Steal This Book!

Yes, you read that right. Stea this book. For free.

Nothing. Zero. Zilch. Nadda. Zip.

Undoubtedly you're aking yourslf, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"

The answer...is yes. Sort of. | know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

1. Send this book to your friends: No, not your manager.
Your "with it" computer friends who are looking for the next
Big Thing. JXTA isit. Trug me. They want to know about it.

2. Send a link to the book's web site: Maybe the book is
too big to ®nd. After al, not everyone can have a fibre optic
Internet connection installed in their bedroom. The site, at
www. brendonwilson.com/projects/jxta, provides chapter-
sized PDFs for easy downloading by the bandwidth-challenged.

3. Visit the book's web site: Being a profesiona developer, you
probably have Carpal Tunnel Syndrome and shudder at the idea
of typing in example source code. Save yourlf the trouble. Go to
www. brendonwilson.com/projects/jxta and download the
source code. And while you're there, why not download some of
the chapters you're mising?

4. Buy the book: You knew there had to be a catch. Sure, the
book's PDFs are free, but I'm hoping that enough of you like the
book so much that you have to buy a copy. Either that, or none
of you can stand to read the book from a screen (or, wors yet,
print it all out <shudder>) and resort to paper to sve what's left
of your eyesight. The book is available a your local bookstore or
from Amazon.com (at a handsome discount, | might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Endpoint Routing Protocol

DUE TO THE AD HOC NATURE OF a P2P network, a message between two end-
points might need to travel through intermediaries. An intermediary might be
used to allowing peers with incompatible network transports to communicate
by using the intermediary as a gateway. To determine how a message should be
sent between two endpoints, a mechanism is required to allow a peer to dis-
cover route information. The Endpoint Routing Protocol (ERP) provides
peers with a mechanism for determining a route to an endpoint, allowing the
peer to send data to the remote endpoint.

Before learning about the Endpoint Routing Protocol, it is necessary to
understand how endpoints work. In Chapter 8, “The Pipe Binding Protocol,”
you learned that although pipes provide a transmission mechanism, the pipes
themselves are not responsible for the actual transmission and reception of
data. Pipes are an abstraction built on top of endpoints to provide a convenient
programming model. Endpoints are the entity responsible for conducting the
actual exchange of information over a network. Endpoints encapsulate a set of
network interfaces, allowing a peer to send and receive data independently of
the type of network transport being employed.

252 Chapter 9 The Endpoint Routing Protocol

Although JXTA provides the Resolver and Pipe services to enable high-
level use of endpoints, some services might want to use endpoints directly. This
chapter first explores the use of endpoints for conducting network communi-
cation and then details the Endpoint Routing Protocol and its relationship to
endpoints.

Introduction to Endpoints

JXTA offers two simple ways to send and receive messages: the Resolver
service and the Pipe service. However, as revealed in Chapter 5, “The Peer
Resolver Protocol,” and Chapter 8, these services are simply convenient
wrappers for sending and receiving messages using a peer’s local endpoints.
An endpoint is an interface to a set of network transports that allows data to
be sent across the network. In JXTA, network transports are assumed to be
unreliable, even though actual endpoint protocol implementations might
use reliable transports such as TCP/IP.

Unlike other areas of the JXTA platform, endpoint functionality doesn’t
have a protocol definition. Details on how data is to be formatted for transport
across the network is the responsibility of a particular endpoint protocol
implementation. The only functionality exposed to the developer is provided
by the Endpoint service, which aggregates the registered endpoint protocol
implementations for use by a developer. Although a developer could use the
Endpoint service implementation to obtain a particular endpoint protocol
implementation and use it directly, this is not desirable in most cases. Using a
particular endpoint protocol implementation directly makes a solution less
flexible by making the solution dependent on a particular network transport.

The Endpoint Service

The Endpoint service provides an access point to all the endpoint protocol
implementations installed on a peer, allowing a programmer to send a message
using these endpoint protocol implementations. Unlike the other core services
in JXTA, the Endpoint service is independent of a peer group. All peer groups
share the same Endpoint service, which makes sense, considering that the
Endpoint service provides the communication layer closest to the network
transport layer. By default, a peer group in the reference implementation
inherits the Endpoint service provided by its parent group. However, develop-
ers can provide a custom Endpoint service implementation for a peer group
that they create by loading a custom Endpoint service. This Endpoint service
implementation is loaded just like any other custom service, using the tech-
niques demonstrated in Chapter 10, “Peer Groups and Services.”

Introduction to Endpoints 253

In the reference implementation, the Endpoint service, shown in Figure 9.1,
is defined by the EndpointService interface in the net.jxta.endpoint package and
is implemented by the EndpointServiceImpl class in the net.jxta.impl.endpoint
package.

<<Interface>>
EndpointService
(from net.jxta.endpoint)

getGroup() : net.jxta.peergroup.PeerGroup

getEndpointProtocols() : java.util. Enumeration

newMessage() : net.jxta.endpoint.Message

newEndpointAddress(uri : java.lang.String) : net.jxta.endpoint.EndpointAddress

getMessenger(addr : net.jxta.endpoint. EndpointAddress) : net.jxta.endpoint.EndpointMessenger

propagate(message : net.jxta.endpoint.Message. serviceName : java.lang.String, serviceParams : java.lang.String) : void
addListener(address : java.lang.String, listener : net.jxta.endpoint.EndpointListener) : void

removeListener(address : java.lang.String, listener : net.jxta.endpoint.EndpointListener) : boolean
addFilterListener(elementName : java.lang.String, listener : net.jxta.endpoint. EndpointFilterListener, incoming : boolean) : void
- removeFilterListener(address : java.lang.String, listener : net.jxta.endpoint.EndpointFilterListener, incoming : boolean) : void
» demux(msg : net.jxta.endpoint.Message) : void

- getEndpointProtocolByName(name: java.lang.String) : net.jxta.endpoint.EndpointProtocol

« ping(addr : net.jxta.endpoint.EndpointAddress) : boolean

- addEndpointProtocol(proto : net.jxta.endpoint.EndpointProtocol) : void

« removeEndpointProtocol(proto : net.jxta.endpoint.EndpointProtocol) : void

EndpointServicelmpl
(from net.jxta.impl.endpoint)

Figure 9.1 The Endpoint service interface and implementation.

Although the endpoint protocol implementations define the format for data
crossing the network, the Endpoint service does add one piece of information
when propagating a message. The Endpoint service adds a message element
named jxta:EndpointHeaderSrcPeer to the outgoing messages. If visualized as
XML, remembering that messages aren’t necessarily rendered to XML, the
message element’s format would be as follows:

<jxta:EndpointHeaderSrcPeer>

</jxta:EndpointHeaderSrcPeer>

The jxta:EndpointHeaderSrcPeer element contains the ID of the peer propagat-
ing the message. This Peer ID is used by the Endpoint service that receives
the message to eliminate loopback by discarding messages whose source

Peer ID matches the local Peer ID. The remainder of the formatting of an
outgoing message is the responsibility of a particular endpoint protocol
implementation registered with an EndpointService instance using the
EndpointService.addEndpointProtocol method.

254 Chapter 9

As shown in Figure 9.2, an endpoint protocol implementation realizes the

The Endpoint Routing Protocol

EndpointProtocol interface from the net.jxta.endpoint package.

<<Interface>>
EndpointProtocol
(from net.jxta.endpoint)

- propagate(message : net.jxta.endpoint.Message, serviceName : java.lang.String, serviceParams : java.lang.String, prunePeer : java.lang.String) : void
« allowOverLoad() : java.lang.String

- getf () : net.jxta.endpoint. intAddre:
« isConnectionOriented() : boolean
« allowRouting() : boolean

getMessenger(dest : net.jxta.endpoint.EndpointAdd : net.jxta.endpoint.

getProtocolName() : java.lang.String

ping(addr : net.jxta.endpoint.EndpointAddress) : boolean

BeepTransport
(from net.jxta.impl.endpoint.beep)

EndpointRouter
(from net.jxta.impl.endpoint)

HttpTransport
(from net.jxta.impl.endpoint.http)

ServletHttp Transport
(from net.jxta.impl.endpoint.servlethttp)|

TcpTransport
(from net.jxta.impl.endpoint.tcp)

TlsTransport

(from net.jxta.impl.endpoint.tis)

An EndpointProtocol implementation allows a peer to propagate a message to as

many

Figure 9.2 The EndpointProtocol interface and implementations.

peers as possible. In a TCP endpoint protocol implementation, for

example, TCP multicast capabilities are used to send a message to as many
peers on the local LAN segment as possible. An EndpointProtocol implementa-
tion 1is also responsible for allowing a peer to send a message directly to a peer
located at a specific Endpoint Address. This functionality is provided by an
implementation of the EndpointMessenger interface obtained using the
EndpointProtocol implementation’s getMessenger method. The EndpointMessenger
interface, shown in Figure 9.3, is defined in net.jxta.endpoint.

<<Interface>>
EndpointMessenger
(from net.jxta.endpoint)

. sendMessage(message : net.jxta.endpoint.Message) : void

« close() : void

A

'

I

'

I

'
TTTTTT oo [It [-ttt [r---"---"-- [
: ! | i : i ! |

. . . | .
| BeepNonBlockingMessenger : EndpointRouter : HttpServerh ger ' HttpNor {
: (from net.jxta.impl.e int.beep) : (from net.jxta.impl. i 1| (from net.jxta.impl.endpoint.http) : (from net.jxta.impl.endpoint.http)
| | ! |
| | ! i
| \ ! |
I

HttpClientMessageSender

TepNonBlockingMessenger TlsMessenger LoopbackMessenger

RelayClilentMessageSender

(from net.jxta.impl.endpoint.serviethttp)|

(from net.jxta.impl.endpoint.tcp) (from net.jxta.impl. int.tls) (from net.jxta.impl.endpoint)

(from net.jxta.impl.relay)

Figure 9.3 The EndpointMessenger interface and implementations.

An implementation of EndpointMessenger is usually obtained using the

EndpointService.getMessenger method. The EndpointService.getMessenger method

takes a net.jxta.endpoint.EndpointAddress argument that identifies the remote

peer’s

transport-specific location. This address is used to determine which

Introduction to Endpoints 255

EndpointProtocol provides connectivity to the remote peer, and it calls
getMessenger on the EndpointProtocol implementation. This encapsulation
and abstraction eliminate the need for a developer to ever instantiate an
EndpointMessenger implementation directly.

Types of Endpoint Transport Implementations

In the Java reference implementation, currently five endpoint protocol imple-
mentations are available:

= TCP (net.jxta.impl.endpoint.tcp)—This provides a TCP EndpointProtocol
implementation that uses a MulticastSocket to send data to peers on the
local LAN segment. A TCP-based EndpointMessenger implementation uses
a Socket to connect directly to a remote peer.

» HTTP (net.jxta.impl.endpoint.http)—This provides an HTTP
EndpointProtocol and EndpointMessenger. This endpoint protocol is slightly
different from a typical endpoint protocol implementation because the
HTTP endpoint protocol implementation provides the router peer
functionality that allows peers to perform firewall traversal. The
HTTP implementation of EndpointProtocol does not provide broadcast
capabilities.

= Servlet HTTP (net.jxta.impl.endpoint.servlethttp)—Similar to the
HTTP implementation, the Servlet HTTP implementation provides
HTTP transport functionality that can be plugged into application
servers that support the Java Servlet APIs.

= TLS (net.jxta.impl.endpoint.tls)—This is the Transport Layer Security
protocol endpoint protocol implementation. This endpoint protocol
implementation does not provide broadcast capabilities because the TLS
implementation is designed only for securing one-to-one communica-
tions. This implementation is built on top of libraries provided by the
Cryptix project (www.cryptix.org).

= BEEP (net.jxta.impl.endpoint.beep)—This is the Block Extensible
Exchange Protocol (IETF RFC 3080) implementation. BEEP is basically
a framework for building application protocols. This endpoint protocol
implementation does not provide broadcast capabilities. This implementa-
tion is built on top of libraries provided by beepcore.org.

One other implementation, the Endpoint Router implementation, provides a
transport that handles finding routes to remote peers via gateways. This trans-
port provides the implementation of the Endpoint Routing Protocol that will
be discussed later in this chapter.

256 Chapter 9 The Endpoint Routing Protocol

Each endpoint protocol implementation made available by a peer is identi-
fied by a Transport Advertisement in the peer’s Peer Advertisement. However,
the format of this Transport Advertisement varies by endpoint protocol imple-
mentation. Only the root element is common to all implementations:

<jxta:TransportAdvertisement>

</jxta:TransportAdvertisement>

By default, the endpoint protocol implementations are configured when the

JXTA platform boots. A default set of endpoint protocol implementations is

added to the Endpoint service based on the settings provided by the user to

the JXTA configuration tool. Currently, the default transports loaded include
TCP,HTTP, and TLS.

Endpoint Addresses

Endpoint Addresses provide the network transport-specific information
required to route a message over a particular endpoint protocol implementa-
tion to a specific peer and service. In general, the format of an Endpoint
Address in the reference implementation takes this form:

<protocol>://<network address>/<service name>/<service parameters>

The following definitions are used for each section of the Endpoint Address:

= <protocol>—The name of the network transport to use when sending the
message. Example values include tcp, http, and jxtatls.

= <protocolAddress>—The network transport-specific address used to locate
the destination peer on the network. For example, a TCP Endpoint
Address would use an IP address and port number for this value.

= <serviceName>—An identifier that uniquely specifies the destination ser-
vice on the remote peer. This effectively allows messages arriving over a
single network transport to be demultiplexed by the Endpoint service
and passed to the appropriate service. To associate a service with a partic-
ular peer group, the service name is usually a combination of a common
name for the service and the Peer Group ID.

= <serviceParameters>—Some unique identifying parameters being passed to
the service. These parameters might be used by a particular destination
service to provide information required to route the message to a partic-
ular handler instance before parsing the message itself.

For example, a message destined for the Pipe service on a remote peer using
the TCP endpoint protocol implementation would use an Endpoint Address
that looks like this:

tcp://10.6.18.38:80/PipeService/<Pipe ID>

Introduction to Endpoints

In this example, Endpoint Address, 10.6.18.38:80 is the destination’s IP address
(10.6.18.38) and port number (80), PipeService is the name of the service, and
<Pipe ID> is the parameter to the Pipe service.

Only the protocol and the network address are required elements in the
Endpoint Address. If the Endpoint Address has no service specified, the form
of the address changes slightly to this:

<protocol>://<network address>/

Note that, in this case, no service parameters are specified because no service
has been specified. An address may also specify a service name but no service
parameters, in which case the form of the address is as follows:

<protocol>://<network address>/<service name>
The reference implementation defines the EndpointAddress interface in

net.jxta.endpoint and the Address implementation in net.jxta.impl.endpoint,
shown in Figure 9.4, to handle the details of manipulating Endpoint Addresses.

<<Interface>>
EndpointAddress
(from net.jxta.endpoint)

« getProtocolName() : java.lang.String

- getProtocolAddress() : java.lang.String

« getServiceName() : java.lang.String

« getServiceParameter() : java.lang.String

« getProtocolName(name : java.lang.String) : void

« getProtocolAddress(address : java.lang.String) : void

« getServiceName(name : java.lang.String) : void

« getServiceParameter(parameter : java.lang.String) : void
« clone() : java.lang.Object

- - - - >

Address
(from net.jxta.impl.endpoint)

Figure 9.4 The EndpointAddress interface and implementation.

Instead of specifying an Endpoint Address in a transport-specific form, such as
tep://10.6.18.38, higher-level services in JXTA use a transport-neutral
Endpoint Address of this form:

jxta://<unique Peer ID>

The jxta protocol specifier is used to indicate the JXTA-specific Endpoint
Routing Protocol. This form of Endpoint Address is used to allow JXTA peers
to act independently of the network transport. By using the jxta form of the
address, a peer can send messages via the Endpoint Routing Protocol as if
connecting directly to the remote peer. In fact, the message might travel

257

258 Chapter 9 The Endpoint Routing Protocol

through several peers, a fact that is unknown to the peer. In this way, the
Endpoint Routing Protocol abstracts the details of the underlying network
topology, allowing a peer to act as if it is capable of connecting directly to a
remote peer.

Message Formatting

Unlike the other services in JXTA, no corresponding protocol defines the for-
mat of messages sent by the Endpoint service. Although the endpoint protocol
implementations are ultimately responsible for handling the details of format-
ting a message, the reference protocol implementations share code to render a
message from the internal XML object structure into a format suitable for
transport over the network. Currently, a transport can use two possible output
formats to render a Message object:

» Binary message format—The message elements are rendered into
simple binary byte stream. This functionality is encapsulated in the
MessageWireFormatBinary class in the net.jxta.impl.endpoint package.
This format of the output produced by this class is specified by the
application/x-jxta-msg MIME type.

» XML message format—The message is rendered from the Message
object’s representation of an XML tree into real XML output. This
functionality is encapsulated in the MessageWireFormatXuL class in the
net.jxta.impl.endpoint package. This format of the output produced
by this class is specified by the text/xm1 MIME type.

Both MessageWireFormatXML and MessageWireFormatBinary extend the
MessageWireFormat abstract class. Endpoint protocol implementations create

an instance of a specific type of wire-formatting object using the
MessageWireFormatFactory class and specifying the appropriate MIME type to
the newMessageWireFormat method. It is up to the endpoint protocol implemen-
tation to choose the output format most appropriate to its particular network
transport.

Using the Endpoint Service

To demonstrate the use of the Endpoint service, this section develops an appli-
cation similar to the one in Chapter 7,“The Peer Information Protocol.” The
difference is that this example uses the Endpoint service on which pipes are
built to provide the messaging functionality.

Using the Endpoint Service

Receiving Incoming Messages

It should come as no surprise that the EndpointService is structured in a similar
way to those services built on top of it. The Endpoint service provides the
EndpointListener interface in net.jxta.endpoint, shown in Figure 9.5, to allow
other services to receive notification of arriving messages.

<<Interface>>
EndpointListener
(from net.jxta.endpoint)

« proc

: net.jxta.endpoint.Message, srcAddr : net.jxta.endpoint.EndpointAddress, destAddr : net.jxta.endpoint.EndpointAddress) : void

Figure 9.5 The EndpointListener interface.

The sole method that developers need to implement, processIncomingMessage,
accepts the arriving Message object as well as the source and destination
Endpoint Addresses:

public void processIncomingMessage (Message message,
EndpointAddress source, EndpointAddress destination);

To listen for messages arriving for a specific service, a developer needs only to
register an EndpointListener instance with the EndpointService instance using the
EndpointService.addListener method:

public void addListener(String address, EndpointListener listener)
throws IllegalArgumentException;

The EndpointListener’s processIncomingMessage method is called whenever a
Message arriving at the peer contains a destination Endpoint Address that
specifies a service matching the address value.

Note that when registering an EndpointListener, the address value that you
pass shouldn’t be just the name of the destination service. Instead, the address
should be the concatenation of the destination service name and service para-
meters that are part of the destination Endpoint Address. This is an area that is
ambiguous in the current reference implementation and will be refined in
future releases.

To demonstrate the use of the EndpointListener and EndpointService inter-
faces, the EndpointServer example in Listing 9.1 starts the JXTA platform and
adds itself to the EndpointService instance as a listener for messages addressed to
a service with the name EndpointServer plus the same Peer Group ID with the
parameters 012345.

259

260 Chapter 9 The Endpoint Routing Protocol

Listing 9.1 Source Code for EndpointServer.java

package com.newriders.jxta.chapter9;

import java.util.Enumeration;

import net.jxta.endpoint.EndpointAddress;
import net.jxta.endpoint.EndpointProtocol;
import net.jxta.endpoint.EndpointService;
import net.jxta.endpoint.EndpointListener;
import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.impl.endpoint.Address;

import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;

/**
* A simple server that listens on an endpoint, looking for
* Messages destined for a service named EndpointServer
* concatenated with the Peer Group ID, with service
* parameters 012345.
*/
public class EndpointServer implements EndpointListener
{
/**
* The peer group for the application.
*/
private PeerGroup peerGroup = null;

/**
* The service name to use when listening for messages.
* This service name will be appended with the Peer Group ID
* of the peer group when the JXTA platform is started.
*/
private String serviceName = "EndpointServer";

/**
* The service parameters to use when listening for
* messages.

Using the Endpoint Service 261

*/
private String serviceParameters = "012345";

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform

* can't be started.

*/
public void initializeJXTA() throws PeerGroupException
{

peerGroup = PeerGroupFactory.newNetPeerGroup();

// Add the Peer Group ID of the group to the service
// name so the endpoint listener is specific to

/] the peer group.

serviceName += peerGroup.getPeerGroupID().toString();

/**
* Runs the application: starts the JXTA platform, starts
* listening on the Endpoint service for messages.
*
* @param args the command-line arguments passed to
* the application.
*/
public static void main(String[] args)

{

EndpointServer server = new EndpointServer();

try

{
// Initialize the JXTA platform.

server.initializeJXTA();

/] Start the server.
server.start();

}

catch (PeerGroupException e)

{
System.out.println("Error starting JXTA platform: "

continues

262 Chapter 9 The Endpoint Routing Protocol

Listing 9.1 Continued

+e);
System.exit(1);

/**
* The EndpointListener implementation. Accepts an incoming
* message for processing.

*

* @param message the Message that has arrived for

* processing.

* @param source the EndpointAddress of the peer sending
* the message.

* @param destination the EndpointAddress of the

* destination peer for the message.

*/

public void processIncomingMessage(Message message,
EndpointAddress source, EndpointAddress destination)

{
System.out.println("Message received from " + source
+ " for " + destination + ":");
System.out.println(message.getString("MessageText"));
}
/**

* Start the server listening on the Endpoint service.
*/
public void start()
{
EndpointService endpoint =
peerGroup.getEndpointService();

// Print out all of the endpoint protocol addresses.

/| These can be used by the EndpointClient to send a

/] message to the EndpointServer.

EndpointProtocol aProtocol = null;

Enumeration protocols = endpoint.getEndpointProtocols();
while (protocols.hasMoreElements())

Using the Endpoint Service 263

{
aProtocol =
(EndpointProtocol) protocols.nextElement();
// Print out the address.
System.out.println("Endpoint address: "
+ aProtocol.getPublicAddress().toString());
}

// Add ourselves as a listener to the Endpoint service.
endpoint.addListener(serviceName + serviceParameters,
this);

By itself, the EndpointServer example isn’t very useful without another peer
capable of sending messages to the EndpointServer service for the peer group.
Peers can propagate a message to many peers using the Endpoint service or
send a message directly to a specific peer using an EndpointMessenger.

Propagating Messages Using the Endpoint Service

Propagating a message to a number of remote peers works in a similar fashion
to using propagation pipes, but without the requirement for you to find and
bind an output pipe. However, unlike propagation pipes, the Endpoint service
cannot propagate messages across firewall and NAT boundaries. Propagation
across firewalls and network boundaries is a feature offered by the Rendezvous
service, explained in Chapter 6, “The Rendezvous Protocol,” which builds on
the Endpoint service to provide this capability. Propagation using the Endpoint
service is built on the capabilities of registered endpoint protocol implementa-
tions to broadcast to a number of Endpoint Addresses simultaneously. This
functionality is not available in all network transports, such as HTTP, but it is
available in low-level network transports, such as TCP. The reference imple-
mentation of the Endpoint service provides propagation using only the TCP
endpoint protocol implementation and is thus limited to propagating messages
within the boundaries of a LAN segment.

EndpointPropagateClient in Listing 9.2 provides a simple example of the ele-
ments necessary to propagate a message using the EndpointService instance.

264 Chapter 9 The Endpoint Routing Protocol

Listing 9.2 Source Code for EndpointPropagateClient.java

package com.newriders.jxta.chapter9;

import java.io.IOException;

import net.jxta.endpoint.EndpointAddress;
import net.jxta.endpoint.EndpointService;
import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;

/**

* A simple client that uses the Endpoint service to propagate
* messages to a service named EndpointServer concatenated

* with the Peer Group ID, with the service parameters 012345
* on all peers in the local LAN segment.

*/
public class EndpointPropagateClient
{
/**
* The peer group for the application.
*/
private PeerGroup peerGroup = null;
/**
* The service name to use when listening for messages.
* This service name will be appended with the Peer Group ID
* of the peer group when the JXTA platform is started.
*/
private String serviceName = "EndpointServer";
/**

* The service parameters to use when listening for
* messages.
*/

private String serviceParameters = "012345";

Using the Endpoint Service 265

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform

* can't be started.

*/
public void initializeJXTA() throws PeerGroupException
{

peerGroup = PeerGroupFactory.newNetPeerGroup();

// Add the Peer Group ID of the group to the service
// name so the message is sent to the version of the
// endpoint listener specific to this peer group.

serviceName += peerGroup.getPeerGroupID().toString();

/**

* Runs the application: starts the JXTA platform, accepts
* user input messages, and propagates them to other peers.

*

* @param args the command-line arguments passed to the

* application.

*/
public static void main(String[] args)
{

EndpointPropagateClient client =
new EndpointPropagateClient();

try
{

boolean done = false;
String messageString = null;

// Initialize the JXTA platform.
client.initializeJXTA();

while (!done)

{
/] Reset the message string.
messageString = null;

/] Get the message; if the message is '.',

continues

266 Chapter 9 The Endpoint Routing Protocol

Listing 9.2 Continued

// then quit the application.

System.out.print("Enter a message (or '.' "
+ "to quit): ");

messageString = client.readInput();

if ((messageString.length() > 0)
&& (!messageString.equals(".")))

{
/] Send a message to the server.
client.sendMessage (messageString);
}
else
{
/| We're done.
done = true;
}

/| Stop the JXTA platform. Currently, there isn't
/] any nice way to do this.
System.exit(0);

}
catch (PeerGroupException e)
{
System.out.println("Error starting JXTA platform: "
+e);
System.exit(1);
}
}
/**

* Read a line of input from the system console.
*
* @return the String read from the System.in InputStream.
*/
public String readInput()
{
StringBuffer result = new StringBuffer();
boolean done = false;
int character;

Using the Endpoint Service

while (!done)

{
try
{
/] Read a character.
character = System.in.read();
/| Check to see if the character is a newline.
if ((character == -1)
1 ((char) character == '\n'"))
{
done = true;
}
else
{
/] Add the character to the result string.
result.append((char) character);
}
}
catch (IOException e)
{
done = true;
}
}
return result.toString().trim();
}
/**

* Sends a message. In this case, the message string is
* propagated to all peers in the peer group on the local
* LAN segment.

*

* @param messageString the message to send to other

* peers.

*/
public void sendMessage(String messageString)
{

EndpointService endpoint =
peerGroup.getEndpointService();

/| Create a new message.

continues

267

268 Chapter 9 The Endpoint Routing Protocol

Listing 9.2 Continued

Message message = endpoint.newMessage();

/| Populate the message contents with the messageString.
message.setString("MessageText", messageString);

try
{
/| Propagate the message within the peer group.
endpoint.propagate(message, serviceName,
serviceParameters);
}
catch (IOException e)
{
System.out.println("Error sending message: " + e);
}

To propagate a message, create a Message object using the EndpointService’s
createMessage method, and populate it in the same fashion as when sending a
message using a pipe. As with any Message, multiple elements can be added. In
the example, a single element called MessageText containing the outgoing text
being sent to the remote peer is added using the following code:

/] Populate the message contents with the messageString.
message.setString("MessageText", messageString);

It is propagated to other peers using this code:

/] Propagate the message within the peer group.
endpoint.propagate(message, serviceName, serviceParameters);

The EndpointService.propagate method takes not only the message being prop-
agated, but also the name of the destination service and parameters to pass to
the destination service.

Using EndpointServer and EndpointPropagateClient

As with the PipeServer and PipeClient examples created in Chapter 8, using
EndpointServer and EndpointPropagateClient requires two separate instances of
the JXTA platform. To prepare to run the EndpointServer and
EndpointPropagateClient examples, follow these steps:

Using the Endpoint Service 269

1. Create two directories, placing the EndpointServer source code in one
directory and the EndpointPropagateClient source code in the other.

2. Copy all of the JAR files from the 1ib directory under the JXTA
Demo install directory into each directory.

3. Start a command console and change to the directory containing the
EndpointServer code.

4. Compile EndpointServer using javac -d . -classpath
=-.;beepcore.jar;cms.jar;cryptix32.jar;cryptix-
=asni.jar;instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.
=jar;log4j.jar;minimalBC.jar EndpointServer.java.

5. Start the EndpointServer using java -classpath
=-.;beepcore.jar;cms.jar;cryptix32.jar;cryptix-
=asni.jar;instantp2p.jar;jxta.jar;jxtaptls.jar;jxtasecurity.jar;jxtashell.
=jar;log4j.jar;minimalBC.jar com.newriders.jxta.chapter9.EndpointServer.
EndpointServer starts and prints the Endpoint Address for each of the pro-
tocols registered with the EndpointService instance. This isn’t used in this
example, but it will be used when demonstrating the use of
EndpointMessenger.

6. Start a second command console and change to the directory containing
the EndpointPropagateClient code.

7. Compile EndpointPropagateClient using javac -d . -classpath .;beepcore
=-.jar;cms.jar;cryptix32.jar;cryptix-asni.jar;instantp2p.jar;jxta.jar;
-jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;log4j.jar;minimalBC.jar
=EndpointPropagateClient.java.

8. Start EndpointPropagateClient using java -classpath .;beepcore.jar;cms.
=jar;cryptix32.jar;cryptix-asni.jar;instantp2p.jar;jxta.jar;jxtaptls.
=jar;jxtasecurity.jar;jxtashell.jar;log4j.jar;minimalBC.jar com.
=newriders.jxta.chapter9.EndpointPropagateClient.

EndpointPropagateClient starts and prompts for a message to send. Each message
can be only one line long, and the client continues to prompt for a message
until a . is entered as a message. The client then quits.

Each message entered into EndpointPropagateClient should appear in the out-
put of EndpointServer. However, to truly see the effect of propagation, you
might want to create a copy of the directory containing the EndpointServer
code to run a second instance of EndpointServer. This enables you to see multi-
ple peers receiving the message propagated by the client and illustrates the
difference between propagation and the technique used by the example in the
next section. When starting a second instance of EndpointServer, be sure to
configure a different TCP and HTTP port for the JXTA platform.

270 Chapter 9 The Endpoint Routing Protocol

Sending Messages Directly Using EndpointMessenger

The disadvantage of the propagation demonstrated in the previous example is
that it’s wasteful. Peers that might not be interested in the message receive the
message, only to discard it. In the reference implementation, the TCP endpoint
protocol implementation’s use of TCP multicast limits this inefficiency to peers
on the local LAN segment. To improve efficiency, it would be useful if a mes-
sage could be sent to one specific peer using the EndpointService instance.

In fact, EndpointService does support this functionality through the
EndpointMessenger interface. The EndpointProtocol interface allows a developer to
obtain an EndpointMessenger instance for the endpoint protocol implementa-
tion. This object can be used to send messages to a specific peer located at a
specific EndpointAddress. This functionality is used by the reference implemen-
tation to provide an implementation of the OutputPipe interface.

When starting EndpointServer in the “Using EndpointServer and
EndpointPropagateClient” section, the EndpointServer prints the EndpointAddress for
each protocol currently registered with the EndpointService instance. Each
address follows the same basic format outlined in the “Endpoint Addresses”
section earlier in this chapter. The example in Listing 9.3 prompts the user for
a message and a destination address, and attempts to send the message using
EndpointMessenger

Listing 9.3 Source Code for EndpointMessengerClient.java

package com.newriders.jxta.chapter9;

import java.io.IOException;

import net.jxta.endpoint.EndpointAddress;
import net.jxta.endpoint.EndpointMessenger;
import net.jxta.endpoint.EndpointService;
import net.jxta.endpoint.Message;

import net.jxta.exception.PeerGroupException;

import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;

/**

* A simple Endpoint client that sends a message directly to a
* service named EndpointServer concatenated with the Peer

* Group ID, with service parameters 012345 on a specific peer
* located at an Endpoint Address using an EndpointMessenger.

Using the Endpoint Service 271

*/
public class EndpointMessengerClient

{

/**
* The peer group for the application.
*/

private PeerGroup peerGroup = null;

/**
* The service name to use when listening for messages.
* This service name will be appended with the Peer Group ID
* of the peer group when the JXTA platform is started.
*/
private String serviceName = "EndpointServer";

/**
* The service parameters to use when listening for
* messages.
*/

private String serviceParameters = "012345";

/**

* Starts the JXTA platform.

*

* @exception PeerGroupException thrown if the platform

* can't be started.

*/
public void initializeJXTA() throws PeerGroupException
{

peerGroup = PeerGroupFactory.newNetPeerGroup();

// Add the Peer Group ID of the group to the service
// name so the message is sent to the version of the
/] endpoint listener specific to this peer group.

serviceName += peerGroup.getPeerGroupID().toString();

/**
* Runs the application: starts the JXTA platform, accepts

* user input message and endpoint info, and sends the
* message to the Endpoint Address specified.

*

continues

272 Chapter 9 The Endpoint Routing Protocol

Listing 9.3 Continued

* @param args the command-line arguments passed to the

* application.

*/

public static void main(String[] args)
{

EndpointMessengerClient client =
new EndpointMessengerClient();

try

boolean done = false;
String messageString = null;
String addressString = null;

/] Initialize the JXTA platform.
client.initializedXTA();

while (!done)

{
// Reset the strings.
addressString = null;
messageString = null;

/| Get the message; if the message is ., then

// quit the application.

System.out.print("Enter a message (or
+ " to quit): ");

messageString = client.readInput();

if ((messageString.length() > 0)
&& (!messageString.equals(".")))

/| Get the destination Endpoint Address
/| from the user.
System.out.print(

"Enter an endpoint address: ");
while ((addressString == null)

1 (addressString.length() == 0))

addressString = client.readInput();

Using the Endpoint Service 273

/] Send a message to the server.
client.sendMessage(
messageString, addressString);

}

else

{
/] We're done.
done = true;

}

/| Stop the JXTA platform. Currently, there isn't
/] any nice way to do this.
System.exit(0);

}
catch (PeerGroupException e)
{
System.out.println("Error starting JXTA platform: "
+e);
System.exit(1);
}
}
/**

* Read a line of input from the system console.
*
* @return the String read from the System.in InputStream.
*/
public String readInput()
{
StringBuffer result = new StringBuffer();
boolean done = false;
int character;

while (!done)
{
try
{
/] Read a character.
character = System.in.read();

/| Check to see if the character is a newline.
if ((character == -1)

i1 ((char) character == '\n")) continuies

274 Chapter 9 The Endpoint Routing Protocol

Listing 9.3 Continued

{
done = true;
}
else
{
/] Add the character to the result string.
result.append((char) character);
}
}
catch (IOException e)
{
done = true;
}
}
return result.toString().trim();
I
/**

* Sends a message. In this case, the message string is sent
* to the Endpoint Address specified, provided that the
* Endpoint Address responds to a ping.
*
* @param messageString the message to send to the peer.
* @param addressString the Endpoint Address of the
* destination peers.
*/
public void sendMessage(String messageString,
String addressString)

EndpointService endpoint =
peerGroup.getEndpointService();

EndpointAddress endpointAddress =
endpoint.newEndpointAddress(addressString);

/] Manipulate the Endpoint Address to include the

/| appropriate destination service name and parameters.
endpointAddress.setServiceName (serviceName);
endpointAddress.setServiceParameter(serviceParameters);

Using the Endpoint Service 275

/] Check that we can reach the Endpoint Address.
if (endpoint.ping(endpointAddress))

{
/| Create a new message.
Message message = endpoint.newMessage();
/| Populate the message contents with the
/| messageString.
message.setString("MessageText", messageString);
try
{
EndpointMessenger messenger =
endpoint.getMessenger (endpointAddress);
if (messenger != null)
{
/| Send the message directly to the Endpoint
/] Address specified.
messenger.sendMessage (message) ;
}
else
{
System.out.println("Unable to create "
+ "messenger for given address.");
}
}
catch (IOException e)
{
System.out.println("Error creating messenger "
+ "or sending message: " + e);
}
}
else
{

System.out.println("Unable to reach specified "
+ "address!");

276 Chapter 9 The Endpoint Routing Protocol

Running the EndpointMessengerClient example requires similar steps to those
outlined in the section “Using EndpointServer and EndpointPropagateClient”:

1. Start an instance of EndpointServer.

2. Copy the EndpointMessengerClient source code into the same directory
where you previously copied EndpointPropagateClient.

3. Compile EndpointMessengerClient using javac -d . -classpath .;beepcore.
=jar;cms.jar;cryptix32.jar;cryptixasni.jar;instantp2p.jar;jxta.jar;
=-jxtaptls.jar;jxtasecurity.jar;jxtashell.jar;log4j.jar;minimalBC.jar
=EndpointMessengerClient.java.

4. Start EndpointMessengerClient using java -classpath .;beepcore.jar;cms.
=jar;cryptix32.jar;cryptix-asni.jar;instantp2p.jar;jxta.jar;jxtaptls.
=jar;jxtasecurity.jar;jxtashell.jar;log4j.jar;minimalBC.jar com.
=newriders.jxta.chapter9.EndpointMessengerClient.

EndpointMessengerClient starts and prompts you to enter a message. After you
have entered a message, the client prompts for a destination Endpoint Address.
Enter one of the Endpoint Addresses printed by EndpointServer when it started.
The difference between EndpointMessengerClient and EndpointPropagateClient
will become obvious if you copy the client directory and start a second
instance of EndpointServer. Unlike in the EndpointPropagateClient example,
only the server specified by the Endpoint Address entered into
EndpointMessengerClient will receive the message.

The Endpoint Filter Listener

One other feature offered by the EndpointService interface is the capability to
add filter listeners implementing the EndpointFilterListener interface (shown in
Figure 9.6), defined in net.jxta.endpoint. EndpointFilterListener implementa-
tions can be registered with the EndpointService instance to allow a developer
to arbitrarily preprocess incoming messages before they are handed off to the
registered EndpointListener implementations.

<<Interface>>
EndpointFilterListener
(from net.jxta.endpoint)

:net.jxta i srcAddr : net.jxta.endpoint.EndpointAddress, destAddr : net.jxta.endpoint.EndpointAddress) : net.jxta.endpoint.Message

Figure 9.6 The EndpointFilterListener interface.

Using the Endpoint Service

Currently, the EndpointFilterListener interface is implemented by the
EndpointServiceStatsFilter class in net.jxta.impl.util.This class is used to
collect the message throughput statistics delivered by the Peer Information
Protocol. The Rendezvous service reference implementation,
RendezVousServiceImpl, also uses an inner class, FilterListener, to implement
EndpointFilterListener. This implementation is used to prevent uncontrolled
propagation and loopbacks.

Filter listeners are added to the Endpoint service using the
EndpointService.addFilterListener method:

public void addFilterListener(String elementName,
EndpointFilterListener listener, boolean incoming)
throws IllegalArgumentException;

When registering a filter listener, the caller specifies whether the listener
should be called to process incoming or outgoing messages. In addition, the
caller specifies the name of a message element that a message must contain
before the filter will be applied. Only those messages containing an element
with a matching element name will have the filter applied to the message.

To understand how filters are applied to incoming messages, it is necessary
to understand how incoming messages flow from an endpoint protocol imple-
mentation to registered EndpointListener instances. When an endpoint protocol
implementation receives a complete message from a remote peer, it calls the
EndpointService.demux method. The demux method implementation is responsible
for first preprocessing the message using the registered EndpointFilterListener
instances and then notifying registered EndpointListener instances. The demux
method acts as a callback, freeing an endpoint protocol implementation from
the duty of applying filters and notifying listeners itself.

In the current reference implementation, filters are not applied on outgoing
messages. However, there is already some code in place, indicating that this fea-
ture will be implemented soon.

Although both EndpointListener and EndpointFilterListener define only a
single processIncomingMessage method, there is one important difference
between the two interfaces. Unlike EndpointListener, EndpointFilterListener’s
version of processIncomingMessage returns a Message object. This object is used as
input into subsequent filters and finally is used to either send the outgoing
message to other peers or notify registered EndpointListener instances. If an
EndpointFilterListener returns a null object, the message is discarded.

277

278 Chapter 9 The Endpoint Routing Protocol

Introducing the Endpoint Routing Protocol

After examining the example code and the explanation of the EndpointProtocol
and EndpointMessenger interfaces, you've probably realized that JXTA needs a
mechanism to send messages between peers that aren’t directly connected.
Although the HTTP endpoint protocol implementation in the reference
implementation provides router peer functionality that allows a message to
traverse a firewall, a peer still needs some way to learn of the existence of the
router peer in the first place. Because router peers may enter or leave the
network spontaneously, a peer needs a routing mechanism that works even in
situations in which the route between two peers is constantly changing. Enter
the Endpoint Routing Protocol.

If two peers cannot communicate directly using a common endpoint
protocol implementation, the Endpoint Routing Protocol provides each peer
with a way to discover how it can send messages to the other peer via an
intermediary, using only available endpoint protocol implementations
(see Figure 9.7).

1. Peer 1 wants to send a
message to Peer 4, but is
unable to connect to it
directly. Peer 1 sends a
Route Query Message to
its known simple peers
and rendezvous peers to
try to determine a route to
Peer 4.

2. Rendezvous Peer 1,
knowing a route to Peer 4,
sends a Route Response
Message to Peer 1.

Rendezvous Peer 1

3. Peer 1 receives the
Route Response Message
and adds an Endpoint
Router Message to the
message it wants to send
to Peer 4. It sends this
message to the first
Endpoint Address provided
in the returned route

information. 5. Peer 4 receives the

Endpoint Router Message
and determines that it is
the final destination for the
message. The original

Peer 3 message is extracted and
sent to the appropriate
4. Peer 3 receives the service via the Endpoint
Endpoint Router Message, service.

determines the next peer
in the route, amends the
Endpoint Router Message,
and sends the message
on to the next Endpoint
Address in the route.

Figure 9.7 Flow of the Endpoint Routing Protocol.

Introducing the Endpoint Routing Protocol 279

The Endpoint Routing Protocol, also called the Peer Endpoint Protocol, pro-
vides a mechanism for a message to be sent to a remote peer using discovered
route information. Each intermediary along the message route is responsible
for passing the message on to the next peer described by the route informa-
tion until the message reaches its ultimate destination.

For now, only two messages are required to determine route information:
the Route Query Message and the Route Response Message. The current
JXTA Protocols Specification defines three other messages for the Endpoint
Routing Protocol: the Ping Query Message, the Ping Response Message, and
the NACK Message. These messages allow a peer to test that a message can be
routed to a destination peer and also allow an intermediary peer to signal the
sender that an attempt to route a message has failed. These messages are not
currently available in the reference implementation and will not be discussed.

The Endpoint Routing Protocol defines one other message, the Endpoint
Router Message, which is used to pass route information along with a mes-
sage. Peers along the message’s path as it travels to its destination use the extra
information provided by the Endpoint Router Message to determine the next
peer en route to the destination.

The Route Query Message

A Route Query Message is sent by a peer when it wants to determine the set
of ordered peers to use to send a message to a given Endpoint Address. Listing
9.4 shows the elements of the Router Query Message.

Listing 9.4 The Route Query Message XML

<?xml version="1.0" encoding="UTF-8"?>
<jxta:EndpointRouter>
<Type>RouteQuery</Type>
<DestPeer> . . . </DestPeer>
<RoutingPeerAdv> . . . </RoutingPeerAdv>
</jxta:EndpointRouter>

Each element in the Route Query Message describes one aspect required to
perform the search for route information:

» Type—A required element describing the type of Endpoint Router mes-

sage being sent. For the Route Query Message, this element is set to
RouteQuery.

280 Chapter 9 The Endpoint Routing Protocol

= DestPeer—An optional element containing the Endpoint Address of the
final destination peer in the route being discovered. Any route returned
in response to this Route Query Message provides a route that allows a
message to be sent from the local peer to the peer specified by Destpeer.

= RoutingPeerAdv—An optional element containing the Peer Advertisement
of the peer requesting route information.

To discover route information, a peer sends a Route Query Message to other
peers that it has previously discovered. In addition to finding peers by peer dis-
covery, a peer may learn of another peer’s existence by processing a Route
Query Message and extracting the RoutingPeerAdv, if one has been passed. By
reusing this Peer Advertisement, the peer can save network bandwidth and
potentially reduce the time required to obtain route information, resulting in
improved performance.

As with any of the core protocols, a query might not result in a response or
might result in multiple responses.

The Route Response Message

To provide a reply to a Route Query Message, a peer sends a Route Response
Message describing a set of ordered Endpoint Addresses to use to send a mes-

sage to a given destination peer. The Route Response Message has the format

shown in Listing 9.5.

Listing 9.5 The Route Response Message XML

<?xml version="1.0" encoding="UTF-8"?>
<jxta:EndpointRouter>

<Version>2</Version>
<Type>RouteResponse</Type>

<DestPeerIdTag> . . . </DestPeerlIdTag>
<RoutingPeerIdTag> . . . </RoutingPeerIdTag>
<NbOfHops> . . . </NbOfHops>
<RoutingPeerAdvTag> . . . </RoutingPeerAdvTag>
<GatewayForward> . . . </GatewayForward>

</jxta:EndpointRouter>

The Route Response Message contains similar information to the Route
Query Message, with the exception that it contains the route information
requested by the peer:

Introducing the Endpoint Routing Protocol 281

= Version—A required element containing an integer describing the ver-
sion of the Endpoint Routing Protocol being employed in the protocol
conversation. Although the Protocols Specification defines this as a
required element for both the Route Query and Response Message for-
mats, the reference implementation currently adds it only in the Route
Response Message. At this time, the Version is set to 2.

= Type—A required element containing a string describing the type of
Endpoint Router Message being sent. For the Route Response Message,
this element is set to RouteResponse.

= DestPeerIdTag—An optional element containing the Endpoint Address of
the final destination peer in the route being discovered. This should
match the Endpoint Address passed in the original Route Query
Message’s DestPeerIdTag element.

= RoutingPeerIdTag—An optional element containing the Endpoint Address
of the peer that is acting as a source of route information. This will most
likely be called RoutingPeer in the future because it contains an Endpoint

Address rather than a Peer ID.

= RoutingPeerAdvTag—An optional element containing the Peer
Advertisement of the peer requesting route information.

= NbOfHops—An optional element containing the number of network hops
in the route to the destination peer.

= GatewayForward—An optional element containing the Endpoint Address of
a peer along the route to the destination peer. There may be several
GatewayForward elements in a Route Response Message, and the route
depends on the order of these elements. The GatewayForward elements
describe the path in order of Endpoint Addresses that a message must
visit to reach a destination peer.

When a peer receives a Route Query Message, it checks to see if it knows
how to route a message to the specified destination peer. If so, it returns the
route information in a Route Response Message; otherwise, the current refer-
ence implementation discards the query and returns no response.

The Endpoint Router Message

The Endpoint Router Message provides the information required to route a
message to its destination after the message has left its source peer. Rather than
encapsulating the message being routed, the Endpoint Router Message simply

282 Chapter 9

adds

The Endpoint Routing Protocol

routing information alongside the other content of a message. The

Endpoint Router Message provides the route information in the format in
Listing 9.6.

Listing 9.6 The Endpoint Router Message XML

<jxta:JdxtaEndpointRouter>

<jxta:Src> . . . </jxta:Src>

<jxta:Dest> . . . </jxta:Dest>

<jxta:Last> . . . </jxta:Last>

<jxta:NBOH> . . . </jxta:NBOH>
<jxta:GatewayForward> . . . </jxta:GatewayForward>
<jxta:GatewayReverse> . . . </jxta:GatewayReverse>

</jxta:JxtaEndpointRouter>

Each element provides information required to route a message to the destina-
tion peer and also how to route a response message to the source peer:

src—A required element containing the Endpoint Address of the original
peer responsible for sending the message.

Dest—A required element containing the Endpoint Address of the desti-
nation peer for the message.

Last—An optional element containing the Endpoint Address of the pre-
vious peer in the routing order. This address corresponds to the peer
responsible for sending a message to the current peer.

NBOH—An optional element containing the number of network hops con-
tained in the reverse route. If this parameter is set to 0, it indicates that
the message doesn’t contain reverse routing information.

GatewayForward—An optional element containing the Endpoint Address of
a peer along the route to the destination peer. There may be several
GatewayForward elements in a Route Response Message, and the route
depends on the order of these elements. The GatewayForward elements
describe the path in order of Endpoint Addresses that a message must
visit to reach a destination peer.

GatewayReverse—An optional element containing the Endpoint Address of
a peer along the route from the destination peer to the source peer.
There may be several GatewayReverse elements in a Route Response
Message, and the reverse route depends on the order of these elements.
The GatewayReverse elements describe the path in order of Endpoint
Addresses that a message must visit to reach the original source peer.

The Endpoint Router Transport Protocol 283

As a peer receives an Endpoint Router Message, it determines the next peer in
the route, modifies the Endpoint Router Message, and sends the message on to
the next peer. The next peer in the route can be determined by either sending
a Route Query Message or consulting the GatewayForward elements in the
Endpoint Router Message accompanying the message.

Although a peer isn’t required to populate the GatewayForward and
GatewayReverse elements of the Endpoint Router Message before sending the
message to the next peer, the JXTA Protocols Specification encourages peers
to add this information. Adding this information not only reduces the process-
ing and route query overhead required at each point along the route, but it
also improves the performance of the routing process.

The Endpoint Router Transport Protocol

Up to this point, you might have assumed that the Endpoint Routing Protocol
is implemented as a service, just like all the other core protocols in JXTA.
However, to simplify the implementation of the Endpoint Routing Protocol, it
is implemented as an endpoint protocol implementation, bound within the
Endpoint service to the jxta protocol specifier. This endpoint protocol imple-
mentation, called the Endpoint Router Transport Protocol, is invoked when a
message is sent to an Endpoint Address of the form jxta://<Peer ID unique
format>. The mechanism is invoked in exactly the same fashion that the TCP
endpoint protocol implementation gets invoked when sending a message to an
Endpoint Address of the form tcp://10.6.18.38.

Because the Endpoint Router Transport Protocol is invoked automatically
to handle messages being sent to Endpoint Addresses for the Endpoint Router,
the developer never has to interact with the endpoint protocol implementa-
tion directly. To send a message to a remote peer via the Endpoint Router
Transport, a developer needs only to create an Endpoint Router Endpoint
Address from the Peer ID of the destination peer:

PeerID peerld;
EndpointServer endpoint;

String asString = "jxta://" + peerlId.getUniqueValue().toString();
EndpointAddress address = endpoint.newEndpointAddress(asString);

After the EndpointAddress has been created, the service name and service para-
meters can be set, just as with any other Endpoint Address. The message can
then be sent to the remote peer via the Endpoint Routing Transport Protocol
by using the EndpointService to obtain an EndpointMessenger object for the
EndpointAddress.

284 Chapter 9 The Endpoint Routing Protocol

The Endpoint Router Transport Protocol in the reference implementation
is provided by the EndpointRouter class in the net.jxta.impl.endpoint package.
When the getMessenger method is called via the EndpointService.getMessenger
method, EndpointRouter transparently handles determining route information,
either from cached information or from sending Route Query Messages. If a
direct connection is possible using one of the registered endpoint protocol
implementations, the method returns the appropriate messenger; otherwise, the
method returns an EndpointRouter.EndpointRouterMessenger object. This class
implements EndpointMessenger and adds an Endpoint Router Message to out-
going message. The important point to realize here is that the Endpoint service
1s responsible for masking all of this from the developer. As long as the jxta://
form of the Endpoint Address is used, the EndpointService instance handles the
details of finding the right endpoint protocol implementation or routing
information in a transparent fashion.

The Endpoint Routing Transport Protocol is incapable of propagating
messages to multiple peers, and the reference implementation provides an
empty implementation for EndpointProtocol.propagate. However, propagation
isn’t really the responsibility of the Endpoint Routing Transport Protocol. The
Rendezvous service is responsible for propagating messages via known ren-
dezvous peers when the peer is behind a firewall. Messages to individual
rendezvous peers sent by the RendezvousServiceImpl use EndpointMessenger,
allowing Endpoint Router—formatted Endpoint Addresses to correctly
invoke the Endpoint Routing protocol implementation.

Summary

In this chapter, you explored the Endpoint service and the Endpoint Routing
Protocol. These two elements are responsible for encapsulating and abstracting
network transport-specific details and hiding those details from higher services.
All that remains is to learn how to create new services and applications of
your own. To do this, Chapter 10 discusses services and peer groups, how they
relate, and how to create your own peer group and associate services with it.

