
Java™ Metadata Interface(JMI) Specification

JSR 040

Technical Comments:
jmi-comments@sun.com

Version 1.0 Update
Public Review Draft Specification

20-November-01

Specification Lead:
Sridhar Iyengar,

Unisys Corporation

Please
Recycle

DISCLAIMER

This document and its contents are furnished "as is" for informational purposes only, and are subject to change without notice. Unisys Corporation (Unisys)
does not represent or warrant that any product or business plans expressed or implied will be fulfilled in any way. Any actions taken by the user of this doc-
ument in response to the document or its contents shall be solely at the risk of the user.

UNISYS MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THIS DOCUMENT OR ITS CONTENTS, AND HEREBY
EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR USE OR NON-
INFRINGEMENT. IN NO EVENT SHALL UNISYS BE HELD LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAM-
AGES IN CONNECTION WITH OR ARISING FROM THE USE OF ANY PORTION OF THE INFORMATION.

Copyright

Copyright © 2001 Unisys Corporation. All rights reserved.
Copyright © 2001 Hyperion Solutions. All rights reserved.
Copyright © 2001 IBM Corporation. All rights reserved.
Copyright © 2001 Oracle. All rights reserved.
Copyright © 2001 SAS Institute. All rights reserved.
Copyright © 2001 Sun Microsystems, Inc.. All rights reserved.
Copyright © 2001 Rational Software. All rights reserved.
Copyright © 2001 Sybase. All rights reserved.

Copyright © 2001 Novosoft. All rights reserved.
Copyright © 2001 Adaptive Ltd.. All rights reserved.
Copyright © 2001 IONA. All rights reserved.
Copyright © 2001 DSTC. All rights reserved.
Copyright © 2001 Perfekt-UML. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or documentation may be reproduced in any form by any means without prior written authorization of the copyright holders, or any of their licen-
sors, if any. Any unauthorized use may be a violation of domestic or international law.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the U.S. Government and its agents is subject to the restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Trademarks

Sun, Sun Microsystems, the Sun logo, Java, JavaBeans, Enterprise JavaBeans, JavaChip, JavaStation, JavaOS, Java Studio, Java WorkShop, Solaris, Solaris
for Intranets, Solaris for ISPs, Solstice Enterprise Manager, Sun Internet Administrator, Sun Internet FTP Server, Sun Internet Mail Server, Sun Internet
News Server, Sun Internet Services Monitor, SunScreen, Sun WebServer, and The Network Is The Computer are trademarks, registered trademarks, or ser-
vice marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trade-
marks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. Information subject to change without notice.

OMG, OBJECT MANAGEMENT GROUP, CORBA, CORBA ACADEMY, CORBA ACADEMY & DESIGN, THE INFORMATION BROKERAGE,
OBJECT REQUEST BROKER, OMG IDL, CORBAFACILITIES, CORBASERVICES, CORBANET, CORBAMED, CORBADOMAINS, GIOP, IIOP,
OMA, CORBA THE GEEK, UNIFIED MODELING LANGUAGE, UML, and UML CUBE LOGO are registered trademarks or trademarks of the Object
Management Group, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

All other product or company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

i

Contents

1. Introduction ..1
Metadata Interoperability ..1
The Java Metadata Interface Specification ...1
Platforms ...2
Target Audience ..2
JMI Expert Group ..3
Acknowledgements ...3

2. JMI Overview ..5
The MOF Four-Layered Architecture ...5
The MOF Interfaces ..6
Introduction to JMI ..7

Some JMI Use-Cases ..7
3. An Overview of the MOF Model ...9

The MOF Model ..10
MOF Model Elements ..10
MOF Model Associations ...20

Discrepancies between JMI and MOF ..23
XMI ...23

4. MOF to Java Mapping ...25
Metaobjects and Interfaces ..25

Metaobject Type Overview ..25
The Metaobject Interface Hierarchy ...26

Computational Semantics for the Java Mapping ...28
Equality in the Java Mapping ...28
The Java NULL Value ..28
JMI Collection Semantics ...28
Lifecycle Semantics for the Java Mapping ..29
Association Access and Update Semantics for the Java Mapping31
Attribute Access and Update Semantics for the Java Interface Mapping32
Reference Semantics for the Java Mapping ...35
Cluster Semantics for the Java Mapping ..36
Atomicity Semantics for the Java Mapping ...36
The Supertype Closure Rule ...36

Primitive Data Type mapping ...37
Exception Framework ...37

ii

Preconditions for Java Interface Generation .. 38
Standard Tags for the Java Mapping .. 38

Tags for Specifying Package Prefix ... 39
Tags for Providing Substitute Identifiers ... 40
Tag for specifying prefix for generated methods ... 41
Tags for Capturing JavaDocs ... 41

Java Generation Rules .. 41
Rules for Generating Identifiers .. 42
Rules for Splitting MOF Model.ModelElement Names into Words 42
Literal String Values .. 43
Generation Rules for Attributes, AssociationEnds, References, Constants, and Parameters 43

Java Mapping Templates .. 44
Package Interface Template ... 45
Class Proxy Template .. 47
Instance Template .. 49
Association Template .. 50
Attribute Template ... 53
Reference Template ... 56
Operation Template ... 60
Exception Template ... 62
Constant Template ... 62
AliasType Template ... 62
CollectionType Template .. 63
StructureType Template .. 63
EnumerationType Template .. 63
Constraint Template ... 65
Annotation Template ... 65
JavaDocs Template .. 65

5. MOF Reflective Package ... 67
Introduction .. 67
The Reflective Classes and Interfaces .. 68

RefBaseObject ... 68
RefFeatured .. 72
RefAssociation ... 74
RefPackage .. 77
RefClass ... 83
RefObject ... 85

Reflective Interfaces for Data Types .. 88
RefEnum .. 88
RefStruct .. 90
RefAssociationLink ... 91
RefException Class .. 92

The Exception Framework ... 93
JmiException ... 93
AlreadyExistsException ... 94
ClosureViolationException .. 95

iii

CompositionCycleException ..96
ConstraintViolationException ..96
DuplicateException ..97
InvalidCallException ..98
InvalidObjectException ..98
NotFoundException ..99
OutOfBoundsException ...100
TypeMismatchException ..101
WrongSizeException ..102

XMI Import/Export in JMI ..103
XMIWriter ..103
XmiReader ..104

F. The JMI APIs for the MOF ..105
G. Accessing a JMI Service using the Connector Architecture ..107
H. Examples ..109

ii

1

C HA PTE R 1

Introduction

1.1 Metadata Interoperability
Today's Internet-driven economy has accelerated users' expectations for unfettered access to
information resources and transparent data exchange among applications. One of the key issues
limiting data interoperability today is that of incompatible metadata. Metadata can be defined as
information about data, or simply data about data. In practice, metadata is what most tools,
databases, applications and other information processes use to define the structure and meaning of
data objects.

Unfortunately, most applications are designed with proprietary schemes for modeling metadata.
Applications that define data using different semantics, structures, and syntax are difficult to
integrate, impeding the free flow of information across application boundaries. This lack of
metadata interoperability is hampering the development and efficient deployment of numerous
business solutions. These solutions include data warehousing, business intelligence, business-to-
business exchanges, enterprise information portals, and software development. Standardizing on
XML Document Type Definitions (DTDs), which many industries are attempting to do as a
solution to this problem, is insufficient, as DTDs do not have the capability to represent complex,
semantically rich, hierarchical metadata.

1.2 The Java Metadata Interface Specification
The Java™ Metadata Interface (JMI) Specification defines a dynamic, platform-neutral
infrastructure that enables the creation, storage, access, discovery, and exchange of metadata. JMI
is based on the Meta Object Facility (MOF) specification from the Object Management Group
(OMG), an industry-endorsed standard for metadata management.

The MOF standard provides an open-ended information modeling capability, and consists of a
base set of metamodeling constructs used to describe technologies and application domains, and a
mapping of those constructs to CORBA IDL (Interface Definition Language) for automatically
generating model-specific APIs. The MOF also defines a reflective programming capability that
allows for applications to query a model at run time to determine the structure and semantics of
the modeled system. JMI defines a Java mapping for the MOF.

2

As the Java language mapping to MOF, JMI provides a common Java programming model for
metadata access for the Java platform. JMI provides a natural and easy-to-use mapping from a
MOF-compliant data abstraction (usually defined in UML) to the Java programming language.
Using JMI, applications and tools which specify their metamodels using MOF-compliant Unified
Modeling Language (UML) can have the Java interfaces to the models automatically generated.
Further, metamodel and metadata interchange via XML is enabled by JMI's use of the XML
Metadata Interchange (XMI) specification, an XML-based mechanism for interchanging
metamodel information among applications. Java applications can create, update, delete, and
retrieve information contained in a JMI compliant metadata service. The flexibility and
extensibility of the MOF allows JMI to be used in a wide range of usage scenarios.

This document details the JMI 1.0 specification, which is based on the MOF 1.4 specification. The
current draft of the MOF 1.4 specification is located at:

http://cgi.omg.org/cgi-bin/doc?ptc/2001-08-22

1.3 Platforms
The JMI specification is defined as an extension to the Java platform. JMI facilities can be
accessed from Java applications, applets, or Enterprise JavaBeans™ (EJB) applications. Details on
the integration of JMI with the Java™ 2 Platform, Enterprise Edition (J2EE) can be found in
Appendix A.

The JMI 1.0 specification is contained in a single Java package, javax.jmi, which is composed of
three sub-packages: javax.jmi.model, javax.jmi.reflect, and javax.jmi.xmi. The contents of these
packages are described in subsequent sections.

1.4 Target Audience
This specification is targeted primarily towards the vendors of:

n Metadata based solutions
n Data warehouse products
n Software integration platforms
n Software development tools

http://cgi.omg.org/cgi-bin/doc?formal/00-04-03.pdf.gz

JMI Expert Group 3

1.5 JMI Expert Group
The JMI 1.0 specification expert group consisted of the following members:

n Stephen Brodsky, IBM
n Dan Chang, IBM
n Stephen Crawley, DSTC
n Ravi Dirckze, Unisys
n Bill Flood, Sybase
n David Frankel, IONA
n Petr Hrebejk, Sun
n Sridhar Iyengar, Unisys
n Claes-Fredrik Mannby, Rational
n Martin Matula, Sun
n Dave Mellor, Oracle
n Davide Mora, Perfekt-UML
n Chuck Mosher, Sun
n Constantine Plotnikov, Novosoft
n John Poole, Hyperion
n Barbara Price, IBM
n Philip Richens, Oracle
n Pete Rivett, Adaptive
n Peter Thomas, Oracle
n Barbara Walters, SAS Institute

1.6 Acknowledgements
The JMI Expert Group whishes to thank the OMG MOF Revision Task Force for their valuable
contributions, and for their efforts to reconcile the discrepancies between JMI and MOF.

4

5

C HA PTE R 2

JMI Overview

2.1 The MOF Four-Layered Architecture
The goal of MOF is to provide a framework and services to enable model and metadata driven
systems. The MOF is a layered metadata architecture consisting of a single meta-metamodel (M3),
metamodels (M2) and models (M1) of information (see FIGURE 2-1).

FIGURE 2-1 The layered architecture of the MOF.

Each meta level is an abstraction of the meta level below it. These levels of abstraction are
relative, and provide a visual reference of MOF based frameworks. To put these terms in
perspective, metamodeling is generally described using a four-layer architecture. These layers
represent different levels of data and metadata. The four layers are:

n Information

The information layer (also known as the M0 or data layer) refers to actual instances of
information. These are not shown in the figure, but would be instances of a particular
database, application objects, etc.

Meta-Metamodel

MetaModels

UML
Metamodel

CWM
Metamodel

Technology, Business Models

Accounts Marketing

6

n Model

The model layer (also known as the M1 or metadata layer) defines the information layer,
describing the format and semantics of the data. The metadata specifies, for example, a
table definition in a database schema that describes the format of the M0 level instances.
A complete database schema combines many metadata definitions to construct a database
model. The M1 layer represents instances (or realizations) of one or more metamodels.

n Metamodel

The metamodel layer (also known as the M2 or meta-metadata layer) defines the model
layer, describing the structure and semantics of the metadata. The metamodel specifies,
for example, a database system table that describes the format of a table definition. A
metamodel can also be thought of as a modeling language for describing different kinds of
data. The M2 layer represents abstractions of software systems modeled using the MOF
Model. Typically, metamodels describe technologies such as relational databases, vertical
domains, etc.

n Meta-metamodel

The meta-metamodel (M3) layer defines the metamodel layer, describing the structure and
semantics of the meta-metadata. It is the common “language” that describes all other
models of information. Typically, the meta-metamodel is defined by the system that
supports the metamodeling environment.

2.2 The MOF Interfaces
In addition to the information modeling infrastructure, the MOF specification defines an IDL
mapping for manipulating metadata. That is, for any given MOF compliant metamodel, the IDL
mapping generates a set of IDL-based APIs for manipulating the information contained in any
instance of that metamodel. Note that the MOF model itself is a MOF compliant model. That is,
the MOF Model can be described using the MOF. As such, the APIs used to manipulate instances
of the MOF Model (i.e., metamodels) conform to the MOF to IDL mapping.

A key goal of MOF models is to capture the semantics of the system of technology being modeled
in a language and technology independent manner. It is also an abstraction of a system or
technology rendered as a model. As such, it helps an architect deal with the complex systems by
helping the architect visualize the metadata that is available. Beyond the visualization, the APIs
provide the common programming model for manipulating the information. The MOF does not,
however, prescribe how the information is to be stored or persisted.

The MOF also defines a set of reflective APIs. Similar to Java reflection, MOF reflection provides
introspection for manipulating complex information. The MOF reflective interfaces allow a
program to discover and manipulate information without using the tailored APIs rendered using
the MOF to IDL mapping (or in the case of JMI, the MOF to Java mapping).

The Object Management Group's related XML Metadata Interchange (XMI) standard provides a
mapping from MOF to XML. That is, information that has been modeled in MOF can be rendered
in XML DTDs and XML documents using the XMI mapping.

Introduction to JMI 7

2.3 Introduction to JMI
JMI is the Java rendition of the MOF. It can be viewed as an extensible metadata service for the
Java platform that provides a common Java programming model for accessing metadata. Many
software applications expose metadata that can be used by other applications for various purposes,
such as decision support, interoperability and integration. Any system that provides a JMI
compliant API to it's public metadata is a JMI service.

JMI provides the following to the J2EE environment:

n A metadata framework that provides a common Java programming model for accessing
metadata.

n An integration and interoperability framework for Java tools and applications.

n Integration with OMG modeling and metadata architecture.

As the Java rendition of the MOF, the JMI specifies a set of rules that generate, for any given
MOF compliant metamodel, a set of Java APIs for manipulating the information contained in the
instances of that metamodel. The JMI specification also contains a Java implementation of MOF
reflection.

2.3.1 Some JMI Use-Cases

Given below are a couple of use-cases that illustrate the advantages of JMI.

The Data Warehouse Management Scenario

Note – To be completed for final specification.

The Software Development Scenario

This scenario illustrates using JMI as a platform for integrating heterogeneous software
development tools to provide a complete software development solution. In most cases, the
development team will be using a different tool for each task within the development process, or
may even use different tools for the same task. Let’s take, for example, the development of a large
Enterprise JavaBeans™ (EJB) application. Here, it is likely that the development team will use
one or more modeling tools, such as UML tools, to “model” the application, one or more
Integrated Development Environments (IDEs) to develop the Java source, and one or more EJB
deployment tools to mange the deployment of the application.

For this scenario, an EJB development solution can be built around JMI using three metamodels
that represent the domains of the different tasks, i.e., the UML metamodel, the Java metamodel,
and the EJB metamodel. Each tool would then participate in this integrated solution through an
adapter that maps the tool specific APIs to the JMI APIs for the respective metamodel. Services
that span multiple tasks, such as keeping the model and source code in sync, are then developed
using the JMI APIs. The primary advantages of this solution over a hand crafted solution are:

8

n Services that span multiple domains, or even extensions to all tools of a single domain, can be
developed using the common programming model provided by JMI. Note that such services
and extensions are tool independent.

n The complexity of integration has been reduced from N x N where N is the number of tools
being integrated, to M x M where M is the number of domains spanning the problem space (in
this case, modeling, coding, and deployment). Adding a new tool would only require the
development of a single adapter — all services that span the domain of that tool will then work
with the new tool as well.

This example illustrates the advantages of abstraction (i.e., metamodels) and the common Java
programming model for accessing metadata, in any integration framework. Integration platforms
developed using JMI are inherently extensible.

9

C HA PTE R 3

An Overview of the MOF Model

MOF is a three-layered model-based conceptual architecture for describing metadata. At the top of
this architecture is the MOF Model (a.k.a. the metametamodel or M3 for short). This is the
“abstraction language” used to define metamodels. The M3 is used to define information models
for metadata (referred to as metamodels, or M2 for short).

This chapter provides an overview of the MOF Model. For a detailed description of MOF, the
interested reader is referred to the MOF specification available on the OMG web page <http://
cgi.omg.org/cgi-bin/doc?ptc/01-08-22>.

10

3.1 The MOF Model

FIGURE 3-2 The MOF Model - overview

The MOF Model provides a set of modeling elements that are used for constructing metamodels,
including rules for their use. Although the JMI specification contains the set of APIs used to
manipulate MOF models, these interfaces do not provide the semantic information necessary to
understand the behavior of MOF. Therefore, it is essential to understand MOF in terms of the
model and related semantics, not just its interfaces.

The sections below describe the MOF metamodel in more detail.

n Section 3.1.1, “Common Superclasses” through Section 3.1.5, “Tags” break the MOF
metamodel down into smaller, related groups of elements and describe them.

Class

Attribute
<<MofAttribute>>

GeneralizableElement

0..*

0..*

+supertype

0..* {ordered}
Generalizes

+subtype

0..*

Exception
<<MofException>>Operation

0..*0..*

+excep

0..*
{ordered}

+operation

0..*

CanRaise

Package

DataType

BehavioralFeature StructuralFeature

Parameter

Feature

Constant

AssociationEnd

Reference

1

0..*

+exposedEnd1

+referrer

0..*

/Exposes

1

0..*

+referencedEnd

1
+referent

0..*

RefersTo

Association

TypedElement

Classifier

0..*

1

+typedElement

0..*

+type

1

IsOfType

TypeAlias

Import

Constraint

Namespace

1
0..*

+imported
1+importer

0..*

Aliases

Tag

ModelElement

0..*

0..*

+dependent
0..*

/DependsOn
+provider

0..*

1..*

0..*

+constrainedElement

1..*

+constraint
0..*

Constrains

0..1

0..*

+container

0..1

+containedElement 0..*
{ordered}

Contains
0..*

1..*

+tag

0..*
{Ordered}

+modelElement

1..*

AttachesTo

Feature

StructuralFeatureBehavioralFeature

CollectionTypeEnumerationTypePrimitiveType AliasType

Tag Constraint

ModelElement

0..n

1..*1..*
1..*

0..n

1..*

0..n

Namespace

0..n

0..10..1

GeneralizableElement

0..n
0..n

0..n
0..n

Import

1..10..n 1..10..n

Classifier

TypedElement

0..n

1..11..1

Parameter

ReferenceOperation AttributeException

0..n0..n0..n0..n

Constant

DataTypeClass

AssociationEnd

1..1

0..n

1..1

0..n

Association

Package

StructureF

StructureType

The MOF Model 11

n Section 3.1.6, “MOF Model Elements” and Section 3.1.7, “MOF Model Associations” provide
a detailed reference for each element and association in MOF.

3.1.1 Common Superclasses

FIGURE 3-2 “The MOF Model - overview” on page 10 shows the inheritance hierarchy for MOF.
There is a common superclass, ModelElement from which everything inherits. FIGURE 3-2 “The
MOF Model - overview” on page 10 shows some of the higher-level superclasses in more detail to
illustrate what gets inherited:

12

FIGURE 3-3 MOF Common Superclasses

GeneralizableElement
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
visibility : VisibilityKind
<<reference>> supertypes : GeneralizableElement

allSupertypes()
lookupElementExtended()
findElementsByTypeExtended()

0..n

0..n

+supertype

0..n{ordered}Generalizes

+subtype

0..n

ModelElement
name : String
/ qualifiedName : String
annotation : String
<<reference>> requiredElements : ModelElement
<<reference>> container : Namespace
<<reference>> constraints : Constraint

f indRequiredElements()
isRequiredBecause()
isFrozen()
isVisible()

0..n
0..n

+dependent

0..n{ordered}

/DependsOn

+provider
0..n

Namespace
<<reference>> contents : ModelElement

lookupElement()
resolveQualif iedName()
findElementsByType()
nameIsValid()

0..n

0.. 1

+containedElement

0..n{ordered}

+ container

0.. 1

Contains

TypedElement
<<reference>> type : Classifier

Classifier 0..n1.. 1

+ typedElements

0..n

+type

1.. 1 IsOfType

The MOF Model 13

From ModelElement, all elements will inherit a name and an annotation (or description). In
addition all ModelElements are contained in one and only one Namespace (just a general
container type which has several specialized subtypes for different things which can act like a
container - for example a Class acts as a container for its Attributes and Operations). This model
is supplemented with a detailed set of constraints that control which subtypes of Namespace can
contain which other types. These rules are summarized in Section 3.1.2, “Containment Hierarchy,”
on page 3-13.

3.1.2 Containment Hierarchy

FIGURE 3-4 MOF Containment Hierarchy

The most important relationship in the MOF Model is the Contains Association. Containment is a
utility Association that is used to relate (for example) Classes to their Operations and Attributes,
Operations to their Parameters and so on. While the class diagram shows that ModelElement
objects which are subtypes of Namespace can contain any other ModelElements, the MOF Model
restricts the legal containments.

This diagram illustrates the containment
constraints for the MOF Model. All the
associations shown are derived from Contains.

ConstraintTag

Tag may be
contained by
anything.

Constraint may be
contained by anything
but Exception.

StructureField

StructureType

AssociationEnd

Association

Import

Parameter

Reference

Package

OperationAttribute Exception

Constant

DataTyp e

Class

/ /

Other subclasses of
DataType are not shown
but have the same
containment as Datatype.

14

FIGURE 3-4 “MOF Containment Hierarchy” on page 13, shows all non-abstract subclasses of
Namespace (i.e., possible containers) and the elements that they contain. Package is the 'highest
level' container, and Packages may be nested inside each other. In fact Package is the only element
that can really be 'top level' (or 'root') and not contained in something else. Each metamodel will
have one such top-level package and this is used to represent the whole metamodel (at M2 level).
Instances of that package are likewise used to represent whole models (at M1 level) and these are
called package extents or repositories.

3.1.3 Types

FIGURE 3-5 MOF Types

Classifier is the abstract superclass for MOF types - Class, Association, and DataType.

Namespace

ModelElement

GeneralizableElement

D ataType ClassAssociation

TypedElement

Classifier

0..*

1..1

+typedElement0..*

+type

1..1

IsOfType

The MOF Model 15

Class

A Class defines a classification over a set of object instances by defining the state and behavior
they exhibit. This is represented through operations, attributes, references, participation in
associations, constants, and constraints. Similar concepts are used in other environments for
representing Classes and their implementations. However, in MOF the class characteristics are
modeled in an implementation-independent manner.

Association

FIGURE 3-6 MOF Associations

FIGURE 3-6 “MOF Associations” on page 15 shows relationships (called Associations) in more
detail. In MOF, as in UML, there's a 'duality' whereby the same stored link can either be accessed/
updated from the perspective of the Association, or from the perspective of a class at either end
(through defining a Reference as part of the Class that 'exposes' one of the AssociationEnds). Note
that the link between Association and AssociationEnd (not shown here) is again via Contains
inherited from Namespace.

Namespace

ModelElement

GeneralizableElement

Association

isDerived : Boolean

Feature

StructuralFeature

Classifier

TypedElement

AssociationEnd

isNavigable : Boolean
aggregation : AggregationKind
multipl ic it y : MultiplicityType
isChangeable : Boolean

otherEnd()

Reference

<<reference>> exposedEnd : AssociationEnd
<<reference>> referencedEnd : AssociationEnd

1..1

0..n

+exposedEnd
1..1

+referrer

0..n

/Exposes

1..1

0..n

+referencedEnd

1..1

+referent
0..n

RefersTo

16

DataTypes

FIGURE 3-7 MOF DataTypes

The subtypes of DataType are new at MOF version 1.4, and were introduced to make MOF less
dependent on CORBA and unified with the approach taken in JMI.

TypedElement

<<reference>> type : ClassifierClassifier

0..n1..1

+typedElements

0..n

+type

1..1 IsOfType

DataType

PrimitiveType StructureType EnumerationType

labels : String

AliasType CollectionType

multipl ici ty : Mult iplicityType

Structure
Field

The MOF Model 17

3.1.4 Features

FIGURE 3-8 MOF Features

A Feature defines a characteristic of the ModelElement that contains it. Specifically, Classes are
defined largely by a composition of Features. The Feature Class and its subclasses
(StructuralFeature and BehavioralFeature) are illustrated in FIGURE 3-8 “MOF Features” on
page 17.

A StructuralFeature defines a static characteristic of the ModelElement that contains it. The
attributes and references of a Class define structural properties, which provide for the
representation of the state of its instances.

A BehavioralFeature - Operation or Exception - defines a dynamic characteristic of the
ModelElement that contains it.

As elsewhere in MOF, inheritance is used extensively to factor out common aspects of structure
and behavior.

ModelElement

Namespace

Feature

scope : ScopeKind
visibility : VisibilityKind

St ructuralFeature

multiplicity : MultiplicityTy...
isChangeable : Boolean

TypedElement

Reference

<<reference>> exposedEnd : AssociationEnd
<<reference>> referencedEnd : AssociationEnd

BehavioralFeature

Attribute
isDerived : Boolean

ExceptionOperation

isQuery : Boolean
<<reference>> exceptions : Exception

0..n0..n

+except

0..n

{ordered}

+operation

0..n CanRaise

18

3.1.5 Tags

FIGURE 3-9 MOF Tags

The Tag model element is the basis of a mechanism that allows a “pure” MOF meta-model to be
extended or modified. A Tag consists of:

• a name that can be used to denote the Tag in its container,

• a “tag id” that denotes the Tag’s kind,

• a collection of zero or more “values” associated with the Tag, and

• the set of other model elements that the Tag is “attached” to.

The meaning of a model element is (notionally) modified by attaching a Tag to it. The Tag’s “tag
id” categorizes the intended meaning of the extension or modification. The “values” then further
parameterize the meaning.

Section 4.6, “Standard Tags for the Java Mapping”, defines the standard tags that apply to the MOF
to Java mapping.

3.1.6 MOF Model Elements

This section describes the 28 modeling elements that comprise the MOF Model.

ModelElement

Tag

tagId : String
v alues : String
<<ref erence>> elements : ModelElement

0..n

1..*

+tag

{ordered}

0..n

+modelElem ent

1..*

AttachesTo

The MOF Model 19

t ModelElement

t Import

The ModelElement is the root class within the MOF. It represents the elementary constructs of models.

Abstract Yes.

Super classes None.

Attributes name: unique name supplied by meta-modeler.
annotation: description of the model element.
qualifiedName: fully qualified name within the context of its outer most
package extent.

References container: identifies the Namespace element that contains this element.
requiredElements: identifies the ModelElements whose definition this object
depends on.
constraints: identifies the set of Constraint objects that apply to this object.

Operations isFrozen: reports whether the object is mutable.
isVisible: this operation is reserved for future use.
isRequiredBecause: checks whether the object depends on another object, and
if so, returns the type of dependency.

MOF Constraints C-1, C-2, C-3, and C-4.

An “Import” allows a package to reference model elements defined in some other package.

Abstract No.

Super classes ModelElement.

Attributes visibility : this attribute is reserved for future use.
isClustered : specifies whether the import represents simple package
importation, or package clustering.

References importedNamespace: returns the namespece object that it references.

Operations None.

MOF Constraints C-45, C-46, C-47, C-48, and C-49.

20

t Namespace

t Constraint

The “Namespace” element represents model elements that can contain other model elements.

Abstract Yes.

Super classes ModelElement.

Attributes None.

References contents: identifies the set of elements that the namespace object contains.

Operations lookupElement : searches for a specified element within its contained
elements.
resolveQualifiedName: searches for a specified (fully qualified) element
within its contained elements.
nameIsValid : checks whether the given name can be used within the
namespece.
findElementByType : returns all elements identified by type, contained within
the namespace.

MOF Constraints C-5.

A “Constraint” defines a rule that restricts the state or behavior of one or more elements.

Abstract No.

Super classes ModelElement.

Attributes expression: an expression that represents the constraint.
language: the used to express the constraint.
evaluationPolicy : the evaluation policy for the constraint.

References constrainedElements: the elements that the constraint applies to.

Operations None.

MOF Constraints C-50, C-51.

The MOF Model 21

t Tag

t Feature

t TypedElement

A “Tag” is an arbitrary name/value pair that can be attached to most elements. Tags provide an easy
extension mechanism by allowing users to add information to a metamodel element.

Abstract No.

Super classes ModelElement.

Attributes tagId : specifies the meaning of the tag.
values: (ordered) specifies the string value(s) for the tag.

References elements: the elements that this tag is attached to.

Operations None.

MOF Constraints None.

A “Feature” defines a characteristic (e.g, operation or attribute) of a model element.

Abstract Yes.

Super classes ModelElement.

Attributes visibility : this attribute is reserved for future use.
scope: specifies whether the feature is a classifier scoped or instance scoped
feature.

References None.

Operations None.

MOF Constraints None.

The “TypedElement” is the abstraction of model elements that require a type as part of their definition
(i.e., elements that represent types). The TypedElement itself does not define a type, but is associated
with a “Classifier”.

Abstract Yes.

Super classes ModelElement.

Attributes None.

References type : provides the type represented by this element.

Operations None.

MOF Constraints None.

22

t GeneralizableElement

t Package

The “GeneralizableElement” represents elements that can be generalized through supertyping and
specialized through subtyping.

Abstract Yes.

Super classes Namespace.

Attributes visibility : this attribute is reserved for future use.
isAbstract : specifies whether the element is abstract.
isRoot : specifies whether the element can be generalized (i.e., can have
supertypes).
isLeaf : specifies whether the element can be specialized (i.e., can have
subtypes).

References supertypes: identifies the set of supertypes for this element.

Operations allSupertypes: returns the list of all (direct and indirect) supertypes.
lookupElementExtended: returns an element whose name matches the
supplied name.
findElementByTypeExtended: returns all elements identified by type,
contained within this element and all of its superclasses.

MOF Constraints C-6, C-7, C-8, C-9, C-10, C-11, and C-12.

A “Package” represents an organizational construct in modeling. A package is comprises of model
elements.

Abstract No.

Super classes GeneralizableElement.

Attributes None.

References None.

Operations None.

MOF Constraints C-43, C-44.

The MOF Model 23

t Classifier

t Association

t DataType

t PrimitiveType

t EnumerationType

The “Classifier” represents a generalized modeling element that classifies instance objects by the
features that they contain.

Abstract Yes.

Super classes GeneralizableElement.

Attributes None.

References None.

Operations None.

MOF Constraints None.

An “Association” represents a modeling element that classifies a set of links.

Abstract No.

Super classes Classifier.

Attributes isDerived : specifies whether the association contains links or whether the link
set is derived from the information in the metamodel.

References None.

Operations None.

MOF Constraints None.

The “DataType” element represents a type for data values - which, unlike ‘objects’, do not have a
lifetime or identity independent of their value.

Abstract Yes.

Super classes Classifier.

Attributes None.

References None.

Operations None.

MOF Constraints C-19, C-20.

24

The “PrimitiveType” element represents a native/atomic data type. Six instances are predefined, in a
separate package caled PrimitiveTypes. These are: Integer, Boolean, String, Long, Double, Float.

Abstract No.

Super classes DataType.

Attributes None.

References None.

Operations None.

MOF Constraints None.

The “EnumerationType” element represents a data type with an enumerated set of possible string values.

Abstract No.

Super classes DataType.

Attributes Labels: the strings representing the enumerated values constituting the
enumeration

References None.

Operations None.

MOF Constraints None.

25

C HA PTE R t

t StructureType

t CollectionType

t AliasType

t Class

The “StructureType” element represents a data type that is an ordered ‘tuple’ of named StructureFields
which are contained by the StructureType.

Abstract No.

Super classes DataType.

Attributes None.

References None.

Operations None.

MOF Constraints C-59.

The “CollectionType” element represents a data type that is a finite collection of instances of another
type (indicated by the inherited ‘type’ reference).

Abstract No.

Super classes DataType, TypedElement.

Attributes Multiplicity : describes the characteristics of the collection type.

References None.

Operations None.

MOF Constraints None.

The “AliasType” element represents a different usage of another type (indicated by the inherited ‘type’
reference). It may constrain or just rename the type for a different purpose.

Abstract No.

Super classes DataType, TypedElement

Attributes None.

References None.

Operations None.

MOF Constraints None.

26

t BehavioralFeature

t StructuralFeature

The “Class” represents a (realizable) modeling element that classifies instance objects by the features
that they contain.

Abstract No.

Super classes Classifier.

Attributes isSingleton: specifies whether no more than one instance object or any number
of instance objects may exist.

References None.

Operations None.

MOF Constraints C-15, C-16.

The “BehavioralFeature” defines a dynamic characteristic (e.g., an operation) of a model element.

Abstract Yes.

Super classes Feature, Namespace.

Attributes None.

References None.

Operations None.

MOF Constraints None.

The “StructuralFeature” defines a static characteristic (e.g., an attribute) of a model element.

Abstract Yes.

Super classes Feature, TypedElement.

Attributes multiplicity : defines the cardinality of an attribute.
isChangable: specifies whether the attribute values are immutable (through
the generated APIs).

References None.

Operations None.

MOF Constraints None.

t Operation

t Exception

t Attribute

t StructureField

The “Operation” element defines a dynamic feature that offers a service, i.e., an operation.

Abstract No.

Super classes BehavioralFeature.

Attributes isQuery : specifies whether the behavior of the operation alters the state of the
object.

References exceptions: specifies the exceptions that the operation may raise.

Operations None.

MOF Constraints C-28, C-29, C-30.

The “Exception” element defines an exception (or some abnormal condition).

Abstract No.

Super classes BehavioralFeature.

Attributes None.

References None.

Operations None.

MOF Constraints C-31, C-32.

The “Attribute” element defines a structural feature that contains a value (or values), i.e., an attribute.

Abstract No.

Super classes StructuralFeature.

Attributes isDerived : specifies whether the value is part of the state of the object, or
whether it is derived from the information in the metamodel.

References None.

Operations None.

MOF Constraints None.

The “StructureField” element represents a named and typed value within a StructureType.

Abstract No.

28

Super classes TypedElement.

Attributes None.

References None.

Operations None.

MOF Constraints None.

The MOF Model 29

t Reference

t Constant

t Parameter

t AssociationEnd

A “Reference” defines a classifier’s knowledge of an association object which references that classifier,
and access to the link set of the association.

Abstract No.

Super classes StructuralFeature.

Attributes None.

References referencedEnd: specifies the association end of principle interest to the
reference.
exposedEnd: the association end representing the end of the reference’s
owning classifier.

Operations None.

MOF Constraints C-21, C-22, C-23, C-24, C-25, C-26, C-27.

The “Constant” defines constant values of simple data types.

Abstract No.

Super classes TypedElement.

Attributes value : the value of the constant.

References None.

Operations None.

MOF Constraints C-52, C-53.

The “Parameter” element defines parameters used to communicate with BehavioralFeatures.

Abstract No.

Super classes TypedElement.

Attributes direction : specifies the direction of information exchange (i.e., to pass a value
into, to receive a value from, or both).
multiplicity : defines the cardinality of the parameter.

References None.

Operations None.

MOF Constraints None.

30

An “AssociationEnd” represents one end of an association object. That is, an association is composed of
two AssociationEnds.

Abstract No.

Super classes TypedElement.

Attributes multiplicity : defines the cardinality of the association end.
aggregation: defines whether the association end is constrained by
“aggregate” semantics.
isNavigable: specifies whether the association end supports navigation.
isChangable: specifies whether the association end can be updated (using the
generated APIs).

References None.

Operations otherEnd : returns the other “AssociationEnd”.

MOF Constraints C-39, C-40, C-41, C-42.

The MOF Model 31

3.1.7 MOF Model Associations

t DependsOn

t AttachesTo

t Contains

“DependsOn” is a derived association that identifies the collection of model elements that a given model
elements structure depends on.

end1:dependent This end identifies the dependent element.
end1Class : ModelElement
multiplicity : zero or more

end2: This end identifies the elements that the “dependent” end depends on.
end1Class : ModelElement
multiplicity : zero or more

The “AttachesTo” association associates tags with model elements.

end1:modelElement Identifies the model element that the tag is attached to.
end1Class : ModelEelement
multiplicity : one or more

end2:tag Identifies the tags attached to a model element.
end1Class : Tag
multiplicity : zero or more

The “Contains” composite association defines the model elements contained by a namespace.

end1:container Identifies the composing container.
end1Class : Namespace
multiplicity : zero or one

end2:cotainedElement Identifies the contained elements.
end1Class : ModelElement
multiplicity : zero or more

32

t Aliases

t Constrains

t Generalizes

t IsOfType

“Aliases” identifies the imported Namespace.

end1:importer Identifies the element that imports a namespace.
end1Class : Import
multiplicity : zero or more

end2:imported The namespace that is imported.
end1Class : Namespace
multiplicity : exactly one

“Constrains” identifies the constraints, if any, on a model element.

end1:constraint Identifies the constraints.
end1Class : Constraint
multiplicity : zero or more

end2:constrainedElement Identifies the constrained elements.
end1Class : ModelElement
multiplicity : one or more

The “Generalizes” association identifies a supertype/subtype relationship.

end1:supertype Identifies the supertype (i.e., generalized element).
end1Class : GeneralizableElement
multiplicity : zero or more

end2:subtype Identifies the subtype (i.e., the specialized element).
end1Class : GeneralizableElement
multiplicity : zero or more

The “IsOfType” association identifies the type of a typed element.

end1:type Identifies the typed element.
end1Class : Classifier
multiplicity : exactly one

end2:typedElement Identifies the set of typed elements supported by the classifier.
end1Class : TypedElement
multiplicity : zero or more

The MOF Model 33

t CanRaise

t RefersTo

t Exposes

The “CanRaise” association identifies the exceptions that can be raised by an operation.

end1:operation The set of operations that can raise this exception.
end1Class : Operation
multiplicity : zero or more

end2:except The set of exceptions that this operation can raise.
end1Class : Exception
multiplicity : zero or more

The “RefersTo” association defines the association end that a reference refers to.

end1:referent The reference object that refers to an association end.
end1Class : Reference
multiplicity : zero or more

end2:referencedEnd The association end being referenced.
end1Class : AssociationEnd
multiplicity : exactly one

“Exposes” defines the opposite association end of the association end that a reference refers to.

end1:referer Identifies the referencing reference.
end1Class : Reference
multiplicity : zero or more

end2:exposedEnd The reference’s owning classifier’s end in the association.
end1Class : AssociationEnd
multiplicity : exactly one

34

3.2 Discrepancies between JMI and MOF
The current JMI specification is a Java language mapping for the OMG MOF version 1.4
specification. In order to support a Java “friendly” API, the following changes have been
introduced:
n The Supertype Closure rule has been modified to reflect the changes to the reflective

framework.
n The underflow constraint on classifier level and instance level attributes is changed from

immediate to deferred in order to support default factory operations that take no arguments.
n Collections are ‘live’ (see “JMI Collection Semantics” on page 38”).

In addition, the JMI reflective interfaces and the exception framework are significantly different
from their IDL counterparts. These changes however, do not alter the semantics of the MOF.

3.3 XMI
JMI provides APIs for stream based information exchange between JMI services. Such streams
shall be in the XML Metadata Interchange (XMI) version 1.2 format. The XMI 1.2 specification is
available on the OMG web page <http://cgi.omg.org/cgi-bin/doc?ptc/01-08-27>.

Metaobjects and Interfaces 35

4

MOF to Java Mapping

This chapter defines the standard mapping from a MOF compliant metamodel to Java interfaces.
The resulting interfaces are designed to allow a user to create, update and access instances of the
metamodel using Java client programs.

4.1 Metaobjects and Interfaces
This section describes the different kinds of metaobjects that represent MOF based metadata, and
how they relate to each other.

4.1.1 Metaobject Type Overview

The MOF to Java interface mapping and the Reflective package share a common, object-centric
model of metadata with four kinds of M1-level metaobjects; i.e. “instance” objects, “class proxy”
objects, “association” objects, and “package” objects.

Package Objects and Package Creation

A package object is little more than a “directory” of operations that give access to a collection of
metaobjects described by a metamodel. The outer most package extent (a.k.a. outer most extent)
represents the “root” of the object-centric model of the metadata. All other objects (i.e., instance
objects, class proxies, associations, and (nested) package objects) are contained within some outer
most extent and are created using the accessors provided by the MOF.

Class Proxy Objects

A class proxy object serves a number of purposes:

n It is a factory object for producing instance objects within the Package extent.
n It is the intrinsic container for instance objects.
n It holds the state of any classifier-scoped attributes for the class.
n It provides operations corresponding to classifier-scoped operations.

The interface of a class proxy object provides operations for accessing and updating the classifier-
scoped attribute state. The interface also provides factory operations that allows the client to
create instance objects.

36

Instance Objects

An instance object holds the state corresponding to the instance-scoped attributes, and any other
“hidden” state implied by the class specification. Generally speaking, many instance objects can
exist within a given package object.

Instance objects are always tied to a class proxy object. The class proxy provides a factory
operation for creating instance objects. When an instance object is created, it is automatically
added to the class proxy container. An instance is removed from the container when it is
destroyed.

The interface for an instance object provides:

n Operations to access and update the instance-scoped and classifier-scoped attributes.
n Operations corresponding to instance-scoped and classifier-scoped operations.
n Operations to access and update associations via reference.

Association Objects

An association object holds a collection of links (i.e. the link set) corresponding to an association
defined in the metamodel. The association object is a “static” container object (similar to a class
proxy object) that is contained by a package object. Its interface provides:

n Operations for querying the link set.
n Operations for adding, modifying and removing links from the set.
n An operation that returns the entire link set.

A link is an instance of an association object that represents a physical link between two instances
of the classes connected by the association object.

4.1.2 The Metaobject Interface Hierarchy

This section describes the patterns of inheritance of the Java interfaces generated by the MOF to
Java mapping. The patterns are illustrated in FIGURE 4-10. This figure shows an example MOF
metamodel expressed in UML (on the left) that consists of two Packages, P1 and P2. The first
Package P1 contains Classes C1 and C2, where C2 is a subclass of C1 and an Association A that
connects C1 and C2. The second Package P2 is then defined as a subpackage of P1.

The UML class diagram (on the right) shows the inheritance graph for the generated interfaces
corresponding to the example metamodel.

The root of the inheritance graph is a group of predefined interfaces that make up the Reflective
package (see Chapter 5,MOF Reflective Package). These interfaces collectively provide:

n Operations that implement object identity.
n Operations that provide introspection.
n Operations for exercising the functionality of a object independent of its (metamodel-specific)

generated interface.

Metaobjects and Interfaces 37

Note – The interfaces in the Reflective package are all designed to be “abstract”; i.e. it is not
anticipated that they should be the “most derived” type of any metaobject.

The interfaces for the Package objects, Association objects, Class Proxy objects and Instance
objects provide functionality as described previously. The inheritance patterns are as follows:

n An Instance object that has no supertypes extends RefObject; all other Instance objects extend
their supertypes.

n A Package object that has no supertypes extends RefPackage; all other Package objects extend
their supertypes.

n All Class Proxy objects extend RefClass.
n All Associations extend RefAssociation.

C2

C1

Package P1

P1 P2

A

Metamodel Definition

C1Class

P2

P1

C2

C1

C2ClassA

RefPackage RefAssociation RefFeatured

RefBaseObject

Inheritance in Generated Interfaces

RefObject RefClass

FIGURE 4-10 Generated Java inheritance patterns.

38

4.2 Computational Semantics for the Java Mapping
This section describes the MOF’s general computational semantics for the MOF to Java interface
mapping.

4.2.1 Equality in the Java Mapping

JMI maps all MOF objects to Java object that implement the (reflective) RefBaseObject interface.
Equality of JMI objects should be implemented as follows:

n Two JMI objects are equal if and only if the “refMofId” operation defined in the
javax.jmi.reflect.RefBaseObject interface returns the same string for both objects.

4.2.2 The Java NULL Value

For an attribute, reference, or parameter whose multiplicity lower bound is 0 and upper bound is
1, Java NULL indicates that the attribute (reference or parameter) has no value, that is, it has a
cardinality of zero. For an attribute, reference, or parameter whose multiplicity lower bound is 0
and upper bound is greater than 1, the empty collection indicates that it has no value.

4.2.3 JMI Collection Semantics

The java.util.Collection interface and its specializations (specifically, java.util.List) are used
throughout the JMI APIs. Unless otherwise specified, Java collections that appear in the generated
and reflective APIs have live semantics as opposed to copy semantics. That is, unless otherwise
stated in the specification or prohibited by the metamodel (i.e., metamodel specifies that the
source is immutable), the source collection can be updated using:

n Operations defined in the Java collection interfaces.

n Operations defined in the Iterator interface.

In addition, the collections behave as follows:

n Any change in the source collection is immediately reflected in the live Collection.

n Any change in the live collection is immediately reflected in the source collection.

n The behavior of an iterator becomes unspecified when its underlying collection is modified in
any way other than through the iterator. In such situations, it may even through an exception.

n Operations defined in the collection and iterator interfaces are executed as atomic operations.

JMI does not however specify the semantics of Collections returned by modeled operations (i.e.,
operations explicitly listed in the metamodel). It is the responsibility of the modeler/implementor
of the operation to choose the required semantics.

Computational Semantics for the Java Mapping 39

Note – When JMI collection and iterator operations are used within the context of some
concurrency control mechanism such as transactions, the semantics of the specific concurrency
control mechanism override the semantics defined above.

4.2.4 Lifecycle Semantics for the Java Mapping

This section defines the Java interface mapping’s computational model for metaobject creation
and deletion. It also gives definitions of copy semantics, though these should currently be viewed
as indicative rather than normative.

Package Object Creation and Deletion Semantics

The JMI specification does not specify how a outer most package extent is created. This is due to
the fact that the concept of a JMI service has not been defined in the current version of the
specification. However, it must be noted that normative APIs for a JMI service will be defined in
a future version of the specification.

When an outer most extent is created, instances of the following dependent objects are
automatically created along with the package object:

n A package object is created for each nested package within the outer most package extent.
n A package object is created for each clustered package within the outer most package extent.
n A class proxy object is created for each class within the outer most package extent.
n A association object is created for each association within the outer most package extent.

The dependent packages and class proxy objects are initialized so that the reflective
refOutermostPackage and refImmediatePackage operations return the appropriate objects.

When an M1-level class proxy object is created, the values of the non-derived classifier-level
attributes are initialized. Initially, the collections returned by the reflective refAllOfType and
refAllOfClass operations will be empty, since no M1-level instance objects will have been created
in the class proxy extent.

Instance Object Lifecycle Semantics

An instance object can be created by invoking the appropriate create operation declared in the
class proxy object. An instance object is created within the extent of the respective class proxy
object.

The class proxy object may not be found if the object violates the Supertype Closure Rule (see
“The Supertype Closure Rule” on page 46). Creation of an instance object will also fail if the
corresponding class is abstract (i.e., has isAbstract set to true). Similarly, it will fail if the class is
a “singleton” class and an instance object for that class already exists within the class proxy’s
extent. In the above cases, an exception is raised.

40

When an instance object is (successfully) created within the extent of a class proxy object, it
becomes part of the collection returned by the class proxy object’s reflective refAllOfClass and
refAllOfType operations. The instance object remains a member of that collection for its lifetime;
i.e. until it is deleted.

An instance object will be deleted in the following three situations:

n When a client invokes the reflective “refDelete” operation on the instance object.
n When the outer most extent containing the instance object is deleted.
n When the instance object is a component of a “composite” instance that is deleted. This applies

to composites formed by both associations and attributes.

When an instance object is deleted, the following things must occur:

n The binding between the instance object and its object reference(s) must be revoked.
n The instance object must be removed from its class proxy object’s container.
n Any instance objects that are components of the object being deleted must also be deleted.
n Links involving the deleted instance object should be deleted as per the “Link Lifecycle

Semantics” specification below.

Link Lifecycle Semantics

Links can be created and deleted in various ways. These include:

n Using the operations on the association objects.
n Using the operations corresponding to references on instance objects.
n By deleting one or other linked instance objects.
n When the service notices that a linked instance object no longer exists.

A link is created within the extent of an association object, and becomes part of the collection
returned by the association object’s reflective refAllLinks() operation. A link remains within the
extent in which it was created for the lifetime of the link; i.e. until it is deleted. When a link is
deleted, it is removed from the association’s extent.

Deletion of an instance objectmaycauses certain links to that object to become invalid references.
Ideally, a well-formed association instance should not contain such links. In practice however, the
immediate removal of invalid links from an association instance cannot always be implemented,
particularly, in the case of links that cross outer most package extent boundaries.

Instead, a JMI service is required to behave as follows. When an instance object is deleted:
n All links referring to the instance object that belong to association instances within the same

outer most package extent as the instance objectmustalso be deleted.
n Any links referring to the instance object that belong to association instances in another outer

most package extent as the instance objectmayalso be deleted.

Note – The above semantics mean that an association instance can legally contain links that
refer to defunct instance objects in other outer most package extents.

Computational Semantics for the Java Mapping 41

4.2.5 Association Access and Update Semantics for the Java
Mapping

This section describes the computational semantics of the association object access and update
operations defined in the MOF to Java Interface Mapping. With a couple of exceptions, these
semantics transform oneWell-formed State(as defined in “A Mathematical Model of Association
State” in Chapter 4 of the MOF specification) to another. The exceptions are as follows:

n Deletion of an instance object in another outer most package extent may cause a association
link set to contain links that are no longer valid.

n Deletion of an instance object can cause a link set to contain fewer links than is required.

Since an association requires that links connect instance objects, it is not legal to pass a null object
reference as a parameter to any operation on an association.

Access Operations

There are two kinds of link access operations in the association interface generated by the Java
Interface mapping:

n The “get<associationEndName>” operations return a collection containing the projection of the
corresponding end of the association’s link set.

n The “exists” operation tests for the existence of a given link in the association’s link set.

These operations are defined to be side-effect free; i.e. they do not modify theStateof the
Association instance.

Link Addition Operations

The set of operations for adding links to an associations extent vary, depend on whether it has an
ordered “AssociationEnd”:

n For an unordered association, the “add” operation adds a link to the association’s link set.
n For an ordered association, the “add” and “addBefore” operations both add a link to the

association’s link set. In the “add” case, the new link is added the end of the existing link set.
In the “addBefore” case, the new link is added immediately before the link selected by the
“before” argument

A number of constraints apply to the link addition operations:

n When adding a link, the link must reference existing instance objects.
n An operation cannot add a link that already exists.
n An operation cannot add a link if it would violate the multiplicity of either end of the

association.
n An operation cannot add a link that creates a Composition cycle, or that violates the

Composition or Reference Closure rules.

Link Modification Operations

There are two “modify” operations for modifying an existing link in the association’s link set. The
semantics of the “modify” operations depend on whether the association has an ordered
“AssociationEnd”:

42

n If the association is ordered and theorderedend is being modified, then the position of the link
being modified does not change.

n In all other cases (i.e., the association is unordered, or it is ordered and the unordered end is
being modified), the modify operation is equivalent to deleting the existing link and adding the
modified link.

A number of constraints apply to the link modification operations:

n The modify operation modifies existing links. However, the link need not be a valid link. That
is, the modify operation can modify an existing link that has been made invalid (by say, the
deletion of an instance object).

n The modified link must be a valid link.
n The modified link cannot already be a member of the link set.
n A “modify” operations cannot produce a link that creates a Composition cycle, or that violates

the Composition or Reference Closure rules.

Link Removal Operations

The “remove” operation can be used to delete an existing link from the link set. The constraints
that apply to the link removal operation are:

n The operation cannot remove a link if doing so would violate the multiplicity constraint on
either end.

n The operation cannot remove a link that is not a member of the link set. However, it should
succeed if the link is not a valid link.

Derived Associations

Setting “isDerived” to be true for an association object is a “hint” that the association’s link set
should be computed from other information in the model. Apart from this, the Java Interface
mapping makes no distinction between derived and non-derived associations. Equivalent Java
interfaces are generated in each case, and the semantics are defined to be equivalent. If a derived
association’s operations are coded by hand, it is the programmer’s responsibility to ensure that
they implement the required semantics.

4.2.6 Attribute Access and Update Semantics for the Java Interface
Mapping

The Java interface mapping maps attributes to a variety of operations, depending on the attribute’s
“multiplicity” settings. There are three major cases; i.e. single-valued with bounds of [1..1],
optional with bounds of [0..1], and multivalued.

Note – The lifecycle semantics for attributes in the Java interface mapping mean that an
accessor operation can return a reference for a non-existent object.

Computational Semantics for the Java Mapping 43

Single-Valued Attributes

A single-valued attribute is mapped to two Java interface operations; i.e. a “get<attributeName>”
operation that gets its value and a “set<attributeName>” operation that sets its value.

The get<attributeName> operation returns the current value of the attribute, which is a single
instance of the attribute’s base type as mapped by the Java mapping. The set<attributeName>
operation replaces the current value of the attribute with a new value. As before, the new value is
a single instance of the attribute’s base type as mapped by the Java mapping.

The behavior of the set<attributeName> operation for an attribute whose type is a class is
constrained as follows:

n The new value supplied must be an existing instance object.
n The new value (i.e. the component instance) must not already be a component of another

instance object.
n The composite and component instance objects must belong to the same outer most package

extent, i.e., the Composition Closure rule must not be violated.

“Optional Attributes

An optional attribute maps to the same operations as for single-valued with the added capability
that the attribute can be set to null.

Multivalued Attributes

The interfaces and semantics for multivalued attributes depend on the settings of the “isOrdered”
and “isUnique” fields of the attribute’s “multiplicity” property.

For multivalued attributes, only a “get<attributeName>” operation is provided. If “isOrdered” is
false, the operation returns a java.util.Collection; if “isOrdered” is true, the operation returns a
java.util.List. The base type of each element in the returned collection is the attribute’s base type.

Note – The return type of the “get<attributeName>” operation is determined by the “isOrdered”
field. The “isUnique” field however, has no affect on the return type. This is because orderedness
is a characteristic of a multivalued attribute (or reference), while uniqueness is a constraint.

All other operations to manipulate multivalued attributes are provided through the Collection and
List interfaces.

A number of restrictions apply when setting a value of a multivalued attribute:

n If the attribute’s multiplicity has the “isUnique” flag set to true, no two instances in the
collection may be equal. If the user attempts to add a duplicate instance, the JMI
“DuplicateException” must be thrown.

n If the attribute’s multiplicity has a “upper” value other than the “UNBOUNDED” value, there
can be at most that many elements in the collection.

If a multivalued attribute’s type is a class, the following restrictions also apply:

n The new element must be an existing object of the attribute’s base type.

44

n The new element must not be a component of another object.
n The composite and every component instance objects must belong to the same outer most

package extent; i.e. the Composition Closure rule must not be violated.

Changeability and Derivedness

If “isChangeable” is set to true for a single-valued or optional-valued attribute, mutator operations
are not generated. For multi-valued attributes, the value of the “isChangeable” flag has no effect
on the generated Java APIs. However, any operation on the collection or list interface that
attempts to change the source data must fail.

The lack of mutator operations for single and optional-valued attributes, or the restriction on the
set operations in the Collection interface for multi-valued attributes does not preclude the
existence of other mechanisms for updating the attribute’s state.

The value of the “isDerived” flag has no effect on the generated Java APIs. The operations for the
derived and non-derived cases are equivalent and they are defined to have equivalent semantics. If
a derived attribute’s operations are coded by hand, it is the programmer’s responsibility to ensure
that they implement the required semantics.

Classifier Scoped Attributes

An attribute whose “scope” is “classifier_level” differs from one whose “scope” is
“instance_level” in the following respects:
n When the attribute has aggregation semantics of “composite”:

n The Composition Closure rule means that the class proxy object and attribute value
instances must belong to the same extent.

n Checking for composition cycles is unnecessary. The class proxy object is not an instance
object, and thus, cannot be a “component”.

Inherited Attributes

The semantics of an inherited attribute is equivalent to that of one defined in that class.

Life-cycle Semantics for Attributes

The previous semantic descriptions say nothing about how an attribute gets its initial value or
values. In the Java mapping, attributes get their initial value as follows:

n If the “create<ClassName>” operation that takes an initial value for all attributes of that class
is used, then the attributes are initialized from the parameters to the create operation.

n If the default “create<ClassName>” operation (that takes no arguments) is used, then the
attributes will be initialized as follows:

n If the attributes value can be null (i.e., in the Java mapping it gets mapped to some Java
object), then it will be initialized to null.

n If the attribute value cannot be null (i.e., in the Java mapping, it gets mapped to some Java
scalar type such as “int”) then it will get initialized to an implementation specific value.

n “classifier_level” attribute initialization follows the same rules as those defined for the default
“create<ClassName> operation.

Computational Semantics for the Java Mapping 45

Attributes with “composite” aggregation semantics have special life-cycle semantics. When an
object with a composite attribute is deleted, the instance object or objects that form its value are
also deleted.

Note that unlike associations, when an instance object is deleted, the delete operation should make
no attempt to tidy up “dangling references” to it.

Note – In order to support the default create operation in JMI, the underflow constraints
on classifier_level and instance_level attributesWILL be deferred rather than immediate.
The default create operation is provided as a convenience to the Java programmer. However, it is
expected that programmer will use the set<AttributeName> (or equivalent) operation to set the
value of (un-assigned) attributes in a timely manner. It must also be noted that, if an attribute is
read-only (isChangable = false), or its visibility is private_vis or protected_vis, then no mutator
operations will be generated, or in the case of multi-valued attributes, the mutator operations in
the collection API are required to fail.

4.2.7 Reference Semantics for the Java Mapping

References combine attribute style interfaces with association access and update semantics. The
Java mapping maps references to attribute style interface operations. Leti be an instance object
containing a referenceref, a be the association object forref, andc be the collection returned by
the “get” operation forref for the case whereref is a multivalued reference, then each reference
operation maps fairly directly onto an association interface operation as shown below.

Multiplicity Reference Operation Association Operation(s)

optional,
single- and
multivalued

i.get<referenceName>(); a.<referencedEndName>(i);

optional and
single-valued

i.set<referenceName>(new); old = a.<referenceEndName>(i);
if old.size > 0 then

a.modify<referenceEndName>(i, old[0], new);
else

a.add(i, new);

multivalued c.addAll(new) old = a.<refEndName>(i);
for (int j = 0; J < old.size; j++)

a.remove(i, old[j]);
for(int j = 0; J < old.size; j++)

a.add(i, new[j]);

multivalued c.add(new) a.add(i, new);

multivalued c.remove(old) a.remove<referenceEndName>(i, old);

TABLE 4-1 Semantic mapping of reference operations to association operations.

46

In practice, an implementation also needs to transform exceptions reported for the association
operations into exceptions that apply from the reference perspective.

Note – The above semantic mapping description is not intended to imply any particular
implementation approach.

4.2.8 Cluster Semantics for the Java Mapping

A clustered Package behaves identically to a nested Package in terms of life-cycle and extent
rules. The only significant difference is that clustering is not always a strict composition
relationship. In the Java mapping, this means that two or more “get<PackageName>” operations
may point at the same clustered package instance.

4.2.9 Atomicity Semantics for the Java Mapping

All operations defined by the Java mapping (including the Reflective versions) are required to be
atomic:

n If an operation succeeds, state changes required by the specification should be made, except as
noted below:

n When an instance object is deleted, deletion of any component instance objects may occur
asynchronously.

n When an instance object is deleted, removal of links to the deleted instance object may
occur asynchronously.

n If an operation fails (e.g. by raising an exception), no externally visible changes should be
caused by the failed operation.

Note – The JMI specificationdoes not requirea transactional or persistent implementation of the
metadata service.

4.2.10 The Supertype Closure Rule

The inheritance pattern for instance and class proxy interfaces has an important consequence when
one metamodel class is a subclass of a second one. Problems arise when an M2-level class (e.g.
P2.C2) has a superclass that is imported from another M2-level package (e.g. P1.C1). Here,
operations corresponding to classifier level features of P1.CI are copied to the class proxy
interface of P2.C2. If package P2 simply imports P1 where isClustered is set to false, then the
operations corresponding to classifier level features of P1.C1 are no longer valid for the instance
and class proxy interfaces of P2.C2.

The adopted solution to this problem is to add an extra restriction to the MOF computational
semantics. This restriction is known as theSupertype Closure Rule:

Primitive Data Type mapping 47

Supertype Closure Rule:An M2 level package can be instantiated only if for each class
contained in that package, all its (direct and indirect) supertypes are also contained within that
package.

4.3 Primitive Data Type mapping
The default mapping of MOF primitive types to Java types is given below in TABLE 4-2. A

4.4 Exception Framework
In JMI, exceptions are raised in a variety of interfaces. These include the Reflective interfaces and
the specific interfaces produced by the MOF to Java language mapping templates. Exceptions
raised by a JMI service fall into two categories:

n Modeled Exceptions—These exceptions appear in the generated APIs as a result of them being
modeled explicitly in the metamodel. The JMI service is not expected to know when to raise
the modeled exceptions. Instead, the implementation of the APIs provided by the user need to
explicitly raise these exceptions when the intended exception condition has occurred. All
modeled exceptions extend the javax.jmi.reflect.RefException (which extends
java.lang.Exception), and are designed to be checked exceptions.

n Service Exceptions—These exceptions represent exceptions that are raised by the JMI service
as a result of some exception condition within the service. All service exceptions extend the
javax.jmi.reflect.JmiException (which extends java.lang.RuntimeException), and are designed
to be unchecked exceptions.

Primitive Types Default Java Type

Boolean boolean

Byte byte

Boolean boolean

Double double

Float float

Integer int

Long long

String java.lang.String

TABLE 4-2 Default mapping of primitive types to Java types.

48

Note – For more details on modeled and service exceptions, see “The Exception Framework” on
page 103.

4.5 Preconditions for Java Interface Generation
The Java mapping may not produce valid Java interfaces if any of the following preconditions on
the input metamodel is not satisfied. Note that the following is not a complete list of
preconditions:

n The MOF Model constraints must all be satisfied for the input metamodel.
n The input metamodel must be structurally consistent.
n The visible names within a namespace must conform to the standard Java identifier syntax, or

they must have a valid Java substitute name.
n The visible names within a namespace must be unique after name substitution and other name

mangling specified in the mapping.
n A class may not be nested within another class.
n A class may not be imported.
n Model Elements in a metamodel cannot be cyclically dependent except as follows:

n A dependency cycle consisting of one or more classes is legal, provided they all have the
same container.

n A dependency cycle consisting of one or more classes and one or more data types or
exceptions, is legal provided they all have the same container.

4.6 Standard Tags for the Java Mapping
This section defines the standard tags that apply to the MOF to Java mapping. Other tags may be
attached to the elements of a metamodel, but the meaning of those tags is not specified. Similarly,
this section does not specify the meaning of the tags outside the context of the MOF to Java
mapping.

All standard tag identifiers for the Java language mapping start with the prefix string:

“javax.jmi.”

TABLE 4-3 shows the conventions used to describe the standard tags and their properties.

Tag Properties

tag id: A string that denotes the semantic category for the tag.

attaches to: Gives the kind(s) of Model.ModelElement that this category of tag can
be meaningfully attached to.

TABLE 4-3 Notation for describing Standard Tags

Standard Tags for the Java Mapping 49

Note – There is currently an issue as to whether a tag attached to a metamodel element but not
contained by that metamodel should be considered in the Java mapping.

4.6.1 Tags for Specifying Package Prefix

This tag allows the metamodeler to specify a prefix for the package name generated by the Java
mapping.

values: Gives the number and types of the tag’s values (i.e. parameters), if
any. (Tag parameters are expressed as an unordered collection of
java.Object values.)

meaning: Describes the meaning of the tag in this context.

Java interface
generation:

Defines the tag’s impact on the generated Java interfaces.

restrictions: Tag usage restrictions; e.g. “at most one tag of this kind per element”,
or “tag must be contained by the metamodel”.

Tag Properties

TABLE 4-3 Notation for describing Standard Tags

50

Package Prefix

4.6.2 Tags for Providing Substitute Identifiers

There are some situations when the Java identifiers produced by the Java mapping templates will
result in name collisions. The following tag allows a metamodeler to provide a substitute for a
model element’s name that will be used in the Java interface generation.

Note – The javax.jmi.model.Class has the javax.jmi.substituteName tag set to “MofClass” so
that the generated operation for the class proxy for javax.jmi.model.Class in
javax.jmi.model.ModelPackage is not named “getClass” (as getClass is already defined in
java.lang.Object).

tag id: “javax.jmi.packagePrefix”

attaches to: Model.Package

values: a String

meaning: This tag supplies prefix to be added to the package name.

Java interface
generation:

A prefix is applied to the package heading for the interfaces in the package.

restrictions: A Prefix tag should only be attached to a non-nested Package.

tag id: “javax.jmi.substituteName”

attaches to: Model.ModelElement

values: a String

meaning: The String is the substitute name to be used in place of the model element’s
name.

java interface
generation:

Wherever the Java mapping makes use of a model element’s name, the
substitute name should be used in its place. This substitution occurs before
applying any name mangling rules.

restrictions: The preconditions defined in “Preconditions for Java Interface Generation”
on page 48 apply to the substitute name; i.e.
[1] it must be a syntactically valid Java identifier, and
[2] all identifiers produced from it must be unique in their respective scopes
after formatting and name mangling, as per the Java mapping specification.
In addition, [3] there should be at most one substitute name tag per
ModelElement.

Java Generation Rules 51

4.6.3 Tag for specifying prefix for generated methods

This tag allows the modeler to provide a prefix that is applied to the names of all generated
methods within a package. This tag applied to packages (i.e., instances of MOF Package). The
default value is the empty string.

4.6.4 Tags for Capturing JavaDocs

This tag allows the modeler to store JavaDocs in the metamodel. It applies to packages (i.e.,
instances of MOF Package), classes (i.e., instances of Class), and operations (i.e., instances of
Operation).

4.7 Java Generation Rules
During the design of the MOF to Java mapping, several design decisions were made which are
explained in this section.

tag id: “javax.jmi.methodPrefix”

attaches to: Model.Package

values: a string. Default value is the empty string.

meaning: This tag supplies a user defined prefix for the generated operations for a
model (package)

java interface
generation:

The prefix is applied to the names of all generated operations of that package.
The non-empty string tag of a nested package overrides the tag value of the
containing package. The tag does not apply to modeled operations.

restrictions: The tag value should be a valid prefix for a Java operation name.

tag id: “javax.jmi.javaDocs”

attaches to: Model.Class, Model.Package, and Model.Operation

values: a string

meaning: The string value captures the JavaDocs associated with the respective object.

java interface
generation:

The string precedes the class, package, or operation

restrictions: Should be a valid JavaDocs comment

52

4.7.1 Rules for Generating Identifiers

Identifier naming is an important issue for automatically generated Java interfaces, especially
when the interfaces are intended to be used by applications written by human programmers. The
mapping has to reach a balance between conflicting requirements:

n Syntactic correctness — all identifiers in the mapped Java must conform to the Java syntax.
n User friendliness — identifiers should convey as much information as possible without being

overly long.
n Conformance to existing conventions — identifiers should conform to existing stylistic

conventions.

In JMI, all identifiers (i.e., names of packages, names of class proxies, names of operations, names
of parameters, names of constants, and names enumeration literals) shall conform to the following
rules:

4.7.2 Rules for Splitting MOF Model.ModelElement Names into
Words

ToBeDone – This section needs to spell out the rules for splitting words as in the MOF
specification.

In the MOF, the name of a ModelElement is, typically, formed from one or more words in some
natural language and is an instance of the “NameType” i.e., any valid string. Since the MOF does
not restrict the set of strings that can be used to name a ModelElment, not all ModelElement
names transform directly to valid Java identifiers. The Java mapping needs to convert all
Modelelement names to valid Java identifiers with minimum exceptions.

Package names: The identifier consists of lower-case alphabetic characters only.

Class proxy names: The identifier consists of lower-case alphabetic characters with the following
exceptions.The first letter of the identifier is capitalized. If the identifier
consists of multiple words, the first letter of each word in the identifier is
capitalized.

Operation names: The identifier consists of lower-case alphabetic characters with the following
exception. If the identifier consists of multiple words, the first letter of each
word except the first word, is capitalized.

Attribute names: The identifier consists of lower-case alphabetic characters with the following
exception. If the identifier consists of multiple words, the first letter of each
word except the first word, is capitalized.

Constants The identifier consists of all upper-case alphabetic characters and the “_”
character (used to separate words).

Enumeration literals The identifier consists of all upper-case alphabetic characters and the “_”
character (used to separate words).

Java Generation Rules 53

4.7.3 Literal String Values

Literal string values (in string valued Constants) are not re-formatted and appear in the generated
Java exactly as specified by the Constant’s “value” attribute.

4.7.4 Generation Rules for Attributes, AssociationEnds, References,
Constants, and Parameters

The MOF Model allows attributes, association ends, references and parameters to be single-,
optional- or multivalued depending on the ModelElement’s base type (i.e., the modeled MOF
type) and its multiplicity. In addition, parameters are one of four “DirectionKinds” — IN_DIR,
OUT_DIR, INOUT_DIR, or RETURN_DIR — depending on whether the parameter value is to be
passed in and/or out, of returned as the result of the operation.

In the mapped interfaces, the multiplicity makes it necessary to pass the Java “Object”
representation for the optional case, and pass collections of values for the multivalued case. The
“direction” makes it necessary to pass arrays of values for the OUT_DIR and INOUT_DIR cases
as in Java, parameters cannot return values.

This section defines the rules for generating the types of attributes, association ends, references
and parameters.

Generation Rules for Attributes, AssociationEnds, and References

The type of a an attribute, assocationend, or reference is derived from its modeled type and its
multiplicity. TABLE 4-4 defines the generation rules for attributes, association ends, and
references:

Generation Rules for Constants

The type of a constant is derived from its modeled type. The type of a constant must be some
primitive type.

Multiplicity Generation rules for PrimitiveType
Generation rules for all other

types

0..1 Java object type Corresponding Java interface

1..1 If the type is a Java primitive type
with scalar and object
representations, then Java scalar
type; else, Java object type.

Corresponding Java interface

other Collection of Java object type Collection of corresponding Java
interface

TABLE 4-4 Generation rules for Attributes, AssociationEnds, and References

54

Generation Rules for Parameters

The type of a parameter is derived from its base type, its multiplicity, and its direction attributes.
TABLE 4-5 defines the generation rules for parameters whose modeled type is a MOF primitive
type. TABLE 4-6 defines the rules for parameters whose modeled type is any type other than a
MOF primitive type.

4.8 Java Mapping Templates
Model specific Java interfaces are produced by traversing the containment hierarchy of an outer
most package extent. The Java inheritance hierarchy of the resulting interfaces directly reflects the
containment hierarchy of the source package.

The mapping rules are described in terms of Java interfaces. Each Java interface describes the full
list of operations which could be generated when mapping MOF Model objects. In any specific
case, the actual operations generated will depend on the properties of the corresponding MOF
Model object.

Multiplicity IN_DIR & RETURN_DIR OUT_DIR and INOUT_DIR

0..1 Java object type Array of object type

1..1 If the type is a Java primitive type
with scalar and object
representations, then Java scalar
type; else, Java object type.

If the type is a Java primitive type
with scalar and object
representations, then array of Java
scalar type; else, array of Java
object type.

other Collection of Java object type Array collection of Java object type

TABLE 4-5 Generation rules for MOF PrimitiveType parameters.

Multiplicity IN_DIR & RETURN_DIR OUT_DIR and INOUT_DIR

0..1 Corresponding Java interface Array of corresponding Java
interface

1..1 Corresponding Java interface Array of corresponding Java
interface.

other Collection of corresponding Java
interface

Array collection of corresponding
Java interface

TABLE 4-6 Generation rules for parameters that are not of MOF PrimitiveType.

Java Mapping Templates 55

The Template approach used here is a notational convenience, not a required or suggested
implementation strategy.

4.8.1 Package Interface Template

A package interface is named<PackageName>Packageand it contains operations that provide
the dependent Package, Association and Class proxy objects for a Package object.

Template
<<JAVADOCS TEMPLATE>>

public interface <packageName> Package

// if Package has no super-Packages

extends javax.jmi.reflect.RefPackage

// else for each public super-Package (in order)

extends <superPackage> Package, ... {

// for each imported package where:

// isClustered == true and

// Import.visibility == public_vis and

// importedNamespace.visibility == public_vis

public <ClusteredPackageName> Package get <ImportName> ();

// for each contained package where visibility = public_vis

public <NestedPackageName> Package get <NestedPackageName> ();

// for each contained class visibility = public_vis

public <ClassName> Class get <ClassName> ();

// for each contained association visibility = public_vis

public < AssociationName> get <AssociationName> ();

// for each StructType directly contained by the package

public <StructTypeName> create <StructTypeName> (/*for each attribute
<AttributeType> <attributeName>*/) throws javax.jmi.reflect.JmiExcep-
tion;

// for each EnumType directly contained by the package

public <EnumTypeName> create <EnumTypeName>(String value) throws
javax.jmi.reflect.JmiException;

};

Supertypes

If the M2-level Package inherits from other M2-level Packages with “visibility” of “public_vis”,
the Package interface extends the interfaces for the supertype M2-level Packages. Otherwise, the
Package interface extendsjavax.jmi.reflect.RefPackage.

56

Operations

t get<ImportName>()

t get<NestedPackageName>()

t get<ClassName>()

t get<AssociationName>()

An operation is generated for each clustered package in the current package.

reflective analog:

return type: <ClusteredPackageName>Package

parameters: none

exceptions none

An operation is generated for each nested package in the current package.

reflective analog:

return type: <NestedPackageName>Package

parameters: none

exceptions none

An operation is generated for each class in the current package.

reflective analog:

return type: <ClassName>Class

parameters: none

exceptions none

An operation is generated for each association in the current package.

reflective analog:

return type: <AssociationName>

parameters: none

exceptions: none

Java Mapping Templates 57

t create<StructTypeName>()

t create<EnumTypeName>()

4.8.2 Class Proxy Template

The class proxy template defines the Java interface generation rules for the<className>Class
interface for a class whose “visibility” is “public_vis”. This interface has operations for any
classifier-scoped attributes, constants, operations, along with a factory operation that give access
to its instance objects.

Template

public interface <ClassName> Class

extends javax.jmi.reflect.RefClass {

//If isAbstract is not set to true, generate factory methods.

public <ClassName> create <ClassName> () throws javax.jmi.reflect.JmiEx-
ception;

public <ClassName> create <ClassName> (/* for each non-derived direct or
inherited attribute <AttributeType> <attributeName> */) throws
javax.jmi.reflect.JmiException;

// for each StructType directly contained by the package

public <StructTypeName> create <StructTypeName> (/*for each attribute
<AttributeType> <attributeName> */) throws javax.jmi.reflect.JmiExcep-
tion;

// for each EnumType directly contained by the package

public <EnumTypeName> create <EnumTypeName>(String value) throws
javax.jmi.reflect.JmiException;

A create operation is generated for each StructType defined in the current package.

reflective analog:

return type: <StructTypeName>

parameters: one parameter for each attribute.

exceptions: JmiException

A create operation is generated for each EnumType defined in the current package.

reflective analog:

return type: <AssociationName>

parameters: String value.

exceptions: JmiException

58

// for each attribute and operation contained in this class or one of its
supertypes with “classifier-level” scope, generate the appropriate oper-
ations

<<ATTRIBUTE TEMPLATE>>

<<OPERATION TEMPLATE>>

}; // end of interface <ClassName> Class

Operations

t create<ClassName>() taking no arguments

t create<ClassName>()

The parameters to this create operation provide initial values for the class's non-derived attributes.
Parameter declarations are generated in an order defined by a recursive depth-first traversal of the
inheritance graph. More precisely:

n A class’s superclasses are processed before the class’s attributes.
n Superclasses are processed in the order of the “Generalizes” association.
n The attributes of each class or superclass are processed in the order of the “Contains”

association.
n When an attribute is encountered with a “scope” value of “classifier_level” or an “isDerived”

value of true no parameter is generated.
n When an attribute is encountered a second or subsequent time, no additional parameter is

generated.
n When the attribute multiplicity is not [1..1], the<AttributeType>has an appropriate type as

specified the section titled “Generation Rules for Parameters” on page 54.

The create<ClassName>operation that takes no arguments is the default factory operation used
to create instance object

reflective analog:

return type: <className>

parameters: none

exceptions JmiException (AlreadyExistsException,
ClosureViolationException)

The create<ClassName> operation is the factory operation used to create instance objects

reflective analog:

return type: <className>

parameters: in <AttrType> <attrName>,...

exceptions JmiException (AlreadyExistsException,
ClosureViolationException)

Java Mapping Templates 59

t create<StructTypeName>()

t create<EnumTypeName>()

4.8.3 Instance Template

The instance template defines the Java generation rules for the<className>interface for a class
whose visibility is “public_vis”. This interface contains operations for the classes instance-scoped
attributes and operations, along with any references.

Template

<<JAVADOCS TEMPLATE>>

public interface <className>

// If the class has no super-types

extends javax.jmi.reflect.RefObject {

// else, for each super-class

extends <superClassName> , ...{

// for each constant, generate the appropriate code

<<CONSTANT TEMPLATE>>

// for each instance level attribute, reference, operation

// contained in this class, generate the appropriate code

<<ATTRIBUTE TEMPLATE>>

<<REFERENCE TEMPLATE>>// public only

<<OPERATION TEMPLATE>>// public_vis only

}; // end of interface <ClassName>

A create operation is generated for each StructType defined in the current package.

reflective analog:

return type: <StructTypeName>

parameters: one parameter for each attribute.

exceptions: JmiException

A create operation is generated for each EnumType defined in the current package.

reflective analog:

return type: <AssociationName>

parameters: String value.

exceptions: JmiException

60

Supertypes

The instance interface for an class extends the instance interfaces for all of its superclasses.

4.8.4 Association Template

The association template defines the generation rules for the association interface corresponding to
an association whose “visibility” is “public_vis”. This interface contains the interface operations
for accessing and updating the association's link set.

Template

public interface <AssociationName> extends javax.jmi.reflect.RefAs-
sociation {

public boolean exists(<AssociationEnd1ClassName> <AssocationEnd1Name>,
AssociationEnd2ClassName> <AssocationEnd2Name>) throws
javax.jmi.reflect.JmiException ;

//If associationEnd1 is single valued and isNavigable

public <AssociationEnd1ClassName> get <AssociationEnd1Name>
(ssociationEnd2ClassName> <AssocationEnd2Name>) throws
javax.jmi.reflect.JmiException ;

//If associationEnd1 is multivalued, isOrdered is false, and isNavigable

public Collection get <AssociationEnd1Name> (ssociationEnd2ClassName>
<AssocationEnd2Name>) throws javax.jmi.reflect.JmiException ;

//If associationEnd1 is multivalued, isOrdered, and isNavigable

public List get <AssociationEnd1Name> (ssociationEnd2ClassName>
<AssocationEnd2Name>) throws javax.jmi.reflect.JmiException ;

//If associationEnd2 is single valued and isNavigable

public <AssociationEnd2ClassName> get <AssociationEnd2Name>
(ssociationEnd1ClassName> <AssocationEnd1Name>) throws
javax.jmi.reflect.JmiException;

//If associationEnd2 is multivalued, isOrdered is false, and isNavigable

public Collection get <AssociationEnd2Name> (ssociationEnd1ClassName>
<AssocationEnd1Name>) throws javax.jmi.reflect.JmiException ;

//If associationEnd2 is multivalued, isOrdered, and isNavigable

public List get <AssociationEnd2Name> (ssociationEnd1ClassName>
<AssocationEnd1Name>) throws javax.jmi.reflect.JmiException ;

// If associationEnd1 and associationEnd2 isChangable

public void add(AssociationEnd1ClassName> <AssocationEnd1Name>,
AssociationEnd2ClassName> <AssocationEnd2Name>) throws
javax.jmi.reflect.JmiException;

// If associationEnd1 and associationEnd2 isChangable

public void remove(<AssociationEnd1ClassName> <AssocationEnd1Name>,
AssociationEnd2ClassName> <AssocationEnd2Name>) throws
javax.jmi.reflect.JmiException, javax.jmi.reflect.NotFoundException ;

};

Java Mapping Templates 61

Operations

t exists

The parameters to the “exists” operation are a pair of instance values of the appropriate type for
the association. Since MOF link relationships are implicitly directional, the order of the
parameters is significant.

t get<associationEnd1Name>

Note – The result type of the operation depends on the multiplicity of <AssociationEnd1>. If it
has bounds of [0..1] or [1..1], the result type is the instance type corresponding to the association
end type. Otherwise, it is a collection of the association ends type.

t get<associationEnd2Name>

This operation is the equivalent of<AssociationEnd1Name>, with the ends interchanged.

The “exists” operation queries whether a link currently exists between a given pair of instance
objects association’s link set.

reflective analog: refLinkExists(...);

return type: boolean

parameters: <AssocEnd1ClassName> <assocEnd1Name>
<AssocEnd2ClassName> <assocEnd2Name>

query: yes

exceptions: JmiException (InvalidObjectException)

The<associationEnd1Name>operation queries the instance object or objects that are related to a
particular instance object by a link in the current association’s link set.

reflective analog: refQuery(...)

return type: <AssociationEnd1ClassName>, Collection, or List

parameters: in <AssocEnd2ClassName> <assocEnd2Name>

query: yes

exceptions: JmiException (InvalidObjectException)

62

t add

The two parameters to the” add” operation give the instance objects at the two ends of the new
link.

If one or other end of the association has “isOrdered” set to true, the new link must be added so
that it is the last member of the projection for the ordered association end.

DuplicateException occurs when the link set for the current association already contains the link
whose creation is requested.

ClosureViolationException is raised when either the reference closure rule of composition closure
rule is violated.

CompositionCycleViolation occurs when adding the new link would create a cycle of composite /
component relationships such that one of the instance object parameters is a component of itself.

t remove

The two parameters to this operation give the instance objects at both ends of the link that is to be
removed from the current association’s link set.

“NotFoundException” occurs if the link to be deleted does not exist in the current association’s
link set.

If either AssociationEnd1 or AssociationEnd2 has “isOrdered” set to true, the “remove” operation
must preserve the ordering of the remaining members of the corresponding projection.

The add operation creates a link between the pair of instance objects in this association’s link set.

reflective analog: refAddLink(...);

return type: none

parameters: in <AssocEnd1ClassName> <assocEnd1Name>
in <AssocEnd2ClassName> <assocEnd2Name>

exceptions: JmiException (InvalidObjectException, DuplicateException,
ClosureViolationException, CompositionCycleException)

The “remove” operation removes a link between a pair of instance objects in the current
association’s link set.

reflective analog: refRemoveLink(...)

return type: none

parameters: <AssocEnd1ClassName> <assocEnd1Name>
<AssocEnd2ClassName> <assocEnd2Name>

exceptions: JmiException (NotFoundException)

Java Mapping Templates 63

4.8.5 Attribute Template

The attribute template defines the generation rules for accessor and mutator operations for
attributes whose visibility is public_vis. These operations appear on different interfaces,
depending on the attribute’s scope:

n Operations for instance-scoped attributes appear in the instance interface only.
n Operations for classifier-scoped attributes appear in the class proxy interface only.

The operations generated for an attribute and their signatures depend heavily on the attribute’s
properties. For the purposes of defining the generated Java code, attribute multiplicities fall into
three groups:

n Single-valued attributes: multiplicity bounds are [1..1].
n Optional-valued attributes: multiplicity bounds are [0..1].
n Multivalued attributes: any other multiplicity.

In order to follow established Java naming patterns, the names of accessor and mutator methods
for an attribute will be generated as follows:

Accessor Operations

For single-valued and optional-valued Boolean attributes whose <AttributeName> has as a prefix
the word “is”:

<AccessorName> = <AttributeName>

For single-valued and optional-valued Boolean attributes whose <AttributeName> does not have
as a prefix the word “is”:

<AccessorName> = is <AttributeName>

For all other (non-Boolean) single-valued and optional-valued attributes:

<AccessorName> = get <AttributeName>

Mutator Operations

For single-valued and optional-valued Boolean attributes whose <AttributeName> has as a prefix
the word “is”

<MutatorName> = set <AttributeNameWithoutPrefixIs>

For all other (non-Boolean, and Boolean attributes whose names are not prefixed with the word
“is”) single-valued and optional-valued attributes:

<MutatorName> = set <AttributeName>

Template

// if Attribute visibility is private or protected no Java code is
generated

<<ANNOTATION TEMPLATE>>

// Accessor Operations

// if optional-valued attribute

64

public <AttributeType> <AccessorName> () throws javax.jmi.reflect.JmiEx-
ception;

// if single-valued attribute

public <AttributeType> <AccessorName> () throws javax.jmi.reflect.JmiEx-
ception;

// if upper > 1 and isOrdered = false

public Collection get <AttributeName> () throws javax.jmi.reflect.JmiEx-
ception;

// if upper > 1 and isOrdered = true

public List get <AttributeName> () throws javax.jmi.reflect.JmiException;

// Mutator Operations

// if optional-valued and isChangeable = true

public void <MutatorName> (<AttributeType> newValue) throws
javax.jmi.reflect.JmiException;

// if single-valued attribute and isChangeable = true

public void <MutatorName> (<AttributeType> newValue) throws
javax.jmi.reflect.JmiException;

Operations

t get<AttributeName>

The signature of the<AttributeName>operation depends on the attribute’s multiplicity as
indicated above. Its behavior is as follows:

n In the [0..1] case, the operation returns either the attributes optional value or null. In the [1..1]
case, the operation simply returns the attribute’s single value.

n In other cases, the operation returns a Collection (or List, if the multivalued attribute is
ordered). In the case where the collection is empty the result value will be an Collection C such
that C.isEmply() = true. No exception is raised in this case.

The get<AttributeName> (or the equivalent <AccessorName>) operation returns the value of the
named attribute.

reflective analog: refGetValue(...);

return type: [0..1], [1..1] - <AttributeType>
[0..N] for N>1 and isOrdered = false - java.util.Collection
[0..N] for N>1 and isOrdered = true- java.util.List

parameters: none

query: yes

exceptions: JmiException

65

C HA PTE R t set<AttributeName>

ClosureViolationException and CompositionCycleException are only possible when the type of
the attribute is a class, and the attribute has “composite” aggregation semantics

ClosureViolationException occurs when “newValue” or one of its members (in the multivalued
case) belongs to a different outer most package extent to this object.

CompositionCycleViolation occurs when the operation would result in this object having itself as
a direct or indirect component.

InvalidObjectException occurs when some instance object is found to be non-existent or
inaccessible.

t remove<AttributeName>

The “remove<AttributeName>” operation removes an occurrence of the value passed in the
“oldElement” parameter.

Collection Operations on multivalued Attributes

For multivalued attributes the operations in the java.util.Collection (and java.util.List) are used to
modify the attribute. In JMI, some of these operations have additional semantics and may raise
exceptions other than those defined in the Collection interface. The additional semantics are
defined below:

The “add(Object o) operation
n NullPointerException must be thrown if object “o” is null.

The “set<AttributeName>” (or equivalent <MutatorName>) operation sets the value of the
named attribute. This operation is not generated for mutivalued attributes.

reflective analog: refSetValue(...);

return type: none

parameters: <AttributeType> newValue

exceptions: JmiException (DuplicateException, InvalidObjectException,
ClosureViolationException, CompositionCycleException)

The “remove<AttributeName>operation removes an existing member from a multivalued
attribute.

reflective analog: refRemoveValue(...)

return type: none

parameters: <AttributeType>oldElement

exceptions: JmiException (NotFoundException)

66

n ClosureViolationException, CompositionCycleException are only possible when the type of
the attribute is a class, and the attribute has “composite” aggregation semantics.

n DuplicateException must be thrown if the attribute’s multiplicity has isUnique set to true, and
the new element value is equal to an element of the attribute’s current value set.

n ClosureViolationException must be thrown when the new object belongs to a different outer
most package extent.

n CompositionCycleException must be thrown when the operation would result in the object
becoming a direct or indirect component of itself.

n InvalidObjectException must be thrown when some instance object is found to be non-existent
or inaccessible.

The “add(int index, Object element)” operation
n NullPointerException, ClosureViolationException, DuplicateException,

ClosureViolationException, CompositionCycleException, InvalidObjectException must be
thrown in similar situations to those described for “add(Object o)” above.

n NotFoundException must be thrown if the index is no longer valid.

The “set(int index, Object element)” operation
n NullPointerException, ClosureViolationException, DuplicateException,

ClosureViolationException, CompositionCycleException, and InvalidObjectException must be
thrown in similar situations to those described for “add(Object o)” above.

n NotFoundException must be thrown in similar situations to those described for “add(int index,
Object element)” above.

n If the attribute has “isOrdered” set to true, the operation must preserve the initial order of the
collection’s elements.

The “remove(Object o)” operation
n NullPointerException must be thrown if object “o” is null.

n NotFoundException must be thrown if the “oldElement” value is not present in the attribute’s
value list.

The “remove(int index)” operation
n NotFoundException must be thrown if the index is no longer valid.

4.8.6 Reference Template

The reference template defines the Java generation rules for a reference whose “visibility” is
“public_vis”. The Java code generated for a reference is declared in the instance object interface
definition. The Java code generated by the reference template provides the operations to return the
value of the reference as well as operations to modify it. The code generated is dependent upon
the multiplicity, mutability, and ordering of the specified reference.

The operations generated for a reference and their signatures depend heavily on the properties of
the referenced association end which are also mirrored on the reference itself. For the purposes of
defining the generated Java code, reference multiplicities fall into three groups:

n Single-valued references: multiplicity bounds are [1..1].
n Optional-valued references: multiplicity bounds are [0..1].
n Multivalued references: any other multiplicity.

The generated operations for a reference are designed to have similar signatures and behaviors to
those for an instance-scoped attribute with the same multiplicity and changeability settings.

Note – A reference is “well formed” only if the referenced association end has “isNavigable” set
to true. Similarly, a reference’s “isChangeable” can be true only if the referenced association end’s
“isChangeable” is also true.

Template
// If the Reference has visibility of protected or private, no // Java is
generated

<<ANNOTATION TEMPLATE>>

// operations to return the Reference value
// if upper = 1

public <ReferenceClass> get <ReferenceName> () throws
javax.jmi.reflect.JmiException;

// if upper > 1 and isOrdered = false

public Collection get <ReferenceName> () throws javax.jmi.reflect.JmiEx-
ception;

// if upper > 1 and isOrdered = true

public List get <ReferenceName> () throws javax.jmi.reflect.JmiException;

// if upper = 1 and isChangeable

public void set <ReferenceName> (ReferenceClass> newValue) throws
javax.jmi.reflect.JmiException;

68

Operations

t get<ReferenceName>

The “get<ReferenceName>” operation’s signature is determined by the multiplicity of the
reference (i.e., the multiplicity of the referenced association end).

The operation calculates and returns the projection of the respective association end’s link set as
follows:

n In the [0..1] case, the operation returns the projected instance object if there is one; else it
returns “null”.

n In the [1..1] case, the operation normally returns a single instance object. However, if the
projection contains no elements, this is signalled as a JmiException.

n In all other cases, the operation returns a collection. If the projection is empty the result is an
empty collection.

Note – Under no circumstances should the “<ReferenceName>” operation return a collection
that includes a null object reference.

t set<ReferenceName>

The “set<ReferenceName>” operation replaces the referenced association end.

The “get<ReferenceName>” operation returns the value of reference. The signature of the
operation depends on the multiplicity of the Reference.

reflective analog: refGetValue(...);

return type: [0..1], [1..1] - <ReferenceClass>
[0..N] for N>1 and isOrdered = false - java.util.Collection
[0..N] for N>1 and isOrdered = true- java.util.List

parameters: none

exceptions: JmiException

The “set<ReferenceName>” operation assigns a new value to a reference. This operation is not
generated for multivalued references.

reflective analog: refSetValue(...)

return type: none

parameters: in <ReferenceClass> newValue

exceptions: JmiException (InvalidObjectException, DuplicateException,
InvalidObjectException, ClosureViolationException,
CompositionCycleException)

Java Mapping Templates 69

InvalidObjectException occurs if any of the supplied instance objects is a non-existent, null or
inaccessible instance object.

ClosureViolationException occurs when “newValue” belongs in a different outermost extent to
“this” object.

CompositionCycleViolation occurs when the referenced association has composite aggregation
semantics, and the update would make “this” object a component of itself.

Collection Operations on References

For multivalued references the operations in the java.util.Collection (and java.util.List) are used to
modify the reference. In JMI, some of these operations have additional semantics and may raise
exceptions other than those defined in the Collection (or List) interface. The additional semantics
are defined below:

The “add(Object o)” operation
n NullPointerException must be thrown if object “o” is null.

n DuplicateException must be thrown if the operation would create a duplicate link in the link
set for the referenced association.

n ClosureViolationException must be thrown when the new value belongs in a different
outermost extent.

n CompositionCycleException must be thrown when the referenced association has composite
aggregation semantics, and the update would make the object a component of itself.

The “add(int index, Object o)” operation
n NullPointerException, DuplicateException, ClosureViolationException and

CompositionCycleException must be thrown in similar situations to those described for the
“add(Object o)” operation above.

n NotFoundException must be thrown if the index is no longer valid.

n InvalidObjectException must be thrown if either new object is a non-existent, null or
inaccessible instance object.

The “set(int index, Object element)” operation
n NullPointerException, DuplicateException, ClosureViolationException and

CompositionCycleException must be thrown in similar situations to those described for the
“add(Object o)” operation above.

n InvalidObjectException and NotFoundException must be thrown in similar situations to those
described for the “add(int index, Object o)” operation above.

The “remove(Object o)” operation
n NullPointerException must be thrown if object “o” is null.

n NotFoundException must be thrown if the link to be deleted is not found.

70

The “remove(int index)” operation
n NotFoundException must be thrown if the index is no longer valid.

Note – The “remove” operations should be able to cope with removal of a link when the object
at the other end of a link is non-existent or inaccessible.

4.8.7 Operation Template

The operation template defines the Java generation rules for operations whose “visibility” is
“public_vis”. It generates a Java interface operation within the scope of an instance object
interface or class proxy interface, depending on the scope of the operation.

Template
// If the Operation has visibility of protected or private, no
// Java is generated

<<JAVADOCS TEMPLATE>>

// The <GeneratedReturnType> and <GeneratedParamType> should conform to
“Generation Rules for Parameter Type“

// if Operation contains no “return” Parameter

public void <OperationName> (

// else

public <GeneratedReturnType > <OperationName >(

// for each contained “in”, “out” or “inout” Parameter

<GeneratedParamType> <param_name >, ...

) throws

// for each Exception raised by the Operation

<ExceptionName> , ..., javax.jmi.reflect.JmiException;

Java Mapping Templates 71

t <OperationName>

An “OperationName” operation invokes an implementation specific method. While the behavior
of the method itself is beyond the scope of the Generated Java Interface mapping, the signature of
the generated operation is defined by the mapping, along with some parameter checking
semantics.

The return type for an “OperationName” operation is generated from the operation’s (optional)
return parameter; i.e. the contained parameter object whose “direction” attribute has the value
“RETURN_DIR”. The return type is as defined in the section “Generation Rules for Parameters”
on page 54.

For each non-return parameter of the operation, in the defined order, the “OperationName”
declaration has a parameter declaration as follows:

The parameter type is as defined in the section “Generation Rules for Parameters” on page 54.

The <ParameterName>is produced by rendering the parameter’s name from the definition.

The list of exceptions raised by an “<OperationName>” operation is generated from the
operation’s modeled exceptions, followed by the javax.jmi.reflect.JmiException.

While modeled exceptions should be signalled by raising exceptions corresponding to the
operation’s exceptions list, JmiException is used to signal the following structural errors relating
to the values supplied by the caller for “in” and “inout” parameters.

n DuplicateException occurs when a multivalued parameter has “isUnique” set to true, and the
supplied collection contains a duplicate.

n InvalidObjectException can occur if an instance object typed parameter value or element is a
reference to a non-existent (i.e. deleted) or inaccessible object.

Like all other operations that have JmiException in their signature, an “<OperationName>”
operation can use JmiException to signal constraint errors and semantic errors as well.

An “<OperationName>”operation invokes an implementation specific method to perform the
behavior implied by the operation model element.

reflective analog: refInvokeOperation(...)

return type: <GeneratedReturnType><param_name>

parameters: <GeneratedParamType> <ParameterName>,...

exceptions: Modeled exceptions (if any).
JmiException (DuplicateException, InvalidObjectException)

72

4.8.8 Exception Template

<<ANNOTATION TEMPLATE>>

public class <ExceptionName> extends java.jmi.reflect.RefException {

// For each parameter

private <ParameterType> <ParameterName> ;

// constructor

public <ExceptionName> (/* for each parameter <generatedParameter-
Type> <parameterName> , ... */){

super();

// for each parameter

<ParameterName> = <parameterName> ;

}

// for each parameter

public <ParameterType> <AccessorName> () {

return this. <ParameterName> ;

}

}

ToBeDone – Resolution to I0063 is that the empty constructor needs to be generated only for
exceptions that do not have required parameters.

Note – <GeneratedParameterType> conforms to the rules defined in the section “Generation
Rules for Parameters” on page 54. <AccessorName> conforms to the name generation pattern for
attributes (see “Accessor Operations” on page 63).

4.8.9 Constant Template

<<ANNOTATION TEMPLATE>>

public final <ConstantType> <ConstantName> = <ConstantValue> ;

4.8.10 AliasType Template

Instances of AliasType get mapped to the actual type that is being aliased. For example, if you
define an AliasType XAlias to StructureType XStruct, then any attribute of type XAlias gets
mapped to XStruct.

Java Mapping Templates 73

Note – If an AliasType that is an alias to an object is used as the type of an attribute, the
composition semantics do not apply to that attribute.

4.8.11 CollectionType Template

All CollectionTypes are mapped to java.util.Collection or java.util.List.

Note – Composition semantics do not apply to members of a collection.

4.8.12 StructureType Template
<<ANNOTATION TEMPLATE>>

public interface <StructName> extends javax.jmi.reflect.RefStruct {

// For each attribute

public <AttributeType> <AccessorName> ()throws
javax.jmi.reflect.JmiException;

}

Note – <AccessorName> conforms to the name generation pattern for attributes (see “Accessor
Operations” on page 63).

Design Considerations:The JMI expert group considered an alternate mapping for structs, i.e.,
one that generated classes. In order to support access to the metadata from the instance objects in
an implementation independent manner, it was necessary to define interfaces instead.

4.8.13 EnumerationType Template

For each enumeration type defined in the metamodel, JMI genertes an interface and an
implementation class.

<<ANNOTATION TEMPLATE>>

public interface <EnumerationName> extends javax.jmi.reflect. RefEnum {

}

public final class <EnumerationName> Enum implements <EnumerationName> {

// for each enumeration literal

public static final <LITERAL_IDENTIFIER> = new <Enumeration-
Name>Enum(" <literalName> ");

74

private static final List typeName;

private final String literalName;

static {

ArrayList temp = new ArrayList();

// for each part of the fully qualified name

temp.add(" <fullyQualifiedNamePart> ");

typeName = Collections.unmodifiableList(temp);

}

private <EnumerationName> Enum(String literalName) {

this.literalName = literalName;

}

public String toString() {

return literalName;

}

public List refTypeName() {

return typeName;

}

public boolean equals(Object o) {

if (o == null) {

return false;

} else {

return ((o instanceof javax.jmi.reflect.RefEnum) &&
((javax.jmi.reflect.RefEnum) o).refTypeName().equals(typeName)
&& ((javax.jmi.reflect.RefEnum) o).toString().equals(literal-
Name));

}

}

}

Design Considerations:The interface is included to provide type checking. by defining the static
fields representing literals in the class as opposed to the interface, the generated interface is not
dependent on the generated class.This is done to avoid loading of the generated class and
initializing the interface fields during the class loading which is undesirable if some JMI service
does not intend to use the generated class.

Java Mapping Templates 75

4.8.14 Constraint Template

Constraints specified in Object Constraint Language (OCL) will be implemented in Java.
Constraints specified in Java will appear as is.

4.8.15 Annotation Template

The Annotation template optionally generates Java comments for an M2-level ModelElement.
This template should be regarded as indicative rather than normative.

Template
// Annotation comments may optionally be suppressed by the
// Java code generator

// The Annotation template may use either “//” or “/**/ Java
// comment format

/* <Modelelement.Annotation > */

4.8.16 JavaDocs Template

The JavaDocs template generates JavaDocs for instances of Model.Package, Model.Class, and
Model.Operation. If the javax.jmi.JavaDocs tag is an empty or null string but the
ModelElement.Annotation contains some value, then the JavaDocs template may be replaced by
the annotation template.

Template
// JavaDocs may optionally be suppressed by the Java code
// generator

// If the javax.jmi.JavaDocs tag contains a value

/**

<javax.jmi.JavaDocs >

*/

// else if ModelElement.Annotation contains some value, the
// JavaDocs template may be replaced by the annotation
// template defined above.

76

Java Mapping Templates 77

5

MOF Reflective Package

5.1 Introduction
One of the advantages of the metadata API is that it provides a discovery mechanism that allows
a program to use objects without prior knowledge of the objects' interfaces. In the MOF context, a
metaobject allows a program to “discover” the semantics of any object. With this information in
hand, the MOF’s reflective interfaces allow a program to do the following without using the
“tailored” (i.e., generated) interfaces:

n Create, update, access, navigate and invoke operations on class proxy objects.
n Query and update links using association objects.
n Navigate MOF package structure.

In essence, the reflective interfaces provide the complete functionality of the tailored interfaces.

Note – The reflective interfaces do not allow a program to access or update MOF objects
contrary to their metaobject descriptions. For example, they cannot be used to create, access or
update attributes that do not exist.

In addition, the reflective interfaces allow the program to:

n Find an object’s metaobject.
n Find an object’s container(s) and enclosing package(s).
n Test for object identity.
n Delete a object.

The MOF reflective package contains eight "abstract" interfaces that are extended by the
generated interfaces. The eight interfaces are:

1. RefBaseObject interface — provides common operations for all MOF objects except for
exceptions, enumerations and structure data types.

2. RefAssociation interface — provides common operations for association objects.

3. RefPackage interface — provides common operations for package objects.

4. RefFeatured interface — provides common operations for featured objects (i.e., instance and
class proxy objects).

5. RefClass object interface — provides common operations for class proxy objects.

6. RefObject interface — provides common operations for instance objects.

7. RefStruct interface — provides common operations for StructType objects.

78

8. RefEnum interface — provides common operations for EnumType operations.

The MOF reflective interfaces are declared in the “javax.jmi.reflect” package.

5.2 The Reflective Classes and Interfaces
This section describes the MOF reflective interfaces. They provide the same functionality as the
tailored interfaces, although there are some important differences:

Reflective operations pass the values of parameters to operations and exceptions using the
reflective counterparts. On the other hand, the model specific versions of these operations pass
the values using the precise types specified in the metamodel. For example, reflective operations
on associations pass instance objects with the type RefObject. The model specific versions of
these operations pass instance objects using their specific interfaces.

5.2.1 RefBaseObject

Abstract

The RefBaseObject interface is extended by all other reflective interfaces. It provides common
operations for testing for object identity, returning an object's metaobject, and returning its facility
container as required for implementing structural constraints such as the MOF's type closure rule
and composition restrictions.

Supertypes
n None (root object)

Operations

t refMofId

Every MOF object has a permanent, unique MOF identifier associated with it. This identifier is
generated and bound to the object when it is created and cannot be changed for the lifetime of the
object. The primary purpose of the MOF identifier is to serve as a label that can be compared to
definitively establish an object’s identity.

A MOF implementation must ensure that no two distinct MOF objects within the extent of an
outermost Package object ever have the same MOF identifier. This invariant must hold for the
lifetime of the extent. A group of outermost Package extents can only be safely federated if the
respective implementations can ensure the above invariant applies across the entire federation. A
federation of extents in which the invariant does not hold is not MOF compliant.

t refMetaObject

If the object’s metaobject is unavailable, the return value may be a Java null object reference.

The "refMofId"” operation returns this object’s permanent unique identifier string.

specific analog: none

return type: string

isQuery: yes

parameters: none

exceptions: JmiException

The "refMetaObject"” operation returns the RefObject object that describes this object in its
metamodel specification.

specific analog: none

return type: RefObject

isQuery: yes

parameters: none

exceptions: none

80

t refImmediatePackage

If this object has no containing or aggregating package (i.e. it is the RefPackage object for an
outermost package), then the return value is a Java null object reference. In complex cases where
there is more than one immediate aggregating package, the return value may be any of them.

t refOutermostPackage

If this object is the RefPackage object for an outermost package then the return value is this
object.

The "refImmediatePackage"” operation returns the package object for the package that most
immediately contains or aggregates this object.

specific analog: none

return type: RefPackage

isQuery: yes

parameters: none

exceptions: none

The "refOutermostPackage"” operation returns the package object for the package that ultimately
contains this object.

specific analog: none

return type: RefPackage

isQuery: yes

parameters: none

exceptions: none

The Reflective Classes and Interfaces 81

t refVerify

When deepVerify is false (i.e., a shallowVerify), the refVerify method checks all constraints on
that object and its properties.

When deepVerify is true, the refVerify method carries out a shallowVerify on that object and a
deep verify through its containment hierarchy. If the object is a extent object (i.e., class proxy,
package, or association object), the containment hierarchy includes all objects in its extent.

If no constraint is violated, then an empty collection is returned; otherwise, a list of all
RefObjects, within the specified containment, that violate constraints is returned.

The Collection returned from the refVerify operation has copy semantics. That is, it does not
reflect any changes to the source after the operation is executed, and it cannot be used to update
the source.

Interface

package javax.jmi.reflect;

import java.util.*;

public interface RefBaseObject {

public RefObject refMetaObject();

public RefPackage refImmediatePackage();

public RefPackage refOutermostPackage();

public String refMofId() throws JmiException;

public Collection refVerify(boolean deepVerify);

}

The “refVerify” operation verifies that an object and its properties satisfy all constraints defined
on it

specific analog: none

return type: Collection

isQuery: yes

parameters boolean deepVerify

exceptions: none

82

5.2.2 RefFeatured

Abstract

The RefFeatured interface provides the metaobject description of instances and class proxy
objects. It provides a range of operations for accessing and updating the object’s features in a
model-independent way.

The model assumed by the interface is that an object has structural features and operations. The
model allows structural features to have single values or collection values. In the latter case, the
collection values may have ordering or uniqueness semantics. There is provision for creation of
new object instances, and for obtaining the set of objects that exist in a context.

Supertypes
n RefBaseObject

Operations

t refGetValue

The result for the “refGetValue” operation is encoded as per section “Generation Rules for
Parameters” on page 54.

InvalidCallException is raised when the “feature” (or featureName) argument does not denote an
attribute or reference accessible from this object.

The “refGetValue” operations fetch the current value of the attribute or reference denoted by the
"feature" (or featureName) argument. If this object is a class proxy, only classifier scoped
attributes can be fetched.

specific analog: get<ReferenceName>();
get<AttributeName>();

return type: java.lang.Object

isQuery: yes

parameters: RefObject feature (or String featureName)

exceptions: JmiException (InvalidCallException)

The Reflective Classes and Interfaces 83

t refSetValue

The “value” parameter must be encoded as per the section “Generation Rules for Parameters” on
page 54.

InvalidCallException is raised when one of the following conditions occor:

n The “feature” (or featureName) does not denote an attribute or reference accessible from this
object.

n The “feature” (or featureName) denotes a multivalued attribute.

ClosureViolationException occurs when the Composition Closure or Reference Closure rule has
been violated.

CompositionCycleException occurs when the Composition Cycle rule has been violated.

t refInvokeOperation

The “args” parameter is used to pass the values of all of the operation’s parameters. There must be
a distinct parameter value (real or dummy) in the “args” list for every parameter.
WrongSizeException is raised if this is not so.

The parameter values in “args” must appear in the order of the operation’s parameters as defined
in the metamodel.

The “setRefValue” operations assign a new value to an attribute or reference for an object.

specific analog: set<ReferenceName>(...);
set<AttributeName>(...);

return type: none

parameters: RefObject feature (or String featureName),
java.lang.object value

exceptions: JmiException (InvalidCallException,
ClosureViolationException, CompositionCycleException,
InvalidObjectException, java.lang.NullPointerException)

The “refInvokeOperation” operations invoke a metamodel defined operation on the instance or
class proxy object with the arguments supplied.

specific analog: none

return type: java.lang.Object

parameters: RefObject requestOperation (or String operationName),
List args

exceptions: JmiException (InvalidCallException, DuplicateException,
WrongSizeException, TypeMismatchException), RefException.

84

The “args” member values provided by the caller for parameter positions must be encoded
depending on the parameter’s type and multiplicity as per the “Generation Rules for Parameters”
on page 54. TypeMismatchException or WrongSizeException is raised if this is not so.

If the operation defines a result, the result for a “refInvokeOperation” call gives the result value.

InvalidCallException is raised when the “requestedOperation” (or “operationName”) does not
designate an operation that can be invoked.

Interface

package javax.jmi.reflect;

import java.util.*;

public interface RefFeatured extends RefBaseObject {

public void refSetValue(RefObject feature, java.lang.Object value)
throws JmiException;

public void refSetValue(String featureName, java.lang.Object value)
throws JmiException;

public java.lang.Object refGetValue(RefObject feature) throws JmiEx-
ception;

public java.lang.Object refGetValue(String featureName) throws JmiEx-
ception;

public java.lang.Object refInvokeOperation(RefObject requestedOpera-
tion, List args) throws JmiException, RefException;

public java.lang.Object refInvokeOperation(String operationName, List
args) throws JmiException, RefException;

} ;

5.2.3 RefAssociation

Abstract

The RefAssociation interface provides the metaobject description of an association. It also
provides generic operations querying and updating the links that belong to the association.

The model of association supported by this interface is of collection of two ended asymmetric
links between objects. The links may be viewed as ordered on one or other of the ends, and there
may be some form of cardinality constraints on either end.

The RefAssociation interface is designed to be used with associations that contain no duplicate
links, though this is not an absolute requirement. There is no assumption that different association
objects for a given association type are mutually aware. Links are modeled as having no object
identity.

The Reflective Classes and Interfaces 85

(A data model that required “heavy weight” links with object identity (e.g., so that attributes could
be attached to them) would need to represent them as RefObject instances. The RefAssociation
interface could be used to mange light weight links between the heavy weight link objects they
connect. Similar techniques could be used to represent n-ary associations. However, in both cases
better performance would be achieved using a purpose built reflective layer.)

Supertypes
n RefBaseObject

Operations

t refAllLinks

This operation returns the current link set for the current association extent as defined for the
specific version of this operation.

The Collection returned from this operation is an immutable live collection. This is, the collection
will reflect any changes to the source, however, the operations in the Collection interface cannot
be used to update the source.

t refLinkExists

TypeMismatchException is raised if the parameters do not match the types of the respective
association ends.

The “refAllLinks” operation returns all links in the link set for this Association object.

specific analog: none

return type: Collection

isQuery: yes

parameters: none

exceptions: none

The “refLinkExists” operation returns true if and only if the supplied link is a member of the link
set for this association object.

specific analog: exists(...);

return type: boolean

isQuery: yes

parameters: RefObject endOne,
RefObject endTwo

exceptions: JmiException (TypeMismatchException)

86

t refQuery

The “queryEnd” (or “queryEndName) parameter must designate an association end for this
association object. InvalidCallException is raised if this is not so.

The “queryObject” parameter must be an instance object whose type is compatible with the type
of the “queryEnd” (or “queryEndName) of the association. TypeMismatchException is raised if
this is not so.

InvalidObjectException or NullPointerException is raised if the “queryObject” (or
“queryEndName) is non-existent, null, or inaccessible.

t refAddLink

Both RefObject members of the “newLink” parameter should be valid instance objects.

The instance objects must be compatible with the association. TypeMismatchException is raised
otherwise.

Both instance objects must be valid instance objects. InvalidObjectException,
NullPointerException is raised otherwise.

The “refQuery” operations return a list containing all instance objects that are linked to the
supplied “queryObject” by links in the extent of this association object, where the links all have
the “queryObject” at the “queryEnd”.

specific analog: <AssociationEndName> (...);

return type: Collection

isQuery: yes

parameters: RefObject queryEnd (or String queryEndName)
RefObject queryObject

exceptions: JmiException (InvalidCallException, TypeMismatchException,
InvalidObjectException, java.lang.NullPointerException)

The “refAddLink” operation adds “newLink” into the set of links in the extent of this association
object. If one or other of the association’s ends is ordered, the link is inserted after the last link
with respect to that ordering.

specific analog: add(...);

return type: none

parameters: RefObject endOne,
RefObject endTwo.

exceptions: JmiException (InvalidCallException, WrongSizeException,
DuplicateException, ClosureViolationException,
CompositionCycleException, TypeMismatchException,
InvalidObjectException, java.lang.NullPointerException)

The Reflective Classes and Interfaces 87

t refRemoveLink

The instance objects passed in must be compatible with the association. TypeMismatchException
is raised otherwise.

WrongSizeException is raised if removing the link causes the association end to violate the
specified multiplicity.

Interface

package javax.jmi.reflect;

import java.util.*;

public interface RefAssociation extends RefBaseObject {

public Collection refAllLinks();

public boolean refLinkExists(RefObject endOne, RefObject endTwo) throws
JmiException;

public Collection refQuery(AssociatonEnd queryEnd, RefObject queryOb-
ject) throws JmiException;

public Collection refQuery(String queryEndName, RefObject queryObject)
throws JmiException;

public void refAddLink(RefObject endOne, RefObject endTwo) throws
JmiException;

public void refRemoveLink(RefObject endOne, RefObject endTwo) throws
JmiException, NotFoundException;

}

5.2.4 RefPackage

Abstract

The RefPackage interface is an abstraction for accessing a collection of objects and their
associations. The interface provides an operation to access the metaobject description for the
package, and operations to access the package instance's class proxy objects and its association
objects

The “refRemoveLink” operation removes the existing link from the association.

specific analog: remove(...);

return type: none

parameters: RefObject endOne,
RefObject endTwo.

exceptions: Jmiexception (WrongSizeException, TypeMismatchException,
java.lang.NullPointerException)

88

Supertypes
n RefBaseObject

Operations

t refGetClass

The “type” (or “className”) parameter should designate the class whose class proxy object is to
be returned.

InvalidCallException is raised if the “type” (or “className”) parameter does not designate a valid
class.

t refGetAssociation

The “association” (or “associationName”) parameter should designate the (M2) association whose
association object is to be returned.

InvalidCallException is raised if the “association” (or “associationName”) parameter does not
designate a valid association.

The “refGetClass” operations return the class proxy object for a given class.

specific analog: get<ClassName>()

return type: RefClass

isQuery: yes

parameters: RefObject type (or String className)

exceptions: JmiException (InvalidCallException)

The “refGetAssociation” operations return an association object for a given association.

specific analog: get<AssociationName>()

return type: RefAssociation

isQuery: yes

parameters: RefObject association (or String associationName)

exceptions: JmiException (InvalidCallException)

The Reflective Classes and Interfaces 89

t refGetPackage

The "nestedPackage" (or “nestedPackageName”) parameter should designate the package whose
package object is to be returned. It must either be nested within the package for this package
object, or imported with “isCluster” set to true.

InvalidCallException is raised if the “nestedPackage” (or “nestedPackageName”) parameter does
not designate a valid package.

t refGetAllPackages

Returns a (possible empty) collection of RefPackages directly contained by this package.

The Collection returned from this operation is an immutable live collection. This is, the collection
will reflect any changes to the source, however, the operations in the Collection interface cannot
be used to update the source.

The “refGetPackage” operations return a package object for a nested or clustered package.

specific analog: get<PackageName>()

return type: RefPackage

isQuery: yes

parameters: RefObject nestedPackage (or String nestedPackageName)

exceptions: JmiException (InvalidCallException)

The “refGetAllPackages” operation returns all packages directly contained or clustered by this
package.

specific analog: None

return type: Collection of RefPackages

isQuery: yes

parameters: None

exceptions: JmiException

90

t refGetAllClasses

Returns a (possible empty) collection of RefClasses directly contained by this package.

The Collection returned from this operation is an immutable live collection. This is, the collection
will reflect any changes to the source, however, the operations in the Collection interface cannot
be used to update the source.

t refGetAllAssociations

Returns a (possible empty) collection of RefAssociations directly contained by this package.

The Collection returned from this operation is an immutable live collection. This is, the collection
will reflect any changes to the source, however, the operations in the Collection interface cannot
be used to update the source.

The “refGetAllClasses” operation returns all class proxies directly contained by this package.

specific analog: None

return type: Collection of RefClasses

isQuery: yes

parameters: None

exceptions: JmiException

The “refGetAllAssociation” operation returns all associations directly contained by this package.

specific analog: None

return type: Collection of RefAssociations

isQuery: yes

parameters: None

exceptions: JmiException

The Reflective Classes and Interfaces 91

t refCreateStruct

The “refCreateStruct” operation creates an instance of a struct data type defined by the metaobject
“structType” (or “structName”) whose attribute values are specified by the ordered collection
“args”.

The members of the “args” list correspond 1-to-1 to the parameters for the specific create
operation. They must be encoded as per “Generation Rules for Parameters” on page 54.

t refCreateEnum

The “refCreateEnum” operation creates an instance of an enumeration (i.e., an enumeration literal)
whose value is described by the value of “literalName”. Note that the type of enumeration is
defined by the metamobject that owns the metaLiteral object.

This “refCreateStruct” operations create a new instance of a struct data type.

specific analog: create<Struct>(...);

return type: RefStruct

parameters: RefObject structType (or String structName),
List args

exceptions: JmiException (WrongSizeException, TypeMismatchException,
InvalidObjectException, java.lang.NullPointerException)

This “refCreateEnum” operations create a new instance of the enumeration.

specific analog: create<EnumTypeName>(...);.

return type: RefEnum

parameters: RefObject enumType (or String “enumName”)
String literalName

exceptions: JmiException (TypeMismatchException,
java.lang.NullPointerException)

92

t refDelete

Deletion of an outermost package causes all objects within its extent to be deleted.

Interface

package javax.jmi.reflect;

import java.util.*;

public interface RefPackage extends RefBaseObject {

public RefObject refGetClass(RefObject type) throws JmiException;

public RefObject refGetClass(String className) throws JmiException;

public RefPackage refGetPackage(RefOject nestedPackage)throws JmiEx-
ception;

public RefPackage refGetPackage(String nestedPackageName)throws JmiEx-
ception;

public RefAssociation refGetAssociation(RefObject association)throws
JmiException;

public RefAssociation refGetAssociation(String associationName)throws
JmiException;

public Collection refGetAllPackages();

public Collection refGetAllClasses();

public Collection refGetetAllAssociations();

public RefStruct refCreateStruct(RefObject structType, List args)
throws JmiException;

public RefStruct refCreateStruct(String structName, List args) throws
JmiException;

public RefEnum refCreateEnum(RefObject enumType, String literalName)
throws JmiException;

public RefEnum refCreateEnum(String enumName, String literalName)
throws JmiException;

public void refDelete() throws JmiException;

}; // end of interface RefPackage

The "refDelete" operation destroys this package, including the objects it contains directly or
transitively.

specific analog: none

return type: none

parameters: none

exceptions: JmiException

The Reflective Classes and Interfaces 93

5.2.5 RefClass

Abstract

The RefClass interface provides the metaobject description of a class proxy object, and a range of
operations for accessing and updating an object’s classifier scoped features.

Supertypes
n RefFeatured

Operations

t refCreateInstance

The members of the “args” list correspond 1-to-1 to the parameters for the specific create
operation. They must be encoded as per the section “Generation Rules for Parameters” on page 54.

t refAllOfType

The Collection returned from this operation is an immutable live collection. This is, the collection
will reflect any changes to the source, however, the operations in the Collection interface cannot
be used to update the source.

This “refCreateInstance” operation creates a new instance of the class for the class proxy’s most
derived interface. The “args” list gives the initial values for the new instance object’s instance
scoped, non-derived attributes.

specific analog: create<ClassName>(...);

return type: RefObject

parameters: List args

exceptions: JmiException (WrongSizeException, DuplicateException,
ClosureViolationException, AlreadyExistsException,
TypeMismatchException)

The “refAllOfType” operation returns the set of all instances in the current extent whose type is
given by this object’s class or one of its sub-classes.

specific analog: None.

return type: Collection (unique; unordered)

isQuery: yes

parameters: None

exceptions: none

94

t refAllOfClass

The Collection returned from this operation is an immutable live collection. This is, the collection
will reflect any changes to the source, however, the operations in the Collection interface cannot
be used to update the source.

t refCreateStruct

The “refCreateStruct” operation creates an instance of a struct data type defined by the metaobject
“structType” (or “structName”) whose attribute values are specified by the ordered collection
“args”.

The members of the “args” list correspond 1-to-1 to the parameters for the specific create
operation. They must be encoded as per the section titled “Generation Rules for Parameters” on
page 54.

The “refAllOfClass” operation returns the set of all instances in the current extent whose type is
given by this object’s class (instances of sub classes are not included).

specific analog: None.

return type: Collection (unique; unordered)

isQuery: yes

parameters: None

exceptions: none

The “refCreateStruct” operations create a new instance of a struct data type.

specific analog: create<Struct>(...).

return type: RefStruct

parameters: RefObject structType (or String structName),
List args

exceptions: JmiException (WrongSizeException, TypeMismatchException,
InvalidObjectException, java.lang.NullPointerException)

The Reflective Classes and Interfaces 95

t refCreateEnum

The “refCreateEnum” operation creates an instance of an enumeration (i.e., an enumeration literal)
whose value is described by the value of “literalName”. Note that the type of enumeration is
defined by the metamobject that owns the metaLiteral object.

Interface

package javax.jmi.reflect;

import java.util.*;

public interface RefClass extends RefFeatured {

public RefObject refCreateInstance(List args) throws JmiException;

public Collection refAllOfType();

public Collection refAllOfClass();

public RefStruct refCreateStruct(RefObject structType, List args)
throws JmiException;

public RefStruct refCreateStruct(String structName, List args) throws
JmiException;

public RefEnum refCreateEnum(RefObject enumType, String literalName)
throws JmiException;

public RefEnum refCreateEnum(String enumName, String literalName)
throws JmiException;

}; // end of interface RefClass

5.2.6 RefObject

Abstract

The RefObject interface provides the metaobject description of an instance object, and a range of
operations for accessing and updating the object’s features.

Supertypes
n RefFeatured

The “refCreateEnum” operations create a new instance of the enumeration.

specific analog: create<Enumeration>(int).

return type: RefEnum

parameters: RefObject enumType (or String enumName)
String literalName

exceptions: JmiException (TypeMismatchException,
java.lang.NullPointerException)

96

Operations

t refIsInstanceOf

t refGetClass

t refImmediateComposite

The immediate composite object C returned by this operation is an instance object such that:

n C is related to this object via a relation R defined by an attribute or association.
n The aggregation semantics of the relation R are “composite”.
n This object fills the role of “component” in its relationship with C.

If the immediate object C does not exist, or if “this” object is a class proxy object rather than an
instance object, a Java null object reference is returned.

This operation tests whether this RefObject is an instance of the class described by the “objType”
metaobject. If the “considerSubtypes” argument is true, an object whose class is a subclass of the
class described by “objType” will be considered as an instance of the class.

specific analog: none

return type: boolean

isQuery: yes

parameters: RefObject objType
boolean considerSubtypes

exceptions: none

This operation returns the RefObject’s class proxy object

specific analog: none

return type: RefClass

isQuery: yes

parameters: none

exceptions: none

The “refImmediateComposite” operation returns the immediate composite object for this
instance as specified below.

specific analog: none

return type: RefFeatured

isQuery: yes

exceptions: none

The Reflective Classes and Interfaces 97

Note – If the composite relationship R corresponds to a “classifier-level” scoped attribute, the
immediate composite object C will be the class proxy object that holds the attribute value.

t refOutermostComposite

The outermost composite object C returned by this operation is an instance object such that:

n There is a chain ofzero or moreimmediate composite relationships (as described for
"refInvokeOperation" above) connecting “this” object to C, and

n C does not have an immediate composite.

The above definition is such that if "this" object is not a component of any other object, it will be
returned.

t refDelete

Deletion of an instance object deletes it and its component closure.

Interface

package javax.jmi.reflect;

public interface RefObject extends RefFeatured {

public boolean refIsInstanceOf(RefObject objType, boolean considerSub-
types);

public RefClass refGetClass();

The “refOutermostComposite” operation returns the “outermost composite” for this object as
defined below.

specific analog: none

return type: RefFeatured

isQuery: yes

exceptions: none

The "refDelete"” operation destroys this object, including the objects it contains directly or
transitively.

specific analog: none

return type: none

parameters: none

exceptions: JmiException

98

public RefFeatured refImmediateComposite();

public RefFeatured refOutermostComposite();

public void refDelete() throws JmiException;

};

5.3 Reflective Interfaces for Data Types
This section describes the reflective interfaces for data types that do not get mapped directly to
Java primitive types, i.e., enumerations and structs. It also describes the RefAssociationLink
interface — the reflective interface implemented by the instances of associations, and the
reflect.RefException class — the superclass which is extended by all modeled exceptions.

5.3.1 RefEnum

Abstract

The RefEnum interface is the reflective interface for enumerations. It provides generic operations
for querying the enumeration.

Supertypes
n java.io.Serializable

Operations

This operation returns the integer representation of the enumeration literal.

t toString

This operation returns the enumeration literal.

The “toString” operation returns the enumeration literal

specific analog:

return type: String

isQuery: yes

parameters: none

exceptions: None

Reflective Interfaces for Data Types 99

t refTypeName

This operation returns the fully qualified name of the enumeration object’s metaobject.

The Collection returned from this operation has copy semantics. That is, it does not reflect any
changes to the source after the operation is executed, and it cannot be used to update the source.

t equals

The comparison for enumerations is based on literal value. If two enumerations are of the same
type and represent the same literal, then they are equal.

Interface
package javax.jmi.reflect;

import java.io.*;

import java.util.*;

public interface RefEnum extends Serializable {

public String toString();

public List refTypeName();

public boolean equals(Object other);

}

The “refTypeName” operation returns the fully qualified name of the enumerations metaobject

specific analog:

return type: List

isQuery: yes

parameters: none

exceptions: None

The “equals” operation compares the enumeration object with another object.

specific analog:

return type: boolean

isQuery: yes

parameters: java.lang.Object other

exceptions: None

100

5.3.2 RefStruct

Abstract

The RefStruct interface is the reflective interface for struct data types. It provides generic
operations for querying structs.

Supertypes
n java.io.Serializable

Operations

t refGetValue

This operation returns the value of the specified attribute. The “field” parameter represents the
metaobject of the attribute. InvalidCallException occurs in cases where the “field” does not denote
a valid attribute.

t refTypeName

This operation returns the fully qualified name of the struct object’s metaobject.

The List returned from this operation has copy semantics. That is, it does not reflect any changes
to the source after the operation is executed, and it cannot be used to update the source.

The “refGetValue” operation returns the value of an attribute.

specific analog: get<AttributeName>;

return type: jav.lang.Object

isQuery: yes

parameters: javax.jmi.model.StructureField field

exceptions: JmiException (InvalidCallException)

The “refTypeName” operation returns the fully qualified name of the structs metaobject.

specific analog: none

return type: List

isQuery: yes

parameters: none

exceptions: None

Reflective Interfaces for Data Types 101

t equals

The comparison for structs is based on attribute values. If two structs are of the same type and all
attributes have the same value, then they are equal.

Interface
package javax.jmi.reflect;

import java.io.*;

import java.util.*;

public interface RefStruct extends Serializable {

public Object refGetValue(RefObject field) throws JmiException;

public Object refGetValue(String fieldName) throws JmiException;

public List refTypeName();

public boolean equals (Object other);

}

5.3.3 RefAssociationLink

Abstract

The RefAssociationLink interface is the reflective interface implemented by all association links,
i.e., instances of RefAssociation. It provides generic operations for querying the association link.

Supertypes
n None

The “equals” operation compares the struct object with another object.

specific analog: none

return type: boolean

isQuery: yes

parameters: java.lang.Object other

exceptions: None

102

Operations

t refFirstEnd

This operation returns the first end (as appearing in the metamodel) of the link.

t refSecondEnd

This operation returns the second end (as appearing in the metamodel) of the link.

Interface

package javax.jmi.reflect;

public interface RefAssociationLink {

public RefObject refFirstEnd();

public RefObject refSecondEnd();

}

5.3.4 RefException Class

The RefException class is the superclass that is extended by instances of modeled exceptions.
That is, all M1 instances of exceptions modeled in the respective M2 (i.e., instances of
RefException), must extend the reflective RefException class.

RefException is intended to be a checked exception, and as such, it extends java.lang.Exception.

The “refFirstEnd” operation returns object at the first end of the link

specific analog:

return type: RefObject

isQuery: yes

parameters: none

exceptions: none

The “refSecondEnd” operation returns object at the second end of the link

specific analog:

return type: RefObject

isQuery: yes

parameters: none

exceptions: none

103

A PP EN DIX Supertypes
n java.lang.Exception.

Operations

None.

Class Definition

package javax.jmi.reflect;

public class RefException extends java.lang.Exception {

// default constructor

public RefException() {

}

// constructor that takes an error message

public RefException(String msg) {

super(msg);

}

}

5.4 The Exception Framework
This section describes the non-modeled exceptions thrown by a JMI service. That is, the
exceptions that are not described in the metamodel but thrown as a result of some violation of the
MOF, or some exception that occurred within the JMI service. For example, the
“AlreadyExistsException” is thrown by the class factory operation when a client attempts to create
a second instance of a class that is designated as a singleton (i.e., the class can have no more than
one instance). This exception does not appear in the metamodel, but appears in the generate API
as a result of it being required by the Java API generation template for class proxies.

5.4.1 JmiException

At the root of the exception framework is JmiException, which is the superclass of all other JMI
exceptions. JmiException is intended to be an unchecked exception and as such, extends
java.lang.RuntimeException.

package javax.jmi.reflect;

public abstract class JmiException extends java.lang.RuntimeException {

private final RefObject elementInError;

// default constructor that takes no arguments

public JmiException() {

this(null);

}

104

// constructor that takes the element in error

public JmiException(RefObject elementInError) {

this.elementInError = elementInError;

}

// constructor that takes element in error and exception message.

public JmiException(RefObject elementInError,String msg) {

super(msg);

this.elementInError = elementInError;

}

public RefObject getElementInError() {

return elementInError;

}

}

5.4.2 AlreadyExistsException

The AlreadyExistsException is raised when a client attempts to create a second instance of an M2
class whose isSingleton is set to true.

Operations

t getExistingInstance

package javax.jmi.reflect;

public class AlreadyExistsException extends JmiException {

private final RefObject existing;

// constructor that does not take an error message

public AlreadyExistsException(RefObject existing) {

super(existing.refMetaObject());

this.existing = existing;

}

// constructor taking detailed error message

public AlreadyExistsException(RefObject existing, String msg) {

super(existing.refMetaObject(), msg);

this.existing = existing;

}

The “getExistingInstnace” operation returns the existing instance of singleton.

return type: RefObject

parameters: None

105

A PP EN DIX
public RefObject getExistingInstance() {

return existing;

}

}

5.4.3 ClosureViolationException

The ClosureViolationException is thrown when Composition Closure or Reference Closure rules
are violated. Note that the Supertype Closure rule can never be violated in JMI.

Operations

t getViolatingObject

package javax.jmi.reflect;

public class ClosureViolationException extends JmiException {

private final RefObject violatingObject;

// constructor that takes violating-object and element-in-error as argu-
ments

public ClosureViolationException(RefObject violatingObject, RefObject
elementInError) {

super(elementInError);

this.violatingObject = violatingObject;

}

// construct that takes violating-object, element-in-error and
detailed message

public ClosureViolationException(RefObject violatingObject, RefObject
elementInError, String msg) {

super(elementInError, msg);

this.violatingObject = violatingObject;

}

public RefObject getViolatingObject() {

return violatingObject;

}

}

The “getViolatingObject” operation returns the object violating the closure rule.

return type: RefObject

parameters: None

106

5.4.4 CompositionCycleException

The CompositionCycleException is thrown when an instance object is a component of itself.

Operations

t getCyclicObject

package javax.jmi.reflect;

public class CompositionCycleException extends JmiException {

private final RefObject cyclicObject;

// constructor taking cyclic-object and element-in-error as arguments

public CompositionCycleException(RefObject cyclicObject, RefObject
elementInError) {

super(elementInError);

this.cyclicObject = cyclicObject;

}

// constructor taking cyclic-object, element-in-error and detailed
message

public CompositionCycleException(RefObject cyclicObject, RefObject
elementInError, String msg) {

super(elementInError, msg);

this.cyclicObject = cyclicObject;

}

public RefObject getCyclicObject() {

return cyclicObject;

}

}

5.4.5 ConstraintViolationException

The ConstraintViolationException is thrown when a constraint is violated.

Operations

None.

The “getCyclicObject” operation returns the object that is a component of itself.

return type: RefObject

parameters: None

107

A PP EN DIX
package javax.jmi.reflect;

public class ConstraintViolationException extends JmiException {

// constructor taking element-in-error as an argument

public ConstraintViolationException(RefObject elementInError) {

}

// constructor taking element-in-error and a detailed message as argu-
ments

public ConstraintViolationException(RefObject elementInError, String
msg) {

super(elementInError, msg);

}

}

5.4.6 DuplicateException

The DuplicateException is thrown when a duplicate value is added to a multivalued attribute
whose isUnique property is set to true.

Operations

t getDuplicatedElement

package javax.jmi.reflect;

public class DuplicateException extends JmiException {

private final RefObject duplicatedElement;

// constructor taking duplicate-element and element-in-error
// as arguments

public DuplicateException(java.lang.Object duplicatedElement, RefOb-
ject elementInError) {

super(elementInError);

this.duplicatedElement = duplicatedElement;

}

// constructor taking duplicate-element, element-in-error and
// detailed message

public DuplicateException(java.lang.Object duplicatedElement, RefObject
elementInError, String msg) {

super(elementInError, msg);

this.duplicatedElement = duplicatedElement;

}

The “getDuplicatedElement” operation returns the element that was duplicated.

return type: java.lang.Object

parameters: None

108

public java.lang.Object getDuplicatedElement() {

return duplicatedElement;

}

}

5.4.7 InvalidCallException

The InvalidCallException is thrown when an operation is invoked incorrectly using the reflective
API.

Operations

None.

package javax.jmi.reflect;

public class InvalidCallException extends JmiException {

// constructor taking element-in-error as an argument

public InvalidCallException(RefObject elementInError) {

super(elementInError);

}

// constructor taking element-in-error and detailed message

public InvalidCallException(RefObject elementInError, String msg) {

super(elementInError, msg);

}

}

5.4.8 InvalidObjectException

InvalidObjectException is thrown when an object detects a non-existing (i.e. deleted) object.

Operations

None.

package javax.jmi.reflect;

public class InvalidObjectException extends JmiException {

// constructor taking element-in-error as an argument

public InvalidObjectException(RefObject elementInError) {

super(elementInError);

}

// constructor taking element-in-error and detailed message

public InvalidObjectException(RefObject elementInError, String msg) {

super(elementInError, msg);

}

The Exception Framework 109

}

5.4.9 NotFoundException

NotFoundException is thrown by the addBefore, modify, and remove methods to indicate that
provided element does not exist.

Operations

t getMissingElement

package javax.jmi.reflect;

public class NotFoundException extends JmiException {

private final Object missingObject;

// default constructor taking no arguments

private NotFoundException() {

missingObject = null;

}

// constructor taking missing-object and element-in-error as arguments

public NotFoundException(Object missingObject, RefObject elementInEr-
ror) {

super(elementInError);

this.missingObject = missingObject;

}

// constructor taking missing-object, element-in-error, and
// detailed error message

public NotFoundException(Object missingObject, RefObject elementInEr-
ror, String msg) {

super(elementInError, msg);

this.missingObject = missingObject;

}

public Object getMissingObject() {

return missingObject;

}

}

The “getMissingElement” operation returns a reference to the element that could not be found in
the collection.

return type: java.lang.Object

parameters: None

110

5.4.10 OutOfBoundsException

OutOfBoundsException is thrown by addAt, modifyAt and removeAt operations when value of
parameter representing position of element is out of range.

Operations

t getPositiont

t getSize

package javax.jmi.reflect;

public class OutOfBoundsException extends JmiException {

private final int position;

private final int size;

// default constructor taking no arguments

private OutOfBoundsException() {

this(0, 0, null);

}

// constructor taking position, size, and element-in-error as
// arguments

public OutOfBoundsException(int position, int size, RefObject elemen-
tInError) {

super(elementInError);

this.position = position;

this.size = size;

}

// constructor taking position, size, element-in-error and detailed
message

public OutOfBoundsException(int position, int size, RefObject ele-
mentInError, String msg) {

super(elementInError, msg);

this.position = position;

this.size = size;

The “getPosition” operation returns the invalid position that caused the exception.

return type: int

parameters: None

The “getSize” operation returns size of the collection.

return type: int

parameters: None

The Exception Framework 111

}

public int getPosition() {

return position;

}

public int getSize() {

return size;

}

}

5.4.11 TypeMismatchException

TypeMismatchException is thrown when the value has the wrong type for the context in which it
was supplied.

Operations

t getExpectedType

t getInvalidValue

package javax.jmi.reflect;

public class TypeMismatchException extends JmiException {

private final Object invalidValue;

private final Class expectedType;

// constructor taking invalid-value, expected-type, and element-in-error

public TypeMismatchException(Object invalidValue, Class expectedType,
RefObject elementInError) {

super(elementInError);

this.invalidValue = invalidValue;

this.expectedType = expectedType;

}

The “getExpectedType” operation returns the Class of the expected type.

return type: Class

parameters: None

The “geInvalidValue” operation returns the value that caused the exception.

return type: Object

parameters: None

112

// constructor taking invalid-value, expected-type, element-in-error,
and a message

public TypeMismatchException(Object invalidValue, Class expectedType,
RefObject elementInError, String msg) {

super(elementInError, msg);

this.invalidValue = invalidValue;

this.expectedType = expectedType;

}

public Object getInvalidValue() {

return invalidValue;

}

public Class getExpectedType() {

return expectedType;

}

}

5.4.12 WrongSizeException

WrongSizeException is thrown when a collection containing fewer elements than the lower bound
or more elements than the upper bound is passed in as argument.

Operations

None.

package javax.jmi.reflect;

public class WrongSizeException extends JmiException {

// constructor taking element-in-error

public WrongSizeException(RefObject elementInError) {

super(elementInError);

}

// constructor taking element-in-error and detailed message

public WrongSizeException(RefObject elementInError, String msg) {

super(elementInError, msg);

}

}

XMI Import/Export in JMI 113

5.5 XMI Import/Export in JMI
In JMI, the XML Metadata Interchange format (XMI) will be used to represent metadata in a
(XML) stream format. The following XmiWriter and XmiReader interfaces are used to import and
export XMI elements from a JMI service. An XMI element is an XML element with the “XMI”
tag (containing valid XMI).

Note – The following XmiWriter and XmiReader interfaces are currently under specified. The
final version of the JMI specification will include a complete description of these APIs.

5.5.1 XMIWriter

The XmiWriter writes XMI elements to a stream. One XMI element is written for each write
operation performed. The stream is left open upon completion of the write.

Operations

t write (RefPackage)

t write (Collection)

package javax.jmi.xmi;

import javax.jmi.reflect.*;

public interface XmiWriter {

public void write(java.io.OutputStream stream, RefPackage extent);

public void write(java.io.OutputStream stream, java.util.Collection
objects);

}

The “write” operation (which takes a RefPackage as the second argument) writes an entire extent
to a stream.

return type: None

parameters: java.io.OutputStream
RefPackage

The “write” operation (which takes a Collection as the second argument) writes MOF objects to a
stream.

return type: None

parameters:

114

5.5.2 XmiReader

The XmiReader reads an entire XMI element from a stream into a RefPackage. The read
operation returns a collection of RefObjects which are the outermost objects in the XMI content.
The stream is left open upon completion of the read.

Operations

t read

package javax.jmi.xmi;

import javax.jmi.reflect.*;

public interface XmiReader {

public java.util.Collection read(java.io.InputStream stream, RefPack-
age extent);

}

The “read” operation reads an entire XMI element into a RefPackage.

return type: Collection (of RefObjects)

parameters: java.io.InputStream
RefPackage

XMI Import/Export in JMI 115

A

The JMI APIs for the MOF

The Java APIs for the MOF generated by applying the JMI mapping to the MOF model is
contained in the companion jmi.zip file.

116

XMI Import/Export in JMI 117

B

Accessing a JMI Service using the
Connector Architecture

A JMI Service can benefit from the J2EE Connector Architecture by using it to provide
connectivity to a JMI service in a pluggable way. The Connector Architecture provides seamless
integration of data sources, in this case a JMI service, with application servers. It requires the data
source to provide a Resource Adapter that implements the specified System Contracts.

The Resource Adapter can be used in two scenarios: the managed case, and the non-managed case.
In the managed case, the user connects to an application server and uses the connection to the
application server to access the JMI service. In this scenario, the application server manages
security, transaction boundaries, etc.. In the non-managed case, the use obtains a connection from
the Resource Adapter directly and uses it to access the JMI service. In this scenario, the needs to
explicitly state transaction boundaries, etc..

Although the typical connection would represent a heavyweight connection to a data source such
as a database instance, a connection to a JMI service represents a connection to a package extent
(i.e., RefPackage). This limitation is due to the fact that, in the current JMI specification, the root
of the normative APIs is the package extent. However, it must be noted that, in a future revision
of the specification the connection to the JMI service is likely to represent the complete JMI
service.

As the connection to a JMI service represents a package extent, the RefPackage interface will be
the root interface available through the connection.

Note – The JMI specification does not compel JMI services to implement the above J2EE
Connection Architecture specific extensions.

118

FIGURE B-1 JMI connection management.

Client Application

Application
Server

Resource Adapter
(SPI) JMI Service

non-managed
scenario

managed
scenario

XMI Import/Export in JMI 119

C

Examples

Note – Examples will be included in the final version of the specification.

	Introduction
	1.1 Metadata Interoperability
	1.2 The Java Metadata Interface Specification
	1.3 Platforms
	1.4 Target Audience
	1.5 JMI Expert Group
	1.6 Acknowledgements

	JMI Overview
	2.1 The MOF Four-Layered Architecture
	2.2 The MOF Interfaces
	2.3 Introduction to JMI
	2.3.1 Some JMI Use-Cases
	The Data Warehouse Management Scenario
	The Software Development Scenario

	An Overview of the MOF Model
	3.1 The MOF Model
	3.1.1 Common Superclasses
	3.1.2 Containment Hierarchy
	3.1.3 Types
	Class
	Association
	DataTypes

	3.1.4 Features
	3.1.5 Tags
	3.1.6 MOF Model Elements
	3.1.7 MOF Model Associations

	3.2 Discrepancies between JMI and MOF
	3.3 XMI

	MOF to Java Mapping
	4.1 Metaobjects and Interfaces
	4.1.1 Metaobject Type Overview
	Package Objects and Package Creation
	Class Proxy Objects
	Instance Objects
	Association Objects

	4.1.2 The Metaobject Interface Hierarchy

	4.2 Computational Semantics for the Java Mapping
	4.2.1 Equality in the Java Mapping
	4.2.2 The Java NULL Value
	4.2.3 JMI Collection Semantics
	4.2.4 Lifecycle Semantics for the Java Mapping
	Package Object Creation and Deletion Semantics
	Instance Object Lifecycle Semantics
	Link Lifecycle Semantics

	4.2.5 Association Access and Update Semantics for the Java Mapping
	Access Operations
	Link Addition Operations
	Link Modification Operations
	Link Removal Operations
	Derived Associations

	4.2.6 Attribute Access and Update Semantics for the Java Interface Mapping
	Single-Valued Attributes
	“Optional Attributes
	Multivalued Attributes
	Changeability and Derivedness
	Classifier Scoped Attributes
	Inherited Attributes
	Life-cycle Semantics for Attributes

	4.2.7 Reference Semantics for the Java Mapping
	4.2.8 Cluster Semantics for the Java Mapping
	4.2.9 Atomicity Semantics for the Java Mapping
	4.2.10 The Supertype Closure Rule

	4.3 Primitive Data Type mapping
	4.4 Exception Framework
	4.5 Preconditions for Java Interface Generation
	4.6 Standard Tags for the Java Mapping
	4.6.1 Tags for Specifying Package Prefix
	Package Prefix

	4.6.2 Tags for Providing Substitute Identifiers
	4.6.3 Tag for specifying prefix for generated methods
	4.6.4 Tags for Capturing JavaDocs

	4.7 Java Generation Rules
	4.7.1 Rules for Generating Identifiers
	4.7.2 Rules for Splitting MOF Model.ModelElement Names into Words
	4.7.3 Literal String Values
	4.7.4 Generation Rules for Attributes, AssociationEnds, References, Constants, and Parameters
	Generation Rules for Attributes, AssociationEnds, and References
	Generation Rules for Constants
	Generation Rules for Parameters

	4.8 Java Mapping Templates
	4.8.1 Package Interface Template
	Template
	Supertypes
	Operations

	4.8.2 Class Proxy Template
	Template
	Operations

	4.8.3 Instance Template
	Template
	Supertypes

	4.8.4 Association Template
	Template
	Operations

	4.8.5 Attribute Template
	Accessor Operations
	Mutator Operations
	Template
	Operations
	Collection Operations on multivalued Attributes

	4.8.6 Reference Template
	Template
	Operations
	Collection Operations on References

	4.8.7 Operation Template
	Template

	4.8.8 Exception Template
	4.8.9 Constant Template
	4.8.10 AliasType Template
	4.8.11 CollectionType Template
	4.8.12 StructureType Template
	4.8.13 EnumerationType Template
	4.8.14 Constraint Template
	4.8.15 Annotation Template
	Template

	4.8.16 JavaDocs Template
	Template

	MOF Reflective Package
	5.1 Introduction
	5.2 The Reflective Classes and Interfaces
	5.2.1 RefBaseObject
	Abstract
	Supertypes
	Operations
	Interface

	5.2.2 RefFeatured
	Abstract
	Supertypes
	Operations
	Interface

	5.2.3 RefAssociation
	Abstract
	Supertypes
	Operations
	Interface

	5.2.4 RefPackage
	Abstract
	Supertypes
	Operations
	Interface

	5.2.5 RefClass
	Abstract
	Supertypes
	Operations
	Interface

	5.2.6 RefObject
	Abstract
	Supertypes
	Operations
	Interface

	5.3 Reflective Interfaces for Data Types
	5.3.1 RefEnum
	Abstract
	Supertypes
	Operations
	Interface

	5.3.2 RefStruct
	Abstract
	Supertypes
	Operations
	Interface

	5.3.3 RefAssociationLink
	Abstract
	Supertypes
	Operations
	Interface

	5.3.4 RefException Class
	Supertypes
	Operations
	Class Definition

	5.4 The Exception Framework
	5.4.1 JmiException
	5.4.2 AlreadyExistsException
	Operations

	5.4.3 ClosureViolationException
	Operations

	5.4.4 CompositionCycleException
	Operations

	5.4.5 ConstraintViolationException
	Operations

	5.4.6 DuplicateException
	Operations

	5.4.7 InvalidCallException
	Operations

	5.4.8 InvalidObjectException
	Operations

	5.4.9 NotFoundException
	Operations

	5.4.10 OutOfBoundsException
	Operations

	5.4.11 TypeMismatchException
	Operations

	5.4.12 WrongSizeException
	Operations

	5.5 XMI Import/Export in JMI
	5.5.1 XMIWriter
	Operations

	5.5.2 XmiReader
	Operations

	The JMI APIs for the MOF
	Accessing a JMI Service using the Connector Architecture
	Examples

