Steal This Book!

Yes, you read that right. Stea this book. For free.

Nothing. Zero. Zilch. Nadda. Zip.

Undoubtedly you're aking yourslf, "Why would he give away a
book he probably spent six grueling months writing? Is he crazy?"

The answer...is yes. Sort of. | know that every day you're faced with
hundreds of computer titles, and a lot of them don't deliver the value
or the information you need. So here's the deal: I'll give you this book
(or this chapter, if you've only downloaded part of the book) for free
provided you do me a couple favors:

1. Send this book to your friends: No, not your manager.
Your "with it" computer friends who are looking for the next
Big Thing. JXTA isit. Trug me. They want to know about it.

2. Send a link to the book's web site: Maybe the book is
too big to ®nd. After al, not everyone can have a fibre optic
Internet connection installed in their bedroom. The site, at
www. brendonwilson.com/projects/jxta, provides chapter-
sized PDFs for easy downloading by the bandwidth-challenged.

3. Visit the book's web site: Being a profesiona developer, you
probably have Carpal Tunnel Syndrome and shudder at the idea
of typing in example source code. Save yourlf the trouble. Go to
www. brendonwilson.com/projects/jxta and download the
source code. And while you're there, why not download some of
the chapters you're mising?

4. Buy the book: You knew there had to be a catch. Sure, the
book's PDFs are free, but I'm hoping that enough of you like the
book so much that you have to buy a copy. Either that, or none
of you can stand to read the book from a screen (or, wors yet,
print it all out <shudder>) and resort to paper to sve what's left
of your eyesight. The book is available a your local bookstore or
from Amazon.com (at a handsome discount, | might add).

I now return to your regularly scheduled program: enjoy the book!

http://www.brendonwilson.com/projects/jxta
http://www.brendonwilson.com/projects/jxta
http://www.amazon.com/exec/obidos/ASIN/0735712344/brendonwilson-20

The Peer Resolver Protocol

CHAPTER 4,“THE PEER DIsCOVERY ProTOCOL,” showed how to discover peers
and advertisements using the Discovery service, but it did not address how

the Discovery service handles sending and receiving messages. The Discovery
service isn’t responsible for sending its Discovery Query and Response
Messages. Instead, the Discovery service is built on top of another service,

the Resolver service, which handles sending and receiving messages for the
Discovery service.

This chapter details the Peer Resolver Protocol (PRP) and the Resolver
service that implements the protocol. The PRP defines a protocol for sending
a generic query to a named handler located on another peer and processing a
generic response to a query. Other services in JXTA, such as the Discovery
service, build on the capabilities of the Resolver service and the PRP to
provide higher-level services.

126 Chapter 5 The Peer Resolver Protocol

Introducing the Peer Resolver Protocol

The Discovery service detailed in Chapter 4 described two types of messages:
one for sending a discovery query and another for sending a response to a dis-
covery query. The deceptive simplicity of the discovery messages hides several
layers of abstraction that insulate the developer from the inner complexities

of the JXTA protocols. To develop new solutions built on top of the JXTA
platform, it’s essential to understand these layers.

When a peer sends a Discovery Query Message using the
getRemoteAdvertisements method, the DiscoveryService implementation doesn’t
simply create a Discovery Query Message and pass it over the network itself.
Instead, the Discovery service uses another service, the Resolver service, to
handle the details of sending the message on its behalf. The Resolver service
provides an implementation of the PRP, which defines how peers can
exchange query and response messages.

The Resolver service is responsible for wrapping a query string in a more
generic message format and sending it to a specific handler on a remote peer.
In the case of the Discovery service, the query string is the Discovery Query
Message and the handler is the remote peer’s Discovery service. On the
remote peer, a Resolver service instance is responsible for passing an incoming
message to the appropriate handler and sending any response generated by the
handler.

In the general case, the Resolver service needs only two types of messages:
= Resolver Query Message—A message format for sending queries

» Resolver Response Message—A message format for sending responses
to queries

These two message formats define generic messages to send queries and
responses between peers, as shown in Figure 5.1. At each end, a handler regis-
tered with a peer group’s Resolver service instance processes query strings and
generates response strings.

Like the Peer Discovery Protocol, a query is sent to known peers and prop-
agated through known rendezvous peers. Any peer’s Resolver service that
receives a Resolver Query Message attempts to find a registered handler for
the query. If a matching handler is found, the Resolver passes it the message
and manages sending the response message generated by the handler.

Introducing the Peer Resolver Protocol 127

1. Peer 1 sends a
Resolver Query Messaage

to all of its known simple
peers and rendezvous
peers.

I
Simple Peer 2
3. The Resolver service on a
simple peer receiving the
query searches for a

registered Resolver handler.
If a handler is found, the

handler is invoked, and the
resulting Resolver Response

Rendezvous Peer 1

2. The Resolver service
on a rendezvous peer
receiving the query
searches for a registered
Resolver handler. If
handler is found, the
handler is invoked, and
the resulting Resolver
Response Message is
sent to the peer making
the original query. The
query is also propagated
to other known peers.

Message is sent to the peer
making the original query.

Simple Peer 3

Figure 5.1 Exchange of Resolver messages.

Like the Discovery service, the Resolver service does not require a response
to a Resolver Query Message. The registered handler might not generate a
response to a given query and can indicate to the Resolver service the reason
that it has not generated a response. A handler may not generate a response
because it has decided that the query is invalid in some way. In this case, the
query is not propagated to other peers. A handler might also indicate that it
wants to learn the response generated by other peers in response to the query.
To accomplish this, the handler can ask the Resolver service to resend the
query in a manner that will allow it to receive the response generated by other
peers.

Although the PRP is the default resolver protocol used by the JXTA refer-
ence implementation, developers can provide their own custom resolver
mechanism. A developer might want to provide his own resolver mechanism
to incorporate additional information that provides a better or more efficient

service. This custom solution could be built independently of the PRP or
could be built on top of the PRP.

128 Chapter 5

The Peer Resolver Protocol

The Resolver Query Message

Queries to other peers are wrapped inside a Resolver Query Message using
the format shown in Listing 5.1.

Listing 5.1 Resolver Query Message

<?xml version="1.0" encoding="UTF-8"?>
<jxta:ResolverQuery xmlns:jxta="http://jxta.org">

<HandlerName> . . . </HandlerName>
<Credential> . . . </Credential>
<QueryID> . . . </QueryID>
<SrcPeerID> . . . </SrcPeerID>
<Query> . . . </Query>

</jxta:ResolverQuery>

The

elements in the Resolver Query Message provide all the details that a

peer’s Resolver service needs to match the query to a registered handler:

HandlerName—A required element containing a unique name specifying
the name of the handler that the Resolver service on the destination
peer should invoke to process the query. Because the Resolver service
provides service within the context of a peer group, a handler name must
be unique within a peer group. Only one handler of a given name
should be registered on a given peer in a peer group, and this assumption
is enforced in the Java reference implementation. If a second handler is
registered with the Resolver for a peer group using a duplicate handler
name, the first handler registered with the Resolver service is removed.

Credential—An optional element containing an authentication token that
identifies the source peer and its authorization to send the query to the
peer group.

QueryID—An optional element containing a long integer, encoded as a
string, that defines an identifier for the query. This identifier should be
unique to the query. This identifier should be sent back in a response to
this query, allowing the sender to match a response to a specific query.

srcPeerID—A required element containing the ID of the peer sending the
query. This Peer ID uses the standard JXTA URN format, as described in
the JXTA Protocols Specification.

Query—A required element containing the query string being sent to the
remote peer’s handler. This string could be anything; it is the responsibil-
ity of the handler to understand how to parse this query string, process
the query, and possibly generate a response message.

Introducing the Peer Resolver Protocol 129

The implementation of the Resolver Query Message, as shown in Figure 5.2,
is divided in a similar manner to the Discovery Query and Response
Messages. The ResolverQueryMsg abstract class in the net.jxta.protocol package
defines the basic interface, variables for the query’ attributes, and accessors to
manipulate the attributes. Only the getbocument method is abstract, allowing
implementers to provide their own mechanism for rendering the query to a
Document instance.

The Resolveruery class in the net.jxta.impl.protocol package provides an
implementation of getDocument capable of creating a StructuredTextDocument rep-
resentation of the query in the specified MimeMediaType. Several constructors can
create a ResolverQuery instance from a variety of input parameters, including an
InputStream, or the raw query attributes.

Figure 5.2 The Resolver Query Message classes.

A developer can create a Resolver Query Message at any time to send a
query to a specific Resolver handler on a remote peer. For example, a call

to getRemoteAdvertisements in the reference DiscoveryService implementation
DiscoveryServiceImpl causes the DiscoveryServiceImpl to create a DiscoveryQuery
instance, wrap it in a ResolverQuery instance, and send it using the Resolver
service.

130 Chapter 5 The Peer Resolver Protocol

The Resolver Response Message

The Resolver Response Message responds to a Resolver Query Message using
the format shown in Listing 5.2.

Listing 5.2 Resolver Response Message

<?xml version="1.0" encoding="UTF-8"?>
<jxta:ResolverResponse xmlns:jxta="http://jxta.org">

<HandlerName> . . . </HandlerName>
<Credential> . . . </Credential>
<QueryID> . . . </QueryID>
<Response> . . . </Response>

</jxta:ResolverResponse>

The Resolver Response Message provides similar details to the Resolver
Query Message:

= HandlerName—A required element containing the name of a handler that
should be invoked by the remote peer’s Resolver service to process the
response. A different handler name from that used in the query might be
used to allow a different Resolver handler to process the response.

= Credential—An optional element containing an authentication token that
identifies the peer sending the response and its authorization to send the
response to the destination peer group.

» QueryID—An optional element containing a long integer, encoded as a
string, that defines an identifier for the query. This identifier should cor-
respond to the QueryID sent in the query that caused the peer to generate
this Resolver Response Message. If the QueryID provided in the original
query is unique to the query and the handler, the sender can match this
Resolver Response Message to the original query. Matching the response
to a given query might be necessary to provide useful functionality in a
P2P application.

= Response—A required element containing the response string being sent
to the remote peer’s handler. This string could be anything; it is the
responsibility of the handler to understand how to parse this response
string.

The Resolver Service

In the Java reference implementation of JXTA, the abstract definition of

the Resolver Response Message is defined by ResolverResponselsg in the
net.jxta.protocol package, as shown in Figure 5.3. The reference implementa-
tion of the abstract class is implemented by the ResolverResponse class in the
net.jxta.impl.protocol package.

Figure 5.3 The Resolver Response Message classes.

A Resolver Response Message can be used to “push” information to peers by
sending a Resolver Response Message without first receiving a Resolver
Query Message. This capability is used by the DiscoveryService implementation
DiscoveryServiceImpl to publish advertisements to remote peers whenever the
remotePublish method is called.

The Resolver Service

The Resolver service, another JXTA core service, provides a simple interface
that developers can use to send queries and responses between members of a
peer group. The Resolver service is defined by the ResolverService interface in
the net.jxta.resolver package, shown in Figure 5.4, which is derived from the
GenericResolver interface.

131

132 Chapter 5 The Peer Resolver Protocol

Figure 5.4 The Resolver service interfaces and classes.

The GenericResolver interface defines the methods for sending queries and
responses using implementations of ResolverQueryMsg and ResolverResponseMsg.
More important, the ResolverService interface defines the methods for register-
ing and unregistering an implementation of the net.jxta.resolver.QueryHandler
interface and associating it with a handler name. A registered QueryHandler
instance is invoked when the Resolver service receives a Resolver Query or
Response Message whose HandlerName matches the handler string used to
register the handler with the ResolverService for a peer group.

The QueryHandler Interface

The queryHandler interface, shown in Figure 5.5, is similar to the
DiscoveryListener interface in Chapter 4. Like DiscoveryListener, the
QueryHandler interface provides a developer with a way to provide his own
mechanism for handling response messages. Unlike DiscoveryListener, the
QueryHandler interface also provides a developer with a mechanism for handling
query messages received from other peers.

The Resolver Service

<<Interface>>
QueryHandler
(from net.jxta.resolver)

- processQuery(query : net.jxta.protocol.ResolverQueryMsg) : net.jxta.protocol.ResolverResponseMsg
« processResponse(response : net.jxta.protocol.ResolverResponseMsg) : void

Figure 5.5 The QueryHandler interface.

To begin handling queries, a QueryHandler instance first must be registered with
a peer group’s ResolverService using a unique handler name. After it is regis-
tered, a peer group’s ResolverService instance invokes the QueryHandler’s
processQuery method to process ResolverQuerylsg instances addressed to the
handler. The processQuery implementation is responsible for extracting and pro-
cessing the query string from the ResolverQueryMsg. This processing can result in
one of five outcomes:

= The processQuery method returns a populated ResolverResponselsg object
containing the response to the query. The ResolverService instance han-
dles sending this response back to the peer that sent the original query.

= The processuery method throws a NoResponseException, indicating that the
handler has no response to the query. If the peer is a rendezvous peer, the
ResolverService instance still propagates the query to other peers in the
peer group.

» The processQuery method throws a ResendQueryException, indicating that
the handler has no response to the query but would be interested in
learning the response given by other peers. If the peer is a rendezvous
peer, the ResolverService propagates the query message as usual to other
peers in the peer group. In addition to propagating the message, the
ResolverService instance resends the message (masquerading as the source
peer) to obtain the responses provided by other peers to the query.

= The processQuery method throws a DiscardException, indicating that the
ResolverService should discard the query entirely. The ResolverService
instance discards the query and does not propagate the query to other
peers in the peer group. A query can be discarded because the query,
despite being well formed, might be invalid in some way.

= The processQuery method throws an I0Exception when the handler cannot
process the query, possibly due to an error in the format of the query
string. In the reference ResolverService implementation, this exception
causes the Resolver service to act in the same manner as when a
DiscardException occurs.

133

134 Chapter 5 The Peer Resolver Protocol

The QueryHandler’s processResponse method is invoked by the ResolverService to
process a ResolverResponselsg instance. Unlike processQuery, processResponse
doesn’t produce any results or throw any exceptions. Either the response is
processed or it isn’t. The ResolverService instance doesn’t need to know any-
thing about the results of the processing.

One thing that might seem curious is that the Resolver service and the
QueryHandler interface don’t provide information on how the query or response
strings are formatted. No mechanism exists for a peer to discover how to for-
mat a query string for a given handler or what format to expect in response to
a successful query. The details of the query and response string formatting are
implicit in the implementation of the handler, and JXTA does not provide any
way of discovering how to invoke the handler. This is one area that JXTA does
not address but that could be addressed in the future by adopting one of the
forthcoming XML-based standards for service discovery, such as the Web
Services Description Language (WSDL).

Implementing a Resolver Handler

The example covered in this section creates a simple handler that allows a peer
to query a remote peer for the value of a specified base raised to a specified
power. The query string provides the base and power values in the format
shown in Listing 5.3.

Listing 5.3 The Example Query Message

<?xml version="1.0"?>

<example:ExampleQuery xmlns:example="http://jxta.org">
<base> . . . </base>
<power> . . . </power>

</example:ExampleQuery>

Responses to the query provide the answer to the query using the format in
Listing 5.4.

Listing 5.4 The Example Response Message

<?xml version="1.0"?>
<example:ExampleResponse xmlns:example="http://jxta.org">

<base> . . . </base>
<power> . . . </power>
<answer> . . . </answer>

</example:ExampleResponse>

The Resolver Service

The example Resolver handler accepts a query, extracts the base and power
values, calculates the value of the base raised to the power, and returns a
response message populated with the base, power, and answer values.

Creating the Query and Response Strings

Implementing a Resolver handler requires a developer only to provide an
implementation of the QueryHandler interface and register the handler with a
peer group’s Resolver service. However, a developer should still abstract the
process of parsing query strings and formatting response strings, in the interest
of readability and maintainability.

The Discovery service, covered in Chapter 4, relies on the
DiscoveryQueryMsg, DiscoveryQuery, DiscoveryResponseMsg, and DiscoveryResponse
classes. These classes provided a mechanism for the DiscoveryService implemen-
tation to produce or consume a query or response string in a fairly abstract
fashion. For this example, there’s no need to go as far as defining both an
abstract class and an implementation for the query and response objects. The
query and response objects used in this example use a similar approach to pro-
vide encapsulated parsing and formatting functionality. Listing 5.5 shows the
source code for an object to handle parsing and formatting the query XML
shown in Listing 5.4.

Listing 5.5 Source Code for ExampleQueryMsg.java

package net.jxta.impl.shell.bin.example5_1;

import java.io.InputStream;
import java.io.IOException;
import java.io.StringWriter;

import java.util.Enumeration;

import net.jxta.document.Document;

import net.jxta.document.Element;

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentFactory;
import net.jxta.document.StructuredTextDocument;
import net.jxta.document.TextElement;

/**

continues

135

136 Chapter 5 The Peer Resolver Protocol

Listing 5.5 Continued

* An example query message, which will be wrapped by a Resolver Query

* Message to send the query to other peers. The query essentially asks

* a simple math question: "What is the value of (base) raised to (power)?"
*/
public class ExampleQueryMsg

{

/**
* The base for query.
*/
private double base = 0.0;

/**
* The power for the query.
*/

private double power = 0.0;

/**

* Creates a query object using the given base and power.
*

* @param aBase the base for the query.

* @param aPower the power for the query.

*/
public ExampleQueryMsg(double aBase, double aPower)
{
super();
this.base = aBase;
this.power = aPower;
}
/**

* Creates a query object by parsing the given input stream.

*

* @param stream the InputStream source of the query data.
* @exception IOException if an error occurs reading the stream.
*/

public ExampleQueryMsg(InputStream stream) throws IOException

{

StructuredTextDocument document = (StructuredTextDocument)
StructuredDocumentFactory.newStructuredDocument (

The Resolver Service

new MimeMediaType("text/xml"), stream);

Enumeration elements = document.getChildren();

while (elements.hasMoreElements())

{
TextElement element = (TextElement) elements.nextElement();
if (element.getName().equals("base"))
{
base = Double.valueOf(element.getTextValue()).doubleValue();
continue;
}
if (element.getName().equals("power"))
{
power = Double.valueOf(
element.getTextValue()).doubleValue();
continue;
}
}
}
/**

* Returns the base for the query.

*

* @return the base value for the query.
*/

public double getBase()

{

return base;

/**

* Returns a Document representation of the query.

*

* @param asMimeType the desired MIME type representation for the
* query.

* @return a Document form of the query in the specified MIME

* representation.

*/

continues

137

138 Chapter 5 The Peer Resolver Protocol

Listing 5.5 Continued

public Document getDocument(MimeMediaType asMimeType)
{
StructuredDocument document = (StructuredTextDocument)
StructuredDocumentFactory.newStructuredDocument (
asMimeType, "example:ExampleQuery");
Element element;

element = document.createElement(
"base", Double.toString(getBase()));
document.appendChild(element);

element = document.createElement("power",
Double.toString(getPower()));
document.appendChild(element);

return document;

/**
* Returns the power for the query.
*
* @return the power value for the query.
*/
public double getPower()
{

return power;

/**
* Returns an XML String representation of the query.
*
* @return the XML String representing this query.
*/
public String toString()
{
try
{
StringWriter out = new StringWriter();
StructuredTextDocument doc = (StructuredTextDocument)
getDocument (new MimeMediaType("text/xml"));
doc.sendToWriter(out);

}

return out.toString();

catch (Exception e)

{

return

wu,
H)

The Resolver Service

Like the DiscoveryQueryMsg and DiscoveryQuery classes, the ExampleQueryMsg class

defines fields for the query, methods for rendering the message as a Document
and a String, and constructors for populating a query. The getDocument

method creates a Document for the given MimeMediaType using the
StructuredDocumentFactory class and adds the base and power fields. The toString
method provides a convenient way to render the query object to an XML
string, resulting in a query string in the format defined at the beginning of this

section.

The encapsulation of the response message format is almost identical, as
shown in Listing 5.6.

Listing 5.6 Source Code for ExampleResponseMsg.java

package net.jxta.impl.shell.bin.example5 1;

import
import
import

import

import
import
import
import
import
import
import

/**

* An example query response, which will be wrapped by

java.io.InputStream;
java.io.IOException;
java.io.StringWriter;

java.util.Enumeration;

net.
net.
net.
net.
net.
net.
net.

jxta.
jxta.
jxta.
jxta.
jxta.
jxta.
jxta.

document.
document.
document.
document.
document.
document.
document.

Document;

Element;

MimeMediaType;
StructuredDocument;
StructuredDocumentFactory;
StructuredTextDocument;
TextElement;

a Resolver Response

continues

139

140 Chapter 5 The Peer Resolver Protocol

Listing 5.6 Continued

* Message to send the response to the query. The response contains the
* answer to the simple math question posed by the query.
*/

public class ExampleResponseMsg

{

/**
* The base from the original query.
*/

private double base = 0.0;

/**
* The power from the original query.
*/

private double power = 0.0;

/**
* The answer value for the response.
*/

private double answer = 0;

/**

* Creates a response object using the given answer value.
*
* @param anAnswer the answer for the response.
*/
public ExampleResponseMsg(double aBase, double aPower, double anAnswer)
{
this.base = aBase;
this.power = aPower;
this.answer = anAnswer;

/**

* Creates a response object by parsing the given input stream.

*

* @param stream the InputStream source of the response data.
* @exception IOException if an error occurs reading the stream.
*/

public ExampleResponseMsg(InputStream stream) throws IOException

{

The Resolver Service 141

StructuredTextDocument document = (StructuredTextDocument)
StructuredDocumentFactory.newStructuredDocument (
new MimeMediaType("text/xml"), stream);

Enumeration elements = document.getChildren();

while (elements.hasMoreElements())

{

TextElement element = (TextElement) elements.nextElement();

if (element.getName().equals("answer"))

{
answer = Double.valueOf(

element.getTextValue()).doubleValue();

continue;

}

if (element.getName().equals("base"))

{
base = Double.valueOf(element.getTextValue()).doubleValue();
continue;

}

if (element.getName().equals("power"))

{
power = Double.valueOf(

element.getTextValue()).doubleValue();

continue;

}

}
}
[

* Returns the answer for the response.

*

* @return the answer value for the response.
*/

public double getAnswer()

{

return answer;

continues

142 Chapter 5 The Peer Resolver Protocol

Listing 5.6 Continued

/**
*
*

*

*/

Returns the base for the query.

@return the base value for the query.

public double getBase()

{

/**
*
*
*
*
*

*

*/

public Document getDocument(MimeMediaType asMimeType)

{

/**

return base;

Returns a Document representation of the response.

@param asMimeType the desired MIME type representation for

the response.

@return a Document form of the response in the specified MIME

representation.

Element element;

StructuredDocument document = (StructuredTextDocument)
StructuredDocumentFactory.newStructuredDocument (
asMimeType, "example:ExampleResponse");

element = document.createElement(
"base", Double.toString(getBase()));
document.appendChild(element);

element = document.createElement("power",
Double.toString(getPower()));
document.appendChild(element);

element = document.createElement("answer",
(new Double(getAnswer()).toString()));
document.appendChild(element);

return document;

The Resolver Service 143

* Returns the power for the query.

*

* @return the power value for the query.
*/

public double getPower()

{

return power;

/**

* Returns an XML String representation of the response.

*

* @return the XML String representing this response.

*/
public String toString()
{
try
{
StringWriter buffer = new StringWriter();
StructuredTextDocument document = (StructuredTextDocument)
getDocument (new MimeMediaType("text/xml"));
document.sendToWriter (buffer);
return buffer.toString();
}
catch (Exception e)
{
return "";
}
}

These objects simplify the task of creating a Resolver Query or Response
Message. For example, a developer can create a query string and wrap it in a
Resolver Query Message using only this code:

ExampleQueryMsg equery =
new ExampleQueryMsg(base, power);

ResolverQuery query = new ResolverQuery("ExampleHandler",
"JXTACRED", localPeerId, equery.toString(), queryld);

The query string can be extracted and parsed using this code:

equery = new ExampleQueryMsg(
new ByteArrayInputStream((query.getQuery()).getBytes()));

144 Chapter 5 The Peer Resolver Protocol

Both of these examples demonstrate how much simpler it is to use the encap-
sulated query and response objects compared to the alternative of manually
formatting or parsing the query or response string.

Implementing the QueryHandler Interface

The task of implementing the QueryHandler interface is greatly simplified by the
query and response objects defined in the previous section. Listing 5.7 shows
the source code for the sample QueryHandler.

Listing 5.7 Source Code for ExampleHandler.java

package net.jxta.impl.shell.bin.example5 1;

import java.io.ByteArrayInputStream;
import java.io.IOException;

import net.jxta.exception.NoResponseException;
import net.jxta.exception.DiscardQueryException;
import net.jxta.exception.ResendQueryException;

import net.jxta.impl.protocol.ResolverResponse;

import net.jxta.protocol.ResolverQueryMsg;
import net.jxta.protocol.ResolverResponseMsg;

import net.jxta.resolver.QueryHandler;

/**
* A simple handler to process Resolver queries.
*/

class ExampleHandler implements QueryHandler

{

/**

* Processes the Resolver query message and returns a response.
*

* @param query the Resolver Query Message to be processed.

* @return a Resolver Response Message to send to the peer

* responsible for sending the query.

* @exception IOException throw if the query string can't be parsed.
*/

public ResolverResponseMsg processQuery(ResolverQueryMsg query)

/**

The Resolver Service

throws IOException, NoResponseException, DiscardQueryException,
ResendQueryException

ResolverResponse response;
ExampleQueryMsg eq;
double answer = 0.0;

System.out.println("Processing query...");

/| Parse the message from the query string.
eq = new ExampleQueryMsg(
new ByteArrayInputStream((query.getQuery()).getBytes()));

/] Perform the calculation.
answer = Math.pow(eq.getBase(), eq.getPower());

/| Create the response message.
ExampleResponseMsg er = new ExampleResponseMsg(eq.getBase(),
eq.getPower(), answer);

/1 Wrap the response message in a resolver response message.
response = new ResolverResponse("ExampleHandler",

"JXTACRED", query.getQueryId(), er.toString());

return response;

* Process a Resolver response message.

* @param response the Resolver Response Message to be processed.

public void processResponse(ResolverResponselsg response)

{

ExampleResponseMsg er;
System.out.println("Processing response...");
try
{
/| Extract the message from the Resolver response.

er = new ExampleResponseMsg(

continues

145

146 Chapter 5 The Peer Resolver Protocol

Listing 5.7 Continued

new ByteArrayInputStream(
(response.getResponse()).getBytes()));

// Print out the answer given in the response.
System.out.println(
"The value of " + er.getBase() + " raised to "
+ er.getPower() + " is: " + er.getAnswer())

}

catch (IOException e)

{
// This is not the right type of response message, or
/| the message is improperly formed. Ignore the message,
// do nothing.

}

The QueryHandler interface’s only two methods, processQuery and
processResponse, use the objects defined in the previous section to parse and
format the query and response strings. The only real work that is done by the
ExampleHandler is the calculation of the response’s answer value using the query’s
base and power values.

Registering the Handler with the ResolverService Instance

To see the QueryHandler implementation created in the previous section in
action, an instance of ExampleHandler needs to be registered with a peer group’s
ResolverService instance. The following example shell command, shown in
Listing 5.8, registers an ExampleHandler instance with the current peer group’s
ResolverService instance and sends an ExampleQueryMsg using input values pro-
vided by the user.

Listing 5.8 Source Code for example5_1.java

package net.jxta.impl.shell.bin.example5_1;
import net.jxta.impl.protocol.ResolverQuery;
import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;
import net.jxta.impl.shell.ShellEnv;

The Resolver Service

import net.jxta.impl.shell.ShellObject;

import net.jxta.peergroup.PeerGroup;

import net.jxta.resolver.QueryHandler;
import net.jxta.resolver.ResolverService;

/**
* A simple application to demonstrate the use of the Resolver service
* to register a QueryHandler instance and process queries.
*/

public class example5_ 1 extends ShellApp

{

/**
* A flag indicating if the example's handler should be unregistered
* from the peer group's Resolver service.
*/

private boolean removeHandler = false;

/**
* A name to use to register the example handler with the
* Resolver service.
*/

private String name = "ExampleHandler";

/**
* The base value for the query.
*/

private double base = 0.0;

/**
* The power value for the query.
*/

private double power = 0.0;

/**

* Manages adding or removing the handler from the Resolver service.

*

* @param resolver the Resolver service with which to register or
* unregister a handler.

continues

147

148 Chapter 5 The Peer Resolver Protocol

Listing 5.8 Continued

*/
private void manageHandler (ResolverService resolver)
{
if (removeHandler)
{
/] Unregister the handler from the Resolver service.
ExampleHandler handler =
(ExampleHandler) resolver.unregisterHandler(name);
}
else
{
/| Create a new handler.
ExampleHandler handler = new ExampleHandler();
/| Register the handler with the Resolver service.
resolver.registerHandler(name, handler);
}
}
/**

* Parses the command-line arguments and initializes the command
*

* @param args the arguments to be parsed.

* @exception IllegalArgumentException if an invalid parameter
* is passed.

*/

private void parseArguments(String[] args)
throws IllegalArgumentException

int option;

/| Parse the arguments to the command.
GetOpt parser = new GetOpt(args, "b:p:r");

while ((option = parser.getNextOption()) != -1)
{
switch (option)
{
case 'b’
{

try

The Resolver Service 149

/] Obtain the "base" element for the query.
base = (new Double(
parser.getOptionArg())).doubleValue();
}
catch (Exception e)
{
/| Default to 0.0
base = 0.0;

break;

case 'p

try

/] Obtain the "power" element for the query.
power = (new Double(
parser.getOptionArg())).doubleValue();
}
catch (Exception e)
{
/| Default to 0.0
power = 0.0;

break;

case 'r'

{
/| Remove the handler.
removeHandler = true;
break;

continues

150 Chapter 5 The Peer Resolver Protocol

Listing 5.8 Continued

* The implementation of the Shell command, invoked when the command
* is started by the user from the Shell.

*

* @param args the command-line arguments passed to the command.

* @return a status code indicating the success or failure of

* the command.

*/
public int startApp(String[] args)
{

int result = appNoError;

/| Get the shell's environment.
ShellEnv theEnvironment = getEnv();

/] Use the environment to obtain the current peer group.
ShellObject theShellObject = theEnvironment.get("stdgroup");
PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

/] Get the Resolver service for the current peer group.
ResolverService resolver = currentGroup.getResolverService();

try

{
/| Parse the command-line arguments.
parseArguments(args);

}

catch (IllegalArgumentException e)

{
println("Incorrect parameters passed to the command.");
result = ShellApp.appParamError;

}

// Manage the handler for the Resolver service. This
/] adds or removes the handler as specified by the
// command-line parameters.

manageHandler(resolver);

// If we're not removing the handler, send a query using
/] the Resolver service.
if (!removeHandler)

{

The Resolver Service

ExampleQueryMsg equery = new ExampleQueryMsg(base, power);
String localPeerId = currentGroup.getPeerID().toString();

/] Wrap the query in a resolver query.
ResolverQuery query = new ResolverQuery("ExampleHandler",
"JXTACRED", localPeerId, equery.toString(), 0);

/] Send the query using the resolver.

println("Sending base="+base+", power="+power);
resolver.sendQuery(null, query);

return result;

Of particular importance is the registration of the ExampleHandler:

/| Register the handler with the Resolver service.
resolver.registerHandler(name, handler);

The name variable defines the name of the handler that identifies this handler
to the ResolverService instance. In the example5_1 command, name is set to
ExampleHandler. A Resolver Query Message or a Resolver Response Message
must use the same handler name to identify the target handler for its query or
response string.

Because a peer group’s ResolverService instance can define only one handler
with a given name, the registerHandler method replaces an existing handler.
Any handler previously registered with the ResolverService instance using the
same handler name is returned by the registerHandler method.

Sending a Resolver Query Message

To send a query, the example5_1 command creates an ExampleQueryMsg object
using the base and power values provided by the user and wraps it in a
ResolverQuery object:

ExampleQueryMsg equery = new ExampleQueryMsg(base, power);

String localPeerId = currentGroup.getPeerID().toString();

ResolverQuery query = new ResolverQuery("ExampleHandler",
"JXTACRED", localPeerlId, equery.toString(), 0);

The identifier for the local peer, localPeerld, is retrieved from the PeerGroup
object holding the current peer group in the Shell when the command is
invoked. The JXTACRED string provides a value for the Credential in the

151

152 Chapter 5 The Peer Resolver Protocol

ResolverQuery. Currently, the JXTA reference implementation doesn’t provide
any abstract mechanism for validating credentials, although this feature is
expected in the future. Currently, developers can implement their own creden-
tial validation schemes within their QueryHandler implementations until this
shortcoming is addressed.

Finally, the Resolver Query Message is sent to all peers in the
ResolverService instance’s peer group using this line:

resolver.sendQuery(null, query);

The first parameter identifies the Peer ID for the destination of the query. If
this parameter is null, the ResolverService instance propagates the query to all
peers in the peer group.

When a Resolver service receives a Resolver Query Message, it extracts the
HandlerName, checks for a matching registered QueryHandler instance, and, if one
exists, passes the Resolver Query Message object to the handler’s processQuery
method.

Using the ExampleHandler Class

To see the example in action, two peers on the P2P network must register an
ExampleHandler instance with a specific peer group’s ResolverService instance
using the same handler name. Because it’s unlikely that another peer will be
running the example code at the same time, you must start two instances of
the Shell. To start two instances of the Shell, follow these steps:

1. Delete the platformConfig file and the pse and cm directories from your
shell directory. Run the Shell, force reconfiguration using the peerconfig
command, and exit the Shell.

2. Copy the shell subdirectory from the JXTA Demo install directory into
a directory called shel12. This directory should be at the same directory
level as the original Shell subdirectory.

3. Compile the example’s code, and place a copy in both the Shell and
Shell2 subdirectories. This is required because the example code must
be to be available to both Shell instances.

4. Run the shell in the Shell directory from the command line, as in
previous examples. Configure it as usual.

5. Run the shell in the Shell2 directory from the command line, as in pre-
vious examples. In the TCP Settings section of the Advanced tab, specity
a different TCP port number (for example, 9702). In the HTTP Settings
section of the Advanced tab, specify a different HTTP port number (for
example, 9703). In the Basic tab, enter a different name for the peer.

The Resolver Service

After each Shell has loaded, issue a peer discovery in each Shell using peers -r,
and ensure that each peer can see the other using the peers command. Each
peer must be capable of seeing the other peer’s name in the list returned by
peers for the example to work. When both peers can see each other, run the
example in the first Shell instance:

JXTA>example5_1

The command registers an ExampleHandler with the current peer group’s
Resolver service and sends a default query. The default query for the example
uses a value of 0.0 for both the base and the power attributes. No response to
this query is received because probably no other peer on the system at this
time has a matching handler registered with its Resolver service for the cur-
rent peer group.

Run the example in the second Shell instance to register a handler. This
time, the default query is handled by the ExampleHandler registered in the first
Shell instance. The first Shell’s ExampleHandler instance prints to the command
console (not the Shell console):

Processing query...

This indicates that the Resolver service has received a query and passed it to
the processQuery method of the ExampleHandler. The ExampleHandler’s processQuery
method has been invoked correctly, and the handler is processing the query.
When the handler returns a response, the Resolver service sends it back to the
second Shell instance’s peer. When this response is received by the second Shell
instance, ExampleHandler prints the results to the command console (again, not
to the Shell console):

Processing response...
The value of 0.0 raised to the power 0.0 is: 1.0

This indicates that the processResponse method of the ExampleHandler registered
in the second Shell has been invoked by the Resolver service correctly. Now
that both peers have registered a handler, try sending a more meaningful query
using this line:

JXTA>example5_1 -b4 -p2
The query asks other peer for the value of 4 raised to the power 2. The other
peer should respond with the value 16.

Unregistering the Handler

When an application no longer wants a handler to receive messages, it can
unregister the handler from the Resolver service. To unregister the handler,

153

154 Chapter 5 The Peer Resolver Protocol

the unregister method is called using the name originally used to register to
handler:

ExampleHandler handler = (ExampleHandler)
resolver.unregisterHandler(name);

Unregistering the handler returns the QueryHandler instance that the
ResolverService has unregistered. If the call to unregister returns null, the
ResolverService instance cannot find any registered handler instance with
the given name.

Sending Responses

The example4_6 command developed in the Chapter 4 showed how the
Discovery service can be used to publish advertisements to other peers using
the remotePublish method.To do this, the Discovery service sends a Discovery
Response Message using the ResolverService’s sendResponse method:

public void sendResponse(String destPeer, ResolverResponseMsg response);

The sendresponse method allows a peer to send a Resolver Response Message
without first receiving a Resolver Query Message. Using this method, the
example given in Listing 5.9 allows a peer to publish answers to other peers.

Listing 5.9 Source Code for example5_2.java

package net.jxta.impl.shell.bin.example5_2;

import net.jxta.impl.protocol.ResolverResponse;

import net.jxta.impl.shell.GetOpt;

import net.jxta.impl.shell.ShellApp;

import net.jxta.impl.shell.ShellEnv;

import net.jxta.impl.shell.ShellObject;

import net.jxta.impl.shell.bin.example5_1.ExampleResponseMsg;
import net.jxta.peergroup.PeerGroup;

import net.jxta.resolver.ResolverService;

/**

* A simple application to demonstrate the use of the Resolver service to
* send a Resolver Response Message without first receiving a Resolver
* Query Message.

*/
public class example5_ 2 extends ShellApp
{

/**
* The base value for the response.
*/

private double base = 0.0;

/**
* The power value for the response.
*/

private double power = 0.0;

/**

* The answer value for the response.

*/
private double answer = 0;

/**

The Resolver Service

* Parses the command-line arguments and initializes the command

*

* @exception IllegalArgumentException if an invalid parameter

* @param args the arguments to be parsed.
* is passed.
*/

private void parseArguments(String[] args)

throws IllegalArgumentException

int option;

// Parse the arguments to the command.

GetOpt parser = new GetOpt(args,

while ((option = parser.getNextOption())

{
switch (option)
{
case 'b’
{
try
{

continues

155

156 Chapter 5 The Peer Resolver Protocol

Listing 5.9 Continued

/] Obtain the "base" element for the response.
base = (new Double(
parser.getOptionArg())).doubleValue();

}
catch (Exception e)
{
/| Default to 0.0
base = 0.0;
}
break;
}
case 'p'
{
try
{
/] Obtain the "power" element for the response.
power = (new Double(
parser.getOptionArg())).doubleValue();
}
catch (Exception e)
{
/| Default to 0.0
power = 0.0;
}
break;
}
case 'a'
{
try
{
/] Obtain the "answer" element for the response.
answer = (new Double(
parser.getOptionArg())).doubleValue();
}
catch (Exception e)
{

// Default to 0.0

The Resolver Service

answer = 0.0;

break;

/**
* The implementation of the Shell command, invoked when the command
* is started by the user from the Shell.
*
* @param args the command-line arguments passed to the command.
* @return a status code indicating the success or failure of
* the command.
*/
public int startApp(String[] args)
{

int result = appNoError;

/| Get the shell's environment.
ShellEnv theEnvironment = getEnv();

/] Use the environment to obtain the current peer group.
ShellObject theShellObject = theEnvironment.get("stdgroup");
PeerGroup currentGroup = (PeerGroup) theShellObject.getObject();

/] Get the Resolver service for the current peer group.
ResolverService resolver = currentGroup.getResolverService();

try

{
/| Parse the command-line arguments.
parseArguments(args);

}

catch (IllegalArgumentException e)

{
println("Incorrect parameters passed to the command.");
return ShellApp.appParamkrror;

}

continues

157

158 Chapter 5 The Peer Resolver Protocol

Listing 5.9 Continued

String localPeerId = currentGroup.getPeerID().toString();
ExampleResponseMsg eresponse =
new ExampleResponseMsg(base, power, answer);
ResolverResponse pushRes = new ResolverResponse("ExampleHandler",
"JXTACRED", 0, eresponse.toString());

/] Print out the information we're about to send.
System.out.println(
"Sending: base=" + base + ", power=" + power
+ ", answer=" + answer);

// Send the response using the resolver.
resolver.sendResponse(null, pushRes);

return result;

A Resolver Response Message is created by the command in a similar fashion
to the ExampleHandler’s processQuery method in the previous example:

ExampleResponseMsg eresponse =
new ExampleResponseMsg(base, power, answer);

ResolverResponse pushRes = new ResolverResponse("ExampleHandler",
"JXTACRED", @, eresponse.toString());

Using the arguments passed to the command, the example5_2 command wraps
an ExampleResponseMsg in a ResolverResponse message. Unlike the previous exam-
ple, the response is sent using the ResolverService directly:

resolver.sendResponse(null, pushRes);

The first parameter to the sendResponse method specifies a destination peer, in
the form of a Peer ID String. If this string is null, the ResolverService instance
sends the response message to every known peer and propagates the message
via known rendezvous peers.

To test the example, start two Shell instances using the procedure given in
the previous example. Register an ExampleHandler in each instance using the
example5_1 command and then invoke the example5 2 command in the first
Shell instance using this line:

JXTA>example5 2 -b4 -p2 -a16

Summary 159

This command sends an ExampleResponseMsg to all known peers, using a base
value of 4, a power value of 2, and an answer value of 16.The second Shell
instance receives the message, and the Resolver service invokes the
ExampleHandler to print a message to the system:

The value of 4.0 raised to the power 2.0 is: 16.0

The example5_2 command enables a user to send a response without requiring
a query first, allowing a peer to publish an answer before the question has
been asked. One of the interesting things to note here is that a peer can pro-
vide incorrect answers! This is actually a core problem in P2P computing that
is currently the subject of much discussion.

Summary

In this chapter, you learned that the Resolver service is used as a building
block by the Discovery service to provide a more generic message-handling
framework. Using the Resolver service, you should now be able to create and
register handlers to provide your own functionality to a peer group.

In the next chapter, you explore the Rendezvous Protocol and the
Rendezvous service. Despite its name, the Rendezvous service is not solely
used to provide rendezvous peer services to other peers. The Rendezvous
service is a building block that can also be used by services on a peer to prop-
agate messages to other peers within the same peer group. For example, the
Resolver service explored in this chapter used the Rendezvous service to
propagate queries to remote peers. The next chapter details the protocol
behind the Rendezvous service and how it can be used by developers to
handle propagating messages to other peers.

