
Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

Introduction

1

PEER-TO-PEER (P2P) TECHNOLOGY ENABLES any network-aware device to pro-
vide services to another network-aware device.A device in a P2P network can
provide access to any type of resource that it has at its disposal, whether docu-
ments, storage capacity, computing power, or even its own human operator.
Although P2P might sound like a dot-com fad, the technology is a natural
extension of the Internet’s philosophy of robustness through decentralization.
In the same manner that the Internet provides domain name lookup (DNS),
World Wide Web, email, and other services by spreading responsibility among
millions of servers, P2P has the capacity to power a whole new set of robust
applications by leveraging resources spread across all corners of the Internet.

Introduction to Peer-to-Peer
Most Internet services are distributed using the traditional client/server archi-
tecture, illustrated in Figure 1.1. In this architecture, clients connect to a server
using a specific communications protocol, such as the File Transfer Protocol
(FTP), to obtain access to a specific resource. Most of the processing involved
in delivering a service usually occurs on the server, leaving the client relatively
unburdened. Most popular Internet applications, including the World Wide
Web, FTP, telnet, and email, use this service-delivery model.

02_2344 Ch 01 5/14/02 11:26 AM Page 3

4 Chapter 1 Introduction

Figure 1.1 Client/server architecture.

Unfortunately, this architecture has a major drawback.As the number of clients
increases, the load and bandwidth demands on the server also increase, eventu-
ally preventing the server from handling additional clients.The advantage of
this architecture is that it requires less computational power on the client side.
Ironically, most users have been persuaded to upgrade their computer systems
to levels that are ludicrously overpowered for the most popular Internet appli-
cations: surfing the web and retrieving email.

The client in the client/server architecture acts in a passive role, capable of
demanding services from servers but incapable of providing services to other
clients.This model of service delivery was developed at a time when most
machines on the Internet had a resolvable static IP address, meaning that all
machines on the Internet could find each other easily using a simple name
(such as yourmachine.com). If all machines on the network ran both a server and
a client, they formed the foundation of a rudimentary P2P network.

As the Internet grew, the finite supply of IP addresses prompted service
providers to begin dynamically allocating IP addresses to machines each time
they connected to the network through dial-up connections.The dynamic
nature of these machines’ IP addresses effectively prevented users from running
useful servers.Although someone could still run a server, that user couldn’t
access it unless he knew the machine’s IP address beforehand.These computers
form the “edge” of the Internet: machines that are connected but incapable of
easily participating in the exchange of services. For this reason, most useful ser-
vices are centralized on servers with resolvable IP addresses, where they can be
reached by anyone who knows the server’s easy-to-remember domain name.

64.40.111.90

209.52.106.37 142.58.110.2

216.110.42.176 64.40.111.48

newriders.com

Client Responsibilities:

- Sending commands to request a service

- Receiving responses to a request for a service Server Responsibilities:

- Receiving commands requesting a service

- Processing service requests and executing the requested service

- Sending response with results of the requested service

02_2344 Ch 01 5/14/02 11:26 AM Page 4

5Introduction to Peer-to-Peer

Another reason that most clients’ machines can’t run servers is that they are
a part of a private network, usually run by their own corporation’s IT depart-
ment.This private network is usually isolated from the Internet by a firewall, a
device designed to prevent arbitrary connections into and out of the private
network. Corporations usually create a private network to secure sensitive cor-
porate information as well as to prevent against network abuse or misuse.The
side effect of this technology is that a computer outside the private network
can’t connect to a computer within the private network to obtain services.

Consider the amount of computing and storage power that these client
machines represent! Assume that only 10 million 100MHz machines are con-
nected to the Internet at any one time, each possessing only 100MB of unused
storage space, 1000bps of unused bandwidth, and 10% unused processing
power.At any one time, these clients represent 10 petabytes (PB) (1015 bytes) of
available storage space, 10 billion bps of available bandwidth (approximately
1.25GBps), and 108 MHz of wasted processing power! These are conservative
estimates that only hint at the enormous untapped potential waiting to be
unleashed from the “edge” of the Internet.

P2P is the key to realizing this potential, giving individual machines a
mechanism for providing services to each other. Unlike the client/server archi-
tecture, P2P networks don’t rely on a centralized server to provide access to
services, and they usually operate outside the domain name system.As shown
in Figure 1.2, P2P networks shun the centralized organization of the
client/server architecture and instead employ a flat, highly interconnected
architecture. By allowing intermittently connected computers to find each
other, P2P enables these machines to act as both clients and servers that can
determine the services available on the P2P network and engage those services
in some application-specific manner.

The main advantage of P2P networks is that they distribute the responsibil-
ity of providing services among all peers on the network; this eliminates
service outages due to a single point of failure and provides a more scalable
solution for offering services. In addition, P2P networks exploit available
bandwidth across the entire network by using a variety of communication
channels and by filling bandwidth to the “edge” of the Internet. Unlike
traditional client/server communications, in which specific routes to popular
destinations can become overtaxed (for example, the route to Amazon.com),
P2P enables communication via a variety of network routes, thereby reducing
network congestion.

02_2344 Ch 01 5/14/02 11:26 AM Page 5

6 Chapter 1 Introduction

Figure 1.2 Peer-to-peer architecture.

P2P has the capability of serving resources with high availability at a much
lower cost while maximizing the use of resources from every peer connected
to the P2P network.Whereas client/server solutions rely on the addition of
costly bandwidth, equipment, and co-location facilities to maintain a robust
solution, P2P can offer a similar level of robustness by spreading network and
resource demands across the P2P network. Companies such as Intel are already
using P2P to reduce the cost of distributing documents and files across the
entire company.

Unfortunately, P2P suffers from some disadvantages due to the redundant
nature of a P2P network’s structure.The distributed form of communications
channels in P2P networks results in service requests that are nondeterministic
in nature. For example, clients requesting the exact same resource from the
P2P network might connect to entirely different machines via different com-
munication routes, with different results. Requests sent via a P2P network
might not result in an immediate response and, in some cases, might not result
in any response. Resources on a P2P network can disappear at times as the
clients that host those resources disconnect from the network; this is different
from the services provided by the traditional Internet, which have most
resources continuously available.

64.40.111.90

209.52.106.37 142.58.110.2

216.110.42.176 64.40.111.48

Peer Responsibilities, as a Client on the Network:

- Sending commands to other peers to request a service

- Receiving responses to a request for a service

Peer Responsibilities, as a Server:

- Receiving commands from other peers requesting a service

- Processing service requests and executing the requested service

- Sending response with results of the requested service

- Propogating requests for service to other peers

02_2344 Ch 01 5/14/02 11:26 AM Page 6

7Why Is Peer-to-Peer Important?

However, P2P can overcome all these limitations.Although resources might
disappear at times, a P2P application might implement functionality to mirror
the most popular resources over multiple peers, thereby providing redundant
access to a resource. Greater numbers of interconnected peers reduce the
likelihood that a request for a service will go unanswered. In short, the very
structure of a P2P network that causes problems can be used to solve them.

Why Is Peer-to-Peer Important?
Although P2P gained notoriety as a means for illegally distributing copy-
righted intellectual property, P2P has more to offer the computing world than
easy access to stolen music or video files.To illustrate the difference between
the way things are done now and how P2P could provide more useful and
robust solutions, consider the following example.

To find some specific information on the Internet, I usually point my web
browser to my favorite search engine, Google, and submit a search query.
Most times, I’ll receive a list of several thousand results, many of which are
unrelated, are out-of-date, or worse yet, point to resources that no longer exist.
How frustrating!

One of the problems with the current search engine solution lies in the
centralization of knowledge and resources. Google relies on a central database
that is updated daily by scouring the Internet for new information. Due to the
number of indexed web pages in its database (more than 1.6 billion), not every
entry gets updated every day.As a result of this shortcoming, the information
in the Google database might not reflect the most up-to-date information
available, thus diminishing the usefulness of its results for any given search
query.

The search engine technology has a number of other disadvantages:
n It requires a lot of equipment. Google, for example, runs a Linux cluster

of 10,000 machines to provide its service.
n If the search engine goes offline (due to, say, a network outage), all the

search engine’s information is unavailable.
n Due to the size of the Internet, the search engine cannot provide a

comprehensive index of the Internet.
n Search engines can’t interface with information stored in a corporate

web site’s database, meaning that the search engine can’t “see” some
information.

02_2344 Ch 01 5/14/02 11:26 AM Page 7

8 Chapter 1 Introduction

A similar service could be implemented using P2P technology, augmenting the
service with additional desirable properties. Imagine if every person could run
a personal web server on a desktop computer! Suppose that, in addition to
serving content from the user’s machine, this server had the capability to
process requests for information about the documents managed by the server.
A user’s server could receive a query, check the documents that it manages for
a match, and respond to the query with a list of matching documents.

The user’s server would be responsible for indexing the documents that it
made available and therefore would be capable of providing more accurate,
up-to-date information on the user’s documents to anyone submitting a search
query.The task of indexing a single user’s documents would be much more
manageable than the task facing Google (a couple dozen web pages versus
billions of pages). Corporations could provide gateways to connect their own
web sites’ databases of information to the P2P network, providing searchable
access to information that the search engines currently can’t reach.

The system would have this added advantage: If the user’s server discon-
nected from the network, the search service would also become unavailable;
users searching the network wouldn’t receive results for resources that were
unavailable.As someone searching for information, I would be almost guaran-
teed that any result I found using the system would be available, reducing
wasted search time. I could even sort search results from the entire network to
determine which information might suit my needs better based on various
characteristics (such as the responsiveness of the server hosting a resource or
the number of servers hosting a copy of the same resource).

This example application of P2P technology isn’t perfect. For one thing,
anyone wanting to drive traffic to a site could return that site as a match to
any search query. However, the example illustrates the underlying principle of
P2P: to enable anyone to offer services over a network. Until now, the tradi-
tional Internet experience has been mostly passive. Like the desktop publishing
revolution of the mid-1980s, P2P promises to revolutionize the exchange of
information.

A Brief History of P2P
Peer-to-peer has always existed, but it hasn’t always been recognized as such;
servers with fixed or resolvable IP addresses have always had the capability to
communicate with other servers to access services.A number of pre-P2P
applications, such as email and the domain name system, built on these capa-
bilities to provide distributed networks, but one such application, Usenet,
stands out from the others.

02_2344 Ch 01 5/14/02 11:26 AM Page 8

9A Brief History of P2P

Usenet was created in 1979 by two North Carolina grad students,Tom
Truscott and Jim Ellis, to provide a way for two computers to exchange infor-
mation in the early days before ubiquitous Internet connectivity.Their first
iteration allowed a computer to dial another computer, check for new files,
and download those files; this was done at night to save on long-distance tele-
phone charges.The system evolved into the massive newsgroup system that it
is today. However, as large as Usenet is, it has a few properties that help distin-
guish it as probably the first P2P application. Usenet has no central managing
authority—the distribution of content is managed by each node, and the con-
tent of the Usenet network is replicated (in whole or in part) across its nodes.

One of the most interesting things about Usenet is what it is: nothing!
Usenet isn’t a piece of software or a network of servers; although it requires
software and servers to operate, these things don’t truly define Usenet.At its
core, Usenet is simply a way for machines to talk to each other to allow news
messages to be posted and disseminated over a network. By providing a well-
defined protocol, the Network News Transport Protocol (Internet Engineering
Task Force RFC 977), the widest possible number of machines can participate
independently to provide services.This distribution of responsibility is what
distinguishes Usenet, making it recognizable as the first true, though rudimen-
tary, application of P2P technology.

Since Usenet, the most popular P2P applications have fallen into one
of three major categories: instant messaging, file sharing, and distributed
computing.

Instant Messaging (IM)
When Mirabilis released ICQ (www.icq.com) in November 1996, it gave its users
a faster way to communicate with friends than traditional email. ICQ allows
users to be notified when their friends come online and to send instant mes-
sages to their friends. In addition to its main capability of instant messaging,
ICQ allows users to exchange files.Though classified as a P2P application,
ICQ relies on a hybrid of the P2P and client/server architectures to provide
its service, as shown in Figure 1.3. ICQ uses a central server to monitor which
users are currently online and to notify interested parties when new users
connect to the network.All other communication between users is conducted
in a P2P fashion, with messages flowing directly from one user’s machine to
another’s with no server intermediary.

02_2344 Ch 01 5/14/02 11:26 AM Page 9

10 Chapter 1 Introduction

Figure 1.3 Hybrid P2P architecture.

Since its unveiling, ICQ has had many imitators, including MSN Messenger
(www.messenger.msn.com),AOL Internet Messenger (www.aol.com/aim), and Yahoo!
Messenger (www.messenger.yahoo.com). Sadly, these applications are not compati-
ble; each relies on its own proprietary communication protocol.As a result of
this incompatibility, users must download different client software and go
through a separate registration process for each network. Because most users
choose to avoid this inconvenience, these networks have grown into com-
pletely separate user communities that cannot interact.

More recently, various software developers have tried to bridge these sepa-
rate communities by reverse-engineering the IM protocols and making new
client software. One such application, Jabber (www.jabber.com), provides gateways
to all major IM services, allowing users to interact with each other across the
various IM networks.This attempt has met with resistance from service
providers, prompting AOL to change its communication protocol in an
attempt to block Jabber clients.

File Sharing
Napster (www.napster.com) burst onto the Internet stage in 1999, providing users
with the capability to swap MP3 files. Napster employs a hybrid P2P solution
similar to ICQ, relying on a central server to store a list of MP3 files on each
user’s machine.This server is also responsible for allowing users to search that
list of available files to find a specific song file and its host. File transfer func-
tionality is coordinated directly between peers without a server intermediary.
In addition to its main file-sharing functionality, Napster provides a chat func-
tion to allow users to send text messages to each other.

64.40.111.90

209.52.106.37 142.58.110.2

216.110.42.176 64.40.111.48

Client Responsibilities:

- Registering and deregistering available services with the server

- Sending commands to a server to find a specific service

- Receiving responses from a server containing a list of peers

with the desired service

- Sending commands to other peers to request a specific service

- Receiving responses to a request for a service from a specific peer

- Receiving commands from other peers requesting a specific service

- Processing service requests and executing the requested service

- Sending a response to a peerÕs request for a service

Server Responsibilities:

- Registering and deregistering peersÕ

available services

- Receiving commands requesting the

location of a specific service

- Searching available services registered by

peers

- Sending response with location of

requested service

newriders.com

02_2344 Ch 01 5/14/02 11:26 AM Page 10

11A Brief History of P2P

Taking its cue from Napster, but noting the legal implications of enabling
copyright infringement, the Gnutella project (www.gnutelliums.com) took the
file-sharing concept pioneered by Napster one step further and eliminated the
need for a central server to provide search functionality.The Gnutella net-
work’s server independence, combined with its capability to share any type of
file, makes it one of the most powerful demonstrations of P2P technology.

Peers on the Gnutella network are responsible not only for serving files, but
also for responding to queries and routing messages to other peers. Note that
although Gnutella doesn’t require a central server to provide search and IP
address resolution functionality, connecting to the Gnutella network still
requires that a peer know the IP address of a peer already connected to the
P2P network. For this reason, a number of peers with static or resolvable IP
addresses have been established to provide new peers with a starting point for
discovering other peers on the network.

Eliminating the reliance on a central server has raised a number of new
issues:

n How do peers distribute messages to each other without flooding the
network?

n How do peers provide content securely and anonymously?
n How can the network encourage resource sharing?

Other file-sharing P2P variants, including Freenet (freenet.sourceforge.net),
Morpheus (www.musiccity.com), and MojoNation (www.mojonation.net), have
stepped into the arena to address these issues. Each of these applications
addresses a specific issue. Freenet provides decentralized anonymous content
storage protected by strong cryptography against tampering. Morpheus pro-
vides improved search capabilities based on metadata embedded in common
media formats. MojoNation uses an artificial currency, called Mojo, to enforce
resource sharing.

The Tragedy of the Commons
In many communities that share resources, there is a risk of suffering from the “Tragedy of the
Commons”: the overuse of a shared resource to the point of its destruction. The Tragedy of the
Commons originally referred to the problem of overgrazing on public lands, but the term can apply
to any public resource that can be used without restriction.

In some P2P systems, peers can use the resources (bandwidth and storage space) of others on the
network without making resources of their own available to the network, thereby reducing the
value of the network. As more users choose not to share their resources, those peers that do share
resources come under increased load and, in many ways, the network begins to revert to the classic
client/server architecture. Taken to its logical conclusion, the network eventually collapses, benefit-
ing no one.

02_2344 Ch 01 5/14/02 11:26 AM Page 11

12 Chapter 1 Introduction

Newer P2P solutions have tried to prevent the Tragedy of the Commons by incorporating checks to
ensure that users share resources. Lime Wire (www.limewire.com), for example, allows users to
restrict downloads based on the number of files that a requesting client is sharing with the net-
work. MojoNation (www.mojonation.net) takes this model one step further and incorporates a
system of currency that users earn by sharing resources and then spend to access resources.

Distributed Computing
Distributed computing is a way of solving difficult problems by splitting the
problem into subproblems that can be solved independently by a large
number of computers.Although the most popular applications of distributed
computing have not been P2P solutions, it is important to note the break-
through work that has been accomplished by projects such as SETI@Home
(setiathome.berkeley.edu) and Distributed.net (distributed.net) and companies
such as United Devices (www.ud.com).

In 1996, SETI@Home began distributing a screen saver–based application
to users, to allow them to process radio-telescope data and contribute to the
search for extraterrestrial life. Since then, it has signed up more than 3 million
users (of which more than a half million are active contributors). In a similar
project started in 1997, Distributed.net used the computing power of its users
to crack previously unbreakable encrypted messages. In both cases, the client
software contacts a server to download its portion of the problem being
solved; until the problem is solved, no further communication with the server
is required.

In the future, it is expected that distributed computing will evolve to take
full advantage of P2P technology to create a marketplace for spare computing
power.

Introducing Project JXTA
As you probably noticed, most of the P2P solutions overlap in some shape or
form: ICQ provides instant messaging plus a bit of file sharing. Napster pro-
vides file sharing plus a bit of instant messaging.You could even say that
Gnutella provides file sharing, plus a bit of distributed computing, due to the
way that peers take on the task of routing messages across the network.

Regrettably, the current applications of P2P tend to use protocols that are
proprietary and incompatible in nature, reducing the advantage offered by
gathering devices into P2P networks. Each network forms a closed commu-
nity, completely independent of the other networks and incapable of leverag-
ing their services.

02_2344 Ch 01 5/14/02 11:26 AM Page 12

13Introducing Project JXTA

Until now, the excitement of exploring the possibilities of P2P technology
has overshadowed the importance of interoperability and software reuse.To
evolve P2P into a mature solution platform, developers need to refocus their
efforts from programming P2P network fundamentals to creating P2P applica-
tions on a solid, well-defined base.To do this, P2P developers need a common
language to allow peers to communicate and perform the fundamentals of P2P
networking.

Realizing this need for a common P2P language, Sun Microsystems formed
Project JXTA (pronounced juxtapose or juxta), a small development team
under the guidance of Bill Joy and Mike Clary, to design a solution to serve
all P2P applications.At its core, JXTA is simply a set of protocol specifications,
which is what makes it so powerful.Anyone who wants to produce a new P2P
application is spared the difficulty of properly designing protocols to handle
the core functions of P2P communication.

What Does JXTA Mean?
The name JXTA is derived from the word juxtapose, meaning to place two entities side by side or
in proximity. By choosing this name, the development team at Sun recognized that P2P solutions
would always exist alongside the current client/server solutions rather than replacing them
completely.

The JXTA v1.0 Protocols Specification defines the basic building blocks and
protocols of P2P networking:

n Peer Discovery Protocol—Enables peers to discover peer services on
the network

n Peer Resolver Protocol—Allows peers to send and process generic
requests

n Rendezvous Protocol—Handles the details of propagating messages
between peers

n Peer Information Protocol—Provides peers with a way to obtain sta-
tus information from other peers on the network

n Pipe Binding Protocol—Provides a mechanism to bind a virtual com-
munication channel to a peer endpoint

n Endpoint Routing Protocol—Provides a set of messages used to
enable message routing from a source peer to a destination peer

The JXTA protocols are language-independent, defining a set of XML mes-
sages to coordinate some aspect of P2P networking.Although some developers
in the P2P community protest the use of such a verbose language, the choice
of XML allows implementers of the JXTA protocols to leverage existing

02_2344 Ch 01 5/14/02 11:26 AM Page 13

14 Chapter 1 Introduction

toolsets for XML parsing and formatting. In addition, the simplicity of the
JXTA protocols makes it possible to implement P2P solutions on any device
with a “digital heartbeat,” such as PDAs or cell phones, further expanding the
number of potential peers.

In April 2001, Bill Joy placed Project JXTA in the hands of the P2P devel-
opment community by adopting a license based on the Apache Software
License Version 1.1. In addition to maintaining the JXTA v1.0 Protocols
Specification, Project JXTA is responsible for the development of reference
implementations of the JXTA platform and source code control for a variety
of JXTA Community projects. Currently, Project JXTA has a reference imple-
mentation available in Java, with implementations in C, Objective-C, Ruby,
and Perl 5.0 under way.At this time, Project JXTA houses a variety of JXTA
Community projects that are applying JXTA technology in diverse fields such
as content management, artificial intelligence, and secure anonymous payment
systems.

Summary
This chapter provided an introduction to P2P and outlined the problems of
the traditional client/server architecture that P2P can be used to solve.The
advantages and shortcomings of current P2P solutions were presented, and the
JXTA solution was briefly introduced.

The next chapter examines the common problems that face P2P imple-
mentations and how they can be solved.These solutions are presented inde-
pendently of the JXTA technology but use the JXTA terminology.This allows
the chapter to provide a high-level overview of P2P that doesn’t overwhelm
the reader with JXTA-specific details.

02_2344 Ch 01 5/14/02 11:26 AM Page 14

