
Steal This Book!
Yes, you read that right. Steal this book. For free.
 Nothing. Zero. Z ilch. Nadda. Z ip.
 Undoubtedly you're asking yourself, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"
 The answer...is yes. Sort of. I know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I 'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

 1. Send this book to your friends: No, not your manager.
 Your "with it" computer friends who are looking for the next
 Big Thing. JXTA is it. Trust me. They want to know about it.

 2. Send a link to the book's web site: Maybe the book is
 too big to send. After all, not everyone can have a fibre optic
 Internet connection installed in their bedroom. The site, at
 www.brendonwilson.com/projects/jxta, provides chapter-
 sized PDFs for easy downloading by the bandwidth-challenged.

 3. Visit the book's web site: Being a professional developer, you
 probably have Carpal Tunnel Syndrome and shudder at the idea
 of typing in example source code. Save yourself the trouble. Go to
 www.brendonwilson.com/projects/jxta and download the
 source code. And while you're there, why not download some of
 the chapters you're missing?

 4. Buy the book: You knew there had to be a catch. Sure, the
 book's PDFs are free, but I 'm hoping that enough of you like the
 book so much that you have to buy a copy. Either that, or none
 of you can stand to read the book from a screen (or, worse yet,
 print it all out <shudder>) and resort to paper to save what's left
 of your eyesight. The book is available at your local bookstore or
 from Amazon.com (at a handsome discount, I might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Rendezvous Protocol

6

IN CHAPTER 5,“THE PEER RESOLVER PROTOCOL,” you learned that the Resolver
service provides the foundation for the Discovery’s service’s capability to query
remote peers and respond to queries from remote peers. Just as the Discovery
service relies on the capabilities of the Resolver service, the Resolver service
relies on the capabilities of another service: the Rendezvous service.The
Rendezvous service is responsible not only for allowing a user to propagate
messages to other peers via a rendezvous peer, but also for providing ren-
dezvous peer services to other peers on the network.

This chapter explains the Rendezvous Protocol (RVP) that simple peers use
to connect to rendezvous peers to propagate messages to other peers on their
behalf.As you’ll see, the Rendezvous service implementation of the RVP has a
dual role, providing a unified API for propagating messages, independent of
whether a peer is configured to act as a rendezvous peer.

08_2344 Ch 06 5/14/02 11:38 AM Page 161

162 Chapter 6 The Rendezvous Protocol

Introducing the Rendezvous Protocol
Chapter 2,“P2P Concepts,” introduced the concept of a rendezvous peer, a
peer used to propagate messages within a peer group on another peer’s behalf.
In JXTA, a rendezvous peer provides simple peers in private networks with
the capability to broadcast messages to other members of a peer group outside
the private network.This functionality is independent of the underlying net-
work transport, allowing message propagation over transports that don’t sup-
port multicast or broadcast capabilities.

Before a peer can use a rendezvous peer to propagate messages, it must con-
nect to the rendezvous peer and obtain a lease.A lease specifies the amount of
time that the peer requesting a connection to the rendezvous peer is allowed
to use the rendezvous peer before it must renew the connection lease.To han-
dle the interactions required to provide this functionality, the RVP defines
three message formats:

n Lease Request Message—A message format used by a peer to request
a connection lease to the rendezvous peer

n Lease Granted Message—A message format used by the rendezvous
peer to approve a peer’s Lease Request Message and provide the length
of the lease

n Lease Cancel Message—A message format used by a peer to
disconnect from the rendezvous peer

Unlike previous protocols, these messages are not specifically defined in terms
of XML; instead, they are defined in terms of message elements.As in XML,
message elements consist of a name and the contents of the element, and they
can be nested.These message elements are used by the Endpoint service, dis-
cussed in Chapter 9,“The Endpoint Routing Protocol,” to render messages
into a format suitable for transmission over a specific network transport.
Although the Endpoint service can render these message elements into XML,
in most cases, it is more efficient to render the message elements into a more
compact binary representation for transmission.

To connect with a rendezvous peer, a peer uses the sequence of messages
shown in Figure 6.1.

08_2344 Ch 06 5/14/02 11:38 AM Page 162

163Introducing the Rendezvous Protocol

Figure 6.1 Exchange of RVP messages.

Of course, before a peer can even begin the process of connecting to a ren-
dezvous peer, it must discover the rendezvous peer by finding its Rendezvous
Advertisement.After a rendezvous peer has been discovered, the peer sends
requests to the rendezvous peer using the Endpoint service, addressing requests
using JxtaPropagate as the service name and the ID of the peer group for
which the peer is requesting rendezvous services as the service parameter.
Endpoint service names and parameters are detailed in Chapter 9’s explanation
of the Endpoint service.

The Rendezvous Advertisement
Peers that want to act as a rendezvous peer announce their capabilities to the
network by publishing a Rendezvous Advertisement, as shown in Listing 6.1.

Listing 6.1 The Rendezvous Advertisement XML

<?xml version=”1.0”?>

<jxta:RdvAdvertisement xmlns:jxta=”http://jxta.org”>

<RdvGroupId> . . . </RdvGroupId>

<RdvPeerId> . . . </RdvPeerId>

<Name> . . . </Name>

</jxta:RdvAdvertisement>

Rendezvous Peer 1

1.

Peer 2

Peer 1

Peer 3

Rendezvous Peer 2

6. A rendezvous peer might

be a client of other rendezvous

peers. In this scenario,

Rendezvous Peer 1 is connected

to Rendezvous Peer 2 and uses

Rendezvous Peer 2 to propagate

the message to peers that are

also connected to Rendezvous

Peer 2.

7. Even peers not acting as

rendezvous peers will propagate

messages. In this case, the

propagation will be limited to the

local LAN segment.

Peer 1 wants to use

Rendezvous Peer 1 to

propagate a message

within a peer group on

its behalf. It must first

obtain a connection

lease with the rendezvous

peer by sending a Lease

Request Message.

2. Upon receiving the

Lease Request Message,

the rendezvous peer

decides whether to grant

a connection lease. If it

does, it generates a

connection lease and sends

a Lease Granted Message

to the requesting peer.

3. Peer 1 receives the

Lease Granted Message.

It can now send messages

to the rendezvous peer

for propagation to other

peers.

4. When the rendezvous

peer receives a message

to propagate, it checks that

the source has already

been granted a

lease. If it has, the

rendezvous peer

propagates the message

to each of the other peers

that currently hold a

connection lease with the

rendezvous peer. The

rendezvous will also

propagate the message

on the local LAN segment

using TCP multicast/

broadcast.

5. Peers recieve the

propagated message

and route the received

message to the service

specified by the message's

RendezVousPropagateMessage

element.

also

08_2344 Ch 06 5/14/02 11:38 AM Page 163

164 Chapter 6 The Rendezvous Protocol

The Rendezvous Advertisement provides all the details that a peer needs to
find a rendezvous peer to use to propagate messages on its behalf:

n RdvGroupId—A required element containing the ID of the peer group to
which the peer is providing Rendezvous services.

n RdvPeerId—A required element containing the ID of the peer providing
Rendezvous services to the specified peer group.

n Name—An optional element containing a symbolic name for the ren-
dezvous peer.This name could be used by other peers to search for the
rendezvous peer.

As shown in Figure 6.2, in the reference implementation, the Rendezvous
Advertisement is represented by the RdvAdvertisement abstract class in the
net.jxta.protocol package and is implemented by the RdvAdv class in
net.jxta.impl.protocol.

RdvAdvertisement
(from net.jxta.protocol)

name : java.lang.String

RdvAdvertisement()

getAdvertisementType() : java.lang.String

getGroupID() : net.jxta.peergroup.PeerGroupID

getName() : java.lang.String

getPeerID() : net.jxta.peer.PeerID

setGroupID(groupId : net.jxta.peergroup.PeerGroupID) : void

setName(name : java.lang.String) : void

setPeerID(peerId : net.jxta.peer.PeerID) : void

RdvAdv

(from net.jxta.impl.protocol)

RdvAdv()

RdvAdv(doc : net.jxta.document.Element)

getDocument(asMimeType : net.jxta.document.MimeMediaType) : net.jxta.document.Document

getID() : net.jxta.id.ID

initialize(doc : net.jxta.document.Element) : void

Figure 6.2 The Rendezvous Advertisement classes.

A peer can find rendezvous peers by sending a Discovery Query Message for
Rendezvous Advertisements.To use the Discovery service in the reference
implementation to search for Rendezvous Advertisements for a specific peer
group, use this code:

discovery.getRemoteAdvertisements(null, 2, “RdvGroupId”,
currentGroup.getPeerGroupID().toString(),
threshold, aListener);

08_2344 Ch 06 5/14/02 11:38 AM Page 164

165Introducing the Rendezvous Protocol

This query searches for advertisements (type = 2) that match the attribute
RdvGroupId to the value of the given Peer Group ID.The responses to the
Discovery Query Message are passed to the DiscoveryListener instance,
aListener, for processing.The DiscoveryService instance used here is the
Discovery service of the parent peer group used to create the peer group
associated with the rendezvous peer.

Lease Request Message
When a peer has discovered a Rendezvous Advertisement and the rendezvous
peer’s corresponding Peer Advertisement, a peer can connect to the rendez-
vous peer and request a connection lease. If the rendezvous peer grants the
request, the rendezvous peer adds the peer to its set of authorized peers.These
authorized peers are allowed to use the rendezvous peer to propagate messages
to other peers that are also connected to the rendezvous peer.

To request a connection lease from a rendezvous peer, a peer sends its own
Peer Advertisement as the contents of a message element named jxta:Connect,
as detailed in Table 6.1.

Table 6.1 The Lease Request Message

Element Name Element Content

jxta:Connect The Peer Advertisement of the peer requesting a
connection lease from the rendezvous peer.

The Peer Advertisement content of the message element always is rendered as
XML, independent of how the Endpoint service renders the message element.
For example, the Endpoint service could render the Lease Grant Message as an
XML message:

<jxta:Connect>
<jxta:PA xmlns:jxta=”http://jxta.org”>
. . .

</jxta:PA>
</jxta:Connect>

The Endpoint service could even compress this string to produce a pure
binary representation of the message element. However, regardless of how the
message element is rendered, the message element’s Peer Advertisement itself
always is an XML document.

08_2344 Ch 06 5/14/02 11:38 AM Page 165

166 Chapter 6 The Rendezvous Protocol

Lease Granted Message
If the rendezvous peer approves the peer’s request for a connection lease, the
requesting peer is added to the rendezvous peer’s set of connected peers.The
rendezvous peer responds to the requesting peer with a set of message ele-
ments collectively called the Lease Granted Message.The Lease Granted
Message contains the rendezvous peer’s Peer ID and a lease time, and it might
contain the rendezvous peer’s Peer Advertisement, as detailed in Table 6.2.

Table 6.2 The Lease Granted Message

Element Name Element Content

jxta:RdvAdvReply An optional message element containing the Peer
Advertisement of the rendezvous peer granting
the lease

jxta:ConnectedPeer A required message element containing the Peer
ID of the rendezvous peer granting the lease

jxta:ConnectedLease A required message element containing a string
representation of the lease time, in milliseconds

The lease time specifies the amount of time, in milliseconds, before a con-
nected peer is removed from the rendezvous peer’s set of connected peers.
Peers that are connected to the rendezvous peer receive messages propagated
by the rendezvous peer on behalf of other peers. Peers that are also located on
the same LAN segment as the rendezvous peer receive the propagated message
via TCP multicast. If a peer is located on the same LAN segment as the ren-
dezvous peer, it receives a propagated message twice, once via direct
communication by the rendezvous peer and once via TCP multicast.

Lease Cancel Message
When a peer no longer wants to use a rendezvous peer, it can cancel its con-
nection lease, thereby removing itself from the rendezvous peer’s set of con-
nected peers.After it is removed, a peer can no longer use the rendezvous peer
to propagate messages, nor will it receive messages propagated by the ren-
dezvous peer on another peer’s behalf.

To cancel the connection lease, a peer sends a message containing a
jxta:Disconnect message element, as detailed in Table 6.3.

08_2344 Ch 06 5/14/02 11:38 AM Page 166

167Introducing the Rendezvous Protocol

Table 6.3 The Lease Cancel Message

Element Name Element Content

jxta:Disconnect The Peer Advertisement of the peer requesting
removal from the rendezvous peer’s set of
connected peers

The rendezvous peer removes the peer from its list of connected peers but
does not provide any response to the peer.

Controlling Message Propagation
In Chapter 2, I noted the possibility for propagation to result in loopbacks,
messages propagating infinitely between peer and rendezvous peers connected
in a closed loop.As detailed in Chapter 2, loopback can be prevented by using
a Time To Live (TTL) value that gets decremented each time a message is
propagated.When the TTL reaches 0, the message is no longer propagated.

The RVP defines a message element to hold information that allows a
rendezvous peer to detect loopback and discard the duplicate message.The
contents of the message element include a RendezVous Propagate Message
document, as shown in Listing 6.2.

Listing 6.2 The RendezVous Propagate Message XML

<?xml version=”1.0” encoding=”UTF-8”?>

<jxta:RendezVousPropagateMessage>

<MessageId> . . . </MessageId>

<DestSName> . . . </DestSName>

<DestSParam> . . . </DestSParam>

<TTL> . . . </TTL>

<Path> . . . </Path>

</jxta:RendezVousPropagateMessage>

The contents of the RendezVous Propagate Message provide details about the
service to which the message should be propagated and where the message has
already been propagated:

n MessageId—A required element containing a unique identifier for the
message being propagated. In the reference implementation, this is simply
the time, in milliseconds, since the epoch, when the message is initially
propagated.The reference implementation assumes the likelihood that
two messages are being propagated within the same peer group at the
same time and are sufficiently small to make this value unique.

08_2344 Ch 06 5/14/02 11:38 AM Page 167

168 Chapter 6 The Rendezvous Protocol

n DestSName—A required element containing the name of the destination
service for the propagated message.

n DestSParam—A required element containing the parameters for the desti-
nation service for the propagated message.

n TTL—A required element containing the propagated message’s current
TTL.The rendezvous peer discards the message if the message’s TTL is 0.

n Path—An optional element containing the Peer ID of a peer that the
message being propagated has already visited.There can be more than
one Path element, each specifying a waypoint in the message’s propaga-
tion path.The rendezvous peer does not propagate a message to any
peer that is contained in any of the RendezVous Propagate Message’s
Path elements.

For a message being propagated, the RendezVous Propagate Message is added
to a message element with a name consisting of the concatenation of
RendezVousPropagate and the ID of the peer group for which the rendezvous
peer is providing Rendezvous services.

The Rendezvous Service
As shown in Figure 6.3, the Rendezvous service provides the implementation
of the RVP, providing the functionality both to run a rendezvous peer and to
propagate a message using a Rendezvous peer.

<<Interface>>

RendezVousService

(from net.jxta.rendezvous)

connectToRendezVous(adv : net.jxta.protocol.PeerAdvertisement) : void

connectToRendezVous(addr : net.jxta.endpoint.EndpointAddress) : void

disconnectFromRendezVous(peerId : net.jxta.peer.PeerID) : void

setMonitor(monitor : net.jxta.rendezvous.RendezVousMonitor) : net.jxta.rendezvous.RendezVousMonitor

getConnectedRendezVous() : java.util.Enumeration

getDisconnectedRendezVous() : java.util.Enumeration

startRendezVous(manager : net.jxta.rendezvous.RendezVousManager) : void

startRendezVous() : void

stopRendezVous() : void

getConnectedPeers() : java.util.Enumeration

sendRendezVousAdv(destpeer : net.jxta.protocol.PeerAdvertisement, rdv : net.jxta.protocol.PeerAdvertisement) : void

addPropagateListener(name : java.lang.String, listener : net.jxta.endpoint.EndpointListener) : void

removePropagateListener(name : java.lang.String, listener : net.jxta.endpoint.EndpointListener) : void

addListener(listener : net.jxta.rendezvous.RendezvousListener) : void

removeListener(listener : net.jxta.rendezvous.RendezvousListener) : boolean

propagate(msg : net.jxta.endpoint.Message, servicename : java.lang.String, queuename : java.lang.String, ttl : int) : void

propagateToNeighbors(msg : net.jxta.endpoint.Message, servicename : java.lang.String, queuename : java.lang.String, ttl : int, prunepeer : java.lang.String) void

propagateInGroup(msg : net.jxta.endpoint.Message, servicename : java.lang.String, queuename : java.lang.String, ttl : int, prunepeer : java.lang.String) : void

isConnectedToRendezVous() : boolean

isRendezVous() : boolean

RendezVousServiceImpl

(from net.jxta.impl.rendezvous)

Figure 6.3 The Rendezvous service interfaces and classes.

08_2344 Ch 06 5/14/02 11:38 AM Page 168

169The Rendezvous Service

When not configured to act as a rendezvous peer, a peer can use its
Rendezvous service to propagate messages within a peer group using ren-
dezvous peers to which it is connected.The peer can also use the Rendezvous
service to propagate messages to peers in the same peer group using network
transports that support multicasting within the LAN segment.When config-
ured as a rendezvous peer, the Rendezvous service has the additional capability
to propagate messages to other rendezvous and simple peers in the peer group
on behalf of its set of connected peers.

Propagating Messages
The Rendezvous service’s main functionality is to allow a peer to propagate
messages to other peers on the network.This functionality is augmented when
a Rendezvous service is configured to provide rendezvous peer services to
other peers in the peer group. Regardless of whether a Rendezvous service is
configured to provide rendezvous peer services, the RendezVousService interface
provides three methods for propagating messages, as shown in Listing 6.3.

Listing 6.3 The RendezVousService Message Propagation Methods

public void propagate (Message msg, String serviceName,

String serviceParam, int defaultTTL) throws IOException;

public void propagateInGroup (Message msg, String serviceName,

String serviceParam, int defaultTTL, String prunePeer)

throws IOException;

public void propagateToNeighbors (Message msg, String serviceName,

String serviceParam, int defaultTTL, String prunePeer)

throws IOException;

Each method provides a slightly different way of propagating a message to
other peers in the peer group.All methods have the following parameters in
common:

n msg—The Message object to be propagated to other peers.
n serviceName—A unique service name that identifies the service on the

remote peer that is responsible for handling the Message object. In the ref-
erence implementation, this is set to the Module Class ID for the service.
Modules and module classes are discussed in Chapter 10,“Peer Groups
and Services.”

n serviceParam—A parameter providing a name for a message queue.The
service can use this parameter to route the handling of a message to the
appropriate service instance.

08_2344 Ch 06 5/14/02 11:38 AM Page 169

170 Chapter 6 The Rendezvous Protocol

n defaultTTL—A default Time To Live (TTL) value to be used when send-
ing the Message.This TTL is used only if the Message doesn’t currently
have a TTL value. Otherwise, the propagation methods handle decre-
menting the Message’s TTL. In the reference implementation, the value
passed as a default TTL can’t be greater than the maximum TTL value of
10. If the default TTL passed is larger than the maximum, it is set to the
maximum TTL.

Both propagateInGroup and propagateToNeighbors take an extra argument,
prunePeer, that specifies the Peer ID of a peer that should not be included in
the propagation.The current reference implementation ignores this argument.

Each of the propagation methods has a slightly different purpose:
n propagateToNeighbors—This method propagates the Message to peers on

the local network. In the reference implementation, a neighbor is a peer
on the network that the rendezvous can communicate with directly,
without going through a router peer.This method relies on the Endpoint
service to broadcast the message to peers on the local LAN segment
using available network transports.

n propagateInGroup—This method propagates the Message to all peers
in the peer group.This method duplicates the functionality of
propagateToNeighbors but also propagates the given Message to each ren-
dezvous peer with which the peer has a connection lease. If the local
peer is configured to act as a rendezvous peer, this method also propa-
gates the given Message to each peer that has a connection lease with the
local peer.

n propagate—The documentation for the Java implementation gives the
same description for this method as propagateInGroup. However, the refer-
ence implementation uses this method as a convenience method:When
the passed defaultTTL is 1, propagate calls propagateToNeighbors. Otherwise,
propagate calls propagateInGroup.

The propagation methods are all responsible not only for setting the Message’s
TTL, but also for adding a message element containing the RendezVous
Propagate Message to prevent against loopback.

Receiving Propagated Messages
The Rendezvous service is not responsible for blindly repropagating messages
that it receives; instead, it serves only to propagate a message one network hop
to another peer. It is the responsibility of a service on the peer to decide

08_2344 Ch 06 5/14/02 11:38 AM Page 170

171The Rendezvous Service

whether to repropagate the message. For example, the ResolverService imple-
mentation described in Chapter 5 repropagates a message only if the
QueryHandler implementation’s processQuery method doesn’t throw a
DiscardQueryException.

To allow a service to listen for propagated messages and decide whether
to repropagate the message, the RendezVousService interface defines the
addPropagateListener method:

public void addPropagateListener(String serviceNamePlusParameters,
EndpointListener listener)

throws IOException;

The addPropagateListener method registers an instance of EndpointListener, an
interface described in Chapter 9, with the RendezVousService instance.The lis-
tener object is notified via its processIncomingMessage method when the
Endpoint service receives a propagated message that matches the service name
and parameters passed to addPropagateListener.

When an EndpointListener instance is notified of the arrival of a propagated
message, it can repropagate the message by invoking the propagateInGroup
method on a RendezVousService instance.The RendezVousService implementation
handles updating the message’s RendezVous Propagate Message with new TTL
and path information.

When notification of propagated messages is no longer required, the
EndpointListener instance can be unregistered from the RendezVousService
using the removePropagateListener method:

public void removePropagateListener(String serviceNamePlusParameters,
EndpointListener listener)

throws IOException;

To remove a listener object successfully, the parameters passed to
removePropagateListener must match those used to register the listener using
addPropagateListener.

Connecting to and Disconnecting from Rendezvous Peers
The process of obtaining or cancelling a connection lease with a rendezvous
peer is conducted entirely via the RendezVousService interface.To obtain a con-
nection lease with a remote rendezvous peer, a peer invokes this code:

public void connectToRendezVous (PeerAdvertisement adv) throws IOException;

Instead of using a Peer Advertisement, a peer can use an EndpointAddress to
specify the remote rendezvous peer from which to obtain a connection lease:

public void connectToRendezVous (EndpointAddress addr) throws IOException;

08_2344 Ch 06 5/14/02 11:38 AM Page 171

172 Chapter 6 The Rendezvous Protocol

The EndpointAddress is an abstraction of a network location that can be either
network transport-neutral or transport-specific. Endpoint addresses are dis-
cussed in Chapter 9.When a peer has obtained a connection lease, the peer
can cancel the lease granted by a remote rendezvous peer using this line:

public void disconnectFromRendezVous (PeerID peerID);

Cancelling the lease with a rendezvous peer requires the Peer ID of the
rendezvous peer.

The RendezvousListener and RendezvousEvent Classes
The Rendezvous service provides a RendezvousListener interface, as shown in
Figure 6.4, that developers can implement to monitor the Rendezvous service.
Registered RendezvousListener objects are notified when the Rendezvous ser-
vice connects and disconnect from a rendezvous peer and when client peers
connect or disconnect.

 <<Interface>>
 RendezvousListener
(from net.jxta.rendezvous)

rendezvousEvent(event : net.jxta.rendezvous.RendezvousEvent) : void

 RendezvousEvent
(from net.jxta.rendezvous)

RDVCONNECT : int = 0
RDVRECONNECT : int = 1
CLIENTCONNECT : int = 2
CLIENTRECONNECT : int = 3
RDVDISCONNECT : int = 4
RDVFAILED : int = 5
CLIENTDISCONNECT : int = 6
CLIENTFAILED : int = 7

RendezvousEvent(source : java.lang.Object, type : int, peerId : java.lang.String)
getType() : int
getPeer() : java.lang.String

Figure 6.4 The RendezvousListener and RendezvousEvent classes.

The RendezvousEvent represents events fired by the RendezVousService when it is
either acting as a client to another rendezvous peer or acting as a rendezvous
peer to a client peer.The RendezvousEvent.getType method returns one of
several possible values to inform the RendezvousListener what event has tran-
spired.Type names starting with CLIENT indicate events triggered by the
Rendezvous service handling a client peer message.Type names starting with

08_2344 Ch 06 5/14/02 11:38 AM Page 172

173The Rendezvous Service

RDV indicate events triggered by the Rendezvous service receiving a response
to messages sent to a remote rendezvous peer. In total, eight possible values are
returned by RendezvousEvent.getType:

n CLIENTCONNECT—The Rendezvous service has successfully processed a
client peer’s Connect request.

n CLIENTDISCONNECT—The Rendezvous service has successfully processed a
client peer’s Disconnect request.

n CLIENTRECONNECT—This is not currently used in the reference implementa-
tion. It indicates that the Rendezvous service has successfully processed a
client peer’s Connect request. In this case, the client peer was already
connected to the rendezvous peer but is connecting to renew its lease
with the rendezvous peer. Most likely, this will be used when the lease
time is used correctly.

n CLIENTFAILED—This also is not currently used in the reference implemen-
tation. It indicates that the Rendezvous service has unsuccessfully
processed a client’s Connect request.

n RDVCONNECT—The Rendezvous service, acting as a client peer, has received
a response to its Connect request indicating that it is now connected to a
rendezvous peer.

n RDVDISCONNECT—The Rendezvous service has successfully disconnected
from a remote rendezvous peer.This event is not fired as a result of a
response from the rendezvous peer, but it is fired immediately after the
Disconnect request is sent to the rendezvous peer.

n RDVRECONNECT—This is not currently used in the reference implementa-
tion. It indicates that the Rendezvous service has received a response
from a rendezvous peer confirming the success of a Connect request. In
this case, the client peer was already connected to the rendezvous peer,
but it sent a Connect to renew its lease with the rendezvous peer. Most
likely, this will be used when the lease time is used correctly.

n RDVFAILED—This is not currently used in the reference implementation.
The Rendezvous service has received a response indicating that its
Connect request failed.

Implementations of RendezvousListener can be added to and removed from
the RendezVousService instance using the addListener and removeListener
methods.The methods operate in a similar fashion to DiscoveryService’s
addDiscoveryListener and removeDiscoveryListener methods.

08_2344 Ch 06 5/14/02 11:38 AM Page 173

174 Chapter 6 The Rendezvous Protocol

Support Classes Used by the Rendezvous Service
The RendezVousService relies on several other interfaces to abstract the task of
managing peers’ requests to obtain or cancel a connection lease. Each
RendezVousService instance relies on an implementation of the RendezVousManager
interface, as shown in Figure 6.5, to handle a client peer’s request for a con-
nection lease.

<<Interface>>

RendezVousManager

(from net.jxta.rendezvous)

requestConnection(adv : net.jxta.document.Advertisement) : long

Figure 6.5 The RendezVousManager interface.

The requestConnection method processes the Peer Advertisement passed in the
request and returns the lease time (in milliseconds). In the current reference
implementation, the default lease time is 30 minutes, although this time is not
currently used, as previously mentioned.A lease time of 0 indicates that the
RendezVousService instance should not add the client to its set of connected
client peers.A negative lease time indicates an infinite lease on the connection
to the rendezvous peer.

Unlike the RendezvousListener interface, a RendezVousService instance has
only one RendezVousManager instance.The RendezVousManager instance is
initialized only when the RendezVousService is configured to act as a
rendezvous for other peers.This RendezVousManager instance is passed to the
RendezVousService.startRendezVous method used to start the Rendezvous
service operating as rendezvous peer.

After the rendezvous peer is started using startRendezVous, the
RendezVousManager instance can’t be changed. Instead, the RendezVousService
instance must be stopped using stopRendezVous and restarted using a different
RendezVousManager instance. Stopping and starting the RendezVousService instance
affects only the instance’s operation as a rendezvous peer.The portion of
RendezVousService instance responsible for allowing the local peer to propagate
messages using other rendezvous peers is unaffected by startRendezVous and
stopRendezVous.

Another support interface, RdvMonitor, provides functionality that is used
when the Rendezvous service is acting as a client to a remote rendezvous
peer. RdvMonitor’s methods, shown in Figure 6.6, are invoked when a client
peer successfully obtains or cancels a connection lease with a rendezvous peer.
A RendezVousService instance has only a single RdvMonitor instance.

08_2344 Ch 06 5/14/02 11:38 AM Page 174

175The Rendezvous Service

Figure 6.6 The RendezVousMonitor interface.

When a peer receives a response indicating that a rendezvous peer has granted
a connection lease, the RdvMonitor.connected method is invoked by the
RendezVousService instance.The connected method accepts the rendezvous peer’s
Peer ID and the lease time for the connection. In the reference implementa-
tion, the connected method adds a local Rendezvous Advertisement for the
remote peer and starts a thread to handle renewing the lease.

When a peer cancels a connection lease with a rendezvous peer, the
RendezVousService instance invokes the disconnected method. Currently, the ref-
erence implementation of RdvMonitor doesn’t do anything in the disconnected
method.

The RdvMonitor interface defines one other method, discovered, which is
invoked by the RendezVousService instance to provide an advertisement for
other rendezvous peers.When the RendezVousService’s sendRendezVousAdv method
is called, the peer sends a message containing a message element named
jxta:RdvAdv that contains a Peer Advertisement.This Peer Advertisement is for
a rendezvous peer that the RendezVousService instance wants to publish to other
peers.When a peer’s RendezvousService receives a message containing a
jxta:RdvAdv message element, the service’s RdvMonitor instance has its discovered
method invoked.This feature can be used to distribute the load away from a
particular rendezvous peer. Currently, the reference implementation simply
publishes the advertisement locally when discovered is called.

Unlike RendezVousManager, the RdvMonitor instance can be set using the
RendezVousService.setMonitor method.

Other Useful RendezVousService Methods
The RendezVousService interface defines several other useful methods:

n getConnectedPeers—Returns an Enumeration of IDs of all the client peers
currently connected to the rendezvous peer.When a peer is not acting as
a rendezvous peer, the Enumeration is empty.

n getConnectedRendezVous—Returns an Enumeration of IDs of all the ren-
dezvous peers to which the peer is connected.This method returns
results regardless of whether the peer is operating as a rendezvous peer.

<<Interface>>

RendezVousMoniter

(from net.jxta.rendezvous)

discovered(adv : net.jxta.document.Advertisement) : void

connected(peerId : net.jxta.peer.PeerID, lease : long) : void

disconnected(peerId : net.jxta.peer.PeerID) : void

08_2344 Ch 06 5/14/02 11:38 AM Page 175

176 Chapter 6 The Rendezvous Protocol

n getDisconnectedRendezVous—Returns an Enumeration of IDs of all rendez-
vous peers to which the peer has failed to connect.

n isConnectedToRendezVous—Returns true if the peer is currently connected
to at least one rendezvous peer.

n isRendezVous—Returns true if the peer is providing rendezvous peer ser-
vices to other client peers in Rendezvous service’s peer group.

Maintaining Rendezvous Connections
To ensure that a peer receives propagated messages, the peer must maintain its
connection lease to a number of rendezvous peers.Without maintaining and
renewing the connection lease, a peer risks not receiving propagated messages
from members of its peer group that are not part of its local LAN segment.

To address this issue, the reference implementation provides the
RendAddrCompactor class in net.jxta.impl.rendezvous.The RendAddrCompactor class
runs a thread that regularly uses the Discovery service to find Rendezvous
Advertisements and maintain connections to rendezvous peers.The
RendAddrCompactor thread tries to discover and obtain a connection lease with
up to three rendezvous peers, thereby attempting to guarantee connectivity
with peer group members outside the local LAN segment.

Summary
In this chapter, you saw how the Rendezvous service allows peers to propagate
messages to other peers within a peer group.You also learned that the
Rendezvous service provides the capability for a peer to act as a rendezvous
peer and propagate messages on behalf of other peers in a peer group.
Developers can use the Rendezvous service not only to send messages, but
also to provide their own custom functionality when client peers connect to
the Rendezvous service to obtain rendezvous peer services.

In the next chapter, you explore the Peer Information Protocol, which is a
protocol that monitors peers and obtains peer status information.The Peer
Information Protocol allows a peer to gather information about a remote peer
that it can use to determine the suitability of the peer for performing a task.

08_2344 Ch 06 5/14/02 11:38 AM Page 176

