attribute Color color3;
 attribute Color color4;
 attribute Color color5;
 };

 LISTING 22.14 THE MAPPING OF AN IDL enum TO A JAVA CLASS

 final public class Color {
 final public static int _red = 0;
 final public static int _orange = 1;
 final public static int _yellow = 2;
 final public static int _green = 3;
 final public static int _blue = 4;
 final public static int _indigo = 5;
 final public static int _violet = 6;
 final public static Color red = new Color(_red);
 final public static Color orange = new Color(_orange);
 final public static Color yellow = new Color(_yellow);
 final public static Color green = new Color(_green);
 final public static Color blue = new Color(_blue);
 final public static Color indigo = new Color(_indigo);
 final public static Color violet = new Color(_violet);
 private int __value;
 private Color(int value) {
 this.value = value;
 }

 public int value() {
 return __value;

 - 408 -

 }

 public static Color from_int(int $value) {
 switch($value) {
 case _red : return red;
 case _orange : return orange;
 case _yellow : return yellow;
 case _green : return green;
 case _blue : return blue;
 case _indigo : return indigo;
 case _violet : return violet;
 default : throw new org.omg.CORBA.BAD_PARAM
 ("Enum out of range: [0.." ++ (7 -1) + "]: " ++
$value);

 }
 }

 public java.lang.String toString() {
 org.omg.CORBA.Any any =
org.omg.CORBA.ORB.init().create_any();

 ColorHelper.insert(any, this);
 return any.toString();
 }
 }

 union

The IDL union construct allows for a single entity to store any one of many different
data types. When the union is declared, all possible data types are listed, and during
usage, it may take on one and only one at a single point in time. During its life cycle, the
active data type may change. An IDL union maps into a Java class with getter and
setter methods corresponding to each available data type. Listing 22.15 contains the IDL
declaration for a simple union, and Listing 22.16 contains the generated Java code.

 LISTING 22.15 A SIMPLE UNION IN IDL

 enum Color {red, orange, yellow, green, blue, indigo, violet};

 union ColorUnion switch (Color) {
 case red:long rgbValue;
 case orange:long rgbValue;
 case yellow:long rgbValue;
 case green:long rgbValue;
 default:boolean bNoColor;
 };

 LISTING 22.16 THE GENERATED JAVA CODE ASSOCIATED WITH THE IDL IN

LISTING 22.15

 final public class ColorUnion {

 private .Object _object;
 private Color _disc;

 - 409 -

 public ColorUnion() {
 }

 public Color discriminator() {
 return _disc;
 }

 public int rgbValue() {
 if(_disc != (Color) Color.red &&
 _disc != (Color) Color.orange &&
 _disc != (Color) Color.yellow &&
 _disc != (Color) Color.green &&
 true) {
 throw new org.omg.CORBA.BAD_OPERATION("rgbValue");
 }
 return ((.Integer) _object).intValue();
 }

 public boolean bNoColor() {
 if(_disc == (Color) Color.red ||
 _disc == (Color) Color.orange ||
 _disc == (Color) Color.yellow ||
 _disc == (Color) Color.green ||
 false) {
 throw new org.omg.CORBA.BAD_OPERATION("bNoColor");
 }
 return ((.Boolean) _object).booleanValue();
 }

 public void rgbValue(int value) {
 _disc = (Color) Color.red;
 _object = new .Integer(value);

 public void rgbValue(Color disc, int value) {
 _disc = disc;
 _object = new .Integer(value);
 }

 public void bNoColor(Color disc, boolean value) {
 _disc = disc;
 _object = new .Boolean(value);
 }

 public .String toString() {
 org.omg.CORBA.Any any =

 ColorUnionHelper.insert(any, this);
 return any.toString();
 }
 }

 - 410 -

 sequence and array

The IDL sequence and array data types are used to specify collections of elements.
Both data types map to Java arrays. When declaring either a sequence or an array,
you first declare it using the typedef keyword and then use it in context. Listing 22.17
demonstrates how each is used. Note that because the sequence and array data
types map directly into Java arrays, no Java class is generated by the idl2java compiler
for them.

 LISTING 22.17 CREATING SEQUENTIAL COLLECTIONS OF INFORMATION USING

 typedef string StringArray[1013];

 interface LotsOfStrings {
 attribute StringSequence StringCollection1;
 attribute StringArray StringCollection2;
 };

As Java developers, we’re accustomed to programming in an environment that allows for
the use of exceptions. Just as in Java, an IDL exception is raised when some exceptional
situation occurs during the invocation of a method. For example, a server might expose a
login() method that returns a reference to a now-logged-in user. If that login were to
fail, the method could raise an exception that indicates the failed login. An IDL
exception maps to a Java exception and is declared using the raises clause

 LISTING 22.18 MODELING EXCEPTIONAL SITUATIONS USING THE exception

 string reason;
 };

 interface User {
 attribute string name;
 attribute string password;
 };

 interface LoginServer {
 User loginUser(in string name, in string password)
 raises (InvalidLoginException);
 }

HACKING IDL

When we began our exploration into the depths of IDL, we started with the disclaimer that
it’s geared to the lowest-common-denominator programming language. Stripping the
advanced features present in many languages does allow wonderful things such as
multilanguage communication, but it also causes problems when developers want to
work with features common in modern languages. Earlier in the chapter, we used the
example of the two Java applications communicating using CORBA with the need of
passing image data back and forth. Because it’s not possible to declare a method using

 - 411 -

IDL that accepts a java.awt.Image object as a parameter, we must perform some
tricky work to get everything to function properly. In this final section, we look at solving
both the problem of passing java.awt.Image objects around the CORBA universe
and the broader problem of IDL’s shortcomings.

 Working with Image Objects in the CORBA Universe

In looking at the problem of passing an Image object around the CORBA universe, one
must break down the object into some smaller pieces that can be described in IDL.
Looking at the properties that form an image, we arrive at an ordered collection of pixels,
a height, and a width. With these three properties in mind, the IDL in Listing 22.19 can be

 interface IDLImageI {
 long getHeight();
 long getWidth();
 LongSequence getImageData();
 };

Building on the IDL description of an image object, we design a CORBA application that
can both create and display IDLImage objects. As with most CORBA applications, the
effort is divided into two separate applications. A client application reads in a local image
file, binds to a server application, and passes over the image data. The server application
accepts the data, reads it in, and finally displays the image onscreen. This application is a
great building block if you ever need to write CORBA applications that are charged with
managing images. Building on the IDL in Listing 22.19, Listing 22.20 contains the full IDL

 typedef sequence<long> LongSequence;

 interface IDLImageI {
 long getHeight();
 long getWidth();
 LongSequence getImageData();
 };

 interface ImageServerI {
 void displayImage(in IDLImageI image);
 };
 };

As is common in many client/server applications, we start development with the server.
The server is composed of three classes that listen for incoming display requests and
then parse and display the IDLImage objects. Listing 22.21 contains the code for the
ImageServer class. This class is the implementation of the ImageServerI interface.
It performs ORB registration and listens for client invocations of the displayImage()

 - 412 -

method.

 LISTING 22.21 IMPLEMENTATION OF THE ImageServerI INTERFACE

 import imageConverter.*;

 /**
 * The ImageServer class is the server implementation
 * of the ImageServerI interface.
 */
 public class ImageServer extends _ImageServerIImplBase {
 private ImageServerGUI gui = null;

 public ImageServer() {
 super("Image Server");

 gui = new ImageServerGUI();
 gui.pack();
 gui.setVisible(true);
 }

 /**
 * Invoked when a client wishes to display
 * an image at the server
 */
 public void displayImage(IDLImageI idlImage) {
 gui.displayImage(idlImage);
 }

 public static void main(String[] args)) {
 // obtain reference to ORB
 ORB orb = ORB.init();
 // obtain reference to BOA
 BOA boa = orb.BOA_init();
 // create a new ImageServer object
 ImageServer server = new ImageServer();
 // register the ImageServer object with the ORB
 boa.obj_is_ready(server);
 // wait for connections
 boa.impl_is_ready();

 }
 }

The other two classes that form the server are charged with server GUI maintenance and
image display. Listing 22.22 contains the code for the ImageServerGUI class, which is
the GUI screen for the server. It has no widgets to accept user input, but it does display

 - 413 -

 import java.awt.image.*;
 import imageConverter.*;

 /**
 * The ImageServerGUI class is the GUI associated with
 * the ImageServer.
 */
 public final class ImageServerGUI extends Frame {
 private Label _lblStatus;

 public ImageServerGUI() {
 super("Image Server");
 setLayout(new FlowLayout());
 _lblStatus = new Label();
 setWait();
 add(_lblStatus);
 }

 private void setWait() {
 _lblStatus.setText("Waiting For An Image");
 }

 private void setProcessing() {
 _lblStatus.setText("Processing Image");
 }

 /**
 * Invoked when an image should be displayed
 */
 public void displayImage(IDLImageI idlImage) {
 setProcessing();
 // create an Image object using the parameters supplied
 // in the IDLImage object
 Image image =
 createImage(new

 0,

 Frame f = new Frame();
 f.setLayout(new FlowLayout());
 f.add(new ImagePanel(image));
 f.pack();
 f.setVisible(true);
 setWait();
 }
 }

 An additional class, ImagePanel, simply extends java.awt.Panel and facilitates the

 - 414 -

display of java.awt.Image objects. The ImagePanel class is contained in Listing
22.23.

 LISTING 22.23 THE ImagePanel CLASS

 /**
 * The ImagePanel class facilitates the display of
 * java.awt.Image objects.
 */
 public class ImagePanel extends Panel {
 private Image image;

 public ImagePanel(Image image) {
 this.image = image;
 }

 public final void paint(Graphics g) {
 g.drawImage(image, 0, 0, this);
 }

 public final Dimension getMinimumSize() {
 return new Dimension
 (image.getWidth(this), image.getHeight(this));
 }

 public final Dimension getPreferredSize() {
 return new Dimension
 (image.getWidth(this), image.getHeight(this));
 }
 }

Having built a server application that understands and displays images, we now build a
client application. The client allows the user to select an image file from his hard drive
and then request that the server display the image. Upon loading, the client binds to an

In addition to the implementation of a client UI for the client application, there’s also the
IDLImage class, an implementation of the IDLImageI interface. This class holds a
reference to a java.awt.Image object and makes available pixel, height, and width
information. Listing 22.24 contains the code for the IDLImage class, and Listing 22.25

 LISTING 22.24 THE CLASS USED TO MODEL A java.awt.Image OBJECT SO

 import java.awt.image.*;
 import imageConverter.*;

 /**

 - 415 -

 * Implementation of the IDLImageI interface
 */
 public final class IDLImage extends _IDLImageIImplBase {
 private Image _image;
 private int[] _iImageData;
 private Component _observer;
 private int _iHeight;
 private int _iWidth;

 public IDLImage(Image image, Component observer) {
 _image = image;
 _observer = observer;
 obtainImageData();
 }

 /* methods defined in the IDL */
 public int[] getImageData(() {
 return _iImageData;
 }

 public int getHeight() {
 return _iHeight;
 }

 public int getWidth() {
 return _iWidth;
 }
 /**
 * Obtains all needed data on the Image object
 */
 private void obtainImageData() {
 try{ MediaTracker track = new MediaTracker(_observer);
 track.addImage(_image, 0);
 track.waitForAll();
 }
 catch(Exception e) { System.out.println("error at

 _iHeight = _image.getHeight(_observer);
 _iWidth = _image.getWidth(_observer);

 _iImageData = new int[_iWidth * _iHeight];
 PixelGrabber grabber = new PixelGrabber
 (_image, 0, 0, _iWidth,
 _iHeight, _iImageData, 0,

 try { grabber.grabPixels(); }
 catch (InterruptedException e) {
 System.err.println("interrupted waiting for

 return;
 }
 if ((grabber.getStatus() & ImageObserver.ABORT) != 0) {

 - 416 -

 System.err.println("image fetch aborted or errored");
 return;
 }
 }
 }

 LISTING 22.25 AN ImageClient OBJECT READS IN GIF OR JPEG FILES AND

 import java.awt.event.*;
 import org.omg.CORBA.*;
 import imageConverter.*;

 public final class ImageClient extends Frame
 implements ActionListener {
 private Image _imageActive = null;
 private ImageServerI _imageServer = null;
 private BOA _boa = null;
 private Button _buttonLoad = null;
 private Button _buttonSendToServer = null;
 private Label _lblImageActive;

 doBind();
 buildScreen();
 }

 /**
 * Binds to the ORB, and obtains references to the
 * BOA and ImageServer objects.
 */
 private void doBind() {
 ORB orb = ORB.init();
 _boa = orb.BOA_init();
 _imageServer = ImageServerIHelper.bind(orb, "Image Server");
 }

 /**
 * Builds the GUI
 */
 private void buildScreen() {
 setLayout(new GridLayout(2,2,10,10));
 add(new Label("Active Image"));
 add(_lblImageActive = new Label("None Selected"));
 add(_buttonLoad = new Button("Load Image"));
 add(_buttonSendToServer = new Button("Send Image To Server"));

 _buttonLoad.addActionListener(this);
 _buttonSendToServer.addActionListener(this);
 }

 - 417 -

 /**
 * Invoked when a Button object is clicked
 */
 public void actionPerformed(ActionEvent ae) {
 java.lang.Object target = ae.getSource();
 if(target == _buttonLoad) doLoad();
 else sendImageToServer();
 }

 /**
 * Prompts the user to load an image, and if a proper file
 * is selected, reads in that image
 */
 private final void doLoad() {
 FileDialog dlgOpen =
 new FileDialog(this, "Choose An Image",

 dlgOpen.setVisible(true);

 if(dlgOpen.getFile() == null) return;
 StringBuffer bufFile = new StringBuffer();
 bufFile.append(dlgOpen.getDirectory());
 bufFile.append(dlgOpen.getFile());
 String sFile = dlgOpen.getFile();
 if(isValid(sFile)) {
 Image image = null;
 try{ String sFileName =
 sFile.substring(0,

 image =

 _lblImageActive.setText(sFile);
 }
 catch(Exception e) { System.out.println; };
 _imageActive = image;
 }
 }

 /**
 * Determines if the user has selects a valid image
 *
 * @return true If the file name ends with gif, jpg, or jpeg
 * @return false If the true condition is not satisfied
 */
 private boolean isValid(String name) {
 String extension =
 name.substring(name.indexOf(".")+1, name.length());
 if(extension.equalsIgnoreCase("gif")) return true;
 if(extension.equalsIgnoreCase("jpg")) return true;
 if(extension.equalsIgnoreCase("jpeg")) return true;
 return false;
 }

 - 418 -

 /**
 * Creates an IDLImage object and asks that
 * the server display it
 */
 private void sendImageToServer() {
 if(_imageServer == null) return;
 IDLImageI idlImage = new IDLImage(_imageActive, this);
 _boa.obj_is_ready(idlImage);
 _imageServer.displayImage(idlImage);
 }

 public static void main(String[] args)) {
 ImageClient client = new ImageClient();
 client.pack();
 client.setVisible(true);
 }
 }

PUTTING IT ALL TOGETHER

Now that you’ve gone over the code, you need to enter it all in, compile the IDL, and then
compile the application. To run the application, first start the OSAgent (Inprise Visibroker
ORB), then launch the server and finally the client. You should be able to load in images
at the client and force the server to display them. If you have access to a LAN, try running
the client and server on different machines.

As was shown in the simple image manipulation example, the shortcomings of IDL can be
worked around. Moving a complex object to IDL means breaking it down into smaller
pieces and then shipping those pieces through the ORB. As long as both the client and
server know how to break apart and reassemble the object, you’ll have no problems.

 FROM HERE

In this chapter, you learned a lot about what makes CORBA tick. We looked under the
hood at the ORB, the BOA, and at IDL. As we further explore CORBA in the next few
chapters, your understanding will move from knowledge of syntax and basic workings to
an evolved understanding of how to build CORBA applications.

 The following chapters complement the material covered in this chapter:

 • Chapter 24, “A CORBA Server”

 • Chapter 25, “A CORBA Client”

 • Chapter 26, “CORBA-Based Implementation of the Airline Reservation System”

 - 419 -

 Chapter 23: Survey of CORBA ORBs

 Overview

When shopping for clothing, two individuals will rarely find that an identical item fits one
as well as it fits another. What’s more, there may be abstract features of a clothing item
that appeals to one of shoppers, but if it does not fit the needs defined by his or her body
shape, chances are it will sit in the back of the closet forever. Even though it’s not as
much fun as shopping for clothing, shopping for an ORB does involve similar con-cerns.
No two ORB vendors provide the same solution, and no one implementation is best for all
environments. Even though all ORBs conform to a common standard, differ-ent vendors
have decided to tailor their Object Request Broker (ORB) such that its mar-ket is well
defined. When making a purchase, one must take the time to identify the optimal vendor.

CORBA coverage to this point in the book has made use of the Inprise Visibroker ORB.
The Visibroker ORB, originally developed by Visigenic (Visigenic was acquired by
Borland, which then changed its name to Inprise), is in use by millions of customers all
over the world, including Oracle and Netscape. The ORB was chosen for inclusion in this
book due to the fact that it has solid support for Java on the NT and Solaris plat-forms,
as well as wide industry acceptance. If the focus of this book were developing COBOL-
based CORBA solutions on VMS, another ORB would have been selected. This chapter
looks at the concerns facing CORBA developers, not when producing a CORBA solution,
but when deciding which ORB to use. In addition, this chapter looks at two development
tools that make developing CORBA applications much easier.

 Specifically, the following points are addressed in this chapter:

 • Why ORBs differ

 • What to look for in an ORB

 • How Rational Rose helps with application design

 • How the SNiFF+ development environment makes development easier

 WHY ORBS DIFFER

Given the fact that all ORBs implement a common specification, it’s easy to think there’s
no difference between ORBs from competing vendors. Unfortunately, due to both the
evolving nature of the CORBA specification (see Chapter 21, “CORBA Overview”) and its
shear breadth, vendors often have very different products.

The first issue of the evolving CORBA specification is one that has the potential to cause
great confusion. The CORBA specification currently stands at version 2.3 and is
considered to be rather rich in features. This level of richness has not always been present,
and without certain pieces of the specification complete, vendors have been in a bit of a
quandary. If, for example, a certain feature has yet to be added to the CORBA specification
but a vendor is facing client demand, the vendor is likely to implement the feature in a
proprietary fashion in order to please the client. As is to be expected, vendors often make
decisions based on where the money is, which leads to vendors implementing proprietary
solutions. Vendors taking this level of initiative is good because it tends to feed the
development of an Object Management Group (OMG) specification, but it also presents
problems if their versions differ from the eventual OMG specification. This was seen early
on when vendors wanted to release an ORB that supported Java before the OMG was
finished with the Java-to-Interface Definition Language (IDL) mapping. What ended up
happening was that vendors created their own mappings, submitted them to the OMG to
be the Java-to-IDL specification, and sold the ORB software that supported their mapping.
Up until the point of the OMG releasing the final specification, there were two different

 - 420 -

mappings in use by a variety of vendors. After the OMG released the specification, all
vendors had to modify their products to support the new mapping. This also had the
unfortunate downside of causing all developers to modify their applications accordingly.

 CHOOSING AN ORB

When deciding on an ORB, there are a lot of concerns you’ll want to keep in mind. Each
and every application you develop has certain needs, and the correct ORB should meet
each and every one of those needs. The following list takes a look at some topics you
want to consider when choosing an ORB:

 • Platform choice

 • Language bindings

 • Available CORBAservices

 • Available CORBAfacilities

 • Available CORBAdomains

 • Core competency within an organization

 • Features beyond those contained in the CORBA specification

 • Availability of third-party components

 • Cost

Starting at the top of the list, the two features that will likely narrow down the number of
available choices with greatest ease are platform choice and language bindings. The
other items can often be worked around if missing, but support for your implementation
language(s) and platform(s) is crucial. If your developers are all seasoned Java
developers and your IS department only supports Solaris servers, you must choose an
ORB with Java and Solaris support.

Moving further down the list, CORBAservices, CORBAfacilities, and CORBAdomains are
items that can significantly reduce your development time. As Chapter 21 discusses,
CORBAservices, CORBAfacilities, and CORBAdomains are plugged into your applica-
tion to provide some level of functionality that you would otherwise have to write yourself.
As you design an application, check to see if any of its features overlap with features
implemented by a CORBAservice, CORBAfacility, or CORBAdomain. If there’s an
overlap, you’ll want to look for an implementation of that entity that fits in with the ORB
you’re looking at.

Core competency within an organization looks not at a feature of the product but rather at
the level of skill your developers have with the target ORB. Although similar, all ORBs
have idiosyncrasies that can be exploited to achieve superior performance. If your staff
really understands the ORB from a certain vendor, the cost of training them for an
alternate ORB should be a consideration.

Features beyond those contained in the CORBA specification should also be considered.
In addition to looking at the development time saved by available CORBAservices,
CORBAfacilities, and CORBAdomains, you should also look at the potential time-savings
with other additions to the CORBA environment. If a vendor has extended the features of
the target ORB to perform some task that, although beyond the CORBA specification, is
of need to you, this product should be considered. For example, many vendors offer
support for tunneling through a firewall. If your application involves a client applet outside

 - 421 -

of a firewall and a server application behind the firewall, this tun-neling feature will save
you a lot of development time. Development time can be further saved if a third-party
vendor releases an application that works with a target ORB to add needed functionality.
In general, all five of the add-on functionality considerations are something that will
potentially increase your time to market. Each represents code that will not have to be
written by your staff but instead will be purchased and integrated into your product.

One thing to note when integrating third-party components, such as CORBAservices,
CORBAfacilities, or CORBAdomains, is that the component really is a good fit. If you
have to do more work integrating the component than you save by not writing the pur-
chased code, you’re better off to simply write the code yourself.

A final consideration that helps when deciding on an ORB is, unfortunately, cost.
Regardless of the number of problems the ORB solves, if you cannot get approval to
purchase it, it cannot be considered. Fortunately, if an ORB is significantly more expen-
sive, this is often due to a large number of features. If you can prove to management that
purchasing the features is actually less expensive than paying salaries to develop them in-
house, your chances of getting the expensive ORB purchased are increased. What should
be noted when talking about cost is that some free ORBs are available. Usually these
ORBs are not as fast or as rich in features as the ones that cost money, but they might help
you to sneak CORBA into an organization.

COMPARING ORB PRODUCTS

As a tool to help in choosing an ORB, Table 23.1 presents a comparison of a variety of
ORBs. Note that one obvious omission is ORB price. In general, ORBs do not have a
basic price and availability at Egghead software. The ORB pricing structure is usually
something that is haggled out between vendor and client, and it depends on topics such
as reselling, number of users, and number of servers.

 TABLE 23.1 AN ORB COMPARISON CHART

Vendor

Product

Platforms

Languages

CORBA
services

Notes

Inprise
(INPR)
http://
www.inprise
.com

Visibroker

Windows
Solaris
IRIX AIX
HP-UX
Digital
UNIX

Java
C++

Event Naming

Client code is
freely
distributed with
the Netscape
Navigator
browser.

Iona
http://
www.iona
.com

Orbix

Solaris
HP/UX
IRIX AIX
Digital
Open
MVS
DYNIX/ptx
Windows
MVS
VXWorks

Naming
Trader Event
Security

Includes COM/
Also includes
software used
when
inteAlpha/grating
with object
dataSequentbases.

Expersoft
http://www.
expersoft.com

CORBAplus

Windows
HP-
UXSolaris

Java
C++

Transaction

Also in-cludes a
CORBA/ COM
bridge.

 - 422 -

AIX DEC
UNIX

Peerlogic
http://www.
peerlogic
.com

DAIS

WindowsSolaris
Open VMS
HP/UX

C
C++
Java
Eiffel

Security
Event
Transaction

Also in-cludes
support for
COM.

Gerald
Brose

JacORB

Any
with a
1.1
version
of the
JDK

Java

Naming Event

Written in Java,
and is freely
available.

http://www.
inf.fu-berlin
.de/~brose /
jacorb/

CORBA DEVELOPMENT TOOLS

This chapter started out with an exploration of competing ORBs, which will help you when
making a decision about the ORB that will be deployed in your enterprise. In this section,
we look at two development tools that will aid in the application development process.

 These products are complementary and help the application design process all the way

from the initial design stages up to the final debugging process:

 • Rational Rose (http://www.Rational.com)

 • SNiFF+ (http://www.TakeFive.com)

 Rational Rose

The first product we examine is Rational Rose from Rational software. Rational Rose is a
visual modeling tool that uses a variety of modeling languages to model applications from
initial requirements right down to the final deliverable. This broad scope of functionality is
actually rather impressive, and although all features do not apply specifically to CORBA,
each of these features does aid the application development process. As we examine
Rose, we first take a high-level look at each of its features and then dive into the CORBA-
specific aspects of the tool.

 As was earlier stated, Rose is used to fully model the lifecycle of an application. The tool

allows models to be built using the UML, Booch notation, or ,OMT.

Note

The UML, OMT, and Booch notation are all languages that allow for modeling
all aspects of the application development process. Because it’s becoming the
de facto industry standard, the UML is used throughout this book. For more
information, flip back to Chapter 3, “Object-Oriented Analysis and Design,”
and Chapter 6, “The Airline Reservation System Model.”

Once launched, Rose presents a screen similar to what’s shown in Figure 23.1. A
workspace is shown on the right side of the screen, and a component browser is shown
along the left side.

 - 423 -

 Figure23.1: The Rational Rose default window, Use-Case view.

Looking at the component browser, you’ll note that there are four views into an applica-
tion that are developed during the modeling process. The first view (and the one active in
Figure 23.1) is the Use-Case view. In this view, you add the actors, use-cases, packages,
and associated relationships that model what the system is supposed to do. In addition to
containing actors and individual use-cases, the Use-Case view also contains any number
of individual diagrams. If your application is modeled using a lot of use-cases, you may
want to call out various relationships for inclusion in their own diagram.

Moving further down the component browser window, the next section you encounter is
the Logical view. Inside of the Logical view, you actually model the individual classes that
are to form the system. Figure 23.2 shows a class created with Rose that models a stock.

 Figure23.2: The Rational Rose default window’s Logical view.

According to the diagram, the Stock class contains two private attributes (price and sym-
bol) and publishes four public getter and setter methods. In addition to modeling classes
in the Logical view, you may also model class relationships, package structure, and
descriptive notes. Like the Use-Case view, the Logical view may also contain any number
of diagrams. A good rule of thumb to follow when building diagrams is that if you need to
scroll your screen to understand what’s being depicted, the diagram is a candidate for
being broken down into smaller pieces. Computer-based modeling tools are meant to
replace paper, and if you need to print out your diagram, tape together a collection of
pages, and hang them on the wall, you are taking one large step backwards.

Moving beyond the Logical view, the next level of modeling performed is the Component
view. This level acts to aggregate the different classes that form your system into logical
components. For example, you might move all classes charged with database access

 - 424 -

into a data access component and then move all classes charged with object-torelational
mapping in a translation component. In general, a component is a tool that facilitates
logical grouping of entities in an application.

The final level of modeling provided by Rose is the Deployment view. In this view, you
physically model the hardware architecture upon which the application runs. This level of
modeling is especially important in n-tier applications, because the fact that certain
pieces may need a dedicated machine needs to be documented. As an example,
consider an application server. Under such an application, processor-or memory-
insensitive pieces such as object caches or object-to-relational translators will likely need
a dedicat-ed machine. On the other hand, pieces such as an asynchronous audit trail
service could easily share access to a machine.

With this overview of how Rose aids the application development process, let’s return to
the manner in which it specifically aids CORBA applications. As you may imagine, one of
the least enjoyable aspects of developing a CORBA application is synchronizing the IDL
files with their implementation files. Although well-designed systems generally pro-duce
a design that leads to classes that require few changes to the public methods, expe-
rience shows that change is inevitable. As you work with the classes that form your
application, oversights in the initial design become apparent. Unfortunately, no matter
how much you may examine the different classes and their relationships, snafus always
manage to rear their ugly heads.

To help keep your IDL files synchronized with their implementation classes, and conse-
quently the UML model itself, Rose can automatically generate both the Java skeleton
and CORBA IDL file for every class in the logical model. Because you’ll be actually
working with the Java files produced, Rose fully supports round-trip engineering, thus
ensuring the safety of your code. Unfortunately, the current version of Rose does have
some shortcomings when it comes to the automatic generation of IDL and Java files due
to the manner in which data types are handled. When you create a class in Rose, the
data type of all method parameters, return values, and attributes must be specified.
Because the UML has no native data types, you must enter in language-specific data
types as the model is built. Chances are you can probably guess where this issue is
headed. Because the IDL and Java have different names for basic data types (vs.
String, for example), the same model cannot be easily used to produce both IDL and
Java files. The addition of an automatic data type translation function to Rose would be a
boon to development, but for now there are alternatives.

Note

Round-trip engineering is a term used to describe the process of creating a
visual model, generating code from it, making changes to the code, and finally
having those changes reflected in the visual model. Support for round-trip
engineering in a tool is a big plus because it eases the process of
synchronizing the model with the code.

I recently used Rose to model a piece of software used in healthcare that contained well
over 200 classes. We decided that Rose would be used to contain the model and that we
would use IDL data types when modeling a class that was to be exposed in the CORBA
environment. We then used the Inprise idl2java compiler to produce the Java skeleton
files. Classes that were internal to the application did not utilize IDL data types but
instead used Java data types, thus allowing for Java skeletons to be generated directly
from the model. Only generating IDL from certain files is actually a relatively easy
process due to the fact that Rose permits certain classes to have their IDL generation
globally suppressed. Once we had ironed out the kinks, the code generation worked out
well.

 SNiFF+

SNiFF+ from TakeFive Software is a development environment for projects developed
using C, C++, Fortran, Java, and CORBA IDL. In this study, we examine the Java and
IDL features, but if you’re developing cross-language applications, note that support is
provided. In addition to support for a variety of languages, SNiFF+ is available for virtu-

 - 425 -

ally every operating system. At present, the list of supported operating systems includes
Windows, Solaris, SunOS, HP/UX, AIX, Digital UNIX, Irix, SCO UNIX, SNI Sinix, and
Linux.

Before we dive into specifics on the SNiFF+ feature-set, it should be noted that simply
calling SNiFF+ a “development environment” understates it capabilities. SNiFF+ is
overflowing with all kinds of features that make the process of developing enterprise
servers much easier.

In the general Java/CORBA development tool market, many vendors attempt to differen-
tiate their offerings with features such as GUI builders and other such items that benefit
the client developer. Although these features may make someone’s job easier, they are
of little concern to the server developer. At the server, we face issues including thread
man-agement, sharing code between large groups of developers, application design
manage-ment, and versioning. This is especially true in thin-client environments where
the client is simply a thin access layer into a complex server that maintains all business
logic. In fact, in many such environments, the client may be designed by a collection of UI
designers but is likely coded by only one or two. In comparison, 5 to 50 (or more) devel-
opers may develop the server. Situations like these call for a tool set that allows server
engineers to not only easily understand their own work but to also easily understand the
work performed by other members in the team. If you’re changing the signature of a
public method, it’s critical that you instantly know every other line of code that invokes the
public method. In applications with only a handful of classes, it’s easy to simply build the
application and see where it fails. If that build is going to take over five min-utes, you
need a much faster route to the answer.

SNiFF+ targets the server developer with a collection of features that can save many
hours during the initial development process as well as help prevent bugs sneaking into
the code, thus shortening the alpha-to-release cycle. Specifically, the following features
are made available to the developer:

 • Code analysis

 • Code editing

 • Build execution

 • Debugging

 • Version management

When you initially load SNiFF+, the first task performed is to create a new project. The
project consists of a collection of source files, along with various other files generated
automatically by SNiFF+. A given project can contain files implemented in different lan-
guages (for example, Java and IDL), and the project browser actively supports simulta-
neous projects. Figure 23.3 shows a SNiFF+ project window that contains the server
code you’ll develop in Chapter 24, “A CORBA Server.”

 Figure23.3: The SNiFF+ project manager.

 - 426 -

Once you’ve created a new project in SNiFF+, you have a variety of different steps you
can take. Assuming you’re beginning a new project, you may add new source files and
take them through the full edit/compile/debug cycle. Let’s step through the manner in
which these features are implemented. We’ll begin with an existing project and look at the
manner in which SNiFF+ exploits its feature-set.

Starting with the code analysis functions, SNiFF+ provides a variety of functions that
allow for code visualization. In general, code visualization is a pretty broad topic that
could potentially include any number of features. Within the SNiFF+ environment, this
feature-set has been defined to include the following features:

 • Symbol locating

 • Hierarchy browsing

 • Difference checking

Symbol locating involves locating all lines of code in a project where a given symbol
(method, variable, and so on) is referenced. This function is most useful when you need
to calculate the impact on a project of a change to a public method. Whenever a public
method encounters a signature change, all locations in the application that invoke the
method must be updated. In large group projects, the public methods exposed by a class
you develop might very well be utilized by any number of classes you did not develop.
Figure 23.4 shows SNiFF+ displaying what’s called a method refers-to relationship. A
refers-to relationship displays all the locations in the active project where a given method
is invoked. Automatically calculating this relationship is very important because it allows
developers to see the impact of a method change on the project as a whole. In addition to
calculating this relationship for methods, SNiFF+ has the ability to calculate the
relationship for classes, interfaces, and variables.

 Figure23.4: Checking refers-to relationships with SNiFF+.

Hierarchy browsing provides a visual representation of the class hierarchy present in a
given project. All classes and interfaces are shown, with lines connecting child classes to
their parents. As shown in Figure 23.5, SNiFF+ enhances this view by using different
symbols to represent different types of classes and interfaces. Classes are shown as
rectangles, interfaces as rectangles with rounded corners (such as MusicCollectionI
and MusicServerI), abstract classes as blue rectangles, and so on.

 - 427 -

 Figure23.5: Visualizing class hierarchy with SNiFF+.

Now, let’s move on to difference checking. SNiFF+ has the ability to take two versions of
the same file or two different files and locate all points where they are different. This is a
very useful feature due to the fact that with large applications, it’s often hard to remember
the exact locations where changes were made. When checking a source file back into a
version control system, it’s customary to add comments describing the changes you
made. Through the use of the difference-checking tool, you can rapidly locate the
changes you made. In addition, the tool is useful when more than one person is working
on a single file. If, for example, the IDL files for a single project are maintained by more
than one person, it’s very useful to be able to rapidly locate positions in those files altered
by other developers.

Next, let’s move from code analysis to code editing. SNiFF+ provides a fully featured
source code editor. The editor, shown in Figure 23.6, displays the active source file along
the left and center of the screen, with a listing of all methods along the right side of the
screen. At any point in time, a method name can be clicked to jump immediately to its
location in the source code. Although the editor does alter the text color of keywords and
comments, it does not perform this change in real time. Both the updates to the text
display color and the list of active methods is updated when the file is saved. One
especially nice feature of the editor—sadly missing in many competing editors—is the
ability to double-click a curly brace and have the code between the target brace and its
pair highlighted.

 Figure23.6: The SNiFF+ source code editor.

In addition, the code editor provides the ability to—with just one click—comment or
uncomment a series of lines, adjust the tabs applied against a series of lines, and interact
with the other tools exposed by SNiFF+. For example, you can highlight a method name,
right-click it, and instantly see all the other files that invoke the method. Due to the man-

 - 428 -

ner in which IDL files map to Java files, this allows you to browse your IDL file and
determine all Java files that invoke a given operation.

A project is generally of minimal use if it cannot be compiled; for this reason, SNiFF+
contains full support for the execution of builds. Builds executed in SNiFF+ are per-
formed with the aid of a make file, and either individual files or whole projects can be
compiled at the touch of a button. For those of you who (like myself) have not touched a
make file since those days in college when professors refused to admit that any develop-
ment tool other than vi, cc, and make exist, don’t fear. SNiFF+ does automatically gener-
ate the make file for you (note that this file may be manually edited if needed). In the
time I have used the tool, I have never once had to modify the make file at all. There’s a
project settings GUI through which you set attributes such as your class path and output
directory, and SNiFF+ takes care of folding these values into the make file. Of course, if
you feel like diving in yourself, the make file is yours to edit.

The next SNiFF+ feature we explore is the debugger, used during the phase enjoyed by
only the most hardcore developers. Like most modern debugging applications, the
SNiFF+ debugger is operated from a GUI and contains the ability to set breakpoints,
watch variables, track changes, and to examine the status of multiple concurrent threads.

The ability to track threads is one of the more powerful features that server developers
will likely need to take advantage of. If, for example, you allocate a new thread to each
incoming connection and those threads access common data, you’ll want to track that
they do not corrupt any other views into the same information.

Finally, we arrive at the version management features present in SNiFF+. SNiFF+ is fully
integrated with the ClearCase, PVCS, and RCS version control applications. From within
the editor, you have the ability to perform the check in, check out, and rollback functions
exposed by the underlying version control system. An individual project is tied to no more
than one version control system, and this setting may be changed at any point in time.

Having used a wide variety of Java and CORBA development environments over the past
few years, I’m rather happy to note that SNiFF+ is one of the best systems I have ever
encountered. It’s obviously not for the client developer, but as a server developer, it’s
great to find a tool that appeals directly to my needs. The ability to deal with multiple
languages is also a boon, because with CORBA applications, one always deals with Java
and IDL, and any legacy integration will likely need C or C++. Not having to switch
between Visual C++ and Symantec Café helps to speed up development cycles.

As a side note, if for any reason you prefer some aspect of another tool to SNiFF+ (per-
haps you want to use vi for an editor), SNiFF+ is completely configurable. You can easi-ly
integrate your preferred tool.

 FROM HERE

In this chapter, we looked at a collection of different ORBs on the market, as well as two
development tools that you’ll want to consider taking advantage of in your development
efforts. Rational Rose presents an industry-standard manner to take applications through
their life cycles, and it helps to cut down on the code you have to write via its code gen-
eration tools. SNiFF+ helps you out once you start writing code with advanced visualiza-
tion tools as well as great debugging and editing utilities.

This chapter is slightly different from the other CORBA chapters, because it focuses on
the tool rather than the technology side of the development process. Although tools are
important, they are useless if you do not understand the technology they benefit. As you
spend time with the rest of this book, the following chapters will expand on your knowl-
edge of the technology that makes CORBA work:

 • Chapter 22, “CORBA Architecture”

 - 429 -

 • Chapter 24, “A CORBA Server”

 • Chapter 25, “A CORBA Client”

Chapter 24: A CORBA Server

 Overview

The term client/server is applied to applications that exist as at least two components. A
server application is often more powerful and is charged with tasks such as execution of
business rules and database access. The client application often interacts with human
users and presents an interface through which the server is accessed. CORBA
applications are client/server in the true sense of the term; however, an application’s role
as client or server often changes during that application’s lifecycle. CORBA applications
are made up of distributed objects, all of which can communicate during an application’s
existence.

This chapter looks at CORBA’s role as a client/server–enabling technology and
implements a fully featured server application. This application differs from the other
sample servers developed in this book, because it does not demonstrate a single
technology but rather demonstrates how to build a production-grade server. The
application is fully multiuser, includes support for garbage collection, and, as an added
bonus, demonstrates the callback design pattern from Chapter 5, “Design Patterns.” A
client for this application is developed in Chapter 25, “A CORBA Client.”

APPLICATION DESIGN

The application developed in this chapter allows for the management of a collection of
music CDs, records, and cassettes. The client developed in the following chapter is an
applet and uses the server to store all information pertaining to an individual’s collection.
The IDL exposed by the server is contained in Listing 24.1.

 LISTING 24.1 THE IDL FOR THE MUSIC SERVER APPLICATION

 module musicServer {
 exception NoSuchUserException { string reason; };
 exception UserIDExistsException { string reason; };
 enum MediaType { CD, TAPE, RECORD, NOT_SPECIFIED };

 interface AlbumI {
 attribute string sArtistName;
 attribute string sAlbumName;
 attribute string sListeningNotes;
 attribute float fPrice;

 attribute MediaType type;
 };
 typedef sequence<AlbumI>AlbumSequence;

 struct AlbumQueryS {
 string sArtistName;
 string sAlbumName;
 float fPrice;
 MediaType type;
 };

 - 430 -

 interface MusicCollectionI {
 attribute string sUserName;
 attribute string sPassword;

 AlbumSequence getAllAlbums();
 AlbumSequence getAllAlbumsByArtistName();
 AlbumSequence getAllAlbumsByAlbumName();
 void addAlbum(in AlbumI album);
 void deleteAlbum(in AlbumI album);

 AlbumI obtainEmptyAlbum();
 };

 interface RequestorI {
 void albumFound(in AlbumSequence album);
 };

 interface MusicServerI {
 MusicCollectionI obtainCollection(in string sUserName,
 in string sPassword)
 raises(NoSuchUserException);

 MusicCollectionI createCollection(in string sUserName,
 in string sPassword)
 raises(UserIDExistsException);
 void logOut(in MusicCollectionI collection);

 void saveCollection();

 AlbumQueryS obtainEmptyQuery();
 void searchCatalog(in AlbumQueryS query, in RequestorI
requestor);

 };
 };

Starting with the main entity, focus your attention on the MusicServerI interface. This
interface exposes operations that manage client lifecycle. This lifecycle starts when a
user logs into the server using the obtainCollection() operation or creates a new
account using the createCollection() operation, and it ends when the logOut()
operation is invoked. The interface also exposes an operation called
saveCollection() , which saves information on all users to a file. Saving user
information to a file allows information to be preserved after a server restart. The last
operation of the MusicServerI interface, searchCatalog() , performs an
exhaustive search of a collection of music catalogs. The obtainEmptyQuery()
operation is a utility operation that returns an AlbumQueryS object with default values.

Moving from the MusicServerI interface, focus your attention on the
MusicCollectionI and AlbumI interfaces. The AlbumI interface models a unique
album, and the MusicCollectionI interface represents a unique collection of AlbumI
objects. Contained in the MusicCollectionI interface are operations to add and
remove objects as well as attributes that indicate the user name and password needed to
obtain a reference to the collection.

 The only other entity that deserves significant attention is the RequestorI interface. This

 - 431 -

interface is actually implemented by the applet client and allows for delayed delivery of the
results of an album search. Due to the fact that an album search may take significant time
to perform, it could be a rather large waste of resources to have the searchCatalog()
operation return the results of a search itself. Instead, the operation accepts a parameter
indicating the entity performing the request and notifies that entity when the search is
complete.

 IMPLEMENTATION

 Moving from the design of the application to its implementation, the next sections address

the manner in which the interfaces in Listing 24.1 are actually implemented.

 The MusicServer Class

 Starting with the MusicServerI interface, the MusicServer implementation class is

contained in Listing 24.2.

 LISTING 24.2 THE MusicServer CLASS IMPLEMENTS THE MusicServerI

INTERFACE

 import musicServer.*;
 import org.omg.CORBA.*;

 /**
 * Main server class
 */
 public final class MusicServer extends _MusicServerIImplBase {
 private static BOA _boa;
 private MusicCollectionHolder _musicCollectionHolder;

 public MusicServer() {
 super("MusicServer");
 _musicCollectionHolder = new MusicCollectionHolder(_boa);
 }

 /**
 * Invoked by the client when he wants to attempt a login
 */
 public MusicCollectionI obtainCollection(String sUserName,
 String sPassword)
 throws NoSuchUserException {
 MusicCollectionI collection = _
 musicCollectionHolder.obtainCollection(sUserName,
sPassword);

 if(collection == null) {
 throw new NoSuchUserException("Invalid Login
Information");

 }

 _boa.obj_is_ready(collection);
 return collection;
 }

 /**
 * Invoked by the client when he wants to create a new

 - 432 -

 * MusicCollectionI object.
 */
 public MusicCollectionI createCollection(String sUserName,
 String sPassword)
 throws UserIDExistsException {
 if(_musicCollectionHolder.doesUserNameExist(sUserName)) {
 throw new UserIDExistsException(sUserName+
 " is already in use");
 }

 MusicCollectionI collection =
 new MusicCollection(sUserName, sPassword, _boa);
 _boa.obj_is_ready(collection);
 _musicCollectionHolder.addMusicCollection(collection);

 return collection;
 }
 /**
 * Helper method that obtains an AlbumQueryS
 * object populated with dummy data.
 */
 public AlbumQueryS obtainEmptyQuery() {
 return new AlbumQueryS("", "", 0f, MediaType.NOT_SPECIFIED);
 }

 /**
 * Performs an exhaustive search of all available
 * catalogs. Demonstrates the callback design pattern.
 */
 public void searchCatalog(AlbumQueryS query, RequestorI
requestor) {

 AlbumSearcher searcher =
 new AlbumSearcher(query, requestor, _boa);
 searcher.start();
 }
 /**
 * Invoked by the client when he wants to logout, deactivates
 * all activated objects.
 */
 public void logOut(MusicCollectionI collection) {
 Deactivator deactivator = new Deactivator(collection,
_boa);

 deactivator.start();
 }

 public void saveCollection() {
 _musicCollectionHolder.saveCollection();
 }

 public static void main(String[] args)) {
 ORB orb = ORB.init();
 _boa = orb.BOA_init();

 - 433 -

 MusicServer server = new MusicServer();

 _boa.obj_is_ready(server);
 _boa.impl_is_ready();
 }
 }

Looking at the code in Listing 24.2, you’ll not notice anything too unusual. This class is
rather similar to others developed so far in this book. Two methods, however, do perform
operations that are rather interesting. Looking at the searchCatalog() method, you’ll
notice that even though it performs a search, the results of that search are not
immediately returned. Because the search could take a long time to perform, the method
returns immediately and spawns off a new thread to perform the search and then notify
the client when the results are ready. To facilitate notification, the searchCatalog()
method accepts a reference to the client in the form of a RequestorI object. This
method demonstrates the callback pattern from Chapter 5.

The other method of interest is the logOut() method. This method also spawns off a
new thread. However, this thread is charged with deactivating all objects activated by the
client during this session. As stated earlier in the book, every call to
BOA.obj_is_ready() needs to be paired with a call to BOA.deactivate_obj() .
Not deactivating objects will lead to the server running out of memory after being used for
awhile. The manner in which activated objects are tracked is covered later in the section
on the MusicCollectionI implementation.

 The AlbumSearcher Class

As stated earlier, the searchCatalog() method in the MusicServer class spawns
off a unique thread in which the actual catalog search is performed. The class that
performs this search, AlbumSearcher, is contained in Listing 24.3. Note, however, that
due to the space constraints of this book, an actual music catalog is not implemented.
The class simply invents a new album based on the search parameters supplied by the
client.

 LISTING 24.3 THE AlbumSearcher CLASS PERFORMS AN ALBUM SEARCH IN A

UNIQUE THREAD AND NOTIFIES THE REQUESTOR WHEN COMPLETE

 import musicServer.*;
 import org.omg.CORBA.*;

 /**
 * The AlbumSearcher class Performs an exhaustive search of all
 * available sources looking for the specified AlbumI object.
 * When the search is finished, the requestor is notified of the
results.

 *
 * This class is an example of the Callback Pattern covered
 * in chapter 5.
 */
 public class AlbumSearcher extends Thread {
 private AlbumQueryS _query;
 private RequestorI _requestor;
 private BOA _boa;

 public AlbumSearcher(AlbumQueryS query,
 RequestorI requestor, BOA boa) {

 - 434 -

 _query = query;
 _requestor = requestor;
 _boa = boa;
 }

 /**
 * Search for the album in a unique thread. In this example,
 * the search is not actually performed, and the end result
 * is simply invented.
 */
 public void run() {
 AlbumI album = new Album();
 album.sArtistName(_query.sArtistName);
 album.sAlbumName(_query.sAlbumName);
 album.fPrice(_query.fPrice);
 album.type(_query.type);

 _boa.obj_is_ready(album);
 AlbumI[] returnValue == {album};
 _requestor.albumFound(returnValue);
 }
 }

 The Deactivator Class

The other processing class utilized by the MusicServer class performs object
deactivation upon logout. This class, contained in Listing 24.4, is actually rather simple. It
first asks the target MusicCollection object to deactivate all activated AlbumI
objects and then deactivates the MusicCollection object itself.

 LISTING 24.4 THE Deactivator OBJECT IS CHARGED WITH DEACTIVATING ALL

ACTIVATED OBJECTS

 import org.omg.CORBA.*;
 import musicServer.*;

 public class Deactivator extends Thread {
 private MusicCollectionI _musicCollection;
 private BOA _boa;

 public Deactivator(MusicCollectionI musicCollection, BOA boa)
{

 _musicCollection = musicCollection;
 _boa = boa;
 }

 public void run() {
 ((MusicCollection)_musicCollection).deactivateObjects();
 _boa.deactivate_obj(_musicCollection);
 }
 }

 The Album and MusicCollection Classes

 - 435 -

So far, we’ve concentrated on the classes that allow the music collection to exist but have
not actually looked at the classes that model the collection itself. Listing 24.5 contains the
implementation of the AlbumI interface, and Listing 24.6 contains the implementation of
the MusicCollectionI interface.

The AlbumI implementation is rather basic—it does little more than expose a few
variables with getter and setter methods. Looking forward to the MusicCollectionI
implementation, you’ll notice a lot of new concepts being introduced.

 LISTING 24.5 THE Album CLASS IMPLEMENTS THE AlbumI INTERFACE

 import java.io.*;
 import musicServer.*;

 /**
 * Models a unique album, with all of its properties
 */
 public class Album extends _AlbumIImplBase implements
Serializable {

 private String _sArtistName;
 private String _sAlbumName;
 private String _sListeningNotes;
 private float _fPrice;

 private MediaType _type;

 public Album() {
 this("", "", "", 0f, MediaType.NOT_SPECIFIED);
 }

 public Album(String sArtistName,
 String sAlbumName,
 String sListeningNotes,
 float fPrice,
 MediaType type) {
 _sArtistName = sArtistName;
 _sAlbumName = sAlbumName;
 _sListeningNotes = sListeningNotes;
 _fPrice = fPrice;
 _type = type;
 }

 public String sArtistName() {
 return _sArtistName;
 }

 public void sArtistName(String sArtistName) {
 _sArtistName = sArtistName;
 }

 public String sAlbumName() {
 return _sAlbumName;
 }

 - 436 -

 public void sAlbumName(String sAlbumName) {
 _sAlbumName = sAlbumName;
 }

 public String sListeningNotes() {
 return _sListeningNotes;
 }

 public void sListeningNotes(String sListeningNotes) {
 _sListeningNotes = sListeningNotes;
 }

 public float fPrice() {
 return _fPrice;
 }

 public void fPrice(float fPrice) {
 _fPrice = fPrice;
 }

 public MediaType type() {
 return _type;
 }

 public void type(MediaType type) {
 _type = type;
 }
 }

 LISTING 24.6 THE MusicCollection CLASS IMPLEMENTS THE
MusicCollectionI INTERFACE

 import musicServer.*;
 import java.util.*;
 import java.io.*;
 import org.omg.CORBA.*;

 /**
 * Models a collection of albums.
 */
 public class MusicCollection extends
 _MusicCollectionIImplBase implements Serializable {
 private Vector _vecAlbums;
 private String _sUserName;
 private String _sPassword;

 private transient BOA _boa;
 private Vector _vecActivatedObjects;

 private boolean _bObjectsDeactivated = false;

 - 437 -

 public MusicCollection(String sUserName, String sPassword, BOA
boa) {

 super();
 _sUserName = sUserName;
 _sPassword = sPassword;
 _vecAlbums = new Vector();
 _boa = boa;
 _vecActivatedObjects = new Vector();
 }

 /**
 * Invoked after being de-serialized with a new reference to the
BOA

 */
 public void updateTransientData(BOA boa) {
 _boa = boa;
 }

 /**
 * Obtains all AlbumI objects ordered by artist name
 */
 public AlbumI[] getAllAlbumsByArtistName(() {
 AlbumI[] albums == getAllAlbums();
 AlbumSorter.sortByArtistName(albums);
 return albums;
 }

 /**
 * Obtains all AlbumI objects ordered by album name
 */
 public AlbumI[] getAllAlbumsByAlbumName(() {
 AlbumI[] albums == getAllAlbums();
 AlbumSorter.sortByAlbumName(albums);
 return albums;
 }

 /**
 * Obtains all AlbumI objects in default order
 */
 public AlbumI[] getAllAlbums(() {
 if(_bObjectsDeactivated) {
 _bObjectsDeactivated = false;
 Enumeration e = _vecAlbums.elements();
 while(e.hasMoreElements()) {

_boa.obj_is_ready((org.omg.CORBA.Object)e.nextElement());

 }
 }

 AlbumI[] returnValue == new AlbumI[_vecAlbums.size()];
 _vecAlbums.copyInto(returnValue);
 return returnValue;
 }

 - 438 -

 /**
 * Adds an AlbumI object to the collection
 */
 public void addAlbum(AlbumI album) {
 _vecAlbums.addElement(album);
 }

 /**
 * Removes an AlbumI object from the collection
 */
 public void deleteAlbum(AlbumI album) {
 _vecAlbums.removeElement(album);
 }

 /**
 * Obtains an empty AlbumI object
 */
 public AlbumI obtainEmptyAlbum() {
 AlbumI returnValue = new Album();
 _boa.obj_is_ready(returnValue);
 _vecActivatedObjects.addElement(returnValue);
 return returnValue;
 }

 public void sUserName(String sUserName) { _sUserName =
sUserName; }

 public String sUserName() { return _sUserName; }

 public void sPassword(String sPassword) { _sPassword =
sPassword; }

 public String sPassword() { return _sPassword; }

 /**
 * Deactivates all activated objects
 */
 public void deactivateObjects() {
 _bObjectsDeactivated = true;
 Enumeration e = _vecAlbums.elements();
 while(e.hasMoreElements()) {

_boa.deactivate_obj((org.omg.CORBA.Object)e.nextElement());

 }
 }
 }

Looking at the MusicCollection class, first focus your attention on the steps taken to
support serialization. Because MusicCollection objects are going to be serialized
when the server saves all objects, this class needs to implement the
java.io.Serializable interface. In addition to implementing the serialization
tagging interface, the class also marks its BOA reference as transient. A transient object
is one that is not serialized when the rest of the object is. The fact that the variable exists
is saved; however, the information pointed to by that variable is lost.

 When you’re serializing objects that reference any sort of remote object, all remote

references must be tagged as transient. This step is required due to the fact that a

 - 439 -

remote object reference is only a pointer to an implementation object, not the
implementation object itself. If the reference is serialized, there’s no guarantee that the
item it points to will still be there after deserialization. Because the BOA reference is
needed, a method called updateTransientData() is provided, with the
understanding that it will be passed a new BOA reference immediately following
deserialization.

The next aspect of the MusicCollection class that you’ll want to concentrate on is
the manner in which activated objects are tracked and then deactivated. If you look at the
obtainEmptyAlbum() method, you’ll notice that it pairs every call to
obj_is_ready() with a line that places the newly activated object inside the Vector
object pointed to by the _vecActivatedObjects variable. The
obtainEmptyAlbum() method is invoked by the client when it wants to obtain an
empty AlbumI object that will be added to its collection.

Also contained in the class, and presented here, is the deactivateObjects()
method. This method iterates through the collection of activated objects and individually
deactivates each one. The class also sets a boolean member variable called
_bObjectsDeactivated to true , indicating that the objects have, in fact, been
deactivated. This boolean is referenced in the getAllAlbums() method to determine
whether the AlbumI objects need to be activated before being returned. Because the
AlbumI objects are deactivated during logout, they must be reactivated before being
served again. An alternative to activating the objects in the getAllAlbums() method
would be to activate them immediately following login.

 public void deactivateObjects() {
 _bObjectsDeactivated = true;
 Enumeration e = _vecAlbums.elements();
 while(e.hasMoreElements()) {

_boa.deactivate_obj((org.omg.CORBA.Object)e.nextElement());

 }
 }

The decision to place the activation code in this method was made so as to not slow
down the login process. Users often expect certain operations to take longer than others,
and applications should be designed around these expectations. Although no overall
speed is gained by placing the activation code in the getAllAlbums() method, a
perceived gain exists. Because users often expect searches to take longer than the login
process, taking the time to activate objects during the search is something the user
expects. If, however, we were to activate the objects during the login, the user might be
surprised how long it takes for a login to occur.

The final area you’ll want to note is the two methods that obtain AlbumI objects in a
sorted fashion. These objects invoke a static utility method in the AlbumSorter class,
which performs the sort itself.

 The AlbumSorter Class

Listing 24.7 contains the AlbumSorter class, which uses a bubble sort to sort the array
of AlbumI objects by either album or artist name. This sorting algorithm functions by
continuously iterating through the array of elements, swapping those that are out of
place. The algorithm exits when a pass is made through the array that does not require
sorting. In general, the bubble sort is rather slow, especially if the items are in reverse
order. This algorithm was simply used because it’s rather easy to understand and is
taught in most CS101 classes. Figure 24.1 demonstrates how the algorithm would
function for an array containing the values a, z, d, c, a.

 - 440 -

 Figure 24.1: Sorting with the bubble sort algorithm.

 LISTING 24.7 THE AlbumSorter CLASS USES A BUBBLE SORT TO SORT A

COLLECTION OF AlbumI OBJECTS

 import musicServer.*;

 public class AlbumSorter {

 /**
 * Sorts, using the bubble sort, all AlbumI objects
 * by artist name.
 */
 public static void sortByArtistName(AlbumI[] albums)) {

 int iLength = albums.length;
 iLength";
 boolean bSwapHappened = true;
 while(bSwapHappened) {
 bSwapHappened = false;
 for(int i=0; i<iLength; i++) {
 if(albums[i].sArtistName().charAt(0) >
 albums[i+1].sArtistName().charAt(0)) {
 bSwapHappened = true;
 AlbumI temp = albums[i];
 albums[i] == albums[i+1];
 albums[i+1] == temp;
 }
 }
 }
 }

 /**
 * Sorts, using the bubble sort, all AlbumI objects
 * by album name.
 */
 public static void sortByAlbumName(AlbumI[] albums)) {
 int iLength = albums.length;
 iLength";
 boolean bSwapHappened = true;
 while(bSwapHappened) {
 bSwapHappened = false;
 for(int i=0; i<iLength; i++) {

 - 441 -

 if(albums[i].sAlbumName().charAt(0) >
 albums[i+1].sAlbumName().charAt(0)) {
 bSwapHappened = true;
 AlbumI temp = albums[i];
 albums[i] == albums[i+1];
 albums[i+1] == temp;
 }
 }
 }
 }
 }

 The MusicCollectionHolder Class

Well, stop for a moment and pat yourself on the back. We’re definitely in the home stretch
as far as developing the server goes. Just two more classes need coverage; then we can
move on to the client.

As you may have noticed when looking at the MusicServer class, method invocations
that involve managing MusicCollection objects are performed with the aid of a
MusicCollectionHolder object. This class, contained in Listing 24.8, is charged with
maintaining a collection of MusicCollectionI objects.

 LISTING 24.8 THE MusicCollectionHolder OBJECT IS CHARGED WITH

MAINTAINING A COLLECTION OF MusicCollectionI OBJECTS

 import musicServer.*;
 import java.util.*;
 import java.io.*;
 import org.omg.CORBA.*;

 /**
 * Utility class that holds references to MusicCollectionI
 * objects, and facilitates the login process.
 */
 public class MusicCollectionHolder {
 private Hashtable _hshUsers;
 private BOA _boa;

 public MusicCollectionHolder(BOA boa) {
 _hshUsers = readInHash();
 _boa = boa;
 }

 /**
 * Reads in the contents of the _hshUsers object
 */
 private Hashtable readInHash() {
 try{ File file = new File("users.ser");
 if(! file.exists()) return new Hashtable();

 Hashtable hshUsers = null;

 - 442 -

 FileInputStream fIn = new FileInputStream(file);
 ObjectInputStream oIn = new
ObjectInputStream(fIn);

 hshUsers = (Hashtable)oIn.readObject();
 oIn.close();
 fIn.close();
 updateTransientData();
 return hshUsers;
 }
 catch(Exception ioe) {
 return new Hashtable();
 }
 }

 /**
 * Updates the BOA reference in all MusicCollectionI objects
 */
 private void updateTransientData() {

 Enumeration e = _hshUsers.elements();
 while(e.hasMoreElements()) {

((MusicCollection)e.nextElement()).updateTransientData(_boa);

 }
 }

 /**
 * Obtains the MusicCollectionI object associated with the
 * specified name and password.
 */
 public MusicCollectionI obtainCollection(String sUserName,
 String sPassword) {
 MusicCollectionI collection =
 (MusicCollectionI)_hshUsers.get(sUserName);
 if(collection == null) return null;

 if(collection.sPassword().equals(sPassword)) return
collection;

 return null;
 }

 /**
 * Adds a MusicCollectionI object to the collection of
 * objects monitored by this object.
 */
 public void addMusicCollection(MusicCollectionI collection) {
 _hshUsers.put(collection.sUserName(), collection);
 }

 /**
 * Checks if the specified user name is already in use
 */

 - 443 -

 public boolean doesUserNameExist(String sUserName) {
 return _hshUsers.containsKey(sUserName);
 }

 /**
 * Saves the contents of the hashtable to a file.
 */
 public void saveCollection() {
 // lock access to the hashtable. this prevents
 // a user from being added or removed while we
 // are saving.
 synchronized(_hshUsers) {
 try{ FileOutputStream fOut =
 new FileOutputStream("users.ser");
 ObjectOutputStream oOut =
 new ObjectOutputStream(fOut);
 oOut.writeObject(_hshUsers);
 oOut.flush();
 oOut.close();
 fOut.close();
 }
 catch(IOException ioe) {}
 }
 }
 }

In managing the collection of MusicCollection objects, the
MusicCollectionHolder object gets to perform a lot of interesting operations.
Looking first at the Hashtable object in which MusicCollection objects are stored,
note the readInHash() and saveCollection() methods.

The saveCollection() method is invoked to trigger the serialization of all
MusicCollection objects. The method creates a FileOutputStream object
pointing at a file titled users.ser and then creates an ObjectOutputStream object on
top of the FileOutputStream object. Once the ObjectOutputStream object is
created, its writeObject() method is invoked with the target Hashtable object as a
parameter.

What should also be noted about this method is that during the time that the Hashtable
object is being serialized, we lock access to it using the synchronized keyword. In a
multithreaded environment, it’s very possible that more than one thread might attempt to
access the same physical variable at the same time. Regarding this situation, that could
mean a new MusicCollection object might be added to the Hashtable object at
the same time a save is occurring. This situation is not one we would want to happen
because it could invalidate the integrity of the Hashtable’s collection.

Once the contents of the Hashtable have been saved by the saveCollection()
method, it becomes possible to read them back in. The readInHash() method is
invoked from the constructor and attempts to perform the deserialization. First off, the
method creates a new File object that points to the users.ser file on the hard drive. The
method then checks to see whether this file actually exists and simply returns a new
Hashtable object if the file does not exist. If the file does exist, the method creates a
new FileInputStream object on top of the File object and an
ObjectInputStream object on top of the FileInputStream object. The
readObject() method in the ObjectInputStream object is now invoked, and its

 - 444 -

return value is cast as a Hashtable object. Finally, we invoke the
updateTransientData() method, which updates the BOA reference in each
MusicCollection object.

Although the object serialization is the most complicated task performed by the
MusicCollectionHolder object, it’s not the only task that deserves attention. You’ll
want to take note of the obtainCollection() , addMusicCollection() and
doesUserNameExist() methods. Respectively, they allow searching for
MusicCollection objects by user name and password, the addition of a new
MusicCollection object, and checking whether a user name is already in existence.

 The UserSaver Class

The last class we’ll cover is a standalone utility class called UserSaver (see Listing
24.9). This class simply binds to the MusicServerI instance and asks it to save its
collection of users. This class is provided to allow for server management to occur
without having to add a GUI to the server itself. Because server applications usually run
minimized or in the background, the addition of a GUI is simply not needed and would
only add to screen clutter.

 LISTING 24.9 THE UserSaver OBJECT PROMPTS THE SERVER TO SAVE ITS

COLLECTION OF USERS

 import musicServer.*;
 import org.omg.CORBA.*;

 public class UserSaver {

 public static void main(String[] args)) {
 ORB orb = ORB.init();
 MusicServerI musicServer = MusicServerIHelper.bind(orb);
 musicServer.saveCollection();
 }
 }

FROM HERE

At this point, you should have a solid understanding of what it takes to actually develop a
production CORBA server application. We tackled some pretty tricky issues, including
memory management, object persistence, and general design with respect to efficiency.
As you go out into the world and begin designing and coding your own servers, keep in
mind the decisions that were made in this chapter.

As you read about the development of the client software in Chapter 25, “A CORBA Client,”
the discussion of this application will continue to some extent. We’ll cover how to run the
server (although by now, you should be able to figure that out yourself) and talk further
about the design decisions we made.

FROM HERE

At this point, you should have a solid understanding of what it takes to actually develop a
production CORBA server application. We tackled some pretty tricky issues, including
memory management, object persistence, and general design with respect to efficiency.
As you go out into the world and begin designing and coding your own servers, keep in
mind the decisions that were made in this chapter.

 - 445 -

As you read about the development of the client software in Chapter 25, “A CORBA Client,”
the discussion of this application will continue to some extent. We’ll cover how to run the
server (although by now, you should be able to figure that out yourself) and talk further
about the design decisions we made.

 APPLICATION DESIGN

As with all applications, the first step in the development process is to take a look at your
requirements and to design the application. Often, engineers want to dive right into the
code-writing process and neglect the ever-important first step of design. Unfortunately, as
discussed in Chapter 5, “Design Patterns,” and Chapter 6, “The Airline Reservation
System Model,” these design-free software projects usually fail to work (or even fail to
reach completion). Designing the client component of a client/server application is often
easier than the server component, due to the fact that the client can leverage the server
design. The client exists to exploit functionality in the server and therefore has its
functionality specified by the server.

CORBA IDL serves as a contract between two distributed objects (in our case, this
means between all client and server components), making the IDL an important piece of
the design process. In general, the server exposes some functionality, which is then
exploited by the client. Therefore, in developing the client in this chapter, we can base its
design on the IDL developed for the server in Chapter 24.

Listing 25.1 contains a reprint of the server IDL developed and implemented in Chapter
24. Read over the listing to refresh your memory. If you have any questions, flip back a
few pages and reread the chapter.

 LISTING 25.1 THE IDL FOR THE MUSIC SERVER APPLICATION

 module musicServer {
 exception NoSuchUserException { string reason; };
 exception UserIDExistsException { string reason; };
 enum MediaType { CD, TAPE, RECORD, NOT_SPECIFIED };

 interface AlbumI {
 attribute string sArtistName;
 attribute string sAlbumName;
 attribute string sListeningNotes;
 attribute float fPrice;

 attribute MediaType type;
 };
 typedef sequence<AlbumI>AlbumSequence;

 struct AlbumQueryS {
 string sArtistName;
 string sAlbumName;
 float fPrice;
 MediaType type;
 };

 interface MusicCollectionI {
 attribute string sUserName;
 attribute string sPassword;

 AlbumSequence getAllAlbums();

 - 446 -

 AlbumSequence getAllAlbumsByArtistName();
 AlbumSequence getAllAlbumsByAlbumName();
 void addAlbum(in AlbumI album);
 void deleteAlbum(in AlbumI album);

 AlbumI obtainEmptyAlbum();
 };

 interface RequestorI {
 void albumFound(in AlbumSequence album);
 };

 interface MusicServerI {
 MusicCollectionI obtainCollection(in string sUserName,
 in string sPassword)
 raises(NoSuchUserException);

 MusicCollectionI createCollection(in string sUserName,
 in string sPassword)
 raises(UserIDExistsException);

 void logOut(in MusicCollectionI collection);
 void saveCollection();

 AlbumQueryS obtainEmptyQuery();
 void searchCatalog(in AlbumQueryS query, in RequestorI
requestor);

 };
 };

Moving beyond the details of the server, take a look at Table 25.1. This table discusses
each of the client-side classes implemented to bring about communication between the
human user and the data-processing server. These classes present a user interface (UI)
and make use of the Abstract Windowing Toolkit (AWT) to build their screens.

 TABLE 25.1 CLIENT-SIDE CLASSES

Class

Function

MusicCollectionViewer

The class that extends java.applet.Applet , binds to
remote services, and builds the initial user interface.

AlbumDisplay

Displays a unique AlbumI object and allows for modification
of its values. It also prompts for user input before executing a
catalog search.

DisplayPanel

Displays all available AlbumI objects, allows for the creation
of new objects, and deletes objects from the collection.

ResultsDisplay

Displays the results after a catalog search and prompts the
user to add any albums in the result set to his collection.

 - 447 -

DisplayMaster

Aids in the display of multiple AlbumI objects.

ErrorDialog

Used to display error messages.

LoginPanel

Allows a user to either log in or create a new account.

 THE MUSICCOLLECTIONVIEWER CLASS

To begin your exploration of the client development process, take a look at the
MusicCollectionViewer class contained in Listing 25.2. This class extends the
Applet class and is charged with setting up the default look of our client.

 LISTING 25.2 THE MusicCollectionViewer CLASS

 import java.awt.*;
 import java.awt.event.*;
 import java.applet.*;
 import org.omg.CORBA.*;
 import musicServer.*;

 /**
 * Main Applet class.
 */
 public class MusicCollectionViewer extends
 Applet implements ActionListener {
 private MusicServerI _musicServer;
 private MusicCollectionI _collection;
 private Button _btnLogout;
 private BOA _boa;

 public void init() {
 establishServiceReferences();
 setLayout(new BorderLayout(1,1));
 Panel pnlButtons = new Panel();
 pnlButtons.setLayout(new FlowLayout(FlowLayout.RIGHT));
 pnlButtons.add(_btnLogout = new Button("Logout"));
 add(pnlButtons, BorderLayout.NORTH);
 add(new LoginPanel(this), BorderLayout.CENTER);

 _btnLogout.addActionListener(this);
 _btnLogout.setEnabled(false);
 }

 /**
 * Invoked when the logout button is pressed
 */
 public void actionPerformed(ActionEvent ae) {
 // notify the server that we are done
 _musicServer.logOut(_collection);

 - 448 -

 _collection = null;

 // place the GUI in login mode
 _btnLogout.setEnabled(false);
 removeAll();
 Panel pnlButtons = new Panel();
 pnlButtons.setLayout(new FlowLayout(FlowLayout.RIGHT));
 pnlButtons.add(_btnLogout);
 add(pnlButtons, BorderLayout.NORTH);
 add(new LoginPanel(this), BorderLayout.CENTER);
 doLayout();
 validate();
 }
 /**
 * Establishes references to the ORB, BOA and
 * MusicServerI object.
 */
 private void establishServiceReferences() {
 ORB orb = ORB.init(this);
 _boa = orb.BOA_init();
 _musicServer = MusicServerIHelper.bind(orb);
 }

 /**
 * Invoked after a successful login or create new
 * account transaction. Changes the active display
 * to show the collection of AlbumI objects.
 */
 private void displayCollection() {
 removeAll();
 Panel pnlButtons = new Panel();
 pnlButtons.setLayout(new FlowLayout(FlowLayout.RIGHT));
 pnlButtons.add(_btnLogout);
 add(pnlButtons, BorderLayout.NORTH);
 add(new DisplayPanel(_collection,
 _musicServer,
 _boa), BorderLayout.CENTER);
 doLayout();
 validate();
 }

 /**
 * Invoked by the LoginPanel class when the user
 * wants to login.
 */
 public void attemptLogin(String sUserName, String sPassword) {
 try{ _collection = _musicServer.obtainCollection(sUserName,

sPassword);

 displayCollection();
 _btnLogout.setEnabled(true);
 }
 catch(NoSuchUserException nsue) {

 - 449 -

 ErrorDialog dialog =
 new ErrorDialog(getFrame(this),
 "Invalid Login, Try Again");
 dialog.setLocation(getLocationOnScreen().x+100,
 getLocationOnScreen().y+100);
 dialog.pack();
 dialog.show();
 }
 }
 /**
 * Invoked by the LoginPanel class when the user
 * wants to create a new account.
 */
 public void createNewAccount(String sUserName, String
sPassword) {

 try{ _collection =
_musicServer.createCollection(sUserName,

sPassword);

 displayCollection();
 _btnLogout.setEnabled(true);
 }
 catch(UserIDExistsException uidee) {
 ErrorDialog dialog =
 new ErrorDialog(getFrame(this),
 "User ID In Use, Choose
Another");

dialog.setLocation(getLocationOnScreen().x+100,

 getLocationOnScreen().y+100);
 dialog.pack();
 dialog.show();
 }
 }

 /**
 * Helper method used to obtain the parent
 * Frame object. Used when spawning a Dialog
 * object.
 */
 public static Frame getFrame(Component component) {
 if(component instanceof Frame) return (Frame)component;

 while((component = component.getParent()) != null) {
 if(component instanceof Frame)
 return (Frame)component;
 }
 return null;
 }
 }

In general, as you look over the class, you should find that most of the code is easy to
understand. With the exception of the establishServiceReferences() method, all
code simply performs the manipulation of the UI. In the
establishServiceReferences() method, we obtain references to the

 - 450 -

MusicServerI object developed in Chapter 24 along with the ORB and BOA. The ORB
object is simply used to bind to the MusicServerI object and therefore is only needed
in the scope of the method itself. The BOA object, however, is needed later when
registering to receive callbacks.

As you know from the development of the MusicServer class in Chapter 24, the
searchCatalog() method accepts a RequestorI instance and notifies this object
when the catalog search is complete. Because the RequestorI object reference is
passed through the ORB , it’s necessary to use the BOA at the client-side to register the
RequestorI object with the ORB . This is further covered in this chapter when we
implement the DisplayPanel and ResultsDisplay classes.

In addition to taking note of the manner in which remote object references are managed,
note the general workflow present in the application. Upon loading, the Applet displays
a LoginPanel object on the screen. This class—detailed later in this chapter—prompts
the user to either log in or create a new account. After receiving a command from the
LoginPanel object, the applet either displays the user’s music collection or an error
message, indicating an incorrect login or in-use login ID (when creating new accounts).
All changes to the active display are not made directly through the
MusicCollectionViewer object, but rather are made by requesting a change from
the DisplayMaster object.

 THE ALBUMDISPLAY CLASS

As we move around the client, the next class discussed is the AlbumDisplay class.
This class serves to either display information on an album, to collect album-related
information for a search, or to collect album-related information used when creating a
new album.

Take a look at the code for the AlbumDisplay class in Listing 25.3 (try not to get too
overwhelmed). The class uses the GridBagLayout layout manager to design the
screen. This layout manager allows for advanced UI design but has the unfortunate
downside of leading to a lot of code. If you don’t immediately understand exactly how the
UI is coming together, don’t worry. When you actually run the application on your
machine, the UI will make perfect sense. What you should concentrate on in your
examination is the manner in which the class serves each of its purposes.

 LISTING 25.3 THE AlbumDisplay CLASS

 import java.awt.*;
 import java.awt.event.*;
 import musicServer.*;

 /**
 * The AlbumDisplay class displays the contents
 * of an AlbumI object, and"optionally"allow for
 * the values to be updated. This class is also used
 * to collect information allowing for the creation of
 * a new AlbumI object.
 */
 public class AlbumDisplay extends Panel implements ActionListener
{

 public static int VIEW_ONLY = 10;
 public static int VIEW_AND_MODIFY = 13;
 public static int CREATE_NEW = 1013;
 public static int SEARCH = 42;

 - 451 -

 private int _iMode;

 private AlbumI _album;
 private MusicCollectionI _collection;

 private TextField _txtArtistName = null;
 private TextField _txtAlbumName = null;
 private TextField _txtPrice = null;
 private Choice _chcMediaType = null;
 private TextArea _txtListeningNotes = null;

 private Button _btnAction;
 private DisplayPanel _displayPanel;

 /**
 * Constructor used when we are in CREATE_NEW or SEARCH mode
 */
 public AlbumDisplay(MusicCollectionI collection,
 int iMode,
 DisplayPanel displayPanel) {
 this(null, iMode, collection);
 _displayPanel = displayPanel;
 }

 /**
 * Constructor used when we are in either VIEW_ONLY
 * or VIEW_AND_MODIFY mode.
 */
 public AlbumDisplay(AlbumI album,
 int iMode,
 MusicCollectionI collection) {
 // assign local variables
 _album = album;
 _iMode = iMode;
 _collection = collection;

 // build the GUI
 GridBagLayout gbl = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbl);

 Label lblArtistName = new Label("Artist Name");
 gbc.gridx = 0;
 gbc.gridy = 0;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(lblArtistName, gbc);
 add(lblArtistName);

 - 452 -

 gbc = new GridBagConstraints();
 Label lblAlbumName = new Label("Album Name");
 gbc.gridx = 0;
 gbc.gridy = 1;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(lblAlbumName, gbc);
 add(lblAlbumName);

 gbc = new GridBagConstraints();
 Label lblPrice = new Label("Price");
 gbc.gridx = 0;
 gbc.gridy = 2;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(lblPrice, gbc);
 add(lblPrice);

 gbc = new GridBagConstraints();
 Label lblMediaType = new Label("Media Type");
 gbc.gridx = 0;
 gbc.gridy = 3;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(lblMediaType, gbc);
 add(lblMediaType);

 gbc = new GridBagConstraints();
 Label lblListeningNotes = new Label("Listening Notes");
 gbc.gridx = 0;
 gbc.gridy = 4;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(lblListeningNotes, gbc);
 add(lblListeningNotes);

 gbc = new GridBagConstraints();
 _txtArtistName = new TextField((album == null) ?
 "" :: album.sArtistName(), 30);

 - 453 -

 gbc.gridx = 1;
 gbc.gridy = 0;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_txtArtistName, gbc);
 add(_txtArtistName);

 gbc = new GridBagConstraints();
 _txtAlbumName = new TextField((album == null) ?
 "" :: album.sAlbumName(), 30);
 gbc.gridx = 1;
 gbc.gridy = 1;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_txtAlbumName, gbc);
 add(_txtAlbumName);

 gbc = new GridBagConstraints();
 _txtPrice = new TextField((album == null) ?
 "" :: Float.toString(album.fPrice()), 30);
 gbc.gridx = 1;
 gbc.gridy = 2;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_txtPrice, gbc);
 add(_txtPrice);

 _chcMediaType = new Choice();
 _chcMediaType.add("CD");
 _chcMediaType.add("Tape");
 _chcMediaType.add("Record");
 _chcMediaType.add("Not Specified");
 int iTypeValue = (album == null)
 ? MediaType._NOT_SPECIFIED : album.type().value();
 if(iTypeValue == MediaType._CD) {
 _chcMediaType.select("CD");
 }
 else if(iTypeValue == MediaType._TAPE) {
 _chcMediaType.select("Tape");
 }
 else if(iTypeValue == MediaType._RECORD) {
 _chcMediaType.select("Record");
 }

 - 454 -

 else if(iTypeValue == MediaType._NOT_SPECIFIED) {
 _chcMediaType.select("Not Specified");
 }
 gbc = new GridBagConstraints();
 gbc.gridx = 1;
 gbc.gridy = 3;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.HORIZONTAL;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_chcMediaType, gbc);
 add(_chcMediaType);

 gbc = new GridBagConstraints();
 _txtListeningNotes = new TextArea((album == null)
 ? "" :: album.sListeningNotes(), 5, 30);
 gbc.gridx = 1;
 gbc.gridy = 4;
 gbc.gridwidth = 1;
 gbc.gridheight = 5;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_txtListeningNotes, gbc);
 add(_txtListeningNotes);

 if(iMode == VIEW_ONLY) {
 // if we are in view-only mode, disable
 // entry on all text fields
 _txtArtistName.setEnabled(false);
 _txtAlbumName.setEnabled(false);
 _txtPrice.setEnabled(false);
 _chcMediaType.setEnabled(false);
 _txtListeningNotes.setEnabled(false);
 }
 else {
 // only add the action button if we
 // are in a mode that allows for updating
 // or for searching. depending on the mode
 // setting, set the button text.
 if(iMode == SEARCH) {
 _btnAction = new Button("Search");
 // disable listening notes for search mode
 _txtListeningNotes.setEnabled(false);
 }
 else _btnAction = new Button("Save Album");
 _btnAction.addActionListener(this);

 gbc = new GridBagConstraints();
 gbc.gridx = 1;
 gbc.gridy = 10;

 - 455 -

 gbc.gridwidth = 1;
 gbc.gridheight = 5;
 gbc.anchor = GridBagConstraints.SOUTHEAST;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(5,2,2,2);
 gbl.setConstraints(_btnAction, gbc);
 add(_btnAction);
 }
 }

 /**
 * Invoked when the current data should be converted
 * into a new AlbumI object, and saved at the server.
 */
 private void doSaveNew() {
 AlbumI album = _collection.obtainEmptyAlbum();
 album.sArtistName(_txtArtistName.getText());
 album.sAlbumName(_txtAlbumName.getText());
 try{ album.fPrice(
 new Float(_txtPrice.getText()).floatValue()); }
 catch(NumberFormatException nfe) {
 album.fPrice(0f);
 }
 album.type(getMediaType());
 album.sListeningNotes(_txtListeningNotes.getText());
 _collection.addAlbum(album);
 _displayPanel.newAlbum(album);
 }

 /**
 * Helper method used to obtain a MediaType
 * object reflecting the currently selected
 * value present in the _chcMediaType Choice.
 */
 private MediaType getMediaType() {
 String sMediaType = _chcMediaType.getSelectedItem().trim();
 if(sMediaType.equals("CD")) return MediaType.CD;
 if(sMediaType.equals("Tape")) return MediaType.TAPE;
 if(sMediaType.equals("Record")) return
MediaType.RECORD;

 return MediaType.NOT_SPECIFIED;
 }

 /**
 * Invoked when the current data should be placed
 * inside of the current AlbumI object.
 */
 private void doSaveChanges() {
 _album.sArtistName(_txtArtistName.getText());
 _album.sAlbumName(_txtAlbumName.getText());
 try{ _album.fPrice(
 new Float(_txtPrice.getText()).floatValue()); }
 catch(NumberFormatException nfe) {

 - 456 -

 _album.fPrice(0f);
 }
 _album.type(getMediaType());
 _album.sListeningNotes(_txtListeningNotes.getText());
 }

 /**
 * Triggers a search
 */
 private void doSearch() {
 float fPrice = 0f;
 try{ fPrice = new
Float(_txtPrice.getText()).floatValue(); }

 catch(NumberFormatException nfe) { }
 _displayPanel.doSearch(_txtAlbumName.getText(),
 _txtArtistName.getText(),
 fPrice,
 getMediaType());
 }

 /**
 * Invoked the save Button object is pressed
 */
 public void actionPerformed(ActionEvent ae) {
 if(_iMode == CREATE_NEW) doSaveNew();
 else if(_iMode == SEARCH) doSearch();
 else doSaveChanges();
 }
 }

As was earlier stated, the AlbumDisplay class serves a series of different purposes;
however, each object may serve only one purpose. The unique purpose of a single
AlbumDisplay object is defined by passing any one of four constants into the object’s
constructor during the instantiation process. These constants, shown next, allow for the
object to display an AlbumI object as VIEW_ONLY or VIEW_AND_MODIFY . In addition,
the constants allow for the collection of album-related information that’s used either in a
catalog search or during the creation of a new AlbumI object, which is then added to
the user’s collection.

 public static int VIEW_ONLY = 10;

 public static int VIEW_AND_MODIFY = 13;

 public static int CREATE_NEW = 1013;

 public static int SEARCH = 42;

Because the value of the mode variable has an effect on the UI itself, some runtime UI
decisions are made. These decisions—all made at the end of the constructor code—
affect items such as the addition of a Save or Search button and the disabling of certain
input fields (if text entry is not allowed for that mode). As is logical, VIEW_ONLY mode
allows no entry at all in any field; however, also note that SEARCH mode disallows entry
in the listening notes field. Because the catalog search is executed against a collection of
albums not owned by the user himself, listening notes are not present.

 - 457 -

During the designing of the UI, two directions could have been taken when dealing with
the listening notes entry field for search mode. One direction would have been to simply
remove the field from the screen altogether; however, this could lead to user confusion.
When looking at a UI, users like consistency because it helps them to recognize the
purpose of a widget without having to read its accompanying label. Through location
recognition, users are able to use applications much faster than if they have to constantly
figure out where a desired widget is. By keeping the listening notes field on the screen
and simply disabling it (the second direction), we maintain the same look whenever
album information is collected or displayed.

Moving down toward the bottom of the code listing, take note of the
actionPerformed() method. This method, reprinted here, is invoked when either the
Save or Search button is pressed:

 public void actionPerformed(ActionEvent ae) {
 if(_iMode == CREATE_NEW) doSaveNew();
 else if(_iMode == SEARCH) doSearch();
 else doSaveChanges();
 }

What’s interesting about the code in the actionPerformed() method is the fact that it
must take into account the active mode to determine a course of action. If the object is in
CREATE_NEW mode, the button press is a request from the user to collect information in
the UI, package it as an AlbumI object, and add it to the active collection. If the object is
in SEARCH mode, the button press is a request from the user to perform a catalog
search.

 If, however, the user is in VIEW_AND_MODIFY mode, the button press is a request from

the user to save changes to the AlbumI object currently being modified.

With this understanding of how each button press causes a mode-specific method to be
invoked, the next few pages discuss each of those methods. First up is the
doSaveNew() method, which is invoked in CREATE_NEW mode.

This method, highlighted earlier, first obtains a reference to a remote AlbumI object
from the active collection. As discussed when covering the server in Chapter 24,
obtaining a new AlbumI object involves a call to BOA.obj_is_ready() , which
means that at some point a call to BOA.deactivate_obj() is needed. When
implementing the server, we placed the code to track obj_is_ready() calls there,
which means we’re freed from having to do it at the client. After a reference to the new
AlbumI object is obtained, its attributes are set using the data entered into the UI, and
finally the AlbumI object is added to the user’s collection. The last line of code in the
method does not interact with any remote objects but rather notifies the UI that a new
AlbumI object has been added and that the display should update itself.

 private void doSaveNew() {
 AlbumI album = _collection.obtainEmptyAlbum();
 album.sArtistName(_txtArtistName.getText());
 album.sAlbumName(_txtAlbumName.getText());
 try{ album.fPrice(new
Float(_txtPrice.getText()).floatValue()); }

 catch(NumberFormatException nfe) {
 album.fPrice(0f);
 }
 album.type(getMediaType());
 album.sListeningNotes(_txtListeningNotes.getText());
 _collection.addAlbum(album);

 - 458 -

 _displayPanel.newAlbum(album);
 }

The next method that might get called when a button is pressed is the doSearch()
method, which is called when a search action is to begin. This method, highlighted next,
collects all information entered into the UI and asks the DisplayPanel instance to
perform a search. The DisplayPanel class is covered in the next section.

 private void doSearch() {
 float fPrice = 0f;
 try{ fPrice = new Float(_txtPrice.getText()).floatValue();
}

 catch(NumberFormatException nfe) { }
 _displayPanel.doSearch(_txtAlbumName.getText(), _
 txtArtistName.getText(), fPrice, getMediaType());
 }

The final method that might be called in response to a button press is the
doSaveChanges() method, which is called when an AlbumI object has been modified
at the UI and needs its server values updated. This method, highlighted next, is
interesting in that it only interacts with the active AlbumI object itself. Because that
AlbumI object is only a reference to an implementation object sitting at the server,
invoking any of its setter methods immediately reflects the change at the client and at the
server.

 private void doSaveChanges() {
 _album.sArtistName(_txtArtistName.getText());
 _album.sAlbumName(_txtAlbumName.getText());
 try{ _album.fPrice(new
Float(_txtPrice.getText()).floatValue()); }

 catch(NumberFormatException nfe) {
 _album.fPrice(0f);
 }
 _album.type(getMediaType());
 _album.sListeningNotes(_txtListeningNotes.getText());
 }

At this point, the only method not yet covered is the getMediaType() helper method.
When invoked, this method looks at the active media type selection and creates a
MediaType object representing its value. A MediaType object, as covered in Chapter
24, is defined in the server IDL and represents the media upon which the active album is
recorded.

 THE DISPLAYPANEL CLASS

The next class you come into contact with is the DisplayPanel class, which creates
the main UI used when interacting with the application (see Listing 25.4). Take a brief
look over the UI code, but, again, do not spend too much time with it. The code uses the
GridBagLayout layout manager to place a List object displaying the collection of
albums along the left, and it places any one of many AlbumDisplay objects along the
right side of the screen. Additional elements allow for changing how the list is sorted,
deleting albums, and loading the screens that allow for entering new albums or searching
the album catalog.

 LISTING 25.4 THE DisplayPanel CLASS

 - 459 -

 import java.awt.event.*;
 import java.awt.*;
 import musicServer.*;
 import java.util.*;
 import org.omg.CORBA.*;

 /**
 * Main UI screen
 */
 public class DisplayPanel extends Panel
 implements ActionListener, ItemListener {
 // mark as protected to allow for access in
 // inner class by Netscape VM.
 protected DisplayMaster _displayMaster;

 private Checkbox _chkByArtist;
 private Checkbox _chkByAlbum;
 private List _lstAlbums;
 private Hashtable _hshAlbums;
 private MusicCollectionI _collection;
 private MusicServerI _musicServer;
 private BOA _boa;

 private Button _btnNew;
 private Button _btnDeleteSelcted;
 private Button _btnSearch;

 public DisplayPanel(MusicCollectionI collection,
 MusicServerI musicServer,
 BOA boa) {
 _collection = collection;
 _musicServer = musicServer;
 _boa = boa;

 // create instance variables
 CheckboxGroup grp = new CheckboxGroup();
 _chkByArtist = new Checkbox("Artist", true, grp);
 _chkByAlbum = new Checkbox("Album", false, grp);
 _lstAlbums = new List(15);
 showAlbumsByArtist();
 _displayMaster = new DisplayMaster(_collection, this);
 _btnNew = new Button("New Album");
 _btnDeleteSelcted = new Button("Delete Selected");
 _btnSearch = new Button("Search Screen");

 // establish event listeners
 _btnNew.addActionListener(this);
 _btnDeleteSelcted.addActionListener(this);
 _lstAlbums.addActionListener(this);
 _btnSearch.addActionListener(this);
 _chkByArtist.addItemListener(this);
 _chkByAlbum.addItemListener(this);

 - 460 -

 // build the GUI
 GridBagLayout gbl = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbl);

 // left half

 Label lblOrder = new Label("Order By");
 gbc.gridx = 0;
 gbc.gridy = 0;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.WEST;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(lblOrder, gbc);
 add(lblOrder);

 gbc = new GridBagConstraints();
 gbc.gridx = 0;
 gbc.gridy = 1;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.WEST;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_chkByArtist, gbc);
 add(_chkByArtist);

 gbc = new GridBagConstraints();
 gbc.gridx = 0;
 gbc.gridy = 2;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.WEST;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_chkByAlbum, gbc);
 add(_chkByAlbum);

 gbc = new GridBagConstraints();
 gbc.gridx = 0;
 gbc.gridy = 3;
 gbc.gridwidth = 1;
 gbc.gridheight = 5;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.BOTH;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_lstAlbums, gbc);
 add(_lstAlbums);

 - 461 -

 // right half
 gbc.gridx = 4;
 gbc.gridy = 1;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.EAST;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_btnNew, gbc);
 add(_btnNew);

 gbc = new GridBagConstraints();
 gbc.gridx = 3;
 gbc.gridy = 1;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.EAST;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_btnDeleteSelcted, gbc);
 add(_btnDeleteSelcted);

 gbc = new GridBagConstraints();
 gbc.gridx = 2;
 gbc.gridy = 1;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.WEST;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_btnSearch, gbc);
 add(_btnSearch);

 gbc = new GridBagConstraints();
 gbc.gridx = 1;
 gbc.gridy = 3;
 gbc.gridwidth = 5;
 gbc.gridheight = 5;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.BOTH;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_displayMaster, gbc);
 add(_displayMaster);
 }

 /**
 * Invoked when the album display should be sorted
 * by album
 */
 private void showAlbumsByAlbum() {
 AlbumI[] albums == _collection.getAllAlbumsByArtistName();
 int iLength = albums.length;

 - 462 -

 _hshAlbums = new Hashtable();
 _lstAlbums.removeAll();
 for(int i=0; i<iLength; i++) {
 String sAlbumName = albums[i].sAlbumName();
 _lstAlbums.addItem(sAlbumName);
 _hshAlbums.put(sAlbumName, albums[i]);
 }
 }

 /**
 * Invoked when the album display should be sorted
 * by artist
 */
 private void showAlbumsByArtist() {
 AlbumI[] albums == _collection.getAllAlbumsByArtistName();
 int iLength = albums.length;
 _hshAlbums = new Hashtable();
 _lstAlbums.removeAll();
 for(int i=0; i<iLength; i++) {
 String sArtistName = albums[i].sArtistName();
 _lstAlbums.addItem(sArtistName);
 _hshAlbums.put(sArtistName, albums[i]);
 }
 }

 /**
 * Invoked when a new Album is added to the collection,
 * allows for the local display to be updated without
 * a network interaction.
 */
 public void newAlbum(AlbumI album) {
 String sAlbumName = album.sAlbumName();
 _hshAlbums.put(sAlbumName, album);
 _lstAlbums.addItem(sAlbumName);
 }

 /**
 * Triggers the display of a screen that will collect
 * new album information and prompt for a save
 */
 private void doNew() {
 _displayMaster.showEmpty();
 }

 /**
 * Deletes the currently selected album from
 * the collection.
 */
 private void doDeleteSelected(String sName) {
 AlbumI album = (AlbumI)_hshAlbums.get(sName);
 _collection.deleteAlbum(album);
 _lstAlbums.remove(sName);

 - 463 -

 }
 /**
 * Updates the detail display to show the currently
 * selected album
 */
 private void displaySelected(String sName) {

_displayMaster.updateActiveAlbum((AlbumI)_hshAlbums.get(sName));

 }

 /**
 * Triggers a display of the search screen
 */
 private void showSearchScreen() {
 _displayMaster.showSearch();
 }

 /**
 * Invoked when either of the Checkbox objects changes
 * state. Causes a re-display of the albums.
 */
 public void itemStateChanged(ItemEvent ie) {
 if(_chkByArtist.getState()) showAlbumsByArtist();
 else showAlbumsByAlbum();
 }

 /**
 * Invoked when a search is requested.
 */
 public void doSearch(String sAlbumName,
 String sArtistName,
 float fPrice,
 MediaType type) {
 // create the query object
 AlbumQueryS query = new AlbumQueryS(sAlbumName,
 sArtistName,
 fPrice,
 type);
 // create the callback listener
 ResultsListener listener = new ResultsListener();
 // register the callback listener with the ORB
 _boa.obj_is_ready(listener);
 // perform the search
 _musicServer.searchCatalog(query, listener);
 }

 /**
 * Inner class used to listen for the results of
 * a catalog search.
 */
 class ResultsListener extends _RequestorIImplBase {
 public ResultsListener() {
 super();

 - 464 -

 }

 /**
 * Invoked when the search results are
 * ready.
 */
 public void albumFound(AlbumI[] albums)) {
 _displayMaster.showSearchResults(albums);
 }
 }

 /**
 * Invoked when any of the Button objects, or the List
 * object is clicked.
 */
 public void actionPerformed(ActionEvent ae) {
 java.lang.Object source = ae.getSource();

 if(source == _btnNew) {
 doNew();
 }
 else if(source == _lstAlbums) {
 displaySelected(ae.getActionCommand());
 }
 else if(source == _btnSearch) {
 showSearchScreen();
 }
 else {
 doDeleteSelected(ae.getActionCommand());
 }
 }
 }

As you examine the DisplayPanel class, note the fact that two categories of actions
can take place in response to user interaction. First off, the user can request that the
active display show details on a single item, show the new album screen, or show the
search screen. The other category of actions involves interacting with a server object to
update the album list, delete an album, or perform a search.

The first category of actions (those that involve updating the display) are rather simple
due to the fact that a DisplayMaster object performs UI changes. Each of the
methods in the DisplayPanel class that perform a UI update actually delegates the
call to a DisplayMaster object. The DisplayMaster class is covered later in this
chapter.

The second category of actions (those that involve server interaction) are a touch more
complicated. This is especially true when performing the search, due to the fact that call-
backs must be implemented.

The first piece of server interaction code involves obtaining the sorted list of AlbumI
objects and then displaying them onscreen. The UI allows the user to sort albums by
artist as well as by album, but it uses the server to perform the physical sorting.
Highlighted next is the showAlbumsByArtist() method, which first obtains the sorted
list of AlbumI objects from the server, sticks them in a Hashtable object, and then
adds them to the List object for onscreen display. A Hashtable object is used for

 - 465 -

storage because it allows for easy reference of a single AlbumI object when the user
clicks one in the List object.

If the user desires the albums to be sorted by album name, the showAlbumsByAlbum()
method is invoked. Although not highlighted here, the method is identical to the
showAlbumsByArtist() method, save for the fact that it asks the server for the
AlbumI objects sorted by album.

 private void showAlbumsByArtist() {
 AlbumI[] albums == _collection.getAllAlbumsByArtistName();
 int iLength = albums.length;
 _hshAlbums = new Hashtable();
 _lstAlbums.removeAll();
 for(int i=0; i<iLength; i++) {
 String sArtistName = albums[i].sArtistName();
 _lstAlbums.addItem(sArtistName);
 _hshAlbums.put(sArtistName, albums[i]);
 }
 }

The second server interaction to focus on is the doDeleteSelected() method, which
is invoked when the user clicks an item in the List object and then clicks the Delete
Selected button. This method, highlighted next, is passed a String object that’s both
the logical name displayed in the List object and the Hashtable key for the target
AlbumI object. The method then uses the String object to obtain a reference to the
target AlbumI object, removes it from the server collection, and then removes it from
the onscreen display.

 private void doDeleteSelected(String sName) {
 AlbumI album = (AlbumI)_hshAlbums.get(sName);
 _collection.deleteAlbum(album);
 _lstAlbums.remove(sName);
 }

The code highlighted next contains the doSearch() method and the
ResultsListener inner class. These two entities form the final server interactions
performed by this class, and they’re also the most complicated. As discussed earlier, this
class implements the callback design pattern. Under the callback pattern, a client issues
a query against a remote object but is not returned the results of that query. Instead, the
client passes a reference to another object that is then notified by the server when the
results of the query are ready. In the following example, the doSearch() method is
invoked when the user desires a search to be performed. The inner class
ResultsListener represents the listener class in this situation. The doSearch()
method is passed parameters that represent the user’s search criteria. The method next
packages up the search parameters in an AlbumQueryS object, creates a new
ResultsListener object, registers that object with the ORB , and finally invokes the
searchCatalog() method on the server.

Once the searchCatalog() method is invoked, the code returns and simply waits for
the server to finish searching for the albums. When the server is finished searching, it
invokes the albumFound() method in the ResultsListener object and passes an
object reference containing the results of the search. With the search complete, the
albumFound() method requests that the DisplayMaster object display the result
set.

 public void doSearch(String sAlbumName,

 - 466 -

 String sArtistName,
 float fPrice,
 MediaType type) {
 AlbumQueryS query =
 new AlbumQueryS(sAlbumName, sArtistName, fPrice, type);
 ResultsListener listener = new ResultsListener();
 _boa.obj_is_ready(listener);
 _musicServer.searchCatalog(query, listener);
 }
 class ResultsListener extends _RequestorIImplBase {
 public ResultsListener() {
 super();
 }

 public void albumFound(AlbumI[] albums)) {
 _displayMaster.showSearchResults(albums);
 }
 }

 THE RESULTSDISPLAY CLASS

Continuing on in our exploration of the search mechanism, Listing 25.5 contains the
ResultsDisplay class. This class is instantiated and displayed by a DisplayMaster
object once a catalog search is complete. The class displays a list of all albums in the
found set and gives the user the option to add any of those albums to his collection. In
general, this class is much simpler when compared to earlier classes, but it does
demonstrate the manner in which albums are added to a collection.

 LISTING 25.5 THE ResultsDisplay CLASS

 import java.awt.*;
 import java.awt.event.*;
 import musicServer.*;

 /**
 * Displays the results after a catalog search.
 */
 public class ResultsDisplay extends Panel implements
ActionListener {

 private MusicCollectionI _collection;
 private AlbumI[] _results;
 private List _lstResults;
 private Button _btnAdd;
 private DisplayPanel _displayPanel;

 public ResultsDisplay(MusicCollectionI collection,
 AlbumI[] results,,
 DisplayPanel displayPanel) {
 _collection = collection;
 _results = results;
 _displayPanel = displayPanel;
 _btnAdd = new Button("Add Selected To Collection");
 _btnAdd.addActionListener(this);

 - 467 -

 _lstResults = new List(10);

 // build the GUI
 int iLength = _results.length;
 StringBuffer sbBuilder;
 for(int i=0; i<iLength; i++) {
 sbBuilder = new StringBuffer();
 sbBuilder.append(results[i].sAlbumName());
 sbBuilder.append(" " ");
 sbBuilder.append(results[i].sArtistName());
 _lstResults.add(sbBuilder.toString());
 }

 setLayout(new BorderLayout());
 add(_lstResults, BorderLayout.CENTER);

 Panel pnlButtons = new Panel();
 pnlButtons.setLayout(new FlowLayout(FlowLayout.RIGHT));
 pnlButtons.add(_btnAdd);
 add(pnlButtons, BorderLayout.SOUTH);
 }

 /**
 * Invoked when the Add button is pressed
 */
 public void actionPerformed(ActionEvent ae) {
 int iSelectedIndex = _lstResults.getSelectedIndex();

 // add to the collection
 _collection.addAlbum(_results[iSelectedIndex]);
 // remove from the results list
 _lstResults.remove(iSelectedIndex);
 // add to the local display
 _displayPanel.newAlbum(_results[iSelectedIndex]);
 }
 }

Looking over the UI code in the constructor, you’ll notice a pleasant break from the evils
previously experienced when working with the GridBagLayout layout manager. The UI
presented by this class is simply a List object displaying all found albums and a
Button object that adds the selected object to the collection. When the Button object
is clicked, the actionPerformed() method is invoked; then a reference to the target
AlbumI object is obtained, and it’s added to the user’s collection. To complete UI
requirements, the added AlbumI object is removed from the found list and is added to
the collection list.

 THE DISPLAYMASTER CLASS

Stop for a moment and pat yourself on the back. So far, you’ve fully developed the meat
of the application. In this next section, we’ll develop the DisplayMaster class, which is
charged with changing the main display. From there, all that’s left is to create two utility
classes.

 The DisplayMaster class, contained in Listing 25.6, is instantiated only once in the

 - 468 -

application and is charged with changing the main application display. The class extends
java.awt.Panel and is added to the screen by the DisplayPanel class to the
immediate right of the List object containing all available AlbumI objects. As you
examine the code, note the collection of public methods all named show XXX) , where
XXX indicates a different type of object that can be displayed. For example, when
invoked, the showSearch() method displays the search screen.

 LISTING 25.6 THE DisplayMaster CLASS

 import java.awt.*;
 import musicServer.*;

 /**
 * Aids in the display of multiple AlbumI objects.
 */
 public class DisplayMaster extends Panel {
 private MusicCollectionI _collection;
 private DisplayPanel _displayPanel;
 public DisplayMaster(MusicCollectionI collection,
 DisplayPanel displayPanel) {
 _collection = collection;
 _displayPanel = displayPanel;
 setLayout(new GridLayout(1,1));
 add(new AlbumDisplay(collection,
 AlbumDisplay.CREATE_NEW,
 displayPanel));
 }

 /**
 * Updates the active display to show the specified
 * AlbumI object.
 */
 public void updateActiveAlbum(AlbumI album) {
 removeAll();
 add(new AlbumDisplay(album,
 AlbumDisplay.VIEW_AND_MODIFY,
 _collection));
 doLayout();
 validate();
 }

 /**
 * Updates the active display to show an empty screen
 */
 public void showEmpty() {
 removeAll();
 add(new AlbumDisplay(_collection,
 AlbumDisplay.CREATE_NEW,
 _displayPanel));
 doLayout();
 validate();
 }

 - 469 -

 /**
 * Updates the active display to show the search screen
 */
 public void showSearch() {
 removeAll();
 add(new AlbumDisplay(_collection,
 AlbumDisplay.SEARCH,
 _displayPanel));
 doLayout();
 validate();
 }

 public void showSearchResults(AlbumI[] results)) {
 removeAll();
 add(new ResultsDisplay(_collection, results,
_displayPanel));

 doLayout();
 validate();
 }
 }

 THE ERRORDIALOG CLASS

Listing 25.7 contains the ErrorDialog class, the first of two utility classes. This class,
which belongs in the toolkit of virtually any GUI application, is passed a parent Frame
object and a String object that logically describes some error condition. In the
constructor, a UI is built that contains the error message and also an OK button used to
close the dialog box. This class is used to indicate that either an incorrect login
ID/password combination has been specified during the login process or that the user
has chosen a user ID that’s already in existence during the “create new account”
process.

 LISTING 25.7 THE ErrorDialog CLASS

 import java.awt.*;
 import java.awt.event.*;

 /**
 * Simple error dialog
 */
 public class ErrorDialog extends Dialog implements ActionListener
{

 public ErrorDialog(Frame f, String sMessage) {
 super(f, "Error", true);
 setLayout(new BorderLayout());
 add(new Label(sMessage, Label.CENTER),
BorderLayout.CENTER);

 Button btnOK = new Button("OK");
 btnOK.addActionListener(this);
 Panel pnlButton = new Panel();
 pnlButton.setLayout(new FlowLayout(FlowLayout.RIGHT));
 pnlButton.add(btnOK);
 add(pnlButton, BorderLayout.SOUTH);

 - 470 -

 }

 public void actionPerformed(ActionEvent ae) {
 setVisible(false);
 }

 }

 THE LOGINPANEL CLASS

The second utility class used by the client Applet is the LoginPanel class, shown in
Listing 25.8. This class presents a UI that allows a user to enter a login ID/password and
then attempt to either log in or create a new account. The actual login or create account
attempt is not performed by the LoginPanel class but instead happens in the
MusicCollectionViewer class, which is passed the necessary information by the
LoginPanel class.

 LISTING 25.8 THE LoginPanel CLASS

 import java.awt.*;
 import java.awt.event.*;

 /**
 * Prompts the user to either login or create a new
 * account.
 */
 public class LoginPanel extends Panel implements ActionListener {
 private TextField _txtUserName;
 private TextField _txtPassword;
 private Button _btnLogin;
 private Button _btnCreateNewCollection;
 private MusicCollectionViewer _viewer;

 public LoginPanel(MusicCollectionViewer viewer) {
 _viewer = viewer;

 // build the GUI
 GridBagLayout gbl = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbl);

 Label lblUserName = new Label("User Name");
 gbc.gridx = 0;
 gbc.gridy = 0;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(lblUserName, gbc);
 add(lblUserName);

 gbc = new GridBagConstraints();

 - 471 -

 Label lblPassword = new Label("Password");
 gbc.gridx = 0;
 gbc.gridy = 1;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(lblPassword, gbc);
 add(lblPassword);

 gbc = new GridBagConstraints();
 _txtUserName = new TextField(15);
 gbc.gridx = 1;
 gbc.gridy = 0;
 gbc.gridwidth = 2;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_txtUserName, gbc);
 add(_txtUserName);

 gbc = new GridBagConstraints();
 _txtPassword = new TextField(15);
 gbc.gridx = 1;
 gbc.gridy = 1;
 gbc.gridwidth = 2;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTH;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_txtPassword, gbc);
 add(_txtPassword);

 gbc = new GridBagConstraints();
 _btnLogin = new Button("Login");
 _btnLogin.addActionListener(this);
 gbc.gridx = 1;
 gbc.gridy = 2;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTHEAST;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_btnLogin, gbc);
 add(_btnLogin);

 gbc = new GridBagConstraints();
 _btnCreateNewCollection = new Button("Create New");
 _btnCreateNewCollection.addActionListener(this);
 gbc.gridx = 2;

 - 472 -

 gbc.gridy = 2;
 gbc.gridwidth = 1;
 gbc.gridheight = 1;
 gbc.anchor = GridBagConstraints.NORTHEAST;
 gbc.fill = GridBagConstraints.NONE;
 gbc.insets = new Insets(2,2,2,2);
 gbl.setConstraints(_btnCreateNewCollection, gbc);
 add(_btnCreateNewCollection);

 }

 /**
 * Invoked when either Button object is clicked on
 */
 public void actionPerformed(ActionEvent ae) {
 Object target = ae.getSource();

 if(target == _btnLogin) {
 _viewer.attemptLogin(_txtUserName.getText(),
 _txtPassword.getText());
 }
 else {
 _viewer.createNewAccount(_txtUserName.getText(),
 _txtPassword.getText());
 }
 }
 }

 RUNNING THE APPLICATION

At this point, you have fully covered all classes that are part of the client and the server. If
you have any remaining questions, reread the sections that cover your issues. However,
don’t worry if something just doesn’t seem to “click.” In this final section, you get the code
for your application up and running, and all remaining questions are answered with a live
demonstration.

 First off, make sure that all code for the client and server is located in the same directory

on your machine. Now, compile the IDL by typing

 idl2java musicServer.idl

 Next, compile the code generated by the IDL by navigating to the generated
musicServer directory and typing

 javac *.java

 Now, navigate back to the directory containing the client and server code and compile

that code by typing

 javac *.java

 Now, start the ORB and Smart Agent by typing

 osagent

 - 473 -

 and start the server by typing

 java MusicServer

You’re almost ready to start the client, but you still need one more file to be developed.
The small HTML file in Listing 25.9 contains the necessary HTML to load the Applet
itself.

 LISTING 25.9 THE HTML USED TO LOAD THE APPLET

 <applet code=MusicCollectionViewer width=500 height=400>
 </applet>

 Save the HTML in a file located in the same directory as the compiled class files. You can

run it by typing

 appletviewer *.html

 When the Applet is running, you should see a screen similar to the one shown in

Figure 25.1.

 Figure 25.1: The MusicCollection\Viewer applet interface is ready for user

interaction.

 RUNNING EVERYTHING IN A BROWSER

Wait. Before you flip over to the next chapter, there’s one more issue we need to cover.
In the previous section, we got the server running in a Java VM and got the client running
in the appletviewer application. Although this did prove that the code actually works, it
does not show how to actually use the code in a distributed environment. In an actual
environment, you would have a computer setup similar to what is shown in Figure 25.2.

 Figure 25.2: A typical three-tier server environment.

 - 474 -

In Figure 25.2, the server is running on one machine, a Web server is running on another
machine, and the Applet is off running on a client machine connected to the Internet.
Due to the Applet security sandbox, it’s not possible for the Applet to connect to a
machine other than the one that served the Applet itself. To allow for a server
environment similar to what is shown in Figure 25.2, Inprise provides an application
called the gatekeeper. The gatekeeper is both a Web server and a tool for tunneling IIOP
through HTTP. In an environment using the gatekeeper, as shown in Figure 25.3, the
gatekeeper serves the HTML containing the APPLET tag and then all bind attempts are
filtered though the gatekeeper itself. Instead of directly interacting with the remote
objects, the Applet asks the gatekeeper to perform these interactions. Because the
gatekeeper is also the Web server, the Applet is allowed to connect to it without any
trouble. If this all sounds confusing, it isn’t at all. From a programming perspective, the
only difference in your code is that when binding to the ORB, you use the version of
ORB.init() that accepts an Applet object as a parameter instead of the version that
accepts no parameters. In fact, if you flip back to the code in Listing 25.1, where the bind
occurred, you’ll notice this overloaded version of init() being used.

 Figure 25.3: A typical server environment using the gatekeeper.

FROM HERE

Throughout this book, you’ve developed a collection of client/server applications that all
exist to demonstrate a unique technology. The code in this chapter, as well as the code in
Chapter 24, differs due to the fact that it focuses on the broad topic of application design.
Techniques for remote garbage collection were implemented, as were techniques for
making remote client connections in the presence of a strict Applet security model.

 Be sure to refer to the following chapters, which complement the topics covered in this

chapter:

 • Chapter 16, “RMI-Based Implementation of the Airline Reservation System”

 • Chapter 26, “CORBA-Based Implementation of the Airline Reservation System”

 • Chapter 27, “Quick CORBA: CORBA Without IDL”

Chapter 26: CORBA-Based Implementation of
the Airline Reservation System

 Overview

 - 475 -

In the previous chapters that explored CORBA, each focused on a specific aspect of the
CORBA development process or on a unique CORBA technology. The following CORBA
chapters will impart knowledge in much the same manner. Although the next few
chapters do continue a topic-by-topic exploration of CORBA, this chapter takes a break
and implements the Airline Reservation System using CORBA. If you’ve been skipping
around this book willy-nilly, make sure you stop and read Chapter 6, “The Airline
Reservation System Model,” which introduces a collection of use-cases for the software
developed in this chapter. At some point, you’ll also want to spend some time with
Chapter 14, “Socket-Based Implementation of the Airline Reservation System,” Chapter
16, “RMI-Based Implementation of the Airline Reservation System,” Chapter 19, “Servlet-
Based Implementation of the Airline Reservation System,” and Chapter 35, “Voyager-
Based Implementation of the Airline Reservation System,” because they each implement
the same use-cases using a different focus technology.

Each chapter that focuses on implementing the reservation system use-cases is unique
in that it does not focus on the specifics of a given technology but rather on the specifics
of system design using the target technology. As you study this chapter, the following
points are covered:

 • When to use CORBA structs instead of interfaces

 • How to manage memory in a distributed environment

 • How to develop a CORBA server application

 • How to develop a CORBA client application

 IMPLEMENTING THE SERVER

 Beginning our exploration of the reservation system software, Listing 26.1 contains the

IDL exposed by the server.

 LISTING 26.1 THE IDL FOR THE AIRLINE RESERVATION SYSTEM SERVER

 module FlightSystem {

 struct LocationS {
 string sAirportCode;
 string sCityName;
 string sStateName;
 string sCountry;
 };

 struct DateTimeS {
 long iHours;
 long iMinutes;
 long iSeconds;
 long iYear;
 long iMonth;
 long iDay;
 };

 struct SeatS {
 long iSeatNumber;
 };

 - 476 -

 typedef sequence<SeatS>SeatArray;

 struct FlightS {
 LocationS departureLocation;
 LocationS destinationLocation;
 DateTimeS departureDateTime;
 DateTimeS destinationDateTime;
 SeatArray availableSeats;
 };

 typedef sequence<FlightS>FlightArray;

 struct PassengerDemographicsS {
 string sMethodOfPayment;
 string sFirstName;
 string sLastName;
 string sCreditCardNumber;
 string sFrequentFlyerNumber;
 string sBillingAddress1;
 string sBillingAddress2;
 string sBillingCity;
 string sBillingState;
 string sBillingZip;
 string sBillingCountry;
 string sMailingAddress1;
 string sMailingAddress2;
 string sMailingCity;
 string sMailingState;
 string sMailingZip;
 string sMailingCountry;

 };

 struct ReservationS {
 FlightS flight;
 SeatS seat;
 PassengerDemographicsS demographics;
 };
 typedef sequence<ReservationS>ReservationArray;
 struct FlightQueryS {
 LocationS departureLocation;
 LocationS destinationLocation;
 DateTimeS departureDateTime;
 DateTimeS destinationDateTime;
 long iHoursFlexible;
 };

 struct ReservationQueryS {
 FlightS flight;
 SeatS seat;
 string sFirstName;
 string sLastName;

 - 477 -

 string sCreditCardNumber;
 };

 interface FlightServerI {
 FlightArray searchForFlight(in FlightQueryS query);
 void createReservation(in ReservationS reservation);
 void cancelReservation(in ReservationS reservation);
 ReservationArray searchForReservation(in
ReservationQueryS query);

 };
 };

One of the first things you’ll note about the system is that only one interface is present—
all other entities are modeled as structs. A struct is simply a collection of data, whereas
an interface is a collection of both data and behavior (modeled as operations). Due to the
fact that a struct physically travels from the server to the client, memory management
issues are not present. When you’re working with interfaces, their usage must be tracked;
if they are not deactivated when no longer needed, the memory they use is never
reclaimed.

To minimize the number of interfaces created in the reservation software, all behavior is
moved to the stateless FlightServerI interface. This interface is implemented in
Listing 26.2. However, note that the search operations are not fully optimized in the
manner they would be for a production system. To create fully functional search
operations involves the creation and management of large data structures, the code for
which would take up way too many pages. Also note that the creation of FlightS
objects in the populateFlightHash() method has a tendency to create physically
impossible time schedules. For demonstration purposes, a FlightS object is created by
choosing a random departure location and time as well as a random destination location
and time.

As a final note on the system in general, notice that the use-cases are not fully
implemented here. The server does not support the locking of a seat, and although the
server does allow for the making of reservations, the client does not access this feature.

 LISTING 26.2 THE FlightServer CLASS

 import FlightSystem.*;
 import java.util.*;
 import org.omg.CORBA.*;

 public final class FlightServer extends _FlightServerIImplBase {
 private FlightS[] __flights;
 private Random _rand = new Random();
 private Vector _vecReservations;

 public FlightServer(String name) {
 super(name);
 _vecReservations = new Vector();
 populateFlightHash();
 }

 private void populateFlightHash() {
 LocationS[] locations == new LocationS[10];
 locations[0] = new LocationS("SFO", "SAN FRANCISCO",
 "CALIFORNIA", "USA");

 - 478 -

 locations[1] = new LocationS("AQM", "ARIQUEMES",
 "RO", "BRAZIL");
 locations[2] = new LocationS("ARB", "ANN ARBOR",
 "MICHIGAN", "USA");
 locations[3] = new LocationS("JFK", "NY",
 "NEW YORK", "USA");
 locations[4] = new LocationS("JLO", "JESOLO",
 "JESOLO", "JESOLO");
 locations[5] = new LocationS("JLR", "JABALPUR",
 "JABALPUR", "INDIA");
 locations[6] = new LocationS("PPG", "PAGO PAGO",
 "PAGO PAGO", "AMERICAN
SAMOA");

 locations[7] = new LocationS("UMA", "PUNTA DE MAISI",
 "PUNTA DE MAISI", "CUBA");
 locations[8] = new LocationS("EKE", "EKEREKU",
 "EKEREKU", "GUYANA");
 locations[9] = new LocationS("KHR", "KHARKHORIN",
 "KHARKHORIN", "MONGOLIA ");

 DateTimeS[] dates == new DateTimeS[10];
 dates[0] = new DateTimeS(22,0,0,1998,9,1);
 dates[1] = new DateTimeS(22,0,0,1998,9,2);
 dates[2] = new DateTimeS(22,0,0,1998,9,3);
 dates[3] = new DateTimeS(22,0,0,1998,9,4);
 dates[4] = new DateTimeS(22,0,0,1998,9,5);
 dates[5] = new DateTimeS(22,0,0,1998,9,6);
 dates[6] = new DateTimeS(22,0,0,1998,9,7);
 dates[7] = new DateTimeS(22,0,0,1998,9,8);
 dates[8] = new DateTimeS(22,0,0,1998,9,9);
 dates[9] = new DateTimeS(22,0,0,1998,9,10);

 SeatS[] seatArray = new SeatS[50]; //695-2717
 for(int i=0; i<50; i++) seatArray[i] = new SeatS(i);

 _flights = new FlightS[50];
 for(int i=0; i<50; i++) {
 _flights[i] = new FlightS(locations[obtainRandomInt()],
 locations[obtainRandomInt()],
 dates[obtainRandomInt()],
 dates[obtainRandomInt()],
 seatArray);
 }
 }

 private int obtainRandomInt() {
 return Math.abs(_rand.nextInt()) % 9 -0;
 }

 /**
 * Searches for a collection of FlightS objects
 * based on the specified query object.
 */

 - 479 -

 public FlightS[] searchForFlight((FlightQueryS query) {
 Vector vecFoundSet = new Vector();
 int iLength = _flights.length;
 for(int i=0; i<iLength; i++) {
 FlightS flightActive = _flights[i];
 if(isLocationEqual(flightActive.departureLocation,
 query.departureLocation) &&
 isLocationEqual(flightActive.destinationLocation,
 query.destinationLocation)) {
 if(isDateTimeEqual(flightActive.departureDateTime,
 query.departureDateTime) &&
 isDateTimeEqual(flightActive.destinationDateTime,
 query.destinationDateTime)) {
 vecFoundSet.addElement(flightActive);
 }
 }
 }
 FlightS[] foundSet == new FlightS[vecFoundSet.size()];
 vecFoundSet.copyInto(foundSet);

 return foundSet;
 }

 /**

 * Helper method used to determine if two DateTimeS objects
 * reference the same point in time.
 */
 private boolean isDateTimeEqual(DateTimeS dt1, DateTimeS dt2) {
 return (dt1.iHours == dt2.iHours &&
 dt1.iMinutes == dt2.iMinutes &&
 dt1.iSeconds == dt2.iSeconds &&
 dt1.iYear == dt2.iYear &&
 dt1.iMonth == dt2.iMonth &&
 dt1.iDay == dt2.iDay);
 }

 /**
 * Helper method used to determine if two LocationS objects
 * reference the same airport.
 */
 private boolean isLocationEqual(LocationS loc1, LocationS loc2) {
 // first check the easiest case
 if(loc1.sAirportCode.equalsIgnoreCase(loc2.sAirportCode)) {
 return true;
 }

 // now check additional cases
 return(loc1.sCityName.equalsIgnoreCase(loc2.sCityName) &&
 loc1.sStateName.equalsIgnoreCase(loc2.sStateName) &&
 loc1.sCountry.equalsIgnoreCase(loc2.sCountry));
 }

 - 480 -

 /**
 * Adds a reservation to the collection of reservations
 */
 public void createReservation(ReservationS reservation) {
 _vecReservations.removeElement(reservation);
 }

 /**
 * Removes a reservation from the collection of reservations
 */
 public void cancelReservation(ReservationS reservation) {
 _vecReservations.addElement(reservation);
 }

 /**
 * Searches for an active reservation
 */
 public ReservationS[] searchForReservation((ReservationQueryS
query) {

 Enumeration e = _vecReservations.elements();
 Vector vecFoundSet = new Vector();
 while(e.hasMoreElements()) {

 ReservationS reservation = (ReservationS)e.nextElement();
 if(isDemographicMatch(query, reservation)) {
 vecFoundSet.addElement(reservation);
 }
 else if(isDemographicMatch(query, reservation)) {
 vecFoundSet.addElement(reservation);
 }
 else if(isFlightEqual(query.flight, reservation.flight)
&&

 isSeatEqual(query.seat, reservation.seat)) {
 vecFoundSet.addElement(reservation);
 }
 }

 ReservationS[] foundSet == new
ReservationS[vecFoundSet.size()];

 vecFoundSet.copyInto(foundSet);

 return foundSet;
 }

 /**
 * Helper method used to determine if two SeatS objects
 * reference the same seat location.
 */
 private boolean isSeatEqual(SeatS s1, SeatS s2) {
 return s1.iSeatNumber == s2.iSeatNumber;
 }

 - 481 -

 /**
 * Helper method used to determine if two FlightS objects
 * reference the same flight.
 */
 private boolean isFlightEqual(FlightS f1, FlightS f2) {
 if(isLocationEqual(f1.departureLocation, f2.departureLocation)
&&

 isLocationEqual(f1.destinationLocation,
 f2.destinationLocation)) {
 if(isDateTimeEqual(f1.departureDateTime,
 f2.departureDateTime) &&
 isDateTimeEqual(f1.destinationDateTime,
 f2.destinationDateTime)) {
 return true;
 }
 }
 return false;
 }

 /**
 * Helper method used to determine if two collections of
 * demographic data might reference the same entity.
 */

 private boolean isDemographicMatch(ReservationQueryS query,
 ReservationS reservation)
{

 if(query.sCreditCardNumber.equals(
 reservation.demographics.sCreditCardNumber)) return
true;

 return(query.sFirstName.equals(
 reservation.demographics.sFirstName) &&
 query.sLastName.equals(
 reservation.demographics.sLastName));
 }

 public static void main(String[] args)) {
 ORB orb = ORB.init();
 BOA boa = orb.BOA_init();

 FlightServer server = new FlightServer("FlightServer");
 boa.obj_is_ready(server);
 boa.impl_is_ready();
 }
 }

 IMPLEMENTING THE CLIENT

Moving from the client to the server, the next few code listings explore the development
of the reservation client. To help conserve space, a minimal user interface (UI) that only
allows for flight searching is developed for this example. However, although it shouldn’t
serve as an example of UI design, the example does demonstrate the manner in which
client applications interface with CORBA servers.

 - 482 -

Starting out the example is the FlightClient class in Listing 26.3. This class extends
java.awt.Frame and exposes the main() method through which the application is
actually started. In its constructor, a FlightClient object obtains a reference to the
ORB and then binds to a FlightServer instance. The server exposes a UI that
contains a List object where found flights are listed and a Button object used to start
searches. When clicked, the button instantiates and displays a SearchDialog object,
which is where the actual search is performed.

 LISTING 26.3 THE FlightClient CLASS

 import java.awt.*;
 import java.awt.event.*;
 import org.omg.CORBA.*;
 import FlightSystem.*;

 public class FlightClient extends Frame implements ActionListener
{

 private FlightServerI _flightServer;
 private List _lstResults;
 private Button _btnSearch;

 public FlightClient() {
 super("Search For A Flight");
 ORB orb = ORB.init();
 _flightServer = FlightServerIHelper.bind(orb);
 setLayout(new BorderLayout(10,10));
 add(_btnSearch = new Button("Search"),
BorderLayout.NORTH);

 add(_lstResults = new List(), BorderLayout.CENTER);
 _btnSearch.addActionListener(this);
 }

 class ComponentWithLabel extends Panel {
 public ComponentWithLabel(String sLabelText,
 Component component) {
 setLayout(new BorderLayout());
 add(new Label(sLabelText), BorderLayout.NORTH);
 add(component, BorderLayout.CENTER);
 }
 }

 public void actionPerformed(ActionEvent ae) {
 doSearch();
 }

 private void doSearch() {
 SearchDialog dialog = new SearchDialog(this, _
 flightServer, _
 lstResults);
 dialog.pack();
 dialog.setVisible(true);
 }

 - 483 -

 public static void main(String[] args)) {
 FlightClient client = new FlightClient();
 client.setSize(300,300);
 client.setVisible(true);
 }
 }

Moving deeper into the client application, Listings 26.4, 26.5, and 26.6 contain the code
for three classes: SearchDialog, LocationOptionsPanel , and
DateTimeOptionsPanel . The first class actually interfaces with the flight server, and
the latter two simply aid the UI building process. As you examine the code in Listing 26.4,
pay attention to the executeSearch() method present in the SearchDialog class.
This method actually creates the FlightQueryS object and uses it to search for a
group of flights.

 LISTING 26.4 THE SearchDialog CLASS

 import java.awt.*;
 import java.awt.event.*;
 import org.omg.CORBA.*;
 import FlightSystem.*;

 public class SearchDialog extends Dialog implements
ActionListener {

 private FlightServerI _flightServer;
 private LocationOptionsPanel _departureLocation;
 private LocationOptionsPanel _destinationLocation;
 private DateTimeOptionsPanel _departureDateTime;
 private DateTimeOptionsPanel _destinationDateTime;
 private List _lstResults;
 private Button _btnSearch;

 public SearchDialog(Frame f, FlightServerI flightServer,
 List lstResults) {
 super(f, "Search For A Flight", true);

 _flightServer = flightServer;
 _lstResults = lstResults;

 // build the UI
 _departureLocation = new LocationOptionsPanel();
 _destinationLocation = new LocationOptionsPanel();
 _departureDateTime = new DateTimeOptionsPanel();
 _destinationDateTime = new DateTimeOptionsPanel();

 setLayout(new GridLayout(3,2,10,10));

 add(new ComponentWithLabel("Departure Location",
 _departureLocation));
 add(new ComponentWithLabel("Destination Location",
 _destinationLocation));
 add(new ComponentWithLabel("Departure Date / Time",
 _departureDateTime));
 add(new ComponentWithLabel("Destination Date / Time",

 - 484 -

 _destinationDateTime));

 Panel pnlButtonHolder = new Panel();
 pnlButtonHolder.setLayout(new
FlowLayout(FlowLayout.RIGHT));

 pnlButtonHolder.add(_btnSearch = new Button("Execute
Search"));

 add(new Label(""));
 add(pnlButtonHolder);

 _btnSearch.addActionListener(this);
 }

 class ComponentWithLabel extends Panel {
 public ComponentWithLabel(String sLabelText,
 Component component) {
 setLayout(new BorderLayout());
 add(new Label(sLabelText), BorderLayout.NORTH);
 add(component, BorderLayout.CENTER);
 }
 }

 public void actionPerformed(ActionEvent ae) {
 executeSearch();
 }

 /**
 * Executes a search against the flight server.
 */
 private void executeSearch() {
 FlightQueryS query =
 new
FlightQueryS(_departureLocation.getAsLocationObject(),

_destinationLocation.getAsLocationObject(),

_departureDateTime.getAsDateTimeObject(),

_destinationDateTime.getAsDateTimeObject(),

 0);

 FlightS[] foundSet ==
_flightServer.searchForFlight(query);

 int iLength = foundSet.length;
 for(int i=0; i<iLength; i++) {
 _lstResults.addItem("Flight: "
 +foundSet[i].departureLocation.sAirportCode+" ">
 "+foundSet[i].destinationLocation.sAirportCode);
 }

 // close the frame
 setVisible(false);
 }
 }

 - 485 -

 LISTING 26.5 THE LocationOptionsPanel CLASS

 import java.awt.*;
 import FlightSystem.*;

 public final class LocationOptionsPanel extends Panel {
 private TextField _txtAirportCode;

 private TextField _txtCityName;
 private TextField _txtStateName;
 private TextField _txtCountry;

 public LocationOptionsPanel() {
 setLayout(new GridLayout(4,2));
 add(new Label("Airport Code"));
 add(_txtAirportCode = new TextField());
 add(new Label("City Name"));
 add(_txtCityName = new TextField());
 add(new Label("State Name"));
 add(_txtStateName = new TextField());
 add(new Label("Country"));
 add(_txtCountry = new TextField());
 }

 public LocationS getAsLocationObject() {
 return new LocationS(_txtAirportCode.getText(),
 _txtCityName.getText(),
 _txtStateName.getText(),
 _txtCountry.getText());
 }
 }

 LISTING 26.6 THE DateTimeOptionsPanel CLASS

 import java.awt.*;
 import FlightSystem.*;

 public final class DateTimeOptionsPanel extends Panel {
 private TextField _txtMonth;
 private TextField _txtDay;
 private TextField _txtYear;

 private TextField _txtHours;
 private TextField _txtMinutes;

 public DateTimeOptionsPanel() {
 _txtHours = new TextField(3);
 _txtMinutes = new TextField(3);
 TimePanel timePanel = new TimePanel(_txtHours,
_txtMinutes);

 - 486 -

 _txtMonth = new TextField(3);
 _txtDay = new TextField(3);
 _txtYear = new TextField(5);
 DatePanel datePanel = new DatePanel(_txtMonth, _txtDay,
_txtYear);

 GridBagLayout gbl = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbl);

 Label lblDate = new Label("Date");
 gbc.gridx = 0;
 gbc.gridy = 0;
 gbc.gridwidth = 1;
 gbc.anchor = GridBagConstraints.WEST;
 gbc.fill = GridBagConstraints.NONE;
 gbl.setConstraints(lblDate, gbc);
 add(lblDate);

 Label lblTime = new Label("Time");
 gbc = new GridBagConstraints();
 gbc.gridx = 0;
 gbc.gridy = 1;
 gbc.gridwidth = 1;
 gbc.anchor = GridBagConstraints.WEST;
 gbc.fill = GridBagConstraints.NONE;
 gbl.setConstraints(lblTime, gbc);
 add(lblTime);

 gbc = new GridBagConstraints();
 gbc.gridx = 1;
 gbc.gridy = 0;
 gbc.gridwidth = 3;
 gbc.anchor = GridBagConstraints.WEST;
 gbc.fill = GridBagConstraints.NONE;
 gbl.setConstraints(datePanel, gbc);
 add(datePanel);

 gbc = new GridBagConstraints();
 gbc.gridx = 1;
 gbc.gridy = 1;
 gbc.gridwidth = 3;
 gbc.anchor = GridBagConstraints.WEST;
 gbc.fill = GridBagConstraints.NONE;
 gbl.setConstraints(timePanel, gbc);
 add(timePanel);
 }

 class DatePanel extends Panel {
 public DatePanel(TextField txtMonth,
 TextField txtDay,
 TextField txtYear) {
 setLayout(new FlowLayout());

 - 487 -

 add(txtMonth);
 add(new Label("/", Label.CENTER));

 add(txtDay);
 add(new Label("/", Label.CENTER));
 add(txtYear);
 }
 }

 class TimePanel extends Panel {
 public TimePanel(TextField txtHours, TextField
txtMinutes) {

 setLayout(new FlowLayout());
 add(txtHours);
 add(new Label(":", Label.CENTER));
 add(txtMinutes);
 }
 }

 private int stringToInt(String sInt) {
 try{ return Integer.parseInt(sInt); }
 catch(NumberFormatException nfe) {
 return 0;
 }
 }

 public DateTimeS getAsDateTimeObject() {
 return new DateTimeS(stringToInt(_txtHours.getText()),
 stringToInt(_txtMinutes.getText()),
 0,
 stringToInt(_txtYear.getText()),
 stringToInt(_txtMonth.getText()),
 stringToInt(_txtDay.getText()));
 }
 }

RUNNING THE EXAMPLE

Now that you’ve spent some time with the code for the example, you’re ready to test
everything out. As you may be able to guess by now, the first step is to make sure that
the Inprise Visibroker ORB is installed properly on your system. The software is
contained on the enclosed CD-ROM, which contains an installation application that will
properly install the software for you.

 You’ll now want to compile the IDL using the command

 idl2java airline.idl

 and compile all .java files using your Java compiler. Now start the ORB by entering the

command

 osagent

 and start the server by entering the command

 - 488 -

 java FlightServer

 The server will run continuously, waiting for incoming requests from the client. Finally,

you’ll want to start the client by entering the command

 java FlightClient

 and start to search for flights that meet your search criteria. Figure 26.1 shows the
FlightClient application searching for a flight from SFO to JFK.

 Figure 26.1: Searching for a flight with the FlightClient application.

FROM HERE

This chapter provided a break from the lessons about CORBA in general so you could
stop and look at system design in a CORBA environment. Assuming that you read the
previous chapters, which introduce CORBA as a technology and the general CORBA
development process, everything in this chapter should make perfect sense. What you
should take away from this chapter are some general ideas about how to design a server
that’s utilized in a CORBA environment. In addition, as you see how the reservation
system is implemented in other chapters, you should note how different technologies are
all used to solve a similar business problem.

 As you continue your exploration of the CORBA universe and of application design in

general, the following chapters will prove useful:

 • Chapter 6, “The Airline Reservation System Model”

 • Chapter 14, “Socket-Based Implementation of the Airline Reservation System”

 • Chapter 16, “RMI-Based Implementation of the Airline Reservation System”

 • Chapter 19, “Servlet-Based Implementation of the Airline Reservation System”

 • Chapter 21, “CORBA Overview”

 • Chapter 35, “Voyager-Based Implementation of the Airline Reservation System”

FROM HERE

This chapter provided a break from the lessons about CORBA in general so you could
stop and look at system design in a CORBA environment. Assuming that you read the
previous chapters, which introduce CORBA as a technology and the general CORBA
development process, everything in this chapter should make perfect sense. What you
should take away from this chapter are some general ideas about how to design a server
that’s utilized in a CORBA environment. In addition, as you see how the reservation

 - 489 -

system is implemented in other chapters, you should note how different technologies are
all used to solve a similar business problem.

 As you continue your exploration of the CORBA universe and of application design in

general, the following chapters will prove useful:

 • Chapter 6, “The Airline Reservation System Model”

 • Chapter 14, “Socket-Based Implementation of the Airline Reservation System”

 • Chapter 16, “RMI-Based Implementation of the Airline Reservation System”

 • Chapter 19, “Servlet-Based Implementation of the Airline Reservation System”

 • Chapter 21, “CORBA Overview”

 • Chapter 35, “Voyager-Based Implementation of the Airline Reservation System”

DEVELOPING WITHOUT IDL

The first tool in the Caffeine tool set that’s examined in this chapter is java2iiop, which
converts a compiled Java interface into client-side stub and server-side skeleton files. In
general, the Java interface can utilize any feature available in the Java universe;
however, it must extend the class org.omg.CORBA.Object . By extending the CORBA
Object base class, the interface inherits all operations present when defining an
interface in IDL—for example, _orb(), and _boa(). These stub and skeleton files are
identical to the ones that the idl2java compiler would have produced if the Java interface
were an IDL interface.

In the first example of working with the java2iiop tool, we’ll look back to the finger server
originally developed in Chapter 22, “CORBA Architecture.” This example implements a
server that supports remote fingering of users on an NT or UNIX server. As we again look
at this application, we’ll redevelop it without writing a single line of IDL. Listing 27.1
contains the code for the FingerServerI interface, which defines the server we’ll
implement in this example.

 LISTING 27.1 THE FingerServerI INTERFACE

 public interface FingerServerI extends org.omg.CORBA.Object {
 public String finger(String sUserName);
 }

Looking at Listing 27.1, you’ll notice that other than extending org.omg.CORBA.Object
, the interface is not unusual at all. With an interface that describes the object’s
functionality, you now use the Caffeine tool set to produce the stub and skeleton files.
The following steps cover the manner in which those files are produced:

 1. Enter the code in Listing 27.1 and save it as a file called FingerServerI.java.

 2. Compile FingerServerI.java using your Java compiler.

 3. Create the stub and skeleton files by entering the following command:

 java2iiop FingerServerI

 Like all other examples in this book, java2iiop ships with the Inprise ORB and is

 - 490 -

contained on the enclosed CD-ROM; you’ll need to install it for everything in this chapter
to function properly.

Once you’ve generated the stub and skeleton files, you’re ready to actually implement the
server application. Listing 27.2 contains the code for this example; you’ll notice many
similarities to the finger code back in Chapter 22. Because standard server skeleton files
are generated by java2iiop, the server implementation still extends the class _ foo
ImplBase, where foo is the name of the interface being implemented. In this example,
because the Java interface is named FingerServerI, the server parent class is named
_FingerServerIImplBase .

 LISTING 27.2 THE FingerServer CLASS

 import java.io.*;
 import org.omg.CORBA.*;

 public class FingerServer extends _FingerServerIImplBase {

 public FingerServer(String name) {
 super(name);
 }

 /**
 * Invoked by the client when a finger request
 * is issued.
 *
 * @param userName The user to be fingered
 * @return Any available data on the fingered user. If
 * an exception is raised during the finger process,
 * the phrase "exception occurred". If anything else
 * happens that keeps the application from functioning,
 * a "command not processed" message is returned..
 */
 public String finger(String userName) {
 // attempt to execute a finger command
 try{ Process returnValue =
 Runtime.getRuntime().exec("finger "+userName);
 InputStream in = returnValue.getInputStream();
 StringBuffer sbReturnValue;
 int iValue = -1;
 while((iValue = in.read()) != -1) {
 System.out.print((char)iValue);
 }
 System.out.println(returnValue.exitValue());
 }
 catch(Exception e) { return "exception occurred"; }

 return "command not processed";
 }

 public static void main(String[] args)) {
 // obtain references to the ORB and the BOA
 ORB orb = ORB.init();
 BOA boa = orb.BOA_init();

 - 491 -

 // create a new FingerServerImplementation object
 FingerServer fingerServer = new FingerServer("Finger
Server");

 // notify the ORB that the
 // FingerServerImplementation object is ready
 boa.obj_is_ready(fingerServer);

 // wait for an incoming connection
 boa.impl_is_ready();
 }
 }

 Now that you’ve developed the server, take a look at the code in Listing 27.3, which is a

simple client for the server.

 LISTING 27.3 THE FingerClient CLASS

 import org.omg.CORBA.*;

 /**
 * The FingerClient class binds to a FingerServer object
 * and attempts to finger a user.
 */
 public class FingerClient {

 public static void main(String[] args)) {

 // connect to the ORB
 ORB orb = ORB.init();
 // obtain a reference to a FingerServer object
 FingerServerI fingerServer =
FingerServerIHelper.bind(orb);

 // finger a user
 String sResult = fingerServer.finger("lukecd");
 // print out the results of the finger command
 System.out.println(sResult);
 }
 }

The following steps show you how to get the application up and running. As you go
through them, note that they are very similar to the steps followed with any CORBA
application, but the IDL compilation step is missing:

 1. Enter in all application code.

 2. Compile application code using your Java compiler.

 3. Generate the steps and skeletons by typing

 java2iiop FingerServerI

 4. Compile the generated stubs and skeletons using your Java compiler.

 - 492 -

 5. Start the OSAgent by typing

 osagent

 6. Start the server by typing

 java FingerServer

 7. Start the client by typing

 java FingerClient

 If you don’t have a finger application installed on your computer, you’ll receive an error

back. Otherwise, you should receive back a valid response from the finger application.

As you worked with the code in the previous two listings, you should have noted numerous
similarities to the finger application developed in Chapter 22. Both the client and server
code are almost identical—the only difference in this application is the lack of IDL.

 MAPPING JAVA TO IDL/IIOP

The finger applications in this chapter and Chapter 22 are similar. This was achieved due
to the relative simplicity of the server application. The finger server exposes only one
operation, and that operation accepts only a string as a parameter. When you’re mapping
Java interfaces into IDL interfaces, the translation is rather simple, assuming that all
method parameters and public member variables translate directly into IDL types. The
obvious problems arise when method parameters and public member variables do not
have a direct IDL counterpart—for example, the class java.util.Vector .

As we continue looking at the Caffeine environment, we’ll cover the manner in which
translations are made from Java code directly into IDL. Starting with the base type
translations, Table 27.1 shows the Java constructs with direct IDL counterparts.

 TABLE 27.1 JAVA-TO-IDL MAPPING

Java Type

IDL Type

package

module

boolean

boolean

char

char

byte

octet

String

string

short

short

int

long

 - 493 -

long

long long

float

float

double

double

org.omg.
CORBA.Any

any

org.omg.
CORBA.TypeCode

TypeCode

org.omg.
CORBA.Principal

Principal

org.omg.
CORBA.Object

Object

What Table 27.1 does not cover is the more difficult translation of general Java objects
into some IDL entity. Because IDL represents a subset of all that’s available to Java
developers, it is therefore impossible to have an easy direct translation for everything out
there. To work around this limitation, Inprise introduced a nonstandard entity to the IDL
called the extensible struct.

 Extensible Structs

An extensible struct allows any Java object that implements the interface
java.io.Serializable to be broken down into a byte stream and sent through the
Object Request Broker (ORB). At the receiving end of an extensible struct, the ORB
reassembles the object and presents it to the server. Objects passed in this manner are
passed by value, instead of the traditional method of passing all objects in CORBA by
reference. Although it’s a rather big benefit to the CORBA developer if he can throw any
Java object into the ORB, it’s not a silver bullet. Because extensible structs are a non-
standard extension to the IDL, their use is limited to applications developed for Inprise
Visibroker for Java ORB.

In the next example, we look at how an extensible struct is used to allow the passing of
java.util.Vector objects through the ORB. Starting the example, the interface
VectorReceiverI is contained in Listing 27.4.

 LISTING 27.4 THE VectorReceiverI INTERFACE

 import java.util.*;

 public interface VectorReceiverI extends org.omg.CORBA.Object {
 public void receiveVector(Vector vec);
 }

Although it’s rather simple, the interface does contains the receiveVector()
operation, which accepts a Vector object as a parameter (this is a red flag for problem
generation). In a traditional CORBA environment, it’s not possible to pass a Vector
object due to the fact that it violates IDL’s lowest common denominator rule—meaning
that a Vector object could not be understood by a language such as COBOL. The class
that implements the VectorReceiverI interface, VectorReceiver , is contained in

 - 494 -

Listing 27.5.

 LISTING 27.5 THE VectorReceiver CLASS

 import java.util.*;
 import org.omg.CORBA.*;

 public class VectorReceiver extends _VectorReceiverIImplBase {
 public VectorReceiver() {
 super("VectorReceiver");
 }

 /**
 * Invoked when a client object wishes to send over
 * a Vector object. The method simply prints out the
 * contents of the Vector.
 */
 public void receiveVector(Vector vector) {
 Enumeration e = vector.elements();
 while(e.hasMoreElements()) {
 System.out.println(e.nextElement());
 }

 }

 public static void main(String[] args)) {
 // obtain references to the ORB and the BOA
 ORB orb = ORB.init();
 BOA boa = orb.BOA_init();

 // create a new VectorReceiver object
 VectorReceiverI server = new VectorReceiver();

 // notify the ORB that the VectorReceiver object is ready
 boa.obj_is_ready(server);

 // wait for an incoming connection
 boa.impl_is_ready();
 }
 }

 Finishing up the extensible struct example, Listing 27.6 contains the code for a simple

client that interacts with the FingerServer application.

 LISTING 27.6 THE VectorSender CLASS

 import org.omg.CORBA.*;
 import java.util.*;

 public class VectorSender {

 public VectorSender() {
 // bind to a VectorReceiverI object

 - 495 -

 ORB orb = ORB.init();
 VectorReceiverI receiver =
VectorReceiverIHelper.bind(orb);

 // create a Vector object
 Vector vec = new Vector();
 vec.addElement("String 1");
 vec.addElement("String 2");
 vec.addElement("String 3");
 vec.addElement("String 4");
 vec.addElement("String 5");

 // ask the VectorReceiverI object to print
 // out the contents of the Vector object
 receiver.receiveVector(vec);
 }

 public static void main(String[] args)) {
 VectorSender sender = new VectorSender();
 }
 }

To get this application up and running, start off by compiling the interface
VectorReceiverI first using the Java compiler and then using the java2iiop
application. Now you need to compile the client and server applications. Start the server
by entering

 java VectorReceiver

 and the client by entering

 java VectorSender

Developers who are familiar with Java’s Remote Method Invocation—covered in Chapter
15, “Remote Method Invocation (RMI)”—will likely draw parallels between extensible
structs and RMI itself. Both technologies allow for Java-only distributed object
development, both pass objects by value, and both require that objects implement the
java.io.Serializable interface. Although these similarities do exist, the major
difference is that by working in the CORBA universe with extensible structs, you are able
to leverage all technologies made available to the CORBA developer. For example, your
application could still take advantage of the CORBA Naming Service to locate objects, or
you could use the load-balancing capabilities of the Visibroker ORB to ensure that one
extensible struct is not passed to too many clients.

Given all of the advantages developers can leverage by using extensible structs and
CORBA, one might begin to wonder why anyone would use RMI at all. The decision to
use one technology over another is not something that can be dictated on a global
basis—all applications have different needs. If your application is served well by an
allJava environment, where objects are passed by value and no CORBA services are
needed, RMI might be a silver bullet. If, however, you need mixed language support, the
ability to pass by reference, and the ability to leverage existing CORBA code, CORBA
should be utilized. Making the decision about the proper distributed technology to use for
a given application is critical to the success of that application. As you read this book, pay
attention to the chapters that implement the Airline Reservation System usecases,
because each implements the same use-cases using a different technology. By studying
the system design decisions that each is forced to make, you’ll be able to make solid
decisions about the proper technology to use when implementing your own software.

 - 496 -

 Struct Mapping

Thus far in our look at mapping Java into IDL/IIOP, we have seen how standard types
easily convert over, as well as how general objects are mapped over. The last aspect of
mapping not yet covered involves Java entities that map into traditional CORBA structs.
During the process where java2iiop parses Java code, it converts a class into a struct if
the following tests all evaluate to true:

 • The class is final.

 • The class is public.

 • All member variables of the class are public.

 • The class contains no operations.

 • The class does not inherit from any other class besides java.lang.Object .

 As an example, Listing 27.7 contains a Java class, and Listing 27.8 contains the IDL

struct that the class maps into.

 LISTING 27.7 THE StructClass CLASS WILL MAP INTO AN IDL STRUCT

 import java.util.*;

 public final class StructClass {
 public String sData;
 public Vector vecData;
 public int iData;
 }

 LISTING 27.8 THE StructClass CLASS MAPS TO THE IDL STRUCT,
StructClass

 GENERATING CUSTOM IDL

So far, we have shown how the Caffeine tool set allows for IDL-free development in a
pure Java world. However, certain applications will demand the presence of IDL. For
example, an application that has a layer of C code that uses Pro*C to talk to an Oracle
database would need to see the IDL exposed by remote Java objects. In this next look at
the Caffeine tool set, we’ll examine the java2idl application that generates IDL from Java
bytecodes.

Although the introduction of java2iiop was rather complex, it provided the foundation
needed to make covering java2idl a rather simple task. The application accepts two
important parameters that you’ll need to take note of. The first is preceded with -o and is
the name of the output file. The second is the name of the compiled Java file that needs
IDL generated for it. For example, the following command will generate the IDL that
exposes the functionality present in the VectorReceiverI interface:

 java2idl -o VectorReceiverI.idl VectorReceiverI

 When executed, the command produces the code in Listing 27.9.

 - 497 -

 LISTING 27.9 THE IDL GENERATED FOR THE VectorReceiverI INTERFACE

 module java {
 module util {
 extensible struct Vector;
 };
 };
 interface VectorReceiverI {
 #pragma prefix ""
 void receiveVector(
 in ::java::util::Vector arg0
);
 };

Again, as Listing 27.9 makes evident, java2idl will produce code that makes use of the
nonstandard extensible struct. Because this entity is only supported by the Inprise
Visibroker ORB, it can not be utilized in ORBs from alternate vendors.

USING THE URL-BASED NAMING SERVICE

As a final component to the Caffeine tool set, Inprise includes yet another naming
service, called the URL-based Naming Service. This service is an alternative to the
Directory or Naming Services that allows for the locating of objects in the enterprise using
standard URLs. Before we dive into the particulars of the URL-based Naming Service, we
need to cover two new CORBA technologies, both of which are utilized by the URL-
based Naming Service.

First up is Interoperable Object Reference (IOR), which is a text string that uniquely
identifies an object. As you may remember from our coverage of the class
org.omg.CORBA.ORB , there are two operations called string_to_object() , and
its converse object_to_string() , that allow for converting back and forth between
an object and a string representation of that object. The “stringified” representation of an
object used by these two operations is called an IOR and is simply a long stream of
letters and numbers that uniquely identifies the target object. Here’s an example:

 IOR:000000000000001c49444c3a42616e6b2f4163636f756e744d616e616765723a31

 2e300000000001000000000000005800010000000000103139322e3136382e3130312e

 31313800044f00000000003800504d43000000000000001c49444c3a42616e6b2f4163

 636f756e744d616e616765723a312e30000000000c42616e6b4d616e616657200

The next technology utilized by the URL-based Naming Service is an enhanced Web
server called gatekeeper. The gatekeeper application ships with the Visibroker tool set
and has the ability to offer both IIOP tunneling and support for the URL-based Naming
Service. Use of the gatekeeper to support IIOP tunneling was covered in Chapter 24, “A
CORBA Server,” and Chapter 25, “A CORBA Client.” In terms of supporting the URL-
based Naming Service, the gatekeeper functions in conjunction with a file containing an
object’s IOR to serve that file when requested.

Note

Even though the gatekeeper ships with the Inprise ORB, it is not required for
use with the URL-based Naming Service. Any Web server that supports the
HTTP-PUT protocol can be substituted.

 As an example, consider the following scenario:

 - 498 -

 1. Object X is instantiated.

 2. Object X registers itself with the URL-based Naming Service.

 3. The URL-based Naming Service determines object X’s IOR using the

object_to_string() operation in the ORB class.

 4. The URL-based Naming Service writes out object X’s IOR to a file called X.ior.

 5. Object Y binds to the URL-based Naming Service and requests the object located in

X.ior.

6.

The URL-based Naming Service reads in X.ior, uses the data in conjunction with the
string_to_object() operation to obtain a reference to object X, and returns the
reference to object Y.

To facilitate these steps, the URL-based Naming Service exposes the interfaces and
exceptions contained in the URLNaming module. This module, contained in Listing
27.10, provides all the needed operations to successfully register an object and locate an
already registered object.

 LISTING 27.10 THE URLNaming MODULE

 module URLNaming {
 exception InvalidURL{};
 exception CommFailure{};
 exception ReqFailure{};
 exception AlreadyExists{};

 interface Resolver {
 Object locate(in string url_s)
 raises (InvalidURL, CommFailure, ReqFailure);
 void force_register_url(in string url_s, in Object obj)
 raises (InvalidURL, CommFailure, ReqFailure);
 void register_url(in string url_s, in Object obj)
 raises (InvalidURL, CommFailure, ReqFailure,
AlreadyExists);

 };
 };

As you examine the URLNaming module, first focus on the register_url() and
force_register_url() operations in the Resolver interface. Both of these
operations accept two parameters, a String object and an org.omg.CORBA.Object
object, and attempt to write out the object’s IOR to the URL specified by the string object.
The operations differ in function in that register_url() raises an AlreadyExists
exception if a file already exists at the URL identified by the string object. If the
force_register_url() operation encounters a file located at the location pointed to
by the string object, it is overwritten.

The next operation you want to focus on is locate(). The locate() operation
accepts, in the form of a string object, a URL pointing to an IOR file. Finally, the
locate() operation turns that URL into an object reference using the
string_to_object() operation in the ORB class and then returns that reference.

 To complete our coverage of the URL-based Naming Service, we develop an application

 - 499 -

that uses the service to both register and locate objects. In this initial example, we work
with a traditional application that uses IDL to define the object interface. As a final
example for this chapter, we use both the URL-based Naming Service and the java2iiop
application to create an IDL-free application that uses the URL-based Naming Service.

The first component of this application is the IDL definition for the remote object. This
definition, contained in Listing 27.11, defines a simple interface that exports a single
attribute. In the final example, we’ll incorporate more complex interfaces.

 LISTING 27.11 AN OBJECT THAT IMPLEMENTS THE URLNamingInterfaceI

INTERFACE WILL BE LOCATED USING THE URL-BASED NAMING SERVICE

 interface URLNamingInterfaceI {
 attribute string sData;
 };

 Complementing the URLNamingInterfaceI interface is the URLNamingInterface

class, which implements the interface (see Listing 27.12).

 LISTING 27.12 A REFERENCE IMPLEMENTATION OF THE URLNamingInterfaceI

INTERFACE

 public class URLNamingInterface extends
_URLNamingInterfaceIImplBase {

 private String _sData;

 public URLNamingInterface(String name) {
 super(name);
 }

 public URLNamingInterface() {
 super();
 }

 public void sData(String sData) {
 _sData = sData;
 }

 public String sData() {
 return _sData;
 }
 }

Now that we’ve developed an interface that can be served by the URL-based Naming
Service, we’re ready to code client and server applications that exploit the functionality of
the URL-based Naming Service. Starting with the server, Listing 27.13 contains the code
for the URLNamingServer class.

 LISTING 27.13 THE URLNamingServer CLASS USES THE URL-BASED NAMING

SERVICE TO REGISTER OBJECTS

 import org.omg.CORBA.*;
 import com.visigenic.vbroker.URLNaming.*;

 public class URLNamingServer {

 - 500 -

 public static ORB _orb = null;
 public static BOA _boa = null;

 public URLNamingServer() {
 // Create a new URLNamingInterfaceI object
 URLNamingInterfaceI interfaceObject = new
URLNamingInterface();

 interfaceObject.sData("The URL-based Naming Service
rules!");

 // register the object with the ORB
 _boa.obj_is_ready(interfaceObject);

 // obtain a reference to the Resolver instance
 try{ Resolver resolver =
 ResolverHelper.narrow(

_orb.resolve_initial_references("URLNamingResolver"));

 resolver.force_register_url(
 "http://localhost:15000/interfaceObject.ior",
 interfaceObject);
 }
 catch(Exception e) {}
 }

 public static void main(String[] args)) {
 _orb = ORB.init();
 _boa = _orb.BOA_init();

 URLNamingServer server = new URLNamingServer();
 _boa.impl_is_ready();
 }
 }

As you study this example, focus on the code contained in the try-catch block. In
the first line, we obtain a reference to the Resolver singleton. We then use the
force_register_url() operation to bind an instance of the
URLNamingInterface class to the URL
http://localhost:15000/interfaceObject.ior . This URL points to a Web
server (in this case, the gatekeeper) running on the same machine as the server at port
15000. If you decide to run the server and Web server on different machines, or the Web
server on an alternate port, the URL will need to be modified. The
force_register_url() operation is used instead of the register_url()
operation simply due to the fact that as you play with the application, you may want to run
the server over and over.

 Now that the server has been developed, you’ll need a client that obtains a reference to

the object registered by the server. The client code contained in Listing 27.14 does this.

 LISTING 27.14 THE URLNamingClient CLASS USES THE URL-BASED NAMING

SERVICE TO LOCATE OBJECTS

 import org.omg.CORBA.*;
 import com.visigenic.vbroker.URLNaming.*;

 - 501 -

 public class URLNamingClient {

 public URLNamingClient() throws Exception {
 // bind to the ORB
 ORB orb = ORB.init();

 // obtain a reference to the Resolver object
 Resolver resolver = ResolverHelper.narrow(
 orb.resolve_initial_references("URLNamingResolver"));

 // ask the Resolver object to locate
 // the InterfaceObjectI instance
 org.omg.CORBA.Object obj = resolver.locate(
 "http://localhost:15000/interfaceObject.ior");

 // narrow the URLNamingInterfaceI instance
 URLNamingInterfaceI interfaceObject =
 URLNamingInterfaceIHelper.narrow(obj);

 // print out the object, and its contents
 System.out.println("got object: "+interfaceObject);
 System.out.println("data is: "+interfaceObject.sData());
 }

 public static void main(String[] args)) {
 try{ URLNamingClient client = new URLNamingClient(); }
 catch(Exception e) {}
 }
 }

As you may be able to guess from the discussion of the Resolver interface, the
operation that actually locates the object we’re looking for is the locate() operation.
This operation, invoked on a Resolver instance, is passed the URL we used when
registering the object in the server code, and it returns a reference in the form of an
org.omg.CORBA.Object instance. Once we have the Object object, we use the
narrow() operation present in the URLNamingInterfaceIHelper class to narrow
the Object object into a URLNamingInterfaceI object.

With a solid understanding of the URL-based Naming Service under your belt, you’re now
ready to get the code up and running. First off, you need to compile the IDL and Java
source files. Start the ORB by entering

 osagent

 and start the gatekeeper by entering

 gatekeeper

 Both commands are executed at any command prompt. Now, launch the server by typing

 java URLNamingServer

 and, finally, launch the client by typing

 - 502 -

 java URLNamingClient

 When the client executes, you should see output similar to this:

 D:\Development\JAVA\dou\027>java URLNamingClient

 got object: [UnboundStubDelegate,ior=struct IOR{string type_id="

 IDL:URLNamingInterfaceI:1.0";sequence<TaggedProfile> profiles={

 struct TaggedProfile{unsigned long tag=0;sequence<octet>
profile_data

 ={80 bytes:
(0)(1)(0)(0)(0)(0)(0)(16)[1][9][2][.][1][6][8][.][1][0]

 [1][.][1][1][8](0)(4)(171)(0)(0)(0)(0)(0)0[P][M][C](0)(0)(0)

 (1)(0)(0)(0)(28)[I][D][L][:][U][R][L][N][a][m][i][n][g][I][n][t][e][r]

 [f][a][c][e][I][:][1][.]0(0)(0)(0)(1)(148)(204)(0)(175)};}};}]

 data is: The URL-based Naming Service rules!

PUTTING IT ALL TOGETHER

Well, the past few pages really have crammed in a lot of material. You’ve learned how to
develop IDL-free CORBA code, how to develop IDL from Java interfaces, and how to
locate objects using the URL-based Naming Service. As this chapter concludes, we
develop a distributed address book application that contains no IDL and locates objects
using the URL-based Naming Service.

The address book application developed in this chapter centers around a class called
AddressBook that contains a collection of entries in the form of Address objects. In
addition, a class called AddressBookServer manages, at the server, the lifecycle of
an AddressBook object. The client object, called AddressBookApplet , is actually a
Java applet that stores its address data at the server; upon login, it uses the URL-based
Naming Service to locate the address book and load it. When the user exits the applet,
the AddressBook object, along with all its entries, is stored at the server.

Starting with the server, the interface AddressBookServerI , shown in Listing 27.15,
defines the functionality needed from the server. In this application, the server is charged
with AddressBook lifecycle management due to the fact that if the objects existed at
the client, they would disappear when the user quit his browser. Because all objects are
created and remain at the server, they will exist as long as the server does. If you chose
to do so, you could have the server serialize all objects upon quitting to allow for the
reestablishing of the object state when the server is restarted.

 LISTING 27.15 THE AddressBookServerI INTERFACE DEFINES OPERATIONS

NEEDED TO MANAGE THE LIFECYCLE OF AN AddressBookI OBJECT

 interface AddressBookServerI extends org.omg.CORBA.Object {
 public AddressBookI obtainNewAddressBook();
 public void saveAddressBook(String sBookName,
 AddressBookI addressBook);
 }

 - 503 -

An implementation of the AddressBookI interface is provided in Listing 27.16. As you
examine the code, pay attention to the saveAddressBook() method, because it
interacts with the URL-based Naming Service to register an AddressBookI object.
Once the object is registered with the URL-based Naming Service, a client object can
easily obtain a reference to it.

 LISTING 27.16 AN IMPLEMENTATION OF THE AddressBookServerI INTERFACE

 import org.omg.CORBA.*;
 import com.visigenic.vbroker.URLNaming.*;

 /**
 * Implementation of the AddressBookServerI interface
 */
 public class AddressBookServer extends
_AddressBookServerIImplBase {

 private static ORB _orb = null;
 private static BOA _boa = null;
 private static Resolver _resolver = null;

 public AddressBookServer() {
 super("AddressBookServer");
 }

 /**
 * Invoked when a client object desires a new
 * AddressBookI instance.
 */
 public AddressBookI obtainNewAddressBook() {
 AddressBookI addressBook = new AddressBook(_boa);
 _boa.obj_is_ready(addressBook);
 return addressBook;
 }

 /**
 * Invoked when a client object wants to have an AddressBookI
 * instance saved through use of the URL-based Naming Service.
 */
 public void saveAddressBook(String sBookName,
 AddressBookI addressBook) {
 try{ // create the url, change the word "localhost" to the
 // target IP-address if
 // you are running on a different
 // machine from the server or if the web server
 // is not running on port 15000
 StringBuffer sbURL =
 new StringBuffer("http://localhost:15000/");
 sbURL.append(sBookName);
 sbURL.append(".ior");
 // force the registration
 _resolver.force_register_url(sbURL.toString(),

 - 504 -

 addressBook);
 }
 catch(Exception e) {}
 }

 public static void main(String[] args)) {
 _orb = ORB.init();
 _boa = _orb.BOA_init();

 // obtain a reference to the Resolver instance
 try{ _resolver = ResolverHelper.narrow(

_orb.resolve_initial_references("URLNamingResolver"));

 // create a AddressBookServer instance
 AddressBookServer server = new AddressBookServer();
 _boa.obj_is_ready(server);
 // register the AddressBookServer instance
 _resolver.force_register_url(

 "http://localhost:15000/addressBook.ior",
server);

 _boa.impl_is_ready();
 }
 catch(Exception e) {}
 }
 }

Now that we’ve defined the entities charged with managing the lifecycle of an
AddressBook instance, it’s time to define the AddressBook object itself. To begin,
Listing 27.17 contains the code for the AddressBookI interface. The interface defines
operations for adding, removing, and obtaining all entries in the book.

 LISTING 27.17 THE AddressBookI INTERFACE DEFINES THE OPERATIONS

NEEDED TO MANAGE AN ADDRESS BOOK

 /**
 * Interface defining functionality present in an
 * address book
 */
 public interface AddressBookI extends org.omg.CORBA.Object {
 public AddressI[] obtainAddresses(();
 public void addAddress(String sFirstName,
 String sLastName,
 String sEmailAddress);
 public void removeAddress(AddressI address);
 }

Moving from the AddressBookI interface to its implementation, Listing 27.18 contains
the AddressBook class. Note how the class uses a Vector object to internally store
Address objects and only converts it to an array when the entries are asked for.

 LISTING 27.18 THE AddressBook CLASS IMPLEMENTS THE AddressBookI

INTERFACE

 - 505 -

 import java.util.*;
 import org.omg.CORBA.BOA;

 /**
 * Basic implementation of the AddressBookI interface
 */
 public class AddressBook extends _AddressBookIImplBase {
 private Vector _addresses;
 private BOA _boa;

 public AddressBook(BOA boa) {
 super();
 _boa = boa;

 _addresses = new Vector();
 }

 public AddressI[] obtainAddresses(() {
 AddressI[] returnValue == new Address[_addresses.size()];
 _addresses.copyInto(returnValue);
 return returnValue;
 }

 public void addAddress(String sFirstName,
 String sLastName,
 String sEmailAddress) {
 AddressI address = new Address(sFirstName,
 sLastName,
 sEmailAddress);
 _boa.obj_is_ready(address);
 _addresses.addElement(address);
 }

 public void removeAddress(AddressI address) {
 _addresses.removeElement(address);
 }
 }

The final two pieces of the server code are the AddressI interface (shown in Listing
27.19) and its implementation (shown in Listing 27.20). These entities are both rather
simple; they define access to first and last names, along with email addresses.

 LISTING 27.19 THE AddressI INTERFACE DEFINES THE OPERATIONS NEEDED

TO MANAGE A UNIQUE ADDRESS

 /**
 * Interface defining basic Address data
 */
 public interface AddressI extends org.omg.CORBA.Object {
 public String getFirstName();
 public String getLastName();
 public String getEmailAddress();

 - 506 -

 public void setFirstName(String sFirstName);
 public void setLastName(String sLastName);
 public void setEmailAddress(String sEmailAddress);
 }

 LISTING 27.20 IMPLEMENTATION OF THE AddressI INTERFACE

 /**
 * Basic implementation of the AddressI interface
 */
 public final class Address extends _AddressIImplBase {
 private String _sFirstName = "";
 private String _sLastName = "";
 private String _sEmailAddress = "";

 public Address(String sFirstName,
 String sLastName,
 String sEmailAddress) {
 _sFirstName = sFirstName;
 _sLastName = sLastName;
 _sEmailAddress = sEmailAddress;
 }

 public Address() {
 }

 public String getFirstName() {
 return _sFirstName;
 }

 public String getLastName() {
 return _sLastName;
 }

 public String getEmailAddress() {
 return _sEmailAddress;
 }

 public void setFirstName(String sFirstName) {
 _sFirstName = sFirstName;
 }

 public void setLastName(String sLastName) {
 _sLastName = sLastName;
 }

 public void setEmailAddress(String sEmailAddress) {
 _sEmailAddress = sEmailAddress;
 }
 }

 - 507 -

With the server fully coded, we can now begin work on the client. As was stated before,
the client in this environment is written as a Java applet. The applet consists of the
AddressBookApplet class, contained in Listing 27.21, and two additional classes that
we’ll cover momentarily.

The AddressBookApplet class functions by first asking a user to log into the system
using a username. The class then attempts to bind to an AddressBook instance using
a URL formed from the user name. If the bind fails, the login fails; otherwise, the entries
are displayed onscreen. In addition to logging into an existing account, the user is also
presented with the opportunity to create a new address book. Finally, when the user quits
the address book, it’s saved at the server.

 LISTING 27.21 AddressBookApplet BINDS TO AN AddressBook INSTANCE

 import org.omg.CORBA.*;
 import com.visigenic.vbroker.URLNaming.*;
 import java.applet.*;
 import java.awt.*;

 /**
 * Client applet
 */
 public class AddressBookApplet extends Applet {
 private String _sLoginID;
 private Resolver _resolver = null;
 private ORB _orb = null;
 private AddressBookI _addressBook = null;
 private AddressBookServerI _addressBookServer = null;

 public void init() {
 bindToServices();
 showLoginPanel();
 }

 /**
 * Displays the login panel
 */
 private void showLoginPanel() {
 removeAll();
 LoginPanel loginPanel = new LoginPanel(this);
 setLayout(new GridLayout(1,1));
 add(loginPanel);
 doLayout();
 validate();
 }

 /**
 * Binds to all services, including ORB
 */
 private void bindToServices() {
 // obtain a reference to the ORB
 _orb = ORB.init();
 // obtain a reference to the Resolver instance
 try{ _resolver = ResolverHelper.narrow(

 - 508 -

_orb.resolve_initial_references("URLNamingResolver"));

 // locate the AddressBookServerI instance,
 // change the url if you are running on a different
 // machine from the server or if the web server
 // is not running on port 15000
 org.omg.CORBA.Object returnObject =
 _resolver.locate(
 "http://localhost:15000/addressBook.ior");
 _addressBookServer =
 AddressBookServerIHelper.narrow(returnObject);
 }
 catch(Exception e) {}
 }

 /**
 * Creates a new Address Book for the user
 */
 public void createNewAddressBook(String sName) {
 _sLoginID = sName;
 _addressBook = _addressBookServer.obtainNewAddressBook();

 AddressBookViewer viewer = new AddressBookViewer(_addressBook,
 this,

_addressBookServer);

 removeAll();
 add(viewer);
 doLayout();
 validate();
 }

 /**
 * Uses the URL-based Naming Service to attempt to
 * bind to an existing Address Book instance.
 */
 private void obtainAddressBook() throws Exception {
 StringBuffer sbURL = new
StringBuffer("http://localhost:15000/");

 sbURL.append(_sLoginID);
 sbURL.append(".ior");
 org.omg.CORBA.Object returnObject =
 _resolver.locate(sbURL.toString());
 _addressBook = AddressBookIHelper.narrow(returnObject);
 }

 /**
 * Asks the AddressBookServerI instance to save
 * the active address book.
 */

 private void saveAddressBook() {
 _addressBookServer.saveAddressBook(_sLoginID,
_addressBook);

 - 509 -

 showLoginPanel();
 }

 /**
 * Invoked when the user desires a quit
 */
 public void doQuit() {
 saveAddressBook();
 }

 /**
 * Invoked when the login panel desires a login attempt
 */
 public boolean doLogin(String sName) {
 _sLoginID = sName;
 try{ obtainAddressBook(); }
 catch(Exception e) {
 return false;
 }
 // login success, create the viewer
 AddressBookViewer viewer = new
AddressBookViewer(_addressBook,

 this,

_addressBookServer);

 removeAll();
 add(viewer);
 doLayout();
 validate();

 return true;
 }
 }

 The first utility class used by the client is the LoginPanel class (contained in Listing

27.22), which prompts a user to log in to or create a new address book.

 LISTING 27.22 THE LoginPanel CLASS FACILITATES THE LOGIN PROCESS

 import java.awt.*;
 import java.awt.event.*;

 /**
 * Facilitates the login or create new address book process
 */
 public class LoginPanel extends Panel implements ActionListener {
 private TextField _txtLogin;
 private Button _btnNew;
 private Button _btnLogin;
 private AddressBookApplet _applet;

 public LoginPanel(AddressBookApplet applet) {
 _applet = applet;

 - 510 -

 setLayout(new BorderLayout(10,10));
 add(new Label("Welcome To The Address Book Server"),
 BorderLayout.NORTH);

 Panel p = new Panel();
 p.setLayout(new GridLayout(1,3));
 p.add(new Label("Login ID"));
 p.add(_txtLogin = new TextField(15));
 p.add(_btnLogin = new Button("Login"));

 Panel p2 = new Panel();
 p2.setLayout(new GridLayout(5,1));
 p2.add(p);
 p2.add(_btnNew = new Button("New Address Book"));

 add(p2, BorderLayout.CENTER);

 _btnNew.addActionListener(this);
 _btnLogin.addActionListener(this);
 }

 public void actionPerformed(ActionEvent ae) {
 Object target = ae.getSource();
 if(target == _btnLogin) doLogin();
 else doNew();
 }

 private void doLogin() {
 _applet.doLogin(_txtLogin.getText().trim());
 }

 private void doNew() {
 _applet.createNewAddressBook(_txtLogin.getText().trim());
 }
 }

 Finally, the AddressBookViewer class, contained in Listing 27.23, provides access to

the contents of the AddressBook object, and it also allows for the adding of entries.

 LISTING 27.23 THE AddressBookViewer CLASS INTERACTS WITH AN
AddressBookI OBJECT TO DISPLAY AND MODIFY ADDRESSES

 import java.awt.*;
 import java.awt.event.*;

 /**
 * Displays the contents of the address book, and allows
 * for the addition of new addresses.
 */
 public class AddressBookViewer extends Panel implements
ActionListener {

 private AddressI[] __addresses;

 - 511 -

 private AddressBookI _addressBook;

 private Button _btnForward;
 private Button _btnBack;
 private Button _btnNewCard;
 private Button _btnSaveCard;
 private Button _btnQuit;

 private int _iIndex = 0;

 private TextField _txtFirstName;
 private TextField _txtLastName;
 private TextField _txtEmailAddress;

 private AddressBookApplet _applet;
 private AddressBookServerI _addressBookServer;

 public AddressBookViewer(AddressBookI addressBook,
 AddressBookApplet applet,
 AddressBookServerI
addressBookServer) {

 _addressBookServer = addressBookServer;
 _applet = applet;
 _addressBook = addressBook;
 _addresses = addressBook.obtainAddresses();

 Panel pnlButtons = new Panel();
 pnlButtons.setLayout(new GridLayout(1,7));
 pnlButtons.add(_btnBack = new Button("<<"));
 pnlButtons.add(new Label(""));
 pnlButtons.add(_btnNewCard = new Button("New Card"));
 pnlButtons.add(_btnSaveCard = new Button("Save Card"));
 pnlButtons.add(_btnQuit = new Button("Quit"));
 pnlButtons.add(new Label(""));
 pnlButtons.add(_btnForward = new Button(">>"));

 Panel pnlView = new Panel();
 pnlView.setLayout(new GridLayout(3,3));
 pnlView.add(new Label("First Name"));
 pnlView.add(_txtFirstName = new TextField());
 pnlView.add(new Label("Last Name"));
 pnlView.add(_txtLastName = new TextField());
 pnlView.add(new Label("Email"));
 pnlView.add(_txtEmailAddress = new TextField());

 _btnForward.addActionListener(this);
 _btnBack.addActionListener(this);
 _btnNewCard.addActionListener(this);
 _btnSaveCard.addActionListener(this);
 _btnQuit.addActionListener(this);

 _btnSaveCard.setEnabled(false);

 - 512 -

 setLayout(new BorderLayout(10,10));
 add(pnlButtons, BorderLayout.NORTH);
 add(pnlView, BorderLayout.CENTER);

 displayCurrentAddress();
 }

 private void displayCurrentAddress() {
 if(_addresses.length != 0) {
 AddressI address = _addresses[_iIndex];
 _txtFirstName.setText(address.getFirstName());
 _txtLastName.setText(address.getLastName());
 _txtEmailAddress.setText(address.getEmailAddress());
 }
 updateButtons();
 }

 public void actionPerformed(ActionEvent ae) {
 Object target = ae.getSource();
 if(target == _btnForward) doForward();
 else if(target == _btnBack) doBack();
 else if(target == _btnNewCard) doNewCard();
 else if(target == _btnSaveCard) doSaveCard();
 else if(target == _btnQuit) doQuit();
 }

 private void doQuit() {
 _applet.doQuit();
 }

 private void doBack() {
 _iIndex";
 displayCurrentAddress();
 updateButtons();
 }

 private void doForward() {
 _iIndex++;
 displayCurrentAddress();
 updateButtons();

 }

 private void doNewCard() {
 _txtFirstName.setText("");
 _txtLastName.setText("");
 _txtEmailAddress.setText("");
 _btnSaveCard.setEnabled(true);
 }

 private void doSaveCard() {
 _addressBook.addAddress(_txtFirstName.getText().trim(),

 - 513 -

 _txtLastName.getText().trim(),

_txtEmailAddress.getText().trim());

 _btnSaveCard.setEnabled(false);
 }

 private void updateButtons() {
 if(_iIndex == 0 && _addresses.length == 0) {
 _btnBack.setEnabled(false);
 _btnForward.setEnabled(false);
 }
 else if(_iIndex == 0) {
 _btnBack.setEnabled(false);
 _btnForward.setEnabled(true);
 }
 else if(_iIndex+1 == _addresses.length) {
 _btnForward.setEnabled(false);
 _btnBack.setEnabled(true);
 }

 }
 }

 The last piece of the application is the HTML code used to launch the applet. This code is

contained in Listing 27.24.

 LISTING 27.24 THE HTML USED TO LAUNCH THE APPLET

 <applet code=AddressBookApplet height=175 width=450>
 </applet>

Wow! If you’ve made it this far, stop and pat yourself on the back. This chapter has
covered some rather new ways of dealing with CORBA entities, and you’ve been asked
to think about CORBA development differently than before. This last example will be
wrapped up with coverage of how to run it, and we’ll then wrap up the chapter with a
discussion of the pros and cons of the Caffeine tool set.

Before you read any further, draw on your earlier knowledge of how Caffeine
applications are compiled and then attempt to get this application up and running. If you
have any trouble, the following steps will help you out:

 1. Enter in all application code.

 2. Compile all code using your Java compiler.

 3. Run all interfaces through the java2iiop compiler.

 4. Compile the output of java2iiop using your Java compiler.

 5. Start the OSAgent and gatekeeper applications.

 6. Start the server by typing

 - 514 -

 java AddressBookServer

 7. Start the client by typing

 appletviewer AddressBookApplet.html

 Once your application is up and running, you should see something similar to what’s

shown in Figure 27.1.

 Figure 27.1: The address book application viewing entries.

CHOOSING CAFFEINE OR TRADITIONAL CORBA?

As you read about the Caffeine tool set in this chapter, chances are you were curious
why anyone would choose not to use Caffeine, since it makes development so much
easier. The Caffeine tools are nice in the manner in which they ease development;
however, they do present some issues. First of all, if extensible structs are used, your
application will only function with the Inprise Visibroker for Java ORB. Additionally, as
with any code-generation tool, what you get might not be optimized. Once you
understand the IDL, you’ll be able to develop optimized IDL yourself easily.

The URL-based Naming Service has a major problem due to the manner in which objects
are registered. As each object is registered with the service, its IOR is written to a local
file. Because file systems are notoriously bad at searching for a unique file in a directory
containing thousands or millions of other files, scaling is a big problem.

As you continue on with your CORBA development efforts, do take note of the Caffeine
tool set. If your application demands it, feel free to use the tools to your heart’s content. If,
however, their use is going to affect performance, make sure you’re saving enough
development time to counteract the performance issues. Also note that you can pick and
choose which pieces of the tool set you use. For example, you can write an IDL-based
application that uses the URL-based Naming Service. You can also write an IDL-free
application that uses the Directory Service.

FROM HERE

This chapter introduced a new manner by which CORBA applications are developed.
Instead of forcing the developer to learn how to best utilize IDL, the Caffeine tool set
allows the developer to work completely in Java. As you begin new development
projects, always keep the Caffeine tool set in mind. It can potentially save you
development time.

In addition to completing the Caffeine chapter, you’re now done with the first of two
sections on CORBA. The chapters in this section teach what CORBA is and how to use it
in your development efforts. In the next section, we’ll cover advanced material, including
CORBAservices, memory management, dynamic invocation, and inter-ORB
communication. Here’s a list of some key chapters that relate to what you’ve learned in
this chapter:

 • Chapter 29, “Internet Inter-ORB Protocol (IIOP)”

 - 515 -

 • Chapter 30, “The Naming Service”

 • Chapter 31, “The Event Service”

 • Chapter 32, “Interface Repository, Dynamic Invocation, Introspection, and Reflection”

Part VI: Advanced CORBA

 Chapter List

 Chapter 28: The Portable Object Adapter (POA)

 Chapter 29: Internet Inter-ORB Protocol (IIOP)

 Chapter 30: The Naming Service

 Chapter 31: The Event Service

 Chapter 32: Interface Repository, Dynamic Invocation,

Introspection, and Reflection

 Chapter 33: Other CORBA Facilities and Services

Chapter 28: The Portable Object Adapter (POA)

 Overview

Writing a technology book presents itself as an interesting challenge. At one level, it’s fun
and exciting to break down a complex technology into small pieces such that the
technology is easily understood. You get to work with cutting edge technology and are
often among the first to cover a target technology. The downside of covering technology
is that with new features coming out every few months (often replacing existing ones), it’s
difficult to make a decision about the version of the technology that should be covered.
As this book is hitting the press, the CORBA 3.0 specification will be close to completion.
In general, CORBA 3.0 adds a lot of new features to CORBA programming but keeps
much of the 2.3 specification intact.

One area that’s under CORBA 3.0 is the Basic Object Adapter (BOA). The BOA is
deprecated and is being replaced with the Portable Object Adapter (POA). Use of the
BOA will continue for a while, and all vendors will probably not have ORBs that support
the POA until long after this book is released. However, because the POA will eventually
replace the BOA, this chapter prepares you for the upcoming change by first discussing
problems inherent in the BOA and then discussing how the POA solves these problems.
The chapter concludes with the POA IDL and a collection of examples showing how Java
applications use the POA. As a whole, this chapter covers the following topics:

Note

New documents produced by the OMG, including the CORBA 3.0
specification, are available online at
http://www.omg.org/library/specindx.htm.

 • The need filled by object adapters in a CORBA environment

 • Problems presented by the BOA

 - 516 -

 • The POA and the problems it solves

 • Writing code that interacts with the POA

THE NEED FOR A PORTABLE OBJECT ADAPTER (POA)

An object adapter defines how an object is activated into the CORBA universe. A
required feature in a CORBA application, an object adapter manages communication with
the ORB for many objects. Although developers could each code individual object
adapters, the CORBA specification calls for developers to standardize on a common
adapter, thus preventing a proliferation of incompatible object adapters. Up until CORBA
3.0, the BOA was the object adapter used in 99 percent of all CORBA applications.
Certain applications did implement a specialized adapter (for example, those that use an
object database), but most stuck with the tried-and-true BOA. Although the BOA was fine,
it presented problems. Applications developed with a given BOA were not always
portable across ORB implementations. Additionally, the BOA did not always meet the
needs of persistent objects, because a given BOA reference was not maintained across
server restarts.

In an attempt to solve the problems presented by the BOA, the OMG defined the POA as
an eventual replacement. As stated earlier, both the BOA and POA will remain in use for
some time to come. However, the OMG does recommend that future development efforts
be performed using the POA. Here are the design goals for the POA taken from its
specification:

 • Allow programmers to construct object implementations that are portable between

different ORB products.

•

Provide support for objects with persistent identities. More precisely, the POA is
designed to allow programmers to build object implementations that can provide
consistent service for objects whose lifetimes (from the perspective of a client holding
a reference for such an object) span multiple server lifetimes.

 • Provide support for the transparent activation of objects.

 • Allow a single servant to support multiple object identities simultaneously.

 • Allow multiple distinct instances of the POA to exist in a server.

 • Provide support for transient objects with minimal programming effort and overhead.

 • Provide support for the implicit activation of servants with POA-allocated object IDs.

•

Allow object implementations to be maximally responsible for an object’s behavior.
Specifically, an implementation can control an object’s behavior by establishing the
datum that defines an object’s identity, determining the relationship between the
object’s identity and the object’s state, managing the storage and retrieval of the
object’s state, providing the code that will be executed in response to requests, and
determining whether or not the object exists at any point in time.

•

Avoid requiring the ORB to maintain a persistent state describing individual objects,
their identities, where their state is stored, whether certain identity values have been
previously used, whether an object has ceased to exist, and so on.

 • Provide an extensible mechanism for associating policy information with objects

implemented in the POA.

 • Allow programmers to construct object implementations that inherit from static skeleton

 - 517 -

classes generated by OMG IDL compilers or a DSI implementation.

POA ARCHITECTURE

In implementing all the previously discussed design goals, the POA exposes an
architecture that consists of three key entities: an object reference, an object ID, and a
servant. These entities are supported by the ORB and by the POA itself. As with the
BOA, the object reference exists at the client and delegates all client-side object
interactions to the server-side implementation. The object ID is used by the POA to
uniquely identify the target object, and the servant is the server-side implementation of
the target object. All servants are collected into one or more servers, and all object
references exist at one or more clients. As stated before in this book, a single application
(or even an object) can play both the role of client and the role of server. A client is simply
defined as an entity that invokes requests on a remote object, and a server is the entity
that houses that remote object. Completing the POA architecture are the POA, which is
charged with activating objects, and the ORB, which takes care of all background tasks,
including parameter marshaling and load balancing. This architecture is illustrated in
Figure 28.1.

 Figue 28.1: The POA architecture.

 INTERACTING WITH THE POA

The POA and the other CORBA entities that support its existence are all contained in the
PortableServer module. Shown in Listing 28.1, this module is a bit daunting at first
glance. As with many other entities in the CORBA universe, its size is a function of its
need to be robust and, in general, fit the needs of a large variety of applications. Spend
some time with the module, but don’t let yourself get bogged down in everything it
exposes. Listing 28.1 is an OMG specification (not a complete program) that’s mainly
utilized internally by the ORB vendors; it’s not something that you’ll likely have to spend
much time with. We follow Listing 28.1 with a section that analyzes the commonly used
pieces through usage examples.

 LISTING 28.1 THE PortableServer MODULE

 #pragma prefix "omg.org"
 module PortableServer {
 interface POA;
 native Servant;
 typedef sequence<octet> ObjectId;
 exception ForwardRequest {Object forward_reference;};

 // **
 //
 // Policy interfaces
 //
 // **
 enum ThreadPolicyValue {ORB_CTRL_MODEL, SINGLE_THREAD_MODEL };

 interface ThreadPolicy : CORBA::Policy {

 - 518 -

 readonly attribute ThreadPolicyValue value;
 };

 enum LifespanPolicyValue {TRANSIENT, PERSISTENT};

 interface LifespanPolicy : CORBA::Policy {
 readonly attribute LifespanPolicyValue value;
 };

 enum IdUniquenessPolicyValue {UNIQUE_ID, MULTIPLE_ID };

 interface IdUniquenessPolicy : CORBA::Policy {
 readonly attribute IdUniquenessPolicyValue value;
 };

 enum IdAssignmentPolicyValue {USER_ID, SYSTEM_ID };

 interface IdAssignmentPolicy : CORBA::Policy {
 readonly attribute IdAssignmentPolicyValue value;
 };

 enum ImplicitActivationPolicyValue
 {IMPLICIT_ACTIVATION, NO_IMPLICIT_ACTIVATION};

 interface ImplicitActivationPolicy : CORBA::Policy {
 readonly attribute ImplicitActivationPolicyValue value;
 };

 enum ServantRetentionPolicyValue {RETAIN, NON_RETAIN};

 interface ServantRetentionPolicy : CORBA::Policy {
 readonly attribute ServantRetentionPolicyValue value;
 };

 enum RequestProcessingPolicyValue
 { USE_ACTIVE_OBJECT_MAP_ONLY,
 USE_DEFAULT_SERVANT, USE_SERVANT_MANAGER};

 interface RequestProcessingPolicy : CORBA::Policy {
 readonly attribute RequestProcessingPolicyValue value;
 };

 // **
 //
 // POAManager interface
 //
 // **
 interface POAManager {
 exception AdapterInactive{};
 void activate() raises(AdapterInactive);
 void hold_requests(in boolean wait_for_completion)
 raises(AdapterInactive);

 - 519 -

 void discard_requests(in boolean wait_for_completion)
 raises(AdapterInactive);
 void deactivate(in boolean etherealize_objects,
 in boolean wait_for_completion)
 raises(AdapterInactive);
 };

 // **
 //
 // AdapterActivator interface
 //
 // **
 interface AdapterActivator {
 boolean unknown_adapter(in POA parent, in string name);
 };

 // **
 //
 // ServantManager interface
 //
 // **
 interface ServantManager { };

 interface ServantActivator : ServantManager {
 Servant incarnate (in ObjectId oid, in POA adapter)
 raises (ForwardRequest);
 void etherealize (in ObjectId oid,
 in POA adapter,
 in Servant serv,
 in boolean cleanup_in_progress,
 in boolean remaining_activations);
 };

 interface ServantLocator : ServantManager {
 native Cookie;
 Servant preinvoke(in ObjectId oid,
 in POA adapter,
 in CORBA::Identifier operation,
 out Cookie the_cookie)
 raises (ForwardRequest);
 void postinvoke(in ObjectId oid,
 in POA adapter,
 in CORBA::Identifier operation,
 in Cookie the_cookie,
 in Servant the_servant);
 };

 // **
 //
 // POA interface
 //
 // **

 - 520 -

 interface POA {
 exception AdapterAlreadyExists {};
 exception AdapterInactive {};
 exception AdapterNonExistent {};
 exception InvalidPolicy { unsigned short index; };
 exception NoServant {};
 exception ObjectAlreadyActive {};
 exception ObjectNotActive {};
 exception ServantAlreadyActive {};
 exception ServantNotActive {};
 exception WrongAdapter {};
 exception WrongPolicy {};

 //---
 //
 // POA creation and destruction
 //
 //---
 POA create_POA(in string adapter_name,
 in POAManager a_POAManager,
 in CORBA::PolicyList policies)
 raises (AdapterAlreadyExists, InvalidPolicy);
 POA find_POA(in string adapter_name,
 in boolean activate_it)
 raises (AdapterNonExistent);
 void destroy(in boolean etherealize_objects,
 in boolean wait_for_completion);

 // **
 //
 // Factories for Policy objects

 //
 // **
 ThreadPolicy create_thread_policy(in ThreadPolicyValue value);
 LifespanPolicy create_lifespan_policy
 (in LifespanPolicyValue value);
 IdUniquenessPolicy create_id_uniqueness_policy
 (in IdUniquenessPolicyValue value);
 IdAssignmentPolicy create_id_assignment_policy
 (in IdAssignmentPolicyValue value);
 ImplicitActivationPolicy
 create_implicit_activation_policy
 (in ImplicitActivationPolicyValue value);
 ServantRetentionPolicy
 create_servant_retention_policy
 (in ServantRetentionPolicyValue value);
 RequestProcessingPolicy
 create_request_processing_policy
 (in RequestProcessingPolicyValue value);

 //---

 - 521 -

 //
 // POA attributes
 //
 //---
 readonly attribute string the_name;
 readonly attribute POA the_parent;
 readonly attribute POAManager the_POAManager;
 attribute AdapterActivator the_activator;

 //---
 //
 // Servant Manager registration:
 //
 //---
 ServantManager get_servant_manager() raises (WrongPolicy);
 void set_servant_manager(in ServantManager imgr)
 raises (WrongPolicy);

 //---
 //
 // operations for the USE_DEFAULT_SERVANT policy
 //
 //---
 Servant get_servant() raises (NoServant, WrongPolicy);
 void set_servant(in Servant p_servant) raises (WrongPolicy);

 // **
 //
 // object activation and deactivation
 //

 // **
 ObjectId activate_object(in Servant p_servant)
 raises (ServantAlreadyActive, WrongPolicy);
 void activate_object_with_id(in ObjectId id,
 in Servant p_servant)
 raises (ServantAlreadyActive,
 ObjectAlreadyActive,
 WrongPolicy);
 void deactivate_object(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);

 // **
 //
 // reference creation operations
 //
 // **
 Object create_reference(in CORBA::RepositoryId intf)
 raises (WrongPolicy);
 Object create_reference_with_id (in ObjectId oid,
 in CORBA::RepositoryId
intf)

 raises (WrongPolicy);

 - 522 -

 //---
 //
 // Identity mapping operations:
 //
 //---
 ObjectId servant_to_id(in Servant p_servant)
 raises (ServantNotActive, WrongPolicy);
 Object servant_to_reference(in Servant p_servant)
 raises (ServantNotActive, WrongPolicy);
 Servant reference_to_servant(in Object reference)
 raises (ObjectNotActive, WrongAdapter, WrongPolicy);
 ObjectId reference_to_id(in Object reference)
 raises (WrongAdapter, WrongPolicy);
 Servant id_to_servant(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);
 Object id_to_reference(in ObjectId oid)
 raises (ObjectNotActive, WrongPolicy);
 };

 // **
 //
 // Current interface
 //
 // **
 interface Current : CORBA::Current {
 exception NoContext { };
 POA get_POA() raises (NoContext);
 ObjectId get_object_id() raises (NoContext);
 };
 };

Well, you made it this far, which means that the code in Listing 28.1 did not scare you
away from the rest of the chapter. Again, although it’s important to note every feature
exposed by the module, chances are you’ll not use all these features in your applications.
One area you do need to concentrate some attention on, however, is the POA interface.
This interface is the location where you’ll spend the majority of your time when
interacting with the POA.

Starting out with the manner in which a POA reference is actually obtained, the following
code snippet first binds to the ORB and then uses the ORB method
resolve_initial_references() to obtain a reference to the POA:

 import org.omg.CORBA.*;

 import PortableServer.*;

 ORB orb = ORB.init();

 org.omg.CORBA.Object object =
orb.resolve_initial_references("RootPOA");

 POA poa = POAHelper.narrow(object);

 - 523 -

Once a POA reference is obtained, it’s used throughout the server to activate objects. In
general, objects are commonly activated in two ways. As stated earlier in the chapter, an
object in the POA is uniquely identified by its object ID. This ID can either be specified
when activating an object or generated automatically by the server. If you’re simply
activating a transient object, an autogenerated system ID is sufficient. If, however, the
object is to be persistent (meaning that other entities can bind to it), you’ll want to specify
an ID during activation. The next code snippet demonstrates both activation methods.

As you look over the code, note that an object ID is nothing more than an array of IDL
octet’s (Java bytes). The POA derives absolutely no meaning from the ID’s value—it’s
simply used to identify an object. The programmer develops the meaning associated with
an ID’s value.

 // create a dummy object

 FooInterfaceI foo = new FooInterface();

 // activate with a system generated

 // object if

 ObjectId oid = poa.activate_object(foo);

 // create an object id

 byte[] oid2 = new byte[10];

 poa.activate_object_with_id(oid2, foo);

FROM HERE

This chapter differs from other chapters in that instead of covering the current state of
CORBA, it covers something that will enter into the CORBA universe after this book is
published. Depending on when you read this chapter (and how well the OMG and ORB
vendors stick to their timelines), the POA may be just showing its face or may actually be
in use. What must be noted, however, is that the BOA is not going anywhere for a long
time. Millions of lines of fully functional code already use the BOA, and developers of new
code may not want to begin using a new feature immediately after its release. As you
continue to explore this book, you may want to revisit the following chapters, which
complement what’s addressed here:

 • Chapter 21, “CORBA Overview”

 • Chapter 22, “CORBA Architecture”

Chapter 29: Internet Inter-ORB Protocol (IIOP)

 Overview

As discussed in Chapter 21, “CORBA Overview,” CORBA 2.0 introduced the Internet
Inter-ORB Protocol (IIOP), which brought interoperability to CORBA environments. At a
high level, IIOP allows for objects developed for an Object Request Broker (ORB) from
vendor A to communicate over TCP/IP with objects developed for an ORB from vendor B.
Digging further under the hood, you’ll note that IIOP is actually a TCP/IP implementation
of General Inter-ORB Protocol (GIOP), which defines a standard communication

 - 524 -

mechanism between ORBs. As is implied by the General part of its name, GIOP is
transport mechanism independent, with IIOP being the transport dependent (TCP/IP)
mapping.

This chapter examines GIOP and IIOP first from a general technical standpoint and then
looks at what it means to integrate these technologies into your applications. Specifically,
the following topics are covered:

 • IIOP/GIOP design goals

 • IIOP/GIOP specification elements

 • Developing with IIOP/GIOP

As you study the chapter, note that two types of information are presented. The first
section presents a general overview of IIOP/GIOP and then digs under the hood to
present some of the nitty-gritty details. The second section actually develops a multi-ORB
application. In general, this first section is interesting but is presented for reference
purposes only. It’s important to know why IIOP/GIOP came into existence as well as how
exactly they work, but this knowledge is not necessary to work with IIOP. The second
section actually develops an application that uses IIOP to enable inter-ORB communication
and therefore is of greater use to developers.

 DESIGN GOALS

In the initial request for proposal (RFP) that led to GIOP, the OMG outlined a series of
design requirements for submissions to adhere to. These requirements generally called
for a highly scalable, easy-to-understand addition to the Object Management Architecture
(OMA) that allowed for inter-ORB communication. As these goals led to the eventual
GIOP and IIOP specifications, the following bulleted points (taken from the CORBA 2.3
specification) were defined to describe the final IIOP/GIOP specification:

 Note The OMG RFP process (fully described in Chapter 21) is a standard

mechanism used to gather third-party input on potential specifications.

•

Widest possible availability. The GIOP and IIOP are based on the most widely used
and flexible communications transport mechanism available (TCP/IP) and define the
minimum additional protocol layers necessary to transfer CORBA requests between
ORBs.

•

Simplicity. The GIOP is intended to be as simple as possible while meeting other
design goals. Simplicity is deemed the best approach to ensure a variety of
independent, compatible implementations.

 • Scalability. The IIOP/GIOP protocol should support ORBs, and networks of bridged

ORBs, up to the size of today’s Internet, and beyond.

•

Low cost. Adding support for IIOP/GIOP to an existing or new ORB design should
require small engineering investment. Moreover, the runtime costs required to support
IIOP in deployed ORBs should be minimal.

•

Generality. Whereas the IIOP is initially defined for TCP/IP, GIOP message formats
are designed to be used with any transport layer that meets a minimal set of
assumptions; specifically, the GIOP is designed to be implemented on other
connection-oriented transport protocols.

•

Architectural neutrality. The GIOP specification makes minimal assumptions about the
architecture of agents that will support it. The GIOP specification treats ORBs as
opaque entities with unknown architectures.

 - 525 -

As you examine this set of requirements, it quickly becomes apparent that any piece of
software actually able to achieve all goals is an impressive offering. Not only does GIOP
need to enable communication between different ORBs, but it must also be scalable, have
a low cost, function between any compliant ORBs, and allow for implementation using any
transport protocol. Because TCP/IP is the transport protocol with the widest use, a logical
next step after developing GIOP was to implement it using TCP/IP. (As stated earlier, the
TCP/IP implementation of GIOP is called IIOP.)

UNDER THE HOOD

With knowledge of the problem solved by IIOP/GIOP, we now move into coverage of how
exactly the technologies are implemented. Because the focus is specifically on IIOP, and
not on GIOP and IIOP as independent entities, the remaining sections cover the two in
conjunction.

The GIOP specification consists of four distinct elements; these elements work in
conjunction to facilitate the inter-ORB communication. After looking over the elements,
we’ll dive into a discussion of each:

 • The Common Data Representation (CDR) definition

 • GIOP message formats

 • GIOP transport assumptions

 • Internet IOP message transport

The first element in the list—Common Data Representation (CDR)—exists to facilitate
representation of IDL data types in a low-level format suitable for transfer between
entities. This format breaks down IDL data types into the physical bytes they consist of,
and it can be passed to entities in either forward or reverse order. When one ORB
attempts to communicate with another over GIOP, they exchange information on their
preferred byte order, and that information is taken into account when placing the IDL data
elements into the CDR.

The second element in the list—GIOP message formats—is a collection of seven
different formats that messages can use when traveling between ORBs. These formats
fully support all aspects of CORBA communication, including dynamic object location and
remote operation invocation.

The third element in the list—GIOP transport assumptions—is a collection of
assumptions that are made about the target implementation technology. The final
element in the list—Internet IOP message transport—continues the discussion of
transport mechanisms to detail how TCP/IP connections are utilized; this section is
specific to the IIOP specification.

To finish up the exploration of GIOP and IIOP implementation and specification details,
take a look at the IDL in Listing 29.1. This listing contains two modules, GIOP and IIOP,
that each expose functionality used when two ORBs communicate with each other.

 LISTING 29.1 IDL FOR THE GIOP AND IIOP MODULES

 module GIOP {
 struct Version {
 octet major;
 octet minor;
 };

 - 526 -

 enum MsgType_1_0{
 Request, Reply, CancelRequest,
 LocateRequest, LocateReply,
 CloseConnection, MessageError
 };

 enum MsgType_1_1{
 Request, Reply, CancelRequest,
 LocateRequest, LocateReply,

 CloseConnection, MessageError,
 Fragment
 };

 struct MessageHeader_1_0 {
 char magic [4];
 Version GIOP_version;
 boolean byte_order;
 octet message_type;
 unsigned long message_size;
 };

 struct MessageHeader_1_1 {
 char magic [4];
 Version GIOP_version;
 octet flags; // GIOP 1.1 change
 octet message_type;
 unsigned long message_size;
 };

 struct RequestHeader_1_0 {
 IOP::ServiceContextList service_context;
 unsigned long request_id;
 boolean response_expected;
 sequence <octet> object_key;
 string operation;
 Principal requesting_principal;
 };

 struct RequestHeader_1_1 {
 IOP::ServiceContextList service_context;
 unsigned long request_id;
 boolean response_expected;
 octet reserved[3]; // Added in GIOP 1.1
 sequence <octet> object_key;
 string operation;
 Principal requesting_principal;
 };

 enum ReplyStatusType {

 - 527 -

 NO_EXCEPTION,
 USER_EXCEPTION,
 SYSTEM_EXCEPTION,
 LOCATION_FORWARD
 };

 struct ReplyHeader {
 IOP::ServiceContextList service_context;
 unsigned long request_id;

 ReplyStatusType reply_status;
 };

 struct CancelRequestHeader {
 unsigned long request_id;
 };

 struct LocateRequestHeader {
 unsigned long request_id;
 sequence <octet> object_key;
 };

 enum LocateStatusType {
 UNKNOWN_OBJECT,
 OBJECT_HERE,
 OBJECT_FORWARD
 };

 struct LocateReplyHeader {
 unsigned long request_id;
 LocateStatusType locate_status;
 };
 };

 module IIOP {
 struct Version {
 octet major;
 octet minor;
 };

 struct ProfileBody_1_0 {
 Version iiop_version;
 string host;
 unsigned short port;
 sequence <octet> object_key;
 };

 struct ProfileBody_1_1 {
 Version iiop_version;
 string host;
 unsigned short port;

 - 528 -

 sequence <octet> object_key;
 sequence <IOP::TaggedComponent> components;
 };
 };

 WORKING WITH IIOP

Continuing our exploration of IIOP, we’ll now develop an application that uses IIOP to
enable communication between a server object using one ORB and a client object using
an alternate ORB.

The application uses the Inprise Visibroker ORB that has been used throughout the book,
as well as a free ORB called JacORB. JacORB is contained on the CD-ROM and is also
available on the Web at http://www.inf.fu-berlin.de/~brose/jacorb. Both
ORBs support IIOP; however, JacORB is especially interesting due to the fact that it’s
freely available and is written in pure Java. If you’re producing a Java/CORBA solution on
a platform that no other ORB supports or if you’re working on a shoestring budget, you
should look at JacORB as a primary development platform. For more information on
different ORBs, see Chapter 23 “Survey of CORBA ORBs.”

An important feature of a distributed environment is that of locating distributed objects in
the enterprise. A client object decides which server objects it will need to take advantage
of and uses some mechanism to locate those objects. In earlier chapters where the
Inprise Visibroker ORB is used exclusively, object location is performed using the
Directory Service. Due to the fact that the Directory Service is Visibroker specific, an
alternate mechanism for locating objects needs to be utilized in this example.

In addition to the Inprise-specific Directory Service, objects can also be located using the
Naming Service and the Interoperable Object Reference (IOR). The Naming Service,
which is covered in Chapter 30, “The Naming Service,” is an OMG specification for
locating and categorizing objects. The IOR is a string that uniquely identifies a given
object. The IOR is obtained using the ORB.object_to_string() operation and
resolved using the ORB.string_to_object() operation. Here’s an example:

 IOR:000000000000001c49444c3a42616e6b2f4163636f756e744d616e616765723a312e

 300000000001000000000000005800010000000000103139322e3136382e3130312e313

 0000000013800044f003800504d43000000000000001c49444c3a42616e6b2f4163636f75

 6e744d616e616765723a312e30000000000c42616e6b4d616e616657200

Due to the fact that the Naming Service is rather complex and is not fully addressed until
the following chapter, this next sample application uses the IOR for object location
purposes.

The server component of the application brings an object into existence using the
JacORB and writes the IOR to a file. The client component is then brought into existence
using the Inprise Visibroker ORB; the IOR file is read into memory and used to locate the
remote object. Starting out this application is the simple IDL file contained in Listing 29.2.

 LISTING 29.2 THE IIOPTestCaseI INTERFACE

 interface IIOPTestCaseI {
 void displayMessage(in string message);

 - 529 -

 long addTheseNumbers(in long firstNumber, in long
secondNumber);

 };

The IIOPTestCaseI interface exposes two methods: one that simply prints its
parameters to the standard output and one that adds its parameters and returns the
result. An implementation of this interface is contained in Listing 29.3.

 LISTING 29.3 THE IIOPTestCase CLASS

 public class IIOPTestCase extends _IIOPTestCaseIImplBase {

 public IIOPTestCase(String name) {
 super(name);
 }

 public IIOPTestCase() {
 super();
 }

 public void displayMessage(String message) {
 System.out.println(message);
 }

 public int addTheseNumbers(int firstNumber, int secondNumber)
{

 return firstNumber + secondNumber;
 }
 }

Moving toward the development of the server itself, Listing 29.4 contains the code for the
IIOPServer class, which creates a new IIOPTestCase object, obtains the IOR, and
then writes the IOR to a file.

 LISTING 29.4 THE IIOPServer CLASS

 import jacorb.Orb.*;
 import jacorb.Naming.NameServer;
 import java.io.*;

 public class IIOPServer {

 public IIOPServer() {
 // bind to the ORB
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();
 org.omg.CORBA.BOA boa = orb.BOA_init();

 // create the object
 org.omg.CORBA.Object iiopTestCase =
 boa.create(new IIOPTestCase(),"IDL:IIOPTestCaseI:1.0");

 // activate the object
 boa.obj_is_ready(iiopTestCase);

 - 530 -

 // obtain and write out the IOR
 String sIOR = orb.object_to_string(iiopTestCase);
 try{ writeIOR(sIOR, " c::\\IIOPTestCase.ior"); }
 catch(Exception e) { System.out.println(e); }

 // wait
 boa.impl_is_ready();
 }

 /**
 * Prints the specified string to the specified file.
 *
 * @param sIOR The string to output
 * @param sFileName The file to house the string.
 */
 private void writeIOR(String sIOR,
 String sFileName) throws Exception {
 FileWriter fw = new FileWriter(sFileName);
 PrintWriter pw = new PrintWriter(fw);
 pw.println(sIOR);

 pw.flush();
 pw.close();
 fw.close();
 }

 public static void main(String[] args)) {
 new IIOPServer();
 }
 }

As you examine the IIOPServer class shown in Listing 29.4, keep in mind that it uses
the JacORB ORB, not the Inprise version. Because the ORB and BOA interfaces are
standardized, interactions with those objects are similar to what you have come to expect
from previous chapters.

Upon instantiation, a IIOPServer object creates a new IIOPTestCase object,
obtains the IOR using the object_to_string() operation, and then writes the IOR to
a file named IIOPTestCase.ior. Once the server is up and running, the Inprise client
object can bind to the JacORB server object. Listing 29.5 contains the IIOPClient
class, which performs this task.

 LISTING 29.5 THE IIOPClient CLASS

 import org.omg.CORBA.*;
 import java.io.*;

 public class IIOPClient {

 public IIOPClient() {
 // bind to the ORB
 ORB orb = ORB.init();

 // read in the IOR

 - 531 -

 String sIOR = "";
 try{ sIOR = readIOR("c:\\IIOPTestCase.ior"); }
 catch(Exception e) {}

 // resolve the object
 org.omg.CORBA.Object object = orb.string_to_object(sIOR);

 // narrow the object
 IIOPTestCaseI iiopTestCase =
IIOPTestCaseIHelper.narrow(object);

 // print out the object
 System.out.println(iiopTestCase);

 // invoke methods on the object
 iiopTestCase.displayMessage("IIOP Rules!");
 System.out.println(iiopTestCase.addTheseNumbers(555,
458));

 }

 /**
 * Reads in the IOR located at the specified location.
 *
 * @param sFileName The location of the IOR.
 */
 private String readIOR(String sFileName) throws Exception {
 FileReader fr = new FileReader(sFileName);

 StringBuffer sbBuilder = new StringBuffer();
 int iChar = -1;
 while((iChar = fr.read()) != -1) {
 sbBuilder.append((char)iChar);
 }

 fr.close();

 return sbBuilder.toString();
 }

 public static void main(String[] args)) {
 }
 }

The IIOPClient class, when instantiated, reads in the contents of the
IIOPTestCase.ior file and uses the string_to_object() operation to resolve the
IOR. The IIOPTestCase object then has its methods invoked.

To run the application, first install (from the CD-ROM) both the JacORB ORB and the
Inprise Visibroker ORB on your computer. Next, enter all the code. Then place the IDL
and server code in one directory and the IDL and client code in another. Now use the
JacORB IDL compiler to compile the IDL in the server directory by entering the following
command:

 idl2j IIOPTestCaseI.idl

 - 532 -

 Next, change to the client directory and use the Inprise IDL compiler to compile the IDL

by entering this command:

 idl2java IIOPTestCaseI.idl

 Now compile all generated client and server code.

 At this point, you’re ready to begin using the application. First, start the JacORB ORB by

typing

 jacorbd

 and then start the server by typing

 java IIOPServer

 Once the IOR file has been written to a file, start the Inprise Visibroker ORB by typing

 osagent

 and then run the client by typing

 java IIOPClient

 FROM HERE

This chapter covered IIOP—an important technology developers will want to take
advantage of when moving into the multi-ORB world. Here are some additional chapters
that complement the knowledge imparted in this chapter:

 • Chapter 21, “CORBA Overview”

 • Chapter 22, “CORBA Architecture”

 • Chapter 28, “The Portable Object Adapter (POA)”

Chapter 30: The Naming Service

 Overview

In a distributed environment, one of the more complicated tasks one must deal with is
locating objects needed at a given point in time. Large distributed environments may exist
such that hundreds or thousands of different objects all publish some level of
functionality that other objects will want to take advantage of. Of course, it’s possible to
give each object a different logical name, but this isn’t as easy as it may sound.

Consider the real-world problem of applying a unique identifier to a human. Most
individuals have some spoken logical name that can be used to identify them; however,
this name is only useful in a specific context. Assuming the name is not replicated within
a certain context, few problems will exist. If, for example, I have both a friend named
John and a coworker named John, the context in which I reference “John” will identify
that person. If, however, there are two Johns at my office, an additional layer will need to
be added—one John might become “John in sales,” and the other might become “John in
engineering.” Adding contextual layers could obviously occur infinitely until no possible

 - 533 -

naming conflicts remain.

Just as it’s difficult to name humans in an easy to understand manner, it is also difficult to
name distributed objects in an easy to understand manner. In an attempt to ease the
object naming problem, the OMG has released a specification for a context-sensitive
naming scheme called the Naming Service. The Naming Service allows for context-
sensitive names to be associated with objects, and for those objects to be referenced
using their names. This chapter examines the Naming Service, including the following
important points:

 • The information required when creating a context-sensitive name

 • The manner in which multiple Naming Services interact

 • How to use the Naming Service in your applications

 • Inprise alternatives to the Naming Service

 WHAT’S IN A NAME?

As stated earlier, the Naming Service allows for context-sensitive names to be associated
with objects. As shown in Figure 30.1, using wine as an example, a context-sensitive
name is one that not only identifies the object itself but also categorizes that object.
Placing a named object in a series of categories not only aids in searching for it but also
eliminates potential confusion that might occur when two different objects have the same
name.

 Figure 30.1: A context-sensitive naming scheme for wine.

In addition to demonstrating how wines might be categorized using the Naming Service,
Figure 30.1 also demonstrates the fact that name contexts are represented using a
naming graph. The path formed from the graph entry point to an actual object is referred
to as the object’s compound name. For example, the compound name associated with
the Cline Ancient Vines wine would be this:

 Wine->Red->Zinfandel->Cline Ancient Vines

FEDERATED NAMING SERVICES

Distributed systems have always been developed with attention paid to their potential
grand scale. Of course, some distributed applications may only exist on a handful of
computers, but more and more systems exist across the entire Internet. With a general
desire to support incredible size, the Naming Service allows multiple Naming Services (or
namespaces) to be tied together, forming a larger, federated Naming Service.

Joining multiple namespaces together is performed as a simple extension of the existing
name graph. When multiple namespaces are joined, a node from one namespace is
assigned as the parent node relative to the root node of another namespace. Figure 30.2

 - 534 -

expands on the earlier wine example by moving each type of wine (red, white, blush) into
a unique namespace.

 Figure 30.2: Creating a federated namespace.

USING THE NAMING SERVICE IDL

Thus far, we’ve explored the Naming Service on the surface but have yet to actually dig
under the hood to see how to make everything function. This next section further
examines the implementation details of the Naming Service, builds a small simple
application, and then builds a wine cellar management application.

As with all CORBAservice specifications, the principle deliverable for the Naming Service
is a collection of interfaces described using CORBA IDL. The Naming Service IDL,
contained in Listing 30.1, has two important interfaces: NamingContext and
BindingIterator . Let’s stop for a moment and examine the interfaces. They are
relatively self-explanatory and should be easy to understand. Once you have a feeling for
the interfaces, we’ll discuss them in detail.

 LISTING 30.1 THE CosNaming MODULE CONTAINS ALL CODE FOR THE CORBA

NAMING SERVICE

 module CosNaming {
 typedef string Istring;

 struct NameComponent {
 Istring id;
 Istring kind;
 };

 typedef sequence <NameComponent> Name;

 enum BindingType {nobject, ncontext};

 struct Binding {

 Name binding_name;
 BindingType binding_type;
 };

 typedef sequence <Binding> BindingList;

 interface BindingIterator;

 interface NamingContext {

 - 535 -

 enum NotFoundReason { missing_node, not_context, not_object};

 exception NotFound {
 NotFoundReason why;
 Name rest_of_name;
 };

 exception CannotProceed {
 NamingContext cxt;
 Name rest_of_name;
 };

 exception InvalidName{};

 exception AlreadyBound {};

 exception NotEmpty{};

 void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

 void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);
 void bind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);

 void rebind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName);
 Object resolve (in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 void unbind(in Name n) raises(NotFound,
 CannotProceed,
 InvalidName);
 NamingContext new_context();
 NamingContext bind_new_context(in Name n)
 raises(NotFound, AlreadyBound,
 CannotProceed, InvalidName);
 void destroy() raises(NotEmpty);
 void list(in unsigned long how_many,
 out BindingList bl,
 out BindingIterator bi);
 };

 interface BindingIterator {
 boolean next_one(out Binding b);
 boolean next_n(in unsigned long how_many,out BindingList
bl);

 void destroy();
 };
 };

Before diving into the interfaces themselves, we need to cover two important terms. The
purpose of the Naming Service is to allow objects to be associated with a name and for
those objects to be discovered using their name. The task of associating a name graph

 - 536 -

with an object is called binding. The task of discovering an object by using the name
graphs is called resolving.

As you may have guessed when examining the interfaces, most of the functionality of the
Naming Service is present in the NamingContext interface. This interface exposes
methods for binding and resolving objects, along with other housekeeping methods. The
following list provides an explanation of these interfaces, starting with the bind() and
resolve() methods and then moving on to everything else:

•

bind() The bind() operation, which is probably the first operation you’ll invoke, is
obviously used to bind an object to a name graph. It accepts as a parameter both a
name graph and the object that’s to be bound to that graph. The name graph is formed
by creating an array of NameComponent objects, where the first object in the array is
the highest level descriptor, and the last object is the most specific. A
NameComponent object is formed using two strings: a logical name and a description
of the data.

 • rebind() The rebind() operation creates a binding of a name graph and an

object in the naming context, even if the name is already bound in the context.

•

resolve() Once an object is bound to a name graph, it is discovered using the
resolve() operation. This operation accepts a name graph as a parameter and
searches for an object associated with the same graph. If no object can be found, an
exception is raised.

•

bind_context() and rebind_context() The bind_context() and
rebind_context() operations allow for the binding of an object that’s actually a
name graph itself. This context can then be discovered using the traditional
resolve() operation and allows for the creation of interconnected namespaces.

•

new_context() and bind_new_context() A unique context is used to represent
an independent namespace. To create a new context object, the new_context()
operation is used. If, when you’re creating a new context, it’s best served by
associating it with an existing context. The bind_new_context() operation accepts
a name graph as a parameter and returns a new context bound to the specified graph.

 • unbind() The unbind() operation accepts a name graph as a parameter and

removes it from the context.

 • destroy() If a naming context is no longer needed, it can be removed from

existence by invoking its destroy() operation.

•

list() In addition to querying the naming context for specific objects, you can also
simply browse all name graphs. Applications in which human users are required to
choose some object, can graphically render the name graphs using the list() operation
and then resolve the actual object once a unique graph is chosen. The list()
operation allows access to all graphs. Unlike other operations, which simply return the
requested data, the list() operation accepts two out parameters that are populated
using the data contained in the name graphs and an in parameter indicating the
amount of data to be returned. The first out parameter is a BindingList object that
references an array of name graphs. The number of graphs referenced by the
BindingList object is specified by the in parameter. If there are additional name
graphs not referenced by the BindingList object, they are accessed through the
second out parameter, a BindingIterator object.

•

BindingIterator Because naming contexts may reference large numbers of name
graphs, the BindingIterator object is used to obtain these graphs in smaller
chunks. It exposes a next_one() method that populates an out parameter with the
next available name graph. In addition, a next_n() method populates an out

 - 537 -

parameter with the number of name graphs specified by the in parameter.

 DEVELOPING WITH THE NAMING SERVICE

At this point in our discussion of the Naming Service, you should have a solid
understanding of its purpose and feature set. Additionally, the prior examination of the
IDL should give you a basic understanding of how to interact with the service. In this
section, we first develop a small application that performs name binding and resolution.
After this initial development effort, we look at how the Naming Service can be used in
the real world by writing a wine cellar management application.

Because binding and name resolution are probably the most common tasks performed
using the Naming Service, we’ll begin our development effort there. Listing 30.2 contains
the code for a class called NameServiceDemo . The class binds to the Naming Service,
creates a name graph, binds an object to that graph, and then resolves the object using
the initial name graph. Let’s stop for a minute and study the code. We’ll then go through
each step in the process.

 LISTING 30.2 PERFORMING BIND AND NAME RESOLUTION OPERATIONS USING

THE NAMING SERVICE

 import org.omg.CORBA.*;
 import org.omg.CosNaming.*;
 import com.visigenic.vbroker.services.CosNaming.*;

 public class NameServiceDemo {
 private NameComponent[] _nameGraph = null;
 private NamingContext _root = null;
 private BOA _boa = null;

 public NameServiceDemo() {
 ORB orb = ORB.init();
 _boa = orb.BOA_init();
 try{ _root = NamingContextHelper.bind(orb); }
 catch(Exception e) { }

 createNameGraph();
 bindObject();
 resolveObject();
 }

 /**
 * The createNameGraph() method creates a new
 * name graph that is then used in binding
 * and resolution.
 */
 private final void createNameGraph() {
 _nameGraph = new NameComponent[3];
 _nameGraph[0]
 = new NameComponent("great-grandparent category",
"string");

 _nameGraph[1]
 = new NameComponent("grandparent category",
"string");

 _nameGraph[2]

 - 538 -

 = new NameComponent("parent category", "string");
 }

 /**
 * The bindObject() method creates a new
 * NameServiceObject object and binds it
 * to the name graph created by the createNameGraph()
 * method.
 */
 private final void bindObject() {
 NamingContext root = _root;

 NameServiceObjectI object = new NameServiceObject();
 object.sData("some information");

 _boa.obj_is_ready(object);
 int iLength = _nameGraph.length-1;
 // iterate through the name graph, binding
 // each context on its own
 NameComponent[] componentHolder = new NameComponent[1];
 for(int i=0; i<iLength; i++) {
 componentHolder[0] == _nameGraph[i];
 try{ root =
root.bind_new_context(componentHolder); }

 catch(Exception e) { }
 } // for

 // bind the target object to the last
 // item in the name graph
 componentHolder[0] == _nameGraph[iLength];
 try{ root.bind(componentHolder, object); }
 catch(Exception e) {
 System.out.println("exception at object bind:
"+e);

 }
 System.out.println("bound object, data is:
"+object.sData());

 }

 /**
 * The resolveObject() method using the name
 * graph created by the createNameGraph() method
 * to discover the bound NameServiceObject object.
 */
 private final void resolveObject() {
 try{ // resolve using the last entry in the name graph
 NameComponent[] componentHolder == new
NameComponent[1];

 componentHolder[0] == _nameGraph[2];
 org.omg.CORBA.Object resolvedObject =
 _root.resolve(_nameGraph);
 // narrow the result into a NameServiceObject
object

 - 539 -

 NameServiceObjectI object =

NameServiceObjectIHelper.narrow(resolvedObject);

 System.out.println("resolved object, data is: "+
 object.sData());
 }
 catch(Exception e) {
 System.out.println("exception at object resolve:
"+e);

 }
 }

 public static void main(String[] args)) {
 NameServiceDemo demo = new NameServiceDemo();
 }
 }

The first task undertaken by the NameServiceDemo class is the creation of the name
graph itself. This step, represented in the createNameGraph() method, simply creates
an array of NameComponent objects. The first item in the array is the top-most parent,
and the last item in the array is the bottommost parent.

After the creation of the name graph itself, the next task undertaken is to bind an object to
the graph previously created. In this example, the bound object is an instance of the
NameServiceObjectI class. This class, described using IDL in Listing 30.3, is a
simple class that has a single string attribute.

 LISTING 30.3 THE NameServiceObjectI INTERFACE

 interface NameServiceObjectI {
 attribute string sData;
 };

The process of binding the object to the name graph takes place in the bindObject()
method and is accomplished in two steps. First, we iterate through the name graph,
calling the bind_new_context() method to individually bind each NameComponent
object to a new context. We then call the bind() method to bind the last
NameComponent object to the NameServiceObjectI object itself.

Once we’ve bound the target object to the name graph, that same name graph can be
used to resolve the object. The last method invoked in this example, resolveObject()
, uses the resolve() method to resolve the previously bound object.

Now that you fully understand the introduction to the Naming Service, you’re ready to run
the sample application. If you’ve not already installed the Inprise ORB and Naming
Service component (an option during the install), do so now. This software is included on
the enclosed CD-ROM. With the proper software installed, first compile the IDL by
entering

 idl2java NameServiceObjectI.idl

 and then compile the Java code using your Java compiler. Now start the ORB using the

following command:

 osagent

 - 540 -

 Start the Naming Service using this command:

 vbj -DORBservices=CosNaming
 com.visigenic.vbroker.services.CosNaming.ExtFactory
 ExampleServiceName example_log

The command to start the Naming Service takes two parameters. The first,
ExampleServiceName , indicates the unique name associated with this Naming
Service instance; the second, example_log, indicates the name of the file to be used as
a log.

In this example, the same class performs all binding and resolving in sequence right after
each other, but this does not have to be the case. The bindObject() and
resolveObject() methods could be pulled out of the NameServiceDemo class and
placed individually in their own classes. To fully test your understanding of the name
service, you might want to actually separate the methods yourself and then run them on
different machines.

 ADVANCED USES FOR THE NAMING SERVICE

In the previous example, we looked at the two most basic uses for the Naming Service:
binding and resolution. Although these two functions are often the most used, they are by
no means the only functions published by the Naming Service. In the next example, we
build a distributed wine cellar management application. The server component stores a
collection of wines, and the client application can browse the server’s wines as well as
add to the collection. Once the client finds a wine in the server’s collection that it owns,
that wine can be added to a client-side collection.

Starting with the server component, Listing 30.4 contains the IDL for the server, and
Listing 30.5 contains the implementation of the WineServer class. The WineServer
class simply exposes one method, addWine(), that accepts a wine to be categorized
and the collection of categories used to classify the wine.

 LISTING 30.4 THE IDL FOR THE WINE SERVER

 interface WineI {
 attribute string sVineyardName;
 attribute string sType;
 attribute string sAdditionalNotes;
 attribute long vintage;
 attribute long points;
 attribute string sPointSource;
 };

 typedef sequence<string> stringSequence;

 interface WineServerI {
 void addWine(in stringSequence categories, in WineI wine);
 };

 LISTING 30.5 THE WineServer CLASS

 import org.omg.CORBA.*;
 import org.omg.CosNaming.*;
 import com.visigenic.vbroker.services.CosNaming.*;

 - 541 -

 /**
 * The WineServer class uses the CORBA Naming Service
 * to maintain a collection of wines as categorized
 * by the user.
 */
 public class WineServer extends _WineServerIImplBase {
 private NamingContext _root;
 private static ORB _orb;
 private static BOA _boa;

 public WineServer() {
 super("Wine Server");
 // obtain the root context
 _root = NamingContextHelper.bind(_orb, "NameService/1");
 }

 /**
 * The addWine() method is invoked by the client
 * when he wishes to add a new wine to the collection
 * maintained by the Naming Service.
 *
 * @param categories Collection of categories used to
 * classify the wine
 * @param winw The wine to be added
 */
 public void addWine(String categories[], WineI wine) {
 NamingContext root = _root;

 int iLength = categories.length;
 iLength";

 NameComponent[] componentHolder == new NameComponent[1];
 for(int i=0; i<iLength; i++) {
 componentHolder[0] == new
NameComponent(categories[i], "");

 // see if the context is already bound
 try{ root =
 NamingContextHelper.narrow(
 root.resolve(componentHolder)); }
 catch(Exception e) {
 // bind the new context
 try{ root =

root.bind_new_context(componentHolder); }

 catch(Exception innerE) {
 System.out.println("inner: "+innerE);
 }

 } // catch
 } // for

 // create a copy of the original WineI object

 - 542 -

 WineI newWine = new Wine();
 newWine.sVineyardName(wine.sVineyardName());
 newWine.sType(wine.sType());
 newWine.sAdditionalNotes(wine.sAdditionalNotes());
 newWine.vintage(wine.vintage());
 newWine.points(wine.points());
 newWine.sPointSource(wine.sPointSource());

 // activate the new object
 _boa.obj_is_ready(newWine);

 componentHolder[0] == new
NameComponent(categories[iLength], "");

 // bind the object
 try{ root.bind(componentHolder, newWine); }
 catch(Exception e) { System.out.println("e: "+e); }
 }

 public static void main(String[] args)) {
 _orb = ORB.init();
 _boa = _orb.BOA_init();
 // create the WineServer application
 WineServer server = new WineServer();
 // tell the BOA about the WineServer application
 _boa.obj_is_ready(server);
 // notify the BOA that we are ready to wait for incoming
 connections
 _boa.impl_is_ready();
 }
 }

Looking at the code in Listing 30.5, you’ll see some obvious parallels to the code in the
initial example. However, in this situation, the object-binding process is expanded to be
more robust. In the initial example, all binds were performed under the assumption that
the NameComponent object being bound was not already in use. The bindObject()
method simply iterated through the new NameComponent objects and called the
bind_new_context() method to add them to the name graph. In this example, every
call to bind_new_context() is preceded with an invocation of the resolve()
method. If the resolve() method does not throw an exception, we know that the
NameComponent object is already part of the name graph. If an exception is thrown, we
know that the NameComponent object is not present in the name graph and can
proceed to add it. Due to the fact that we may be adding many unique wines that all have
the same parent categories, this more robust version of the bindObject() method is
very much needed.

Moving from the server to the client itself, we perform a two-step exploration of the code.
First, we look at the code that interacts with the Naming Service. Second, we explore the
code that builds the User Interface (UI). After all code has been examined, we fire up the
application and give the Naming Service a run for its money.

Listing 30.6 contains the code for the class WineClient. This class contains methods
used to traverse the name graph, bind to the Naming Service, and ask the WineServer
to add wines to the collection. Some additional code is used to launch the GUI. As you
examine the class, pay specific attention to the code that interacts with the Naming
Service (all GUI specific code will be covered later).

 - 543 -

 LISTING 30.6 THE WineClient CLASS INTERACTS WITH WineServer AND THE
NAMING SERVICE

 import java.awt.*;
 import java.util.*;
 import org.omg.CORBA.*;
 import org.omg.CosNaming.*;
 import com.visigenic.vbroker.services.CosNaming.*;

 public class WineClient {
 private BOA _boa;
 private NamingContext _root;
 private WineServerI _wineServer;

 public WineClient() {
 ORB orb = ORB.init();
 _boa = orb.BOA_init();
 _root = NamingContextHelper.bind(orb, "NameService/1");
 _wineServer = WineServerIHelper.bind(orb);

 WineClientGUI gui = new WineClientGUI(this, _wineServer,
_boa);

 gui.setSize(350,350);
 gui.setVisible(true);
 }

 public void addWine(String[] sCategories,, WineI wine) {
 _boa.obj_is_ready(wine);
 _wineServer.addWine(sCategories, wine);
 }

 public List obtainNameGraph() throws Exception {
 return obtainNameGraph(_root, new List(), 0);
 }

 /**
 * Obtains a List object displaying a hierarchical

 * view of all wines represented by the specified
 * name graph.
 *
 * @param root The name graph to traverse
 * @param lstWines The list being build
 * @param iLevel Indicator of the current indent
 */
 public List obtainNameGraph(NamingContext root,
 List lstWines,
 int iLevel) throws Exception {
 // create the holder objects used for out parameters
 BindingIterator iterator = null;
 BindingIteratorHolder iteratorHolder
 = new BindingIteratorHolder(iterator);

 - 544 -

 BindingListHolder listHolder
 = new BindingListHolder(new Binding[0]);

 // obtain the first 100 bindings
 root.list(100, listHolder, iteratorHolder);

 // place the graph items into the string array;
 Binding[] bindingList == listHolder.value;
 int iLength = bindingList.length;
 for(int i=0; i<iLength; i++) {
 Vector vecNext = new Vector();
 NameComponent[] name == bindingList[i].binding_name;
 int iNameLength = name.length;
 for(int j=0; j<iNameLength; j++) {
 StringBuffer sbCurrentItem = new StringBuffer();
 for(int k=0; k<iLevel; k++) {
 sbCurrentItem.append(" "); // 3 spaces per
indent

 }
 sbCurrentItem.append(name[j].id);
 lstWines.addItem(sbCurrentItem.toString());;
 }
 // recurse with new context
 if(bindingList[i].binding_type ==
BindingType.ncontext) {

 obtainNameGraph(NamingContextHelper.narrow
 (root.resolve(name)), lstWines, iLevel+1);
 }
 else { // references a WineI object
 StringBuffer sbCurrentItem = new StringBuffer();
 for(int k=0; k<iLevel+1; k++) {
 sbCurrentItem.append(" "); // 3 spaces per
indent

 }

 sbCurrentItem.append(WineIHelper.narrow(root.resolve(name))
 .sVineyardName());
 lstWines.addItem(sbCurrentItem.toString());
 }
 }
 return lstWines;
 }

 public static void main(String[] args)) {
 WineClient client = new WineClient();
 }
 }

In the WineClient class, the most interesting code is executed during the
obtainNameGraph() method. In this method, the NamingContext.list() method
is executed recursively, giving a picture of all NamingContext and WineI objects
represented by the root node. In addition to traversing the name graph, the
obtainNameGraph() method places all found information in a hierarchically formatted
List object.

 - 545 -

Moving beyond the WineClient class, two additional classes help form the client
application. The class WineClientGUI (contained in Listing 30.7) is the base GUI for
the whole system. It displays the collection of available wines, the collection of owned
wines, and prompts the user to add wines to the local collection or to the server
collection. When a user asks to add a wine to the server collection (contained in Listing
30.8), the WineInfo dialog is spawned. It collects the appropriate information and asks
the server to add the wine to the collection. When a user asks that a server wine be
added to the local collection, the doBuyWine() method in the WineClientGUI takes
care of the transfer.

 LISTING 30.7 THE WineClientGUI CLASS IS THE BASE GUI FOR THE ENTIRE

CLIENT APPLICATION

 import java.awt.*;
 import java.awt.event.*;
 import java.util.*;
 import org.omg.CORBA.*;
 import org.omg.CosNaming.*;

 public class WineClientGUI extends Frame implements
ActionListener {

 private WineClient _wineClient;
 private List _listWinesOwned;
 private Vector _vecWinesOwned;
 private List _listWinesAvailable;
 private Button _btnBuySelected;
 private Button _btnAddWine;

 private WineServerI _wineServer;
 private BOA _boa;

 public WineClientGUI(WineClient wineClient,
 WineServerI wineServer, BOA boa) {
 _wineClient = wineClient;
 _wineServer = wineServer;
 _boa = boa;

 _listWinesOwned = new List();
 _vecWinesOwned = new Vector();
 buildScreen();
 }

 /**
 * Builds or rebuilds the screen
 */
 public void buildScreen() {
 removeAll();
 try{ _listWinesAvailable = _wineClient.obtainNameGraph(); }
 catch(Exception e) {}

 Panel pnlWines = new Panel();
 pnlWines.setLayout(new GridLayout(1,2,10,10));
 pnlWines.add(new ListPanel("Wines Available",

 - 546 -

 _listWinesAvailable));
 pnlWines.add(new ListPanel("Wines Owned", _listWinesOwned));

 Panel pnlButtons = new Panel();
 pnlButtons.setLayout(new GridLayout(1,2,10,10));
 pnlButtons.add(_btnBuySelected =
 new Button("Buy Selected Wine"));
 pnlButtons.add(_btnAddWine = new Button("Add Wine To
Server"));

 _btnBuySelected.addActionListener(this);
 _btnAddWine.addActionListener(this);

 setLayout(new BorderLayout(10,10));
 add(pnlWines, "Center");
 add(pnlButtons, "North");
 doLayout();
 }

 /**
 * Invoked when the human user clicks on a Button object
 */
 public void actionPerformed(ActionEvent ae) {
 if(ae.getSource() == _btnAddWine) doAddWine();
 else doBuyWine();
 }

 /**
 * Adds a wine to the collection represented
 * by the name graph.
 */
 private void doAddWine() {
 WineInfo info = new WineInfo(this, _wineServer, _boa);
 info.pack();
 info.setVisible(true);
 }

 /**
 * Adds the selected wine to our personal
 * collection.
 */
 private void doBuyWine() {
 // add vineyard name to list

_listWinesOwned.addItem(_listWinesAvailable.getSelectedItem());

 }

 /**
 * Utility class used to facilitate GUI building
 */
 class ListPanel extends Panel {
 public ListPanel(String sLabel, List lst) {
 setLayout(new BorderLayout(10,10));
 add(new Label(sLabel), "North");

 - 547 -

 add(lst, "Center");
 }
 }
 }

 LISTING 30.8 THE WineInfo DIALOG PROMPTS THE USER TO ADD A NEW WINE

TO THE SERVER COLLECTION

 import java.awt.*;
 import java.awt.event.*;
 import org.omg.CORBA.*;

 /**
 * Prompts the user to add a new wine, and adds it to the name
graph

 */
 public final class WineInfo extends Dialog implements
ActionListener {

 private Choice _chcVarietal;
 private Choice _chcGrape;
 private TextField _txtVineyardName;
 private TextField _txtNotes;
 private TextField _txtVintage;

 private TextField _txtPoints;
 private TextField _txtPointSource;
 private Button _btnAdd;
 private Button _btnCancel;

 private WineServerI _wineServer;
 private BOA _boa;
 private WineClientGUI _gui;

 public WineInfo(WineClientGUI gui, WineServerI wineServer, BOA
boa) {

 super(gui, "Add Wine", true);
 _wineServer = wineServer;
 _boa = boa;
 _gui = gui;

 _chcVarietal = new Choice();
 _chcVarietal.addItem("Red");
 _chcVarietal.addItem("White");
 _chcVarietal.addItem("Blush");

 _chcGrape = new Choice();
 _chcGrape.addItem("Zinfandel");
 _chcGrape.addItem("Cabernet Sauvignon");
 _chcGrape.addItem("Chardonnay");
 _chcGrape.addItem("Merlot");
 _chcGrape.addItem("Pinot Noir");
 _chcGrape.addItem("Shiraz");

 setLayout(new GridLayout(8,2,10,10));

 - 548 -

 add(new Label("Varietal"));
 add(_chcVarietal);
 add(new Label("Grape"));
 add(_chcGrape);
 add(new Label("Vineyard name"));
 add(_txtVineyardName = new TextField(20));
 add(new Label("Notes"));
 add(_txtNotes = new TextField(20));
 add(new Label("Vintage"));
 add(_txtVintage = new TextField(20));
 add(new Label("Points"));
 add(_txtPoints = new TextField(20));
 add(new Label("Point Source"));
 add(_txtPointSource = new TextField(20));
 add(_btnCancel = new Button("Cancel"));
 add(_btnAdd = new Button("Add"));

 _btnCancel.addActionListener(this);
 _btnAdd.addActionListener(this);
 }
 /**
 * Invoked when the user clicks on a Button
 */
 public void actionPerformed(ActionEvent ae) {
 if(ae.getSource() == _btnAdd) doAdd();
 setVisible(false);
 }

 /**
 * Adds a wine to the server
 */
 private void doAdd() {
 WineI wine = getDataAsWineObject();
 _boa.obj_is_ready(wine);
 String[] sCat == new String[2];
 sCat[0] == wine.sType();
 sCat[1] == _chcGrape.getSelectedItem();
 _wineServer.addWine(sCat, wine);
 _gui.buildScreen();
 }

 /**
 * Creates a WineI object using the data in
 * the UI widgets
 */
 private WineI getDataAsWineObject() {
 WineI wine = new Wine();
 wine.sVineyardName(_txtVineyardName.getText());
 wine.sType(_chcVarietal.getSelectedItem());
 wine.sAdditionalNotes(_txtNotes.getText());
 try{
wine.vintage(Integer.parseInt(_txtVintage.getText())); }

 catch(NumberFormatException nfe) {}

 - 549 -

 try{
wine.points(Integer.parseInt(_txtPoints.getText())); }

 catch(NumberFormatException nfe) {}
 wine.sPointSource(_txtPointSource.getText());

 return wine;
 }
 }

Once you’ve spent some time with the code in the previous listings, you should finalize
your understanding by actually running the application. You should already have the
Inprise ORB and Naming Service installed from running the first application. If not, do so
now. After the ORB software is up and running, compile all IDL and Java code for the
wine application and then launch the Naming Service by entering

 java -DORBservices=CosNaming
 com.visigenic.vbroker.services.CosNaming.ExtFactory
 NameService wine_log

 Next, launch the server by entering

 java WineServer

 and the client by entering

 java WineClient

 When the application is up and running, you should see something similar what’s shown

in Figure 30.3.

 Figure 30.3: The wine application in action.

INPRISE ALTERNATIVES TO THE NAMING SERVICE

This chapter has focused on finding objects in the enterprise using the Naming Service
itself. What you are probably wondering is how code examples in the previous chapters
performed the same task without using the Naming Service. Throughout this book, there
are many, many examples of CORBA applications, few of which make use of the Naming
Service when locating objects. These examples all use an application provided by Inprise
called the Directory Service. Like the Naming Service, the Directory Service allows
objects to be located in the enterprise. Although the broad function may be the same, the
two services identify objects in radically different ways.

The Directory Service uniquely identifies an object using a combination of its interface
and a user-assigned logical name. This works for many situations; however, it does have
downsides. First and foremost, the Directory Service doesn’t allow for the classification of
objects. The Naming Service, in comparison, allows objects to be placed in an infinite
number of hierarchical categories. In addition to not allowing for object classification, the

 - 550 -

Directory Service gives names to objects that can only be changed at compile time.
Because an object is partially identified by its interface, there’s no way to change this
identifier without changing the original class itself.

The decision to use either the Naming or Directory Service in a given application is
something that has to be decided upon on an application-by-application basis.
Unfortunately, no one perfect service for all applications exists; however, there are many
considerations that make the decision easier. If you’re building a relatively static
application with only a handful of distributed objects, the Directory Service is probably
sufficient. If, however, you’re building a massive application in which clients will have to
search out all sorts of objects at runtime, using the Naming Service is probably a much
better route to take.

FROM HERE

This chapter has covered the Naming Service CORBAservice in detail, giving you
sufficient information to begin making use of it in your own code. In addition to learning
about the Naming Service, you also learned how it differs from the Directory Service used
in other CORBA development chapters.

 As you continue to explore all that CORBA has to offer, you’ll find that the following

chapters complement this chapter’s coverage of the event service:

 • Chapter 21, “CORBA Overview”

 • Chapter 22, “CORBA Architecture”

 • Chapter 23, “Survey of CORBA ORBs”

 • Chapter 31, “The Event Service”

Chapter 31: The Event Service

 Overview

Chapter 21, “CORBA Overview” introduced the concept of a CORBAservice. A
CORBAservice, in the broadest sense, is a specification for a CORBA-enabled
application that fills a horizontal need. What’s most important to note about the
preceding definition is that a CORBAservice is only a specification. The OMG produces
specifications for applications, not applications themselves. However, because members
develop specifications in tandem with implementations, it’s not possible to have a
specification without also having a reference implementation. Due to the fact that the
OMG produces specifications to which all vendors must comply, it’s an easy process to
swap CORBAservices in and out from a variety of vendors.

Note

A horizontal application has functionality that may be needed by any number
of different applications. For example, even though banking and healthcare
applications are radically different, they could use the same horizontal
application to log transactions.

This chapter examines the CORBA Event Service, which is one of the more commonly
used CORBAservices. The Event Service specification provides a generic manner
through which events are delivered from supplier to consumer. To fully explore the Event
Service, the implementation available from Inprise is used. In addition to the Inprise
Event Service, you’ll also need to have the Inprise Visibroker ORB installed. Both the
Inprise ORB and Event Service are included on the enclosed CD-ROM. If you’re using an
Event Service implementation from another vendor, you must make sure you also have
the ORB that the Event Service is tailored toward.

 - 551 -

 In learning about the Event Service, you’ll find that this chapter provides the following

discussions:

 • Reasons behind the need for events

 • Coverage of the push event model

 • Coverage of the pull event model

 • Coverage of generic event propagation

Most communication that occurs in a distributed environment is fully synchronous: One
object invokes operations on a remote object, and some value is potentially returned.
This communication often functions fine assuming that the application is completely
controlled by a human user. However, there are times when an application needs to take
an action based on a value present in a foreign system. For example, a stock portfolio
manager might want to be notified if certain holdings drop more than 10 percent. This
second form of communication is called event-based communication, because
communication occurs when some event happens. The event might happen at any point
in time, and for that reason the potential recipient must always be ready to receive
notification.

This manner of communication should be very familiar to users with a history of working
with the JDK1.1 delegation-based event model. Under the JDK1.1 event model, when a
user clicks a button on the screen, objects with interest in the state of the button are
notified directly.

THE CORBA EVENT SERVICE

To facilitate event-based communication in a CORBA environment, the CORBA Event
Service defines a standard model through which events are passed. The model,
illustrated in Figure 31.1, defines three unique components that are needed for
everything to fully function. First up is the event channel, which is the conduit through
which all events travel. Second, an object designated as an event supplier generates
events when necessary. The third and final component is an object designated as an
event consumer, which is charged with receiving and processing an event. If an event
consumer wishes to receive events, it will either register for immediate notification or
periodically check with the event channel to see if an event has arrived.

 Figure 31.1: The CORBA Event Service functions with the aid of an event

supplier, consumer, and channel.

What’s interesting in this description is the fact that all events pass through the channel
before reaching a consumer. This means that at no point does the event supplier have
explicit knowledge of the number (if any) of consumers receiving the generated event. By
the same token, the event consumer has no explicit knowledge of the event supplier.

The lack of explicit knowledge of what’s at either end of the event channel leads to a
course-grain event environment. Instead of the supplier sending events to only interested
parties, the supplier sends all generated events to the event channel, and the consumer

 - 552 -

chooses to ignore specific events if they are not needed. In some situations, multiple
channels can run in which each channel moves events that are tied to a specific function.
For example, an application that monitors the results of lab orders placed on patients in a
large hospital might run a unique channel for each unique lab system. The different lab
systems would then post events to their unique channel, and consumers would only listen
to channels associated with the lab systems they personally use.

Access to events stored by the channel is defined through two unique models. A push
model moves events directly from supplier to consumer. This model is very efficient
because network traffic is only generated when an event actually occurs. In addition,
events are delivered to consumers soon after being generated by a supplier. As a
downside, the push model does require that the event channel be able to invoke methods
on the consumer object. This requirement cannot always be achieved, because firewalls
often block communication if the event channel and event consumer are on opposite
sides of the firewall.

An alternative to the push model is the pull model. Under the pull event model, events are
not sent to the channel until the consumer asks for them. In this situation, event suppliers
still register with the event channel; however, they don’t post events until the channel
notifies them of consumer need. Consumers and suppliers still have no explicit
knowledge of each other, because all event requests are passed through the channel.
This means that consumers must periodically query the channel for events, causing a
potential increase in network traffic and a potential lag between event generation and
event delivery. Of course, the upside here is that firewall restrictions do not stop
applications from functioning.

To allow for generic communication across the event channel, the event itself is
represented using the CORBA Any object. As covered in earlier chapters, an Any
object is a generic object that can be used to represent any CORBA object or base type.
It has inserter methods for placing an object under Any ownership and extractor
methods that other objects use to access the value owned by the Any object. To obtain
a reference to an Any object, the method ORB.create_any() is invoked. Listing 31.1
contains the Java mapping for the Any object.

 LISTING 31.1 THE JAVA MAPPING FOR THE CORBA Any OBJECT

 public class org.omg.CORBA.Any extends Object {
 public org.omg.CORBA.TypeCode type();
 public void type(org.omg.CORBA.TypeCode);
 public void read_value(org.omg.CORBA.portable.InputStream,
 org.omg.CORBA.TypeCode);
 public void write_value(org.omg.CORBA.portable.OutputStream);
 public org.omg.CORBA.portable.OutputStream
create_output_stream();

 public org.omg.CORBA.portable.InputStream
create_input_stream();

 public boolean equal(org.omg.CORBA.Any);
 public short extract_short();
 public void insert_short(short);
 public int extract_long();

 public void insert_long(int);
 public long extract_longlong();
 public void insert_longlong(long);
 public short extract_ushort();
 public void insert_ushort(short);
 public int extract_ulong();
 public void insert_ulong(int);

 - 553 -

 public long extract_ulonglong();
 public void insert_ulonglong(long);
 public float extract_float();
 public void insert_float(float);
 public double extract_double();
 public void insert_double(double);
 public boolean extract_boolean();
 public void insert_boolean(boolean);
 public char extract_char();
 public void insert_char(char);
 public char extract_wchar();
 public void insert_wchar(char);
 public byte extract_octet();
 public void insert_octet(byte);
 public org.omg.CORBA.Any extract_any();
 public void insert_any(org.omg.CORBA.Any);
 public org.omg.CORBA.TypeCode extract_TypeCode();
 public void insert_TypeCode(org.omg.CORBA.TypeCode);
 public org.omg.CORBA.Object extract_Object();
 public void insert_Object(org.omg.CORBA.Object);
 public void insert_Object(org.omg.CORBA.Object,
 org.omg.CORBA.TypeCode);
 public java.lang.String extract_string();
 public void insert_string(java.lang.String);
 public java.lang.String extract_wstring();
 public void insert_wstring(java.lang.String);
 public org.omg.CORBA.Principal extract_Principal();
 public void insert_Principal(org.omg.CORBA.Principal);
 public void
insert_Streamable(org.omg.CORBA.portable.Streamable);

 public org.omg.CORBA.Any();
 }

 In examining the Event Service, we examine the push model first and then the pull model.

THE GENERIC PUSH EVENT MODEL

As stated earlier, the generic push event model exists such that events are delivered
from supplier to the event channel and then directly to the consumer. The event itself is
modeled using an Any object and can therefore represent any entity in the CORBA
universe.

To begin our look at the generic push event model, let’s examine the IDL in Listing 31.2.
Listing 31.2 contains abbreviated versions of the CosEventComm and
CosEventChannelAdmin modules, which define all interfaces and operations needed
for sending or receiving events. The CosEventComm module contains interfaces that
deal directly with the propagation of events. The CosEventChannelAdmin module
contains interfaces that model the managerial aspects of event management, specifically
connecting to the channel itself.

For clarity, all interfaces that deal with the generic pull event model have been removed
from Listing 31.2. These interfaces are covered in the next section and are also
contained in their entirety on the CD-ROM.

 LISTING 31.2 SECTIONS OF THE CosEventComm AND CosEventChannelAdmin

 - 554 -

MODULES DEALING WITH THE GENERIC PUSH EVENT MODEL

 module CosEventComm {
 exception Disconnected{};

 interface PushConsumer {
 void push (in any data) raises(Disconnected);
 void disconnect_push_consumer();
 };

 interface PushSupplier {
 void disconnect_push_supplier();
 };
 };

 module CosEventChannelAdmin {
 exception AlreadyConnected {};

 exception TypeError {};

 interface ProxyPushConsumer:CosEventComm::PushConsumer {
 void connect_push_supplier(in CosEventComm::PushSupplier
 push_supplier)
 raises(AlreadyConnected);
 };

 interface ProxyPushSupplier: CosEventComm::PushSupplier {
 void connect_push_consumer(in CosEventComm::PushConsumer
 push_consumer)
 raises(AlreadyConnected,TypeError);
 };

 interface ConsumerAdmin {
 ProxyPushSupplier obtain_push_supplier();
 ProxyPullSupplier obtain_pull_supplier();

 };

 interface SupplierAdmin {
 ProxyPushConsumer obtain_push_consumer();
 ProxyPullConsumer obtain_pull_consumer();
 };

 interface EventChannel {
 ConsumerAdmin for_consumers();
 SupplierAdmin for_suppliers();
 void destroy();
 };
 };

Starting with the event channel, you’ll note an interface in the CosEventChannelAdmin
module titled EventChannel. An object implementing this interface would be
instantiated when the event channel is started; suppliers and consumers would then use

 - 555 -

the ORB to bind to the object. After binding to the EventChannel object, event
suppliers obtain a SupplierAdmin object by invoking the for_suppliers()
operation, and event consumers obtain a ConsumerAdmin object by invoking the
for_consumers() operation. Through the xxx""" objects, suppliers and consumers
actually connect to the channel. Once connected to the channel, suppliers post events to
the channel and consumers receive events from the channel.

Moving beyond the event channel, the CosEventComm module defines interfaces
implemented by the event suppliers and consumers. The PushConsumer interface is
implemented by consumers and defines two operations that are potentially invoked by
the event supplier. The push() operation is invoked by the event supplier when an
event occurs, and the disconnect_push_consumer() operation is invoked by the
event supplier or channel if the connection is broken.

As a demonstration of the generic push event model, the next few code listings build a
stock portfolio manager application. The server side of the application attaches itself to
the event channel and posts random quote updates to the channel. With quote updates
being posted to the event channel, the client side of the application manages a portfolio
and represents the active value using the data posted to the event channel. Because the
server posts quote updates that represent stocks that might not be present in the
portfolio, it’s the burden of the client to filter out unwanted events.

Because this application allows client and server communication to occur only through
the event channel, the amount of IDL needed is rather slim. Both the client and server
expose no operations, and only the object modeling the stock symbol and price needs to
be represented. Listing 31.3 contains the IDL for the QuoteUpdateI interface, which
has attributes for stock symbol and stock price.

 LISTING 31.3 THE IDL FOR THE STOCK SYMBOL AND PRICE INFORMATION

 interface QuoteUpdateI {
 attribute string sSymbol;
 attribute float fNewPrice;
 };

With the IDL defined for the quote information, it’s now possible to build a server to post
quote events. Listing 31.4 contains the GenericPushQuoteServer class, which is
charged with sending all events. When instantiated, it attaches itself to the event channel
and posts a stream of events. As you examine Listing 31.4, pay specific attention to the
code in the run() method, because the actual event posting is contained there.

 LISTING 31.4 THE GenericPushQuoteServer CLASS POSTS EVENTS TO THE

EVENT CHANNEL

 import java.util.*;
 import org.omg.CosEventComm.*;
 import org.omg.CosEventChannelAdmin.*;
 import org.omg.CORBA.*;

 /**
 * The GenericPushQuoteServer class posts random quote values
 * to the event channel.
 */

 public final class GenericPushQuoteServer
 extends _PushSupplierImplBase
 implements Runnable {

 - 556 -

 private String[] __sSymbols = {"INKT", "MSFT",
"ORCL",

 "CNWK", "XCIT",
"PSFT",

 "LU", "CPQ","WMT",
"DIS"};

 private Random _random;
 private Thread _thread;

 private org.omg.CORBA.ORB _orb;
 private org.omg.CORBA.BOA _boa;
 private ProxyPushConsumer _pushConsumer;

 public GenericPushQuoteServer() {
 // bind to the orb
 _orb = ORB.init();
 // obtain a reference to the boa
 _boa = _orb.BOA_init();
 _random = new Random();

 // bind to the event channel
 EventChannel channel = EventChannelHelper.bind(_orb);
 // obtain a ProxyPushConsumer object.

 _pushConsumer =
channel.for_suppliers().obtain_push_consumer();

 // connect as an event supplier
 try{ _pushConsumer.connect_push_supplier(this); }
 catch(AlreadyConnected ac) {}

 // start sending events in a unique thread
 _thread = new Thread(this);
 _thread.start();
 }

 /**
 * Invoked when we are disconnected from the
 * event channel.
 */
 public void disconnect_push_supplier() {
 try{ _boa().deactivate_obj(this); }
 catch(SystemException e) { }
 }

 /**
 * Chooses (at random) one of the ten
 * supported symbols.
 */
 private String getRandomSymbol() {
 return _sSymbols[Math.abs(_random.nextInt() % 10) -0];
 }

 /**
 * Generates a random value for a quote

 - 557 -

 * between 0 and 300
 */
 private float getRandomPrice() {
 return Math.abs(_random.nextInt() % 300) -0;
 }

 /**
 * Creates a new QuoteUpdateI object with
 * random values
 */
 private QuoteUpdateI obtainRandomQuoteUpdate() {
 QuoteUpdateI quote =
 new QuoteUpdate(getRandomSymbol(), getRandomPrice());
 _boa.obj_is_ready(quote);
 return quote;
 }

 public void run() {
 while(true) {
 try{ _thread.sleep(1000); }
 catch(Exception e) {}

 try { // obtain an Any object from the ORB
 org.omg.CORBA.Any eventObject =
_orb.create_any();

 // add a QuoteUpdateI object to the Any object

eventObject.insert_Object(obtainRandomQuoteUpdate());

 // post the event
 pushConsumer.push(eventObject);
 }
 catch(Disconnected e) { }
 catch(SystemException e) {
 disconnect_push_supplier();
 }
 }
 }

 public static void main(String[] args)) {
 GenericPushQuoteServer server = new
GenericPushQuoteServer();

 }
 }

Moving from the server to the client, Listing 31.5 contains the GenericPushListener
class. This class attaches itself to the event channel and is notified of all new stock
prices. When a price is obtained, the portfolio is examined for the presence of the
associated symbol. If the holding is present in the portfolio, its value is updated;
otherwise, the event is ignored.

 LISTING 31.5 THE GenericPushListener CLASS LISTENS FOR EVENTS

POSTED TO THE EVENT CHANNEL

 import java.util.*;

 - 558 -

 import org.omg.CosEventComm.*;
 import org.omg.CosEventChannelAdmin.*;

 /**
 * The GenericPushListener class is notified via its
 * push() method whenever a new price is available
 * for a given quote.
 */
 public class GenericPushListener extends _PushConsumerImplBase {
 private Hashtable _hshPortfolio;
 private PortfolioGUI _portfolioGUI;

 public GenericPushListener(Hashtable hshPortfolio,
 PortfolioGUI portfolioGUI) {
 _hshPortfolio = hshPortfolio;

 _portfolioGUI = portfolioGUI;

 // bind to the orb
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();
 // obtain a reference to the boa
 org.omg.CORBA.BOA boa = orb.BOA_init();
 // obtain a reference to the event channel
 EventChannel channel = EventChannelHelper.bind(orb);;
 // connect as a listener for push events
 ProxyPushSupplier pushSupplier =
 channel.for_consumers().obtain_push_supplier();;
 try{ pushSupplier.connect_push_consumer(this); }
 catch(AlreadyConnected ac) {}
 }

 /**
 * The push() method is invoked by the event channel
 * when a new event is pushed into the channel queue.
 */
 public void push(org.omg.CORBA.Any data) throws Disconnected {
 // extract the event data
 org.omg.CORBA.Object object = data.extract_Object();
 // narrow (cast) the event data as a QuoteUpdateI object
 QuoteUpdateI quoteUpdate =
QuoteUpdateIHelper.narrow(object);

 // check to see if the updated price represents
 // an active holding.
 String sSymbol = quoteUpdate.sSymbol();
 if(_hshPortfolio.containsKey(sSymbol)) {
 synchronized(_hshPortfolio) {
 // update the stock value in the portfolio
 StockOwnership stock =
 (StockOwnership)_hshPortfolio.get(sSymbol);
 stock.setPrice(quoteUpdate.fNewPrice());
 }

 - 559 -

 // repaint the portfolio screen
 _portfolioGUI.updatePortfolio();
 }
 }

 /**
 * The disconnect_push_consumer() method is invoked
 * by the event channel when we are disconnected
 * from the event channel.
 */
 public void disconnect_push_consumer() {
 }
 }

Whereas Listing 31.5 contains the actual code used to listen for events, Listing 31.6
contains the code used to render all information onscreen. The PortfolioGUI class is
the main point of entry for the application, and it displays, in grid format, current values
for all holdings. The screen presents buttons that enable the human user to either buy or
sell stocks. When a user requests that a buy or sell be performed, the BuyDialog or
SellDialog (respectively) handle the user interaction. Finally, the StockOwnership
class represents a holding (symbol, shares owned, and share price).

LISTING 31.6 THE PortfolioGUI, BuyDialog, SellDialog, AND
StockOwnership CLASSES FACILITATE DISPLAY OF LIVE PORTFOLIO
INFORMATION

 import java.awt.*;
 import java.awt.event.*;
 import java.util.*;
 import jclass.bwt.*;

 /**
 * The PortfolioGUI class represents a simple
 * GUI for our portfolio client.
 */
 public final class PortfolioGUI extends Frame {
 private JCMultiColumnList _mlstPortfolio;
 private Hashtable _hshPortfolio;
 private Button _btnBuy;
 private Button _btnSell;

 public PortfolioGUI() {
 super("Stock Portfolio");

 _mlstPortfolio = new JCMultiColumnList();
 _mlstPortfolio.setColumnButtons(column_labels);

 Panel pnlButtons = new Panel();
 pnlButtons.setLayout(new FlowLayout(FlowLayout.LEFT));
 pnlButtons.add(_btnBuy = new Button("Buy"));
 pnlButtons.add(_btnSell = new Button("Sell"));

 _btnBuy.addActionListener(new BuySellListener("BUY",
this));

 - 560 -

 _btnSell.addActionListener(new BuySellListener("SELL",
this));

 setLayout(new BorderLayout());
 add(pnlButtons, "North");
 add(_mlstPortfolio, "Center");

 _hshPortfolio = new Hashtable();
 _hshPortfolio.put("INKT", new StockOwnership("INKT",
 57.5f,100f));
 _hshPortfolio.put("MSFT", new StockOwnership("MSFT",
 113.8f,
54521f));

 _hshPortfolio.put("ORCL", new StockOwnership("ORCL",
 24.6f,
5485f));

 _hshPortfolio.put("CNWK", new StockOwnership("CNWK",
 64.75f,
300f));

 _hshPortfolio.put("XCIT", new StockOwnership("XCIT",
 44.62f,7164f));
 updatePortfolio();

 // listen for changes
 GenericPushListener listener =
 new GenericPushListener(_hshPortfolio, this);
 }

 public void updatePortfolio() {
 _mlstPortfolio.setBatched(true); // don"t repaint on add
 _mlstPortfolio.clear();

 Enumeration e = _hshPortfolio.elements();
 while(e.hasMoreElements()) {
 StockOwnership stock = (StockOwnership)e.nextElement();
 StringBuffer sbBuilder = new StringBuffer();
 sbBuilder.append(stock.getSymbol());
 sbBuilder.append("|");
 sbBuilder.append(stock.getSharesOwned());
 sbBuilder.append("|");
 sbBuilder.append(stock.getPrice());
 sbBuilder.append("|");

sbBuilder.append(stock.getSharesOwned()*stock.getPrice());

 _mlstPortfolio.addItem(sbBuilder.toString(), "|");
 }

 _mlstPortfolio.setBatched(false); // repaint all
 }

 /**
 * Invoked when a user OKs out of a
 * BUY dialog box. Indicates that the

 - 561 -

 * specified number of shares of the stock
 * identified by the specified symbol were
 * purchased. The purchase price is assumed
 * to be the current price.
 */
 public void buyOccurred(String sSymbol, float fShares) {
 StockOwnership stock =
 (StockOwnership)_hshPortfolio.get(sSymbol);
 if(stock != null)
 stock.setSharesOwned(stock.getSharesOwned()+fShares);
 updatePortfolio();
 }

 /**
 * Invoked when a user OKs out of a
 * SELL dialog box. Indicates that the
 * specified number of shares of the stock
 * identified by the specified symbol were
 * sold. The selling price is assumed
 * to be the current price.
 */
 public void sellOccurred(String sSymbol, float fShares) {
 StockOwnership stock =
 (StockOwnership)_hshPortfolio.get(sSymbol);
 if(stock != null)
 stock.setSharesOwned(stock.getSharesOwned()-fShares);
 updatePortfolio();
 }

 /**
 * Inner class used to listen for clicks on
 * the buy or sell buttons.
 */
 class BuySellListener implements ActionListener {
 private final int BUY = 1;
 private final int SELL = 2;
 private int _iMode = 0;
 private PortfolioGUI _parent;

 public BuySellListener(String sMode, PortfolioGUI parent) {
 if(sMode.equalsIgnoreCase("BUY")) _iMode = BUY;
 else _iMode = SELL;
 _parent = parent;
 }

 public void actionPerformed(ActionEvent ae) {
 Dialog dialog = null;

 if(_iMode = BUY) {
 dialog = new BuyDialog(_parent, _hshPortfolio);
 }
 else {

 - 562 -

 dialog = new SellDialog(_parent, _hshPortfolio);
 }
 dialog.pack();
 dialog.setVisible(true);
 }
 }

 public final static void main(String[] args)) {
 PortfolioGUI gui = new PortfolioGUI();
 gui.pack();

 gui.setVisible(true);
 }
 }

 import java.awt.*;
 import java.awt.event.*;
 import java.util.*;

 /**
 * The BuyDialog class is a simple UI tool
 * that allows users to buy additional shares
 * in existing holdings.
 */
 public class BuyDialog extends Dialog {
 private Choice _chcSymbols;
 private TextField _txtShares;
 private Button _btnOk;
 private Button _btnCancel;
 private PortfolioGUI _portfolioGUI;

 public BuyDialog(PortfolioGUI portfolioGUI, Hashtable
hshPortfolio) {

 super(portfolioGUI, true);
 setBackground(Color.white);

 _portfolioGUI = portfolioGUI;

 _chcSymbols = new Choice();
 Enumeration e = hshPortfolio.keys();
 _chcSymbols.add("");
 while(e.hasMoreElements()) {
 _chcSymbols.add(e.nextElement().toString());
 }

 Panel pnlLabel = new Panel();
 pnlLabel.setLayout(new FlowLayout(FlowLayout.CENTER));
 pnlLabel.add(new Label("Select A Symbol And Share
Count"));

 Panel pnlDecision = new Panel();
 pnlDecision.setLayout(new FlowLayout(FlowLayout.LEFT));
 pnlDecision.add(new Label("Symbol: ", Label.RIGHT));

 - 563 -

 pnlDecision.add(_chcSymbols);
 pnlDecision.add(new Label(" "));
 pnlDecision.add(new Label("Shares: ", Label.RIGHT));
 pnlDecision.add(_txtShares = new TextField(15));

 Panel pnlButtons = new Panel();
 pnlButtons.setLayout(new
FlowLayout(FlowLayout.RIGHT,5,5));

 pnlButtons.add(_btnOk = new Button("Ok"));
 pnlButtons.add(_btnCancel = new Button("Cancel"));
 _btnOk.addActionListener(new ButtonListener(this, "OK"));

 _btnCancel.addActionListener(new ButtonListener(this,
"CANCEL"));

 setLayout(new GridLayout(3,1));
 add(pnlLabel);
 add(pnlDecision);
 add(pnlButtons);
 }

 /**
 * Inner class used to listen for the event
 * caused when a button is clicked.
 */
 class ButtonListener implements ActionListener {
 public int OK = 10;
 public int CANCEL = 13;
 private int _iMode;
 private BuyDialog _parent;

 public ButtonListener(BuyDialog parent, String sMode) {
 _parent = parent;
 if(sMode.equalsIgnoreCase("OK")) _iMode = OK;
 else _iMode = CANCEL;
 }

 public void actionPerformed(ActionEvent ae) {
 if(_iMode = OK) {

 try{ float fShares =

Float.valueOf(_txtShares.getText()).floatValue();

 _portfolioGUI.buyOccurred(
 _chcSymbols.getSelectedItem(),
fShares);

 }
 catch(NumberFormatException nfe) {}
 }
 _parent.setVisible(false);
 }
 }
 }

 - 564 -

 import java.awt.*;
 import java.awt.event.*;
 import java.util.*;

 /**
 * The SellDialog class is a simple UI tool
 * that allows users to sell shares
 * in existing holdings.
 */
 public class SellDialog extends Dialog {

 private Hashtable _hshPortfolio;
 private Choice _chcSymbols;
 private TextField _txtShares;
 private Button _btnOk;
 private Button _btnCancel;
 private PortfolioGUI _portfolioGUI;

 public SellDialog(PortfolioGUI portfolioGUI, Hashtable
hshPortfolio) {

 super(portfolioGUI, true);
 setBackground(Color.white);

 _portfolioGUI = portfolioGUI;
 _hshPortfolio = hshPortfolio;

 _chcSymbols = new Choice();
 Enumeration e = hshPortfolio.keys();
 _chcSymbols.add("");
 while(e.hasMoreElements()) {
 _chcSymbols.add(e.nextElement().toString());
 }
 _chcSymbols.addItemListener(new ChoiceListener());

 Panel pnlLabel = new Panel();
 pnlLabel.setLayout(new FlowLayout(FlowLayout.CENTER));
 pnlLabel.add(new Label("Select A Symbol And Share Count"));

 Panel pnlDecision = new Panel();
 pnlDecision.setLayout(new FlowLayout(FlowLayout.LEFT));
 pnlDecision.add(new Label("Symbol: ", Label.RIGHT));
 pnlDecision.add(_chcSymbols);
 pnlDecision.add(new Label(" "));
 pnlDecision.add(new Label("Shares: ", Label.RIGHT));
 pnlDecision.add(_txtShares = new TextField(15));

 Panel pnlButtons = new Panel();
 pnlButtons.setLayout(new FlowLayout(FlowLayout.RIGHT,5,5));
 pnlButtons.add(_btnOk = new Button("Ok"));
 pnlButtons.add(_btnCancel = new Button("Cancel"));
 _btnOk.addActionListener(new ButtonListener(this, "OK"));
 _btnCancel.addActionListener(new ButtonListener(this,
"CANCEL"));

 - 565 -

 setLayout(new GridLayout(3,1));
 add(pnlLabel);
 add(pnlDecision);
 add(pnlButtons);
 }

 /**
 * Inner class used to listen for changes to the
 * symbol being displayed in the Choice

 */
 class ChoiceListener implements ItemListener {

 public void itemStateChanged(ItemEvent ie) {
 }
 }

 /**
 * Inner class used to listen for the event
 * caused when a button is clicked.
 */
 class ButtonListener implements ActionListener {
 public int OK = 10;
 public int CANCEL = 13;
 private int _iMode;
 private SellDialog _parent;

 public ButtonListener(SellDialog parent, String sMode) {
 _parent = parent;
 if(sMode.equalsIgnoreCase("OK")) _iMode = OK;
 else _iMode = CANCEL;
 }

 public void actionPerformed(ActionEvent ae) {
 if(_iMode = OK) {

 try{ float fShares =

Float.valueOf(_txtShares.getText()).floatValue();

 _portfolioGUI.sellOccurred(

_chcSymbols.getSelectedItem(),

 fShares);
 }
 catch(NumberFormatException nfe) {}
 }
 _parent.setVisible(false);
 }
 }
 }

 /**

 - 566 -

 * Class used to represent ownership
 * in a unique stock
 */
 public class StockOwnership {
 private String _sSymbol = null;
 private float _fPrice = 0f;
 private float _fsharesOwned = 0f;

 public StockOwnership() {

 }

 public StockOwnership(String sSymbol,
 float fPrice,
 float fsharesOwned) {
 _sSymbol = sSymbol;
 _fPrice = fPrice;
 _fsharesOwned = fsharesOwned;
 }

 public String getSymbol() {
 return _sSymbol;
 }

 public float getPrice() {
 return _fPrice;
 }

 public float getSharesOwned() {
 return _fsharesOwned;
 }

 public void setSymbol(String sSymbol) {
 _sSymbol = sSymbol;
 }

 public void setPrice(float fPrice) {
 _fPrice = fPrice;
 }

 public void setSharesOwned(float fsharesOwned) {
 _fsharesOwned = fsharesOwned;
 }
 }

To run the application, you’ll need the Inprise Visibroker ORB installed, along with the
Inprise Event Channel software and a GUI library called JClass BWT that is also on the
CD-ROM. The JClass package contains a collection of UI widgets. In the current example
we use the grid widget. If you haven’t installed the software yet, do so now. With all the
software installed, first launch the ORB runtime using the following command:

 osagent

 - 567 -

 You’ll now need to launch the event channel using this command:

 vbj com.visigenic.vbroker.services.CosEvent.Channel
EventChannelName

The parameter passed to the event channel application is a logical name associated with
this unique channel. If your application calls for the use of multiple event channels, each
would have a unique name, and all channel bind operations would specify the name of

 vbj GenericPushQuoteServer

 and the client by typing

 vbj PortfolioGUI

As the application runs, you’ll see rapid changes in the value of all holdings. Because a
stock price is randomly recalculated to fall between $0–$300, chances are you’ll not have
the same portfolio value for long. Although these dramatic shifts are, thankfully, not
indicative of market performance, they do represent a potential situation in which the
markets might get all confused on January 1, 2000. The hectic portfolio is shown in
Figure 31.2.

 Figure 31.2: The stock portfolio application displaying ticker values.

 THE GENERIC PULL EVENT MODEL

As was stated in the earlier discussion of the push and pull event models, each presents
pros and cons. Because the push event model involves network traffic only when an
event needs to migrate to the client, there’s no bandwidth wasted on extraneous
communication. Additionally, the push model does not depend on a client asking for
events and therefore lends itself to timely event delivery. The one major downside to the
push model is that the event channel must invoke methods on the client object itself. In
many situations, the event channel and server will exist somewhere on the Internet, and
the client will exist behind a firewall. Because most firewalls are configured to not allow
incoming connections (including method invocations), the push model will fail here. As an
alternative, the pull model exists such that events are stored at the supplier and delivered
to the consumer only when asked for. The consumer still communicates with the supplier
via the event channel; event requests are passed through the channel to the actual
target.

In a fashion similar to our investigation of the generic push event model, we’ll first
examine the IDL supplied by the Event Service and then develop a demonstration
application. The application developed is a version of the earlier portfolio example;
however, the pull event model is employed. To conserve space, only the two classes that
manage event sending and receiving are printed in the book; all GUI code is contained
on the CD-ROM. Note that this GUI code differs little from the GUI code for the push
example. In fact, the only difference is that the PortfolioGUI class instantiates a
GenericPullListener object (to watch for stock value changes) instead of a
GenericPushListener object.

 Starting our exploration of the pull event model, Listing 31.7 contains the IDL interfaces

 - 568 -

that the event channel exposes for use during pull-based event communication.

 LISTING 31.7 SECTIONS OF THE CosEventComm AND CosEventChannelAdmin

MODULES DEALING WITH THE GENERIC PULL EVENT MODEL

 module CosEventComm {
 exception Disconnected{};

 interface PullSupplier {
 any pull () raises(Disconnected);
 any try_pull (out boolean has_event)
raises(Disconnected);

 void disconnect_pull_supplier();
 };

 interface PullConsumer {
 void disconnect_pull_consumer();
 };
 };

 module CosEventChannelAdmin {
 exception AlreadyConnected {};
 exception TypeError {};

 interface ProxyPullSupplier: CosEventComm::PullSupplier {
 void connect_pull_consumer(
 in CosEventComm::PullConsumer pull_consumer)
 raises(AlreadyConnected);
 };

 interface ProxyPullConsumer: CosEventComm::PullConsumer {
 void connect_pull_supplier(in CosEventComm::PullSupplier
 pull_supplier)
 raises(AlreadyConnected,TypeError);
 };

 interface ConsumerAdmin {

 ProxyPushSupplier obtain_push_supplier();
 ProxyPullSupplier obtain_pull_supplier();
 };

 interface SupplierAdmin {
 ProxyPushConsumer obtain_push_consumer();
 ProxyPullConsumer obtain_pull_consumer();
 };

 interface EventChannel {
 ConsumerAdmin for_consumers();
 SupplierAdmin for_suppliers();
 void destroy();
 };
 };

 - 569 -

In a fashion almost identical to the push event model, both the event supplier and
consumer begin by binding to an object that implements the EventChannel interface.
After binding to the EventChannel object, event suppliers obtain a SupplierAdmin
object by invoking the for_suppliers() operation, and event consumers obtain a
ConsumerAdmin object by invoking the for_consumers() operation. Through the
xxx""" objects, suppliers and consumers actually connect to the channel. Once
connected to the channel, consumers query the channel for available events. The event
channel then queries registered suppliers for available events.

Moving beyond the event channel, the CosEventComm module defines interfaces
implemented by the event suppliers and consumers. The PullConsumer interface is
implemented by consumers and simply defines the disconnect_pull_consumer()
method, which is invoked when the consumer is disconnected from the event channel.
The PullSupplier interface is implemented by event suppliers, and it defines two
important methods. Both the pull() and try_pull()methods are invoked by the
event channel when a consumer requests an event from the channel. The try_pull()
method is used when a consumer simply wants to query for potential available events.
This method is nonblocking, and a consumer is not guaranteed an event return value. To
indicate the presence of an event, the try_pull() method accepts a boolean “out”
parameter, indicating whether a valid event is being returned. When the pull() method
is invoked, the consumer will block until a valid event is returned.

Now that you have an understanding of how the generic pull event model functions, stop
reading for a minute and convert the stock portfolio example over to use the pull event
model. Because the earlier example is designed such that event communication is
performed in two unique classes, the amount of code that needs to be changed is rather
minimal. The one major difference, however, is that the supplier cannot simply post event
after event, and the consumer cannot sit passively and wait for events to arrive. The
consumer must enter into a unique thread of execution and poll the event channel for
available events. The supplier, instead of sending out events in a unique thread, must
enter a wait state and be prepared to post events when ready.

Once you’ve attempted to convert the solution yourself, take a look at the event supplier
class in Listing 31.8 and the event consumer class in Listing 31.9. Compiling and running
this new version of the solution is identical to the process used with the generic push
version.

 LISTING 31.8 SENDING EVENTS USING THE GENERIC PULL EVENT MODEL

 import java.util.*;
 import org.omg.CosEventComm.*;
 import org.omg.CosEventChannelAdmin.*;
 import org.omg.CORBA.*;

 /**
 * The GenericPullQuoteServer generates events
 * containing price data on stock quotes.
 */
 public final class GenericPullQuoteServer extends
_PullSupplierImplBase {

 private String[] _sSymbols = {"INKT", "MSFT",
"ORCL",

 "CNWK","XCIT",
"PSFT",

 "LU", "CPQ","WMT",
"DIS"};

 - 570 -

 private Random _random;

 private org.omg.CORBA.ORB _orb;
 private org.omg.CORBA.BOA _boa;
 private ProxyPullConsumer _pullConsumer;

 public GenericPullQuoteServer() {
 // bind to the orb
 _orb = ORB.init();
 // obtain a reference to the boa
 _boa = _orb.BOA_init();
 _random = new Random();

 // bind to the event channel
 EventChannel channel = EventChannelHelper.bind(_orb);
 // obtain a ProxyPullConsumer object.
 _pullConsumer =
channel.for_suppliers().obtain_pull_consumer();

 // connect as an event supplier
 try{ _pullConsumer.connect_pull_supplier(this); }
 catch(AlreadyConnected ac) {}
 _boa.impl_is_ready();
 }

 /**
 * Invoked when we are disconnected from the
 * event channel.
 */
 public void disconnect_pull_supplier() {
 try{ _boa().deactivate_obj(this); }
 catch(SystemException e) { }
 }

 /**
 * Chooses (at random) one of the ten
 * supported symbols.
 */
 private String getRandomSymbol() {
 return _sSymbols[Math.abs(_random.nextInt() % 10) -0];
 }

 /**
 * Generates a random value for a quote
 * between 0 and 300
 */
 private float getRandomPrice() {
 return Math.abs(_random.nextInt() % 300) -0;
 }

 /**
 * Creates a new QuoteUpdateI object with
 * random values
 */

 - 571 -

 private QuoteUpdateI obtainRandomQuoteUpdate() {
 QuoteUpdateI quote =
 new QuoteUpdate(getRandomSymbol(), getRandomPrice());
 _boa.obj_is_ready(quote);
 return quote;
 }

 /**
 * Invoked by the event channel when an event is needed
 * by the consumer
 */
 public org.omg.CORBA.Any pull() throws Disconnected {
 if(_pullConsumer = null) throw new Disconnected();

 // obtain an Any object from the ORB
 org.omg.CORBA.Any eventObject = _orb.create_any();
 // add a QuoteUpdateI object to the Any object

 eventObject.insert_Object(obtainRandomQuoteUpdate());
 // post the event
 return eventObject;
 }

 /**
 * Invoked by the event channel when an event may or may not
 * be needed by the consumer. Since we provide a steady stream
 * of quote events, simply call pull()
 */
 public org.omg.CORBA.Any try_pull(org.omg.CORBA.BooleanHolder
 hasEvent)
 throws org.omg.CORBA.SystemException, Disconnected {
 hasEvent.value = true; // indicate the presence of an
event

 return pull();
 }

 public static void main(String[] args)) {
 GenericPullQuoteServer server = new
GenericPullQuoteServer();

 }
 }

 LISTING 31.9 RECEIVING EVENTS USING THE GENERIC PULL EVENT MODEL

 import java.util.*;
 import org.omg.CosEventComm.*;
 import org.omg.CosEventChannelAdmin.*;

 /**
 * The GenericPullListener class is notified via its

 - 572 -

 * pull() method whenever a new price is available
 * for a given quote.
 */
 public class GenericPullListener extends _PullConsumerImplBase
 implements Runnable {
 private Hashtable _hshPortfolio;
 private PortfolioGUI _portfolioGUI;
 private ProxyPullSupplier _pullSupplier;
 private Thread _thread;

 public GenericPullListener(Hashtable hshPortfolio,
 PortfolioGUI portfolioGUI) {
 _hshPortfolio = hshPortfolio;
 _portfolioGUI = portfolioGUI;

 // bind to the orb
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();
 // obtain a reference to the boa
 org.omg.CORBA.BOA boa = orb.BOA_init();
 // obtain a reference to the event channel
 EventChannel channel = EventChannelHelper.bind(orb);;
 // connect as a listener for pull events
 _pullSupplier =
channel.for_consumers().obtain_pull_supplier();;

 try{ _pullSupplier.connect_pull_consumer(this); }
 catch(AlreadyConnected ac) {}

 _thread = new Thread(this);
 _thread.start();
 }

 /**
 * Queries the event channel for available events
 */
 public void pull() throws Disconnected {
 // query and extract the event data
 org.omg.CORBA.Object object =
 _pullSupplier.pull().extract_Object();
 // narrow (cast) the event data as a QuoteUpdateI object
 QuoteUpdateI quoteUpdate = QuoteUpdateIHelper.narrow(object);

 // check to see if the updated price represents
 // an active holding.
 String sSymbol = quoteUpdate.sSymbol();
 if(_hshPortfolio.containsKey(sSymbol)) {
 synchronized(_hshPortfolio) {
 // update the stock value in the portfolio
 StockOwnership stock =
 (StockOwnership)_hshPortfolio.get(sSymbol);
 stock.setPrice(quoteUpdate.fNewPrice());
 }
 // repaint the portfolio screen
 _portfolioGUI.updatePortfolio();

 - 573 -

 }
 }

 /**
 * The disconnect_pull_consumer() method is invoked
 * by the event channel when we are disconnected
 * from the event channel.
 */
 public void disconnect_pull_consumer() {
 _pullSupplier.disconnect_pull_supplier();
 }

 /**
 * Periodically poll for available events
 */
 public void run() {
 boolean bContinue = true;
 while(bContinue) {
 try{ _thread.sleep(1000); }
 catch(Exception e) {}
 try{ pull(); }
 catch(Disconnected d) {
 bContinue = false;
 disconnect_pull_consumer();
 }
 }
 }
 }

 FROM HERE

This chapter addressed the important topic of the CORBA Event Service. As you develop
distributed applications, chances are you’ll need some mechanism for event-based
communication, and the Event Service is a valid candidate for use. The advantage of
going with the Event Service over a homebrewed version is twofold. First of all, you’re
using a standard API, which means new developers entering a team are likely to have
knowledge of its functionality. Second, because the event channel is already developed,
you save significant development time. You don’t need to develop and test code that can
handle potentially thousands of events being posted to the channel at the same time.

 As you continue to explore all that CORBA has to offer, you’ll find that the following

chapters complement this chapter’s coverage of the Event Service:

 • Chapter 21, “CORBA Overview”

 • Chapter 22, “CORBA Architecture”

 • Chapter 23, “Survey of CORBA ORBs”

 • Chapter 30, “The Naming Service”

Chapter 32: Interface Repository, Dynamic
Invocation, Introspection, and Reflection

 - 574 -

 Overview

An object in both the CORBA universe and the Java universe serves a variety of
purposes. At one level, it has the ability to interact in business processes, represent
data, and generally model some real-world entity. In addition, an object also has the
ability to enter into a dialogue in which it describes the features it exports. For example,
an object in a patient management system can model patient data and also be asked if it
supports methods that obtain demographic information. The ability to query an object at
runtime is called either introspection or reflection and is supported both by Java objects
and by CORBA objects. Developers producing CORBA solutions in Java are able to mix
and match both techniques to achieve the best of both worlds.

This chapter takes a look at discovering information about objects using both the Java
reflection model and the CORBA introspection model. Specifically, the following
information is covered:

 • How the Java reflection model describes objects

 • How the CORBA introspection model describes objects

 • How the interface repository aids the CORBA introspection model

 • How to dynamically invoke methods on objects

The 1.02 release of the JDK introduced minimal reflection capabilities that Java objects
could expose. Although useful to some extent, these capabilities were very rudimentary
and were far from sophisticated. The 1.1 release of the JDK changed this by greatly
enhancing the ability of an object to describe itself. In this initial section, we first look at the
classes and interfaces that enable reflection and then build an application that dynamically
invokes methods on a variety of objects. Following the coverage of the Java reflection
model, we move on to coverage of the CORBA reflection (or introspection) model.

 JAVA REFLECTION TECHNOLOGIES

Classes and interfaces in the packages java.lang.reflect and java.lang
support reflection in the Java universe. These classes, described fully in Table 32.1,
allow for classes, methods, fields, and exceptions to describe all needed information.
What should be noted about the classes discussed here is that in addition to describing a
method or field, they also provide live access to that method or field. For example, you
could look at an object, ask it for an array of its fields, find all fields that are String
objects with the value “bar,” and change this value to “foo.”

 TABLE 32.1 CLASSES AND INTERFACES USED BY THE JAVA REFLECTION

MODEL

Class/Interface name

Purpose

java.lang.Class

Automatically created by the JVM when an object is
instantiated. Maintains references to all information
available to describe the object.

java.lang.

Interface that describes information about either a

 - 575 -

reflect.Member method or field present in a class. This interface is
implemented by other classes in this package.

java.lang.
reflect.Constructor

Represents information about and provides access
to a class’s constructor.

java.lang.
reflect.Field

Represents information about and provides access
to a member variable present in an object.

java.lang.
reflect.Method

Represents information about and provides access
to a method present in an object.

java.lang.
reflect.Modifier

A collection of static methods and variables used
when examining class, member, or method modifiers
(for example, static or final).

The class Class is the starting point through which information about an object is
accessed. A single Class object is automatically associated with all objects when
instantiated and is obtained by invoking the method getClass() that’s inherited from
the class java.lang.Object (the default parent for all classes). Once obtained, the
Class object exposes a series of methods through which references to the target
object’s methods and fields are obtained. Table 32.2 describes the methods useful during
reflection that are exposed by the class Class.

As you examine these methods, note that because they provide live access to a field or
method, Java access control mechanisms are respected. This means that if you’re
examining an object from another object, only public methods and fields are accessible. If
the object is examining itself, public, private, and protected data is accessible.

 TABLE 32.2 METHODS EXPOSED BY THE CLASS Class USED IN REFLECTION

Method

Purpose

getConstructor
(Class[])

Obtains the Constructor object associated with the
specified class.

getConstructors()

Obtains all Constructor objects associated with the
target object.

getDeclared
Classes()

Obtains all Class objects associated with all fields in the
target object.

getDeclared
Constructor
(Class[])

Obtains the Constructor object associated with the
specified parameter.

getDeclared
Constructors()

Obtains all Constructor objects.

getDeclared
Field(String)

Obtains the specified Field object.

 - 576 -

 getDeclared
Fields()

Obtains an array of all available Field objects.

getDeclared Method
(String, Class[])

Obtains the specified Method object.

getDeclared
Methods()

Obtains all specified Method objects.

getField (String)

Obtains the specified Field object.

getFields()

Obtains all available Field objects.

getInterfaces()

Obtains the runtime Class objects associated with the
interfaces implemented by the target object.

getMethod (String,
Class[])

Obtains a reference to the specified Method object.

getMethods()

Obtains references to all available methods. This
includes Method objects inherited from a parent class.

getModifiers()

Obtains the modifiers (static, final, and so on)
associated with the class.

isArray()

Returns true if the Class object is associated with an
array.

Looking at the methods in Table 32.2 should impart a decent understanding of the level
of access exposed by the Class class; however, their use is not always obvious. With
this base understanding of the available possibilities, we’ll start developing some code
that will further cement your understanding. The following pages contain a variety of
examples, each of which focus on accessing a different type of functionality present in
the Java reflection model.

 Dynamically Invoking Methods

One of the more common operations that the Java reflection model is used for is the
dynamic invocation of methods exposed by an object. In this first example, we’ll look at
invoking methods with zero parameters, base type parameters, and object parameters.

To begin our exploration into dynamic method invocation, take a look at the class defined
in Listing 32.1. It’s a simple entity class that exposes getter and setter methods to alter
the value of its private member variables. Although it’s not monumental in function, this
class is nevertheless a good example because it has a combination of no parameter
methods, methods that accept base types, and methods that accept object parameters.

 LISTING 32.1 A SIMPLE ENTITY CLASS

 public class SimpleObject {

 private String _sValue = "";
 private int _iValue = -1;

 public SimpleObject() {

 - 577 -

 }

 public void setStringValue(String sValue) { _sValue = sValue;
}

 public String getStringValue() { return _sValue; }

 public void setIntegerValue(int iValue) { _iValue = iValue; }
 public int getIntegerValue() { return _iValue; }
 }

Looking at the code in Listing 32.1 and taking the overview that has been presented so
far, you might want to challenge yourself to actually dynamically invoke one of the
methods exposed by the SimpleObject class. If so, close the book before you peek at
the next example; then come back when you’re ready to examine the code used to
dynamically invoke methods. Once you’re ready, take a look at the code in Listing 32.2,
which both examines the methods present in the SimpleObject class and dynamically
invokes them.

 LISTING 32.2 DYNAMICALLY INVOKING METHODS USING JAVA REFLECTION

 import java.lang.reflect.*;

 public class Reflector {
 private SimpleObject _simpleObject;
 private Class _runtimeClass;

 public Reflector() {
 // create a new SimpleObject object
 _simpleObject = new SimpleObject();
 // obtain a reference to its runtime Class object
 _runtimeClass = _simpleObject.getClass();

 System.out.println("\tListing All Methods");
 listMethods();

 System.out.println("\n\tInvoking setStringValue()");
 try{ invoke_setStringValue(); }
 catch(Exception e) {}

 System.out.println("\n\tInvoking setIntegerValue()");
 try{ invoke_setIntegerValue(); }
 catch(Exception e) {}

 System.out.println("\n\tInvoking Getter Methods");
 try{ invokeGetterMethods(); }
 catch(Exception e) {}
 }

 /**
 * Lists all public methods exposed my the
 * class SimpleObject
 */
 private void listMethods() {

 - 578 -

 Method[] methods = _runtimeClass.getDeclaredMethods();
 for(int i=0; i<methods.length; i++) {
 System.out.println(methods[i].getName());
 }
 }

 /**
 * Invokes the method setStringValue() on the
 * SimpleObject object.
 */
 private void invoke_setStringValue() throws Exception {
 String sParameter = "Some New Value";
 Object oParameters[] = {sParameter};
 Class clsParameters[] = {sParameter.getClass()};

 Method setStringValue =
 _runtimeClass.getDeclaredMethod("setStringValue",
 clsParameters);
 setStringValue.invoke(_simpleObject, oParameters);
 }

 /**
 * Invokes the method setIntegerValue() on the
 * SimpleObject object.
 */
 private void invoke_setIntegerValue() throws Exception {
 Integer iValue = new Integer(1013);
 Object oParameters[] = {iValue};
 Class clsParameters[] = {iValue.TYPE};

 Method setIntegerValue =
 _runtimeClass.getDeclaredMethod("setIntegerValue",
 clsParameters);
 setIntegerValue.invoke(_simpleObject, oParameters);
 }

 /**
 * Invokes the methods getStringValue() and
 * getIntegerValue() on the SimpleObject object.
 */
 private void invokeGetterMethods() throws Exception {
 Method getStringValue =
 _runtimeClass.getDeclaredMethod("getStringValue",
 new Class[0]);
 Method getIntegerValue =
 _runtimeClass.getDeclaredMethod("getIntegerValue",
 new Class[0]);

 System.out.println("getStringValue: "+
 getStringValue.invoke(_simpleObject,
 new Object[0]));
 System.out.println("getIntegerValue: "+

 - 579 -

 getIntegerValue.invoke(_simpleObject,
 new
Object[0]));

 }

 public static void main(String[] args)) {
 Reflector reflector = new Reflector();
 }
 }

As we step through Listing 32.2, we’ll start with the code contained in the constructor.
The Reflector class contains two private member variables that have their values
established during the execution of the constructor. The first is simply an instance of the
SimpleObject class. The second variable, however, is the runtime Class object
associated with the SimpleObject instance. This variable has its value set by invoking
the getClass() method in the SimpleObject object. As the rest of the code
demonstrates, this variable plays a very important role in the reflection process.

Moving on, the next method that’s invoked, listMethods() , lists the name of each
public method in the SimpleObject class. This method establishes an array of
Method objects and sets it to represent all public methods in the SimpleObject class
by invoking the getDeclaredMethods() method on the runtime Class object. Once
obtained, the array of Method objects is iterated and has the names of its values printed
to the standard out.

Although listing the methods present in a class may be of use during the examination
process, it needs to be coupled with dynamic method invocation to properly fulfill the
needs of most applications. The first method that’s dynamically invoked is the
setStringValue() method, which is invoked by the Reflector object in its
invoke_setStringValue() method. This method performs the equivalent of
statically invoking (new SimpleObject()).setStringValue("Some New
Value") ; however, the invocation is performed dynamically. To perform this dynamic
invocation, we first create a String object and set its value equal to “Some New Value.”
We then place that object in an array of Object objects and its runtime Class object
into an array of Class objects. With the method parameters established, we execute the
following code to obtain a reference to the actual Method object:

 Method setStringValue =
 _runtimeClass.getDeclaredMethod("setStringValue",
clsParameters);

The getDeclaredMethod() method takes as parameters a String object
representing the signature of the target method and an array of Class objects
representing the runtime classes associated with the method parameters.

Once a reference to a Method object has been obtained, it’s invoked by the invoke()
method. This method, as shown next, takes two important parameters. The first is a
reference to the object on which this method is being invoked. The second parameter is
an array of Object objects corresponding to the parameters accepted by the target
object:

 setStringValue.invoke(_simpleObject, oParameters);

After the setStringValue() method is invoked, the next dynamic invocation
performed by the Reflector class involves the setIntegerValue() method.
Although the dynamic invocation process is similar to the process associated with the
setStringValue() method, it differs due to the fact that setIntegerValue()
accepts a base type and not an actual object as its parameter. Because the

 - 580 -

getDeclaredMethod() and invoke() methods both take object representations of
the methods parameters, the obvious challenge is how to represent a base type as an
object.

As you very well may know, all base types are associated with a corresponding wrapper
object. For example, the int base type can be represented as an object using the
Integer object. As you examine the invoke_setIntegerValue() method, you’ll
note that the base type int is, in fact, associated with an Integer object placed in an
array of Object objects and used as a parameter to the invoke() method. In addition
to the wrapping of a base type inside an object for use in the invoke() method, the
creation of the Class object array also differs in this situation. In situations where the
parameter is an actual object, the Class object array is populated by invoking the
getClass() method on each of the parameter objects. When the parameter is a base
type, the Class object array is populated using the member variable TYPE associated
with the wrapper object. Looking at the following code fragment, note the manner in
which this is done:

 Integer iValue = new Integer(1013);

 Object oParameters[] = {iValue};

 Class clsParameters[] = {iValue.TYPE};

At this point, you’ve learned how to dynamically invoke methods that accept object
parameters as well as methods that accept base type parameters. As we complete our
examination of the code, we’ll invoke the getter methods that take no arguments as
parameters. This no-parameter invocation is performed in the method
invokeGetterMethods() and is actually the simplest dynamic invocation performed
in the example. When passing the Object and Class object arrays to the invoke()
and getDeclaredMethod() methods, we simply create zero element arrays.

 Dynamically Referencing Fields

With a solid understanding of the manner in which methods are dynamically invoked, we
now begin to look at the dynamic referencing of an object’s variables. The code in Listing
32.3 presents a simple object that exposes a String object variable and an int base
type variable.

 LISTING 32.3 THE SimpleFieldObject CLASS EXPOSES TWO PUBLIC MEMBER

VARIABLES

 public class SimpleFieldObject {
 public String _sValue = "";
 public int _iValue = -1;
 }

As with the dynamic invocation of methods example, again you might want to challenge
yourself to write some code that dynamically sets the values of the variables in a
SimpleFieldObject object. Once you’re ready, take a look at the code in Listing 32.4,
which sets and obtains the values of a SimpleFieldObject ’s variables.

 LISTING 32.4 USING JAVA REFLECTION TO DYNAMICALLY SET THE VALUE

ASSOCIATED WITH A VARIABLE

 import java.lang.reflect.*;

 public class FieldReferencer {

 - 581 -

 private SimpleFieldObject _simpleFieldObject;
 private Class _runtimeClass;

 public FieldReferencer() {
 _simpleFieldObject = new SimpleFieldObject();
 _runtimeClass = _simpleFieldObject.getClass();

 System.out.println("\tSetting the Value of the String
Variable");

 try{ setStringValue(); }
 catch(Exception e) {}

 System.out.println("\n\tSetting the Value of the int
Variable");

 try{ setIntValue(); }
 catch(Exception e) {}

 System.out.println("\n\tGetting the Value
 of the String Variable");
 try{ getStringValue(); }
 catch(Exception e) {}

 System.out.println("\n\tGetting the Value of the int
Variable");

 try{ getIntValue(); }
 catch(Exception e) {}
 }

 private void setStringValue() throws Exception {
 Field field = _runtimeClass.getDeclaredField("_sValue");
 field.set(_simpleFieldObject, "Some New Value");
 }

 private void setIntValue() throws Exception {
 Field field = _runtimeClass.getDeclaredField("_iValue");
 field.set(_simpleFieldObject, new Integer(1013));
 }

 private void getStringValue() throws Exception {
 Field field = _runtimeClass.getDeclaredField("_sValue");
 System.out.println(field.get(_simpleFieldObject));
 }

 private void getIntValue() throws Exception {
 Field field = _runtimeClass.getDeclaredField("_iValue");
 System.out.println(field.get(_simpleFieldObject));
 }

 public static void main(String[] args)) {
 FieldReferencer referencer = new FieldReferencer();
 }
 }

 - 582 -

The first task performed by the code in Listing 32.4 is to set both the String variable’s
value and the int variable’s value. This task is performed by first asking the runtime
Class object associated with the SimpleFieldObject object for a reference to each
of the target fields and then invoking the associated Field object’s set() method.
Once we’ve set the values of each variable, we get them by again obtaining the Field
object from the runtime Class object, but this time invoking the get() method on that
object.

 Pros and Cons of Java Reflection

As shown by the previous two examples, Java reflection technology is very powerful. It
allows for methods to be dynamically invoked, for fields to have values dynamically set,
and generally for an interaction with an object to be defined at runtime. This runtime
definition of object interaction is nice because it allows for infinite flexibility; however, it
makes compiler error detection much harder. For example, if I were to directly invoke the
method toString() on any object, the compiler would be able to check that the method
was present and disallow compilation if it was not. If, however, I were to dynamically invoke
the toString() method on an object, the compiler would not have the ability to test for
the presence of that method at compile time, and a runtime error would surface if it were
not present. Assuming that my code is always correct when dynamically invoking methods,
no problems will surface. However, if I were to make a spelling error) instead of
toString(), for example), the compiler would not detect this, and a runtime exception
would be thrown. As reflection gains use in the Java community, it will be interesting to see
if any companies release tools that validate dynamic method invocations and field
references.

THE CORBA INTROSPECTION MODEL

In the initial section of this chapter, we looked at how objects describe themselves in a
Java environment. Although useful, it’s not the only manner through which dynamic
object interaction can be scripted. In this section, we look at technologies made available
in a CORBA environment that allow for dynamic interaction with objects.

Note

In covering dynamic interaction with objects using JDK technology, the term
reflection was used. In this section, the synonym introspection is used. In
general, you should not let this shift confuse you at all. For some reason, the
CORBA camp and the JDK camp adopted different terms for basically the
same technology.

 The Interface Repository and Dynamic Interface Invocation

CORBA introspection is made possible through two complementary technologies: the
Interface Repository and Dynamic Interface Invocation. In a dynamic environment, data
cannot exist in a vacuum; it must be coupled with meta data. The term meta data,
although drastically overused, simply refers to data that describes existing data. In the
CORBA world, the IDL serves as meta data for all distributed entities. Meta data is stored
in an Interface Repository (IR) and can be searched by any remote object. In addition to
simply allowing access to the IDL, the IR contains a collection of operations, interfaces,
and structs that all aid in describing exactly what the data is.

To create a dynamic interaction script, a remote object binds to the IR, searches out
information about a target interface, and then uses Dynamic Interface Invocation (DII) to
invoke methods on that remote object. In the following sections on the IR and DII, we first
examine interacting with the IR and then look at using DII.

 Working with the Interface Repository

 The IR is a physical piece of software that must be manually started. Interaction occurs

through a collection of interfaces and structs. The interface that provides the initial point

 - 583 -

of contact is named Repository, and it contains methods that allow for the searching of
interfaces and structs by both name and identifier. Performing a search on the IR returns
an instance of the class org.omg.CORBA.Object , which must then be narrowed to
any one of a collection of classes that define the entity being returned. These description
classes are all named by combining the entity they describe with the suffix “Def.” For
example, an interface is described using the class InterfaceDef, a string using
StringDef, and a struct using StructDef. The following code snippet demonstrates
the process of binding to an IR using the Directory Service and obtaining the
InterfaceDef object associated with the SimpleObjectI interface:

 ORB orb = ORB.init();

 Repository repository = RepositoryHelper.bind(orb);

 InterfaceDef interfaceDef =

 InterfaceDefHelper.narrow(repository.lookup("SimpleObjectI"));

In addition to the Repository and xxxinterfaces, three additional entities facilitate the
process of discovering information about an entity described in IDL. The first one is the
interface TypeCode, which is used to fully describe a CORBA entity. The TypeCode
interface has operations that allow for the entity’s name to be discovered and for the
repository ID to be discovered. It also has an attribute that’s an instance of the TCKind
enum. TCKind, the second important entity, identifies the IDL data type. The third entity
encountered is the IDLType interface, which is associated with an IDL element. It
simply points to a TypeCode instance. The TypeCode interface is contained in Listing
32.5, and the TCKind enum is contained in Listing 32.6. As you look at the TypeCode
interface, pay attention to the name() operation, which obtains the name of the entity,
and the kind() operation, which obtains the appropriate TCKind instance.

 LISTING 32.5 THE TypeCode INTERFACE DESCRIBES AN ENTITY IN THE CORBA

UNIVERSE

 interface TypeCode {
 exception Bounds {};
 exception BadKind {};

 boolean equal(in CORBA::TypeCode tc);
 CORBA::TCKind kind();
 CORBA::RepositoryId id() raises(CORBA::TypeCode::BadKind);
 CORBA::Identifier name() raises(CORBA::TypeCode::BadKind);
 unsigned long member_count()raises(CORBA::TypeCode::BadKind);

 CORBA::Identifier member_name(in unsigned long index)
 raises(CORBA::TypeCode::BadKind,
 CORBA::TypeCode::Bounds);
 CORBA::TypeCode member_type(in unsigned long index)
 raises(CORBA::TypeCode::BadKind,
 CORBA::TypeCode::Bounds);
 any member_label(in unsigned long index)
 raises(CORBA::TypeCode::BadKind,
 CORBA::TypeCode::Bounds);
 CORBA::TypeCode discriminator_type()
raises(CORBA::TypeCode::BadKind);

 long default_index() raises(CORBA::TypeCode::BadKind);

 - 584 -

 unsigned long length() raises(CORBA::TypeCode::BadKind);
 CORBA::TypeCode content_type()
raises(CORBA::TypeCode::BadKind);

 long param_count();
 any parameter(in long index) raises(CORBA::TypeCode::Bounds);
 };

Looking at the TCKind enum in Listing 32.6, you’ll note a unique entry for each
available CORBA entity. This allows a TCKind instance to accurately describe any
available IDL entity.

 LISTING 32.6 THE TCKind enum IDENTIFIES THE IDL TYPE ASSOCIATED WITH

AN ENTITY

 enum TCKind {
 tk_null, tk_void,
 tk_short, tk_long, tk_ushort, tk_ulong,
 tk_float, tk_double, tk_boolean, tk_char,
 tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
 tk_struct, tk_union, tk_enum, tk_string,
 tk_sequence, tk_array, tk_alias, tk_except,
 tk_longlong, tk_ulonglong, tk_longdouble,
 tk_wchar, tk_wstring, tk_fixed
 };

Now that you have a basic overview of the IR, we’ll write a small application that binds to
an IR and obtains the definition of two specific entities. Then, after we cover DII, the
example will be extended to include a dynamic invocation script.

 To begin the example, Listing 32.7 contains the IDL for a basic interface and struct. This

is the IDL for which we’ll query the IR.

 LISTING 32.7 THE IDL DEFINITIONS FOR A BASIC INTERFACE AND STRUCT

 interface SimpleObjectI {
 string getStringValue();
 void setStringValue(in string sValue);

 long getIntegerValue();
 void setIntegerValue(in long iValue);
 };

 struct SimpleStructS {
 string sValue;
 long iValue;
 };

Given the IDL in Listing 32.7, Listing 32.8 contains the code for the IR interaction
application. Before diving into the discussion of this application, spend some time with the
code. When you’re ready, you can continue reading.

 LISTING 32.8 THE IRBrowser CLASS PRINTS OUT THE DETAILS OF THE IDL

DESCRIBED IN LISTING 32.7 BY BINDING TO THE IR

 import org.omg.CORBA.*;

 - 585 -

 import org.omg.CORBA.InterfaceDefPackage.*;

 public final class IRBrowser {

 public IRBrowser() {
 ORB orb = ORB.init();
 Repository repository = RepositoryHelper.bind(orb);
 InterfaceDef interfaceDef =

InterfaceDefHelper.narrow(repository.lookup("SimpleObjectI"));

 printInterfaceDetails(interfaceDef);
 StructDef structDef =

StructDefHelper.narrow(repository.lookup("SimpleStructS"));

 printStructDetails(structDef);
 }

 /**
 * Prints details on a unique interface
 */
 private void printInterfaceDetails(InterfaceDef interfaceDef)
{

 // obtain the interface description
 FullInterfaceDescription desc =
interfaceDef.describe_interface();

 // print basic details
 System.out.println("--------------------------------");
 System.out.println("Interface Name: "+desc.name);
 System.out.println("Interface Type: "+desc.type);
 System.out.println("Interface Kind: "+desc.type.kind());

 // obtain and print operation details
 OperationDescription[] oppDefs = desc.operations;
 for(int i=0; i<oppDefs.length; i++) {
 System.out.println("Interface Operation "+
 (i+1)+": "+oppDefs[i].name);
 }

 // obtain and print attribute details
 AttributeDescription[] attDefs = desc.attributes;
 for(int i=0; i<attDefs.length; i++) {
 System.out.println("Interface Attribute "+
 (i+1)+": "+attDefs[i].name);
 }

 }

 /**
 * Prints details on a unique struct

 */
 private void printStructDetails(StructDef structDef) {
 // obtain references to all members

 - 586 -

 StructMember[] members = structDef.members();

 // print details on each member
 System.out.println("--------------------------------");
 for(int i=0;i<members.length; i++) {
 System.out.println("Member "+(i+1)+" Type::
"+members[i].type);

 System.out.println("Member "+(i+1)+" Kind:: "+
 members[i].type.kind());
 }
 }

 public static void main(String[] args)) {
 IRBrowser browser = new IRBrowser();
 }
 }

As you examine the IRBrowser code in Listing 32.8, the first section you’ll want to
concentrate on is contained in the constructor. The first task performed is the process of
binding to the IR. Once the IR reference is obtained, the code performs two lookup
interactions. The first obtains a reference to the InterfaceDef object describing the
SimpleObjectI interface:

 InterfaceDef interfaceDef =

 InterfaceDefHelper.narrow(repository.lookup("SimpleObjectI"));

 The second lookup interaction obtains a reference to the StructDef object describing

the SimpleStructS struct:

 StructDef structDef =

 StructDefHelper.narrow(repository.lookup("SimpleStructS"));

Once each xxxDef object is obtained, a helper method is called that’s charged with
printing out the contents of its parameter. The first helper method,
printInterfaceDetails() , is passed an InterfaceDef instance and displays
the name, type, and kind attributes associated with the instance. The method then
continues on to print the name of each operation and attribute. For the most part, this
method is rather self-explanatory; however, it does introduce two new classes. The first,
OperationDescription , describes a single operation. The section on DII extends
the coverage of this class. Note, however, the manner in which it’s used to obtain the
operation name. The second class introduced in this method is
AttributeDescription , which is used to describe a single attribute. Again, note the
manner in which the attribute name is obtained.

The second helper method, printStructDetails() , is passed a StructDef
instance and displays information on each struct member. In general, there’s less
information made available about structs when compared to interfaces; however, this can
be complemented with information made available by Java reflection. In the
printStructDetails() method, we first obtain an array of StructMember objects
that each contain details on a single member in the struct. We then iterate through this
array displaying the type and kind of each member.

 Note If you haven’t done so already, you’ll need to install the Inprise ORB from the

enclosed CD-ROM to run the DII examples in this chapter.

 - 587 -

 To run this application, first start the ORB by entering

 osagent

 at a prompt. Then start the IR by entering

 irep IRName

at a prompt. irep is the name of the Inprise IR executable, and IRName can be
replaced with any logical name that the IR might use. Once the IR is running, select File
from the IR main menu; then, from the drop-down list, select Load and use the dialog box
to navigate to the location of the IDL file. Finally, execute the IRBrowser application by
entering

 java IRBrowser

 at a prompt.

 Using Dynamic Interface Invocation

Thus far, you’ve seen how it’s possible to interact with the IR and obtain information on
both interfaces and structs. We’ll now further explore dynamic object interaction by
looking at how it’s possible to dynamically invoke operations on discovered objects.

As you may have guessed, the process of dynamically invoking an operation introduces a
plethora of new CORBA entities. The principal one being an interface called Request. A
Request object is used to issue a dynamic operation invocation and is complemented
by the following entities: NVList, InterfaceDef, FullInterfaceDescription ,
OperationDescription , ParameterDescription , TCKind, and Any . As luck
has it, many of the classes used to support DII were introduced either in the IR section or
in earlier chapters. Coverage of them in this chapter builds on earlier knowledge, thus
forming a complete understanding of the entity.

Beginning our exploration of the DII entities, Listing 32.9 contains the IDL for the
Request interface. The interface exposes a few key operations and attributes, including
arguments, which obtains the collection of parameters; invoke(), which invokes the
represented operation; and return_value() , which obtains the operation return
value.

 LISTING 32.9 IDL DEFINITION FOR THE Request INTERFACE

 interface Request {
 readonly attribute CORBA::Object target;
 readonly attribute CORBA::Identifier operation;
 readonly attribute CORBA::NVList arguments;
 readonly attribute CORBA::NamedValue result;
 readonly attribute CORBA::Environment env;
 readonly attribute CORBA::ExceptionList exceptions;
 readonly attribute CORBA::ContextList contexts;
 attribute CORBA::Context ctx;
 any add_in_arg();
 any add_named_in_arg(in string name);
 any add_inout_arg();
 any add_named_inout_arg(in string name);

 - 588 -

 any add_out_arg();
 any add_named_out_arg(in string name);
 void set_return_type(in ::CORBA::TypeCode tc);
 any return_value();
 void invoke();
 void send_oneway();
 void send_deferred();
 void get_response();
 boolean poll_response();
 };

As you’ve probably noticed, the attribute arguments is of type NVList, which is
another of the important DII entities. This interface, defined in Listing 32.10, represents a
collection of name/value pairs, each representing a unique parameter instance. The
workflow for using an NVList instance is to obtain it from the Request object and
invoke the add_value() operation once for each candidate parameter.

 LISTING 32.10 IDL FOR THE NVList INTERFACE

 interface NVList {
 unsigned long count();
 void add(in CORBA::Flags flags);

 void add_item(in CORBA::Identifier name,in CORBA::Flags
flags);

 void add_value(in CORBA::Identifier name,in any value,
 in CORBA::Flags flags);
 CORBA::NamedValue item(in unsigned long index);
 void remove(in unsigned long index);
 };

Once a Request objectis populated with the proper parameters, it can be invoked in any
one of three manners. The first being simply invoking the invoke() operation, which
causes the client to block until the server object returns a return value. The second
manner is used when the process is going to take a long time. This manner uses the
send_deferred() operation, which is nonblocking. Once invoked, the
send_deferred() operation will return control to the client while waiting for the return
value. A client can check to see if this value is ready by invoking the poll_response()
operation, which returns a true value when the value is ready. A third manner in which
the operation represented by the Request object can be invoked is via the
send_oneway() operation, which immediately returns but does not wait for a return
value at all. This method is very useful when invoking operations with void return values
that can be performed asynchronously.

With an understanding of the manner in which DII functions, you’re now ready to begin
writing some code. Listing 32.11 contains the IDL definition for an interface called
SimpleObjectI and also for an interface called ObjectServerI. An
ObjectServerI instance is simply an object factory that serves empty
SimpleObjectI instances.

 LISTING 32.11 THE IDL THAT IS TOBE DYNAMICALLY INVOKED

 interface SimpleObjectI {
 string getStringValue();
 void setStringValue(in string sValue);

 - 589 -

 long getIntegerValue();
 void setIntegerValue(in long iValue);
 };

 interface ObjectServerI {
 SimpleObjectI obtainSimpleObject();
 };

 Moving from the IDL to the class that actually invokes the operations, Listing 32.12

contains the code for the DIIInvoker class.

 LISTING 32.12 THE DIIInvoker CLASS DYNAMICALLY INVOKES OPERATIONS

 import org.omg.CORBA.*;
 import org.omg.CORBA.InterfaceDefPackage.*;

 public class DIIInvoker {
 private ORB _orb;
 private BOA _boa;
 private Repository _repository;

 public DIIInvoker() {
 _orb = ORB.init();
 _boa = _orb.BOA_init();
 _repository = RepositoryHelper.bind(_orb);

 // bind to the object server
 ObjectServerI objectServer =
ObjectServerIHelper.bind(_orb);

 // obtain a SimpleObjectI instance
 SimpleObjectI si = objectServer.obtainSimpleObject();
 // invoke all operations, twice
 processInterface(si);
 processInterface(si);
 }

 /**
 * Dynamically invokes all operations in a given interface
 */
 private void processInterface(org.omg.CORBA.Object
targetObject) {

 // obtain the interface description from the target
object

 InterfaceDef interfaceDef =
targetObject._get_interface();

 FullInterfaceDescription desc =
interfaceDef.describe_interface();

 // obtain descriptions of all operations
 OperationDescription[] oppDefs = desc.operations;
 int iOppCount = oppDefs.length;
 for(int i=0; i<iOppCount; i++) {
 OperationDescription descActive = oppDefs[i];

 - 590 -

 Request request =
targetObject._request(descActive.name);

 // obtain the arg list
 NVList args = request.arguments();
 // obtain descriptions of all parameters
 ParameterDescription[] parameters =
descActive.parameters;

 int iParamLength = parameters.length;
 // iterate through the params adding to the NVList
instance

 for(int j=0; j<iParamLength; j++) {
 ParameterDescription paramActive = parameters[j];

 // based on the kind attribute populate the Any.
Note

 // that to conserve space,
 // only support for strings and longs

 // is shown.
 TCKind kind = paramActive.type.kind();
 if(kind = TCKind.tk_string) {
 Any any = _orb.create_any();
 any.insert_string("Some New Value");
 args.add_value(paramActive.name,
 any,
 org.omg.CORBA.ARG_IN.value);
 }
 else if(kind = TCKind.tk_long) {
 Any any = _orb.create_any();
 any.insert_long(42);
 args.add_value(paramActive.name,
 any,
 org.omg.CORBA.ARG_IN.value);
 }

 }
 // set the return type
 request.set_return_type(descActive.result);
 // invoke the operation
 request.invoke();
 // display the results
 System.out.println(request.result().value());
 }
 }

 public static void main(String[] args)) {
 DIIInvoker invoker = new DIIInvoker();
 }
 }

As you study the DIIInvoker class, you’ll want to concentrate on the code contained in
the processInterface() method. This method is passed a SimpleObjectI
instance (obtained from the ObjectServerI factory) and proceeds to invoke all

 - 591 -

operations. In the first step in this process, highlighted next, the InterfaceDef object
is obtained from the SimpleObjectI instance. As you’ll remember from the earlier
section on the IR, this object exists in the IR itself and can fully describe an interface. The
InterfaceDef instance is obtained by invoking the _get_interface() operation,
which all interfaces inherit from org.omg.CORBA.Object . Once the InterfaceDef
instance is obtained, the FullInterfaceDescription instance is obtained and then
an array of OperationDescription objects is obtained. This array of
OperationDescription objects contains a single entry for each operation
represented by the interface.

 InterfaceDef interfaceDef = targetObject._get_interface();

 FullInterfaceDescription desc =
interfaceDef.describe_interface();

 OperationDescription[] oppDefs = desc.operations;

Once the array of OperationDescription objects has been obtained, the code
enters a loop that first forms and then invokes a Request object for each entry in the
array.

In the next section of the code a Request instance is obtained from the
SimpleObjectI instance by specifying the name of the active operation as a
parameter. From the Request, we obtain the NVList instance into which we’ll place a
unique entry for each parameter. Finally, we obtain an array of
ParameterDescription objects where each entry represents a unique parameter in
the active operation. This next section of code is pulled out and highlighted here:

 Request request = targetObject._request(descActive.name);

 NVList args = request.arguments();

 ParameterDescription[] parameters = descActive.parameters;

While still inside the main operation loop, we now enter an inner loop that iterates through
each ParameterDescription object. In this section, we examine each parameter
and, based on the value of its TCKind attribute, add an entry into the NVList object. In
the following code snippet is a section of this inner loop where parameters of the IDL type
string are handled. The code also supports the IDL type long (however, to conserve
space, no others are shown):

 TCKind kind = paramActive.type.kind();

 if(kind = TCKind.tk_string) {

 Any any = _orb.create_any();

 any.insert_string("Some New Value");

 args.add_value(paramActive.name, any,
org.omg.CORBA.ARG_IN.value);

 }

 After the NVList object is fully populated, all that’s left to do is set the return type,

invoke the operation, and query for the results. This section of code is shown here:

 - 592 -

 request.set_return_type(descActive.result);

 request.invoke();

 System.out.println(request.result().value());

Now that you’ve stepped through the code, you’re ready to cement your understanding
by executing the application. The one piece of code not shown in this chapter is for the
ObjectServerI implementation. This code is rather trivial and was placed on the CD-
ROM to conserve trees.

The first step in running the application is to fire up the ORB and IR and then load in the
IDL used in the example. If you skipped over the IRBrowser example, flip back a few
pages for coverage on starting up the first three services. To run this application, first
start the ObjectServerI implementation by entering

 java ObjectServer

 at a command prompt. Now execute the DII example by entering

 java DIIInvoker

at another prompt. You;ll note that the SimpleObjectI instance has its methods
invoked two times. This is done to show that the getter method invocations are actually
functioning properly.

As the section on DII has shown, it’s just much easier to statically invoke an operation on
an object. Therefore, the obvious question is, Why would one ever use DII? After all, the
process of creating a Request object is rather laborious and adds a lot to execution time.
DII may in fact not be needed in every application you develop, but in situations where the
remote object class is not always known, or where the execution path is rather vague, DII
will come to the rescue. Consider, for example, a Web-based system where HTTP-POST
arguments invoke IDL operations. Because HTML or JavaScript cannot directly execute
IDL, you could embed the method invocation chain in a form argument, parse it out at the
server, and dynamically invoke the specified methods.

 FROM HERE

This chapter covered a lot of ground, potentially changing the manner in which you think
about object interaction. Historically, you would obtain an object and, at compile time,
know the operations that are being invoked on that object. Through the use of Java
reflection or CORBA introspection and DII, it’s now possible to decide on execution paths
at runtime as well as introduce new objects at runtime.

 As you continue to explore the world of CORBA, you’ll find that the following chapters

provide complementary material to this chapter’s topics:

 • Chapter 21, “CORBA Overview”

 • Chapter 22, “CORBA Architecture”

 • Chapter 28, “The Portable Object Adapter (POA)”

Chapter 33: Other CORBA Facilities and

 - 593 -

Services

 Overview

As was introduced in Chapter 22, “CORBA Architecture,” the CORBA universe centers
around something called the Object Management Architecture (OMA). The OMA is an
umbrella term covering the ORB, CORBAservices, CORBAfacilities, and
CORBAdomains. The ORB itself is a single piece of software that allows for
communication between all CORBA objects; the other three entries in the mix each
represent collections of different applications that provide functionality at different levels
to your applications. CORBAservices add horizontal object-level functionality, CORBA
facilities add horizontal and vertical user-level functionality, and CORBAdomains add
functionality unique to a single domain.

As Chapter 22 also stated, OMG does not produce any of the software that forms the
OMA but rather produces specifications. Independent vendors produce the actual
software. Of the existing CORBAservices and CORBAdomains, there are many that can
aid in your development efforts. By simply raising your comfort level with their
functionality, chances are you’ll realize that the cost of purchasing and integrating an
implementation is much less than actually developing the functionality yourself. Chapter
30, “The Naming Service,” studies the Naming Service, which is used to categorize and
locate objects in the enterprise. Chapter 31, “The Event Service,” studies the Event
Service, which is used to notify different objects when some event occurs. Although the
Naming and Event Services are probably the most popular services out there, many
others can significantly decrease your development time frame. This chapter takes a look
at some of these CORBAservices—first in terms of their functions and then in terms of
their interfaces. Specifically, the following entities are covered:

 • Life Cycle Service

 • Externalization Service

 • Concurrency Service

 • Query Service

LIFE CYCLE SERVICE

Because CORBA is inherently object oriented, CORBA applications are constantly taking
objects through their life cycles. Objects are created, manipulated, and finally destroyed.
As object-oriented developers, we’re accustomed to working with objects, but we’re not
always comfortable with what needs to happen when the life cycle of an object needs to
be maintained from a remote machine. This is especially true for Java developers, who
have the luxury of not needing to spend a large amount of time dealing with memory
management. Java applications benefit from the garbage collector present in the Java
virtual machine (JVM). Unfortunately, this garbage collection service does not extend
support to distributed applications. As you saw in earlier chapters, calls to the
obj_is_ready() method exposed by the BOA interface must always be paired with
calls to the deactivate_obj() method. If the deactivate_obj() method is not
called, the memory allocated to that object will never be returned to the JVM.

In an attempt to standardize the manner in which objects are instantiated in a distributed
environment, the OMG introduced the Life Cycle Service. The Life Cycle Service builds
on the factory design pattern (covered in Chapter 5, “Design Patterns”) by creating a
standard interface for all factories, as well as an interface that instantiated objects can
implement to increase the control we have over them.

 Moving from that high-level overview of the Life Cycle Service, take a look at the

 - 594 -

CosLifeCycle module in Listing 33.1. This module contains all the CORBA entities
that form the Life Cycle Service.

Note

As with all code in this chapter, the IDL in Listing 33.1 is an OMG
specification, not something developed specifically for this book. You should
pay attention to the functionality it exposes but don’t get bogged down in
specifics.

 LISTING 33.1 THE CosLifeCycle MODULE

 #include "Naming.idl"
 module CosLifeCycle {
 typedef Naming::Name Key;
 typedef Object Factory;
 typedef sequence <Factory> Factories;

 typedef struct NVP {
 Naming::Istring name;
 any value;
 } NameValuePair;

 typedef sequence <NameValuePair> Criteria;

 exception NoFactory { Key search_key };
 exception NotCopyable { string reason; };
 exception NotMovable { string reason; };
 exception NotRemovable { string reason; };
 exception InvalidCriteria { Criteria invalid_criteria; };
 exception CannotMeetCriteria { Criteria unmet_criteria; };

 interface FactoryFinder {
 Factories find_factories(in Key factory_key)
raises(NoFactory);

 };
 interface LifeCycleObject {
 LifeCycleObject copy(in FactoryFinder there,
 in Criteria the_criteria)
 raises(NoFactory, NotCopyable,
 InvalidCriteria, CannotMeetCriteria);
 void move(in FactoryFinder there,
 in Criteria the_criteria)
 raises(NoFactory, NotMovable,
 InvalidCriteria, CannotMeetCriteria);
 void remove() raises(NotRemovable);
 };

 interface GenericFactory {
 boolean supports(in Key k);
 Object create_object(in Key k, in Criteria the_criteria)
 raises (NoFactory, InvalidCriteria,
CannotMeetCriteria);

 };
 };

 - 595 -

As you look over the CosLifeCycle module in Listing 33.1, pay specific attention to the
GenericFactory and LifeCycleObject interfaces. These interfaces all describe, in
a generic fashion, the operations that need to be performed when managing an object life
cycle. The first question that often begs answering when we’re asked to code a server in
a generic fashion versus a more specific fashion is, why? If a factory is producing objects
that model a hospital patient, why not simply name that factory PatientFactory and
expose a method called createPatient() . In some situations, this may work out very
well. However, when working in a distributed environment, we often must contend with
the fact that the clients to our servers are often developed by other people and have to be
changed frequently. If we simply provide a generic (and also frequently used) interface
through which common operations are accessed, it makes the client developer’s life
much easier. In addition, if the interfaces are consistently deployed, the client developer
always knows the methods exposed by an object without ever having to query it.

Starting with the GenericFactory interface, note the two methods it exposes and the
different parameter types they each use. Both methods accept a parameter of type Key ,
which is used to identify the desired object the factory creates. The supports()
operation returns true if and only if the class that implements the interface can
instantiate objects of the specified type. Once you have determined whether a given
GenericFactory instance can create the desired object, you’re ready to invoke the
create() operation. This operation again takes the target Key parameter but also
accepts an array of name/value pairs that describes the parameters sent to the new
object’s constructor. Inside the array, the name is a string matching the name of the
parameter, and the value is a CORBA any object. If for any reason, the creation fails, an
exception is raised. Assuming the object creation is successful, an object that implements
the CORBA::Object interface is returned. At the client side, this instance is narrowed to
an instance of the desired class. What should be noted is that in addition to implementing
the interface specified by the Key parameter, many objects will also implement the
LifeCycleObject interface.

The LifeCycleObject interface contains additional operations defining further actions
that can be taken on the target object. The copy() operation, like the clone()
operation in the java.lang.Object class, returns a copy of the existing object. This
copy contains the same variables present in the original object; however, it’s an
independent entity. Any changes made to the copy are not reflected in the original. The
next method in the interface, move(), changes the location of the target object to the
specified location. Classes may choose to implement this operation if, for example, the
memory management software needs to relocate objects when server traffic increases.
The final operation exposed by this interface is the remove() operation. As you may
have guessed, the remove() operation completes the cycle started by the create()
operation by returning the memory allocated to the target object and generally performing
any needed cleanup tasks (for example, closing a database connection).

The Life Cycle Service makes development much easier in environments where a large
developer population constantly interacts with each other’s services. By providing a
common interface that all clients understand, it greatly eases the development process. In
addition, the Life Cycle Service makes versioning of the instantiated objects much easier
due to the fact that the factory object has complete control in the actual class that is
instantiated.

 EXTERNALIZATION SERVICE

Java serialization, covered in Chapter 9, “Java Serialization and Beans,” presents a
common API through which Java objects are written to a file. Although serialization as
covered in Chapter 9 is specific to Java objects, it’s a desired feature of all object-
oriented environments.

In object-oriented systems, objects grow as they interact with users; data is collected,
decisions are made, and the general state of the object changes from the time that the
user begins his interaction to the time that it is completed. Often, this information

 - 596 -

represents some piece of information that the user wants to maintain even after the
application has been closed and the computer is turned off. For this reason, some
mechanism is required such that the target objects, along with their corresponding state,
can be saved to disk or some other permanent medium. The Externalization Service
presents a common

API that describes (from the perspective of the client, server, and stream) a mechanism
by which objects are saved. This section examines this service, the IDL it exposes, and
the impact it has on your developments.

As stated earlier, the Externalization Service deals with object externalization from three
distinct perspectives. These perspectives detail each and every entity that plays a role
when an object is either saved to disk or internalized from its saved state:

 • Client. In an externalization scenario, the client is the entity requesting that the object

either be saved to a file or internalized from the file.

 • Target object. In an externalization scenario, the target object is the entity that’s

actually saved to a file or internalized from the file.

•

Stream. In an externalization scenario, the stream is the conduit over which the target
object flows. It has knowledge of the storage mechanism and the manner in which the
target object needs to be placed in that medium.

 Starting to dig into the Externalization Service, Listing 33.2 contains the
CosExternalization module, which exposes all CORBA entities of use to the client.

 LISTING 33.2 THE CosExternalization MODULE

 module CosExternalization {
 exception InvalidFileNameError{};
 exception ContextAlreadyRegistered{};

 interface Stream: CosLifeCycle::LifeCycleObject{
 void externalize(in CosStream::Streamable theObject);
 CosStream::Streamable
 internalize(in CosLifeCycle::FactoryFinder there)
 raises(CosLifeCycle::NoFactory,
 CosStream::StreamDataFormatError);
 void begin_context() raises(ContextAlreadyRegistered);
 void end_context();
 void flush();
 };

 interface StreamFactory {
 Stream create();
 };

 interface FileStreamFactory {
 Stream create(in string theFileName)
 raises(InvalidFileNameError);
 };
 };

 As you spend time with Listing 33.2, first note the Stream interface. This interface

presents two key operations: externalize() and internalize(), which perform

 - 597 -

the functions associated with their names. The externalize() operation is passed a
reference to an object and writes that object to a storage medium. The internalize()
operation is told how to locate an externalized object and returns a reference to that
object.

What has not been mentioned at this point is the manner in which the underlying storage
mechanism is identified. Two interfaces, StreamFactory and FileStreamFactory ,
provide operations that allow for the creation of objects that implement the Stream
interface. It’s the responsibility of the object that implements either interface to define the
storage mechanism. However, implementers of the FileStreamFactory interface
must create a Stream object associated with the file specified as a parameter.

Moving beyond the client side of externalization and internalization, the CosStream
module, contained in Listing 33.3, presents the CORBA entities used at the server.
Because the server encompasses both the target object and stream roles, the
CosStream module contains interfaces that are implemented by both the target object
and the stream.

 LISTING 33.3 THE CosStream MODULE

 module CosStream {
 exception ObjectCreationError{};
 exception StreamDataFormatError{};

 interface StreamIO;

 interface Streamable:CosObjectIdentity::IdentifiableObject {
 readonly attribute CosLifeCycle::Key external_form_id;
 void externalize_to_stream(in StreamIOtargetStreamIO);
 void internalize_from_stream(in StreamIOsourceStreamIO,
 in FactoryFinder there)
 raises(CosLifeCycle::NoFactory, ObjectCreationError,
 StreamDataFormatError);
 };

 interface StreamableFactory {
 Streamable create_uninitialized();
 };

 interface StreamIO {
 void write_string(in string aString);
 void write_char(in char aChar);
 void write_octet(in octet anOctet);
 void write_unsigned_long(in unsigned long
anUnsignedLong);

 void write_unsigned_short(in unsigned short
anUnsignedShort);

 void write_long(in long aLong);
 void write_short(in short aShort);
 void write_float(in float aFloat);
 void write_double(in double aDouble);
 void write_boolean(in boolean aBoolean);
 void write_object(in Streamable aStreamable);
 void write_graph(in CosCompoundExternalization::Node);
 void write_long_long(in long long val);

 - 598 -

 void write_unsigned_long_long(in unsigned long long val);
 void write_long_double(in long double val);
 void write_wchar(in wchar val);
 void write_wstring(in wstring val);
 void write_fixed(in any val, in short s);
 string read_string() raises(StreamDataFormatError);
 char read_char() raises(StreamDataFormatError);
 octet read_octet() raises(StreamDataFormatError);
 unsigned long read_unsigned_long()
raises(StreamDataFormatError);

 unsigned short read_unsigned_short()
 raises(StreamDataFormatError);
 long read_long() raises(StreamDataFormatError);
 short read_short() raises(StreamDataFormatError);
 float read_float() raises(StreamDataFormatError);
 double read_double() raises(StreamDataFormatError);
 boolean read_boolean() raises(StreamDataFormatError);
 Streamable read_object(in FactoryFinder there,
 in Streamable aStreamable)
 raises(StreamDataFormatError);
 void read_graph(in CosCompoundExternalization::Node
starting_node,

 in FactoryFinder there)
 raises(StreamDataFormatError);
 long long read_long_long()raises(StreamDataFormatError);
 unsigned long long read_unsigned_long_long()
 raises(StreamDataFormatError);
 long double read_long_double()
raises(StreamDataFormatError)

 wchar read_wchar() raises (StreamDataFormatError);
 wstring read_wstring() raises (StreamDataFormatError);
 any read_fixed() raises (StreamDataFormatError)
 };
 };

Your first look at the CosStream module likely answered the one remaining question
from the earlier discussion of the CosExternalization module. As you’ll notice in
looking at the internalize() and externalize() methods in the Stream
interface, they each deal with an object that implements the Streamable interface. This
new interface, contained in the CosStream module, exposes methods that are called
when an object is either externalized or internalized.

The second interface of interest in the CosStream module is the StreamIO interface,
which defines operations that read and write the actual variables. A read or write
operation is provided for every CORBA data type and is called during the process when
the object is transformed either to or from its saved state. The final interface,
StreamableFactory , provides a mechanism for creating objects that implement the
Streamable interface. As the StreamableFactory object creates a Streamable
object, it’s given instructions detailing the storage medium.

What you may have noticed when exploring the StreamIO interface is that it contains
only read and write operations associated with base IDL data types but no actual objects
themselves. If an object is nothing more than a basic entity object, these operations are
likely sufficient. However, most objects actually consist of large object graphs, where
many variables are not base data types but are actual objects. Situations such as this call
for more complex externalization/internalization procedures, and the object graphs need

 - 599 -

to be fully traversed. Listing 33.4 contains the CosCompoundExternalization
module, which exposes entities used when object graphs need to be externalized or
internalized.

 LISTING 33.4 THE CosCompoundExternalization MODULE

 module CosCompoundExternalization {
 interface Node;
 interface Role;
 interface Relationship;
 interface PropagationCriteriaFactory;

 struct RelationshipHandle {
 Relationship theRelationship;
 ::CosObjectIdentity::ObjectIdentifier constantRandomId;
 };

 interface Node : ::CosGraphs::Node, ::CosStream::Streamable{
 void externalize_node (in ::CosStream::StreamIO sio);
 void internalize_node (in ::CosStream::StreamIO sio,
 in ::CosLifeCycle::FactoryFinder
there,

 out Roles rolesOfNode)
 raises (::CosLifeCycle::NoFactory);
 };

 interface Role : ::CosGraphs::Role {
 void externalize_role (in ::CosStream::StreamIO sio);
 void internalize_role (in ::CosStream::StreamIO sio);
 ::CosGraphs::PropagationValue externalize_propagation
 (in RelationshipHandle rel,
 in ::CosRelationships::RoleName toRoleName,
 out boolean sameForAll);
 };
 interface Relationship : ::CosRelationships::Relationship {
 void externalize_relationship (in ::CosStream::StreamIO
sio);

 void internalize_relationship(in ::CosStream::StreamIO
sio,

 in ::CosGraphs::NamedRoles newRoles);
 ::CosGraphs::PropagationValue externalize_propagation
 (in ::CosRelationships::RoleName
fromRoleName,

 in ::CosRelationships::RoleName toRoleName,
 out boolean sameForAll);
 };

 interface PropagationCriteriaFactory {
 ::CosGraphs::TraversalCriteria create_for_externalize();
 };
 };

Because the CosCompoundExternalization module deals with more complex
externalization/internalization scenarios, it’s much more complicated. At this point, you
should note the general manner in which it works. It examines the target object graph and

 - 600 -

breaks it up into a collection of nodes and their respective relationships. The nodes are
broken down into smaller components until a manageable situation is found.

As you develop CORBA applications that need to maintain consistent state across runs,
take the time to look at the Externalization Service. Chances are, it defines the functionality
you need.

 CONCURRENCY SERVICE

A common concern in a distributed environment is ensuring that access to distributed
objects is synchronized. If, for example, two clients both reference the same remote
object and the clients are invoking methods to change that objects member’s variables,
some major problems can arise. Because both clients are making changes to the object’s
state, neither can depend on any form of consistency. As a solution to this problem, the
Concurrency Control Service was developed. It exposes interfaces that allow for
acquiring locks on objects and generally synchronizing all usage.

Note

Synchronizing access to concurrent resources is not an issue unique to
distributed applications. Chapter 8, “Java Threads,” discusses how this is an
issue in multithreaded applications.

The Concurrency Control Service works by allowing clients to obtain locks on remote
objects during the period that the remote object is going to be used. The type of lock
differs based on the transaction being performed, and certain types of locks may be
allocated simultaneously, whereas others may block other clients from obtaining similar
locks. As an example, first consider locking an object for writing; because the object’s
state is being changed during the transaction, only one client may have a write lock on an
object at any given time. Next, consider locking an object for reading; because multiple
simultaneous clients can examine an object’s state, infinite read locks are given out for a
single distributed object. Listing 33.5 contains the CosConcurrencyControl module,
which exposes all CORBA entities needed by the Concurrency Control Service.

 LISTING 33.5 THE CosConcurrencyControl MODULE

 module CosConcurrencyControl {
 enum lock_mode {
 read,
 write,
 upgrade,
 intention_read,
 intention_write
 };

 exception LockNotHeld{};

 interface LockCoordinator {
 void drop_locks();
 };

 interface LockSet {
 void lock(in lock_mode mode);
 boolean try_lock(in lock_mode mode);
 void unlock(in lock_mode mode) raises(LockNotHeld);
 void change_mode(in lock_mode held_mode,
 in lock_mode new_mode)
 raises(LockNotHeld);

 - 601 -

 LockCoordinator get_coordinator(
 in CosTransactions::Coordinator which);
 };

 interface TransactionalLockSet {
 void lock(in CosTransactions::Coordinator current,
 in lock_mode mode);
 boolean try_lock(in CosTransactions::Coordinator current,
 in lock_mode mode);
 void unlock(in CosTransactions::Coordinator current,
 in lock_mode mode)
 raises(LockNotHeld);
 void change_mode(in CosTransactions::Coordinator current,
 in lock_mode held_mode,
 in lock_mode new_mode)
 raises(LockNotHeld);
 LockCoordinator get_coordinator(
 in CosTransactions::Coordinator which);
 };

 interface LockSetFactory {
 LockSet create();
 LockSet create_related(in LockSet which);
 TransactionalLockSet create_transactional();
 TransactionalLockSet create_transactional_related(
 in TransactionalLockSet which);
 };
 };

The first item in the CosConcurrencyControl module that you’ll want to take notice of
is the lock_mode enumerated data type. This data type contains items that define each
of the different locks you may obtain for a given object. Understanding the different types
of locks is critical to your success with the service, because their function dictates your
usage script. Here’s a list of each mode:

 • Read

 • Write

 • Upgrade

 • Intention read

 • Intention write

Starting at the top of the list, a read lock is obtained on an object when the client needs to
examine that object’s state. Multiple clients may have read locks on the same object;
however, a read lock does conflict with a write or intention write lock. If a client attempts
to obtain a read lock on an object that’s locked in one of these two write modes, the
attempt will block until the write lock is released.

The next mode, write, is obtained when a client is going to change an object’s state. If a
client obtains a write lock on an object, no other clients may obtain any lock on that same
object. Following this pattern, a client will block if a write lock is attempted on an object

 - 602 -

that’s locked in any other mode.

Because multiple clients can obtain a read lock on the same object, a problem arises if
one of those clients attempts to upgrade his read lock to a write lock. Because write locks
cannot be obtained while read locks are in use, a deadlock situation could develop. As a
solution, the upgrade lock mode is a read lock that conflicts with itself (and both types of
write locks).

The final two forms of locks deal with locking in terms of object granularity. When locking
access to an object that’s part of an object graph, it’s possible to clog up the system with
locks that are not granular enough. If, for example, you lock the entire object graph for
writing, other clients will not be able to obtain access to any other object in the entire
graph. This may not be a problem if you’re performing large modifications to the entire
graph, but it does cause problems if you’re only modifying a small section of the graph. In
an attempt to ease the situation, the intention read and intention write locks allow for
additional control over lock granularity. When a lock is obtained on an object, the
ancestors are locked first and then the child is locked.

As a final summary on lock conflicts, Table 33.1 summarizes all situations in the form of a
matrix. The locking modes are detailed in the rows and columns, and an “X” in a cell
indicates a conflict.

 TABLE 33.1 LOCK MODE CONFLICT SITUATIONS

Intention
Read

Read

Upgrade

Intention
Write

Write

Intention
Read

X

Read

X

X

Upgrade

X

X

X

Intention
Write

X

X

X

Write

X

X

X

X

X

With an understanding of the available lock modes, let’s move into a discussion of how
you actually interact with the service itself. To obtain a lock on an object, the client
interacts with either an object that implements the LockSet or
TransactionalLockSet interface. Locks obtained through the LockSet interface
are obtained on behalf of the current thread, and the lock is released when the client so
dictates. Locks obtained through the TransactionalLockSet interface are obtained
on behalf of a transaction and are released when that transaction is completed.

Both the LockSet and TransactionalLockSet interfaces expose the same
collection of operations (the functional difference was explained in the preceding
paragraph). When you encounter an object that exposes either of these interfaces, the
first task you’re likely to perform is to invoke either the lock() or try_lock()
operation. Both operations attempt to obtain a lock on the object; however, the lock()

 - 603 -

operation will block if there’s a conflict and return when the conflict is resolved. In
comparison, the try_lock() operation will return a false value if a conflict exists.
Each of these operations accepts a parameter of type lock_mode that discusses the
mode in which the lock is to be obtained.

Once a lock has been obtained on an object, the unlock() operation releases the lock.
If, during the life cycle of a lock, the client wants to alter the lock mode (from read to
write, perhaps), the change_mode() operation is used. If a conflict exists between
present locks and the requested lock, the method blocks until the conflict is resolved.

The final operation exposed by both LockSet operations is the get_coordinator()
operation, which returns an object that implements the LockCoordinator interface.
The LockCoordinator interface defines the drop_locks() operation, which, when
invoked, drops all locks held on the target object.

The final interface in the CosConcurrencyControl module is the LockSetFactory
interface. This interface provides a collection of different create() operations that
instantiate objects that implement the various LockSet interfaces.

 QUERY SERVICE

Information is a commodity that’s only of value if it can be found. Unlike gold, which has a
known value even when buried deep in the earth, information is completely useless if it
cannot be located and quantified. Because software systems are usually built as
collections of information, it’s obviously crucial that a mechanism exist for searching this
information. Chapter 11, “Relational Databases and Structured Query Language (SQL),”
discusses a language called SQL, which is a standard query language used to search
relational databases. This section discusses the OMG Query Service, which, like SQL,
provides a standard interface through which information is searched. However, unlike
SQL, the Query Service is designed to search objects, not columns and rows of
information. In addition, the Query Service is not tied to any specific query language and
can be used with virtually any language.

Before we dive into the CORBA entities that form the Query Service, it’s important that an
understanding of object collections exist. An object collection is simply a grouping of
objects in some logical fashion. In the context of the Query Service, collections are used
to specify both the original scope of a unique query and the results of the query itself. The
CosQueryCollection module, contained in Listing 33.6, exposes the CORBA entities
used to describe and work with object collections.

 LISTING 33.6 THE CosQueryCollection MODULE

 module CosQueryCollection {
 exception ElementInvalid {};
 exception IteratorInvalid {};
 exception PositionInvalid {};

 enum ValueType {TypeBoolean, TypeChar, TypeOctet,
 TypeShort, TypeUShort,TypeLong,
 TypeULong, TypeFloat, TypeDouble,
 TypeString, TypeObject, TypeAny,
 TypeSmallInt, TypeInteger, TypeReal,
 TypeDoublePrecision, TypeCharacter,
 TypeDecimal,TypeNumeric
 };

 - 604 -

 struct Decimal {long precision; long scale; sequence<octet>
value;}

 union Value switch(ValueType) {
 case TypeBoolean: boolean b;
 case TypeChar: char c;
 case TypeOctet: octet o;
 case TypeShort : short s;
 case TypeUShort : unsigned short us;
 case TypeLong : long l;
 case TypeULong : unsigned long ul;
 case TypeFloat : float f;
 case TypeDouble : double d;
 case TypeString : string str;
 case TypeObject : Object obj;
 case TypeAny : any a;
 case TypeSmallInt : short si;
 case TypeInteger : long i;
 case TypeReal : float r;
 case TypeDoublePrecision : double dp;
 case TypeCharacter : string ch;
 case TypeDecimal : Decimal dec;
 case TypeNumeric : Decimal n;
 };

 typedef boolean Null;

 union FieldValue switch(Null) {
 case false : Value v;
 };

 typedef sequence<FieldValue> Record;
 typedef string Istring;

 struct NVPair {Istring name; any value;};
 typedef sequence<NVPair> ParameterList;

 interface Collection;
 interface Iterator;

 interface CollectionFactory {
 Collection create(in ParameterList params);
 };

 interface Collection {
 readonly attribute long cardinality;
 void add_element(in any element) raises(ElementInvalid);
 void add_all_elements(in Collection elements)
 raises(ElementInvalid);
 void insert_element_at(in any element, in Iterator where)
 raises(IteratorInvalid, ElementInvalid);
 void replace_element_at(in any element, in Iterator
where)

 - 605 -

 raises(IteratorInvalid, PositionInvalid,
ElementInvalid);

 void remove_element_at(in Iterator where)
 raises(IteratorInvalid, PositionInvalid);
 void remove_all_elements();
 any retrieve_element_at(in Iterator where)
 raises(IteratorInvalid, PositionInvalid);
 Iterator create_iterator();
 };

 interface Iterator {
 any next() raises(IteratorInvalid, PositionInvalid);
 void reset();
 boolean more();
 };
 };

As you’ll likely guess, the main interface from the CosQueryCollection module that
you interact with is the Collection interface. This interface is used to represent a
group of objects, and it exposes operations for adding and removing member objects.
Another important interface is the Iterator interface, which allows for the examination
of items in a collection. The Collection interface exposes the create_iterator()
operation, which returns a reference to the Iterator object associated with the
Collection object. Once the Iterator object is obtained, the elements in the
collection are examined by invoking the Iterator object’s next() method. This
method provides for a sequential tour of all elements in the collection.

An object that implements the CollectionFactory interface performs the actual
creation of new collections. This interface exposes a single create() method that
accepts parameters describing the scope of the collection and returns an appropriate
Collection object.

 Moving beyond creation and instantiation of collections, the CosQuery module,

contained in Listing 33.7, defines operations used to actually query the collections.

 LISTING 33.7 THE CosQuery MODULE

 module CosQuery {
 exception QueryInvalid {string why};
 exception QueryProcessingError {string why};
 exception QueryTypeInvalid {};

 enum QueryStatus {complete, incomplete};

 typedef CosQueryCollection::ParameterList ParameterList;
 typedef CORBA::InterfaceDef QLType;

 interface QueryLanguageType {};

 interface SQLQuery : QueryLanguageType {};

 interface SQL_92Query : SQLQuery {};

 interface OQL : QueryLanguageType {};

 - 606 -

 interface OQLBasic : OQL {};

 interface OQL_93 : OQL {};

 interface OQL_93Basic : OQL_93, OQLBasic {};

 interface QueryEvaluator {
 readonly attribute sequence<QLType> ql_types;
 readonly attribute QLType default_ql_type;
 any evaluate(in string query,
 in QLType ql_type,
 in ParameterList params)
 raises(QueryTypeInvalid, QueryInvalid,
QueryProcessingError);

 };

 interface QueryableCollection:QueryEvaluator,
 CosQueryCollection::Collection {};

 interface QueryManager : QueryEvaluator {
 Query create(in string query,
 in QLType ql_type,
 in ParameterList params)
 raises(QueryTypeInvalid, QueryInvalid);
 };

 interface Query {
 readonly attribute QueryManager query_mgr;
 void prepare(in ParameterList params)
 raises(QueryProcessingError);
 void execute(in ParameterList params)
 raises(QueryProcessingError);
 QueryStatus get_status();
 any get_result();
 };
 };

As you examine the CosQuery module, spend some time examining the interface
inheritance model and also the interaction between the CosQuery module and the
CosQueryCollection module. What you’ll likely note first is that the
QueryableCollection interface extends both the Collection interface from the
CosQueryCollection module and the QueryEvaluator interface present in this
module. Although the QueryableCollection interface exposes no operations itself,
through its inheritance, it obtains all operations needed to perform actual queries.

Moving your attention to the QueryEvaluator interface, note the query() operation.
This operation accepts three important parameters: a string object holding the query, a
QLType object indicating the query language used, and a ParameterList object
containing any additional parameters. The operation returns an object of type Any , but
this usually holds a Collection object. In certain specific situations, the Any object
may actually hold another type of object; however, those situations represent highly
specialized environments.

 - 607 -

The final aspect of the CosQuery module not yet covered is the manner in which the
query language is specified. To appeal to a wide variety of users and allow for parallel
evolution with different query languages, the Query Service is language neutral. At
present, the service defines interfaces indicating a collection of different languages;
however, this list may be expanded. The current languages one may specify are detailed
in Table 33.2. Note, however, that not all implementations of the service support all
languages (only SQL or OQL is required). The QueryEvaluator interface contains an
attribute containing a list of all supported languages.

 TABLE 33.2 QUERY SERVICE QUERY LANGUAGES SUPPORTED

Language

Interface

Description

SQL

SQLQuery

Consists of the query () section of the SQL language.
This language is described in Chapter 11.

SQL 92

SQL_92Query

Consists of the entire SQL 92 language, as described
in Chapter 11.

OQL

OQL

Object Query Language (OQL) is an adaptation of the
SQL 92 language, modified to support objects.

OQL
Basic

OQLBasic

A modified version of OQL.

OQL 93

OQL_93

A modified version of OQL.

OQL 93
Basic

OQL_93Basic

A combination of the feature-sets exposed by OQL 93
and OQL Basic.

As your systems grow to become more and more data intensive, the functionality exposed
by the Query Service is something you’ll want to look into. It provides functionality that will
help your applications to not only search information but to also modify existing collections
with new objects and updated member data.

FROM HERE

This chapter took some time away from the detailed study of different CORBA
technologies to look at a variety of CORBAservices. Each of the services represent some
level of functionality that you may want to incorporate into your applications as time
marches forward. The following list covers additional chapters that complement the
knowledge imparted in this chapter:

 • Chapter 23, “Survey of CORBA ORBs”

 • Chapter 30, “The Naming Service”

 • Chapter 31, “The Event Service”

Part VII: Agent Technologies

 - 608 -

 Chapter List

 Chapter 34: Voyager Agent Technology

 Chapter 35: Voyager-Based Implementation of the Airline

Reservation System

 Chapter 34: Voyager Agent Technology

 Overview

Before the invention of the telephone, when two people wanted to communicate, they
simply traveled to a common location and had a conversation. Since then the telephone
has been invented, made economical, and become ubiquitous. Now, when two people
want to communicate, they’re able to do so without changing location. One person
simply has to ring another and instantiate a dialogue. Communication between computer
applications, as covered so far in this book, follows the second model of human-to-
human communication, where communication happens across a physical boundary.
Applications can exist on different machines and communicate through the Internet using
IIOP, HTTP, DCOM, or some other protocol.

An alternate form of distributed object technology, called agent technology, exists in a
manner very similar to the original model of human-to-human communication. Agent
technology exists such that instead of communicating between locations, applications
actually travel (code and all) from one machine to another and perform the needed
communication.

At first glance, the concept of agent technology is a touch challenging to understand. It’s
easy enough to grasp the concept of applications communicating with each other across
physical boundaries, but grasping the concept of applications actually moving from one
machine to another is almost unbelievable. Fortunately, although hard to grasp
conceptually, the task of implementing agent-based applications is a rather easy one.
Agent technology is neither difficult to implement nor difficult to design around. In
covering agent technology, this chapter addresses the following topics:

 • Implementing agents using the Voyager environment

 • Writing objects that travel from machine to machine carrying state

 • Locating objects once they leave a known machine

 • Replicating messages across multiple objects

 • Messaging objects in transit

THE VOYAGER ENVIRONMENT

Whereas Java applications must execute inside a Java virtual machine (JVM), agents
must execute inside some host environment. This environment exports an API that
objects use for remote object messaging and also to aid in mobility. In this chapter, we
look at a Java-based agent environment from Objectspace called Voyager. Although it’s
not the only available agent environment, Voyager provides the richest feature-set and
fastest implementation. The environment is contained on the included CD-ROM and can
also be downloaded from the Objectspace Web site at
http://www.objectspace.com . Before you start any development work, take the

 - 609 -

time to install the environment because it’s necessary to run the applications developed
in this chapter as well as in Chapter 35, “Voyager-Based Implementation of the Airline
Reservation System.”

To get a full picture of how the Voyager environment interacts with your application, take
a look at Figure 34.1. This image depicts the JVM as a host to the Voyager environment,
meaning that Voyager requires the presence of the JVM to execute. Moving deeper
inside, Voyager is a host environment for your application. This, of course, means that
your application cannot exist without the presence of Voyager. Just as Voyager needs
the capabilities of the JVM, your application needs the capabilities of the Voyager
environment.

 Figure 34.1: The relationship between the JVM, Voyager environment, and your

application.

Because the Voyager environment executes within a JVM, it’s easy to assume that the
environment is in fact written in Java itself. In addition to a rich feature-set and fast
implementation, the fact that the Voyager environment is 100 percent pure Java is also a
boon to developers. Agents often need to move around the world, visiting all sorts of
computers, and because the Voyager environment can execute on any platform with a 1.1
version of the JDK, those agents should have no trouble getting around.

THE VOYAGER API

When you’re working with any new programming environment, a new API usually has to
be learned. Depending on the complexity of the environment, the learning curve toward
being productive in that environment can run anywhere from a few days to a few months.
Often, however, environments that expose a broad API do so to support many features
that the average programmer does not need. As we move through our discussion of
Voyager, we’ll first take an overview of the API and then move on to develop a series of
applications, each highlighting a single feature of the Voyager environment.

 Table 34.1 contains the Voyager package structure, along with a brief discussion of the

functionality exposed by the classes in each package.

 TABLE 34.1 THE VOYAGER PACKAGE STRUCTURE

Package

Description of Contents

com.objectspace
.lib.facets

The class and interface used by entities that want to
take advantage of facets

com.objectspace
.lib.holder

The collection of classes and interfaces that support
inout and out parameters

com.objectspace

The utility class that aids in the management of

 - 610 -

.lib.thread Thread objects

com.objectspace
.lib.timer

The collection of classes and interfaces that aid in
time-based functions

com.objectspace
.lib.util

The utility class used for debugging purposes

com.objectspace
.voyager

The collection of classes and interfaces used to
interact with the Voyager environment itself

com.objectspace
.voyager.activation

The collection of classes and interfaces that aid in
object activation

com.objectspace
.voyager.agent

The collection of classes and interfaces used to
manipulate actual agents

com.objectspace
.voyager.corba

The class and interface used when obtaining
CORBA objects

com.objectspace
.voyager.corba.
advanced

The collection of classes and interfaces used when
interacting with CORBA objects

com.objectspace.
voyager.directory

The class and interface used to support Voyager’s
Naming Service

com.objectspace.
voyager.loader

The collection of classes and interfaces used to load
classes and resources

com.objectspace.
voyager.message

The collection of classes and interfaces exploited by
the various Voyager messaging modalities

com.objectspace.
voyager.mobility

The collection of classes and interfaces used when
moving objects

com.objectspace.
voyager.router

The class used when interfacing with the message
routing subsystem

com.objectspace.
voyager.security

The class that defines Voyager security policies

com.objectspace.
voyager.space

The collection of classes and interfaces used with
the Voyager space technology

com.objectspace.
voyager.space.
multicasting

The class used when performing broadcast message
generation

com.objectspace.
voyager.space.
publishing

The collection of classes and interfaces used with
the Voyager publish/subscribe technology

Due to the size limitations of this book, it’s not possible to detail every class and interface
exposed by the Voyager environment; however, certain important entities are called out as
the chapter progresses. As always, the complete APIs are contained on the accompanying
CD-ROM, so feel free to reference them there.

 - 611 -

REMOTE OBJECT MESSAGING

Beginning our exploration into the Voyager environment, this section looks at how
Voyager is used to perform remote object messaging. The principle feature of Voyager is
to actually develop agents, but often an object may not need full mobility. In general, the
decision of whether to move to the remote object’s location or to interact with it from your
current location is something that needs to be decided during application design. For
example, if you simply want to ask a friend to a movie, a phone call is obviously sufficient.
At the other end of the spectrum, if you’re asking someone to marry you, you had better
propose in person. If the remote interaction is significant (for example, multiple database
queries), do travel to the remote location. If, however, the interaction is simple, don’t take
the time to travel. This decision parallels the decision we often need to make when
deciding how to interact with other humans.

Looking at the example of using a Remote Method Invocation (RMI) to obtain an entity’s
name, let’s use it as a basis for our first Voyager application. In developing this
application, the first concept introduced is that of using interfaces to describe any object
that’s a target of RMI. Whenever an object is going to export some functionality that’s
being manipulated by a remote object, that functionality must be described in an
interface. Assuming you did not skip directly to this chapter and you’ve read the material
on RMI, CORBA, and DCOM covered in earlier chapters, the concept of interface
programming should sound familiar. Just as RMI, CORBA, and DCOM all require remote
objects to be described with interfaces, Voyager also places this requirement on systems.

 Listing 34.1 contains an interface called DivaI that exposes methods used to obtain the

first and last name of an opera diva.

Note

Adding an “I” prefix or suffix to an interface name is not a requirement, but it
does make programming easier. As the number of classes and interfaces in
your system grows, you’ll want to be able to easily identify the interfaces by
their name.

 LISTING 34.1 THE DivaI INTERFACE

 public interface DivaI {
 public String getFirstName();
 public String getLastName();
 }

Taking the interface in Listing 34.1 one step further, Listing 34.2 implements the
interface. As you look over the code, note the System.out.println() method
invocation in the constructor. This line of code exists to provide confirmation of the
remote location in which the object is created.

 LISTING 34.2 THE Diva CLASS

 public class Diva implements DivaI {
 private String _sFirstName;
 private String _sLastName;

 public Diva() {
 _sFirstName = "Maria";
 _sLastName = "Callas";
 System.out.println(this+" instantiated");
 }

 - 612 -

 public String getFirstName() { return _sFirstName; }
 public String getLastName() { return _sLastName; }
 }

Moving beyond the manner in which the remote object exists, let’s look at the
DivaInteraction class in Listing 34.3. This class actually performs the remote object
instantiation and interaction. As you look at this code, pay attention to the Factory.
create() method invocation. The static method takes two parameters: the fully defined
name of a class and an address of a Voyager environment. In this case, the remote class
is named Diva (compiled into Diva.class and contained in the default package), and
the Voyager environment is running on the same machine at port 8000.

When the create() method is invoked, it looks at the remote environment and asks it
to instantiate the specified object using the default constructor. The create() method
signature defines the return type as an instance of
com.objectspace.voyager.Proxy and therefore has to be cast into the target
interface. Any exceptions thrown during this process propagate back to the caller.

If you spent time reading the previous chapters on CORBA, you’ll note a major difference
between Voyager and CORBA that’s demonstrated by this example. CORBA only allows
for remote object instantiation using the factory design pattern (see Chapter 5, “Design
Patterns,” for information on the factory design pattern). However, Voyager allows for
remote objects to be directly instantiated. If you peruse the Factory API
documentation, you’ll note different overloaded versions of the create() method, some
of which allow for the passing of parameters into the remote object’s constructor.

Continuing the exploration of Listing 34.3, note that once the remote instance has been
obtained, it’s treated as a first-class Java object. To obtain the diva’s first and last name,
we simply invoke the associated getter methods.

 LISTING 34.3 THE DivaInteraction CLASS

 import com.objectspace.voyager.*;

 public class DivaInteraction {

 public DivaInteraction() {
 try{ Voyager.startup();

 // ask the Voyager environment to create a Diva
object at

 // the specified location
 DivaI diva = (DivaI)Factory.create("Diva",

"//localhost:8000");

 // interact with the Diva object
 System.out.println(diva.getFirstName()+
 " "+diva.getLastName());

 Voyager.shutdown();
 }
 catch(Exception e) { System.out.println; }
 }

 public static void main(String[] args)) {
 new DivaInteraction();

 - 613 -

 }
 }

Now that you’ve covered all the code in this initial example, you’re ready to run the
application. As always, first enter in the code and compile it using your Java compiler.
Because the Voyager classes are imported by the code in Listing 34.3, you’ll need to
ensure that they are placed correctly in your class path. With the classes compiled, start
the Voyager environment by running the Voyager executable located in the install
directory\voyager\bin directory. This executable may take a variety of
parameters, but for now we’ll just pass it the port to get it started. Because this
application expects a Voyager environment at port 8000, start the Voyager environment
by typing

 voyager 8000

 Now, open a command window, navigate to the directory containing the code from

Listings 34.1 to 34.3, and then start the application by typing

 java DivaInteraction

As this application runs, watch the output in both the Voyager output window and the
application output window. You’ll note that the results of the getter methods appear in the
application window but that the output generated in the Diva object’s constructor appears
in the Voyager window.

 DEVELOPING MOBILE AGENTS

In the first example, we used Voyager to develop code that messages objects located in
other machines. Remote messaging is an important part of a distributed agent-based
application, because it allows for communication between objects in different locations. In
addition to object messaging, another important aspect of distributed agent development
is object mobility. As described earlier, mobile objects can transfer location, moving
between JVMs as well as physical machines. The only requirement for transfer is that the
Voyager environment must be present and running on all machines.

Continuing the exploration of the Voyager environment, this next section develops a
mobile agent application. Classes that need the ability to move themselves must extend
the class com.objectspace.voyager.agent.Agent and implement the interface
java.io.Serializable . The Agent class along with the IAgent interface contain
methods for maintaining and moving objects.

The fact that objects are mobile in the Voyager environment does present some issues
that can cause some major errors to creep into your application. Consider what might
happen if you enter into a dialogue with an object and, for some external reason, that
object decides to move to a new machine. This, of course, presents issues, because your
local object reference will now need to be updated to point to the new location. What

Voyager does when an object moves is to leave behind a forwarder (think trail of bread-
crumbs with no evil witch messing things up) that exists at the prior object location and
points to the new location. If an object interacts with a forwarder, Voyager will pick up the
interaction and update the local object’s reference to immediately point to the new
location. Figure 34.2 depicts this process.

 - 614 -

 Figure 34.2: Forwarders allow for consistent object interactions even after a

move.

With a basic understanding of the Agent class and the Voyager environment, you’re
now ready to code your first mobile agent. In this example, we’ll develop an object that
prints out ten sequential numbers, moves to a new location, prints another ten sequential
numbers, and continues moving forever. The application demonstrates the manner in
which object mobility is achieved as well as the fact that object state is preserved across
JVMs. As the counter object moves from location to location, it maintains an internal
member variable representing the last number printed out. What this means is that the
object could start at JVM “A,” print out the numbers 0–9, move to JVM “B,” and then print
out the numbers 10–19. Even though the physical location of the object changes, it
maintains a consistent state.

As with the earlier remote messaging example, all agent objects must describe their
public methods in an interface. The interface for the class contained in Listing 34.4
exposes a single method, movementComplete() . In the implementation of the
MovingCounterI interface, we extend Agent.

 LISTING 34.4 THE MovingCounterI INTERFACE

 public interface MovingCounterI {
 public void movementComplete();
 }

Moving along in the exploration of agent development, Listing 34.5 contains the
MovingCounter class. This class extends the Agent class and also implements the
MovingCounterI interface.

 LISTING 34.5 THE MovingCounter CLASS

 import java.util.*;
 import java.io.*;
 import com.objectspace.voyager.*;
 import com.objectspace.voyager.agent.*;

 public class MovingPersistentCounter extends Agent
 implements
MovingPersistentCounterI,

 java.io.Serializable {
 private Random _rand;
 private int _i;

 public MovingPersistentCounter() {
 _rand = new Random();
 _i = 0;
 try{ moveIt(); }

 - 615 -

 catch(Exception e) { System.out.println; }
 }

 /**
 * Invoked after we move to a new location, print out
 * 10 numbers. Note that object state (the value of _i)
 * is transferred across JVMs
 */
 public void movementComplete() {
 int iStop = _i+10;
 while(_i<iStop) {
 System.out.println(_i);
 _i++;
 }
 try{ moveIt(); }
 catch(Exception e) { System.out.println; }
 }

 /**
 * Move to one of three random locations
 */
 public void moveIt() {
 int iPort = Math.abs(_rand.nextInt()) % 3 + 0;
 if(iPort = 0) {
 System.out.println("moving to port 7000");
 try{ Agent.of(this).moveTo("//localhost:7000",
 "movementComplete"); }
 catch(Exception e) {}
 }
 else if(iPort = 1) {
 System.out.println("moving to port 8000");
 try{ Agent.of(this).moveTo("//localhost:8000",
 "movementComplete"); }
 catch(Exception e) {}
 }

 else {
 System.out.println("moving to port 9000");
 try{ Agent.of(this).moveTo("//localhost:9000",
 "movementComplete"); }
 catch(Exception e) {}
 }
 try{ Thread.sleep(1000); }
 catch(InterruptedException e) {}
 }

 public static void main(String[] args)) {
 // create the object at port 9000
 try{ Voyager.startup();
 MovingCounterI counter =

(MovingCounterI)Factory.create("MovingCounter",

 - 616 -

"//localhost:9000");
 Voyager.shutdown();
 }
 catch(Exception e) { System.out.println; }
 }
 }

As you spend time with the code in Listing 34.5, first focus your attention on the main()
method. In this method, we use the Factory.create() method to create a
MovingCounterI instance in a Voyager environment located on the same machine at
port 9000. Once instantiated, the MovingCounter object invokes its moveIt()
method, which is charged with actually relocating the object itself. This method picks a
random number between 0 and 2 (inclusive) and, based on the value of that number,
moves to a Voyager environment located on the same machine at port 7000, 8000, or
9000. This movement occurs when the moveTo() method is invoked, but note the
version of the moveTo() method selected for this example. The first parameter is simply
an Address object that points to the new location. The second parameter is a string
identifying a method to be invoked after the object is moved and has settled into its new
home. Providing a callback method is rather useful because it allows for internal
processing to occur after a movement occurs. In this example, we simply print out the
next ten numbers in sequence and then call moveIt() again. The callback method
must be both public and described in the object’s interface.

To start the application running, first get three Voyager environments up and running. In
the implementation in Listing 34.5, we move around between three Voyager
environments on ports 7000, 8000, and 9000, all located on the same machine. If you
desire an alternate setup, simply modify Listing 34.5 so that the word localhost is
replaced with the IP address of the target machine and the port matches the port on
which the environment is started. Assuming you go with the setup expected by the code
in Listing 34.5, start up the Voyager environments by executing the following commands:

 voyager 7000

 voyager 8000

 voyager 9000

You should now have open three command windows, each hosting a single Voyager
environment. Finally, enter in and compile the code in both Listings 34.4 and 34.5 and the
launch our mobile friend by typing

 java MovingCounter

You should see rapid movement between environments, each displaying parts of the same
sequence of numbers. If, for display purposes, you want to slow down execution, increase
the value of the long passed into the Thread.sleep() method invocation contained in
the moveIt() method.

SPACE TECHNOLOGY: REDUNDANT OBJECT MESSAGING

Thus far in your exploration of the Voyager environment, you’ve learned how to message
remote objects and develop mobile objects. In this final technology section, you’ll learn
about a Voyager technology called Space, which allows for redundant messaging
between collections of objects. Space technology allows for objects that expose a
common interface to be grouped into a logical Subspace, as well as for a collection of
Subspaces to be linked together creating a larger Space. Once the objects are linked
together, any method invocation delivered to an object contained in any Subspace
causes the same method to be invoked in all objects contained in all Subspaces.

 - 617 -

Because each object can uniquely respond to the message, it’s not possible to obtain a
return value from any such interaction. The Space message replication technology is
depicted in Figure 34.3.

In this next sample application, we develop a stock portfolio and symbol value
broadcaster. The portfolio is depicted by the PortfolioI interface contained in Listing
34.6, and it exposes a single method that’s invoked when a new symbol/value pair is
available.

 LISTING 34.6 THE PortfolioI INTERFACE

 public interface PortfolioI {
 public void quoteUpdate(String sSymbol, float fNewValue);
 }

 Figure 34.3: Message replication using Space technology.

 The implementation of the PortfolioI interface, contained in Listing 34.7, prints out

the symbol/value pair as it is received.

 LISTING 34.7 THE Portfolio CLASS

 public class Portfolio implements PortfolioI {

 public Portfolio() {
 }

 public void quoteUpdate(String sSymbol, float fNewValue) {
 System.out.println(sSymbol+" is at:: $"+fNewValue);
 }
 }

Moving into the interesting part of the application, Listing 34.8 contains the
StockBroadcast class. This class actually creates the Subspaces, links them
together, associates Portfolio instances with the Subspaces, and finally sends out an
event.

 As you examine the code, first note the manner in which the Subspaces are created. We

use the Factory.create() method and pass in the fully qualified name of the

 - 618 -

implementation class and also specify a location and alias for each. This example creates
a new Subspace instance at port 7000, 8000, and 9000 on the same machine. After
creating the Subspaces, we link them together with the Subspace.connect()
method. Note that this link is bi-directional, meaning that if Subspace A is linked to
Subspace B, Subspace B is automatically linked to Subspace A. The next action
executed in the constructor is the creation of a PortfolioI instance at each
environment location and the setting of the object’s lifecycle to be indefinite. The Voyager
environment implements a distributed garbage collector that’s charged with managing the
lifecycle of all objects created in a Voyager environment. Because the PortfolioI
instances are going to sit alone, with no local objects referencing them, we need to tell
the distributed garbage collector to never garbage collect those objects. If this step is not
performed, a low-memory condition could cause the removal of the objects.

Once created and told to live forever, the PortfolioI objects are added to each of the
Subspaces. At this point, we now have three linked Subspace objects, each holding a
single PortfolioI object. We now request a proxy used to communicate to all the
objects and invoke its quoteUpdate() method. Of course, the value associated with
the INKT symbol is only a guess; market pressure could drastically change the actual
value by the time you read this.

 LISTING 34.8 THE StockBroadcast CLASS

 import com.objectspace.voyager.*;
 import com.objectspace.voyager.space.*;
 import com.objectspace.voyager.space.multicasting.*;

 public class StockBroadcast {

 public StockBroadcast() throws Exception {
 Voyager.startup();

 // create three Subspaces at different locations
 ISubspace subspace1 = (ISubspace)Factory.create(

"com.objectspace.voyager.space.Subspace",

 "//localhost:7000/Subspace1"));
 ISubspace subspace2 = (ISubspace)Factory.create(

"com.objectspace.voyager.space.Subspace",

 "//localhost:8000/Subspace2"));
 ISubspace subspace3 = (ISubspace)Factory.create(

"com.objectspace.voyager.space.Subspace",

 "//localhost:9000/Subspace3"));

 // connect the various Subspaces
 subspace1.connect(subspace2);
 subspace1.connect(subspace3);
 subspace2.connect(subspace3);

 // create one PortfolioI object at each location
 PortfolioI portfolio1 =
(PortfolioI)Factory.create("Portfolio",

"//localhost:7000");

 PortfolioI portfolio2 =
(PortfolioI)Factory.create("Portfolio",

 - 619 -

"//localhost:8000");

 PortfolioI portfolio3 =
(PortfolioI)Factory.create("Portfolio",

"//localhost:9000");

 // add a PortfolioI to each Subspace
 subspace1.add(portfolio1);
 subspace2.add(portfolio2);
 subspace3.add(portfolio3);

 // send a message
 Multicast.invoke(subspace1,
 "quoteUpdate",
 new Object[] {{"INKT", new Float(80f)},
 "PortfolioI"));

 // exit
 Voyager.shutdown();
 }

 public static void main(String[] args)) {
 try{ new StockBroadcast(); }
 catch(Exception e) { System.out.println; }
 }
 }

 To run the Space-based application, first compile the code in Listings 34.6 to 34.8. Next,

start the Voyager environments by typing

 voyager 7000

 voyager 8000

 voyager 9000

 Finally, start the application by typing

 java StockBroadcast

 As the application executes, you’ll see “INKT is at: $80.00” appear in all windows almost

simultaneously.

As the applications you develop with Voyager grow in size and importance, the role played
by Space technology will also grow. This is especially true when developing servers that
must be available 24 hours a day, 7 days a week. In such 24×7 situations, Space
technology allows you to develop server applications that are completely redundant. At any
one point in time, each server in the cluster will have the same state; therefore, if one
crashes, the client will not notice.

 FROM HERE

 This chapter covered significant ground by introducing a lot of new technology. The most

earth shattering being the introduction of the topic that objects can actually be fully

 - 620 -

mobile. The Voyager agent platform allows for objects to change their physical location in
much the same manner that we humans also have this ability. As you continue to study
this book, you’ll find that the following chapters complement the knowledge imparted by
this chapter:

 • Chapter 15, “Remote Method Invocation (RMI)”

 • Chapter 21, “CORBA Overview”

 • Chapter 35, “Voyager-Based Implementation of the Airline Reservation System”

Chapter 35: Voyager-Based Implementation of
the Airline Reservation System

 Overview

Assuming you’ve been on a sequential tour of this book, you’ll recall that certain chap-
ters focus on implementing a common set of use-cases, each using different technolo-
gies. This chapter completes the exercise by implementing those use-cases using the
Voyager Agent technology. If, for some reason, curling up with this tome and reading it
cover to cover is not your cup of tea, and you did arrive at this chapter without exploring
previous chapters, a bit of background is in order.

Back in Chapter 6, “The Airline Reservation System Model,” a collection of use-cases
that model an airline reservation system are developed. These use-cases are then imple-
mented throughout the book using sockets (Chapter 14, “Socket-Based Implementation
of the Airline Reservation System”), RMI (Chapter 16, “RMI-Based Implementation of the
Airline Reservation System”), servlets (Chapter 19, “Servlet-Based Implementation of the
Airline Reservation System”) and finally CORBA (Chapter 26, “CORBA-Based
Implementation of the Airline Reservation System”). The goal of implementing the same
use-cases using different technologies is to show you that different routes can be taken
to reach a common solution. Each implementation chapter produces a piece of software
that solves a common problem, yet implements the solution in its own unique manner. As
you leave the safety of this book and begin to venture out into the world of producing
real-world distributed solutions in Java, pay specific attention to the material taught by the
implementation chapters.

Although the chapters do show how a common piece of software is implemented using
different technologies, they do not decide on a blanket technology useful for all applica-
tions. Unfortunately, no single distributed technology is a silver bullet; each application is
best served by at least one technology. If your solutions are to be successful, you must
not religiously adhere to one technology but rather choose the best technology for each
application.

In building the airline reservation software with Voyager, it’s important that you first read
the use-cases from Chapter 6 as well as the coverage of Voyager in Chapter 34,
“Voyager Agent Technology.” This chapter plows ahead with the assumption that you
understand the previous material. Reading the other implementation chapters is not a
requirement, but you’ll want to do so at some point in time. In covering the Voyager
implementation in this chapter, the following points are addressed:

 • Implementing client and server callbacks

 • Developing mobile agents

 • Exposing application functionality through interfaces

 - 621 -

ARCHITECTURE OVERVIEW

The agent-based implementation of the Airline Reservation System differs greatly from
other implementations in that not all client-to-server interactions involve a direct remote
method invocation. Instead, whenever a client needs to interact with the server, an agent
object is instantiated, and that object travels to the server, performs the interaction, and
then returns to the client. This process is depicted in Figure 35.1.

 Figure 35.1: The agent travels to the server to obtain information.

Although the agent-based implementation of the airline reservation system differs in the
manner in which it communicates with the server, the actual client and server code is rather
similar to what has been developed for other chapters: A client application exposes its
functionality through a UI, and a server application provides an API through which flight
information is accessed. This version simply adds an extra piece of code that travels
between the applications. As we cover this application, we’ll first introduce the server, then
the agent, and finally the client.

 THE AIRLINE RESERVATION SERVER

As is true with all Voyager applications, any object that takes an active role in an agent
interaction must expose its functionality through an interface. The first class introduced is
called FlightDataAccess , and it exposes its functionality through the
FlightDataAccessI interface. This interface, contained in Listing 35.1, exposes
functionality that allows searching for flights and booking, as well as for canceling and
searching for reservations.

 LISTING 35.1 THE FlightDataAccessI INTERFACE

 import java.util.*;

 public interface FlightDataAccessI {
 public FlightI[] searchForFlight((FlightQueryI query);
 public void createReservation(ReservationI reservation);
 public void cancelReservation(ReservationI reservation);
 public ReservationI[] searchForReservation((ReservationQueryI
query);

 }

Moving to the implementation of the FlightDataAccessI interface, Listing 35.2
contains the FlightDataAccess class. If you’ve read Chapter 26, where the use-
cases are implemented using CORBA, much of the class should look familiar. Because
both applications need to implement the same functionality, they can share a significant

 - 622 -

amount of code. The major difference here, of course, is that the data is accessed by
objects that move from the client to the server, instead of a method invocation that travels
from client to server.

As you look at the FlightDataAccess class, note that the flights produced are very
much imaginary. A flight in this system is made up of a randomly chosen departure and
destination. However, the code that interacts with the randomly chosen flights is
something that can be easily modified to interact with an actual database containing live
flight data.

 LISTING 35.2 THE FlightDataAccess CLASS

 import java.util.*;

 public final class FlightDataAccess implements FlightDataAccessI
{

 private FlightI[] __flights;
 private Random _rand = new Random();
 private Vector _vecReservations;

 public FlightDataAccess() {
 _vecReservations = new Vector();
 populateFlightHash();
 }

 private void populateFlightHash() {
 LocationI[] locations = new LocationI[10];
 locations[0] = new Location("SFO", "SAN FRANCISCO",
 "CALIFORNIA", "USA");
 locations[1] = new Location("AQM", "ARIQUEMES",
 "RO", "BRAZIL");
 locations[2] = new Location("ARB", "ANN ARBOR",
 "MICHIGAN", "USA");
 locations[3] = new Location("JFK", "NY",
 "NEW YORK", "USA");

 locations[4] = new Location("JLO", "JESOLO",
 "JESOLO", "JESOLO");
 locations[5] = new Location("JLR", "JABALPUR",
 "JABALPUR", "INDIA");
 locations[6] = new Location("PPG", "PAGO PAGO",
 "PAGO PAGO", "AMERICAN SAMOA")

 ;

 locations[7] = new Location("UMA", "PUNTA DE MAISI",
 "PUNTA DE MAISI", "CUBA");
 locations[8] = new Location("EKE", "EKEREKU",
 "EKEREKU", "GUYANA");
 locations[9] = new Location("KHR", "KHARKHORIN",
 "KHARKHORIN", "MONGOLIA ");

 Date[] dates = new Date[10];
 dates[0] = new Date(98,6,1,10,20);

 - 623 -

 dates[1] = new Date(98,6,2,9,21);
 dates[2] = new Date(98,6,3,8,22);
 dates[3] = new Date(98,6,4,7,23);
 dates[4] = new Date(98,6,5,6,24);
 dates[5] = new Date(98,6,6,5,25);
 dates[6] = new Date(98,6,7,4,26);
 dates[7] = new Date(98,6,8,3,27);
 dates[8] = new Date(98,6,9,2,28);
 dates[9] = new Date(98,6,10,1,29);

 SeatI[] seatArray = new Seat[50];
 for(int i=0; i<50; i++) seatArray[i] = new Seat(i);

 _flights = new FlightI[50];
 for(int i=0; i<50; i++) {
 _flights[i] = new Flight(locations[obtainRandomInt()],
 locations[obtainRandomInt()],
 dates[obtainRandomInt()],
 dates[obtainRandomInt()],
 seatArray);
 }
 }

 private int obtainRandomInt() {
 return Math.abs(_rand.nextInt()) % 9 -0;
 }

 /**
 * Searches for a collection of FlightI objects
 * based on the specified query object.
 */
 public FlightI[] searchForFlight((FlightQueryI query) {
 Vector vecFoundSet = new Vector();
 int iLength = _flights.length;
 for(int i=0; i<iLength; i++) {
 FlightI flightActive = _flights[i];
 if(isLocationEqual(flightActive.getDepartureLocation(),
 query.getDepartureLocation()) &&
 isLocationEqual(flightActive.getDestinationLocation(),
 query.getDestinationLocation())) {
 if(flightActive.getDepartureDateTime().equals(
 query.getDepartureDateTime()) &&
 flightActive.getDestinationDateTime().equals(
 query.getDestinationDateTime())) {
 vecFoundSet.addElement(flightActive);
 }
 }
 }
 FlightI[] foundSet = new Flight[vecFoundSet.size()];
 vecFoundSet.copyInto(foundSet);

 return foundSet;

 - 624 -

 }

 /**
 * Helper method used to determine if two LocationI objects
 * reference the same airport.
 */
 private boolean isLocationEqual(LocationI loc1, LocationI loc2) {
 // first check the easiest case

if(loc1.getAirportCode().equalsIgnoreCase(loc2.getAirportCode()))

 return true;

 // now check additional cases
 return(loc1.getCityName().equalsIgnoreCase(
 loc2.getCityName()) &&
 loc1.getStateName().equalsIgnoreCase(
 loc2.getStateName()) &&
 loc1.getCountry().equalsIgnoreCase(
 loc2.getCountry()));
 }

 /**
 * Adds a reservation to the collection of reservations
 */
 public void createReservation(ReservationI reservation) {
 _vecReservations.removeElement(reservation);
 }

 /**
 * Removes a reservation from the collection of reservations
 */
 public void cancelReservation(ReservationI reservation) {
 _vecReservations.addElement(reservation);
 }

 /**
 * Searches for an active reservation
 */
 public ReservationI[] searchForReservation((ReservationQueryI
query) {

 Enumeration e = _vecReservations.elements();
 Vector vecFoundSet = new Vector();
 while(e.hasMoreElements()) {
 ReservationI reservation = (ReservationI)e.nextElement();
 if(isDemographicMatch(query, reservation)) {
 vecFoundSet.addElement(reservation);
 }
 else if(isDemographicMatch(query, reservation)) {
 vecFoundSet.addElement(reservation);
 }
 else if(isFlightEqual(query.getFlight(),
 reservation.getFlight()) &&
 isSeatEqual(query.getSeat(),

 - 625 -

 reservation.getSeat()))
 vecFoundSet.addElement(reservation);
 }

 ReservationI[] foundSet = new Reservation[vecFoundSet.size()];
 vecFoundSet.copyInto(foundSet);

 return foundSet;
 }

 /**
 * Helper method used to determine if two SeatI objects
 * reference the same seat location.
 */
 private boolean isSeatEqual(SeatI s1, SeatI s2) {
 return s1.getSeatNumber() = s2.getSeatNumber();
 }

 /**
 * Helper method used to determine if two FlightI objects
 * reference the same flight.
 */
 private boolean isFlightEqual(FlightI f1, FlightI f2) {
 if(isLocationEqual(f1.getDepartureLocation(),
 f2.getDepartureLocation()) &&
 isLocationEqual(f1.getDestinationLocation(),
 f2.getDestinationLocation())) {
 if(f1.getDepartureDateTime().
 equals(f2.getDepartureDateTime()) &&
 f1.getDestinationDateTime().
 equals(f2.getDestinationDateTime())) {
 return true;
 }
 }
 return false;
 }

 /**
 * Helper method used to determine if two collections of
 * demographic data might reference the same entity.
 */
 private boolean isDemographicMatch(ReservationQueryI query,
 ReservationI reservation)
{

 if(query.getCreditCardNumber().equals(

reservation.getDemographics().getCreditCardNumber())) {

 return true;
 }

 return(query.getFirstName().equals(
 reservation.getDemographics().getFirstName())
&&

 - 626 -

 query.getLastName().equals(
 reservation.getDemographics().getLastName()));
 }
 }

The code shown in Listings 35.1 and 35.2 fully implements the functionality exposed by
the server but still does not make the FlightDataAccessI object available to
communicate with agents. The final class that forms the server, FlightServer, is
contained in Listing 35.3. This class contains a simple main() method that first starts a
Voyager environment at port 7000 and then asks Voyager to create an object that
implements the FlightDataAccessI interface.

 LISTING 35.3 THE FlightServer CLASS

 import java.util.*;
 import com.objectspace.voyager.*;

 public final class FlightServer {

 public static void main(String[] args)) {
 try{ // start voyager
 Voyager.startup("//localhost:7000");
 // create a FlightDataAccessI object
 FlightDataAccessI access;
 access = (FlightDataAccessI)Factory.create(

"FlightDataAccess","//localhost:7000/FlightDataAccess");

 }
 catch(Exception e) { System.out.println(e); }
 }
 }

 At this point, the server is completely implemented. We’ll not cover how to run it at this

point, because we cover running the server and client together at the end of the chapter.

 THE AIRLINE RESERVATION AGENT

This next section moves from the server code to the agent code (the code that moves
between the client and server). In general, this code introduces the largest collection of
new topics and therefore deserves the greatest portion of your attention. The agent code
is all contained in a single class and the interface that describes the functionality exposed
by that class. To start your exploration of this functionality, take a look at the
FlightSearcherI interface in Listing 35.4.

 LISTING 35.4 THE FlightSearcherI INTERFACE

 import com.objectspace.voyager.agent.*;

 public interface FlightSearcherI {
 // client-side callback methods
 public void flightSearchResults(FlightI[] flights));
 public void reservationSearchResults(ReservationI[]
reservations));

 // server-side callback methods

 - 627 -

 public void atServerForFlightSearch(FlightQueryI query);
 public void atServerToCreateReservation(ReservationI
reservation);

 public void atServerToCancelReservation(ReservationI
reservation);

 public void atServerForReservationSearch(ReservationQueryI
query);

 // invoked by the client UI
 public void searchForFlight(FlightQueryI query);
 public void createReservation(ReservationI reservation);
 public void cancelReservation(ReservationI reservation);
 public void searchForReservation(ReservationQueryI query);
 }

Listing 35.4 contains a collection of methods, some of which are invoked by the client UI,
and some of which are invoked as callback methods by the Voyager environment. The
first methods encountered in a typical interaction are contained at the bottom of the
interface in the third grouping. These methods are invoked by the client UI, and they
trigger a move to the server for some interaction. Once one of these methods has been
invoked, the agent object asks the Voyager environment to be moved to the server and
invoke one of the server-side callback methods contained in the center grouping. As a
final step, the agent object asks the Voyager environment to be moved back to the client
and invoke one of the client-side callback methods contained in the first grouping. Here’s
a sample scenario describing the chain of actions executed when a flight search is
instantiated:

 1. The client UI invokes the searchForFlight() method.

 2. The agent object moves to the server.

 3. The Voyager environment invokes the atServerForFlightSearch() method in

the agent object.

 4. The agent object queries the server based on the search parameters supplied by the

client.

 5. The agent object moves to the client.

 6. The Voyager environment invokes the flightSearchResults() method.

 7. The agent object notifies the client of the search results.

For the most part, the interface and this scenario describe exactly the workflow of the
agent object. However, they only describe that functionality in terms of the public method
invocation chain. Additional private helper methods and implementation tricks in the
public methods round out the functionality of the class. Listing 35.5 contains the
implementation of the FlightSearcher interface; once you’ve studied it, we’ll return to
the previous scenario and discuss the implementation details.

 LISTING 35.5 THE FlightSearcher CLASS

 import com.objectspace.voyager.*;
 import com.objectspace.voyager.agent.*;
 import java.util.*;

 /**

 - 628 -

 * Agent class that is changed with making roundtrips from client
 * to server to facilitate the creation of and searches for flight
 * reservations. When the client executes a search, the
FlightSearcher

 * object travels to the server, executes the search and then
travels

 * back to the client.
 */
 public class FlightSearcher extends Agent
 implements FlightSearcherI,
 java.io.Serializable {

 public FlightSearcher() {
 }

 /**
 * Invoked with the results of a flight search
 * after we have returned to the client.
 */
 public void flightSearchResults(FlightI[] flights)) {
 // notify the client that the results are present
 obtainSearchDialog().flightSearchResults(flights);
 }

 /**
 * Invoked with the results of a reservation search
 * after we have returned to the client.
 */
 public void reservationSearchResults(ReservationI[]
reservations)) {

 // not exposed by the client UI
 }

 /**
 * Invoked when we are at the server and need to execute a
 * flight search.
 */
 public void atServerForFlightSearch(FlightQueryI query) {
 // execute the query
 FlightI[] flightSearchResults =
 obtainFlightDataAccess().searchForFlight(query);

 // move to the client
 Object[] params = {flightSearchResults};
 try{ Agent.of(this).moveTo("//localhost:9000",
 "flightSearchResults", params);
}

 catch(Exception e) { System.out.println(e); }

 }

 /**
 * Invoked when we are at the server and need to
 * create a reservation.

 - 629 -

 */
 public void atServerToCreateReservation(ReservationI reservation)
{

 obtainFlightDataAccess().createReservation(reservation);
 }

 /**
 * Invoked when we are at the server and need to
 * cancel a reservation
 */
 public void atServerToCancelReservation(ReservationI reservation)
{

 obtainFlightDataAccess().cancelReservation(reservation);
 }

 /**
 * Invoked when we are at the server and need to
 * search for a reservation.
 */
 public void atServerForReservationSearch(ReservationQueryI query)
{

 ReservationI[] searchResults;;
 searchResults =
 obtainFlightDataAccess().searchForReservation(query);
 }
 /**
 * Helper method that obtains a reference
 * to the FlightDataAccessI object
 */
 private FlightDataAccessI obtainFlightDataAccess() {
 try{ return (FlightDataAccessI)

Namespace.lookup("//localhost:7000/FlightDataAccess");}

 catch(Exception e) { System.out.println(e); }
 return null;
 }

 /**
 * Helper method that obtains a reference to the SearchDialogI
object

 */
 private SearchDialogI obtainSearchDialog() {
 try{ return (SearchDialogI)
 Namespace.lookup("//localhost:9000/SearchDialog");}
 catch(Exception e) { System.out.println(e); }
 return null;
 }

 /**
 * Invoked at the client to trigger a flight search.
 */
 public void searchForFlight(FlightQueryI flightQuery) {
 // move to the server
 Object[] params = {flightQuery};

 - 630 -

 try{ Agent.of(this).moveTo("//localhost:7000",
 "atServerForFlightSearch",
params);}

 catch(Exception e) { System.out.println(e); }
 }

 /**
 * Invoked at the client to trigger the creation of
 * a reservation.
 */
 public void createReservation(ReservationI reservation) {
 // move to the server
 Object[] params = {reservation};
 try{ Agent.of(this).moveTo("//localhost:7000",
 "atServerToCreateReservation",
params);}

 catch(Exception e) { System.out.println(e); }
 }

 /**
 * Invoked at the client to trigger the cancellation of
 * a reservation.
 */
 public void cancelReservation(ReservationI reservation) {
 // move to the server

 Object[] params = {reservation};
 try{ Agent.of(this).moveTo("//localhost:7000",
 "atServerToCancelReservation",
params);}

 catch(Exception e) { System.out.println(e); }
 }

 /**
 * Invoked at the client to trigger a reservation search.
 */
 public void searchForReservation(ReservationQueryI query) {
 // move to the server
 Object[] params = {query};
 try{ Agent.of(this).moveTo("//localhost:7000",
 "atServerForReservationSearch",
params);}

 catch(Exception e) { System.out.println(e); }
 }
 }

The initial scenario (step 1) involves the invocation of the searchForFlight() method
by the client. Once invoked, this method triggers step 2 (that of moving to the server).
The server move is triggered by invoking the moveTo() method available from the
active agent object. Once the agent object arrives at the server, the Voyager environment
invokes the atServerForFlightSearch() method, which is step 3 in our scenario.
This method first obtains a reference to the server by invoking the private helper method
obtainFlightDataAccess() , which binds to the existing FlightDataAccessI
object. Using the FlightDataAccess object, step 4 (where the flight search occurs) is
executed, and the agent object moves back to the client, which is step 5. One thing to

 - 631 -

note here is that the reference to the FlightDataAccess object is only in scope during
the method invocation; it’s not assigned to a class variable. The reason for doing this is
that all objects assigned to a class variable travel with the agent when it moves. Because
we want to keep all business functionality at the server, this object reference is not
maintained. Finally, the agent arrives back at the client, and we begin step 6. In this step,
the flightSearchResults() method is invoked, and the agent now executes step 7
by obtaining a reference to the SearchDialog object that spawned it and then passing
it the results of the search. Like the atServerForFlightSearch() method,
flightSearchResults() uses a private helper method to obtain a reference to the
SearchDialog object.

So far, 99 percent of the agent code has been covered. What’s still missing, as you
probably noticed when studying the FlightSearcher class and the
FlightSearcherI interface, are the various classes used to model data in the system.
These entity classes allow items such as a reservation, flight, and location to be modeled
in actual code. Because their implementations are simply composed of getter and setter
methods that provide access to private member variables, the classes themselves are
not contained in this chapter. We do, however, provide the interfaces here and all code
on the CD-ROM.

 Starting at the smallest unit represented by the system, Listing 35.6 contains the SeatI

interface, used to model a unique seat on a plane.

 LISTING 35.6 THE SeatI INTERFACE

 public interface SeatI {
 public int getSeatNumber();
 }

The next unit exposed by the system is the LocationI interface, contained in Listing
35.7. This entity represents a physical airport and exposes methods used to retrieve its
globally unique airport code, city, state, and country.

 LISTING 35.7 THE LocationI INTERFACE

 public interface LocationI {
 public String getAirportCode();
 public String getCityName();
 public String getStateName();
 public String getCountry();
 }

Moving along in the system, we encounter the FlightI interface, modeled in Listing
35.8. This interface exposes methods that detail the departure location and date/time,
along with the destination location and date/time with a collection of available seats.

 LISTING 35.8 THE FlightI INTERFACE

 import java.util.*;

 public interface FlightI {
 public LocationI getDepartureLocation();
 public LocationI getDestinationLocation();
 public Date getDepartureDateTime();
 public Date getDestinationDateTime();
 public SeatI[] getAvailableSeats(();

 - 632 -

 }

Past the level of flight information is the PassengerDemographicsI interface,
contained in Listing 35.9. It exposes information about a unique passenger and includes
mailing and billing information, along with items such as the frequent-flyer number.

 LISTING 35.9 THE PassengerDemographicsI INTERFACE

 public interface PassengerDemographicsI {
 public String getMethodOfPayment();
 public String getFirstName();
 public String getLastName();
 public String getCreditCardNumber();
 public String getFrequentFlyerNumber();
 public String getBillingAddress1();
 public String getBillingAddress2();
 public String getBillingCity();
 public String getBillingState();
 public String getBillingZip();
 public String getBillingCountry();
 public String getMailingAddress1();
 public String getMailingAddress2();
 public String getMailingCity();
 public String getMailingState();
 public String getMailingZip();
 public String getMailingCountry();
 }

 The last physical entity modeled by the system is the ReservationI interface,

contained in Listing 35.10. This item references a target flight, seat, and passenger.

 LISTING 35.10 THE ReservationI INTERFACE

 public interface ReservationI {
 public FlightI getFlight();
 public SeatI getSeat();
 public PassengerDemographicsI getDemographics();
 }

In addition to the entities used to represent data in the system, two additional entities are
used to model queries. As a general rule, when designing systems, I personally feel that
it’s better to aggregate all query parameters into a holder class and pass an instance of
that class around, instead of creating query methods that accept a collection of query
parameters in the signature. The reason for this is that if a new parameter is added, a
new version of the query object needs to be created; however, the new version will be
back-ward-compatible with older versions of the server. In this manner, there’s much less
room for error if updated code is not fully distributed in an enterprise.

 The first query entity is the FlightQueryI interface, contained in Listing 35.11. This

entity is used to collect data needed when searching for a flight.

 LISTING 35.11 THE FlightQueryI INTERFACE

 import java.util.*;

 - 633 -

 public interface FlightQueryI {
 public LocationI getDepartureLocation();
 public LocationI getDestinationLocation();
 public Date getDepartureDateTime();
 public Date getDestinationDateTime();

 public void setDepartureLocation(LocationI departureLocation);
 public void setDestinationLocation(LocationI
destinationLocation);

 public void setDepartureDateTime(Date date);
 public void setDestinationDateTime(Date date);
 }

Listing 35.12 contains the other query entity used in the system—the
ReservationQueryI interface. This entity is used to aggregate information used when
searching for a reservation.

 LISTING 35.12 THE ReservationQueryI INTERFACE

 public interface ReservationQueryI {
 public FlightI getFlight();
 public SeatI getSeat();
 public String getFirstName();
 public String getLastName();
 public String getCreditCardNumber();

 public void setFlight(FlightI flight);
 public void setSeat(SeatI seat);
 public void setFirstName(String sFirstName);
 public void setLastName(String sLastName);
 public void setCreditCardNumber(String sCreditCardNumber);
 }

At this point in the chapter, you’ve covered all code that forms both the client and the agent
middleware. Assuming that the agent code makes sense to you, you’re very much over the
hump. If any questions do remain, don’t worry too much. The whole concept of mobile code
is a touch hard to grasp at first. Once the client is developed and the application is running,
everything will make perfect sense.

 THE AIRLINE RESERVATION CLIENT

The final step of implementing the Airline Reservation System is to develop the client
software. As with the CORBA example, this implementation only interacts with the parts
of the server that allow for searching of available flights. The main purpose of the
exercise is to demonstrate how a collection of use-cases are realized using Voyager—
filling the pages with lines and lines of GUI code would just confuse matters.

The client application contains two classes, FlightClient and SearchDialog, and
also exposes SearchDialog’s functionality via the SearchDialogI interface. The
FlightClient class contains a main() method and also builds the initial user
interface. It exposes a list where available flights are displayed and also a button. When
clicked, the button causes the display of a SearchDialog object. The SearchDialog
object collects search parameters, passes them into a FlightSearcher agent, and
sends that agent off to the server. The SearchDialog object then waits for a response,
which when received causes a results display back at the FlightClient object, and
finally closes itself.

 - 634 -

 Taking a sequential tour through the application, we’ll begin with Listing 35.13, which

contains the FlightClient class.

 LISTING 35.13 THE FlightClient CLASS

 import java.awt.*;
 import java.awt.event.*;
 import com.objectspace.voyager.*;

 public class FlightClient extends Frame implements ActionListener
{

 private FlightSearcherI _flightSearcher;
 private List _lstResults;
 private Button _btnSearch;

 public FlightClient() {
 super("Search For A Flight");

 try{ // start up voyager
 Voyager.startup("//localhost:9000");
 // create a FlightSearcherI object
 _flightSearcher = (FlightSearcherI)Factory.
 create("FlightSearcher",
"//localhost:9000/searcher");

 }
 catch(Exception e) {}

 setLayout(new BorderLayout(10,10));
 add(_btnSearch = new Button("Search"),
BorderLayout.NORTH);

 add(_lstResults = new List(), BorderLayout.CENTER);
 _btnSearch.addActionListener(this);
 }

 class ComponentWithLabel extends Panel {
 public ComponentWithLabel(String sLabelText,
 Component component) {
 setLayout(new BorderLayout());
 add(new Label(sLabelText), BorderLayout.NORTH);

 add(component, BorderLayout.CENTER);
 }
 }

 public void actionPerformed(ActionEvent ae) {
 try{ doSearch(); }
 catch(Exception e) { System.out.println(e); }
 }

 private void doSearch() throws Exception {
 // ask the Voyager environment to create a SearchDialogI
object

 Object[] params = {this, _flightSearcher, _lstResults};

 - 635 -

 SearchDialogI dialog;
 dialog = (SearchDialogI)Factory.create("SearchDialog",
 params,
"//localhost:9000/SearchDialog");

 dialog.pack();
 dialog.setVisible(true);
 }

 public static void main(String[] args)) {
 FlightClient client = new FlightClient();
 client.setSize(300,300);
 client.setVisible(true);
 }
 }

As you examine Listing 35.13, focus your attention on the code between the try-catch
block in the constructor. This code first creates a new Voyager environment at port 9000
and then asks the environment to create a FlightSearcher object at that port. The
FlightSearcher object is assigned to a member variable and is then passed into the
SearchDialog object when constructed.

Moving your focus to the bottom of the FlightClient class, spend some time with the
doSearch() method. This method, invoked when the search button is clicked, causes
the display of a SearchDialog object. Due to the fact that the SearchDialog object
will be the target of a callback from the agent when it returns from the server, it must
expose its functionality through an interface and also be constructed via Voyager. In this
method, notice the overloaded version of Factory.create() that’s used. This method
accepts an array of objects that are passed into the constructor of the object being
constructed. The SearchDialogI interface, exposed by this class, is contained in
Listing 35.14. As you look over this interface, note that in addition to exposing the
flightSearchResults() callback method, we also expose the pack() and
setVisible() methods inherited from the java.awt.Dialog class (and its
parents). These methods must also be exposed via the interface to allow for controlling
display issues without the expensive task of casting the object as a Dialog object.

 LISTING 35.14 THE SearchDialogI INTERFACE

 public interface SearchDialogI {
 public void flightSearchResults(FlightI[] flights));
 public void pack();
 public void setVisible(boolean how);
 }

The final entity in the client application is the SearchDialog class, contained in Listing
35.15. As you look over this listing, don’t let yourself get bogged down in any of the UI
code. You should concentrate your attention on the executeSearch() and
flightSearchResults() methods. The executeSearch() method is invoked
when the user enters search criteria and clicks the Search button. The
flightSearchResults() method is invoked by the agent when it returns from its
search mission.

 LISTING 35.15 THE SearchDialog CLASS

 import java.awt.*;
 import java.awt.event.*;

 - 636 -

 public class SearchDialog extends Dialog
 implements ActionListener, SearchDialogI
{

 private FlightSearcherI _flightSearcher;
 private LocationOptionsPanel _departureLocation;
 private LocationOptionsPanel _destinationLocation;
 private DateTimeOptionsPanel _departureDateTime;
 private DateTimeOptionsPanel _destinationDateTime;
 private List _lstResults;
 private Button _btnSearch;

 public SearchDialog(Frame f,
 FlightSearcherI flightSearcher,
 List lstResults) {
 super(f, "Search For A Flight", true);

 _flightSearcher = flightSearcher;
 _lstResults = lstResults;

 // build the UI
 _departureLocation = new LocationOptionsPanel();
 _destinationLocation = new LocationOptionsPanel();
 _departureDateTime = new DateTimeOptionsPanel();
 _destinationDateTime = new DateTimeOptionsPanel();

 setLayout(new GridLayout(3,2,10,10));
 add(new ComponentWithLabel("Departure Location",
 _departureLocation));
 add(new ComponentWithLabel("Destination Location",
 _destinationLocation));
 add(new ComponentWithLabel("Departure Date / Time",
 _departureDateTime));
 add(new ComponentWithLabel("Destination Date / Time",
 _destinationDateTime));

 Panel pnlButtonHolder = new Panel();
 pnlButtonHolder.setLayout(new FlowLayout(FlowLayout.RIGHT));
 pnlButtonHolder.add(_btnSearch = new Button("Execute
Search"));

 add(new Label(""));
 add(pnlButtonHolder);

 _btnSearch.addActionListener(this);
 }

 class ComponentWithLabel extends Panel {
 public ComponentWithLabel(String sLabelText,
 Component component) {
 setLayout(new BorderLayout());
 add(new Label(sLabelText), BorderLayout.NORTH);
 add(component, BorderLayout.CENTER);

 - 637 -

 }
 }

 public void actionPerformed(ActionEvent ae) {
 executeSearch();
 }

 /**
 * Invoked when the Agent returns with the results
 * of our search.
 */
 public void flightSearchResults(FlightI[] foundSet)) {
 int iLength = foundSet.length;
 for(int i=0; i<iLength; i++) {

 _lstResults.addItem("Flight: "+
 foundSet[i].getDepartureLocation()
 .getAirportCode()+
 " "> "+
 foundSet[i].getDestinationLocation()
 .getAirportCode());

 }

 // close the frame

 setVisible(false);
 }

 /**
 * Starts a search
 */
 private void executeSearch() {
 // create the query object

 FlightQueryI query = new FlightQuery(

_departureLocation.getAsLocationObject(),

_destinationLocation.getAsLocationObject()

 _departureDateTime.getAsDateObject(),

_destinationDateTime.getAsDateObject());

 // ask the agent to perform the search
 _flightSearcher.searchForFlight(query);
 // return immediately, and wait for the results
 }
 }

PUTTING IT ALL TOGETHER

 Now that you’ve fully covered the code in Voyager implementation of the reservation

application, you’re ready to fire it up and see it in action. First, install the Voyager

 - 638 -

software contained on the CD-ROM and then enter in and compile all the code in Listings
35.1 to 35.15. Now start the server by typing

 java FlightServer

 and start the client by typing

 java FlightClient

 Figure 35.2 shows the application running with the results of a flight search being

displayed.

 Figure 35.2: The reservation application in action.

FROM HERE

This chapter completed the series of exercises that implement the airline reservation
application use-cases. In studying these chapters, you should note the manner in which
all solved a common problem using very different technologies. As you go out into the
world and start building applications, remember the material covered in these chapters—
it will help you when making technology decisions. If you haven’t already read them, or
you need to refresh your memory, the following chapters supplement what was covered
in this chapter:

 • Chapter 6, “The Airline Reservation System Model”

 • Chapter 14, “Socket-Based Implementation of the Airline Reservation System”

 • Chapter 16, “RMI-Based Implementation of the Airline Reservation System”

 • Chapter 19, “Servlet-Based Implementation of the Airline Reservation System”

 • Chapter 26, “CORBA-Based Implementation of the Airline Reservation System”

 • Chapter 34, “Voyager Agent Technology”

Part VIII: Summary and References

 Chapter List

 Chapter 36: Summary

 Appendix A: Useful Resources

 Appendix B: Quick References

 Appendix C: How to Get the Most from the CD-ROM

 - 639 -

 Chapter 36: Summary

 Overview

Wait. Before you do anything, stop, reach your left hand up in the air, and pat yourself on
the back. If you’re so inclined, pick out a great bottle of wine, decant it, and let it breath as
you finish this chapter.

At this point, you’ve learned just about everything that this book has to offer. The 35
chapters that precede this summary detail everything you need to know in order to get up
and running with distributed objects. Of course, in order to be completely ready to rock
and roll, you’ll need to actually start coding your own applications, but you’re now ready
to take this last step. This last chapter takes a look at the topics addressed in earlier
chapters and then discusses additional steps you can take to further your understanding
of distributed objects. The rest of the book following this chapter serves as a listing for
further study and also as a reference of popular entities you’ll encounter in your
development plan.

If you flipped to this chapter before actually reading the rest of the book, do feel free to
finish up the chapter. Don’t worry, I don’t give away the fact that the butler did it, but I do
provide an overview of the material covered in this book. If you are standing in Borders
Books and Music reading this, trying to decide whether you should buy the book, you’ve
landed on a great decision-making chapter.

BOOK FOCUS

This book imparts knowledge in two categories: The majority of the book is spent
covering the details behind actual distributed object technologies; this coverage focuses
on topics such as servlets, threading, RMI, sockets, DCOM, CORBA, and agents. An
additional section of the book, however, focuses on application design and imparts
knowledge needed when using your technology skills to build actual applications.

The technology chapters each take on either an entire technology or an aspect of a
single technology, discuss it, and then implement some sample applications using the
technology. The examples usually draw on material covered in other chapters but
primarily focus on the material introduced in the target chapter itself. In situations where
the target chapter builds on material presented in earlier chapters, the dependencies are
called out, and you’re pointed to the chapter that covers the material in the dependency.
In general, much of this book does not require you to read every chapter in order;
however, some dependencies are needed to cover advanced material.

Moving on to the chapters that focus on application design, some chapters discuss topics
in application design, and other chapters show how to turn a requirements document into
an actual application.

 CHAPTER OVERVIEW

Starting out our summary, this section takes you on a sequential tour of all the chapters
in the book. The tour stops at each chapter and discusses the material presented in it.
After the chapter overview, we spend time discussing each distributed object technology
and then leave you with one last coding exercise:

•

Distributed Object Computing. Chapter 1 introduces the concept of distributed objects
and talks about the roles they play in modern applications. This chapter goes on to
discuss the technologies that aid in distributed object communication, as well as the
manner in which distributed object technologies evolve. Finally, the chapter discusses
this book’s target audience.

 - 640 -

•

TCP/IP Networking. The TCP/IP protocol is the foundation upon which the Internet
exists. Virtually all messages that travel from one location to another do so using some
form of TCP/IP. Chapter 2 explains the fundamentals of TCP/IP networking, including
its architecture, packets, protocols, IP numbers, host names, routing, network
services, firewalls, and tools.

•

Object-Oriented Analysis and Design. A key goal of this book is to impart technical
knowledge as well as the skills necessary to design enterprise systems. This chapter
introduces a concept called Object-Oriented Analysis and Design (or OOAD). OOAD is
a skill used to design the features of an application and also the individual components
and classes that form the system. Chapter 3 presents this skill-set using mainly the
Unified Modeling Language (UML), which is an OMG standard for modeling all parts of
the application design process. Some additional time is spent on OOAD tools such as
CRC cards.

•

Distributed Architectures. Chapter 4 first takes you on a tour of various computer
architectures, starting with mainframes and then moving to modern distributed
systems. The chapter then details the different architectures underlying distributed
computing systems. Topics include peer-to-peer systems, Web-server–based
systems, two-tier architectures, three-tier architectures, middleware, object buses, and
mobile agents.

•

Design Patterns. A design pattern is a tool that allows for formally describing how a
system is designed. Software architects use them to capture knowledge so that it can
be leveraged into new applications. Chapter 5 first introduces the concept of a design
pattern and then details the following patterns: Factory, Callback, Observer, and
Shared Instance.

•

The Airline Reservation System Model. As part of the push to cover application design,
this book takes a piece of software, develops a formal model for it, and then
implements that model using a variety of different technologies. As the model is
implemented using each technology, the pros and cons of that technology become
apparent. Chapter 6 first covers the UML use-case notation and then uses it to model
an airline reservation system. Various other chapters in this book implement the use-
cases.

•

Java Overview. This book, Java Distributed Objects, is an advanced technology book,
but it does target both Java developers moving to distributed objects as well as
developers working with distributed objects in other languages who want to move to
Java. Executed on the goal of attracting developers from other languages, Chapter 7
presents an introduction to the Java language. It’s not meant for someone new to
programming, but it does provide the necessary information to get the experienced
programmer coding in Java. This coverage of the Java language continues in
Chapters 8 and 9.

•

Java Threads. A thread in software terms allows for more than one task to appear to
execute at the same instance. The technology functions by breaking each task into a
unique thread and rapidly changing the thread that’s currently accessing the
processor. From the end user’s perspective, it appears that all threads are active at
the same time. Chapter 8 introduces threads and then covers how to use them in a
Java environment.

•

Java Serialization and Beans. Completing our exploration of Java, Chapter 9
introduces two advanced concepts: object serialization and JavaBeans. Object
serialization allows for an object, along with its state, to be saved to disk. JavaBeans is
a component model for Java that helps to increase reusability. Even if you’ve been
working with Java for some time now, the material in this chapter may be new to you
and should be studied because it’s utilized in additional chapters.

 • Security. Java as a language wears many hats, but the one that seems to draw the

 - 641 -

most press is when it’s used to create applets. An applet is a chunk of Java code that
executes within the confines of a Web browser. Part of the reason applets garner
press is the fact that they greatly increase the functionality of various Web pages. The
other reason applets receive press is, unfortunately, not always positive. In today’s
business world, where massive amounts of money are made and lost based only on
information, there are huge efforts launched every day that attempt to steal this
information. In light of the value placed on information, there are very valid fears
introduced when users allow random executables to run inside their Web browsers
(and therefore on their machines). Chapter 10 discusses steps taken by the Java
virtual machine (JVM) to ensure that applets cannot have negative effects on a local
machine. It also discusses the options open to the developer that allow for data
security.

•

Relational Databases and Structured Query Language (SQL). Relational databases
are the primary storage medium that house digital information all over the world.
Structured Query Language (SQL) is a language used to access and maintain this
information. Chapter 11 presents these technologies, including coverage of what a
database is and how SQL is formed.

•

Java Database Connectivity (JDBC). JDBC is a technology that allows Java
applications to access information stored in relational databases. The technology
consists of a collection of Java classes and also the SQL covered in Chapter 11.
Chapter 12 first covers the technology and then steps you through a collection of
applications that use JDBC to access information stored in a database.

•

Sockets. Chapter 2 covers the TCP/IP protocol and all its components. In Chapter 13,
we look at how sockets enable point-to-point TCP/IP communication between two
applications. In covering sockets, time is spent on the classes in the java.net
package and also on the manner in which you can write your own classes.

•

Socket-Based Implementation of the Airline Reservation System. Chapter 6 presents a
collection of use-cases that collectively model a piece of software used to create and
manage airline reservations. In Chapter 14, we leverage the coverage of sockets in
Chapter 13 along with the use-cases from Chapter 6 to implement the software in a
socket-based environment.

•

Remote Method Invocation (RMI). Remote Method Invocation (RMI) is a Javaonly
technology that allows for distributed object communication. The technology allows
objects existing on one machine to locate objects located on other machines and
invoke methods on them. Chapter 15 covers RMI and provides some examples
needed to use it in your applications.

•

RMI-Based Implementation of the Airline Reservation System. Chapter 16 presents
the second implementation of the airline reservation system use-cases. In this chapter,
the reservation software is implemented using RMI, which is covered in Chapter 15.

•

Java Help, Java Mail, and Other Java APIs. The Java Development Kit (JDK) is a
constantly evolving collection of classes that are available to Java developers directly
from Sun. On its initial release, the JDK received praise for its inclusion of items such
as threads and networking but did receive negative comments due to its exclusion of
many other important items. Since that time, third-party vendors have filled some
holes, but Sun has also added massive functionality to the JDK itself. Chapter 17 looks
in detail at the Java Help and Java Mail API, which are two of the newest additions to
the JDK. The chapter also spends time with a collection of other APIs that will enter
the JDK over the next year.

•

Servlets and Common Gateway Interface (CGI). The Common Gateway Interface
(CGI) is a technology that allows Web pages to communicate with an executable
running back on the Web server. Servlets are an extension of this technology that
allow for CGI-like functionality in an all-Java environment. Chapter 18 introduces both
technologies and then shows you how to interact with the Java Web Server from Sun

 - 642 -

to create custom servlets.

•

Servlet-Based Implementation of the Airline Reservation System. Continuing our
exercise of building the airline reservation software detailed in Chapter 6, Chapter 19
uses servlets to build the software.

•

Distributed Component Object Model (DCOM). DCOM, along with ActiveX, represent
Microsoft’s answer to distributed computing. Chapter 20 provides an overview of
DCOM and its importance, a brief architecture review, code examples, and a
comparison of DCOM to other technologies. It also includes a few code exercises to
drive home the concepts in the architecture section.

•

CORBA Overview. Chapter 21 begins the core section of the book, which
concentrates on the Common Object Request Broker Architecture (CORBA). CORBA
is a language-independent, platform-independent technology that allows objects on
various machines to all communicate with each other. In Chapter 21, we look at the
Object Management Group (OMG), the Object Management Architecture (OMA), and
the general process through which a CORBA specification comes into existence.

•

CORBA Architecture. Chapter 22 expands on the introduction of CORBA in Chapter
21 by discussing the key components that form the OMA. This includes the Object
Request Broker (ORB), the Interface Definition Language (IDL), CORBAservices,
CORBAfacilities, and CORBAdomains.

•

Survey of CORBA ORBs. The ORB is a key OMA component because it’s the
software that allows for actual distributed object communication. In Chapter 23, we
look at ORB offerings from a variety of vendors and also at various CORBA tools.

•

A CORBA Server. Although many of the CORBA chapters implement their own clients
and servers, they each function to demonstrate the specific topic addressed in their
chapter. Chapter 24 breaks away from this mold and uses the skills you developed in
earlier chapters to build an advanced CORBA server.

 • A CORBA Client. As a follow-up to Chapter 24, Chapter 25 builds a CORBA client that

exploits the functionality present in the previously developed server.

•

CORBA-Based Implementation of the Airline Reservation System. Continuing the
reservation software exercise, Chapter 26 implements the use-cases from Chapter 6
using CORBA.

•

Quick CORBA: CORBA Without IDL. Caffeine, a tool-set/technology from Inprise and
Netscape, allows for the development of CORBA applications without writing a single
line of the IDL. Chapter 27 explores this technology and then builds a collection of
CORBA applications that are free of IDL.

•

The Portable Object Adapter (POA). In a slight deviation from the book’s coverage of
existing technologies, Chapter 28 covers the Portable Object Adapter, which will enter
the CORBA universe as part of the CORBA 3.0 specification. The POA is a
replacement for the BOA (covered in Chapter 22), which allows for increased
portability of applications between ORBs.

•

Internet Inter-ORB Protocol (IIOP). The Internet Inter-ORB Protocol (IIOP) is a TCP/IP
implementation of the General Inter-ORB Protocol (GIOP), and it allows for TCP/IP-
based communication between ORBs from different vendors. Chapter 29 covers the
fundamentals of the GIOP and IIOP and then builds a multi-ORB application.

•

The Naming Service. The CORBA Naming Service enables CORBA objects to find
other CORBA objects located at various points in the enterprise. It also allows for
objects to be placed in categories and searched for by function. Chapter 30 covers the
Naming Service and then builds an application using it.

 - 643 -

•

The Event Service. The CORBA Event Service allows for sending and receiving of
events in an abstract fashion. Chapter 31 covers this service and then builds an
application using it.

•

Interface Repository, Dynamic Invocation, Introspection, and Reflection. In earlier
chapters on CORBA, all remote operation invocations were static, meaning that they
were scripted at compile time. Chapter 32 presents the Interface Repository (IR),
Dynamic Interface Invocation (DII), introspection, and reflection—four technologies
that allow for a dynamic invocation script.

•

Other CORBA Facilities and Services. Chapter 22 introduces CORBAservices and
CORBAfacilities—two areas that allow for the addition of functionality into the OMA.
Then in Chapter 30 we detail the Naming Service, and in Chapter 31 we detail the
Event Service. Chapter 33 continues this exploration by looking at the following
CORBAservices: Life Cycle Service, Externalization Service, Concurrency Service,
and Query Service.

•

Voyager Agent Technology. Agents are autonomous blobs of code, meaning that they
have the ability to travel from machine to machine while retaining their state. To
execute, agents need a host environment. Chapter 34 covers the Voyager host
environment. In addition, coverage of agents in general is presented, as are the
various services provided to the agent developer by the Voyager environment.

•

Voyager-Based Implementation of the Airline Reservation System. Chapter 35
completes the reservation system implementation exercise by implementing the
software using the Voyager agent environment.

 DISTRIBUTED OBJECT COMPARISONS

As the previous chapter summaries show, this book covers a lot of technologies that
allow for communication between applications running on different machines. Some of
the technologies are fully object oriented, and others (such as sockets) simply allow basic
bytes to be transferred. As the airline reservation system exercises show, each of the
technologies serve a different purpose, meaning that no one technology is always a
“best” solution. In this section, we take a look at each technology independently and then
compare them all.

 Sockets

As stated earlier, sockets allow for a stream of bytes to be transferred from one
application to another. A common situation in which they are used involves Web servers.
A Web server listens for incoming traffic at a certain port (usually 80) and opens up a new
socket for each incoming request. Upon opening up a new socket, the Web server first
reads in the header information, searches for the requested page, and sends back a
response.

Sockets are useful in that they’re easily implemented using nothing more than what
comes with a 1.02 version of the JDK, but they suffer the downside of being based on
byte transfers. You cannot simply invoke a remote method using socket communication;
instead, you must encode the request in a predetermined format and send that
information over the wire. On the receiving end, the message must be decoded and
acted on. The format of the message in transit must be agreed on by both parties in
advance, and any errors in formatting the message will not be caught at compile time. In
addition, although not a problem when the client and server are written in Java, there can
be byte-ordering problems if the client and server are developed in different languages.
Virtually every language and operating system supports sockets, but different
architectures order bytes differently. If you’re sending data from a big-endian–based
machine to a littleendian–based machine, a piece of translation software will need to be
placed at one end.

 - 644 -

 RMI

Remote Method Invocation (RMI) is a Java-only technology that enables distributed
communication between objects located on different machines. It’s similar to DCOM and
CORBA in that you have the ability to invoke actual methods on live objects, but it differs
in terms of the semantics used to send those messages.

When invoking a method that passes an object as a parameter, RMI uses serialization
and therefore passes that object by value. Once an object travels from one application to
another application, changes made by the remote application are not necessarily visible
to the local application.

RMI sports a number of pros and cons, and it’s used by a large number of industrial-
strength applications. One of the major upsides is that in addition to working very well,
it’s freely included with every 1.1 and above version of the JDK. This means that
developers can utilize RMI in their applications without a major capital investment
(something that’s often a barrier to entry). Although availability is a major upside to RMI,
lack of multilanguage availability is a major downside. RMI facilitates communication only
between applications written in Java. If you need to perform an integration with a legacy
application, which only sports a C API, you’ll really have to bend over backwards to get
everything working properly.

 Servlets

Servlets exist at a level slightly higher than sockets but lower than RMI, DCOM, and
Voyager. As earlier stated, servlets allow communication between Web pages and a
Java executable at the Web server. The servlet is passed messages as either HTTP GET
or POST arguments, takes some action based on their value, and generates a response
HTML page. In many situations, servlets are used to provide an HTML front-end to a
CORBA server. The HTML client sends commands to a servlet; then the servlet invokes
an appropriate action on the CORBA server and sends back a response to the client.

In general, servlet technology does not expose many shortcomings. At the client side,
there are the obvious weaknesses of HTML, but these weaknesses are negated by the
fact that applets can interface with servlets, as well as the fact that DHTML allows for
advanced client building. The Servlet API is feature rich and very easy to use.

 DCOM

DCOM is Microsoft’s answer to distributed object computing; it allows for stateless
objects to communicate with each other across hardware boundaries. Although the
DCOM specification allows it to be “cross platform” and “cross language,” the current
implementation does not fully take advantage of this. Language support includes C++,
Ada, and Java (only when using the Microsoft JVM), and platform support currently only
includes Windows 9x and NT. Periodic announcements from Microsoft state that UNIX
and Macintosh ports of DCOM are imminent, but they have yet to be released.

DCOM has the major upside of being a Microsoft development and integrated into most
current Microsoft applications. Having both COM (the nondistributed version) and DCOM
as integral parts of applications such as Microsoft Office allows their APIs to be leveraged
into your applications. Another upside often argued in favor of DCOM is that, unlike
CORBA, it’s controlled by a single vendor and is therefore likely to be updated faster
because it doesn’t need to serve the needs of more than one company. In reality, this has
not always been true; the OMG brings specifications to market very fast and is an
example of a well-run vendor consortium. Finally, DCOM, like RMI, ships for free with all
versions of Windows NT and 98 (a free upgrade is available for Windows 95). The lack of
an initial investment may draw organizations to use DCOM.

 - 645 -

Of course, the upside of DCOM being Microsoft centric is easily turned into a downside if
you’re developing for anything other than Windows. In addition to a lack of support
beyond Windows, DCOM suffers in that all remote objects are stateless. A client object
obtains a pointer to a remote interface but is not guaranteed that that pointer will
reference the same object from one method invocation to the next. Finally, DCOM does
not support exporting inheritance. Internally, your objects can utilize inheritance, but the
interface they expose cannot.

 CORBA

The Common Object Request Broker Architecture (CORBA) is not only a language-and
platform-independent specification for distributed object computing but has
implementations that fully realize this specification. The ORB component of the CORBA
architecture enables communication between objects, and commercial ORBs are
available for all variants of UNIX, Windows, and virtually every other operating system
you can think of. Language support runs the gamut—from C, C++, Java, COBOL, Ada,
all the way to Lisp. With IIOP allowing for communication between ORBs, it’s possible
that your Java objects running on a Macintosh can invoke operations on Lisp objects
running on a VMS mainframe.

Obviously, the biggest upside of CORBA is the shear breadth of language and platform
support it offers. Even if your CORBA application is only going to run initially on Windows
and be written in Java, you can take great comfort in knowing that it can easily be opened
up to alternate languages and platforms. CORBA also fully supports stateful objects, and
it even enhances languages such as COBOL by introducing an object model. In addition,
a vendor consortium consisting of virtually every major vendor in existence furthers all
CORBA specifications. Having all the major players behind a specification ensures that it
never becomes too slanted toward the needs of any single vendor. In addition, all
CORBAdomains are furthered with the aid of individuals actually developing software for
that domain. Aspects of CORBA that pertain to healthcare, for example, are furthered by
vendors actually working in the healthcare environment.

Depending on your organization, a potential downside of CORBA might be the cost of an
ORB. Depending on the ORB vendor, pricing starts around $1,000 and goes much
higher. The fact that an ORB represents a significant investment may, however, be an
upside for some organizations. Usually when purchasing software such as an ORB, you
enter into an agreement with the vendor that includes support. Receiving support for free
products such as DCOM or RMI often involves retaining a consultant, and you’re faced
with not having a direct line to the vendor.

 Voyager

Arriving finally at Voyager, we find ourselves looking at a technology that differs greatly
from other technologies examined thus far. The Voyager agent environment allows for
code to physically travel from one machine to another, carrying with it all state values
generated at the initial machine. Mobile code is really something very impressive. Now,
instead of executing a series of database transactions from a machine far away from the
database server, your objects can travel to the server and execute those transactions.
Voyager also includes support for CORBA and DCOM integration, which makes it a great
add-on to an existing environment.

Voyager’s largest upside is the fact that it allows for code to be completely mobile. With
networks getting more and more congested every day, a lot of time is saved when you
move to the objects you’re communicating with instead of communicating across a
network. In addition, the Voyager environment adds a collection of services including
transaction, security, and persistence that can save significant coding time. Finally, the
base Voyager configuration is absolutely free, removing any cost-based barriers to entry.
Also add-on packages and support contracts may be purchased. One major downside is
that, like RMI, Voyager only works with Java applications. Integration of native code is
possible through the native interfaces provided by the JVM, but the native portion of the
code is not mobile at all.

 - 646 -

 Group Overview

Summing up our discussion on the various distributed technologies, Table 36.1 highlights
their platform and language support, along with their upsides and downsides. Looking at
Table 36.1, note the column titled “Method Based?”. An affirmative answer in this column
means that the technology in question allows for distributed communication using actual
method invocations. A negative answer indicates that some other mechanism (byte or
string transfers) is used.

Table 36.1 COMPARISON OF DISTRIBUTED COMPUTING TECHNOLOGIES

Techn
ology

Platforms

Languages

Upsides

Downsides

Method
Based?

Sockets

Virtually
every
operating
system.

Virtually all
languages.

Easily
implemented in
Java using
nothing more
than a 1.02
version of the
JDK. Also, most
other languages
and operating
systems
support out of
the box.

Socket transfers happen
at a very low level, and
all communication
consists of exchanging a
series of bytes.
Mixedincludeenvironment
applications must take
into account big-endian/
little-endian concerns.

No

RMI

Any
with a
1.1
version
of the
JDK

Java

Included for free
with every 1.1
JDK.

Only supports
Java. All objects
are passed by
value.

Yes

Servlets

Any
with
a
1.02

Java

Easy method for
adding
functionality to
Web pages. Also,
it’s an easy
method for
adding an front
end to an existing
CORBA or
DCOM
application.

No major
downsides
exposed by
servlets, but HTML
has limitations as a
clientHTMLbuilding
language. What
should be noted is
that even though
HTML is limited as
a client tool, Java
applets can also be
used.

No version
of the JDK

DCOM

Windows
NT/95

Java
(only
when
using
the
MS
JVM),

Already
integrated into
many
applications (and
most Microsoft
ones). Ships for
free with

A Microsoft-Yes
only solution, with
support for other
platforms
promised. Fully
working versions of
DCOM for the

Yes

 - 647 -

C++,
and
Ada

Windows NT. Macintosh and
UNIX platforms
have yet to be
made available.
Only supports
stateless objects
and does not allow
inheritance to be
exported.

CORBA

Virtually
all
operating
systems.

Virtually
all
languages
have IDL
bindings;
new ones
are
always
being
added.

Supported by
virtually all
languages and
platforms in
existence, with
new ones being
added all the
time.r Gives
developers the
comfort of
knowing their
applications can
easily be made
accessible to
any platform. It’s
furthered by the
world’s largest
vendor
consortium.

ORB price Yes
may be cost
prohibitive fo some
institutions.

Yes

Voyager

Any
with a
1.1
version
of the
JDK

Java

Allows for code
mobility, which in
today’s congested
networks is a big
plus Also, the
base configuration
is completely free.
Contains a
collection of
services that help
shorten the
development
cycle.

It’s a Yes Java-
only solution. Even
if ther native code
is integrated using
what the JVM
makesr available,
that native portion
is not mobile.

Yes

CEMENTING YOUR SKILLS

With an understanding of distributed object technology tucked under your belt, you’re
really ready to go out into the world and start developing systems. What you should note,
however, is that although you understand distributed systems, only actual coding will
make everything completely clear. Appendix A, “Useful Resources,” contains a listing of
further reading that will increase your knowledge of distributed objects, and, of course,
the OMG Web site at http://www.omg.org contains up-to-date information on current
CORBA specifications.

Completing this chapter is a collection of use-cases describing a chat server. Like the
use-cases from Chapter 6, these may be implemented using any of the distributed object
technologies covered throughout this book. However, unlike the application in Chapter 6,
the implementation is totally up to you this time. Take your time; if you get stuck on
something, return to the chapter that discusses the technology and see what you can
come up with.

 - 648 -

 The Chat Server

If you’re at all like any red-blooded computer nerd, chances are you’ve wasted many
nights hanging out in some random chat room. Although psychologists seem to think that
they’re now bad for our social skills, like most things that are bad for us, chat rooms are
here to stay for quite awhile. Given that you understand the basic concepts behind a chat
room, you’ll now have the opportunity to build your own. As with earlier examples, we first
present server-side use-cases and then present client-side use-cases. If you’ve skipped
over Chapter 6, now is a good time to read it. This example uses the UML use-case
notation and the use-case outline developed in Chapter 6. Figure 36.1 contains a UML
picture of the server-side use-cases, and the following sections detail each use-case in
the figure.

 Figure 36.1: Server-side usecases for the chat room application.

 Actor Connects to Chat Server

 Actor. Chat client software.

 Desired Outcome. The actor has a connection to the server, and the server uniquely

identifies the actor by user name.

 Entered When. The actor attaches itself to server entry point and requests a login using a

unique user name.

 Finished When. The actor is either connected and registered in the system or is rejected

if the user name is already in use.

Description. Connecting to the chat server is the first step in establishing client life cycle.
The connection persists until the point when the actor disconnects from the server.
During the connection process, the client specifies a desired user name and is allowed in
if, and only if, the specified user name is not already in use. If the user name is in use,
the actor is notified of this situation and has the opportunity to specify an alternate one.

 Data Needed. User name of actor.

 Actor Posts Message

 Actor. Chat client software.

 Desired Outcome. A message, along with the user name of the supplier, is stored in the

server’s collection of messages.

 Entered When. The actor initiates a “post message” request.

 - 649 -

 Finished When. The message is stored in the server’s internal collection of messages.

Description. Posting a message is one of the principle functions of the chat environment.
Because a conversation consists of a collection of messages, it’s critical that a
mechanism exists to enter messages into the server.

 Data Needed. The message to be posted and the user name of the poster.

 Comments. To facilitate the “actor requests new messages” use-case, all messages are

timestamped at the point that they are stored internally.

 Actor Requests New Messages

 Actor. Chat client software.

Desired Outcome. The actor is passed the collection of messages posted to the server
since its last request. If, however, this collection is greater than 50, only the 50 most
recent comments are returned.

 Entered When. The actor initiates an “obtain conversation” request.

 Finished When. The collection of messages is returned to the actor.

Description. Although posting messages is a critical function of the chat environment,
receiving messages posted by others is obviously also quite critical. Along with the user
name of the poster, this function supplies the actor with the collection of messages that
were posted since the last request.

 Data Needed. User name of the requestor.

Comments. Because the actor’s time zone may differ from the server’s time zone, and
because most computer clocks are not 100-percent accurate, having the actor send the
date and time of its last request is not dependable. For this reason, the server keeps an
internal log of the last time that an actor issued a request and uses this timestamp to
decide which messages to return.

 Actor Disconnects from Chat Server

 Actor. Chat client software.

 Desired Outcome. The actor is logged out of the system and the associated user name is

once again available for general consumption.

 Entered When. The actor issues a disconnect request.

 Finished When. The actor is disconnected from the server.

Description. Logging out of the system represents the last step in the lifecycle of the
actor. Once logged out, the user name associated with the actor becomes available
again.

 Data Needed. The user name of the actor logging out.

 The Chat Client

 - 650 -

Moving from the server back end, we arrive at the client. Figure 36.2 contains the UML
model describing the client use-cases. Looking at Figure 36.2, you’ll note some very
obvious similarities to Figure 36.1. Generally, because the client serves to access
features exposed by the server, the use-case names will be the same. What you’ll note in
reading the following use-cases, however, is that their descriptions are rather different.
Server use-cases deal with topics such as data and user management, whereas client
use-cases deal with topics such as usability.

Although you could stop and build the server at this point, it’s generally a good idea to
possess an understanding of the client before going forward. Take the time to read this
next section and then dive right into the client development effort.

 Figure 36.2: Client-side usecases for the chat room application.

 Actor Connects to Chat Server

 Actor. Human user of the chat client software.

 Desired Outcome. The actor is logged into the system, and the UI is ready to begin

displaying messages.

 Entered When. The actor enters desired user name into UI and interacts with an element

that triggers the login.

 Finished When. The server accepts the login, and the UI is ready to begin displaying

messages.

Description. The first task that an actor performs when beginning his interaction with the
chat server is to supply a user name and attempt a login. If the specified user name is
already in use, the server will reject the request. If, however, the user name is not in use,
the server will allow access, and the client UI will change to begin accepting messages.

 Data Needed. The user name of the actor logging in and the location of the server.

 Actor Posts Message

 Actor. Human user of the chat client software.

 Desired Outcome. A message is generated by the actor and posted to the server.

 Entered When. The actor enters a desired message into the UI and interacts with an

element that triggers the post.

 Finished When. The server accepts the post.

 - 651 -

Description. Once connected to the server, the actor either joins the active conversation
or instantiates a new one. In order for the actor to add his information to the conversation,
the “post message” function is utilized.

 Data Needed. The message to be posted, along with the actor’s user name and the

location of the server.

 Actor Requests New Messages

 Actor. Human user of the chat client software.

 Desired Outcome. New messages are displayed in the client UI.

 Entered When. A predetermined period of time passes, and the client software requests

the new messages.

 Finished When. The messages are displayed in the client UI.

Description. Completing the ability of the chat environment to allow for conversations to
happen, the UI must display continual updates on the messages being posted by other
users. Executing on this need, the client software periodically queries the server for
updates and displays them onscreen.

 Data Needed. The user name of the actor.

 Actor Disconnects from Chat Server

 Actor. Human user of the chat client software.

 Desired Outcome. The actor is logged out of the system, and the UI is ready to again log

in.

 Entered When. The actor interacts with the “log out” UI element.

 Finished When. The server has been notified of the actor’s desire, and the client UI is

prepared to accept a login.

 Description. To complete the chat life cycle, the actor must log out of the server. Once

this is done, the client UI is again prepared to accept a login request.

 Data Needed. The user name of the actor logging out.

 Implementation Issues

The use-cases in the previous few pages fully describe a chat system that you should now
attempt to implement. Depending on the impending tasks you may be facing in your job,
you may have a desired distributed object technology to use for implementation, or you
may want to use all of them individually. As you go through this exercise, pay attention to
the decisions you make, ensuring that you do not let decisions made for one technology
influence decisions made for another. Once you’re done, open up your resume and tack on
a few new skills!

 NEXT STEPS

 Well, that’s just about it for this book. Congratulations, again, on learning everything

 - 652 -

we’ve presented. The following appendixes present reference and resource material that
you’ll find useful during your development.

 Appendix A: Useful Resources

 Overview

 This appendix lists references that offer additional information of interest to developers of

distributed object systems.

TCP/IP NETWORKING

 Hunt, Craig. TCP/IP Network Administration, 2nd. Ed. O’Reilly & Associates, Inc.

Sebastopol, CA. 1998. ISBN 1565923227.

 comp.protocols.tcp-ip Newsgroup FAQs.

 http://www.faqs.org/faqs/by-newsgroup /comp/comp.protocols.tcp-
ip.html .

 comp.os.ms-windows.networking.tcp-ip Newsgroup FAQs.
 http://www.faqs.org/faqs/ by-newsgroup/comp/comp.os.mswindows
.networking.tcp-ip.html

OBJECT-ORIENTED ANALYSIS AND DESIGN

 Booch, Grady. Object-Oriented Analysis and Design with Applications, 2nd. Ed.

Benjamin/Cummings. Redwood City, CA., 1994. ISBN 0805353402.

 Fowler, Martin and Scott, Kendall. UML Distilled: Applying the Standard Object Modeling

Language. Addison-Wesley. Reading, MA. 1997. ISBN 0201325632.

 Gilbert, Stephen and Bill McCarty. Object-Oriented Design in Java. Waite Group Press.

Corte Madera, CA. 1998. ISBN 1571691340.

 Rumbaugh, James, et al. Object-Oriented Modeling and Design. Prentice Hall.

Englewood Cliffs, NJ. 1991. ISBN 0136298419.

 Riel, Arthur. Object-Oriented Design Heuristics. Addison-Wesley. Reading, MA. 1996.

ISBN 020163385X.

 Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented

Software. Prentice Hall. Englewood Cliffs, NJ. 1990. ISBN 0136298257.

 comp.object newsgroup FAQs.

 http://www.faqs.org/faqs/ bynewsgroup/comp/comp.object.html

 DISTRIBUTED COMPUTING

 Farley, Jim. Java Distributed Computing. O’Reilly & Associates, Inc. Sebastopol, CA.

1998. ISBN 1565922069.

 Orfali, Robert, Dan Harkey, and Jeri Edwards. The Essential Client/Server Survival

Guide, 2nd. Ed. John Wiley & Sons, Inc. New York. 1996. ISBN 0471153257.

 - 653 -

 Orfali, Robert, Dan Harkey, and Jeri Edwards. The Essential Distributed Objects Survival
Guide. John Wiley & Sons, Inc. New York. 1996. ISBN 0471129933.

 Parallel and Distributed Computing Resources.

 http://www.scs.carleton. ca/~csgs/resources/pdc.html

 DESIGN PATTERNS

 Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley. Reading, MA. 1995. ISBN 0201633612.

 Pree, Wolfgang. Design Patterns for Object-Oriented Software Development.

McGrawHill. New York. 1996. ISBN 0201422948.

 Patterns Home Page. http://hillside.net/patterns/ .

 Portland Pattern Repository. http://c2.com/cgi-bin/wiki .

 JAVA

 Arnold, Ken and James Gosling. The Java Programming Language Specification.

Addison-Wesley. Reading, MA. 1996. ISBN 0201310066.

 Chan, Patrick and Rosanna Lee. The Java Class Libraries, Vol. 2: java.applet, java.awt,

java.beans, 2nd. Ed. Addison-Wesley. Reading, MA. 1998. ISBN 0201310031.

Chan, Patrick, Rosanna Lee, and Douglas Kramer. The Java Class Libraries Vol. 1:
java.io, java.lang, java.math, java.net, java.text, java.util, 2nd. Ed. Addison-Wesley.
Reading, MA. 1998. ISBN 0201310023.

 Flanagan, David. Java Examples in a Nutshell, 2nd. Ed. O’Reilly & Associates, Inc.

Sebastopol, CA. 1997. ISBN 1565923715.

 Flanagan, David. Java in a Nutshell, 2nd. Ed. O’Reilly & Associates, Inc. Sebastopol, CA.

1997. ISBN 156592262X.

 Gilbert, Stephen and Bill McCarty. Java 1.2 Interactive Course. Waite Group Press. Corte

Madera, CA. 1999. ISBN 1571691499.

 Gilbert, Stephen and Bill McCarty. Object-Oriented Programming in Java. Waite Group

Press. Corte Madera, CA. 1997. ISBN 1571690867.

 Gosling, James, Bill Joy, and Guy Steele. The Java Language Specification.

AddisonWesley. Reading, MA. 1996. ISBN 0201634511.

 Jensen, Cary, Blake Stone, and Loy Anderson. JBuilder Essentials. Osborne/McGraw-

Hill. Berkeley, CA. 1998. ISBN 0078822238.

 Archive of the Advanced Java Mailing List.

 http://metadigest.xcf. berkeley.edu/archive/advanced-java/

 Café au Lait. http://sunsite.unc.edu/javafaq

 comp.lang.java.programmer Newsgroup FAQs.

 - 654 -

 http://www.faqs.org/faqs/by-newsgroup
/comp/comp.lang.java.programmer.html

 The Java Woman Page. http://www.taxon.demon.nl/JW/jwides.html

 The Javasoft Web site. http://sun.javasoft.com

THREAD PROGRAMMING

 Lea, Doug. Concurrent Programming in Java: Design Principles and Patterns.

AddisonWesley. Reading, MA. 1997. ISBN 0201695812.

 Oaks, Scott and Henry Wong. Java Threads. O’Reilly & Associates, Inc. Sebastopol, CA.

1997. ISBN 1565922166.

 comp.programming.threads Newsgroup FAQs.

 http://www.faqs.org/faqs/by-newsgroup/
comp/comp.programming.threads.html

 JAVA BEANS

 Englander, Robert. Developing Java Beans. O’Reilly & Associates, Inc. Sebastopol, CA.

1997. ISBN 1565922891.

 Sridharan, Prashant. Java Beans Developer’s Resource. Prentice Hall PTR. Upper

Saddle River, NJ. 1997. ISBN 0138873089.

 comp.lang.java.programmer Newsgroup FAQs.

 http://www.faqs.org/faqs/by-newsgroup
/comp/comp.lang.java.programmer.html

SECURITY

 McGraw, Gary and Edward D. Felten. Java Security: Hostile Applets, Holes, and

Antidotes. John Wiley & Sons, Inc. New York. 1997. ISBN 047117842X.

 comp.security Newsgroup FAQs.

 http://www.faqs.org/faqs/bynewsgroup/ comp/comp.security.html

RELATIONAL DATABASE TECHNOLOGY

Bowman, Judith S., Sandra L. Emerson, and Marcy Darnovsky. The Practical SQL
Handbook: Using Structured Query Language, 3rd. Ed. Addison-Wesley Developers
Press. Reading, MA. 1996. ISBN 0201447878.

 Celko, Joe. Joe Celko’s SQL Puzzles and Answers. Morgan Kaufmann. San Francisco.

1997. ISBN 1558604537.

 Date, C.J. and Hugh Darwen. A Guide to the SQL Standard. Addison-Wesley. Reading,

MA. 1997. ISBN 0201964260.

 Date, C.J. An Introduction to Database Systems, 6th. Ed. Addison-Wesley. Reading, MA.

 - 655 -

1995. ISBN 020154329X.

 McCarty, Bill. SQL Database Programming with Java. The Coriolis Group Books.

Scottsdale, AZ. 1997. ISBN 1576101762.

 Patel, Pratik and Karl Moss. Java Database Programming with JDBC. The Coriolis Group

Books. Scottsdale, AZ. 1996. ISBN 1576101592.

 Reese, George. Database Programming with JDBC and Java. O’Reilly & Associates, Inc.

Sebastopol, CA. 1997. ISBN 1565922700.

 Solomon, David, Ray Rankins, et al. Microsoft SQL Server 6.5 Unleashed, 2nd. Ed.

Sams Publishing. Indianapolis, IN. 1996. ISBN 0672309564.

 Sridharan, Prashant. Advanced Java Networking. Prentice Hall PTR. Upper Saddle

River, NJ. 1997. ISBN 0137491360.

 comp.databases Newsgroup FAQs.

 http://www.faqs.org/faqs/bynewsgroup /comp/comp.databases.html

 SQL Standards Home Page. http://www.jcc.com/sql_stnd.html

JAVA SERVLETS AND COMMON GATEWAY INTERFACE

 Gundavaram, Shishir. CGI Programming on the World Wide Web. O’Reilly & Associates,

Inc. Sebastopol, CA. 1996. ISBN 1565921682.

 Musciano, Chuck and Bill Kennedy. HTML: The Definitive Guide. O’Reilly & Associates,

Inc. Sebastopol, CA. 1998. ISBN 1565924924.

 comp.infosystems.www.authoring.cgi Newsgroup FAQs.

 http://www.faqs.org/faqs /by-newsgroup/comp/comp.infosystems.
www.authoring.cgi.html

 Servlet Central. http://www.servletcentral.com/

DISTRIBUTED COMPONENT OBJECT MODEL

 Microsoft DCOM Technologies Page. http://www.microsoft.com/com/dcom.asp

CORBA

Lewis, Geoffrey, Steven Barber, and Ellen Siegel. Programming with Java IDL:
Developing Web Applications with Java and CORBA. John Wiley & Sons, Inc. New York.
1998. ISBN 0471247979.

 Mowbray, Thomas J. and Raphael C. Malveau. CORBA Design Patterns. John Wiley &

Sons, Inc. New York. 1997. ISBN 0471158828.

 Orfali, Robert and Dan Harkey. Client/Server Programming with Java and CORBA, 2nd.

Ed. John Wiley & Sons, Inc. New York. 1998. ISBN 047124578X.

 Orfali, Robert, Dan Harkey, and Jeri Edwards. Instant CORBA. John Wiley & Sons, Inc.

New York. 1997. ISBN 0471183334.

 - 656 -

Otte, Randy, Paul Patrick, and Mark Roy. Understanding CORBA: The Common Object
Request Broker Architecture. Prentice Hall PTR. Upper Saddle River, NJ. 1996. ISBN
0134598849.

 Pope, Alan. The CORBA Reference Guide: Understanding the Common Object Request

Broker Architecture. Addison-Wesley. Reading, MA. 1997. ISBN 0201633868.

 Rosenberger, Jeremy. Sams Teach Yourself CORBA in 14 Days. Sams Publishing.

Indianapolis, IN. 1998. ISBN 0672312085.

 Siegel, Jon, et al. CORBA Fundamentals and Programming. John Wiley & Sons, Inc.

New York. 1996. ISBN 0471121487.

 Vogel, Andreas and Keith Duddy. Java Programming with CORBA, 2nd. Ed. John Wiley

& Sons, Inc. New York. 1998. ISBN 0471247650.

 comp.object.corba Newsgroup FAQs.

 http://www.faqs.org/faqs/bynewsgroup /comp/comp.object.corba.html

 A List of CORBA Resources on the Web.

 http://euler.mcs.utulsa.edu/~dangi/CORBA.html

 The Object Management Group Web site. http://www.omg.org/ .

 Webopedia’s CORBA page.

 http://webopedia.internet.com /TERM/C/Common_Object_Request_
Broker_Architec ture.html

 SOFTWARE AGENTS

Knapik, Michael and Jay Johnson. Developing Intelligent Agents for Distributed Systems:
Exploring Architecture, Technologies, and Applications. McGraw-Hill. New York. 1997.
ISBN 0070350116.

 The Software Agents FAQ.
http://www.ee.mcgill.ca/~belmarc/agent_faq.html

 The Software Agents Mailing List. http://www.cs.umbc.edu/agentlist/

Appendix B: Quick References

 Overview

This appendix provides a handy summary of the Java and Visibroker classes that are
most important to distributed systems developers. We briefly describe each class and
show its main fields, constructors, and methods. The purpose of this appendix is to
enable you to quickly recall the names of methods and the arguments needed by
constructors and methods. For a complete list of classes or a complete description and
explanation of each class, you should consult the Java Developer’s Kit documentation
and the Visibroker for Java documentation.

 JAVA.NET.DATAGRAMPACKET

 - 657 -

The DatagramPacket class represents a UDP packet. The class encapsulates a fixed-
length byte array that acts as an input/output buffer. The getData method returns the
contents of the buffer. The first constructor is typically used to construct a
DatagramPacket for receiving the result of a call to the DatagramSocket.receive
method. For an outgoing packet, use the setAddress method to specify the address to
which the packet is to be sent, or you can use the second constructor, which lets you
specify the destination address.

 public final class DatagramPacket extends Object
 // Public Constructors
 public DatagramPacket(byte ibuf [], int ilength)
 public DatagramPacket(byte ibuf [],int ilength,
 InetAddress iaddr, int iport)
 // Public Methods
 public synchronized InetAddress getAddress()
 public synchronized byte[] getData(()
 public synchronized int getLength()
 public synchronized int getPort()
 public synchronized void setAddress(
 InetAddress iaddr)
 public synchronized void setData(byte ibuf [])
 public synchronized void setLength(int ilength)
 public synchronized void setPort(int iport)

 JAVA.NET.DATAGRAMSOCKET

The DatagramSocket class lets your program receive UDP packets. If you use the
constructor that specifies a port, that port is used; otherwise, a port is dynamically
assigned. The send method transmits a UDP packet encapsulated as a
DatagramPacket . The receive method blocks until a UDP packet is received,
placing the data in the specified DatagramPacket .

 public class DatagramSocket extends Object
 // Public Constructors
 public DatagramSocket() throws SocketException
 public DatagramSocket(int port)
 throws SocketException
 public DatagramSocket(int port , InetAddress iaddr)
 throws SocketException
 // Public Methods
 public void close()
 public InetAddress getLocalAddress()
 public int getLocalPort()
 public synchronized int getSoTimeout()
 throws SocketException
 public synchronized void receive(DatagramPacket p)
 public void send(DatagramPacket p) throws IOException
 throws IOException
 public synchronized void setSoTimeout(int timeout)
 throws SocketException

 JAVA.NET.HTTPURLCONNECTION

 - 658 -

 The HttpURLConnection class represents a URLConnection via the HTTP protocol.
Most of the useful methods are inherited from the base class, URLConnection .

 public abstract class HttpURLConnection
 extends URLConnection
 // Public Fields
 // Response Codes
 public static final int HTTP_ACCEPTED
 public static final int HTTP_BAD_GATEWAY
 public static final int HTTP_BAD_METHOD
 public static final int HTTP_BAD_REQUEST
 public static final int HTTP_CLIENT_TIMEOUT
 public static final int HTTP_CONFLICT
 public static final int HTTP_CREATED
 public static final int HTTP_ENTITY_TOO_LARGE
 public static final int HTTP_FORBIDDEN
 public static final int HTTP_GATEWAY_TIMEOUT
 public static final int HTTP_GONE
 public static final int HTTP_INTERNAL_ERROR
 public static final int HTTP_LENGTH_REQUIRED
 public static final int HTTP_MOVED_PERM
 public static final int HTTP_MOVED_TEMP
 public static final int HTTP_MULT_CHOICE
 public static final int HTTP_NO_CONTENT
 public static final int HTTP_NOT_ACCEPTABLE
 public static final int HTTP_NOT_AUTHORITATIVE
 public static final int HTTP_NOT_FOUND
 public static final int HTTP_NOT_MODIFIED
 public static final int HTTP_OK
 public static final int HTTP_PARTIAL
 public static final int HTTP_PAYMENT_REQUIRED
 public static final int HTTP_PRECON_FAILED
 public static final int HTTP_PROXY_AUTHpublic
 public static final int HTTP_REQ_TOO_LONG
 public static final int HTTP_RESET
 public static final int HTTP_SEE_OTHER
 public static final int HTTP_SERVER_ERROR
 public static final int HTTP_UNAUTHORIZED
 public static final int HTTP_UNAVAILABLE
 public static final int HTTP_UNSUPPORTED_TYPE
 public static final int HTTP_USE_PROXY
 public static final int HTTP_VERSION
 // Protected Constructor
 protected HttpURLConnection(URL u)
 // Public Class Methods
 public static void setFollowRedirects(boolean set)
 public static boolean getFollowRedirects()
 // Public Methods
 public abstract void disconnect()
 public String getRequestMethod()
 public int getResponseCode() throws IOException
 public String getResponseMessage() throws IOException

 - 659 -

 public void setRequestMethod(String method)
 throws ProtocolException
 public abstract boolean usingProxy()

 JAVA.NET.INETADDRESS

The InetAddress class represents a TCP/IP network address. The class has no
constructor method. Instead, it has several static methods that return an InetAddress
instance (or instances): getByName, getAllByName, and getLocalHost. The
getAllByName method returns all TCP/IP addresses by which the specified host is
known.

 public final class InetAddress extends Object
 implements Serializable
 // Public Class Methods
 public static InetAddress[] getAllByName((String host)
 throws UnknownHostException
 public static InetAddress getByName(String host)
 throws UnknownHostException
 public static InetAddress getLocalHost()
 throws UnknownHostException
 // Public Methods
 public boolean equals(Object obj)
 public byte[] getAddress(()
 public String getHostAddress()
 public String getHostName()
 public int hashCode()
 public boolean isMulticastAddress()
 public String toString()

 JAVA.NET.SERVERSOCKET

The ServerSocket class represents a socket that waits for an incoming client request
and then establishes a socket for communicating with the client. The accept method
blocks until it receives an incoming request and then returns a Socket you can use for
communicating with the client. The close method closes the socket and frees
associated resources. The setSoTimeout method specifies an input/output timeout
interval; the ServerSocket instances throw an IOException if an input/output
operation fails to complete within the specified interval.

 public class ServerSocket extends Object
 // Public Constructors
 public ServerSocket(int port) throws IOException
 public ServerSocket(int port , int backlog)
 throws IOException
 public ServerSocket(int port , int backlog,
 InetAddress bindAddr) throws IOException
 // Public Class Methods
 public static synchronized void setSocketFactory(
 SocketImplFactory fac) throws IOException
 // Protected Method
 protected final void implAccept(Socket s)
 throws IOException

 - 660 -

 // Public Methods
 public Socket accept() throws IOException
 public void close() throws IOException
 public InetAddress getInetAddress()
 public int getLocalPort()
 public synchronized int getSoTimeout()
 throws IOException
 public synchronized void setSoTimeout(int timeout)
 throws SocketException
 public String toString()

 JAVA.NET.SOCKET

The Socket class represents a TCP/IP socket. The constructor methods create the
socket and bind it to the specified host and port. The getInputStream and
getOutputStream methods return streams you can use for socket input and output.
The setSoTimeout method sets a timeout interval for socket input/output operations.
The close method closes the socket and frees associated resources.

 public class Socket extends Object
 // Protected Constructors
 protected Socket()
 protected Socket(SocketImpl impl)
 throws SocketException
 // Public Constructor
 public Socket(String host , int port)
 throws UnknownHostException, IOException
 public Socket(InetAddress address,
 int port) throws IOException
 public Socket(String host , int port ,
 InetAddress localAddr, int localPort)
 throws IOException
 public Socket(InetAddress address,
 int port , InetAddress localAddr,
 int localPort) throws IOException
 // Public Class Method
 public static synchronized void setSocketImplFactory(
 SocketImplFactory fac) throws IOException
 // Public Methods
 public synchronized void close() throws IOException
 public InetAddress getInetAddress()
 public InetAddress getLocalAddress()
 public int getLocalPort()
 public int getPort()
 public InputStream getInputStream() throws IOException
 public OutputStream getOutputStream() throws IOException
 public int getSoLinger() throws SocketException
 public synchronized int getSoTimeout() throws SocketException
 public boolean getTcpNoDelay() throws SocketException
 public void setSoLinger(boolean on,
 int val) throws SocketException
 public synchronized void setSoTimeout(int timeout)
 throws SocketException

 - 661 -

 public void setTcpNoDelay(boolean on)
 throws SocketException
 public String toString()

 JAVA.NET.URL

 The URL class represents a Uniform Resource Locator (URL) used to identify World

Wide Web documents. A URL may have as many as four parts:

 protocol://host :port /file

Here, host can be an IP number of a fully qualified host name; file can be a path or
path and file. The openStream returns an InputStream that contains the contents of
the specified document. The getContent method returns an object that encapsulates
the document contents; if an appropriate content handler cannot be found, the method
throws an IOException.

 public final class URL extends Object
 implements Serializable
 // Public Constructors
 public URL(String protocol, String host ,
 int port , String file)
 throws MalformedURLException
 public URL(String protocol, String host ,
 String file) throws MalformedURLException
 public URL(String spec) throws MalformedURLException
 public URL(URL context, String spec)
 throws MalformedURLException
 // Public Class Method
 public static synchronized void
 setURLStreamHandlerFactory(
 URLStreamHandlerFactory fac)
 // Protected Method
 protected void set(String protocol,
 String host , int port , String file ,
 String ref)
 // Public Methods
 public boolean equals(Object obj)
 public final Object getContent()
 throws IOException
 public String getFile()
 public String getHost()
 public int getPort()
 public String getProtocol()
 public String getRef()
 public int hashCode()
 public URLConnection openConnection()
 throws IOException
 public final InputStream openStream()
 throws IOException
 public boolean sameFile(URL other)
 public String toExternalForm()
 public String toString()

 - 662 -

 JAVA.NET.URLCONNECTION

The URLConnection class represents a network connection to a document specified by
a URL. The URL.openConnection method returns an instance of URLConnection .
The connect method opens the connection. The getInputStream method returns an
InputStream associated with the document contents, and the getOutputStream
method returns an OutputStream associated with the document; if the underlying
protocol does not support the operation, either method throws an IOException. The
getContent method returns an object that encapsulates the document content; if an
appropriate handler cannot be found, the method throws an IOException. The various
methods that set URLConnection options must be called before the connection is
opened.

 public abstract class URLConnection extends Object
 // Protected Fields
 protected boolean allowUserInteraction
 protected boolean connected
 protected boolean doInput
 protected boolean doOutput
 protected long ifModifiedSince
 protected URL url
 protected boolean useCaches
 // Protected Class Method
 protected static String guessContentTypeFromName(
 String fname)
 // Public Class Methods
 public static boolean
 getDefaultAllowUserInteraction()
 public static String getDefaultRequestProperty(
 String key)
 public static FileNameMap getFileNameMap()
 public static String guessContentTypeFromStream(
 InputStream is) throws IOException
 public static synchronized void
 setContentHandlerFactory(ContentHandlerFactory fac)
 public static void
 setDefaultAllowUserInteraction(
 boolean defaultallowuserinteraction)
 public static void setDefaultRequestProperty(
 String key, String value)
 public static void setFileNameMap(FileNameMap map)
 // Protected Method
 protected URLConnection(URL url)
 // Public Methods
 public abstract void connect() throws IOException
 public boolean getAllowUserInteraction()
 public Object getContent() throws IOException
 public String getContentEncoding()
 public int getContentLength()
 public String getContentType()
 public long getDate()
 public boolean getDefaultUseCaches()

 - 663 -

 public boolean getDoInput()
 public boolean getDoOutput()
 public long getExpiration()
 public String getHeaderField(int n)
 public String getHeaderField(String name)
 public long getHeaderFieldDate(String name ,
 long default)
 public int getHeaderFieldInt(String name,
 public String getHeaderFieldKey(int n)
 public long getIfModifiedSince()
 public InputStream getInputStream()
 throws IOException
 public long getLastModified()
 public OutputStream getOutputStream()
 throws IOException
 public String getRequestProperty(String key)
 public URL getURL()
 public boolean getUseCaches()
 public void setAllowUserInteraction(
 boolean allowuserinteraction)
 public void setDefaultUseCaches(
 boolean defaultusecaches)
 public void setDoInput(boolean doinput)
 public void setDoOutput(boolean dooutput)
 public void setIfModifiedSince(
 long ifmodifiedsince)
 public void setRequestProperty(String key)
 public void setUseCaches(boolean usecaches)
 public String toString()

 JAVA.RMI.LOGSTREAM

The LogStream class encapsulates a log stream to which RMI clients and servers can
post messages. The getDefaultStream returns a LogStream instance associated
with the given name, or it returns the default RMI log stream if the specified name does
not correspond to an established log. The name specifies a logging level: SILENT,
BRIEF, or VERBOSE. The write method posts a new log entry.

 public class LogStream extends PrintStream
 // Public Fields
 public static final int BRIEF
 public static final int SILENT
 public static final int VERBOSE
 // Public Class Methods
 public static synchronized PrintStream
 getDefaultStream()
 public static LogStream log(String name)
 public static int parseLevel(String s)
 public static synchronized void setDefaultStream(
 PrintStream newDefault)
 // Public Methods
 public synchronized OutputStream getOutputStream()
 public synchronized void setOutputStream(

 - 664 -

 OutputStream out)
 public String toString()
 public void write(int b)
 public void write(byte b[], int off, int len)

 JAVA.RMI.NAMING

The Naming class provides access to the RMI registry process. The bind method
associates a symbolic name with a reference to a remote object. The rebind method
performs the same operation, but it first deletes any existing association. The unbind
method deletes the specified association. The lookup method returns a reference to
the remote object associated with the specified symbolic name. The list method
returns the symbolic name of each registered remote object.

 public final class Naming extends Object
 // Public Class Methods
 public static void bind(String name, Remote obj)
 throws AlreadyBoundException,
 MalformedURLException, UnknownHostException,
 RemoteException
 public static String[] list((String name)
 throws RemoteException, MalformedURLException,
 UnknownHostException
 public static Remote lookup(String name)
 throws NotBoundException, MalformedURLException,
 UnknownHostException, RemoteException
 public static void rebind(String name , Remote obj)
 throws RemoteException, MalformedURLException,
 UnknownHostException
 public static void unbind(String name)
 throws RemoteException, NotBoundException,
 MalformedURLException, UnknownHostException

 JAVA.RMI.REMOTE

 This empty interface is used to identify a remote object. Every remote object must

implement this interface.

 JAVA.RMI.REMOTEOBJECT

The RemoteObject class provides appropriate remote semantics for three methods of
the Object class: hashCode, :, and: toString. Classes used to instantiate remote
objects should generally extend this class. A class that doesn’t extend RemoteObject
is responsible for implementing appropriate behavior for these three methods.

 public abstract class RemoteObject extends Object
 implements Remote, Serializable
 // Protected Fields
 protected transient RemoteRef ref
 // Protected Methods
 protected RemoteObject()
 protected RemoteObject(RemoteRef newref)
 // Public Methods

 - 665 -

 public int hashCode()
 public boolean equals(Object obj)
 public String toString()

 JAVA.RMI.REMOTESERVER

 The RemoteServer class is an abstract class that specifies methods common to all

RMI servers. The concrete class UnicastRemoteObject extends RemoteServer.

 public abstract class RemoteServer extends RemoteObject
 // Protected Constructor
 protected RemoteServer()
 // Public Class Methods
 public static String getClientHost()
 throws ServerNotActiveException
 public static PrintStream getLog()
 public static void setLog(OutputStream out)

 JAVA.RMI.RMICLASSLOADER

 The RMIClassLoader class provides a facility for loading classes over the network.

The system property java.rmi.server.codebase specifies the default URL.

 public class RMIClassLoader extends Object
 // Public Class Methods
 public static Object getSecurityContext(
 ClassLoader loader)
 public static Class loadClass(String name)
 throws MalformedURLException, ClassNotFoundException
 public static Class loadClass(URL codebase,
 String name) throws MalformedURLException,
 ClassNotFoundException

 JAVA.RMI.SECURITYMANAGER

The SecurityManager class defines default security policies for RMI applications. You
can subclass SecurityManager to establish different policies. The
System.setSecurityManager method installs a SecurityManager . Without a
SecurityManager , RMI will load classes only from the local CLASSPATH.

 public class RMISecurityManager
 extends SecurityManager
 // Public Constructor
 public RMISecurityManager()
 // Public Methods
 // Java Runtime Resources and Operations
 public synchronized void checkAccess(Thread t)
 public synchronized void checkAccess(ThreadGroup g)
 public void checkAwtEventQueueAccess()
 public synchronized void checkCreateClassLoader()
 public synchronized void checkExec(String cmd)
 public synchronized void checkExit(int status)
 public synchronized void checkLink(String lib)

 - 666 -

 public void checkMemberAccess(Class c, int which)
 public synchronized void checkPackageAccess(
 String pkg)
 public synchronized void checkPackageDefinition(
 String pkg)
 public void checkPrintJobAccess()
 public synchronized void checkPropertiesAccess()
 public synchronized void checkPropertyAccess(
 String key)
 public void checkSecurityAccess(String provider)
 public synchronized void checkSetFactory()
 public void checkSystemClipboardAccess()
 public synchronized boolean checkTopLevelWindow(
 Object window)
 // File Operations and Resources
 public void checkDelete(String file)
 public synchronized void checkRead(String file)
 public synchronized void checkRead(FileDescriptor fd)
 public void checkRead(String file , Object content)
 throws RMISecurityException
 public synchronized void checkWrite(String file)
 public synchronized void checkWrite(FileDescriptor fd)
 // Socket Resources and Operations
 public synchronized void checkAccept(String host ,
 int port)
 public synchronized void checkConnect(String host ,
 int port , object context)
 public void checkConnect(String host , int port)
 public synchronized void checkListen(int port)
 public void checkMulticast(InetAddress maddr)
 public void checkMulticast(InetAddress maddr,
 byte ttl)
 // Other
 public Object getSecurityContext()

 JAVA.RMI.UNICASTREMOTEOBJECT

The UnicastRemoteObject class is a concrete subclass of RemoteServer and
RemoteObject. Generally, classes used to represent remote objects extend
UnicastRemoteObject . However, you can use the static exportObject method to
export any object. Such an object is responsible for providing appropriate remote
semantics for equals, hashCode, and toString.

 public class UnicastRemoteObject extends RemoteServer
 // Public Constructor
 protected UnicastRemoteObject() throws RemoteException
 // Public Class Method
 public static RemoteStub exportObject(Remote obj)
 throws RemoteException
 // Public Method
 public Object clone() throws CloneNotSupportedException

 JAVA.SQL.CONNECTION

 - 667 -

A Connection interface represents a database session. The Driver.connect
method returns an object that implements the Connection interface. SQL queries and
updates are executed within the context of a Connection, using the Statement object
returned by the createStatement method. By default, autocommit is enabled. If you
disable autocommit by invoking setAutoCommit with an argument value of false,
your changes must be followed by a call to commit; otherwise, they will be lost. The
rollback method discards pending database changes.

The setTransactionIsolation method lets you specify the desired level of
protection against database anomalies; a given database may not support one or more
levels. The getMetaData method returns an object that encapsulates comprehensive
information describing the structure and capabilities of the database. The getWarnings
method returns the next instance of SQLWarning posted against the Connection; the
clearWarnings method discards pending warnings. The close method ends the
database session and frees associated resources. The prepareStatement method
creates a preparedStatement object that can efficiently execute a SQL statement
multiple times; the prepareCall method creates a CallableStatement that
accesses a stored database procedure.

 public interface Connection
 // Public Fields
 public static final int TRANSACTION_NONE
 public static final int TRANSACTION_READ_COMMITTED
 public static final int TRANSACTION_READ_UNCOMMITTED
 public static final int TRANSACTION_REPEATABLE_READ
 public static final int TRANSACTION_SERIALIZABLE
 // Public Methods
 public abstract void clearWarnings()
 throws SQLException
 public abstract void close() throws SQLException
 public abstract Statement createStatement()
 public abstract void commit() throws SQLException
 throws SQLException
 public abstract boolean getAutoCommit()
 throws SQLException
 public abstract String getCatalog()
 throws SQLException
 public abstract DatabaseMetaData getMetaData()
 throws SQLException
 public abstract int getTransactionIsolation()
 throws SQLException
 public abstract SQLWarning getWarnings()
 throws SQLException
 public abstract boolean isClosed()
 throws SQLException
 public abstract boolean isReadOnly()
 throws SQLException
 public abstract String nativeSQL(String sql)
 throws SQLException
 public abstract CallableStatement prepareCall(
 String sql) throws SQLException
 public abstract PreparedStatement prepareStatement(
 String sql) throws SQLException

 - 668 -

 public abstract void rollback() throws SQLException
 public abstract void setAutoCommit(
 boolean autoCommit) throws SQLException
 public abstract void setCatalog(String catalog)
 throws SQLException
 public abstract void setReadOnly(boolean readOnly)
 throws SQLException
 public abstract void setTransactionIsolation(
 int level) throws SQLException

 JAVA.SQL.DATABASEMETADATA

The DatabaseMetaData object provides information about the structure and
capabilities of a database. A given database may not support all the methods of
DatabaseMetaData , thus throwing an SQLException if a program invokes an
unsupported method. Some methods let you specify a pattern String. In these, “%”
means match any substring of zero or more characters, and “_” means match any single
character.

 public interface DatabaseMetaData
 // Public Fields
 public static final int bestRowNotPseudo
 public static final int bestRowPseudo
 public static final int bestRowSession
 public static final int bestRowTemporary
 public static final int bestRowTransaction
 public static final int bestRowUnknown
 public static final int columnNoNulls
 public static final int columnNullable
 public static final int columnNullableUnknown
 public static final int importedKeyCascade
 public static final int importedKeyInitiallyDeferred
 public static final int importedKeyInitiallyImmediate
 public static final int importedKeyNoAction
 public static final int importedKeyNotDeferrable
 public static final int importedKeyRestrict
 public static final int importedKeySetDefault
 public static final int importedKeySetNull
 public static final int procedureColumnIn
 public static final int procedureColumnInOut
 public static final int procedureColumnOut
 public static final int procedureColumnResult
 public static final int procedureColumnReturn
 public static final int procedureColumnUnknown
 public static final int procedureNoResult
 public static final int procedureNoNulls
 public static final int procedureNullable
 public static final int procedureNullableUnknown
 public static final int procedureResultUnknown
 public static final int procedureReturnsResult
 public static final short tableIndexClustered
 public static final short tableIndexHashed
 public static final short tableIndexOther

 - 669 -

 public static final short tableIndexStatistic
 public static final int typeNoNulls
 public static final int typeNullable
 public static final int typeNullableUnknown
 public static final int typePredNone
 public static final int typePredChar
 public static final int typePredBasic
 public static final int typeSearchable
 public static final int versionColumnUnknown
 public static final int versionColumnNotPseudo
 public static final int versionColumnPseudo

 Because this class provides so many methods, it’s described in several sections:

 • Methods that describe the database engine, the database driver, and the database

session

 • Methods that describe the database structure

 • Methods that describe the database’s SQL implementation

 • Methods that describe database limits

 Methods That Describe the Database Engine, the Database

Driver, and the Database Session

These methods return such information as the database product name and version, the
driver name and version, the database URL, the database user ID used to establish the
session, the default transaction isolation level, and whether the database is writable.

 public abstract String getDatabaseProductName()
 throws SQLException
 public abstract String getDatabaseProductVersion()
 throws SQLException
 public abstract int getDefaultTransactionIsolation()
 throws SQLException
 public abstract String getDriverName()
 throws SQLException
 public abstract String getDriverVersion()
 throws SQLException
 public abstract int getDriverMajorVersion()
 public abstract int getDriverMinorVersion()
 public abstract int getMaxConnections()
 throws SQLException
 public abstract String getURL() throws SQLException
 public abstract String getUserName()
 throws SQLException
 public abstract boolean isReadOnly()

 Methods That Describe the Database Structure

 These methods return information that describes the structure of the database. Using

them, you can discover what tables the database contains, what columns each table

 - 670 -

contains, the data type of each column, and other useful information. Many accept
String arguments that specify patterns. Each method returns an instance of
ResultSet that contains the requested information. You can use the
ResultSet.getMetaData method to obtain a ResultSetMetadata object that
describes the result set. The Java Developer’s Kit documentation specifies the result set
columns and their meanings.

 public abstract ResultSet getBestRowIdentifier(
 String catalog, String schema, String table, int scope,
 boolean nullable) throws SQLException
 public abstract ResultSet getCatalogs()
 throws SQLException
 public abstract ResultSet getColumnPrivileges(
 String catalog, String schema, String table,
 String columnNamePattern) throws SQLException
 public abstract ResultSet getColumns(String catalog,
 String schemaPattern, String tableNamePattern,
 String columnNamePattern) throws SQLException
 public abstract ResultSet getCrossReference(
 String primaryCatalog, String primarySchema,
 String primaryTable, String foreignCatalog,
 String foreignSchema, String foreignTable)
 throws SQLException
 public abstract ResultSet getExportedKeys(String catalog,
 String schema, String table) throws SQLException
 public abstract ResultSet getImportedKeys(
 String catalog, String schema, String table)
 throws SQLException
 public abstract ResultSet getIndexInfo(
 String catalog, String schema, String table,
 boolean unique, boolean approximate)
 throws SQLException
 public abstract ResultSet getPrimaryKeys(
 String catalog, String schema, String table)
 throws SQLException
 public abstract ResultSet getProcedureColumns(
 String catalog, String schemaPattern,
 String procedureNamePattern, String columnNamePattern)
 throws SQLException
 public abstract ResultSet getProcedures(
 String catalog, String schemaPattern,
 String procedureNamePattern) throws SQLException
 public abstract ResultSet getSchemas()
 throws SQLException
 public abstract ResultSet getTablePrivileges(
 String catalog, String schemaPattern,
 String tableNamePattern) throws SQLException
 public abstract ResultSet getTableTypes()
 throws SQLException
 public abstract ResultSet getTables(
 String catalog, String schemaPattern,
 String tableNamePattern, String types[])
 throws SQLException

 - 671 -

 public abstract ResultSet getVersionColumns(
 String catalog, String schema, String table)
 throws SQLException

 Methods That Describe the Database’s SQL Implementation

These methods describe the SQL dialect implemented by the database. Using them, you
can discover what level of the SQL standard grammar the database supports and how
the database handles SQL constructs that are apt to be nonportable.

 public abstract boolean allProceduresAreCallable()
 throws SQLException
 public abstract boolean allTablesAreSelectable()
 throws SQLException
 public abstract boolean
 dataDefinitionCausesTransactionCommit()
 throws SQLException
 public abstract boolean
 dataDefinitionIgnoredInTransactions()
 throws SQLException
 public abstract String getCatalogSeparator()
 throws SQLException
 public abstract String getCatalogTerm()
 throws SQLException
 public abstract String getExtraNameCharacters()
 throws SQLException
 public abstract String getIdentifierQuoteString()
 throws SQLException
 public abstract String getNumericFunctions()
 throws SQLException
 public abstract String getProcedureTerm()
 throws SQLException
 public abstract String getSchemaTerm()
 throws SQLException
 public abstract String getSearchStringEscape()
 throws SQLException
 public abstract String getSQLKeywords()
 throws SQLException
 public abstract String getStringFunctions()
 throws SQLException
 public abstract String getSystemFunctions()
 throws SQLException
 public abstract String getTimeDateFunctions()
 throws SQLException
 public abstract ResultSet getTypeInfo()
 throws SQLException
 public abstract boolean isCatalogAtStart()
 throws SQLException
 public abstract boolean nullPlusNonNullIsNull()
 throws SQLException
 throws SQLException
 public abstract boolean nullsAreSortedAtEnd()
 throws SQLException

 - 672 -

 public abstract boolean nullsAreSortedAtStart()
 throws SQLException
 public abstract boolean nullsAreSortedHigh()
 throws SQLException
 public abstract boolean nullsAreSortedLow()
 throws SQLException
 public abstract boolean storesLowerCaseIdentifiers()
 throws SQLException
 public abstract boolean
 storesLowerCaseQuotedIdentifiers()
 throws SQLException
 public abstract boolean storesMixedCaseIdentifiers()
 throws SQLException
 public abstract boolean
 storesMixedCaseQuotedIdentifiers()
 throws SQLException
 public abstract boolean
 storesUpperCaseQuotedIdentifiers()
 throws SQLException
 public abstract boolean storesUpperCaseIdentifiers()
 throws SQLException
 public abstract boolean
 supportsAlterTableWithAddColumn()
 throws SQLException
 public abstract boolean
 supportsAlterTableWithDropColumn()
 throws SQLException
 public abstract boolean supportsANSI92EntryLevelSQL()
 throws SQLException
 public abstract boolean supportsANSI92FullSQL()
 throws SQLException
 public abstract boolean supportsANSI92IntermediateSQL()
 throws SQLException
 public abstract boolean
 supportsCatalogsInDataManipulation()
 throws SQLException
 public abstract boolean
 supportsCatalogsInIndexDefinitions()
 throws SQLException
 public abstract boolean
 supportsCatalogsInPrivilegeDefinitions()
 throws SQLException
 public abstract boolean
 supportsCatalogsInProcedureCalls()
 throws SQLException
 public abstract boolean
 supportsCatalogsInTableDefinitions()
 throws SQLException
 public abstract boolean supportsColumnAliasing()
 throws SQLException
 public abstract boolean supportsConvert()
 throws SQLException

 - 673 -

 public abstract boolean supportsConvert(
 int fromType, int toType) throws SQLException
 public abstract boolean supportsCoreSQLGrammar()
 throws SQLException
 public abstract boolean
 supportsCorrelatedSubqueries() throws SQLException
 public abstract boolean
 supportsDataDefinitionAndDataManipulationTransactions()
 throws SQLException
 public abstract boolean
 supportsDataManipulationTransactionsOnly()
 throws SQLException
 public abstract boolean
 supportsDifferentTableCorrelationNames()
 throws SQLException
 public abstract boolean
 supportsExpressionsInOrderBy() throws SQLException
 public abstract boolean supportsExtendedSQLGrammar()
 throws SQLException
 public abstract boolean supportsFullOuterJoins()
 throws SQLException
 public abstract boolean supportsGroupBy()
 throws SQLException
 public abstract boolean supportsGroupByBeyondSelect()
 throws SQLException
 public abstract boolean supportsGroupByUnrelated()
 throws SQLException
 public abstract boolean
 supportsIntegrityEnhancementFacility()
 throws SQLException
 public abstract boolean supportsLikeEscapeClause()
 throws SQLException
 public abstract boolean supportsLimitedOuterJoins()
 throws SQLException
 public abstract boolean supportsMinimumSQLGrammar()
 throws SQLException
 public abstract boolean supportsMixedCaseIdentifiers()
 throws SQLException
 public abstract boolean
 supportsMixedCaseQuotedIdentifiers()
 throws SQLException
 public abstract boolean supportsMultipleResultSets()
 throws SQLException
 public abstract boolean
 supportsMultipleTransactions()
 throws SQLException
 public abstract boolean supportsNonNullableColumns()
 throws SQLException
 public abstract boolean
 supportsOpenCursorsAcrossCommit()
 throws SQLException
 public abstract boolean

 - 674 -

 supportsOpenCursorsAcrossRollback()
 throws SQLException
 public abstract boolean
 supportsOpenStatementsAcrossCommit()
 throws SQLException
 public abstract boolean
 supportsOpenStatementsAcrossRollback()
 throws SQLException
 public abstract boolean
 supportsOrderByUnrelated() throws SQLException
 public abstract boolean supportsOuterJoins()
 throws SQLException
 public abstract boolean supportsPositionedDelete()
 throws SQLException
 public abstract boolean supportsPositionedUpdate()
 throws SQLException
 public abstract boolean
 supportsSchemasInDataManipulation()
 throws SQLException
 public abstract boolean
 supportsSchemasInIndexDefinitions()
 throws SQLException
 public abstract boolean
 supportsSchemasInPrivilegeDefinitions()
 throws SQLException
 public abstract boolean
 supportsSchemasInProcedureCalls()
 throws SQLException
 public abstract boolean
 supportsSchemasInTableDefinitions()
 throws SQLException
 public abstract boolean supportsSelectForUpdate()
 throws SQLException
 public abstract boolean supportsStoredProcedures()
 throws SQLException
 public abstract boolean
 supportsSubqueriesInComparisons()
 throws SQLException
 public abstract boolean supportsSubqueriesInExists()
 throws SQLException
 public abstract boolean supportsSubqueriesInIns()
 throws SQLException
 public abstract boolean
 supportsSubqueriesInQuantifieds()
 throws SQLException
 public abstract boolean
 supportsTableCorrelationNames() throws SQLException
 public abstract boolean
 supportsTransactionIsolationLevel(int level)
 throws SQLException
 public abstract boolean supportsTransactions()
 throws SQLException

 - 675 -

 public abstract boolean supportsUnion()
 throws SQLException
 public abstract boolean supportsUnionAll()
 throws SQLException
 public abstract boolean usesLocalFiles()
 throws SQLException
 public abstract boolean usesLocalFilePerTable()
 throws SQLException

 Methods That Describe Database Limits

 These methods describe maximum limits on lengths of literals, names, and other

database entities.

 public abstract boolean doesMaxRowSizeIncludeBlobs()
 throws SQLException
 public abstract int getMaxBinaryLiteralLength()
 throws SQLException
 public abstract int getMaxCatalogNameLength()
 throws SQLException
 public abstract int getMaxCharLiteralLength()
 throws SQLException
 public abstract int getMaxColumnNameLength()
 throws SQLException
 public abstract int getMaxColumnsInGroupBy()
 throws SQLException
 public abstract int getMaxColumnsInIndex()
 throws SQLException
 public abstract int getMaxColumnsInOrderBy()
 throws SQLException
 public abstract int getMaxColumnsInSelect()
 throws SQLException
 public abstract int getMaxColumnsInTable()
 throws SQLException
 public abstract int getMaxCursorNameLength()
 throws SQLException
 public abstract int getMaxIndexLength()
 throws SQLException
 public abstract int getMaxProcedureNameLength()
 throws SQLException
 public abstract int getMaxRowSize()
 throws SQLException
 public abstract int getMaxSchemaNameLength()
 throws SQLException
 public abstract int getMaxStatements()
 throws SQLException
 public abstract int getMaxStatementLength()
 throws SQLException
 public abstract int getMaxTableNameLength()
 throws SQLException
 public abstract int getMaxTablesInSelect()
 throws SQLException
 public abstract int getMaxUserNameLength()

 - 676 -

 throws SQLException

 JAVA.SQL.DATE

The Date class extends the java.util.Date class. It lets JDBC identify a SQL date
object and provides formatting and parsing operations that support the JDBC escape
syntax for date values.

 public class Date extends Date
 // Public Constructors
 public Date(int year , int month, int day)
 public Date(long date)
 // Public Class Method
 public static Date valueOf(String s)
 // Public Methods
 public int getHours()
 public int getMinutes()
 public int getSeconds()
 public void setHours(int i)
 public void setMinutes(int i)
 public void setSeconds(int i)
 public void setTime(long date)
 public String toString()

 JAVA.SQL.DRIVER

The Driver interface specifies methods that all JDBC drivers must implement. When a
JDBC-compliant class that implements Driver is loaded, it automatically creates a
singleton instance and registers the instance with the DriverManager. Therefore, you
can load and register a driver by executing a statement such as this:

 Class.forName("driver class name")

 You don’t generally need to invoke methods of the Driver interface; the
DriverManager class and Connection object will invoke them for you.

 public interface Driver
 // Public Methods
 public abstract boolean acceptsURL(String url)
 throws SQLException
 public abstract Connection connect(String url,
 Properties info)
 throws SQLException
 public abstract int getMajorVersion()
 public abstract int getMinorVersion()
 public abstract DriverPropertyInfo[] getPropertyInfo((
 String url, Properties info) throws SQLException
 public abstract boolean jdbcCompliant()

 JAVA.SQL.DRIVERMANAGER

 The DriverManager class manages a set of JDBC drivers and provides several

methods that let you control database sessions. When the DriverManager class is

 - 677 -

loaded, it attempts to load the classes named by the jdbc.drivers system property.
The getConnection method locates a suitable driver for connecting to the specified
database and returns a Connection instance. The println method adds an entry to
the JDBC log. The setLoginTimeout method lets you specify a timeout interval for
establishing a database session. If the timeout interval expires before a session is
opened, the method throws an SQLException.

 public class DriverManager extends Object
 // Public Class Methods
 public static void deregisterDriver(Driver driver)
 throws SQLException
 public static synchronized Connection getConnection(
 String url) throws SQLException
 public static synchronized Connection getConnection(
 String url, Properties info) throws SQLException
 public static synchronized Connection getConnection(
 String url, String user, String password)
 throws SQLException
 public static Driver getDriver(String url)
 throws SQLException
 public static Enumeration getDrivers()
 public static PrintStream getLogStream()
 public static int getLoginTimeout()
 public static void println(String message)
 public static synchronized void registerDriver(
 Driver driver) throws SQLException
 public static void setLogStream(PrintStream out)
 public static void setLoginTimeout(int seconds)

 JAVA.SQL.RESULTSET

The ResultSet interface establishes a framework for accessing SQL query results.
Table rows are retrieved in sequence; for maximum compatibility, the columns of a row
should be retrieved in sequence and should not be retrieved more than once. The
ResultSet encapsulates a cursor that’s initially positioned before the first row of data.
The next method advances the cursor to the next row, returning false if no more
rows are available. The getXXX methods let you access column values by column
number or name. Accessing by column number is somewhat more efficient; column
numbers start with 1. JDBC attempts to convert the type of the SQL value to the Java
type corresponding to the particular getXXX method invoked. A ResultSet is
automatically closed when the associated Statement is closed or executed again. The
getMetaData method returns a ResultSetMetadata object that describes the
ResultSet.

 public interface ResultSet
 // Public Methods
 public abstract InputStream getAsciiStream(
 String columnName) throws SQLException
 public abstract void clearWarnings()
 throws SQLException
 public abstract void close()
 throws SQLException
 public abstract int findColumn(String columnName)
 throws SQLException

 - 678 -

 public abstract InputStream getAsciiStream(
 int columnIndex) throws SQLException
 public abstract BigDecimal getBigDecimal(
 int columnIndex, int scale) throws SQLException
 public abstract BigDecimal getBigDecimal(
 String columnName, int scale) throws SQLException
 public abstract InputStream getBinaryStream(
 int columnIndex) throws SQLException
 public abstract InputStream getBinaryStream(
 String columnName) throws SQLException
 public abstract boolean getBoolean(int columnIndex)
 throws SQLException
 public abstract boolean getBoolean(
 String columnName) throws SQLException
 public abstract byte getByte(int columnIndex)
 throws SQLException
 public abstract byte getByte(String columnName)
 throws SQLException
 public abstract byte[] getBytes((int columnIndex)
 throws SQLException
 public abstract byte[] getBytes((String columnName)
 throws SQLException
 public abstract String getCursorName()
 throws SQLException
 public abstract Date getDate(int columnIndex)
 throws SQLException
 public abstract Date getDate(String columnName)
 throws SQLException
 public abstract double getDouble(int columnIndex)
 throws SQLException
 public abstract double getDouble(String columnName)
 throws SQLException
 public abstract float getFloat(int columnIndex)
 throws SQLException
 public abstract float getFloat(String columnName)
 throws SQLException
 public abstract int getInt(int columnIndex)
 throws SQLException
 public abstract int getInt(String columnName)
 throws SQLException
 public abstract long getLong(int columnIndex)
 throws SQLException
 public abstract long getLong(String columnName)
 throws SQLException
 public abstract ResultSetMetaData getMetaData()
 throws SQLException
 public abstract Object getObject(int columnIndex)
 throws SQLException
 public abstract Object getObject(String columnName)
 throws SQLException
 public abstract short getShort(int columnIndex)
 throws SQLException

 - 679 -

 public abstract short getShort(String columnName)
 throws SQLException
 public abstract String getString(String columnName)
 throws SQLException
 public abstract String getString(int columnIndex)
 throws SQLException
 public abstract Time getTime(int columnIndex)
 throws SQLException
 public abstract Time getTime(String columnName)
 throws SQLException
 public abstract Timestamp getTimestamp(
 int columnIndex) throws SQLException
 public abstract Timestamp getTimestamp(
 String columnName) throws SQLException
 public abstract InputStream getUnicodeStream(
 int columnIndex) throws SQLException
 public abstract InputStream getUnicodeStream(
 String columnName) throws SQLException
 public abstract SQLWarning getWarnings()
 throws SQLException
 public abstract boolean next()
 throws SQLException
 public abstract boolean wasNull()
 throws SQLException

 JAVA.SQL.RESULTSETMETADATA

The ResultSetMetaData interface establishes a framework for accessing information
describing a result set. The getColumnCount method returns the number of columns in
the result set. The getColumnLabel method returns the default label of the specified
column. The getColumnName method returns the name of the specified column. The
getColumnType returns a code (see java.sql.Types) for the data type of the
specified column. For numeric columns, the getPrecision method returns the number
of significant digits, and the getScale method returns the decimal point offset.

 public interface ResultSetMetaData
 // Public Class Fields
 public static final int columnNoNulls
 public static final int columnNullable
 public static final int columnNullableUnknown
 // Public Methods
 public abstract String getCatalogName(int column)
 throws SQLException
 public abstract int getColumnCount()
 throws SQLException
 public abstract int getColumnDisplaySize(int column)
 throws SQLException
 public abstract String getColumnLabel(int column)
 throws SQLException
 public abstract String getColumnName(int column)
 throws SQLException
 public abstract int getColumnType(int column)
 throws SQLException

 - 680 -

 public abstract String getColumnTypeName(int column)
 throws SQLException
 public abstract String getSchemaName(int column)
 throws SQLException
 public abstract int getPrecision(int column)
 throws SQLException
 public abstract int getScale(int column)
 throws SQLException
 public abstract String getTableName(int column)
 throws SQLException
 public abstract boolean isAutoIncrement(int column)
 throws SQLException
 public abstract boolean isCaseSensitive(int column)
 throws SQLException
 public abstract boolean isCurrency(int column)
 throws SQLException
 public abstract boolean isDefinitelyWritable(
 int column) throws SQLException
 public abstract int isNullable(int column)
 throws SQLException
 public abstract boolean isReadOnly(int column)
 throws SQLException
 public abstract boolean isSearchable(int column)
 throws SQLException
 public abstract boolean isSigned(int column)
 throws SQLException
 public abstract boolean isWritable(int column)
 throws SQLException

 JAVA.SQL.STATEMENT

The Statement interface establishes a framework for executing SQL queries and
updates and for accessing their results. The cancel method cancels a query being
executed in another thread. The clearWarnings method deletes warnings posted
against the Statement. The executeQuery method executes a query and returns a
result set. The executeUpdate method executes an update and returns a count of the
updated rows. The execute method executes a query that returns multiple results. The
methods getMoreResults , getResultSet, and getUpdateCount let you access
the results. The close method closes the Statement and any associated result sets.
The getWarnings method retrieves the first warning pending against the Statement.
The setQueryTimeout lets you specify how long the driver should wait for query
completion.

 public interface Statement
 public abstract void cancel() throws SQLException
 public abstract void clearWarnings()
 throws SQLException
 public abstract void close() throws SQLException
 public abstract boolean execute(String sql)
 throws SQLException
 public abstract ResultSet executeQuery(String sql)
 throws SQLException
 public abstract int executeUpdate(String sql)

 - 681 -

 throws SQLException
 public abstract int getMaxFieldSize()
 throws SQLException
 public abstract int getMaxRows()
 throws SQLException
 public abstract boolean getMoreResults()
 throws SQLException
 public abstract int getQueryTimeout()
 throws SQLException
 public abstract ResultSet getResultSet()
 throws SQLException
 public abstract int getUpdateCount()
 throws SQLException
 public abstract SQLWarning getWarnings()
 throws SQLException
 public abstract void setCursorName(String name)
 throws SQLException
 public abstract void setEscapeProcessing(
 boolean enable) throws SQLException
 public abstract void setMaxFieldSize(int max)
 throws SQLException
 public abstract void setMaxRows(int max)
 throws SQLException
 public abstract void setQueryTimeout(int seconds)
 throws SQLException

 JAVA.SQL.TIME

The Time class extends java.util.Date , letting JDBC identify a SQL time object
and providing formatting and parsing operations that support the JDBC escape syntax for
time values.

 public class Time extends Date
 // Public Constructors
 public Time(int hour , int minute, int second)
 public Time(long time)
 // Public Class Methods
 public static Time valueOf(String s)
 // Public Methods
 public int getDate()
 public int getDay()
 public int getMonth()
 public int getYear()
 public void setDate(int i)
 public void setMonth(int i)
 public void setTime(long time)
 public void setYear(int i)
 public String toString()

 JAVA.SQL.TIMESTAMP

 The Timestamp class extends java.util.Date , letting JDBC identify a SQL

timestamp object and providing formatting and parsing operations that support the JDBC

 - 682 -

escape syntax for timestamp values. The java.util.Date class stores time with a
one-second resolution. The Timestamp class includes an int that stores time with
nanosecond resolution. The getNanos method returns the value of the fractional
second. The after and before methods test whether a specified Timestamp
instance is later or earlier than the current instance.

 public class Timestamp extends Date
 // Public Constructors
 public Timestamp(int year, int month, int date,
 int hour, int minute, int second, int nano)
 public Timestamp(long time)
 // Public Class Methods
 public static Timestamp valueOf(String s)
 // Public Methods
 public boolean after(Timestamp ts)
 public boolean before(Timestamp ts)
 public boolean equals(Timestamp ts)
 public int getNanos()
 public void setNanos(int n)
 public String toString()

 JAVA.SQL.TYPES

 The Types class defines codes used to represent the SQL data types. These codes are

used by several JDBC methods, including ResultSetMetaData.getColumnType .

 public class Types extends Object
 public static final int BIGINT
 public static final int BINARY
 public static final int BIT
 public static final int CHAR
 public static final int DATE
 public static final int DECIMAL
 public static final int DOUBLE
 public static final int FLOAT
 public static final int INTEGER
 public static final int LONGVARBINARY
 public static final int LONGVARCHAR
 public static final int NULL
 public static final int NUMERIC
 public static final int OTHER
 public static final int REAL
 public static final int SMALLINT
 public static final int TIME
 public static final int TIMESTAMP
 public static final int TINYINT
 public static final int VARBINARY
 public static final int VARCHAR

 ORG.COM.CORBA.BINDOPTIONS

 The BindOptions class represents the options used when a client binds to a server.

You pass these options to the bind method provided by the server’s Helper class. If

 - 683 -

the defer argument is true , connection is delayed until the first request is invoked on
the server. If the rebind argument is true , the client will attempt to recover from a
lost connection by binding to another server.

 public class BindOptions
 // Public Constructor
 public BindOptions(boolean defer, boolean rebind)

 ORG.COM.CORBA.BOA

The BOA class represents a Basic Object Adapter, which lets servers activate and
deactivate the objects they offer to clients. The obj_is_ready method makes an object
available to clients. The deactivate_obj method makes an object unavailable. A
server should invoke impl_is_ready after it has activated all the objects it
implements. The get_Principal method returns the principal associated with an
object.

 public abstract class BOA extends Object
 // Public Methods
 public void deactivate_obj(Object obj)
 public Principal get_Principal(Object obj)
 public void impl_is_ready()
 public abstract void impl_is_ready(String service,
 Activator activator)
 public abstract void impl_is_ready(String service,
 Activator activator, boolean block)
 public void obj_is_ready(Object obj)
 public abstract void obj_is_ready(Object obj,
 String service, byte [] data)

 ORG.COM.CORBA.COMPLETIONSTATUS

 The CompletionStatus class indicates whether an operation was completed before

an exception was raised.

 public final class CompletionStatus extends Object
 // Public Fields
 public final static int _COMPLETED_YES
 public final static int _COMPLETED_NO
 public final static int _COMPLETED_MAYBE
 public final static CompletionStatus COMPLETED_YES
 public final static CompletionStatus COMPLETED_NO
 public final static CompletionStatus COMPLETED_MAYBE
 // Public Class Method
 public static CompletionStatus from_int(int value)
 // Public Method
 public final int value()

 ORG.COM.CORBA.CONTEXT

The Context interface establishes a framework for maintaining a client’s property list
that’s propagated to the server when the client issues a request. The use of the
properties is not specified by CORBA. The properties are organized as a tree; the default
context can be accessed by invoking the ORB.get_default_context method.

 - 684 -

 public interface Context
 // Public Methods
 public String context_name()
 public Context create_child(String context)
 public void delete_values(String property)
 public NVList get_values(String start, boolean restrict,
String name)

 public Context parent()
 public void set_one_value(String property, Any value)
 public void set_values(NVList values)

 ORG.COM.CORBA.INVALIDNAME

The InvalidName exception is raised when the ORB is unable to resolve any of the
names returned by list_initial_services to its corresponding implementation
object.

 public class InvalidName extends UserException

 ORG.COM.CORBA.OBJECT

The Object interface is the root interface of the CORBA inheritance hierarchy. It
provides runtime type information and platform-independent reference equivalence
testing. Table B.1 summarizes the key methods of the Object interface.

 TABLE B.1 KEY METHODS OF THE Object INTERFACE

Method

Function

bind_options

Sets the bind options associated with the current object.

boa

Returns the BOA associated with a particular request or the default
BOA if no request is active.

clone

Creates a copy of the current object, which receives its own server
connection.

create_request

Creates and initializes a dynamic invocation request.

get_interface

Returns the interface definition of the current object.

hash

Computes a positive hash value for the current object.

is_a

Queries whether an object implements the specified interface.

is_bound

Returns true if a network connection to the implementation object
has been established.

is_equivalent

Compares the Interoperable Object Reference of the specified

 - 685 -

object with that of the current object and returns true if they are
equivalent.

is_local

Returns true if the current object resides in the local address
space.

is_persistent

Returns true if the current object retains its value beyond the
lifetime of its implementing process.

is_remote

Returns true if the current object resides in a remote address
space.

non_existent

Uses ping to determine whether the implementation object is
active and returns false if the object is found to be active.

object_name

Returns the name of the object implementation.

principal

Returns the principal associated with a request on the object or sets
the principal associated with the current object to the specified
principal.

repository_id

Returns the repository identifier of the current object
implementation’s most derived interface.

resolve_reference

Creates an empty dynamic invocation request. A client application
can use the resolve_reference method to resolve the server-
side interface with the specified service identifier.

 The following method headers specify the arguments of the methods of the Object

interface:

 public interface Object
 // Public Methods
 public BindOptions _bind_options()
 public BOA _boa()
 public Object _clone()
 public Request _create_request(Context context,
 String op, NVList args , NamedValue result,
 TypeCode[] exceptions, String [] contexts)
 public InterfaceDef _get_interface()
 public int _hash(int max)
 public _is_a(String repository)
 public boolean _is_bound()
 public boolean _is_equivalent(Object obj)
 public boolean _is_local()
 public boolean _is_persistent()
 public boolean _is_remote()
 public boolean _non_existent()
 public String _object_name()
 public Principal _principal()
 public void _principal(Principal principal)
 public String _repository_id()
 public Request _request(String op)

 - 686 -

 public Object _resolve_reference(String id)

 ORG.COM.CORBA.ORB

The ORB class represents an Object Request Broker and provides a way to initialize the
CORBA infrastructure, as well as a variety of methods used by clients and servers. Table
B.2 summarizes the key methods of the ORB class.

The ORB class also provides a set of methods for handling NamedValue, NVList,
DynAny, DynArray, DynEnum, DynSeqeuence, DynStruct, and DynUnion objects
and a set of methods that return TypeCode objects of various types. Consult the
Visibroker documentation for information about these methods.

 TABLE B.2 KEY METHODS OF THE ORB INTERFACE

Method

Function

init

Initializes the ORB for use by an application or applet.

bind

Attempts a bind on the ORB and returns a general
reference.

BOA_init

Initializes a BOA and returns a reference to the BOA .

create_output_cstream

Creates an output stream.

create_input_
stream

Creates an input stream from an output stream. The
input stream lets programs read the bytes written to the
output stream.

default_bind_
options

Gets or sets the global default bind options.

defaultPrincipal

Gets or sets the global default Principal.

get_default_
context

Returns the global default Context.

list_initial_
services

Returns a list containing the names of object services
initially available.

object_to _string

Converts an object reference to a String and returns
the result.

string_to_ object

Converts a String to an object reference, narrowed to
a specified interface, and returns the result.

get_next_ response

Blocks until a response to a deferred operation request
becomes available.

poll_next_ response

Returns true if a response to a deferred operation is
available.

 - 687 -

resolve_initial
_references

Resolves a member of the list returned by
list_initial_services to its corresponding
implementation object and returns the result.

send_multiple
_requests_deferred

Sends a set of operation requests without blocking.

send_multiple
_requests_oneway

Sends a set of one way operation requests, which have
no return values.

 The following method headers specify the arguments of the methods of the ORB class:

 public abstract class ORB
 // Public Class Methods
 public static BOA BOA_init()
 public static ORB init(String[] args , Properties p)
 public static ORB init(Applet app, Properties p)
 // Public Methods
 public Object bind(String repository,
 String object_name, String host_name, BindOptions opt)
 public public BOA BOA_init(String boa_type, Properties p)
 public abstract TypeCode create_alias_to(
 String repository, String type_name, TypeCode type)
 public abstract Any create_any()
 public abstract TypeCode create_array_tc(int len,
 TypeCode type)
 public DynAny create_basic_dyn_any(TypeCode type)
 throws InconsistentTypeCode
 public abstract ContextList create_context_list()
 public DynAny create_dyn_any(Any value)
 public DynArray create_dyn_array(TypeCode type)
 throws InconsistentTypeCode
 public DynEnum create_dyn_enum(TypeCode type)
 throws InconsistentTypeCode
 public DynSequence create_dyn_sequence(TypeCode type)
 throws InconsistentTypeCode
 public DynStruct create_dyn_struct(TypeCode type)
 throws InconsistentTypeCode
 public DynUnion create_dyn_union(TypeCode type _
 throws InconsistentTypeCode
 public TypeCode create_enum_tc(String repository,
 String type , String [] members)
 public abstract Environment create_environment()
 public abstract TypeCode create_estruct_tc(
 String repository, String type , TypeCode base ,
 StructMember [] members)
 public abstract TypeCode create_exception_tc(
 String repository, String type ,
 StructMember [] members)
 public abstract InputStream create_input_stream(

 - 688 -

 OutputStream out)
 public abstract TypeCode create_interface_tc(
 String repository, String type)
 public abstract NVList create_list(int len)
 public abstract NamedValue create_named_value(
 String name , Any value, int flags)
 public abstract NVList create_operation_list(
 OperationDef op_def)
 public abstract OutputStream create_output_stream()
 public abstract TypeCode create_recursive_sequence_tc(
 int len, int offset)
 public abstract TypeCode create_sequence_tc(
 int len, TypeCode type)
 public abstract TypeCode create_String_tc(int len)
 public abstract TypeCode create_struct_tc(
 String repository, String type ,
 StructMember[] members)
 public abstract TypeCode create_union_tc(
 String repository, String type , TypeCode disc_type,
 UnionMembers [] members)
 public abstract TypeCode create_wstring_tc(int len)
 public abstract BindOptions default_bind_options()
 public abstract void default_bind_options(
 BindOptions opts)
 public abstract Principal default_principal()
 public abstract void default_principal(
 Principal principal)
 public abstract Context get_default_context()
 public abstract Request get_next_response()
 public abstract TypeCode get_primitive_tc(
 TCKind kind)
 public abstract String [] list__initial_services()
 public abstract String object_to_string(Object obj)
 public abstract boolean poll_next_response()
 public abstract Object resolve_initial_references(
 String id) throws InvalidName
 public abstract void send_multiple_requests_deferred(
 Request [] reqs)

 public abstract void send_multiple_requests_oneway(
 Request [] reqs)
 public abstract Object string_to_object(String ior)

 ORG.COM.CORBA.PRINCIPAL

The Principal class encapsulates a byte array that a client can associate with an
operation request. Client applications can set a default principal by invoking the
ORB.default_principal method.

 public abstract class Principal
 // Public Methods
 public abstract void name(byte [] name)
 public abstract byte[] name(()

 - 689 -

Appendix C: How to Get the Most From the CD-
ROM

 Overview

The CD-ROM that accompanies this book contains valuable software as well as other
helpful material. In addition to the software, the CD contains the complete code listings
from each chapter and other useful documents.

WHAT’S ON THIS CD-ROM

This CD-ROM contains scripts and source code mentioned throughout the book as well
electronic books, third-party software and more. The following is an overview of the
directory structure of this disc:

 • Chapterxx\Listings\—Author examples and code listings as mentioned in the book. xx

is the chapter number.

 • \Documents\—Documents related to Java distributed computing, such as the CORBA

specification in Portable Document Format (PDF).

 • \Software\—Third-party software tools for developing Java distributed object

applications and for use with the coding examples provided in the book including:

 Visibroker 3.2 from Inprise

 Sniff+ 3.0 from TakeFive

 JBuilder 2 Publisher’s Edition

 Objectspace Voyager software

 JacORB

 CODE LISTINGS

The code listings can be copied directly from the CD, compiled, and run, in order to
supplement the discussions in each chapter. These are provided as a learning tool. The
code listings are organized in subdirectories by chapter. For example, if you need to find
the listing for Passenger.java from Chapter 12, it is located in the path

 Drive:\Chapter12\Listings\filename.ext

 Variable default CDR-Drive is the CD-ROM drive letter for your system and code.exe is the

file for which you’re searching. In this example, it is Passenger.java.

SYSTEM REQUIREMENTS FOR THIS CD-ROM

This CD-ROM was configured for use on systems running Windows NT 4.0 Workstation
or Windows 95 on an Intel-based system. Table C.1 describes the minimum system
requirements to install the CD.

 TABLE C.1 SYSTEM REQUIREMENTS

 - 690 -

Component

Requirement

Processor

486DX or higher processor

Operating
System

Microsoft Windows ® NT 4.0 Workstation or Windows ® 95

Memory

24MB

Free storage
space

9.5MB minimum

Monitor

VGA or higher resolution video adapter (SVGA 256-color
recommended)

Other

Mouse or compatible pointing device

CD-ROM drive

2X or higher

Web browser

Such as Netscape or Internet Explorer

Optional

An active Internet connection (highly recommended)

HOW TO INSTALL PRODUCTS FROM THE CD-ROM

Under Windows NT/95, just insert the disc and follow the directions of the program to
create a program group for this CD-ROM. From within this program group, you can install
the source code and applications included on this disc. You might also review
documentation, preview files, or install products using Windows Explorer.

 Note If you have AutoPlay disabled on your Windows NT/95 computer, the CD-

ROM will not automatically install the Program Group.

To start the CD Product Browser manually, go to the Start Menu, select Run, then
Browse to find your CD-ROM drive letter. Select the file SETUP.EXE from the root
directory and follow the instructions to install the program group for this book.

 Installation Notes

To install an application from this CD-ROM, you may use the program group icon or you
may go directly to Windows Explorer by double-clicking on the MY COMPUTER icon on
your desktop and selecting your CD-ROM drive. Using either method, go to the desired
folder and select the SETUP.EXE file or the file that has the extension EXE. These are
the installation programs for the software. Many of these programs will lead you through
the installation process. If you have difficulty installing a program, try copying the
contents of the folder onto your computer and then double-clicking on the EXE file.
Always refer to any documentation that may accompany the individual software.

 Troubleshooting Common Problems

 The following are some typical installation problems you might encounter.

 - 691 -

 Q I don’t see any directories on this CD-ROM. It looks like I have a blank disc.

A

First, try to clean the data side of the CD-ROM with a clean, soft cloth. If the problem
still exists, if possible, insert this CD-ROM into another computer to determine if the
problem is with the disc or your CD-ROM drive.

Another cause of this problem might be that you have outdated CD-ROM drivers. In
order to view the directories and access the files on this disc, first verify the
manufacturer of your CD-ROM drive from your system’s documentation. Or, under
Windows 95/NT, you may also check your CD-ROM manufacturer by going to
\Settings\Control Panel\System and select the Device Manager. Double-click on the
CD-ROM and you will see the information on the manufacturer of your drive. You may
download the latest drivers from your manufacturer’s Web site or from
www.microsoft.com/support.

 Q The CD-ROM doesn’t run properly or just spins in my CD-ROM drive.

A

The usual cause of this is a damaged or dirty disc. Visually inspect the disc for
possible flaws or defects, and clean it properly. You should also test another CDROM
in your drive. This often reveals setup problems that are not disc specific. If these
procedures fail, you can contact us to get a replacement disc (contact information is at
the end of this file).

 Q The programs run slowly or don’t run properly.

 A Do you have at least the follow amounts of RAM (memory)?

 Windows NT: 24MB

 Windows 95: 24MB

This might sound familiar, but Windows NT/95 programs do not run well on fewer
megabytes. If you have only the minimum amount of RAM, the program might run
slowly. Check the individual software installation instructions for RAM requirements for
the program you want to install.

 Also, if you have only a single-spin CD-ROM drive, files will be accessed more slowly.

 Q I get an error whenever I try to double-click on an .EXE file included on the CD-

ROM.

 A Many of the programs included on this CD-ROM were created using a selfextracting

format or require certain files to be present before installation can occur.

Instead of double-clicking on the filename directly from the CD, select the desired .ZIP
file, .EXE file, or the entire directory containing the desired application. Copy the file(s)
to your hard drive into a newly created folder. Double-click on the filename from your
hard drive to extract the files into its own folder. Select the SETUP.EXE or
INSTALL.EXE file from within the folder.

 Q The uninstall doesn’t remove all the icons or the program group created for this

CD-ROM.

A

This CD-ROM includes a very basic program group installation script that installs an
uninstall file into your \Windows\temp directory and creates a new program group that
includes a Readme file icon, uninstall icon, and a “Browse the CD” icon. If the uninstall
option fails to remove all of these icons, you may use Windows Explorer to go to the

 - 692 -

\Windows\Start Menu\Programs directory to look for files applicable to this book and
delete any of these files that remain. The file Unwise.exe that was installed may also
be removed from your \Windows\temp directory.

 Note: If you copied the source code to your computer, you will also need to go to the

directory that contains those files to delete any files.

 Contacting Us for Support

We cannot help you with computer problems, Windows problems, or third-party
applications problems, but we can assist you with a problem you have with this book or
the CDROM.

 Note Problems with another company’s programs on the disc need to be resolved

with the company that produced the program or demo.

 If you need assistance with the information in this book or with the CD-ROM

accompanying this book, please access the Knowledge Base on our Web site at

 http://www.superlibrary.com/general/support

 Our most Frequently Asked Questions are answered there. If you do not find the answer

to your questions on our Web site, you may contact Macmillan Technical Support at

 (317) 581-3833 or e-mail us at support@mcp.com.

 Internet Email

 Please be prepared to give us information on your computer system and a detailed

account of the problem you’re experiencing.

 support@mcp.com

 If you’re a member of an online service such as CompuServe, America Online, Prodigy,

and so on, you can send Internet email through your service.

 Regular Mail

 Macmillan Computer Publishing
 Support Department
 201 West 103rd Street
 Indianapolis, IN 46290

 Telephone: (317) 581-3833

 Fax: (317) 581-4773

 Visit us online at Internet World Wide Web (The Macmillan Information SuperLibrary):

 http://www.mcp.com/

 SHAREWARE

This product features Macromedia Shockwave ?, the standard for multimedia on the
World Wide Web. For further information regarding Shockwave, including upgrades and
add-ons, visit the Shockwave section of the Macromedia World Wide Web site at

 - 693 -

http://www.macromedia.com .

 Shockwave ™ Copyright © 1995-1997 Macromedia, Inc.

 All Rights Reserved. Shockwave is a trademark of Macromedia, Inc.

Some of the programs included on this CD-ROM are shareware—try-before-you-buy—
software. Independent developers spend hundreds of hours creating, updating, and
improving various utilities and tools that make everyone’s computing lives that much
better. These hard-working souls create the programs or add-on features that the retail
products overlook, yet end users could use. “If only I could find a program that could...”

Please support these independent vendors by purchasing or registering any shareware
software that you use for more than 30 days. Check with the documentation provided with
the software on where and how to register the product. Thank you for your support of
shareware!

 LICENSE AGREEMENT

 By opening this package, you are agreeing to be bound by the following agreement:

Some of the software included with this product might be copyrighted, in which case all
rights are reserved by the respective copyright holder. You are licensed to use software
copyrighted by the publisher and its licensors on a single computer. You may copy and/or
modify the software as needed to facilitate your use of it on a single computer.

 Making copies of the software for any other purpose is a violation of the United States

copyright laws.

This software is sold as is, without warranty of any kind, either expressed or implied,
including but not limited to the implied warranties of merchantability and fitness for a
particular purpose. Neither the publisher nor its dealers or distributors assumes any liability
for any alleged or actual damages arising from the use of this program. (Some states do
not allow for the exclusion of implied warranties, so the exclusion might not apply to you.)

