
Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

Peer Groups and Services

10

THE CONCEPT OF A PEER GROUP IS central to all aspects of the JXTA platform.
Peer groups provide a way of segmenting the P2P network space into distinct
communities of peers organized for a specific purpose.All the core protocols
explored in this book so far have depended on a peer group to provide the
context for operations performed by services. Before creating a sample applica-
tion, it is necessary to understand how JXTA peer groups are created and used
to gain access to services.

This chapter provides the information you need to use peer groups and to
understand how to create, join, or leave peer groups. Part of this coverage
includes how JXTA allows peer groups to create private peer groups that are
accessible to only authorized peers. In addition to the coverage of peer group
semantics, the chapter explores how to create new services and create a peer
group that can use these services.

12_2344 Ch 10 5/14/02 11:44 AM Page 285

286 Chapter 10 Peer Groups and Services

Modules, Services, and Applications
Before diving into the specifics of working with peer groups, it is essential to
understand the module framework employed by JXTA.The module frame-
work is designed to allow a developer to provide functionality within JXTA in
an extensible manner. Modules managed by the framework are responsible for
providing all aspects of JXTA’s functionality, including the implementation of
the peer group mechanism as well as services and applications that are pro-
vided by a peer group.

Understanding modules is essential to being able to write new services for
JXTA.To understand how these peer groups, services, and applications are
specified, you first need to understand the JXTA concept of a module. Simply
put, a module is some distributable chunk of functionality that a peer can
initialize, start, and stop. In addition to a plain module, JXTA provides the
concept of a service module, a component used by a peer to run a service,
and an application module, a component used by a peer to run an application.
An application module is different from an application that invokes JXTA.
An application that invokes JXTA can be comprised of several service and
application modules.

To enable peers to discover modules, the definition of a module is divided
into three types of advertisements: a Module Class Advertisement, a Module
Specification Advertisement, and a Module Implementation Advertisement.
Before diving into the specifics of each type of advertisement, it’s important to
understand how they are related.

Consider some of the problems inherent in creating a framework for mod-
ules in JXTA:

n Because JXTA is supposed to be language/platform agnostic, the module
framework needs to support multiple implementations of a given mod-
ule. For example, the Discovery service module might be implemented as
a Java class or as a C++ COM class.Therefore, the framework needs to
be capable of distinguishing among these module implementations, possi-
bly using some external metadata representation, such as an advertise-
ment.

n The capabilities of the module will invariably change over time.The per-
son or organization responsible for defining the module might want to
add or remove functionality, thus changing the specification of the mod-
ule. For example, the Peer Discovery Protocol specification might change
over time to add new search capabilities.Therefore, the module
framework must be capable of distinguishing among various versions
of a module, again using some metadata representation. In addition,

12_2344 Ch 10 5/14/02 11:44 AM Page 286

287Modules, Services, and Applications

each version of the module’s specification might have multiple
implementations, necessitating some link between the metadata describ-
ing a module implementation and the metadata describing the module’s
specification.

n There must be some way of referring to a module that provides a class of
functionality independent of a particular specification or implementation
of the module. For example, the JXTA Discovery service module is a
class of module that provides discovery services.Again, there must be
some relationship between the metadata describing a module specifica-
tion and the metadata describing the module’s class.

Each of these aspects is encapsulated by the Module Implementation, Module
Specification, and Module Class Advertisements, respectively.The discussion of
these advertisements in the following sections starts from the most general
advertisement describing a module, the Module Class Advertisement.

The Module Class Advertisement
The first advertisement, the Module Class Advertisement, doesn’t provide
information on a module implementation; it exists solely to announce the
existence of a class of module.The Module Class Advertisement provides only
the few pieces of information shown in Listing 10.1.

Listing 10.1 The Module Class Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:MCA>

<MCID> . . . </MCID>

<Name> . . . </Name>

<Desc> . . . </Desc>

</jxta:MCA>

These pieces of information can be used by a peer to search for a module
based on one of the advertisement’s elements:

n MCID—A required element containing a Module Class ID.This ID
uniquely identifies a class of modules.The Module Class ID is used
as the basis for the IDs contained in the Module Specification and
Implementation Advertisements.

n Name—An optional element containing a simple name for the module
class.This string is not necessarily unique.

n Desc—An optional element containing a description of the module class.

12_2344 Ch 10 5/14/02 11:44 AM Page 287

288 Chapter 10 Peer Groups and Services

As with all other advertisement types in the reference implementation, the
implementation of the Module Class Advertisement is split into the abstract
definition ModuleClassAdvertisement, defined in net.jxta.protocol, and the refer-
ence implementation ModuleClassAdv, defined in net.jxta.impl.protocol.These
classes are shown in Figure 10.1.

 Advertisement
 (from net.jxta.document)

Advertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
getID() : net.jxta.id.ID
getLocalExpirationTime() : long
setExpiration(timeout : long) : void
setExpirationTime(timeout : long) : void

ModuleClassAdvertisement
 (from net.jxta.protocol)

ModuleClassAdvertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getDescription() : java.lang.String
getID() : net.jxta.id.ID
getModuleClassID() : net.jxta.platform.ModuleClassID
getName() : java.lang.String
setDescription(description : java.lang.String) : void
setModuleClassID(id : net.jxta.platform.ModuleClassID) : void
setName(name : java.lang.String) : void

 ModuleClassAdv
(from net.jxta.impl.protocol)

ModuleClassAdv(root : net.jxta.document.Element)
ModuleClassAdv()
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
initialize(root : net.jxta.document.Element) : void

Figure 10.1 The Module Class Advertisement classes.

Each class of modules has a unique Module Class Advertisement. For example,
the reference implementation of the Discovery service is associated with a
Module Class Advertisement that defines a class of modules responsible for
providing discovery capabilities. Modules that provide this capability also use
this same Module Class Advertisement.A different class of module, such as a
module that provides routing capabilities, is associated with a different Module
Class Advertisement.

The Module Specification Advertisement
The second advertisement responsible for defining a module is the Module
Specification Advertisement.The purpose of a Module Specification
Advertisement, shown in Listing 10.2, is to uniquely identify a set of protocol-
compatible modules.

12_2344 Ch 10 5/14/02 11:44 AM Page 288

289Modules, Services, and Applications

Listing 10.2 The Module Specification Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:MSA>

<MSID> . . . </MSID>

<Name> . . . </Name>

<Crtr> . . . </Crtr>

<SURI> . . . </SURI>

<Vers> . . . </Vers>

<Desc> . . . </Desc>

<Parm> . . . </Parm>

<jxta:PipeAdvertisement> . . . </jxta:PipeAdvertisement>

<Proxy> . . . </Proxy>

<Auth> . . . </Auth>

</jxta:MSA>

The advertisement provides metadata on a version of the module’s specifica-
tion using the following elements:

n MSID—A required element containing a Module Specification ID that
uniquely identifies the module specification.The Module Specification
ID includes within it the Module Class ID identifying the class of mod-
ule to which this specification belongs.

n Name—An optional element containing a simple name for the module
specification.This string is not necessarily unique.

n Crtr—An optional element containing the name of the creator of the
module specification.

n SURI—An optional element containing a URI that points to a specifica-
tion document that describes the purpose and protocol, if any, defined by
the module.

n Vers—A required element containing information on the specification
version embodied by this Module Specification Advertisement.

n Desc—An optional element containing a description of the module
specification.

n Parm—An optional element containing parameters for the specification.
The format and meaning of these parameters is defined by the module’s
specification.

n jxta:PipeAdvertisement—An optional element containing a Pipe
Advertisement describing a pipe that can be used to send data to
the module.This element is actually the root element of the Pipe
Advertisement, not an element that contains a Pipe Advertisement.The

12_2344 Ch 10 5/14/02 11:44 AM Page 289

290 Chapter 10 Peer Groups and Services

module that implements this specification binds an input pipe to the pipe
identified by the Pipe Advertisement, allowing third parties to communi-
cate with the module.

n Proxy—An optional element containing the Module Specification ID of a
module that can be used to proxy communication with a module
defined by this module specification.This is not really used in the refer-
ence implementation, and its use in modules is discouraged.

n Auth—An optional element containing the Module Specification ID of a
module that provides authentication services for a module defined by this
module specification.

The implementation of the Module Specification Advertisement is split into
the abstract definition ModuleSpecAdvertisement, defined in net.jxta.protocol, and
the reference implementation ModuleSpecAdv, defined in net.jxta.impl.protocol.
These classes are shown in Figure 10.2.

 Advertisement
 (from net.jxta.document)

Advertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
getID() : net.jxta.id.ID
getLocalExpirationTime() : long
setExpiration(timeout : long) : void
setExpirationTime(timeout : long) : void

ModuleSpecAdvertisement
 (from net.jxta.protocol)

 ModuleSpecAdv
(from net.jxta.impl.protocol)

ModuleSpecAdvertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getAuthSpecID() : net.jxta.platform.ModuleSpecID
getCreator() : java.lang.String
getDescription() : java.lang.String
getID() : net.jxta.id.ID
getModuleSpecID() : net.jxta.platform.ModuleSpecID
getName() : java.lang.String
getParam() : net.jxta.document.StructuredDocument
getPipeAdvertisement() : net.jxta.protocol.PipeAdvertisement
getProxySpecID() : net.jxta.platform.ModulespecID
getSpecURI() :java.lang.String
getVersion() : java.lang.String
setAuthSpecID(authld : net.jxta.platform.ModuleSpecID) : void
setCreator(creator : java.lang.String) : void
setDescription(description : java.lang.String) : void
setModuleSpecID(specld : net.jxta.platform.ModuleSpecID) : void
setName(name : java.lang.String) : void
setParam(param : net.jxta.document.StructureDocument) : void
setPipeAdvertisement(pipeAdv : net.jxta.protocol.PipeAdvertisement) : void
setProxySpecID(proxyld : net.jxta.platform.ModuleSpecID) : void
setSpecURI(specUri : java.lang.String) : void
setVersion(version : java.lang.String) : void

ModuleSpecAdv()
ModuleSpecAdv(root : net.jxta.document.Element)
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
initialize(root : net.jxta.document.Element) : void

Figure 10.2 The Module Specification Advertisement classes.

12_2344 Ch 10 5/14/02 11:44 AM Page 290

291Modules, Services, and Applications

For every Module Class Advertisement, there can be one or more different
Module Specification Advertisements, each specifying a different version of the
module. For example, if a new version of the Peer Discovery Protocol is
released, the module responsible for implementing the PDP in the reference
implementation will be associated with a new Module Specification
Advertisement that identifies the new version of the protocol that it
implements.

The Module Implementation Advertisement
The final advertisement responsible for defining a module, the Module
Implementation Advertisement, provides information on a particular imple-
mentation of a module specification, as shown in Listing 10.3.

Listing 10.3 The Module Implementation Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:MIA>

<MSID> . . . </MSID>

<Comp> . . . </Comp>

<Code> . . . </Code>

<PURI> . . . </PURI>

<Prov> . . . </Prov>

<Desc> . . . </Desc>

<Parm> . . . </Parm>

</jxta:MIA>

The Module Implementation Advertisement provides information on a con-
crete implementation of a module specification:

n MSID—A required element containing the Module Specification ID iden-
tifying the module specification that this module is implementing.

n Comp—A required element containing compatibility information.The
format of the information contained by this element depends on the
possible deployment platforms for modules. Currently, the reference
implementation defines an XML format for the compatibility informa-
tion that details the JVM and binding. Future work to provide other
bindings will result in a variety of formats for this information.

n Code—A required element containing any information required to run
the code of the module implementation.The format of this information
is again defined by the deployment platform in which the module will
be running.Although this information is usually provided in addition to

12_2344 Ch 10 5/14/02 11:44 AM Page 291

292 Chapter 10 Peer Groups and Services

the package information provided by the PURI, the information in this
element could provide the code for the implementation, eliminating the
need for a PURI element.

n PURI—An optional element containing a URI that points to a package
that contains the code responsible for providing the module implementa-
tion. In the reference implementation, the Code element provides the fully
qualified class name for the module implementation, and the PURI ele-
ment points to the location of a JAR file containing the class described
by the Code element.Together, these elements can be used to download
the module implementation if it doesn’t exist locally and to start the
module.

n Prov—An optional element containing the name of the entity that is pro-
viding the module implementation specified by this advertisement’s Code
or PURI elements.

n Desc—An optional element containing a description of the module
implementation.

n Parm—An optional element containing parameters for the implementa-
tion.The format and meaning of these parameters is defined by the
module’s implementation.

The implementation of the Module Implementation Advertisement is
similarly split into the abstract definition ModuleImplAdvertisement, defined in
net.jxta.protocol, and the reference implementation ModuleImplAdv, defined
in net.jxta.impl.protocol.These classes are shown in Figure 10.3.

For every Module Specification Advertisement, there can be one or more
different Module Implementation Advertisements, each specifying a different
version of the module. Modules that are described by different module imple-
mentations that point to the same Module Specification Advertisement are
compatible.

For example, if you have a C++ module and Java module each implement-
ing the same version of the PDP, both will be associated with the same
Module Specification Advertisement. Each implementation will be associated
with different Module Implementation Advertisements that point to the same
Module Specification Advertisement.The implementation-specific details, such
as where to locate and download the module code, are specified in each mod-
ule’s Module Implementation Advertisement.

12_2344 Ch 10 5/15/02 11:15 AM Page 292

293Modules, Services, and Applications

Figure 10.3 The Module Implementation Advertisement classes.

The Module, Service, and Application Interfaces
The actual implementation of a module can take one of three forms: a mod-
ule, a service, or an application. For the most part, the functionality offered by
each is almost identical, as are the interfaces that describe them, as shown in
Figure 10.4.

 Advertisement
 (from net.jxta.document)

Advertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
getID() : net.jxta.id.ID
getLocalExpirationTime() : long
setExpiration(timeout : long) : void
setExpirationTime(timeout : long) : void

ModuleImplAdvertisement
 (from net.jxta.protocol)

 ModuleImplAdv
(from net.jxta.impl.protocol)

ModuleImplAdvertisement()
clone() : java.lang.Object
getAdvertisementType() : java.lang.String
getCode() : java.lang.String
getCompat() : net.jxta.document.StructuredDocument
getDescription() : java.lang.String
getID() : net.jxta.id.ID
getModuleSpecID() : net.jxta.platform.ModuleSpecID
getParam() : net.jxta.document.StructuredDocument
getProvider() : java.lang.String
getUri() :java.lang.String
setCode(code : java.lang.String) : void
setCompat(compat : neet.jxta.document.Element) : void
setDescription(description : java.lang.String) : void
setModuleSpecID(specld : net.jxta.platform.ModuleSpecID) : void
setParam(param : net.jxta.document.Element) : void
setProvider(provider : java.lang.String) : void
setUri(packageUri : java.lang.String) : void

ModuleImplAdv()
ModuleImplAdv(root : net.jxta.document.Element)
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document
initialize(root : net.jxta.document.Element) : void

12_2344 Ch 10 5/14/02 11:44 AM Page 293

294 Chapter 10 Peer Groups and Services

Figure 10.4 The Module, Service, and Application interfaces.

The Module and Application interfaces are identical, providing the init, startApp,
and stopApp methods.As their names suggest, these methods are used to initial-
ize, start, and stop the module. Probably the most important of these three is
the init method:

public void init(PeerGroup group, ID assignedID, Advertisement implAdv)
throws PeerGroupException;

This method provides the module with a PeerGroup that it can use to obtain
services, such as the Discovery or Resolver services. In addition, an ID for the
module within the group is provided to allow the module to uniquely identify
itself within the peer group.This ID can be used by modules as the root of
their service name space, and it is usually used as the handler name that the
module registers with the Resolver service.The implAdv parameter is usually
the ModuleImplAdvertisement that was used to instantiate the module, so it con-
tains extra initialization parameters for the module in its Parm elements.

The Service interface adds only two additional methods:
getImplAdvertisement and getInterface.The getImplAdvertisement method pro-
vides the Module Implementation Advertisement describing the service.The
getInterface method returns another Service implementation that can be used
to handle the Service implementation by proxy and protect the usage of the
Service.

The Peer Group Lifecycle
To demonstrate the use of the JXTA reference implementation, the example
code in this book has used one of two mechanisms to invoke the JXTA plat-
form: command extensions running inside the JXTA Shell or a standalone
application that invokes the platform directly. Each mechanism provided a way
to access a PeerGroup object that allowed you to access services of a peer group.

<<Interface>>

Module

(from net.jxta.platform)

init(group : net.jxta.peergroup.PeerGroup, ID : net.jxta.id.ID, adv : net.jxta.document.Advertisement) : void

startApp(args : java.lang.String[]) : int

stopApp() : void

<<Interface>>

Application

(from net.jxta.platform)

init(group : net.jxta.peergroup.PeerGroup, ID : net.jxta.id.LD, adv : net.jxta.document.Advertisement) : void

startApp(args : java.lang.String[]) : int

stopApp() : void

<<Interface>>

Service

(from net.jxta.service)

getInterface() : net.jxta.service.Service

getImplAdvertisement() : net.jxta.document.Advertisement

12_2344 Ch 10 5/14/02 11:44 AM Page 294

295The Peer Group Lifecycle

In the case of the Shell, the examples started the platform using the
net.jxta.impl.peergroup.Boot class:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asn1.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar net.jxta.impl.peergroup.Boot

When the example Shell command extension ran, a PeerGroup object was
obtained using the Shell’s environment variables, as shown in Listing 10.4.

Listing 10.4 Obtaining the PeerGroup Object in a Shell Command

// Get the shell’s environment.

theEnvironment = getEnv();

// Use the environment to obtain the current peer group.

ShellObject theShellObject = theEnvironment.get(“stdgroup”);

PeerGroup aPeerGroup = (PeerGroup) theShellObject.getObject();

When running the JXTA platform as a standalone application, the calling
example applications have obtained a reference to a PeerGroup object using the
following snippet of code:

net.jxta.peergroup.PeerGroup peerGroup =
PeerGroupFactory.newNetPeerGroup();

Until now, no explanation has been given on why these mechanisms work or
what goes on behind the scenes when either of these mechanisms is invoked.
Each of these mechanisms is responsible for “bootstrapping” the JXTA plat-
form, thereby preparing the platform to be used to perform P2P networking.
This process revolves around instantiating two very special peer groups: the
World Peer Group and the Net Peer Group. In JXTA, the peer group
mechanism is implemented as a Service and therefore requires configuring the
appropriate Module Implementation Advertisement.After this advertisement
has been created, it is used to instantiate the Net Peer Group that allows the
peer to communicate with other peers on the network.

Creating the World Peer Group
The first thing that the JXTA platform requires when bootstrapping is a World
Peer Group, which is a peer group identified by a special Peer Group ID.The
World Peer Group defines the basic capabilities of the peer, such as the ser-
vices, endpoint protocol implementations, and applications that the peer will
make available on the network.

12_2344 Ch 10 5/14/02 11:44 AM Page 295

296 Chapter 10 Peer Groups and Services

Although each peer belongs to the World Peer Group, and the World Peer
Group defines the endpoint protocol implementations supported by the peer,
the World Peer Group itself can’t be used to perform P2P networking.The
World Peer Group is basically a template that can be used to either discover or
generate a Net Peer Group instance.The Net Peer Group is a common peer
group to peers in the network that allows all peers to communicate with each
other.

In the reference implementation, the creation of the World Peer
Group is managed by the net.jxta.impl.peergroup.Platform class.When
bootstrapping the JXTA platform using either the Boot class or the
PeerGroupFactory.newNetPeerGroup method, the Platform class is called to
generate a Peer Advertisement and instantiate the World Peer Group.
Note that the Platform class is simply a special implementation of PeerGroup
configured to handle the bootstrapping process.A different implementation
can be provided by changing the PlatformPeerGroupClassName property in the
config.properties file in the net.jxta.impl package.

The configuration information for the endpoint protocol implementations
and other services supported by the World Peer Group is extracted from a Peer
Advertisement used to configure the World Peer Group. In the reference
implementation, the Peer Advertisement is generated by the Configurator tool
based on configuration input provided by the user.The Peer Advertisement
uses the format given in Listing 10.5.

Listing 10.5 The Peer Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:PA xmlns:jxta=”http://jxta.org”>

<PID> . . . </PID>

<GID> . . . </GID>

<Name> . . . </Name>

<Dbg> . . . </Dbg>

<Desc> . . . </Desc>

<Svc>

<MCID> . . . </MCID>

<Parm>

. . .

</Parm>

</Svc>

</jxta:PA>

12_2344 Ch 10 5/14/02 11:44 AM Page 296

297The Peer Group Lifecycle

The parameters of the Peer Advertisement describe the fundamental informa-
tion required for a remote peer to be capable of interacting with the peer:

n PID—A required element containing the Peer ID for the peer.The exact
format of the ID used by JXTA isn’t especially important for this discus-
sion.The only important thing to note about the Peer ID at this point is
that it incorporates the Peer Group ID in it. More information on the
format of the ID used by the reference implementation can be found in
the JXTA Protocols Specification.

n GID—An optional element containing the Peer Group ID of the peer
group to which the peer described by this advertisement belongs.

n Name—An optional element containing a simple name for the peer.
This string can be used in conjunction with the Discovery service to
attempt to discover a particular peer; however, multiple peers may use
the same Name. Only the Peer ID is guaranteed to uniquely identify a
particular peer.

n Dbg—An optional element describing the debugging message level
employed by the peer.This element is currently used only when config-
uring the peer while bootstrapping the platform. Currently accepted val-
ues for this element, from least explicit to most explicit, are error, warn,
info, and debug.

n Desc—An optional element containing a description of the peer.As with
the Name element, the contents of the Desc element are not necessarily
unique among peers.This string can be used to perform discovery, with
the same caveats as for the Name element.

n Svc—An optional element providing service configuration information.
Note that multiple Svc elements may appear in the Peer Advertisement,
each describing a different service.The format of the contents is unspeci-
fied by the Protocols Specification, and it is the responsibility of the
PeerGroup implementation managing the bootstrapping process to know
how to parse the Svc element’s contents.The format expected by the ref-
erence implementation’s Configurator class is a MCID element and a Parm
element, explained next.

n MCID—The Module Class ID of the service that this Svc element is
describing.

n Parm—The arbitrary parameters used to configure the service.The
Configurator class understands only a few parameter formats, depending
on the Module Class ID.The Svc parameters are mainly used to config-
ure the peer’s endpoint transports.Therefore, most parameters contain a
Transport Advertisement containing configuration for the endpoint pro-
tocol implementation specified by the MCID element.

12_2344 Ch 10 5/14/02 11:44 AM Page 297

298 Chapter 10 Peer Groups and Services

This configuration information is stored as a Peer Advertisement in a file
called PlatformConfig in the current directory when the JXTA platform is
started. Future attempts to bootstrap the platform from the same directory will
use the same PlatformConfig file to automatically configure the peer.

After finding or creating the Peer Advertisement, the Platform class is
responsible for generating a Peer Group Advertisement that will be used to
instantiate a World Peer Group.A Peer Group Advertisement is described using
the format in Listing 10.6.

Listing 10.6 The Peer Group Advertisement XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:PGA xmlns:jxta=”http://jxta.org”>

<GID> . . . </GID>

<MSID> . . . </MSID>

<Name> . . . </Name>

<Desc> . . . </Desc>

<Svc>

. . .

</Svc>

</jxta:PGA>

The elements of the Peer Group Advertisement provide the following
information:

n GID—A required element containing a Peer Group ID that uniquely
identifies this group. For the World Peer Group, this ID is the same on
all peers.

n MSID—A required element containing a Module Specification ID that
identifies the module providing the implementation of the peer group
module on the peer. Modules will be discussed in the section “Creating
the Net Peer Group,” later in this chapter.

n Name—An optional element containing a simple name for the peer group.
This string is not necessarily unique.

n Desc—An optional element containing a description of the peer group.
The Desc and Name elements, like their counterparts in the Peer
Advertisement, can be used to discover a Peer Group Advertisement.

n Svc—An optional element describing a service provided by the peer
group. Note that multiple Svc elements may appear in the Peer Group
Advertisement, each describing a different service.The format of the
contents of the Svc is again dependent on the PeerGroup implementation.

12_2344 Ch 10 5/14/02 11:44 AM Page 298

299The Peer Group Lifecycle

As part of generating Peer Group Advertisement for the World Peer Group,
the Platform object creates a Module Implementation Advertisement for the
group.The Module Implementation Advertisement for the group describes the
services offered by the peer group.

The Module Implementation Advertisement is populated with a set of
hard-coded advertisements for the core platform services: the Discovery,
Resolver, Rendezvous, Peer Info, and Endpoint services. In addition, elements
containing advertisements for the endpoint protocol implementations are
inserted into the advertisement.When the Platform instantiates the World Peer
Group using the generated Peer Group Advertisement, the services and proto-
cols described by the Module Implementation Advertisement are loaded and
initialized by the Platform.

The sequence of events leading to the creation of a World Peer Group
is triggered when the Platform is invoked by either the Boot class or
PeerGroupFactory.newNetPeerGroup(). Each of these methods invokes the Platform
class and uses the hard-coded set of services to instantiate a World Peer Group.
In some applications, it might not be desirable to load all the services hard-
coded into the Platform class. In this case, you can create a Peer Group
Advertisement yourself, use it to create a PeerGroup instance, and pass the
resulting PeerGroup as a parameter to the other version of
PeerGroupFactory.newNetPeerGroup:

public static PeerGroup newNetPeerGroup(PeerGroup pg)
throws PeerGroupException

This version of newNetPeerGroup bypasses the creation of a World Peer Group
using the Platform class, using the provided PeerGroup instance as the World
Peer Group instead, and proceeds directly to the creation of the Net Peer
Group.

Creating the Net Peer Group
After the World Peer Group has been created, the peer needs to instantiate the
Net Peer Group.The Net Peer Group can describe additional characteristics
about a peer, but most often it is simply a duplicate of the World Peer Group.
Although the Net Peer Group can be discovered, the majority of peers using
the reference implementation rely on the version of the Net Peer Group’s Peer
Advertisement hard-coded into the World Peer Group advertisement produced
by the Platform.

So what exactly is the Net Peer Group? Basically, the Net Peer Group is the
peer’s starting point on the P2P network.All peers belong to a Net Peer
Group, but not necessarily the same Net Peer Group. For example, an enter-
prise application might define its own Net Peer Group that peers instantiate

12_2344 Ch 10 5/14/02 11:44 AM Page 299

300 Chapter 10 Peer Groups and Services

during the bootstrapping process.All members of the enterprise would be
capable of using this Net Peer Group to communicate, but other JXTA
peers wouldn’t be capable of communicating with this network by default.

The World Peer Group is different from the Net Peer Group in that it is
really only a configuration mechanism.The Net Peer Group is the peer group
used to provide actual connectivity to the P2P network.

To generate the Net Peer Group, the Platform class hard-codes the
StartNetPeerGroup application in net.jxta.impl.peergroup into the World Peer
Group’s Module Implementation Advertisement.This application is invoked by
the platform and causes the StartNetPeerGroup class to discover or build the Net
Peer Group’s Peer Advertisement.Although the StartNetPeerGroup does provide
a way for a user to choose to discover the Net Peer Group, this functionality
is fairly hidden from the user. Usually, the StartNetPeerGroup builds a Peer
Group Advertisement from the parent World Peer Group using a default
Peer Group ID for the Net Peer Group.

After the Net Peer Group is instantiated, the services described by the peer
group’s Module Implementation Advertisement are started. In the standard Net
Peer Group, this forces the core services to begin providing the Discovery,
Resolver, Rendezvous, Peer Info, and Endpoint services.After these services
are started, the peer is connected to the network and ready to interact with
other peers. New peer groups can be created to segment the network space,
using the Net Peer Group as a template for the set of services offered by the
peer group.

In summary, the process of bootstrapping instantiates the World Peer Group,
which comprises a set of services that are usually hard-coded into the JXTA
platform implementation.After the World Peer Group has been instantiated,
the peer uses the services of the World Peer Group to discover or generate a
Net Peer Group instance.The Net Peer Group instance provides access to the
P2P network and a set of core services used by the peer.After booting into
the Net Peer Group, the peer can use the services offered by the Net Peer
Group.The peer may also elect to create other peer groups with extra capabil-
ities by using the Net Peer Group as a template for the set of core services
offered by the peer group.

Working with Peer Groups
After the World and Net Peer Groups have been created, peers can communi-
cate with each other using the core JXTA protocols. However, the Net Peer
Group provides a common space where everyone in the P2P network can
interact, a property that might not be suitable to all P2P applications.To allow

12_2344 Ch 10 5/14/02 11:44 AM Page 300

301Working with Peer Groups

peers to group themselves in some meaningful way, peers can form their
own peer groups, each providing its own set of services to members of the
peer group.

Working with peer groups requires use of the PeerGroup interface, shown in
Figure 10.5, defined in net.jxta.peergroup, and its implementations.The
StdPeerGroup class defined in net.jxta.impl.peergroup provides the PeerGroup
implementation used throughout the reference implementation.

 <<Interface>>
 PeerGroup
 (from net.jxta.peergroup)

Here : int = 0
FromParent : int = 1
Both : int = 2
DEFAULT_LIFETIME : long =1471228928
DEFAULT_EXPIRATION : long = 1209600000

getLoader() : net.jxta.platform.JxtaLoader
isRendezvous() : boolean
getPeerGroupAdvertisement() : net.jxta.protocol.PeerGroupAdvertisement
getPeerAdvertisement() : net.jxta.protocol.PeerAdvertisement
lookupService(id : net.jxta.id.ID) : net.jxta.service.Service
compatible(compat : net.jxta.document.Element) : boolean
loadModule(assignedID : net.jxta.id.ID, impl : net.jxta.document.Advertisement) : net.jxta.platform.Module
loadModule(assignedID0 : net.jxta.id.ID, specID : net.jxta.platform.ModuleSpecID, where : int) net.jxta.platform.Module
publishGroup(name : java.lang.String, description : java.lang.String) : void
newGroup(pgAdv : net.jxta.document.Advertisement) : net.jxta.peergroup.PeerGroup
newGroup(gid : net.jxta.peergroup.PeerGroupID, impl L net.jxta.document.Advertisement, name : java.lang.String, description : java.lang.String) : net.jxta.peergroup.PeerGroup
newGroup(gid : net.jxta.peergroup.PeerGroupID) : net.jxta.peergroup.PeerGroup
getRendezVousService() : net.jxta.rendezvous.RendezVousService
getEndpointService() : net.jxta.endpoint.EndpointService
getResolverService() : net.jxta.resolver.ResolverService
getDiscoveryService() : net.jxta.discovery.DiscoveryService
getPeerInfoService() : net.jxta.peer.PeerInfoService
getMembershipService() : net.jxta.membership.MembershipService
getPipeService() : net.jxta.pipe.PipeService
getPeerGroupID() : net.jxta.peergroup.PeerGroupID
getPeerID() : net.jxta.peer.PeerID
getPeerGroupName() : java.lang.String
getPeerName() : java.lang.String
getConfigAdvertisement() : net.jxta.document.Advertisement
getAllPurposePeerGroupImplAdvertisement() : net.jxta.protocol.ModuleImplAdvertisement

 <<Interface>>
 RefPeerGroup
 (from net.jxta.impl.peergroup)

getParentGroup()

 GenericPeerGroup
(from net.jxta.impl.peergroup)

 StdPeerGroup
(from net.jxta.impl.peergroup)

Figure 10.5 The PeerGroup interface and implementation classes.

The PeerGroup interface defines the standard Module Class IDs for the core
JXTA services and Module Specification IDs for the reference implementa-
tions of those core services.

12_2344 Ch 10 5/14/02 11:44 AM Page 301

302 Chapter 10 Peer Groups and Services

Creating a Peer Group
Creating a peer group isn’t much different from using any of the other services
that a peer group provides.To create a peer group, you only need to call one
of the newGroup methods, shown in Listing 10.7, provided by the PeerGroup
interface. Each of the different versions has a slightly different set of circum-
stances under which it should be invoked.

Listing 10.7 Peer Group Creation Methods

public PeerGroup newGroup(Advertisement pgAdv)

throws PeerGroupException;newGroup(Advertisement);

public PeerGroup newGroup(PeerGroupID gid)

throws PeerGroupException;

public PeerGroup newGroup(PeerGroupID gid, Advertisement impl,

String name, String description)

throws PeerGroupException;

The first version of newGroup uses a given Peer Group Advertisement to instan-
tiate the peer group.This version is used to create a peer group using an
existing Module Implementation Advertisement.

The second version of newGroup creates a new peer group using the given
Peer Group ID.The version assumes that a Peer Group Advertisement with the
corresponding Peer Group ID has already been published.

The final version of newGroup creates a new peer group using the given Peer
Group ID, Module Implementation Advertisement, name, and description. If
the given PeerGroupID is null, this method creates a new Peer Group ID for the
new group.

The example in Listing 10.8 shows how to create a new peer group using
the Net Peer Group and the newGroup method.This version simply makes a
copy of the Net Peer Group’s Module Implementation Advertisement and uses
it to instantiate the new group.The newGroup method also publishes the Peer
Group Advertisement for the new peer group in the parent peer group.The
parent peer group is considered to be the peer group used to create the group
through the call to newGroup.

Listing 10.8 Source Code for CreatePeerGroup.java

package com.newriders.jxta.chapter10;

import java.util.Enumeration;

import net.jxta.discovery.DiscoveryService;

import net.jxta.exception.PeerGroupException;

12_2344 Ch 10 5/14/02 11:44 AM Page 302

303Working with Peer Groups

import net.jxta.id.IDFactory;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupID;

import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.protocol.ModuleImplAdvertisement;

import net.jxta.protocol.PeerGroupAdvertisement;

/**

* Create a new peer group and publish it.

*/

public class CreatePeerGroup

{

/**

* The Net Peer Group for the application.

*/

private PeerGroup netPeerGroup = null;

/**

* Creates a new peer group using the Net Peer Group’s

* Module Implementation Advertisement as a template.

*

* @exception Exception if an error occurs retrieving the

* copy of the Net Peer Group’s Module

* Implementation Advertisement.

*/

public void createPeerGroup() throws Exception

{

// The name and description for the peer group.

String name = “CreatePeerGroup”;

String description =

“An example peer group to test peer group creation”;

// Obtain a preformed ModuleImplAdvertisement to

// use when creating the new peer group.

ModuleImplAdvertisement implAdv =

netPeerGroup.getAllPurposePeerGroupImplAdvertisement();

// Create the Peer Group ID.

PeerGroupID groupID = IDFactory.newPeerGroupID();

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 303

304 Chapter 10 Peer Groups and Services

// Create the new group using the Peer Group ID,

// advertisement, name, and description.

PeerGroup newGroup = netPeerGroup.newGroup(

groupID, implAdv, name, description);

// Need to publish the group remotely only because

// newGroup() handles publishing to the local peer.

PeerGroupAdvertisement groupAdv =

newGroup.getPeerGroupAdvertisement();

DiscoveryService discovery =

netPeerGroup.getDiscoveryService();

discovery.remotePublish(groupAdv,

DiscoveryService.GROUP);

}

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform

* can’t be started.

*/

public void initializeJXTA() throws PeerGroupException

{

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

}

/**

* Runs the application.

*

* @param args the command-line arguments passed to

* the application.

*/

public static void main(String[] args)

{

CreatePeerGroup creator = new CreatePeerGroup();

try

{

// Initialize the JXTA platform.

creator.initializeJXTA();

// Create the group.

creator.createPeerGroup();

Listing 10.8 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 304

305Working with Peer Groups

// Exit.

System.exit(0);

}

catch (Exception e)

{

System.out.println(“Error starting JXTA platform: “

+ e);

System.exit(1);

}

}

}

The CreatePeerGroup example doesn’t really do much of note, but it provides
the first step toward creating a new peer group that provides a new service.

Joining a Peer Group
Instantiating a peer group from an advertisement is only the first step toward
being able to interact with members of the peer group. Before a peer can
interact with the group, it needs to join the peer group, a process that allows
the peer to establish its identity within the peer group.This process allows
peer groups to permit only authorized peers to join and interact with the
peer group.

Each peer group has a membership policy that governs who can join the
peer group.When a peer instantiates a peer group, the peer group’s member-
ship policy establishes a temporary identity for the peer, similar to the
“nobody” identity in UNIX systems.This temporary identity exists for the
sole purpose of allowing the peer to establish its identity by interacting with
the membership policy.This interaction can involve the exchange of login
information, exchange of public keys, or any other mechanism that a peer
group’s membership implementation uses to establish a peer’s identity.

After a peer has successfully established its identity within the peer group,
the membership policy provides the user with credentials.These credentials
can then be used to provide verification of identity to other peers in the
group when interacting with services offered by the peer group.

The membership policy for a peer group is implemented as the
Membership service.The Membership service in the reference implementation
is defined by MembershipService, shown in Figure 10.6, which is part of the
net.jxta.membership package.

12_2344 Ch 10 5/14/02 11:44 AM Page 305

306 Chapter 10 Peer Groups and Services

Figure 10.6 The Membership service and related classes.

In addition to the MembershipService class and its implementations, the reference
implementation defines a Credential interface and an implementation called
AuthenticationCredential.These classes, defined in net.jxta.credential, are used
in conjunction with the MembershipService class to represent an identity and the
access level associated with that identity.

Two steps are involved in establishing an identity within a peer group using
the peer group’s MembershipService instance:

1. Applying for membership. This involves calling the peer group’s
MembershipService’s apply method.The apply method takes an
AuthenticationCredential argument, which specifies the authentication
method and desired identity.The method returns an Authenticator imple-
mentation that the caller can use to authenticate with the peer group.

2. Joining the group.The peer must provide the Authenticator implemen-
tation with the information that it requires to authenticate.When the
peer has completed authentication using the Authenticator, the
Authenticator’s isReadyForJoin method returns true.The peer now calls
the MembershipService’s join method, providing the Authenticator as an
argument.The join method returns a Credential object that the peer
can use to prove its identity to peer group services.

 MembershipService
 (from net.jxta.membership)

MembershipService()
getName() : java.lang.String
getInterface() : net.jxta.service.Service
apply(application : net.jxta.credential.AuthenticationCredential) : net.jxta.membership.Authenticator
join(authenticated : net.jxta.membership.Authenticator) : net.jxta.credential.Credential
resign() : void
getCurrentCredentials() : java.util.Enumeration
getAuthCredentials() : java.util.Enumeration
makeCredential(element : net.jxta.document.Element) : net.jxta.credential.Credential
getImplAdvertisement() net.jxta.document.Advertisement
stopApp() : void
startApp(args : java.lang.String[]) : int
init(group : net.jxta.peergroup.PeerGroup, assignedID : net.jxta.id.ID, adv : net.jxta.document.Advertisement) : void

 <<Interface>>
 Authenticator
 (from net.jxta.membership)

getMethodName() : java.lang.String
getAuthenticationCredential() : net.jxta.credential.AuthenticationCredential
getSourceService() : net.jxta.membership.MembershipService
isReadyForJoin() : boolean

 <<Interface>>

getSourceService() : net.jxta.membership.MembershipService
getPeerGroupID() : nte.jxta.id.ID
getPeerID() : net.jxta.id.ID
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.StructuredDoc

 AuthenticationCredential
 (from net.jxta.credential)

AuthenticationCredential(peergroup : net.jxta.peergroup.PeerGroup.method : java.lang.String, identity : net.jxta.document.Element)
getSourceService() : net.jxta.membership.MembershipService
getPeerGroupID() : net.jxta.id.ID
getPeerID() : net.jxta.id.ID
getMethod() : java.lang.String
getIdentityInfo() : net.jxta.document.Element
getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.StructuredDocument

authenticationMethod : java.lang.String

 Credential
(from net.jxta.credential)

12_2344 Ch 10 5/14/02 11:44 AM Page 306

307Working with Peer Groups

When applying for membership, the peer making the request must know the
implementation of Authenticator to interact with the Authenticator.This is
required because the Authenticator interface has no mechanism for the peer to
interact with it. Using only the Authenticator interface, a peer can only deter-
mine whether it has completed the authentication process successfully and
then proceed with joining the peer group.

The reference implementation currently provides two example
MembershipService implementations in the net.jxta.impl.membership package:
NullMembershipService and PasswdMembershipService. NullMembershipService pro-
vides a MembershipService that offers no real authentication and simply assigns
whatever identity the peer requests. PasswdMembershipService provides a simple
authentication based on login and “encrypted” passwords provided in the para-
meters in the advertisement for the Membership service.The “encryption”
consists of a simple substitution cipher and thus is not practical for securing a
real peer group.

Leaving a Peer Group
To leave a peer group, the peer simply calls the resign method on the
MembershipService implementation for the peer group.This removes all authen-
tication credentials from the MembershipService and reverts the peer to the
“nobody” identity within the peer group.

The Current Membership Implementation
Unfortunately, the current implementations of MembershipService aren’t espe-
cially useful.To provide proper authentication, a developer must develop a
MembershipService of his own to manage the creation and validation of authen-
tication credentials. In addition, the developer must provide a mechanism in
his service to use the credentials and validate the credentials passed by other
peers in requests to the service.

Although the Protocol Specification outlines the concept of an Access
service whose responsibility it is to verify credentials passed with requests, no
implementation is provided in the reference implementation.The Resolver
service’s Resolver Query and Response Messages support a Credential
element, but the contents of the element are never verified. For now, it
appears that it is the responsibility of a developer to define his own Access
service implementation and use it to verify credentials passed to his custom
peer group services.

As such, a developer currently needs only to instantiate a peer group and
can skip the steps of applying for membership and joining the peer group.This
will undoubtedly change in the future, but for now, you can safely ignore the
Membership service.

12_2344 Ch 10 5/14/02 11:44 AM Page 307

308 Chapter 10 Peer Groups and Services

Destroying a Peer Group
Many people ask,“How do I destroy a peer group that I created?”
Unfortunately, there is no way to explicitly destroy a peer group after it has
been created and its advertisement has been published.Although the PeerGroup
instance on a particular peer might be destroyed, other peers on the network
can still instantiate a PeerGroup object for the group as long as they can find the
Peer Group Advertisement for the group.After the Peer Group Advertisement
has been published, the peer group exists in the network until the advertise-
ment expires.

If the Peer Group Advertisement was published to other peers using the
default lifetime, the advertisement is removed from other peers’ caches after
two hours. However, if the Peer Group Advertisement was published locally
using the default lifetime, it will not expire for a year.

One solution to this problem is to publish Peer Group Advertisements using
a short lifespan.That way, the peer group will expire quickly if the advertise-
ment isn’t being used. However, doing this requires not using the
PeerGroup.publishGroup method or the PeerGroup.newGroup method. By default,
the PeerGroup reference implementation’s newGroup method will call publishGroup
to publish the Peer Group Advertisement.To publish the Peer Group
Advertisement with a nondefault expiration or lifespan, you must manually
create the PeerGroup instance and publish the Peer Group Advertisement using
the following steps:

1. Create the PeerGroupAdvertisement instance using the
AdvertisementFactory.newAdvertisement method, passing in the String
obtained by calling the static PeerGroupAdvertisement.getAdvertisementType
method.

2. Populate the fields of the PeerGroupAdvertisement instance, making sure to
generate a new Peer Group ID using a call to IDFactory’s newPeerGroupID
method.

3. Load the PeerGroup instance from the advertisement by calling the parent
PeerGroup’s loadModule method, passing in the Peer Group ID from the
Peer Group Advertisement and the Module Implementation
Advertisement for the new Peer Group.

4. Publish the Peer Group Advertisement locally and remotely using the
parent PeerGroup instance’s DiscoveryService instance.This enables you to
set the expiration and lifespan for the Peer Group Advertisement.

12_2344 Ch 10 5/14/02 11:44 AM Page 308

309Creating a Service

Creating a Service
Creating a service is a fairly simple task: Create a class that implements the
Service interface. In addition to creating the Service implementation itself,
other parts make up a good service design.A good service design separates,
abstracts, and encapsulates the elements of the implementation in an object-
oriented fashion.

The example service presented in the following sections extends one of the
Resolver service examples presented in Chapter 5,“The Peer Resolver
Protocol.”The example given in that chapter showed how to use the Resolver
service to create a QueryHandler that can handle a custom request that poses a
basic math problem:What is the value of the given base raised to the given
power? This example extends the basic functionality provided by that
QueryHandler example and builds a full-fledged service module.

The Example Service Messages
To simplify the implementation of the example service, the example in Listing
10.9 reuses the ExampleQueryMsg and ExampleResponseMsg classes created in
Chapter 5.These classes provide the functionality required to parse and format
the XML used by the QueryHandler to send a query and receive a response.

Listing 10.9 Source Code for ExampleQueryMsg.java

package com.newriders.jxta.chapter10;

import java.io.InputStream;

import java.io.StringWriter;

import java.util.Enumeration;

import net.jxta.document.Document;

import net.jxta.document.Element;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentFactory;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.TextElement;

/**

* An example query message, which will be wrapped by a

* Resolver query message to send the query to other peers.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 309

310 Chapter 10 Peer Groups and Services

* The query essentially asks a simple math question: “What

* is the value of (base) raised to (power)?”

*/

public class ExampleQueryMsg

{

/**

* The base for query.

*/

private double base = 0.0;

/**

* The power for the query.

*/

private double power = 0.0;

/**

* Creates a query object using the given base and power.

*

* @param aBase the base for the query.

* @param aPower the power for the query.

*/

public ExampleQueryMsg(double aBase, double aPower)

{

super();

this.base = aBase;

this.power = aPower;

}

/**

* Creates a query object by parsing the given input stream.

*

* @param stream the InputStream source of the

* query data.

* @exception Exception if the message can’t be parsed

* from the stream.

*/

public ExampleQueryMsg(InputStream stream) throws Exception

{

StructuredTextDocument document = (StructuredTextDocument)

Listing 10.9 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 310

311Creating a Service

StructuredDocumentFactory.newStructuredDocument(

new MimeMediaType(“text/xml”), stream);

Enumeration elements = document.getChildren();

while (elements.hasMoreElements())

{

TextElement element = (TextElement) elements.nextElement();

if(element.getName().equals(“base”))

{

base = Double.valueOf(element.getTextValue()).doubleValue();

continue;

}

if(element.getName().equals(“power”))

{

power = Double.valueOf(

element.getTextValue()).doubleValue();

continue;

}

}

}

/**

* Returns the base for the query.

*

* @return the base value for the query.

*/

public double getBase()

{

return base;

}

/**

* Returns a Document representation of the query.

*

* @param asMimeType the desired MIME type

* representation for the query.

* @return a Document form of the query in the

* specified MIME representation.

* @exception Exception if the document can’t be created.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 311

312 Chapter 10 Peer Groups and Services

*/

public Document getDocument(MimeMediaType asMimeType)

throws Exception

{

StructuredDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

asMimeType, “example:ExampleQuery”);

Element element;

element = document.createElement(“base”,

Double.toString(getBase()));

document.appendChild(element);

element = document.createElement(“power”,

Double.toString(getPower()));

document.appendChild(element);

return document;

}

/**

* Returns the power for the query.

*

* @return the power value for the query.

*/

public double getPower()

{

return power;

}

/**

* Returns an XML String representation of the query.

*

* @return the XML String representing this query.

*/

public String toString()

{

try

{

StringWriter out = new StringWriter();

StructuredTextDocument doc =

Listing 10.9 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 312

313Creating a Service

(StructuredTextDocument) getDocument(

new MimeMediaType(“text/xml”));

doc.sendToWriter(out);

return out.toString();

}

catch (Exception e)

{

return “”;

}

}

}

ExampleQueryMsg is a simple class that wraps a base and power value for the
exponentiation as an XML query that can be sent to another peer.The
response to an ExampleQueryMsg, ExampleResponseMsg, contains the base and power
values sent by the query, plus the result of the exponentiation.The source code
for ExampleResponseMsg is shown in Listing 10.10.

Listing 10.10 Source Code for ExampleResponseMsg.java

package com.newriders.jxta.chapter10;

import java.io.InputStream;

import java.io.StringWriter;

import java.util.Enumeration;

import net.jxta.document.Document;

import net.jxta.document.Element;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentFactory;

import net.jxta.document.StructuredTextDocument;

import net.jxta.document.TextElement;

/**

* An example query response, which will be wrapped by a Resolver response

* message to send the response to the query. The response contains the

* answer to the simple math question posed by the query.

*/

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 313

314 Chapter 10 Peer Groups and Services

public class ExampleResponseMsg

{

/**

* The base from the original query.

*/

private double base = 0.0;

/**

* The power from the original query.

*/

private double power = 0.0;

/**

* The answer value for the response.

*/

private double answer = 0;

/**

* Creates a response object using the given answer value.

*

* @param anAnswer the answer for the response.

*/

public ExampleResponseMsg(double aBase, double aPower, double anAnswer)

{

this.base = aBase;

this.power = aPower;

this.answer = anAnswer;

}

/**

* Creates a response object by parsing the given input stream.

*

* @param stream the InputStream source of the response data.

* @exception Exception if the message can’t be parsed from the

* stream.

*/

public ExampleResponseMsg(InputStream stream) throws Exception

{

StructuredTextDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

Listing 10.10 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 314

315Creating a Service

new MimeMediaType(“text/xml”), stream);

Enumeration elements = document.getChildren();

while (elements.hasMoreElements())

{

TextElement element = (TextElement) elements.nextElement();

if(element.getName().equals(“answer”))

{

answer = Double.valueOf(

element.getTextValue()).doubleValue();

continue;

}

if(element.getName().equals(“base”))

{

base = Double.valueOf(element.getTextValue()).doubleValue();

continue;

}

if(element.getName().equals(“power”))

{

power = Double.valueOf(

element.getTextValue()).doubleValue();

continue;

}

}

}

/**

* Returns the answer for the response.

*

* @return the answer value for the response.

*/

public double getAnswer()

{

return answer;

}

/**

* Returns the base for the query.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 315

316 Chapter 10 Peer Groups and Services

*

* @return the base value for the query.

*/

public double getBase()

{

return base;

}

/**

* Returns a Document representation of the response.

*

* @param asMimeType the desired MIME type representation for

* the response.

* @return a Document form of the response in the specified

* MIME representation.

* @exception Exception if the document can’t be created.

*/

public Document getDocument(MimeMediaType asMimeType) throws Exception

{

Element element;

StructuredDocument document = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

asMimeType, “example:ExampleResponse”);

element = document.createElement(“base”,

Double.toString(getBase()));

document.appendChild(element);

element = document.createElement(“power”,

Double.toString(getPower()));

document.appendChild(element);

element = document.createElement(“answer”, (

new Double(getAnswer()).toString()));

document.appendChild(element);

return document;

}

/**

* Returns the power for the query.

Listing 10.10 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 316

317Creating a Service

*

* @return the power value for the query.

*/

public double getPower()

{

return power;

}

/**

* Returns an XML String representation of the response.

*

* @return the XML String representing this response.

*/

public String toString()

{

try

{

StringWriter out = new StringWriter();

StructuredTextDocument doc = (StructuredTextDocument)

getDocument(new MimeMediaType(“text/xml”));

doc.sendToWriter(out);

return out.toString();

}

catch (Exception e)

{

return “”;

}

}

}

The XML produced by these two classes, as well as the reasoning for encapsu-
lating the classes, can be found in the original example in Chapter 5.

Creating a Listener Interface
The services throughout this book have employed listener objects to provide
an elegant way for third-party developers to receive notification of arriving
messages.This is a simple feature that the example service can add without too
much difficulty.

12_2344 Ch 10 5/14/02 11:44 AM Page 317

318 Chapter 10 Peer Groups and Services

To provide notifications, the service needs an interface for the listener
objects.The code in Listing 10.11 provides a simple interface that the
listener objects can implement to receive notification of a newly arrived
ExampleResponseMsg.

Listing 10.11 Source Code for ExampleServiceListener.java

package com.newriders.jxta.chapter10;

/**

* An interface to encapsulate an object that listens for notification

* from the ExampleService of newly arrived ExampleResponseMsg messages.

*/

public interface ExampleServiceListener

{

/**

* Process the newly arrived ExampleResponseMsg message.

*

* @param answer the object encapsulating the notification event.

*/

public void processAnswer(ExampleServiceEvent answer);

}

The ExampleListener interface defines only a single method, processAnswer, that
the service calls to notify the listener.Although it is perhaps a bit unnecessary
for this simple service, the processAnswer method takes an instance of the
ExampleServiceEvent class, shown in Listing 10.12, as a parameter.

Listing 10.12 Source Code for ExampleServiceEvent.java

package com.newriders.jxta.chapter10;

import java.util.EventObject;

/**

* An object to encapsulate the event signaling the arrival of a

* new ExampleResponseMsg at the ExampleService.

*/

public class ExampleServiceEvent extends EventObject

{

/**

* The response object that triggered this event.

12_2344 Ch 10 5/14/02 11:44 AM Page 318

319Creating a Service

*/

private ExampleResponseMsg response = null;

/**

* Creates a new event object from the given source and

* message object.

*

* @param source the ExampleService source of the event.

* @param response the newly arrived ExampleResponseMsg message.

*/

public ExampleServiceEvent(Object source, ExampleResponseMsg response)

{

super(source);

this.response = response;

}

/**

* Returns the response that triggered this event.

*

* @return the newly arrived response message.

*/

public ExampleResponseMsg getResponse()

{

return response;

}

}

The ExampleServiceEvent serves only to wrap the arriving ExampleResponseMsg,
which is perhaps overkill for such a simple service. But in a more elaborate
service, the event object could provide other valuable information. For exam-
ple, a more sophisticated service might require information about the exact
time of the message’s arrival, the endpoint protocol implementation used to
receive the message, or the source of the response.All of this information,
which is not a part of the message contents, could be added to the event
object and thereby provided to the listener in addition to the received
message itself.

12_2344 Ch 10 5/14/02 11:44 AM Page 319

320 Chapter 10 Peer Groups and Services

Creating the Example Service Interface
Although the Service interface could be directly implemented by the example
service’s implementation class, it is better to separate the definition of the ser-
vice from its implementation. By defining an interface for the example service,
a third-party developer can define a different implementation that can be used
transparently.

For the example service, only three pieces of functionality are required:
n The capability to register an ExampleServiceListener object with the ser-

vice, allowing the listener to be notified of incoming messages
n The capability to send an ExampleQueryMsg to peers in the group without

formulating the ExampleQueryMsg manually
n The capability to unregister an ExampleServiceListener object from the

service, thus preventing the listener from receiving further message
arrival notifications

The ExampleService interface shown in Listing 10.13 provides all of this func-
tionality in its methods.

Listing 10.13 Source Code for ExampleService.java

package com.newriders.jxta.chapter10;

import net.jxta.service.Service;

/**

* An interface for the ExampleService. This interface defines the

* operations that a developer can expect to use to manipulate the

* ExampleService regardless of which underlying implementation of

* the service is being used.

*/

public interface ExampleService extends Service

{

/**

* Add a listener object to the service. When new ExampleResponseMsg

* responses arrive, the service will notify each registered listener.

*

* @param listener the listener object to register with the service.

*/

public void addListener(ExampleServiceListener listener);

12_2344 Ch 10 5/14/02 11:44 AM Page 320

321Creating a Service

/**

* Send a query to the network to determine the value of the given

* base raised to the given power.

*

* @param base the base for the exponentiation operation.

* @param power the exponent for the exponentiation operation.

*/

public void findAnswer(double base, double power);

/**

* Remove a given listener object from the service. Once removed,

* a listener will no longer be notified when a new ExampleResponseMsg

* response arrives.

*

* @param listener the listener object to unregister.

*/

public void removeListener(ExampleServiceListener listener);

}

Notice that the interface doesn’t implement the Service interface.This respon-
sibility is left to the implementation of the ExampleService interface.

The ExampleService Implementation
The ExampleService implementation shown in Listing 10.14 provides the actual
functionality provided by the service. It is responsible for registering with the
Resolver service to accept queries from peers and managing the set of regis-
tered listeners.

Listing 10.14 Source Code for ExampleServiceImpl.java

package com.newriders.jxta.chapter10;

import java.io.ByteArrayInputStream;

import java.io.IOException;

import java.util.Vector;

import net.jxta.document.Advertisement;

import net.jxta.exception.PeerGroupException;

import net.jxta.exception.NoResponseException;

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 321

322 Chapter 10 Peer Groups and Services

import net.jxta.exception.DiscardQueryException;

import net.jxta.exception.ResendQueryException;

import net.jxta.id.ID;

import net.jxta.impl.protocol.ResolverQuery;

import net.jxta.impl.protocol.ResolverResponse;

import net.jxta.peergroup.PeerGroup;

import net.jxta.protocol.ModuleImplAdvertisement;

import net.jxta.protocol.ResolverQueryMsg;

import net.jxta.protocol.ResolverResponseMsg;

import net.jxta.resolver.QueryHandler;

import net.jxta.resolver.ResolverService;

import net.jxta.service.Service;

/**

* The implementation of the ExampleService interface. This service

* builds on top of the Resolver service to provide the query

* functionality.

*/

public class ExampleServiceImpl implements ExampleService, QueryHandler

{

/**

* The Module Implementation advertisement for this service.

*/

private Advertisement implAdvertisement = null;

/**

* The handler name used to register the Resolver handler.

*/

private String handlerName = null;

/**

* The set of listener objects registered with the service.

*/

private Vector registeredListeners = new Vector();

Listing 10.14 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 322

323Creating a Service

/**

* The peer group to which the service belongs.

*/

private PeerGroup myPeerGroup = null;

/**

* The Resolver service used to send response messages.

*/

private ResolverService resolver = null;

/**

* A unique query ID that can be used to track a query.

*/

private int queryID = 0;

/**

* Add a listener object to the service. When new ExampleResponseMsg

* responses arrive, the service will notify each registered listener.

* This method is synchronized to prevent multiple threads from

* altering the set of registered listeners simultaneously.

*

* @param listener the listener object to register with the service.

*/

public synchronized void addListener(ExampleServiceListener listener)

{

registeredListeners.addElement(listener);

}

/**

* Send a query to the network to determine the value of the given

* base raised to the given power.

*

* @param base the base for the exponentiation operation.

* @param power the exponent for the exponentiation operation.

*/

public void findAnswer(double base, double power)

{

// Make sure the service has been started.

if (resolver != null)

{

// Create the query object using the given base and power.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 323

324 Chapter 10 Peer Groups and Services

ExampleQueryMsg equery = new ExampleQueryMsg(base, power);

String localPeerId = myPeerGroup.getPeerID().toString();

// Wrap the query in a Resolver Query Message.

ResolverQuery query = new ResolverQuery(handlerName,

“JXTACRED”, localPeerId, equery.toString(), queryID++);

// Send the query using the Resolver service.

resolver.sendQuery(null, query);

}

}

/**

* Returns the advertisement for this service. In this case, this is

* the ModuleImplAdvertisement passed in when the service was

* initialized.

*

* @return the advertisement describing this service.

*/

public Advertisement getImplAdvertisement()

{

return implAdvertisement;

}

/**

* Returns an interface used to protect this service.

*

* @return the wrapper object to use to manipulate this service.

*/

public Service getInterface()

{

// We don’t really need to provide an interface object to protect

// this service, so this method simply returns the service itself.

return this;

}

/**

* Initialize the service.

*

* @param group the PeerGroup containing this service.

* @param assignedID the identifier for this service.

Listing 10.14 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 324

325Creating a Service

* @param implAdv the advertisement specifying this service.

* @exception PeerGroupException is not thrown ever by this

* implementation.

*/

public void init(PeerGroup group, ID assignedID, Advertisement implAdv)

throws PeerGroupException

{

// Save the module’s implementation advertisement.

implAdvertisement = (ModuleImplAdvertisement) implAdv;

// Use the assigned ID as the Resolver handler name.

handlerName = assignedID.toString();

// Save a reference to the group of which that this service

// is a part.

myPeerGroup = group;

}

/**

* Processes the Resolver query message and returns a response.

*

* @param query the message to be processed.

* @exception IOException if the query can’t be read.

*/

public ResolverResponseMsg processQuery(ResolverQueryMsg query)

throws IOException, NoResponseException, DiscardQueryException,

ResendQueryException

{

ResolverResponse response;

ExampleQueryMsg eq;

double answer = 0.0;

try

{

// Extract the query message.

eq = new ExampleQueryMsg(

new ByteArrayInputStream((query.getQuery()).getBytes()));

}

catch (Exception e)

{

throw new IOException();

}

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 325

326 Chapter 10 Peer Groups and Services

// Perform the calculation.

answer = Math.pow(eq.getBase(), eq.getPower());

// Create the response message.

ExampleResponseMsg er = new ExampleResponseMsg(

eq.getBase(), eq.getPower(), answer);

// Wrap the response message in a Resolver Response Message.

response = new ResolverResponse(handlerName, “JXTACRED”,

query.getQueryId(), er.toString());

// Return the message so that the Resolver service can handle

// sending it.

return response;

}

/**

* Process a Resolver Response Message.

*

* @param response a response message to be processed.

*/

public void processResponse(ResolverResponseMsg response)

{

ExampleResponseMsg er;

ExampleServiceEvent event;

try

{

// Extract the message from the Resolver response.

er = new ExampleResponseMsg(

new ByteArrayInputStream(

(response.getResponse()).getBytes()));

// Create an event to send to the listeners.

event = new ExampleServiceEvent(this, er);

// Notify each of the registered listeners.

if (registeredListeners.size() > 0)

{

ExampleServiceListener listener = null;

Listing 10.14 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 326

327Creating a Service

for (int i = 0; i < registeredListeners.size(); i++)

{

listener = (ExampleServiceListener)

registeredListeners.elementAt(i);

listener.processAnswer(event);

}

}

}

catch (Exception e)

{

// This is not the right type of response message, or

// the message is improperly formed. Ignore the exception;

// do nothing with the message.

}

}

/**

* Remove a given listener object from the service. Once removed,

* a listener will no longer be notified when a new ExampleResponseMsg

* response arrives.

*

* @param listener the listener object to unregister.

*/

public synchronized void removeListener(ExampleServiceListener listener)

{

registeredListeners.removeElement(listener);

}

/**

* Start the service.

*

* @param args the arguments to the service. Not used.

* @return 0 to indicate the service started.

*/

public int startApp(String[] args)

{

// Now that the service is being started, set the ResolverService

// object to use to handle queries and responses.

resolver = myPeerGroup.getResolverService();

// Add ourselves as a listener using the unique constructed

// handler name.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 327

328 Chapter 10 Peer Groups and Services

resolver.registerHandler(handlerName, this);

return 0;

}

/**

* Stop the service.

*/

public void stopApp()

{

// Unregister ourselves as a listener.

if (resolver != null)

{

resolver.unregisterHandler(handlerName);

}

}

}

Note
The service implementation must have a zero-argument constructor to allow the platform to load
the service properly when initializing a peer group configured to use the service implementation. In
the ExampleServiceImpl class, no constructor is defined, so the Java compiler generates a zero-
argument constructor by default.

The init method implementation simply stores the passed parameters for later
use.The passed ID will be used later to register the service with the Resolver
service, and the given peer group will be used to obtain access to the Resolver
service.Although nothing prevents the ExampleServiceImpl from registering
with the Resolver in the init method, that task is performed in the startApp
method.The init method is called to prepare the service, but the service
shouldn’t begin handling queries until the startApp method is called. Hence,
the service doesn’t register with the Resolver service until startApp is called.
Conversely, the stopApp method unregisters the service with the Resolver ser-
vice to prevent the service from handling queries when it has been stopped.

Adding the ExampleService Implementation to a Peer Group
The most difficult part of creating a new service is not creating the Service
implementation, but adding it to a peer group.Adding the service requires
the creation of the Module Class, Module Specification, and Module

Listing 10.14 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 328

329Creating a Service

Implementation Advertisements describing the Service implementation.
Usually it is preferred that the Module Class and Specification IDs be created
beforehand so that their values are known for future reference.The simple
application in Listing 10.15 generates the various required IDs and prints their
values to the screen.

Listing 10.15 Source Code for GenerateID.java

package com.newriders.jxta.chapter10;

import net.jxta.id.IDFactory;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupID;

import net.jxta.platform.ModuleClassID;

import net.jxta.platform.ModuleSpecID;

/**

* A simple application to generate a Module Class ID, Module Specification

* ID, Peer Group ID, and Module Specification ID based on the standard

* peer group Module Class ID.

*/

public class GenerateID

{

/**

* Generates the IDs.

*

* @param args the command-line arguments. Ignored by this app.

*/

public static void main(String[] args)

{

// Create an entirely new Module Class ID.

ModuleClassID classID = IDFactory.newModuleClassID();

// Create a Module Specification ID based on the generated

// Module Class ID.

ModuleSpecID specID = IDFactory.newModuleSpecID(classID);

// Create an entirely new Peer Group ID.

PeerGroupID groupID = IDFactory.newPeerGroupID();

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 329

330 Chapter 10 Peer Groups and Services

// Create a Module Specification ID based on the peer group

// Module Class ID.

ModuleSpecID groupSpecID = IDFactory.newModuleSpecID(

PeerGroup.allPurposePeerGroupSpecID.getBaseClass());

// Print out the generated IDs.

System.out.println(“Module Class ID: “ + classID.toString());

System.out.println(“Module Spec ID: “ + specID.toString());

System.out.println(“Peer Group ID: “ + groupID.toString());

System.out.println(“Peer Group Module Spec ID: “

+ groupSpecID.toString());

}

}

Although it is not essential, the GenerateID application also generates the Peer
Group ID that will be used to create a peer group in the example. Creating a
new peer group is a required part of adding a new service because the defini-
tion of the services offered by a peer group cannot change.The Module
Implementation Advertisement associated with a peer group specifies which
services the peer group offers. Because this advertisement is most likely
cached throughout the network, allowing it to be changed would result in
inconsistencies in the services offered by members of the peer group across the
network. For the same reason that a Module Implementation Advertisement
cannot be changed, a Peer Group Advertisement also cannot be altered.
Therefore, offering a new service requires the creation of both a new Module
Implementation Advertisement for the peer group and a new peer group that
uses that Module Implementation Advertisement.

Because the example will have to create a new Module Implementation
Advertisement, GenerateID creates the Module Specification ID that will be
used for the new peer group’s Module Implementation Advertisement.This ID
is created using the Module Class ID of the standard peer group reference
implementation.

With all those IDs generated, all that remains is to write an application such
as Listing 10.16 that creates a new peer group that uses the new service.

Listing 10.15 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 330

331Creating a Service

Listing 10.16 Source Code for ExampleServiceTest.java

package com.newriders.jxta.chapter10;

import java.awt.BorderLayout;

import java.awt.Container;

import java.awt.FlowLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JTextField;

import java.net.MalformedURLException;

import java.net.UnknownServiceException;

import java.net.URL;

import java.util.Enumeration;

import java.util.Hashtable;

import net.jxta.discovery.DiscoveryService;

import net.jxta.document.AdvertisementFactory;

import net.jxta.document.Element;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentFactory;

import net.jxta.document.StructuredTextDocument;

import net.jxta.exception.PeerGroupException;

import net.jxta.exception.ServiceNotFoundException;

import net.jxta.id.IDFactory;

import net.jxta.impl.peergroup.StdPeerGroupParamAdv;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupID;

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 331

332 Chapter 10 Peer Groups and Services

import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.platform.ModuleClassID;

import net.jxta.platform.ModuleSpecID;

import net.jxta.protocol.ModuleClassAdvertisement;

import net.jxta.protocol.ModuleImplAdvertisement;

import net.jxta.protocol.ModuleSpecAdvertisement;

import net.jxta.protocol.PeerGroupAdvertisement;

/**

* An application to create a peer group, configure a new service for

* the peer group, and then interact with other peers using that new

* service.

*/

public class ExampleServiceTest implements ExampleServiceListener

{

/**

* The Module Class ID to use for the service.

* YOU SHOULD REPLACE THIS WITH ONE YOU GENERATE

* YOURSELF USING THE GenerateID APPLICATION!

*/

private static final String refModuleClassID =

“urn:jxta:uuid-128E938121DD4957B74B90EE27FDC61F05”;

/**

* The Module Specification ID to use for the service.

* YOU SHOULD REPLACE THIS WITH ONE YOU GENERATE

* YOURSELF USING THE GenerateID APPLICATION!

*/

private static final String refModuleSpecID =

“urn:jxta:uuid-128E938121DD4957B74B90EE27FDC61FA385BCB”

+ “1BA504B0FA69F99FE84CDC25B06”;

/**

* The Peer Group ID to use for the application.

* YOU SHOULD REPLACE THIS WITH ONE YOU GENERATE

* YOURSELF USING THE GenerateID APPLICATION!

*/

private static final String refPeerGroupID =

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 332

333Creating a Service

“urn:jxta:uuid-A87A7DD0762F47E88B2FB5452D47B3A802”;

/**

* The peer group Module Specification ID to use for the application.

* YOU SHOULD REPLACE THIS WITH ONE YOU GENERATE

* YOURSELF USING THE GenerateID APPLICATION!

*/

private static final String refPeerGroupSpec =

“urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE00000001CB18295”

+ “F0DE94F99983AA2F00C1DE42F06”;

/**

* The Net Peer Group for the application.

*/

private PeerGroup netPeerGroup = null;

/**

* The frame for the application user interface.

*/

private JFrame clientFrame = new JFrame(“Exponentiator”);

/**

* The textfield for accepting the base input for the

* exponentiation operation.

*/

private JTextField baseText = new JTextField(5);

/**

* The textfield for accepting the power input for the

* exponentiation operation.

*/

private JTextField powerText = new JTextField(5);

/**

* The new group created by the application.

*/

private PeerGroup newGroup = null;

/**

* Create the Module Class Advertisement for the service, using the

* preconfigured ID in refModuleClassID.

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 333

334 Chapter 10 Peer Groups and Services

*

* @return the generated Module Class Advertisement.

* @exception UnknownServiceException, MalformedURLException thrown

* if the refModuleClassID is invalid or malformed.

*/

private ModuleClassAdvertisement createModuleClassAdv()

throws UnknownServiceException, MalformedURLException

{

// Create the class ID from the refModuleClassID string.

ModuleClassID classID = (ModuleClassID) IDFactory.fromURL(

new URL((refModuleClassID)));

// Create the Module Class Advertisement.

ModuleClassAdvertisement moduleClassAdv =

(ModuleClassAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleClassAdvertisement.getAdvertisementType());

// Configure the Module Class Advertisement.

moduleClassAdv.setDescription(

“A service to handle exponentiation math problems.”);

moduleClassAdv.setModuleClassID(classID);

moduleClassAdv.setName(“Exponentiator Class”);

// Return the advertisement to the caller.

return moduleClassAdv;

}

/**

* Create the Module Implementation Advertisement for the service,

* using the specification ID in the passed in ModuleSpecAdvertisement

* advertisement. Use the given ModuleImplAdvertisement to create the

* compatibility element of the module impl specification.

*

* @param groupImpl the ModuleImplAdvertisement of the parent

* peer group.

* @param moduleSpecAdv the source of the specification ID.

* @return the generated Module Implementation Advertisement.

*/

private ModuleImplAdvertisement createModuleImplAdv(

ModuleImplAdvertisement groupImpl,

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 334

335Creating a Service

ModuleSpecAdvertisement moduleSpecAdv)

{

// Get the specification ID from the passed advertisement.

ModuleSpecID specID = moduleSpecAdv.getModuleSpecID();

// Create the Module Implementation Advertisement.

ModuleImplAdvertisement moduleImplAdv = (ModuleImplAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleImplAdvertisement.getAdvertisementType());

// Configure the Module Implementation Advertisement.

moduleImplAdv.setCode(

“com.newriders.jxta.chapter10.ExampleServiceImpl”);

moduleImplAdv.setCompat(groupImpl.getCompat());

moduleImplAdv.setDescription(

“Reference Exponentiator implementation”);

moduleImplAdv.setModuleSpecID(specID);

moduleImplAdv.setProvider(“Brendon J. Wilson”);

// Return the advertisement to the caller.

return moduleImplAdv;

}

/**

* Create the Module Specification Advertisement for the service,

* using the preconfigured ID in refModuleSpecID.

*

* @return the generated Module Class Advertisement.

* @exception UnknownServiceException, MalformedURLException thrown

* if the refModuleSpecID is invalid or malformed.

*/

private ModuleSpecAdvertisement createModuleSpecAdv()

throws UnknownServiceException, MalformedURLException

{

// Create the specification ID from the refModuleSpecID string.

ModuleSpecID specID = (ModuleSpecID) IDFactory.fromURL(

new URL((refModuleSpecID)));

// Create the Module Specification Advertisement.

ModuleSpecAdvertisement moduleSpecAdv = (ModuleSpecAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleSpecAdvertisement.getAdvertisementType());

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 335

336 Chapter 10 Peer Groups and Services

// Configure the Module Specification Advertisement.

moduleSpecAdv.setCreator(“Brendon J. Wilson”);

moduleSpecAdv.setDescription(

“A specification for an exponentiation service.”);

moduleSpecAdv.setModuleSpecID(specID);

moduleSpecAdv.setName(“Exponentiator Spec”);

moduleSpecAdv.setSpecURI(

“http://www.brendonwilson.com/projects/jxta”);

moduleSpecAdv.setVersion(“1.0”);

// Return the advertisement to the caller.

return moduleSpecAdv;

}

/**

* Creates a peer group and configures the ExampleService

* implementation to run as a peer group service.

*

* @exception Exception, PeerGroupException if there is a problem

* while creating the peer group or the service

* advertisements.

*/

public void createPeerGroup() throws Exception, PeerGroupException

{

// The name and description for the peer group.

String name = “CreatePeerGroup”;

String description =

“An example peer group to test peer group creation”;

// The Discovery service to use to publish the module and peer

// group advertisements.

DiscoveryService discovery = netPeerGroup.getDiscoveryService();

// Obtain a preformed ModuleImplAdvertisement to use when creating

// the new peer group. This is the Module Implementation

// Advertisement of the Net Peer Group and contains all of the

// services and applications already configured to run in that peer

// group. Using this method simplifies the task of creating a new

// peer group and configuring a new service.

ModuleImplAdvertisement implAdv =

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 336

337Creating a Service

netPeerGroup.getAllPurposePeerGroupImplAdvertisement();

// Create the Module Class Advertisement.

ModuleClassAdvertisement moduleClassAdv = createModuleClassAdv();

// Create the Module Specification Advertisement.

ModuleSpecAdvertisement moduleSpecAdv = createModuleSpecAdv();

// Create the Module Implementation Advertisement.

ModuleImplAdvertisement moduleImplAdv =

createModuleImplAdv(implAdv,moduleSpecAdv);

// Get the parameters for the peer group’s Module Implementation

// Advertisement to add our service.

StdPeerGroupParamAdv params =

new StdPeerGroupParamAdv(implAdv.getParam());

// Get the services from the parameters.

Hashtable services = params.getServices();

// Add our service to the set of services.

services.put(moduleClassAdv.getModuleClassID(), moduleImplAdv);

// Set the services on the parameters, and set the parameters on

// the implementation advertisement.

params.setServices(services);

implAdv.setParam((StructuredDocument) params.getDocument(

new MimeMediaType(“text”, “xml”)));

// VERY IMPORTANT! You must change the Module Specification ID

// for the implementation advertisement. If you don’t, the new

// peer group’s Module Specification ID will still point to the

// old specification, and the new service will not be loaded.

implAdv.setModuleSpecID((ModuleSpecID) IDFactory.fromURL(

new URL(refPeerGroupSpec)));

// Publish the Module Class and Specification Advertisements.

discovery.publish(moduleClassAdv, DiscoveryService.ADV);

discovery.remotePublish(moduleClassAdv, DiscoveryService.ADV);

discovery.publish(moduleSpecAdv, DiscoveryService.ADV);

discovery.remotePublish(moduleSpecAdv, DiscoveryService.ADV);

discovery.publish(implAdv, DiscoveryService.ADV);

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 337

338 Chapter 10 Peer Groups and Services

discovery.remotePublish(implAdv, DiscoveryService.ADV);

// Create the Peer Group ID.

PeerGroupID groupID = (PeerGroupID) IDFactory.fromURL(

new URL((refPeerGroupID)));

// Create the new group using the group ID, advertisement, name,

// and description.

newGroup = netPeerGroup.newGroup(groupID, implAdv, name,

description);

// Need to publish the group remotely only because newGroup()

// handles publishing to the local peer.

PeerGroupAdvertisement groupAdv =

newGroup.getPeerGroupAdvertisement();

discovery.remotePublish(groupAdv, DiscoveryService.GROUP);

}

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform can’t

* be started.

*/

public void initializeJXTA() throws PeerGroupException

{

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

}

/**

* Starts the application.

*

* @param args the command-line arguments passed to the application.

*/

public static void main(String[] args)

{

ExampleServiceTest test = new ExampleServiceTest();

try

{

// Initialize the JXTA platform.

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 338

339Creating a Service

test.initializeJXTA();

// Create the group.

test.createPeerGroup();

// Show a GUI to accept input.

test.showGUI();

}

catch (Exception e)

{

System.out.println(“Error starting JXTA platform: “ + e);

System.exit(1);

}

}

/**

* The implementation of the ExampleServiceListener interface. This

* allows us to display a message each time a message is received by

* the ExampleService.

*

* @param answer the event containing the newly arrived message.

*/

public void processAnswer(ExampleServiceEvent event)

{

// Extract the response message from the event object.

ExampleResponseMsg er = event.getResponse();

// Print out the answer given in the response.

String answer = “The value of “ + er.getBase() + “ raised to “

+ er.getPower() + “ is: “ + er.getAnswer();

JOptionPane.showMessageDialog(null, answer, “Answer Received!”,

JOptionPane.INFORMATION_MESSAGE);

}

/**

* Convenience method to find the service and use it to send

* a query to other peers’ ExampleService.

*

* @param base the base for the exponentiation query.

* @param power the power for the exponentiation query.

*/

private void sendMessage(String base, String power)

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 339

340 Chapter 10 Peer Groups and Services

{

try

{

// Convert the input to numbers.

double baseValue = Double.parseDouble(base);

double powerValue = Double.parseDouble(power);

// Find the service on the peer group.

ModuleClassID classID = (ModuleClassID) IDFactory.fromURL(

new URL((refModuleClassID)));

ExampleService exponentiator =

(ExampleService) newGroup.lookupService(classID);

exponentiator.findAnswer(baseValue, powerValue);

}

catch (NumberFormatException e)

{

// Warn the user.

JOptionPane.showMessageDialog(null, “The base and power must “

+ “both be numbers!”, “Input Error!”,

JOptionPane.ERROR_MESSAGE);

}

catch (Exception e2)

{

// Warn the user.

JOptionPane.showMessageDialog(null, “Error finding service!”,

“Service Error!”, JOptionPane.ERROR_MESSAGE);

}

}

/**

* Displays a user interface to allow the user to send queries to

* other peers.

*

* @exception exceptions thrown only if the new service can’t be

* found.

*/

private void showGUI() throws UnknownServiceException,

MalformedURLException, ServiceNotFoundException

{

JButton sendButton = new JButton(“Send Message”);

JButton quitButton = new JButton(“Quit”);

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 340

341Creating a Service

JPanel sendPane = new JPanel();

JLabel baseLabel = new JLabel(“Base:”);

JLabel powerLabel = new JLabel(“Power:”);

Container pane = clientFrame.getContentPane();

// Populate the GUI frame.

sendPane.setLayout(new FlowLayout());

sendPane.add(baseLabel);

sendPane.add(baseText);

sendPane.add(powerLabel);

sendPane.add(powerText);

sendPane.add(sendButton);

sendPane.add(quitButton);

pane.setLayout(new BorderLayout());

pane.add(sendPane, BorderLayout.SOUTH);

// Set up listeners for the buttons.

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e)

{

// Send the message.

sendMessage(baseText.getText(), powerText.getText());

// Clear the text.

baseText.setText(“”);

powerText.setText(“”);

}

}

);

quitButton.addActionListener(

new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

clientFrame.hide();

// Stop the JXTA platform. Currently, there isn’t any

// nice way to do this.

System.exit(0);

continues

12_2344 Ch 10 5/14/02 11:44 AM Page 341

342 Chapter 10 Peer Groups and Services

}

}

);

// Find the new service on the peer group and add ourselves

// as a listener.

ModuleClassID classID = (ModuleClassID) IDFactory.fromURL(

new URL((refModuleClassID)));

ExampleService exponentiator =

(ExampleService) newGroup.lookupService(classID);

exponentiator.addListener(this);

// Pack and display the user interface.

clientFrame.pack();

clientFrame.show();

}

}

To simplify the task of creating a Module Implementation Advertisement
for a new peer group, a developer can use the
getAllPurposePeerGroupImplAdvertisement on an existing peer group.This
method provides a copy of the peer group’s ModuleImplAdvertisement containing
the parameters that specify the services offered by the peer group. In the
reference implementation, these parameters can be manipulated via the
StdPeerGroupParamAdv class provided in the net.jxta.impl.peergroup package.

The process of creating a new peer group with a new service can be con-
fusing, so here are the essential steps that the ExampleServiceTest executes:

n createModuleClassAdv—This method creates the Module Class
Advertisement for the example service, using a Module Class ID hard-
coded in the ExampleServiceTest.This Module Class ID was generated
using GenerateID.The Module Class Advertisement is configured with the
Module Class ID, plus a simple name and description.

n createModuleSpecAdv—This method creates the Module Specification
Advertisement for the example service, using a Module Specification ID
hard-coded in the ExampleServiceTest.This Module Specification ID was
generated using GenerateID.The Module Specification Advertisement is
configured to provide version information on the new service and where
to find a document describing the specification of the service.

Listing 10.16 Continued

12_2344 Ch 10 5/14/02 11:44 AM Page 342

343Creating a Service

n createModuleImplAdv—This method creates the Module Implementation
Advertisement for the example service, using the same Module
Specification ID used when creating the Module Specification
Advertisement.The Module Implementation Advertisement is configured
to provide information on the implementation of the service.This is
where the ExampleServiceImpl code is bound to a Module Implementation
Advertisement.To provide the same compatibility as other services on
the peer, the generic implementation advertisement retrieved using the
getAllPurposePeerGroupImplAdvertisement method is passed to this method.
This advertisement is used as the source of the compatibility information
configured on the Module Implementation Advertisement for the new
service.

After the various module advertisements for the example service have been
created, the Module Implementation Advertisement for the new service must
be added to the Module Implementation Advertisement for the peer group.
The ExampleServiceTest application performs the following steps to alter the
generic peer group Module Implementation Advertisement returned by the
getAllPurposePeerGroupImplAdvertisement method:

1. Extract the parameters from the generic peer group Module
Implementation Advertisement using getParam, and create a
StdPeerGroupParams object.This object deals with the format for the para-
meters used by the reference implementation of the PeerGroup interface.

2. Extract the parameter’s Hashtable of services using getServices.

3. Add the new service implementation advertisement using the put
method. In the reference implementation, services are added to the
Hashtable using the service’s class ID as a key.

4. Set the service Hashtable on the parameters using setServices.

5. Set the parameters on the peer group’s Module Implementation
Advertisement using setParam.

6. Change the Module Implementation Advertisement’s Module
Specification ID.This is a very important step! If the implementation’s
Module Implementation’s Module Specification ID isn’t changed, the
new peer group will use the Module Specification ID of the peer group
that provided the generic peer group Module Implementation
Advertisement.When the new peer group is created, the platform will
search for an implementation of the old module specification; therefore,
the new service will never be loaded.

12_2344 Ch 10 5/14/02 11:44 AM Page 343

344 Chapter 10 Peer Groups and Services

When those steps are completed, the new peer group can be created using the
new peer group Module Implementation Advertisement.The new peer
group’s Module Implementation Advertisement causes the new service to be
loaded and to start the new service.

Running the ExampleServiceTest Application
To run the ExampleServiceTest and see the example service in action, follow
these steps:

1. Compile all the source code.

2. Place the resulting class files in a new directory.

3. Copy all the JXTA JAR files into this new directory.

4. Create a copy of this directory.

5. Start the ExampleServiceTest from the first directory by opening a com-
mand console, changing to the first directory, and executing this code:

java -classpath .;beepcore.jar;cms.jar;cryptix32.jar;cryptix-asn1.jar;
instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;
log4j.jar;minimalBC.jar com.newriders.jxta.chapter10.ExampleServiceTest

The user interface for the application should appear. Start the ExampleServiceTest
application from the second directory in the same way.After the user interface
appears, you should be able to use the user interface to send a message via the
example service between the two applications.

Summary
In this chapter, you’ve seen peer groups and peer group services and learned
how they are related.As part of this discussion, this chapter explored how
modules can be used within JXTA and how JXTA provides support for
multiple versions and implementations of a module. Finally, the chapter
demonstrated how to create a new service module and add it to a new peer
group. In the next chapter, all the elements of the previous chapters are
brought together in a sample application to demonstrate the power of JXTA.

12_2344 Ch 10 5/14/02 11:44 AM Page 344

