
ibm.com/redbooks

Eclipse Development
using the Graphical Editing
Framework and the Eclipse
Modeling Framework

Bill Moore
David Dean

Anna Gerber
Gunnar Wagenknecht

Philippe Vanderheyden

Understanding the GEF and EMF
frameworks

Developing with GEF and EMF

Code examples

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Eclipse Development using the Graphical Editing
Framework and the Eclipse Modeling Framework

October 2003

International Technical Support Organization

SG24-6302-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (October 2003)

This edition applies to Version: 2.1.1 of the Eclipse Platform, Version 1.1.0 of the Eclipse
Modeling Framework(EMF), and Version 2.1.1 of the Graphical Editing Framework(GEF) on
Windows.

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author . xi
Comments welcome. xi

Part 1. EMF and GEF introduced . 1

Chapter 1. Introduction to EMF . 3
1.1 What is the Eclipse Modeling Framework? . 4

1.1.1 Positioning of the framework. 4
1.1.2 Objectives . 4
1.1.3 Where to find documents and resources . 5

1.2 Frameworks basics . 5
1.2.1 Prerequisites . 5
1.2.2 Product installation . 6
1.2.3 Getting help in Eclipse . 6

1.3 Building a simple model . 9
1.3.1 Different ways of making the model . 10
1.3.2 The EclipseUML plug-in . 11
1.3.3 Initial project set up . 11
1.3.4 Modeling using the EclipseUML plug-in . 12
1.3.5 Modeling using Java interface annotation. 23
1.3.6 EMF Features . 25
1.3.7 EMF model creation . 26
1.3.8 Code generation facility. 28
1.3.9 Compiling the code . 28
1.3.10 Conclusion . 29

Chapter 2. EMF examples . 31
2.1 EMF modeling techniques. 32

2.1.1 Creating new models . 32
2.1.2 Migrating existing models . 41

2.2 EMF.Edit-based editors and code generation . 46
2.2.1 The generated plug-ins . 46
2.2.2 Customizing code generation through GenModel properties 49
2.2.3 Modifying the generated code. 62
© Copyright IBM Corp. 2003. All rights reserved. iii

2.3 Model instances and serialization . 65
2.3.1 Creating model instances . 65
2.3.2 Default serialization of model instances . 67
2.3.3 Using the XSD plug-in to customize serialization 71
2.3.4 Customizing XMI serialization using an XMLMap 75
2.3.5 Providing a custom resource implementation 76

2.4 Using JET to customize code generation . 80
2.4.1 .JET-related GenModel properties . 80
2.4.2 Writing JET templates . 81

Chapter 3. Introduction to GEF . 89
3.1 What is GEF . 90

3.1.1 Additional documents and resources . 90
3.1.2 Applications suitable for GEF . 91

3.2 Introduction to Draw2D . 95
3.2.1 What is a lightweight system?. 96
3.2.2 Architectural overview . 96
3.2.3 Figures . 97
3.2.4 Mechanism . 98
3.2.5 Major features . 99

3.3 The GEF framework . 105
3.3.1 Prerequisites . 105
3.3.2 EditParts . 106
3.3.3 Requests . 108
3.3.4 EditPolicies . 110
3.3.5 Commands . 112
3.3.6 GraphicalViewers . 112
3.3.7 RootEditParts . 113

3.4 Building an editor. 114
3.4.1 The editor class. 115
3.4.2 EditDomain . 116
3.4.3 CommandStack. 117
3.4.4 Attaching the viewer . 120
3.4.5 Be adaptable . 122
3.4.6 Introducing the palette. 123
3.4.7 Actions . 126
3.4.8 Adapting to the properties view. 132
3.4.9 Providing an outline view . 133
3.4.10 Controling your editor with the keyboard. 137

3.5 Managing your model . 138
3.5.1 Reflecting a model . 138
3.5.2 Communication . 139
3.5.3 Creating EditParts . 139
iv Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Chapter 4. GEF examples . 141
4.1 Additional Concepts . 142

4.1.1 RootEditParts . 142
4.1.2 Coordinate systems . 143
4.1.3 Layers . 144

4.2 Techniques . 146
4.2.1 Drag and drop . 146
4.2.2 Palette - implementing a sticky tool preference 146
4.2.3 Printing . 147
4.2.4 Zooming . 148
4.2.5 Decorating connections. 151
4.2.6 Resource management. 152
4.2.7 Feedback techniques . 153
4.2.8 Palette-less applications . 156
4.2.9 Using Direct Edit . 162
4.2.10 Accessibility. 164

Chapter 5. Using GEF with EMF. 169
5.1 Overview . 170
5.2 Using an EMF model within a GEF-based application 171

5.2.1 Mapping from the model to the graphical representation 171
5.2.2 Displaying properties. 178
5.2.3 Support for editing the model . 178
5.2.4 Reflecting model changes. 179
5.2.5 Loading and saving model instances . 182
5.2.6 Putting it all together . 183

5.3 Using JET in GEF-based editor development . 184

Part 2. Sample application . 189

Chapter 6. Sample requirements and design . 191
6.1 Sample application requirements . 192

6.1.1 The application . 192
6.2 Sample application design . 195

6.2.1 Design decisions . 195
6.2.2 The workflow model . 196

6.3 Sample application demo . 204

Chapter 7. Implementing the sample. 207
7.1 Overview . 208
7.2 Architecture . 208

7.2.1 Mapping the EMF model to GEF EditParts 208
7.2.2 Tracking model events in the editor . 211
7.2.3 Refreshing. 212
 Contents v

7.2.4 Factories . 215
7.2.5 Policies and commands . 216

7.3 The model . 218
7.3.1 Modifying the WorkflowModel . 218
7.3.2 Modifying the code generated from the model 220
7.3.3 Respecting model constraints in the editor 221

7.4 Implementing the multi-page editor . 226
7.4.1 Getting started. 226
7.4.2 Sharing an EditDomain . 226
7.4.3 The editor’s dirty state. 227
7.4.4 Actions . 227
7.4.5 Support for the properties view . 228
7.4.6 The oultine view . 228
7.4.7 The palette . 228

7.5 Additional features. 230

Appendix A. Additional material . 231
Locating the Web material . 231
Using the Web material . 231

System requirements for downloading the Web material 232
How to use the Web material . 232

Abbreviations and acronyms . 233

Related publications . 235
IBM Redbooks . 235
Other publications . 235
Online resources . 235
How to get IBM Redbooks . 236
Help from IBM . 236

Index . 239
vi Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

™ ^™ Redbooks (logo) ™

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
viii Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Preface

This redbook is written for developers who use the Eclipse SDK to develop
plug-in code. It is intended for a technical readership and for developers who
already have good knowledge and experience in Eclipse plug-in development.
We expect that you understand the concepts of Eclipse views and editors,and
have some familiarity with Draw2D.

In this redbook, we examine two frameworks that are developed by the Eclipse
Tools Project for use with the Eclipse Platform:

� the Graphical Editing Framework(GEF) and

� the Eclipse Modeling Framework(EMF).

We provide a high level introduction to these frameworks so that Eclipse plug-in
developers can consider whether the frameworks will be useful for the
requirements of their particular development and then provide tips and
techniques for writing code that uses GEF and EMF.

Finally we implement a more detailed example to illustrate a GEF editor that
uses an EMF model.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Bill Moore is a WebSphere specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively and teaches IBM classes on
WebSphere and related topics. Before joining the ITSO, Bill was a Senior AIM
Consultant at the IBM Transarc lab in Sydney, Australia. He has 18 years of
application development experience on a wide range of computing platforms and
using many different coding languages. He holds a Master of Arts degree in

Important: This redbook covers both the Graphical Editing Framework and
the Eclipse Modeling Framework, but readers should remember that these
frameworks can be used separately and there is no dependency between the
two frameworks. We do write about using GEF and EMF together, but please
remember that this is not required and many applications you develop will not
require both GEF and EMF.
© Copyright IBM Corp. 2003. All rights reserved. ix

English from the University of Waikato, in Hamilton, New Zealand. His current
areas of expertise include application development tools, object-oriented
programming and design, and e-business application development

David Dean is a technical lead at Chordiant in Cupertino, California. For the last
two years he has been focused on Eclipse plug-in development and in building a
GEF-based workflow editor. His twenty years of software development
experience include medical imaging, process control, telephony, finance, and
web applications. David's interests include user interfaces, graphics, and
software development tools. He holds a BA degree in Biology from the State
University of New York at Albany, and did post-graduate studiesin Historic
Preservation Planning at Cornell University..

Anna Gerber iis currently a Research Scientist at the Distributed Systems
Technology Centre (DSTC) in Brisbane, Australia. Anna´s research interests
include Enterprise Modelling, in particular model-driven development techniques
and generation of tools such as domain-specific graphical editors from models.

Gunnar Wagenknecht is a software developer at Intershop AG in Jena,
Germany. He has more than 4 years experience developing Java Enterprise
applications. He just finished is bachelor thesis and is going to get a Bachelor’s
degree in Practical Computer Science from the Business Academy Thuringia in
Gera, Germany after finishing the residency. His areas of expertise include
software architectures and J2EE Web applications. He has written extensively on
GEF topics.

Philippe Vanderheyden is an IT Architect who has been working with
Object-Oriented technologies for many years. Philippe has been working on a
variety of projects from document publishing system, to financial application
development and monitoring. His areas of interest include OO modelling,
distributed enterprise systems, Web-based application design and realtime
transactional system.Philippe has a good knowledge of the Java programming
language, and Java-related technologies (JDBC, servlets, XML, JSP etc). His
recent work has been building enterprise applications using the Enterprise Java
Beans component model and the J2EE framework in Websphere 5.0 cluster
environment. Philippe is comfortable working with a diverse range of
technologies and platforms. He has extensive experience of the UNIX OS and
has also worked for many years with Object Oriented languages (Java, Smalltalk
and C++).

Thanks to the following people for their contributions to this project:

Randy Hudson
IBM Raleigh
x Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

??????????
IBM ??????????

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xii Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Part 1 EMF and GEF
introduced

In this part we describe the basic of GEF and EMF.

Part 1
© Copyright IBM Corp. 2003. All rights reserved. 1

2 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Chapter 1. Introduction to EMF

In this chapter we introduce the Eclipse Modeling Framework (EMF), we mention
most of the sources of information that are available on the subject, and we build
a simple model as a practical demonstration of the use of EMF.

1

© Copyright IBM Corp. 2003. All rights reserved. 3

1.1 What is the Eclipse Modeling Framework?
Application development generally starts with consideration, of the design model,
then moves to more user interface oriented tasks. The Eclipse Modeling
Framework is designed to ease the design and implementation of a structured
model. The Java framework provides a code generation facility in order to keep
the focus on the model itself and not on its implementation details. The key
concepts underlying the framework are: meta-data, code generation and default
serialization.

1.1.1 Positioning of the framework
EMF was started as a Meta Object Facility (MOF) of the Object Management
Group (OMG) implementation and has evolved to what it is now. EMF is an
enhancement of MOF2.0. EMF is open source code that enhances the MOF 2.0
ecore model and restructures its design in a way that is easy for the user.

The Eclipse Modeling Framework is part of the Model Driven Architecture(MDA).
It is the current implementation of a portion of the MDA in the Eclipse family
tools. The idea behind MDA it is to be able to be able to develop and manage the
whole application life cycle by putting the focus to the model. The model itself is
described in a meta-model, and then using mappings, the model is used to
generate software artefacts, which will implement the real system.

Two types of mappings are defined: Metadata Interchange, where documents
like XML, DTD and XSD are generated and Metadata Interfaces which target
Java or any other language and generate IDL code. MDA is currently under the
standardization process at the OMG.

1.1.2 Objectives
In this section we expalian the main purpose of EMF and what it can currently be
used for.

The problems EMF solves
EMF can be used to describe and build a model. Based on that definition, Java
code can be generated and enhanced by the addition of higher level Java code.
This implemented model can be used as the basis for any Java application
development.

When not to use EMF
At the moment, EMF implements a subset of the MDA approach and as such
does not contain all the mappings we would need to make and deploy an
4 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

application at a company wide level, where XML, EAI, EJBs, Web services and
other technology have to be combined.

1.1.3 Where to find documents and resources
EMF is still under development, but serveral sources of information are available
These include:

� The EMF project page

EMF is one project of the Eclipse Tools Project, which is part of the global
Eclipse Project, (http://www.eclipse.org). EMF is directly accessible at the
URL:

http://www.eclipse.org/emf

Available services range from code access and documents publishing, to
community support, online code access using CVS, packaged code
download, articles, user guides, tutorials, mailing list, newsgroup and more.

Newsgroup

The newsgroup server is news.eclipse.org. The newsgroup name for EMF is
eclipse.tools.emf. It shows EMF relationship within the Eclipse Tools project.

� Mailing list

The mailing list for the EMF project is emf-dev@eclipse.org.

1.2 Frameworks basics
This section provides some basic information about the Eclipse Modeling
Framework to help you get it up and running.

1.2.1 Prerequisites
When we wrote this redbook the current version of EMF was v1.1.0. A valid
Eclipse product installation is a prerequisite to use EMF. As of EMF v1.0.2,
Eclipse v2.1 is required. For the purpose of writing the redbook, Eclipse v2.1 and
EMF v1.1.0 have been used.

Note: You should send your question to the newsgroup rather than the mailing
list.
 Chapter 1. Introduction to EMF 5

http://www.eclipse.org
http://www.eclipse.org/emf

1.2.2 Product installation
Eclipse product installation is straight forward. Extract the content of the
downloaded archive, which is platform dependant, to a folder of your choice.
Depending on the operating system, double click on the eclipse icon, or run the
corresponding shell command to complete the installation process and launch
the Eclipse Platform.

EMF is packaged in three parts: the first one is the runtime, the second contains
the documentation and the third the source code.

EMF framework installation
Download the EMF Runtime archive (for example,
emf_1.1.0_20030620_1105VL.zip) and extract the content to Eclipse folder.

EMF documentation installation
Download the EMF Documentation archive (for example,
emf.doc_1.1.0_20030620_1105VL.zip) and extract the content to Eclipse folder.

1.2.3 Getting help in Eclipse
EMF help can be found in the Eclipse help system.

The welcome page
1. The welcome page is the main entry point to the EMF documentation. In

Eclipse, click Help -> Welcome... to list available welcome pages as shown in
Figure 1-1

Note: If Eclipse was running, while doing EMF and document installation,
Eclipse will need to be restarted for changes to take into effect.
6 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 1-1 Welcome page window

2. Select the Eclipse Modeling Framework welcome page from the list and click
OK. Figure 1-2 shows the EMF welcome page that will be displayed.

Figure 1-2 EMF welcome page
 Chapter 1. Introduction to EMF 7

The help perspective
EMF help is also accessible directly from Help -> Help contents. Figure 1-3
shows the help availabe in the EMF Programmers Guide which includes an EMF
overview, a user guide and an EMF.Edit section.

Figure 1-3 EMF help

Note: The EMF documentation package must be installed before the links in
EMF welcome pages are clickable.
8 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

1.3 Building a simple model
In this section, we build a simple but realistic model. The purpose is to
demonstrate the main steps of the process. Later in our redbook we use the
Graphical Editing Framework (GEF), to build a workflow application on top of this
model. The workflow editor will help us to create and visualize the content of the
model. For more information, the application requirements and design can be
found in “Sample application requirements” on page 192.

The model
Before starting to describe the modelling process using Eclipse and EMF, we
need to understand the complete underlying UML model that we will build. This is
shown in Figure 1-4 and discussed in more detail in “The workflow model” on
page 196.
 Chapter 1. Introduction to EMF 9

Figure 1-4 The complete UML model

1.3.1 Different ways of making the model
In EMF, the model can be created in three different ways:

� Write the XMI file directly

� Export the XMI file, from tools like Rational Rose and the Omondo
EclipseUML plug-in and load it into our project

� Annotate Java interfaces with model properties

To illustrate how to create a model, we demonstrate the use of the Omondo
EclipseUML plug-in to generate the XMI and also show the use of the Java
interface annotation mechanism.
10 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

1.3.2 The EclipseUML plug-in
The main advantage of UML is that it allows us to work at a very high level. In an
EMF class diagram, we create classes and interfaces, we give them attributes
and methods and we set up their relationships.

plug-in installation
Omondo’s EclipseUML plug-in can be downloaded from the
http://www.eclipseuml.com site. The current version is 1.2.1.The installation is
is an executable jar file. On Windows, double click on its icon, on other operating
systems, run the following command:

java -jar eclipseuml-installer_1.1.4.jar

Install the product in the same folder you installed the Eclipse product.

1.3.3 Initial project set up
Before doing the modeling itself, we need to create an Eclipse project
environment to contain all the items that we are going to produce. The steps to
take are:

1. Create a new project

a. Click File -> New -> Other..., select Plug-in Development -> Plug-in
Project, click Next.

b. Enter a project name, for example WorkflowModel, click Next.

c. Select Create a Java project, click Next.

d. Select Create a blank plug-in project, click Finish.

2. Create a Java Package

a. Click File -> New -> Other..., select Java -> Package, click Next.

b. Click Browse... to select the src folder in the WorkflowModel project.

c. Enter a package name, for example com.ibm.itso.sal330r.workflow,
click Finish. Figure 1-5 shows a view of the Eclipse workbench after we
have completed our initial setup tasks.

Note: In our case, we did not install the versions of GEF and EMF that are
provided with the EclipseUML plug-in , because we wanted to use the latest
versions of GEF and EMF.
 Chapter 1. Introduction to EMF 11

http://www.eclipseuml.com

Figure 1-5 Initial project set up

1.3.4 Modeling using the EclipseUML plug-in
During our simple model creation, we iterate several times to achieve what we
think is a good design. The graphical facilities of the EclipseUML plug-in are a
great help during this process, and each intermediate diagram was used as a
good start to support the next iteration of our modelling.

EMF class diagram creation
The whole model is contained in one EMF class diagram. The steps to create
this diagram are:

Note: Our project must be a plug-in project, but it also needs to be a Java
project, in order to allow package creation. If we had selected Create a
simple project, package creation would not have been possible. Creating an
EMF Project directly is another way to achieve the same result.
12 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

1. Click File -> New -> Other..., select EMF Diagrams -> EMF Class Diagram,
click Next.

a. Choose the parent folder, for example WorkflowModel project.

b. Enter an EMF model file name, file extension is ecd, for example
Workflow.ecd

c. Enter a package name , for example com.ibm.itso.sal330r.workflow

d. Check the association box, click Finish. See Figure 1-6

Two files have been created, Workflow.ecd which contains the class diagram
and workflow.ecore which contains the core model definition.

Figure 1-6 EMF class diagram window

Note:

1. In the Eclipse ,new EMF class diagram dialog, the package name in the
advanced section corresponds to the EMF EPackage.

2. With the EclipseUML plug-in, two types of diagram can be created: UML
and EMF models. The file for UML extension is .u?? (ex: Workflow.ucd)
while the extensionfor EMF is .e?? (ex: Workflow.ecd). Available modeling
operations and data types are adapted to the type of file you are working
in. Remember that if you work with an EMF model, only .e?? files and the
associated editors give you access to EMF functionality.
 Chapter 1. Introduction to EMF 13

Class diagram modeling
From the modeling point of view, the class diagram is complete, once we have
defined a set of classes(EMF interfaces), and the relationships between them.

Interface design
We first create the root interface, which is called WorkflowElement, then we
implement the WorkflowNode hierarchy, the Port hierarchy and finally Workflow,
Edge and Comment.

To dothe WorkflowElement interface creation:

1. Open the EMF class diagram editor

a. Select Workflow.ecd in the WorkflowModel project in the navigator view of
Eclipse.

b. Right-click Open with -> EMF Class Diagram Editor or simply
double-click on the file tree item should be fine.

2. Create a class in the editor

a. Click on the icon for the class creation tool on the editor tool palette, ,click
in the working area of the editor, and a new a window opens.

b. Enter a name, for example WorkflowElement, choose the Is an interface
and the Is abstract boxes, click Finish.

Attribute creation
Now we add an id attribute to the WorkflowElement interface:

1. Select the WorkflowElement, by clicking close to the border of the visual in the
editor. A rectangle should appear, right-click and choose New -> Attribute.

a. Enter the name of the attribute, for example id.

b. Select the type of the attribute, for example EString. Most of the EMF
types, which are equivalent to the Java basic types are available.

c. Choose the features, you want to give to the attribute. See Figure 1-7 on
page 15 for an example and refer to 1.3.6, “EMF Features” on page 25 for
more information on the features themselves.

d. Choose the cardinality associated to the attribute, click OK.
14 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 1-7 The new attribute window

At any point, if you realize that something is wrong or that you have forgotten
something, do not worry, most of the time, you do not have to delete your model
and start again. Simple corrections can be made in the property view and more
complex corrections can be made using eithere the Sample Ecore Model editor
or the default text editor. These give you different ways of accessing the
underlying model, and allow you to correct, enhance or even totally redefine the
model

Available editors
To open the Sample Ecore Model or the text editor:

� Select the Workflow.ecore file, right-click and either choose Open With ->
Sample Ecore Model Editor or Open With -> Text Editor See Figure 1-8 for
and example of using the Ecore Model Editor.
 Chapter 1. Introduction to EMF 15

Figure 1-8 EMF Class Diagram and Sample Ecore Model Editor together.

The property view
Some properties are not directly supported by the EclipseUML plug-in, but they
vcan still be changed using the property view.

To show the property view in Eclipse :

1. Click Window -> Show View -> Other...

2. Select Basic -> Properties, click OK.

Note: The Workflow.ecd file cannot be open in the EMF Class Diagram editor
and the text editor at the same time. To chose the editor to open the file in,
select the file, right-click Open With -> EMF Class Diagram Editor, or Open
With -> Text Editor.
16 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

We use the property view to complete the id attribute. We have to mention that
the id is an ID, which will be used for serialization later. We set the ID property of
the id attribute to true as shown in Figure 1-9.

Figure 1-9 The property view with the ID attribute set to true

We complete the WorkflowElement interface by adding all the other attributes.
Each WorkflowElement in a workflow has a name, is located at position x and y on
the canvas and has a height and a width. Table 1-1 shows the properties of all
the WorkflowElement attributes.

Table 1-1 WorkflowElement attribute properties

Name Type Features and properties

id EString volatile="true"
lowerBound="1"
iD="true"

name EString
 Chapter 1. Introduction to EMF 17

We repeat the same process to create the other classes of the Workflow model,
see Table 1-2 on page 18, for a summary of their attributes, features and
properties. For the classes which are not in the table, but are in the model,
depicted in Figure 1-4 on page 10, simply create them with no attribute. Do not
forget that WorkflowElement and WorkflowNode are two abstract classes.

Table 1-2 Interface attributes properties

Figure 1-10 is what the model should like after these steps

comment EString

x EInt defaultValueLiteral="0"

y EInt defaultValueLiteral="0"

width EInt defaultValueLiteral="-1"

height EInt defaultValueLiteral="-1"

Note: The Default Value Literal can only be set in the property editor.

Interface Name/attribute Type Feature and properties

WorkflowNode (abstract)

isStart EBoolean defaultValueLiteral="false"
lowerBound="1"

isFinish EBoolean defaultValueLiteral="false"
lowerBound="1"

Transformation

transformExpression EString

LoopTask

whileCondition EString lowerBound="1"

ConditionalOutputPort

condition EString lowerBound="1"

Name Type Features and properties
18 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 1-10 The workflow model classes, before relationship definition

Generalization definition
Generalization or inheritence links are made using the generalization tool. Select
the tool by clicking on its icon, which is an arrow with a big triangle at the end.
Click the specialized interface, hold the mouse button down, then move to the
generalized interface or connect to a generalization link going to the superclass.
Figure 1-11 shows our model with the generalization relationships added.
 Chapter 1. Introduction to EMF 19

Figure 1-11 Generalization relationships

Association definition
Using the association tool, we set up the associations between the classes. We
show how to set up the association between Workflow and Edge, then we provide
a summary of all the other associations with their features, see Table 1-3 on
page 21.

Steps to setup the Workflow to Edge association:

1. Click on the source interface, which is Workflow.

2. Click on the target interface, which is Edge.

3. Give the association properties, see the Figure 1-12 on page 21.

Add ‘s’ to the association name, click on Containment, select -1 as the
upper bound cardinality, click OK. See Figure 1-12
20 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 1-12 Association property window

Each association has two endpoints. So far, we have defined the characteristics
of the Workflow to Edge association, now we complete the opposite association
end, which is called Workflow.

We complete the 2nd association end, by:

1. Click 2nd Association End tab,

2. Change the lower bound cardinality to be 1, click Ok.

We do the same for all the associations in the model. Any mistake can be
corrected later, by simple double-clicking on the link itself in the editor. Table 1-3
shows the associations that you should create.

Table 1-3 Association properties

Origin End Association end Attributes

Workflow Edge edges upperBound="-1"
containment="true"

workflow lowerBound="1"

WorkflowNode nodes upperBound="-1"
containment="true"

workflow lowerBound="1"

Comment comments upperBound="-1"
containment="true"
 Chapter 1. Introduction to EMF 21

The model will now be like that shown in Figure 1-13

workflow lowerBound="1"

WorkflowNode InputPort inputs lowerBound="1"
upperBound="-1"
containment="true"

node lowerBound="1"

OutputPort outputs lowerBound="1"
upperBound="-1"
containment="true"

node lowerBound="1"

OutputPort Edge edges upperBound="-1"

source lowerBound="1"

InputPort Edge edges upperBound="-1"

target lowerBound="1"

Compound task Workflow subworkflow lowerBound="1"
containment="true"

Note: Take care, that:

1. The link between CompoundTask and Worklow is only a one way link,
navigable from CompoundTask to Workflow. Open the 2nd association end
of the link and unset Navigable.

2. The Edge to OutputPort association name is called source and the one
from Edge to InputPort is named target, because an Edge connects an
OutputPort to the next InputPort.

Origin End Association end Attributes
22 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 1-13 Workflow complete model

1.3.5 Modeling using Java interface annotation
To define a model by means of Java interface annotations, we need to provide
the same set of information we gave during the graphical modeling. We need to
create a set of interfaces, one for each of the model elements. Each interface
contains methods. The annotation mechanism enhances the code by adding
some @model tags in the comment of any code element.

Interface definition
The abstract=”true” attribute is used for WorkflowElement and WorkflowNode.
Example 1-1 shows the @model tag for the WorkflowNode. All the other interfaces
use the standard @model tag to enhance the model.
 Chapter 1. Introduction to EMF 23

Example 1-1 The WorkflowNode interface@model tag

package com.ibm.itso.sal330r.workflow;

import org.eclipse.emf.ecore.EObject;

/**
 * @author Vanderheyden
 *
 * @model abstract="true"
 */

public interface WorkflowElement extends EObject{

}

Adding attributes
An attribute is not added directly to the interface, instead, we have to define an
accessor for it. Code generation completes the interface by defining the setter
and provides the implementation of both the setter and the getter. Example 1-2
shows the x attribute @model tag.

Example 1-2 The x attribute @model tag

/**
 * @model default="0"
 */
int getX();

Adding associations
For each reference, we have to define:

� The type of object it gives access to.

� If it is a containment reference.

� The name of the 2nd association end.

� If it is required or not

See Example 1-3

Example 1-3 The WorkflowNode to OutputPort reference @model tag

package com.ibm.itso.sal330r.workflow;

import org.eclipse.emf.common.util.EList;

/**
 * @model abstract="true"
24 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

 */
public interface WorkflowNode extends WorkflowElement{

/**
 * @model type="com.ibm.itso.sal330r.workflow.OutputPort" opposite="node"

containment="true" required="true"
 */
EList getOutputs();

}

The complete rebuild of the model using the Java annotation mechanism is a
very long process and there is no real added value in providing complete
instructions in the context of our redbook.

Here is a short summary of what has to be done for those who want to do it:

1. Create an EMF project.

2. Create a Java package.

3. Create a Java interface for all the model objects.

4. Add a getter method for each attribute.

5. Add a method for each association which is navigable. Two methods are
added for navigation navigable from both ends.

6. Create an EMF model inside the EMF project, by using the Java annotation
mechanism.

Java annotation and the code generation process
Each @model tag annotates the Java code to provide model related information.
Those directive are used by the code generator in order to generate the
corresponding implementation code. The code generation process is a non
destructive process. No @model annotation are lost during code generation.
Generated code will contain the @generated tag to indicate it has been
generated and can be replaced again.

1.3.6 EMF Features
EMF features are associated with attributes and associations. The code
generator uses them to generate the implementation code.

EMF features for an attribute
Table 1-4 provides a short description of the EMF features that can be
associated with an attribute.
 Chapter 1. Introduction to EMF 25

Table 1-4 EMF features for an attribute

EMF features for an association
Table 1-5 provides a short description of the EMF features that can be
associated with an association.

Table 1-5 EMF features for an association

1.3.7 EMF model creation
Once the model has been completed, by means of EMF modeling or Java
interface definition, we can generate the corresponding code to implement it. We
need to create a new generator model resource, which is based on our ecore file,
or our Java interfaces.

The steps to create an EMF model from an EMF class diagram are:

EMF feature Description

Transient Transient is the opposite to persistent. The attribute value is not
supposed to be saved, persisted.

Volatile A cache behavior is implemented for attribute value. Volatile is
a way to prevent caching.

Unique If the attribute is multi valued (upperBound=”-1”), each value
must be unique in that case

Changeable Indicates if an attribute can be modified.

Unsettable Indicates if an attribute can be set in a state that mean it has no
value.

EMF feature Description

Transient The object referenced through this association will not get
persisted.

Volatile Prevents the object caching.

Unique All referenced objects are unique.

Changeable If true, the value of the attribute is not hard coded, fixed.

Resolve Proxies Indicates whether proxy reference should be resolved
automatically.

Containment If true, it means that any object, called the containment, which
is referenced by this one, called the container, are considered
as being part of it.
26 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

1. Create the model

Click File -> New -> Other..., select Eclipse Modeling Framework -> EMF
Models, click Next.

2. Choose the parent folder, for example WorkflowModel project, define the EMF
model file name with a genmodel extension, for example Workflow.genmodel,
click Next.

3. Select Load from an EMF core model, click Next.

4. Choose the .ecore file you want to create a model for.

Click Browse Workspace..., navigate to the WorkflowModel project, select
Workflow.ecore file, click Next. See Figure 1-14

Figure 1-14 Ecore file selection window
 Chapter 1. Introduction to EMF 27

5. Choose Workflow package selection, click Finish

The steps to create an EMF model from Java interface annotations are:

1. Create an EMF Model

Click File -> New -> Other..., choose Eclipse Modeling Framework and
EMF Models and click Next.

2. Choose the project and the package you want to contain the generator model
resource. Define a file name for the model, for example Workflow.genmodel,
click Next.

3. Select load from annotated Java and click Next.

4. Choose the package selection, click Finish.

The workflow.ecore and Workflow.genmodel files have been created.

1.3.8 Code generation facility
Once the Workflow.genmodel has been created and opened in an EMF
Generator editor by Eclipse, the code generation can take place:

1. Open the EMF Generator Editor

Select the Workflow.genmodel file, right-click Open With -> EMF Generator.

2. Generate the code

In the editor, click Generator -> Generate Model Code or select the root
element in the tree and right-click Generate Model Code.

1.3.9 Compiling the code
Before compiling, the Java build path has to be updated, in order to resolve the
EMF classes.

To update the Java Build Path:

1. Open project properties

a. Select the WorkflowModel project, right-click Properties, select Java
Build Path.

2. Open the Libraries tab.

a. Click Add Variable.

b. Select ECLIPSE_HOME - C:\Program Files\eclipse.

c. Click Extend..., select ecore.jar, common.jar and common.resource.jar,
click OK. See Figure 1-15
28 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 1-15 EMF jarfiles

3. Click the Order and Export tab

a. Select the three jars, click Up to move them to the correct position in the
path, click OK.

4. Compile the code, select Project -> Rebuild All.

1.3.10 Conclusion
We have demonstrated how to create an EMF model, which can be used directly
as the model for our application. In terma of the the Object, View and Interaction
Diagram (OVID) vocabulary, (see
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/589 for more
information), our model contains all the model objects that we need and all the
object relationships and navigation paths to easily move from one object to the
next. The model needs to be enhanced with some convenience methods, for
example the connectTo() method in the Workflow object, that will even
encapsulate more of the model specifics and give higher level model entry point.
 Chapter 1. Introduction to EMF 29

http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/589

30 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Chapter 2. EMF examples

In this chapter we discuss Eclipse Modeling Framework (EMF) modeling
techniques and provide examples of creating models with EMF. We also cover
the EMF.Edit framework and provide tips and techniques for generating and
customizing EMF-based editors. Finally, we outline how to use Java Emitter
Templates (JET) to customize code generation from EMF models.

2

© Copyright IBM Corp. 2003. All rights reserved. 31

2.1 EMF modeling techniques
In this section, we focus on techniques for modeling with EMF. We begin by
exploring examples to illustrate how to define new models using EMF. Then, we
discuss the mapping between EMF and XML Schema and describe how a model
expressed in XML Schema is migrated to EMF.

2.1.1 Creating new models
In this section we illustrate how to use EMF’s Ecore model concepts to create
new models. We begin by creating a naive model of Workflow, and then refactor
that model based on modeling tips that we provide. We discuss the motivation for
each change to the model and describe how to generalize the refactorization to
other models.

Creating a simple Workflow model
The model that we create in this section is a simplified version of the
WorkflowModel used in the sample application and described in Chapter 6,
“Sample requirements and design” on page 191. For our example, we only
concern ourselves with modeling basic tasks and dataflow between those tasks.
Figure 2-1 shows a model that we might create to describe this domain.

Figure 2-1 Naive model of Workflow

Note: For a handy overview of the Ecore model concepts, consult the
JavaDoc for the org.eclipse.emf.ecore package. Aside from the APIs for each
model object, you will also find a class diagram of the Ecore model as well as
a list of the EMF Datatypes and their corresponding Java types.
32 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

In our model, Tasks represent units of work, and Edges represent the
connections (flows of control and data) between them. Each Edge flows from an
OutputPort on a Task to an InputPort on another Task, indicating that data
resulting from the completion of the source’s Task becomes the input of the
target’s Task. We have used the multiplicity of the references from Task to
InputPort and OutputPort to express the constraint that each Task must have at
least one InputPort and at least one OutputPort.

We construct the model as described in Chapter 1, “Introduction to EMF” on
page 3. We use the Sample Ecore Model Editor, but you may choose to edit the
XMI directly, or use the Omondo EclipseUML plug-in. We create an EPackage
named workflow, and within it, create EClasses to represent Task, Edge, Port,
OutputPort and InputPort.

Example 2-1 shows the XML Metadata Interchange (XMI) that represents the
workflow EPackage. Each EClass is represented as an eClassifiers element
nested within the workflow EPackage element.

Example 2-1 XMI for model of Workflow

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="workflow"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" nsPrefix="workflow"
nsURI="http://www.redbooks.ibm.com/sal330r/example/workflow1">
<eClassifiers xsi:type="ecore:EClass" name="Task">

<eReferences name="inputs" eType="#//InputPort" lowerBound="1"
upperBound="-1" containment="true" eOpposite="#//InputPort/task"/>

<eReferences name="outputs" eType="#//OutputPort" lowerBound="1"
upperBound="-1" containment="true" eOpposite="#//OutputPort/task"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Port" abstract="true"/>
<eClassifiers xsi:type="ecore:EClass" name="Edge">

<eReferences name="target" eType="#//InputPort" lowerBound="1"
eOpposite="#//InputPort/edges"/>

<eReferences name="source" eType="#//OutputPort" lowerBound="1"

Tip: If you are using the model to drive code generation, we suggest that you
follow Java convention for naming model elements:

� Heed Java case conventions:

– Use lower case for package names.

– Use lower case for the initial letter of feature and operation names.

– Begin class names with an upper case letter.

� Use the plural form for names of multi-valued features and the singular
form for single-valued features.
 Chapter 2. EMF examples 33

eOpposite="#//OutputPort/edges"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="InputPort"

eSuperTypes="#//Port">
<eReferences name="edges" eType="#//Edge" upperBound="-1"

eOpposite="#//Edge/target"/>
<eReferences name="task" eType="#//Task" lowerBound="1"

eOpposite="#//Task/inputs"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="OutputPort"

eSuperTypes="#//Port">
<eReferences name="edges" eType="#//Edge" upperBound="-1"

eOpposite="#//Edge/source"/>
<eReferences name="task" eType="#//Task" lowerBound="1"

eOpposite="#//Task/outputs"/>
</eClassifiers>

</ecore:EPackage>

Although we have shown associations in the Class Diagram in Figure 2-1, the
Ecore model does not represent associations explicitly. Instead, we use an
EReference to represent each navigable end of an association. An association
that is navigable in both directions is represented by two EReferences, one on
each associated class, with eOpposites that refer to each other. For example, the
association between Edge and InputPort is navigable from both ends, and so we
see the edges EReference in InputPort and the target EReference in Edge. It is
important to make sure that the eOpposites of a pair of corresponding
EReferences match, and that both EReferences have their eOpposite set.

An association that is navigable in one direction only is represented as a single
EReference, with no eOpposite. The multiplicity of the association ends is
represented by the upperBound and lowerBound attributes on the eReferences
elements representing each EReference.

As we can see from our example, associations that represent containment, such
as the associations between Task and Ports, are represented by an EReference
where containment is true, on the containing class. The containment of the
InputPorts and OutputPorts within Tasks is represented by the inputs and
outputs eReferences inside the Task eClassifiers element.

The inheritance of ports is represented by the eSuperTypes attribute on the
InputPort and OutputPort elements. The EClass Port is an abstract class, which
is indicated by the value of the abstract attribute on the eClassifiers element
representing Port.

When we generate an EMF.Edit-based editor from our model, as described in the
EMF documentation, and use it to create Tasks and Edges, we can immediately
34 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

see a problem with this model. Using the generated editor, we can only create
Tasks and Edges separately, we are missing a class that we could instantiate to
contain all of the tasks and edges in our workflow. The solution is to add an
additional class, Workflow, that contains both Tasks and Edges.

Figure 2-2 shows the model with the additional Workflow class.

Figure 2-2 Model of Workflow with additional Workflow class

Example 2-2 shows the XMI fragment that represents the Workflow class. The
eClassifiers element is added to the contents of the workflow EPackage.
References to the Workflow are also added to Task and Edge as eReferences
elements within the eClassifiers representing each class, for example:
<eReferences name="workflow" eType="#//Workflow" lowerBound="1"
eOpposite="#//Workflow/edges"/>

Tip: It is often useful to design models around a containment-based hierarchy
rooted at a single class. This approach can make it easier to work with
instances, as you have a single entry point from which you can access all of
the other objects in the instance (directly or indirectly), and it means that all of
the objects will be serialized into a single XMI document by default. We
discuss this in more detail in 2.3.2, “Default serialization of model instances”
on page 67.

If you wish to have the flexibility of choosing whether or not to contain instance
objects in the top-level container, make sure that any references back to the
container have a lowerBound of zero.
 Chapter 2. EMF examples 35

Example 2-2 XMI fragment for Workflow class

<eClassifiers xsi:type="ecore:EClass" name="Workflow">
<eReferences name="tasks" eType="#//Task" upperBound="-1"

containment="true" eOpposite="#//Task/workflow"/>
<eReferences name="edges" eType="#//Edge" upperBound="-1"

containment="true" eOpposite="#//Edge/workflow"/>
</eClassifiers>

When we start adding detail to the classes that we use to model workflow, we
notice that many of the elements share common features, such as name. This is
often the case when modelling, and it is usual to create a common supertype that
represents an abstraction of all objects in the model, and which provides these
common features. When you are using such a model, you have the benefit of
knowing that all objects in the model are of that type, which can be useful when
you are working with the objects reflectively. For EMF models this is less of an
issue, as all model elements already have a common supertype, EObject, and a
rich reflective API is provided to allow you to work with your model objects in this
way.

Figure 2-3 shows the model with the added WorkflowElement class.

Figure 2-3 Model of Workflow with additional common supertype
36 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Working with packages
EPackages are used to collect EClasses and EDataTypes together in much the
same way that packages are used in Java. In this section, we discuss models
that span multiple packages.

Typically packages are used to group related concepts into reusable modules.
When creating an editor for a model, it is often necessary to store additional
information about model objects, such as layout information or display
properties. For the sample application described in Chapter 7, “Implementing the
sample” on page 207, we add this information directly to the WorkflowModel,
however another approach is use a separate package to represent the
information about each diagram.

We create an EPackage Diagram, and within it, classes to represent connected
and contained nodes within that diagram, as Figure 2-4 shows. Display
properties such as the x and y co-ordinates, width and height are represented by
EAttributes belonging to DiagramNode.

Figure 2-4 DiagramModel

The following examples illustrate two ways of using our DiagramModel and
WorkflowModel together:

� We construct a new package WorkflowDiagram, which merges concepts from
the two packages using inheritance.

� We store the diagram information separately from the workflows, using
references between DiagramNode and DiagramConnection and the
appropriate classes from the WorkflowModel to maintain the relationship
between the two models.

For the first approach, we create a new package WorkflowDiagramPackage,
which contains classes that combine concepts from the WorkflowModel and the
 Chapter 2. EMF examples 37

DiagramModel. For example, a Task in a Diagram is represented by a
WorkflowDiagramTask, which inherits from both Task and DiagramNode. Notice
that we identify types defined in another package by the ecore file that contains
the type, followed by the usual reference to the type itself. Also note that the
multiple inheritance is represented by a space separated list within the
eSuperTypes attribute. We choose to specify the corresponding classes from the
WorkflowModel as the primary supertypes of the classes in the WorkflowDiagram
model, and so the appear in the eSuperTypes list first.

Example 2-3 Importing the DiagramModel and WorkflowModel

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" nsPrefix="wfDiagram"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="WorkflowDiagram"
nsURI="http://www.redbooks.ibm.com/sal330r/example/workflowdiagram">
<eClassifiers xsi:type="ecore:EClass" name="WorkflowDiagramTask"

eSuperTypes="workflowWithSupertype.ecore#//Task
Diagram.ecore#//DiagramNode"/>

<eClassifiers xsi:type="ecore:EClass" name="WorkflowDiagramWorkflow"
eSuperTypes="workflowWithSupertype.ecore#//Workflow

Diagram.ecore#//DiagramNode"/>
<eClassifiers xsi:type="ecore:EClass" name="WorkflowDiagramEdge"

eSuperTypes="workflowWithSupertype.ecore#//Edge
Diagram.ecore#//DiagramNode"/>

</ecore:EPackage>

In the second approach, the diagram and the workflow are more loosely coupled.
We add references to the classes in the DiagramModel to represent the linkage
between the two models, as shown in Example 2-4.

Example 2-4 DiagramModel with references to WorkflowModel objects

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" nsPrefix="diagram"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="diagramwithrefs"
nsURI="http://www.redbooks.ibm.com/sal330r/example/diagram">
<eClassifiers xsi:type="ecore:EClass" name="DiagramNode">

<eReferences name="container" eType="#//ContainerDiagramNode"
eOpposite="#//ContainerDiagramNode/children"/>

<eReferences name="model"
eType="ecore:EClass WorkflowWithCommonSupertype.ecore#//Task"/>

<eReferences name="sourceConnections" eType="#//DiagramConnection"
upperBound="-1" eOpposite="#//DiagramConnection/sourceNode"/>

<eReferences name="targetConnections" eType="#//DiagramConnection"
upperBound="-1" eOpposite="#//DiagramConnection/targetNode"/>

<eAttributes name="x"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>
<eAttributes name="y"
38 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>
<eAttributes name="width"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>
<eAttributes name="height"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="DiagramConnection">

<eReferences name="sourceNode" eType="#//DiagramNode" lowerBound="1"
eOpposite="#//DiagramNode/sourceConnections"/>

<eReferences name="targetNode" eType="#//DiagramNode"
eOpposite="#//DiagramNode/targetConnections"/>

<eReferences name="model"
eType="ecore:EClass WorkflowWithCommonSupertype.ecore#//Edge"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="ContainerDiagramNode"

eSuperTypes="#//DiagramNode">
<eReferences name="children" eType="#//DiagramNode" upperBound="-1"

containment="true" eOpposite="#//DiagramNode/container"/>
<eReferences name="model"
eType="ecore:EClass WorkflowWithCommonSupertype.ecore#//Workflow"/>

</eClassifiers>
</ecore:EPackage>

Note that because we are referencing classes from another package, we have to
be explicit about the type. For example, we refer to the Task class as follows:

<eReferences name="model"
eType="ecore:EClass WorkflowWithCommonSupertype.ecore#//Task"/>

Notice also that the references are one way references, as we do not wish to
pollute the WorkflowModel with references to the DiagramModel.

The Ecore model also allows us to define nested packages, which are
represented in the XMI as eSubpackages elements. For example, we could
package the DiagramModel and the WorkflowModel together as sub-packages of
a new package NestedWorkflowDiagram. Example 2-5 shows the XMI for our
NestedWorkflowDiagram package, with some details omitted for brevity. Note
that reference strings also now include the subpackage, such as:

<eReferences name="model" eType="#//workflowsupertype/Edge"/>

Example 2-5 Using nested packages

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" nsPrefix="nested"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="nested"
nsURI="http://www.redbooks.ibm.com/sal330r/example/nested" >
<eSubpackages name="workflowsupertype" nsPrefix="workflow"
nsURI="http://www.redbooks.ibm.com/sal330r/example/workflow3">
 Chapter 2. EMF examples 39

... contents of workflow package ...
</eSubpackages>
<eSubpackages name="diagram" nsPrefix="diagram"
nsURI="http://www.redbooks.ibm.com/sal330r/example/diagram">

... DiagramNode class ...
<eClassifiers xsi:type="ecore:EClass" name="DiagramConnection">

<eReferences name="model" eType="#//workflowsupertype/Edge"/>
<eReferences name="sourceNode" eType="#//diagram/DiagramNode"
lowerBound="1" eOpposite="#//diagram/DiagramNode/sourceConnections"/>
<eReferences name="targetNode" eType="#//diagram/DiagramNode"
eOpposite="#//diagram/DiagramNode/targetConnections"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="ContainerDiagramNode"
eSuperTypes="#//diagram/DiagramNode">

<eReferences name="model" eType="#//workflowsupertype/Workflow"/>
<eReferences name="children" eType="#//diagram/DiagramNode"
upperBound="-1" containment="true"
eOpposite="#//diagram/DiagramNode/container"/>

</eClassifiers>
</eSubpackages>

</ecore:EPackage>

Declaring datatypes
EMF provides datatypes such as EString and EInt, which represent the basic
Java types that you can use for simple attributes. If you need to use a different
Java type, you need to create an EDataType to represent it. For example, we use
EString to represent attributes such as condition of ConditionalOutputPort and
whileCondition for LoopTask from the WorkflowModel for the sample application.
If we wanted to represent these conditions with a specific existing Java type
instead, we would declare an EDataType corresponding to that type, as follows:

<eClassifiers xsi:type="ecore:EDataType" name="Condition"
instanceClassName="com.example.Condition"/>

Adding operations
We can augment the classes in our model by adding operations to them. Aside
from the convenience of having the signatures and skeletons generated into the
code, there is little difference between adding the operations directly to the code
as methods and adding the operations to the model. In both cases you will need
to implement the methods in the generated code. A good approach is to define
the signatures of the methods that you want to be public in your model, then
complete the generated skeletons to implement them.

Tip: When using nested sub-packages, be sure that each package has a
unique nsURI.
40 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Annotating the model
The Ecore model includes an EAnnotation object that can be added to any model
element. EAnnotations represent additional information that is associated with a
model object, and they take the form of key and value pairs. You may choose to
use EAnnotations to provide hints or additional information about how to use or
represent model objects in an application, to represent additional constraints that
are evaluted using another tool, or you may choose simply to use these
annotations to document your model. An example of using EAnnotations to
provide additional information about a model is described in 2.3.3, “Using the
XSD plug-in to customize serialization” on page 71. The XSD plug-in uses
EAnnotations to map model objects to XML.

2.1.2 Migrating existing models
The EMF documentation describes how to import from models expressed using
annotated Java interfaces, models created using Rational Rose, and models
represented by an XML Schema. In this section, we discuss migrating existing
models, focusing on migrating an XML Schema to EMF as an example. We
provide examples to illustrate the correspondences between concepts from XML
Schema and concepts provided by EMF Ecore.

For information about migrating models expressed using other frameworks,
please refer to the following documents, which are linked from the documents
section of the EMF project site at http://www.eclipse.org/emf/:

UML:

� Tutorial: Generating an EMF model

� Specifying Package Information in Rose

Annoted Java interfaces:

� Tutorial: Generating an EMF model

� Using EMF (Catherine Griffin’s Eclipse Corner article)

Migrating from XML Schema to EMF is described in the Tutorial: Generating an
EMF Model using XML Schema. The first page of the tutorial briefly outlines the
mapping used to create EMF models from an XML Schema. In this section, we
provide examples that illustrate this mapping. We use the purchase order XML
Schema shown in Example 2-6 as the source for our new EMF model. Note that
this schema is taken from the XML Schema Part 0: Primer W3C
Recommendation, 2 May 2001.1 The examples for this section can be found in
the MigrateFromXMLSchema project, in the examples provided with this book.

1 Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply. http://www.w3.org/Consortium/Legal/
 Chapter 2. EMF examples 41

http://www.eclipse.org/emf/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/

Example 2-6 Example XML Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:annotation>

<xsd:documentation xml:lang="en">
Purchase order schema for Example.com.
Copyright 2000 Example.com. All rights reserved.

</xsd:documentation>
</xsd:annotation>
<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>
<xsd:complexType name="PurchaseOrderType">

<xsd:sequence>
<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>

</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>
<xsd:complexType name="USAddress">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

</xsd:complexType>
<xsd:complexType name="Items">

<xsd:sequence>
<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity">

<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger">

<xsd:maxExclusive value="100"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="shipDate" type="xsd:date"

minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU" use="required"/>
42 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

When we import our model, as the tutorial describes, each namespace declared
as a targetNamespace of an XML Schema is represented in EMF as an
EPackage. In our case we only have one targetNamespace, so a single
EPackage is created, as shown in Figure 2-5.

Figure 2-5 EMF model from XML Schema

If the schema that you are importing from has a targetNamespace, then the
nsURI of the generated EPackage is set to that URI, and the name and nsPrefix
are derived from that URI. For example, if the targetNamespace is
 Chapter 2. EMF examples 43

http://www.example.com, then the nsPrefix is com.example, and the name is
example. If the targetNamespace is http://www.example.com/foo, then the
name is foo and the nsPrefix is com.example.foo.

Example 2-7 shows how the features of the EPackage created from po.xsd are
populated by the mapping. The purchase order schema did not have a
targetNamespace, so the URI to the schema file is used as the nsURI instead,
and the name of the file is used for the nsPrefix and name.

Example 2-7 EPackage from XML Schema

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="po"
nsURI="platform:/resource/MigrateFromXMLSchema/po.xsd" nsPrefix="po">
...

</ecore:EPackage>

You may notice that the XSD plug-in generates EAnnotations for each of the
objects in the model. These annotations describe how the model maps to the
schema, and is used to serialize model instances so that they conform to the
XML Schema from which the EMF model was generated. We discuss how to
modify these annotations to control serialization in 2.3.3, “Using the XSD plug-in
to customize serialization” on page 71.

Types from the XML Schema become EClassifiers: complex types, which
represent types that contain elements or attributes, are represented by EClasses
in EMF. Example 2-8 shows the EClass mapped from the USAddress complex
type. Note that the representation of this EClass is type, because it has been
generated from a type.

Example 2-8 EClass for the USAddress type

<eClassifiers xsi:type="ecore:EClass" name="USAddress">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="type"/>
<details key="name" value="USAddress"/>
<details key="targetNamespace"/>

</eAnnotations>
...

</eClassifiers>

Elements of this type are mapped to EReferences within the EClass representing
the containing type. For example, the USAddress type is the type of the shipTo
element, contained within the PurchaseOrderType. Hence, shipTo is represented
as an EReference within the EClass created for PurchaseOrderType, as
44 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Example 2-9 shows. Note that the representation is element, because the
EReference was mapped from an element declaration in the XML Schema.

Example 2-9 EReference for element of complex type

<eReferences name="shipTo" eType="#//USAddress" lowerBound="1"
containment="true">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="element"/>
<details key="name" value="shipTo"/>
<details key="targetNamespace"/>

</eAnnotations>
</eReferences>

EDataTypes are used to represent simple types that represent atomic values.
For example, SKU is represented by EString in the model. For XML elements
that are of a simple type, such as Comment from the purchase order schema, an
EClass representing the element is created, and an EAttribute is used to
represent the content. Example 2-10 shows the Comment EClass. Note that the
representation of the value attribute is simple-content, that is, it provides the
actual content of the comment element.

Example 2-10 EClass from simple-typed element

<eClassifiers xsi:type="ecore:EClass" name="Comment">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="element"/>
<details key="name" value="comment"/>
<details key="targetNamespace"/>

</eAnnotations>
<eAttributes name="value"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString">
<eAnnotations
source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="simple-content"/>
</eAnnotations>

</eAttributes>
</eClassifiers>

Every simple-typed attribute in the XML Schema maps to an EAttribute
belonging to the EClass mapped from the containing XML element. When the
type of the XML Schema attribute has been mapped to an EClass (which is true
for types such as anyURI), then the attribute is mapped to an EReference
instead. We see an example in Example 2-11. The representation is attribute
to indicate that it was mapped from an XML attribute.

Example 2-11 EAttribute from XML attributes
 Chapter 2. EMF examples 45

<eAttributes name="orderDate" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString">
<eAnnotations

source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">
<details key="representation" value="attribute"/>
<details key="name" value="orderDate"/>
<details key="targetNamespace"/>

</eAnnotations>
</eAttributes>

2.2 EMF.Edit-based editors and code generation
The Tutorial: Generating an EMF Model describes how to use the GenModel
wizard to create a GenModel for the WorkflowModel, and how to generate
plug-ins that can be used to create and edit WorkflowModel instances. In this
section, we describe the correspondences between generated plug-ins and the
model from which they are generated, by examining the code produced for the
model, edit and editor plug-ins generated from the WorkflowModel. We then
discuss how to customize these generated plug-ins using code generation
properties.

2.2.1 The generated plug-ins
In this section we describe the model, edit and editor plug-ins generated for the
WorkflowModel, and discuss the correspondences between the model and the
generated code. The generated plug-ins are provided in the sample code
provided with this book.

The model plug-in
In this section, we describe the code in the model plug-in generated from the
WorkflowModel.

Note: The JET framework is used to generate model, edit and editor plug-ins
from EMF models. The templates that are used to generate these plug-ins are
located in
<ECLIPSEHOME>/plugins/org.eclipse.emf.codegen.ecore_<EMFVERSION>
/templates
where <ECLIPSEHOME> is the location where you installed Eclipse and
<EMFVERSION> is the version of the EMF plug-in that you have installed. We
discuss the JET framework and how to customize code generation using
templates in 2.4, “Using JET to customize code generation” on page 80.
46 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Packages
For each EPackage, two or three Java packages are generated. For the
WorkflowModel these packages are workflow, workflow.impl and workflow.util.
Note that there may be a prefix used to generate package names, as discussed
in “Package-level GenModel properties” on page 55, however for the purposes of
describing the generated plug-ins in this section, we will ignore it. The util
package is optional: its presence will depend on the code generation properties.
The util package is generated when the code generation properties are set to
their defaults.

Classes
For each EClass in the EPackage, an interface is generated in the base
package, and a Java class that implements it is generated in the impl package. If
the EClass inherits from another EClass, then the generated interface and
implementation extend the interface and implementation generated for the
supertype.

If a class has multiple supertypes, then the first supertype in the eSuperTypes list
is considered to be the primary supertype. The generated implementation for a
subclass extends the corresponding implementation class of the primary
supertype, and implements methods defined in the interfaces generated for any
other supertypes. For example, for the WorkflowDiagram model from “Working
with packages” on page 37, WorkflowDiagramTask extends TaskImpl (the
primary supertype), and implements the methods from DiagramNode.

Features
For each feature, getter and setter methods are generated in the class and
interface generated from their containing class. A field to cache the value of the
feature is also generated if the feature is not volatile. If a feature is not
changeable, then only getter methods are generated.

For multi-valued attributes and references, an EList is used to represent the
feature, while single valued attributes are represented by the type of that
attribute, for example EString, or the instanceClass of a user-defined EDataType.
The type of the EList used to represent features will depend on the constraints in
the model, for example, a non-containment reference is represented by an
EObjectWithInverseResolvingEList while a containment reference is represented
by an EObjectContainmentWithInverseEList.

The reflective methods such as eSet() are generated from all features for the
containing class.
 Chapter 2. EMF examples 47

Operations
For each EOperation, a public method signature is generated in the interface of
the containing class, and a skeleton implementation is generated in the
corresponding implementation.

DataTypes
For each EEnum an implementation is generated that extends
org.eclipse.common.util.AbstractEnumerator. For other EDataTypes there are no
interfaces or implementations generated, instead their instanceClass is used
directly for EAttributes of that type.

The edit plug-in
ItemProviders are generated for each class in the edit plug-in in the provider
package. In addition, an EMFPluginClass is generated for the entire plug-in. The
ItemProviders extend org.eclipse.emf.edit.provider.ItemProviderAdaptor and
adapt the corresponding EObject from the model. For example,
WorkflowElementItemProvider adapts a WorkflowElement. The ItemProvider
forwards some notifications received when the model object changes via
fireNotifyChanged(), and filters the rest. You can control which notifications are
filtered when you generate the plug-in, as described in 2.2.2, “Customizing code
generation through GenModel properties” on page 49.

ItemProviders also manage property descriptors for all features of the class, as
well as an icon and description for the class, returned by the getImage() and
getText() methods.

An ItemProviderAdaptorFactory is also generated for all of the generated
ItemProviders. For the WorkflowModel, it is
WorkflowItemProviderAdaptorFactory. Refer to The EMF.Edit framework and
code generator overview for more information about these factories.

The editor plug-in
For each model, three classes are generated in the editor plug-in, in the
presentation package. There is a multi-page editor, which creates several
different JFace viewers for the model, including a TreeViewer which use the
ItemProviders from the edit plug-in as their content and label providers. The
editor also creates an outline view and property sheet page that displays the
properties for the selected object from the viewers.

An ActionBarContributor is also generated, that is used to create the context
menu to add children or siblings to selected items from the viewers in the editor.

The final class generated in the editor plug-in is a wizard, which allows you to
create a new resource containing an instance of one of your model objects.
48 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

2.2.2 Customizing code generation through GenModel properties
The EMF Users’ Guide describes the properties defined for each of the Ecore
objects in a model. Some of these properties affect the way in which code is
generated from the model and are duplicated in the GenModel for that model. In
2.2.1, “The generated plug-ins” on page 46, we examine the code generated for
the WorkflowModel’s model, edit and editor plug-ins. For any Ecore model, the
generation of the model, edit and editor plug-ins is driven by the properties
represented in the GenModel created for that model. In this section, we examine
those properties, and discuss the effect that changing them has on code
generation.

If we examine the GenModel for the WorkflowModel using a text editor, we can
see that it is described using XMI. This is because the GenModel is itself an EMF
model, so its instances are serialized by default according to the XMI 2.0
production rules2, as described in 2.3.2, “Default serialization of model
instances” on page 67. Example 2-12 shows the top-level XMI element from the
GenModel for the WorkflowModel. As we can see from Example 2-12, the
GenModel has properties (represented in the XMI as attributes), that identify the
model from which the edit and editor plug-ins are generated, and that specify the
name and package of the generated plug-ins. We provide details of the effect
that these properties have on code generation in “Top-level GenModel
properties” on page 53.

Example 2-12 Top-level element for WorkflowModel GenModel

<genmodel:GenModel
xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
xmlns:genmodel="http://www.eclipse.org/emf/2002/GenModel"
modelDirectory="/WorkflowModel/src"
editDirectory="/WorkflowModel.edit/src"
editorDirectory="/WorkflowModel.editor/src"
modelPluginID="WorkflowModel" modelName="Workflow"
editPluginClass="WorkflowPackage.provider.WorkflowEditPlugin"
editorPluginClass="WorkflowPackage.presentation.WorkflowEditorPlugin">
...

</genmodel:GenModel>

2 For more information, refer to the XML Metadata Interchange (XMI) Specification, Version 2.0,
found at: http://www.omg.org/technology/documents/formal/xmi.htm
 Chapter 2. EMF examples 49

http://www.omg.org/technology/documents/formal/xmi.htm

Nested within the top level element of the WorkflowModel’s GenModel XMI, we

find elements corresponding to each object from the WorkflowModel, with
attributes representing the properties specific to each object. The nesting of the
contents of a GenModel XMI matches the nesting within the source Ecore model,
with elements corresponding to classes, data types and sub packages nested
within the element corresponding to their containing package, and elements
corresponding to references, attributes and operations nested within the element
corresponding to their containing class. In Example 2-13, we see a fragment of
the GenModel for the WorkflowModel that corresponds to the Workflow class.The
genClasses element corresponding to the Workflow class contains genFeatures
elements that correspond to the name attribute, and to the task and edge
references of the Workflow class. The effect on code generation of the properties
represented for each class is discussed in “Class-level GenModel properties” on
page 56.

Example 2-13 GenModel fragment for EClass Workflow

<genClasses ecoreClass="Workflow.ecore#//Workflow">
<genFeatures

ecoreFeature="ecore:EAttribute Workflow.ecore#//Workflow/name"/>
<genFeatures property="None" children="true"

ecoreFeature="ecore:EReference Workflow.ecore#//Workflow/task"/>
<genFeatures property="None" children="true"

ecoreFeature="ecore:EReference Workflow.ecore#//Workflow/edge"/>
</genClasses>

While you can control the generation of plug-ins by editing the GenModel XMI
directly, you can also edit the GenModel properties with the editor provided by
the GenModel plug-in. Figure 2-6 shows the GenModel editor displaying the
top-level properties from the GenModel for the WorkflowModel. As the figure
shows, the tree view provided by the GenModel editor mirrors the containment
hierarchy from the GenModel XMI and the source model, and displays the
properties for the selected item in the Properties view. If you do not see the
properties, select Window -> Show View -> Other and then select Properties
from the Basic item in the tree.

Aside: If you have installed the org.eclipse.emf.source plug-in, you can take a
look at the file GenModel.ecore, that describes the GenModel. The zip file
containing the file is usually installed at the following location;
<ECLIPSEHOME>/plugins/org.eclipse.emf.source_<EMFVERSION>/src/org.
eclipse.emf.codegen.ecore_<EMFVERSION>/runtime/codegen.ecoresrc.zip
where <ECLIPSEHOME> is the location where you installed Eclipse and
<EMFVERSION> is the version of the EMF plug-in that you have installed.
50 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 2-6 Top-level GenModel properties for WorkflowModel

An advantage of using the GenModel editor over editing the XMI directly is that
the properties are organized by category, as we see in Figure 2-6, where the
properties for the WorkflowModel GenModel are categorized according to
whether they relate to the generation of the model, edit or editor plug-ins. There
is also a Templates & Merge category that is not shown in the figure, which we
discuss in 2.4, “Using JET to customize code generation” on page 80.
 Chapter 2. EMF examples 51

You can toggle between the categorized view and a flat view of the properties by
clicking the button identified by the tree icon, as shown in Figure 2-7, with the tool
tip Show Categories. In this example, we see the properties for the name
attribute of the class Workflow. The property view allows us to view and edit all of
the properties associated with each object in the model. The editor provides a
brief description of each of the properties, which is displayed in the status bar
whenever a property is selected, as Figure 2-7 shows for the Property Type
property. For properties that have a fixed set of values, such as Property Type in
Figure 2-7, the editor provides a pull-down list from which you may select an
alternate value. Note that the XMI file representing the model may not explicitly
persist a property that is unchanged from its default value. We can see that this is
the case in Example 2-13 on page 50, where none of the properties in the Edit
category for the name attribute are present in the XMI.

Figure 2-7 Using the GenModel editor to edit properties

In addition to specifying code generation properties using the GenModel editor,
you may provide values for some of these properties when you initially create or
import your model from XMI or annotated Java interfaces. When you use the
GenModel wizard to create a GenModel from your model, the values that you
supply in your model are used to populate the GenModel, and for any properties
for which you do not supply a value, a default value is used instead.
52 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

In the following sections, we detail the GenModel properties, organizing them
according to the GenModel hierarchy. At each level, we provide a table that
outlines the name of the property as it appears in the GenModel editor, the
category to which the property belongs in the GenModel editor, the attribute used
to represent the property in the GenModel XMI and the default value provided by
the GenModel wizard for that property. We also discuss the effect that changing
each property from its default has on the generation of the model, edit and editor
plug-ins.

Top-level GenModel properties
The properties represented at the top level for each GenModel are described in
Table 2-1.

Table 2-1 Top-level GenModel properties

The copyrightText property provides the value for the final static field copyright in
every generated Java class in the model and edit plug-ins. By default, the

Property Category XMI attribute Default Value

Copyright Text All copyrightText

Creation
Commands

Edit creationCommands true

Edit Directory Edit editDirectory <PROJECT>.edit/src

Editor Directory Editor editorDirectory <PROJECT>.editor/src

Editor Plug-in
Class

Editor editorPluginClass <basePackage of top-level
EPackage><modelName>
EditorPlugin

Edit Plug-in Class Edit editPluginClass <basePackage of top-level
EPackage><modelName>
EditPlugin

Generate Schema Model generateSchema false

Model Directory Model modelDirectory <PROJECT>/src

Model Name All modelName GenModel base filename

Model Plug-in
Class

Model modelPluginClass

Model Plug-in ID All modelPluginID <PROJECT>

Non-NLS Markers All nonNLSMarkers false
 Chapter 2. EMF examples 53

copyright field is set to be the empty string. Note that this field is not generated in
the classes for the editor plug-in.

The creationCommands property controls whether or not the generated edit
plug-in includes support for creating new objects. If creationCommands is false,
the generated editor only allows properties of existing objects to be modified, and
the menu options for creating new child or sibling objects are not present. If
creationCommands is true, in the edit plug-in, each ItemProvider generated from
each class in the model contains a method collectNewChildDescriptors, which
constructs a list of the types of children objects that can be created. These lists
are used by the editor plug-in to construct actions that can be used to create
children and sibling objects.

The modelName property is used to construct the default names of the edit and
editor plug-ins. The values of the modelDirectory, editDirectory and
editorDirectory properties determine the projects, and path within those projects,
into which the plug-ins are generated, while the modelPluginClass,
editPluginClass and editorPluginClass properties determine the Java package of
each generated plug-in.

The modelPluginID property is used as the plug-in ID of the model plug-in and is
referenced from the edit plug-in, which depends on the model plug-in. If you
change the value of this property, you need to delete the plugin.xml files from the
model and edit plug-ins before regenerating the code, to ensure that they are
updated.

Setting the generateSchema property to true means that the XML Schema for
the model is generated whenever the model plug-in is generated. When you
generate the schemas, you will notice new schema files appear in the project;
XMI.xsd and <PackageName>XMI.xsd, where <PackageName> is the name of
the top-level package from your model. For example, the XML Schema files
generated from the WorkflowModel are XMI.xsd and WorkflowXMI.xsd. XMI.xsd
declares XMI elements and attributes that are common to all models, while
WorkflowXMI.xsd contains the only element and attribute declarations specific to
serializing WorkflowModel instances.

Setting nonNLSMarkers controls whether National Language Support (NLS)
comment markers, marking particular strings as non-translatable, are generated
in the source of the plug-ins. Example 2-14 shows a code fragment from the
toString method from the class PortImpl, generated as part of the model plug-in
from the WorkflowModel. We see that the strings name and condition are
marked as NON-NLS, that is, that they are not translatable. When

Tip: For the XML Schema generation to succeed, you must have installed the
XSD plug-in available from http://www.eclipse.org/xsd/.
54 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.eclipse.org/xsd/

nonNLSMarkers is true, strings that are used as keys to lookup resource bundles
and strings based on the names of model objects (such as name and condition in
this example), are marked as NON-NLS. However, some strings, such as those
that represent default values for EString-typed attributes, remain unmarked when
this property is true. For more information about internationalizing Eclipse
plug-ins, see:
http://www.eclipse.org/articles/Article-Internationalization/how2I18n.html.

Example 2-14 Generated NON-NLS markers

public String toString() {
...
result.append(" (name: "); //$NON-NLS-1$
result.append(name);
result.append(", condition: "); //$NON-NLS-1$
result.append(condition);
...

}

Package-level GenModel properties
For each EPackage in the model, there is a corresponding genPackages
element in the GenModel XMI, which is represented in the GenModel editor as
an item in the tree view. The properties represented for each package are
presented in Table 2-2.

Table 2-2 Package-level GenModel properties

The ecorePackage property identifies the corresponding EPackage from the
source model. The prefix property is used to generate the names for the
AdapterFactory, Package, Factory and Switch classes generated for the
EPackage. The prefix should begin with an upper-case character so that the
generated classes have upper-case names.

If a value is specified for basePackage, that value is used as the package prefix
for the generated plug-ins. For example, to generate the model interfaces for our

Property Category XMI attribute Default Value

Adaptor Factory Model adapterFactory true

Base Package All basePackage

Package Ecore ecorePackage EPackage name

Prefix All prefix EPackage name
(capitalized)

Resource Type Model resource None
 Chapter 2. EMF examples 55

http://www.eclipse.org/articles/Article-Internationalization/how2I18n.html

WorkflowModel plug-in into the package com.ibm.itso.workflow, we set
basePackage for the Workflow package to com.ibm.itso and check that the
name of the Workflow package in the WorkflowModel is lower case to ensure
that we follow java package naming convention. If you generate the GenModel
from a model where the top-level package has a fully qualified Java name, the
wizard fills in the basePackage property with the prefix from that package.

Note, if your model contains sub-packages, these are represented in the
GenModel as nestedGenPackages elements. The default basePrefix for each
nestedGenPackages element is the package name constructed from the
basePrefix and ecorePackage properties of the containing genPackages
element. If you change the basePrefix for a sub-package, the code generated for
the objects directly contained by that sub-package is generated into the package
specified by the sub-package’s basePrefix and the sub-package name.

The value of adaptorFactory indicates whether an AdapterFactory and Switch is
generated for the EPackage, in the corresponding util package.

The resource property indicates whether to generate a Resource and
ResourceFactory implementation for the model, and the type of Resource to
subclass when doing so. When this property is set to None, as it is by default, the
generated editor uses an XMIResource to serialize model instances, as
described in 2.3.2, “Default serialization of model instances” on page 67. If
resource is set to Basic, a subclass of ResourceImpl is generated in the util
package, which can then be modified to customize serialization to any format.
Similarly, setting resource to XML or XMI means that the generated
ResourceImpl is a subclass of XMLResourceImpl or XMIResourceImpl,
repectively, and you can customize these serializations as described in 2.3.5,
“Providing a custom resource implementation” on page 76.

Class-level GenModel properties
Classes are represented in the GenModel as genClasses elements. The
properties for each class are shown in Table 2-3.

Table 2-3 Class-level GenModel properties

Property Category XMI attribute Default Value

Class Ecore ecoreClass EClass name

Image Edit image true

Label Feature Edit labelFeature

Provider Type Edit provider Singleton
56 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

The ecoreClass property identifies the corresponding EClass from the source
model.

The provider property indicates which item provider pattern is used to generate
the ItemProvider for this class in the editor plug-in; Singleton, Stateful or None.
Refer to the Item provider implementation classes section, from The EMF.Edit
framework and code generator overview, in the Documents section of the EMF
project site at: http://www.eclipse.org/emf/ for details of the Singleton and
Stateful pattern. If the property is set to None, no Item Provider is generated for
the class.

The image property indicates whether an icon is generated for the class in the
corresponding ItemProvider, which is returned by the getImage() method.

The labelFeature property identifies the attribute that is used to provide the
default label for objects of this type, which is returned by the getText() method in
the generated ItemProvider. If this property is not set, then the code generation
will look for an attribute called name (or with name as a substring in its name) to
use instead, and if that does not exist, it will use the first simple attribute (that is,
an attribute that is of a simple type such as EString) from the class.

Feature-level GenModel properties
The GenModel represents each attribute and reference as a genFeatures
element in the XMI. The properties for each feature are listed in Table 2-4.

Table 2-4 Feature-level GenModel properties

The corresponding feature (EAttribute or EReference) from the source model is
identified by the ecoreFeature property.

Property Category XMI attribute Default Value

Children Edit children true for containment references,
otherwise false

Feature Ecore ecoreFeature The name of the EAttribute or
EReference

Notify Edit notify true for attributes and containment
references

Property Type Edit property None for containment/container
references, Editable for normal
references and attributes, Readonly
for features where changeable is
false
 Chapter 2. EMF examples 57

http://www.eclipse.org/emf/

The children property indicates whether this feature is considered to be a child of
the containing class, for the purposes of constructing the tree view in the editor,
and whether the context menu for the parent provides an option to create this
feature as a child. Most features are represented as properties, and so children
is usually false, however for containment references, children is true by default.

The notify property indicates whether the ItemProvider forwards notifications
indicating that the feature has changed. By default, the code generated in the
model code notifies whenever any feature changes, however the generated
ItemProviders filter these notifications. By default, notifications of changes to
attributes and containment references are forwarded, while non-containment
reference changes are not.

The property property indicates whether this feature is represented as a property
on the property sheet, and whether its value can be edited via the property sheet.
Features represented as children are usually not included in the property sheet,
so it is usual to see containment references with None as the value for property,
and attributes and non-containment references with this value set to Editable.
Features that have changeable set to false in the Ecore model will be Readonly
by default.

GenModel properties for DataTypes
EDataTypes are represented in the GenModel as genDataTypes elements. The
ecoreDataType property identifies the associated EDataType from the model. As
EDataTypes already reference their implementation class, the GenModel does
not represent any other code generation properties for them. Similarly, EEnums
are represented in the GenModel by genEnums elements, with an ecoreEnum
property referring to the EEnum from the model. The literals are represented by
genEnumLiterals elements nested within the corresponding genEnums element,
again with a single property, ecoreEnumLiteral, that refers to the EEnumLiteral
from the model.

GenModel properties for operations and parameters
Operations are represented as genOperations elements, which contain
genParameters elements for each parameter. Apart from the ecoreOperation
property of genOperations, and the ecoreParameter property of genParameters
identifying the associated model objects, there are no other GenModel properties
associated with operations or parameters. If you want to add methods to the
generated code, it makes little difference whether you add them to the model first
and generate skeletons, or simply add them directly to the generated code. If you
do generate them from the model, make sure that you remove the @generated
tag when you implement them so that your implementation is not overwritten if
you regenerate the code.
58 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Customization example
We can see that the properties at the top-level of the GenModel generally affect
the names, packages and locations of the generated model, edit and editor
plug-ins, while the GenModel properties at the package, class and feature level
affect only the types generated from those model elements. The default values
generate three separate plug-ins, such as the plug-ins that we examined in “The
generated plug-ins” on page 46. In the following example, we change some of
the top-level GenModel properties in order to customize the generated plug-ins.

Our example customizes the code generation so that the model, edit and editor
are generated into a single plug-in, to make it easier to package for distribution.
These are the steps that we take to generate a single plug-in called
com.ibm.itso.sal330r.workflow, for our WorkflowModel editor:

1. In our existing WorkflowModel project, we generate the GenModel for the
WorkflowModel and open it using the GenModel editor.

2. We change the modelPluginID to com.ibm.itso.sal330r.workflow, as shown
in Figure 2-8. This is the identifier that is used for the plug-in containing the
model, edit and editor code.

3. We edit modelDirectory, editDirectory and editorDirectory properties so that
they are all set to /com.ibm.itso.sal330r.workflow/src. When we generate
the plug-ins, the com.ibm.itso.sal330r.workflow project is created if it does not
already exist. The code for all three plug-ins is generated to the src directory
of this project, and a single plugin.xml is generated to describe the plug-in
containing the model, edit and editor code.

4. Edit the editPluginClass and editorPluginClass properties, as shown in
Figure 2-8, so that they have the same package prefix.
 Chapter 2. EMF examples 59

Figure 2-8 Changing the top-level GenModel properties to generate a single plug-in

5. In order to generate the model code into the com.ibm.itso.sal330r.workflow
package, we also edit the basePackage property on the workflow package,
setting it to com.ibm.itso.sal330r, as shown in Figure 2-9. Note that the
basePackage does not include the package name workflow. When the model
code is generated, the name of the EPackage from the model is used to
construct the last part of the Java package name.
60 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 2-9 Changing the basePackage property

6. Select Generate All from the context menu of the top-level GenModel
element to generate the model, edit and editor code into the
com.ibm.itso.sal330r.workflow plug-in. It is important to select Generate All
the first time you generate the code, rather than choosing the model, edit or
editor options individually, so that plugin.xml contains all of the required
entries for the combined plug-in.

The resulting plug-in is located in the com.ibm.itso.sal330r.workflow project.

Tip: Be sure to generate from the context menu of the top-level element in the
GenModel. Generating from any item lower down in the tree will only generate
code associated with that item and its children.
 Chapter 2. EMF examples 61

2.2.3 Modifying the generated code
Once you have generated the code for the model, edit and editor plug-ins, there
may still be some customizations that you need to make before you can use it.
Common additions that you may make to the model code include implementing
methods generated from EOperations, implementing getter and setter methods
for volatile features, or adding methods that were not represented in the model.

Modifying the model plug-in
In the following example, we modify the model code generated from the
WorkflowModel to implement the getter and setter methods generated for our
volatile attribute id, in WorkflowElementImpl. The id attribute is volatile because
we want to generate its value to ensure that it is unique. When we generate the
model code, skeletons are generated for the getId() and setId() methods, as
shown in Example 2-15.

Example 2-15 Methods generated for volatile feature

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public String getId() {

// TODO: implement this method to return the 'Id' attribute
// Ensure that you remove @generated or mark it @generated NOT
throw new UnsupportedOperationException();

}
/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public void setId(String newId) {

// TODO: implement this method to set the 'Id' attribute
// Ensure that you remove @generated or mark it @generated NOT
throw new UnsupportedOperationException();

}

Important: Whenever you modify part of the generated code, be sure to
remove the @generated tag, or change it to read @generated NOT in the
comment that describes the method, type or field that you are modifying. If you
fail to do this, your changes will be discarded next time you regenerate the
code from the model.
62 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

We modify WorkflowElementImpl to add a method to generate the id, add a field
to cache the generated id , and use the method to set the value from within the
getId() and setId() method, as shown in Example 2-16. We generate the id in
both methods so that the id is never null when it is used.

Example 2-16 Modifying the getID() method

public abstract class WorkflowElementImpl extends EObjectImpl implements
WorkflowElement {

/**
 * Prefix used for generated ids
 */
protected static final String idPrefix = "w";
/**
 * The cached value of the '{@link #getId() id}' attribute.
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @see #getId()
 *
 */
protected String id;

protected static int counter = 0;
...
/**
 * Generate (and cache) an id as needed
 */
public String getId() {

if (id == null){
id = generateId();

}
return id;

}
/**
 * Generate a random id based on the current time
 * @return the generated id
 */
public synchronized String generateId(){

long current= System.currentTimeMillis();
return idPrefix + current + counter++;

}
/**
 * Set or generate an Id
 */
public void setId(String newId) {

if (newId == null && id == null){
id = generateId();

}
else {
 Chapter 2. EMF examples 63

id = newId;
}

}
}

We remove the @generated tag from the comments to ensure our methods are
not overwritten. Note that volatile attributes are quite commonly not changeable,
and are usually also transient. This means that usually you would not need to
cache the value of the attribute or provide a setter implementation. In our case,
although the ids are generated, and we don’t care what the value of the ids are
while the objects are in memory, we use them in the serialization to make the
XMI references more readable, which means that the id attribute has to be
non-transient and changeable.

Modifying the edit plug-in
A common modification that you might want to make to an ItemProvider
generated from a model object is to customize the getText() method. By default,
this method returns the type of the object, followed by the value of the label
feature for that type, and is used by the generated editor to label each item in the
tree view displaying a model. For our WorkflowModel example, although Edges
have a name and id, it is more useful to label them by the names of their source
and target nodes. We modify the getText() method of EdgeItemProvider as
shown in Example 2-17 to provide this functionality.

Example 2-17 The getText() method of EdgeItemProvider

/**
 * This returns the label text for the adapted class.
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @generated NOT
 */
public String getText(Object object) {

Edge e = (Edge)object;
String label = getString("_UI_Edge_type");
String fromNode = e.getSource().getNode().getName();
String toNode = e.getTarget().getNode().getName();
if (!(fromNode == null || fromNode.length() == 0))

label += " from " + fromNode;
if (!(toNode == null || toNode.length() == 0))

label += " to " + toNode;
return label;

}

64 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

In this case, we must take care, because the features that we are using to label
the Edge are non-containment references. Remember from 2.2.2, “Customizing
code generation through GenModel properties” on page 49, that notifications of
changes to non-containment references are filtered by the ItemProvider and not
passed to the editor by default. This means that the label will not be updated to
reflect new values for the source or target if they change. We can override this
behaviour by setting the notify property for the source and target references of
Edge in the GenModel to true, and then regenerating the edit code.

You can see the result of the changes in the default WorkflowModel editor in
Figure 2-10.

Figure 2-10 Editor using modified EdgeItemProvider

2.3 Model instances and serialization
In this section we examine how to create and serialize model instances. We
provide examples that illustrate how to customize serialization and discuss the
effect that different modeling techniques can have on the way in which instances
are serialized.

2.3.1 Creating model instances
We can use the code generated for the model plug-in from our model to create
instances of that model.
 Chapter 2. EMF examples 65

Example 2-18 shows how we create a Workflow instance and a Task instance
using the WorkflowFactory. The example also demonstrates how we use the
methods from the generated code to set properties such as the name on the
Task, and maintain references, in this case adding the Task to the nodes of the
Workflow, and adding an InputPort and OutputPort to the Task.

Example 2-18 Creating instances

Map registry = EPackage.Registry.INSTANCE;
String workflowURI = WorkflowPackage.eNS_URI;
WorkflowPackage wfPackage = (WorkflowPackage) registry.get(workflowURI);
WorkflowFactory wfFactory = wfPackage.getWorkflowFactory();
Workflow workflow = wfFactory.createWorkflow();
// add a Task to the workflow
Task t1 = wfFactory.createTask();
workflow.getNodes().add(t1);
t1.setName(“Task 1”);
// add an input port and an output port to the Task
t1.getInputs().add(wfFactory.createInputPort());
t1.getOutputs().add(wfFactory.createOutputPort());
...

If we were using the reflective API to manipulate our instance objects, we would
replace methods such as setName() and getNodes() that are specific to the
WorkflowModel with generic eSet() and eGet() methods, for example:
t1.eSet(WorkflowPackage.eINSTANCE.getTask_Name(), "Task 2")
to set the name of the Task.

An interesting application of using the reflective APIs is to work with dynamic
models, that is, to work with Ecore models as in-memory objects rather than
generating code from the model and using the generated classes. Example 2-19
shows an sample of how we can create instances of the Ecore model to
represent a very basic model of Workflow.

Example 2-19 Creating a dynamic model

// Create the Workflow Package
EPackage workflowPackage = EcoreFactory.eINSTANCE.createEPackage();
// create the Port class
EClass portClass = EcoreFactory.eINSTANCE.createEClass();
portClass.setName("Port");
EClass inputPortClass = EcoreFactory.eINSTANCE.createEClass();
inputPortClass.setName("InputPort");
// set up inheritance
inputPortClass.getESuperTypes().add(portClass);
// create the Task class
EClass taskClass = EcoreFactory.eINSTANCE.createEClass();
taskClass.setName("Task");
66 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

// add name attribute to Task
EAttribute taskNameAttr = EcoreFactory.eINSTANCE.createEAttribute();
taskNameAttr.setName("name");
taskNameAttr.setEType(EcorePackage.eINSTANCE.getEString());
taskClass.getEAttributes().add(taskNameAttr);
// set up the reference between Task and InputPort
EReference taskToInputPortRef = EcoreFactory.eINSTANCE.createEReference();
taskToInputPortRef.setUpperBound(-1);
taskToInputPortRef.setLowerBound(1);
taskToInputPortRef.setEType(inputPortClass);
taskClass.getEReferences().add(taskToInputPortRef);
...
// add the classes to the package
workflowPackage.getEClassifiers().add(taskClass);
workflowPackage.getEClassifiers().add(portClass);
workflowPackage.getEClassifiers().add(inputPortClass);
...

We can create instances of this model using the reflective API, as Example 2-20
demonstrates.

Example 2-20 Using the reflective API to create dynamic model instances

EFactory wfFactory = workflowPackage.getEFactoryInstance();
EObject task1 = wfFactory.create(taskClass);
task1.eSet(taskNameAttr, "Task 1");

Obviously, this dynamic approach only works for some applications - if you are
using a model where you would normally customize the code generated from the
model, for example, to implement EOperations, then this approach is not
suitable.

2.3.2 Default serialization of model instances
When you create and serialize instances of an Ecore model, they are serialized
by default as XMI 2.0. This section provides examples illustrating how EMF
objects are represented in the XMI.

For a more complete description of XMI 2.0, please refer to the XML Metadata
Interchange (XMI) Specification, Version 2.0, found at:
http://www.omg.org/technology/documents/formal/xmi.htm
 Chapter 2. EMF examples 67

http://www.omg.org/technology/documents/formal/xmi.htm

All of the example serializations discussed in this section can be found in the
Serializations directory in the examples provided for this section.

Example 2-21 shows XMI representing a Workflow instance, representing a
Workflow containing a Comment and two Tasks, each with an input, output and
fault port, and an Edge connecting them. You can load this example from the file
SimpleXMIInstance.workflow.

Example 2-21 Default XMI serialization of a Workflow instance

<workflow:Workflow xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="w105966221898456"
xmlns:workflow="http://www.redbooks.ibm.com/sal330r/workflow">
<nodes xsi:type="workflow:Task" name="Task 1" x="31" y="82"

id="w105966222103157" isStart="true">
<outputs xsi:type="workflow:FaultPort" name="fault"

id="w105966226568760"/>
<outputs name="output" id="w105966226568761" edges="w105966226568762"/>
<inputs name="input" id="w105966226568763"/>

</nodes>
<nodes xsi:type="workflow:Task" name="Task 2" x="265" y="81"

id="w105966222451558" isFinish="true">
<outputs xsi:type="workflow:FaultPort" name="fault"

id="w105966226568764"/>
<outputs name="output" id="w105966226568765"/>
<inputs name="input" id="w105966226568766" edges="w105966226568762"/>

</nodes>
<edges id="w105966226568762" target="w105966226568766"

source="w105966226568761"/>
<comments comment="This is a sample Workflow instance" x="24" y="20"

id="w105966223168759"/>
</workflow:Workflow>

As the example shows, the Workflow object is serialized to an element in the
XMI, with attributes representing its EAttributes and non-containment
EReferences. Containment EReferences are represented as elements, with the
content of the contained object contained inline, as we see for the nodes
elements from the example. When the reference can be to objects of different
types (that is, to different subtypes of the referenced class), the xsi:type attribute
is also serialized to identify the type of the object represented by the element.

Note: We have already seen several examples of XMI representing model
instances. The Ecore model is itself an EMF model, so the Ecore documents
describing the models that we created in 2.1, “EMF modeling techniques” on
page 32, were all examples of the default serialization of Ecore model
instances to XMI.
68 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Non-containment EReferences, such as the references between each edge and
its target and source Ports, are represented as strings, that identify the object
being referenced. By default, the strings used to identify other objects are based
on the containing resource, type and position of the referenced object.
Example 2-22 shows how positional references are used to serialize a Workflow.
In Example 2-21, the id attribute is used instead of positional references. This is
because the id property for that attribute it set to true in the model. If the id
property is true for one of the attributes, references will refer to objects using the
value of that attribute, if it is set, or use a positional reference if the id attribute is
not set. If you are using an id attribute, it is important to ensure that its values are
unique within a resource, so that the ids in the XMI are unique within the
document, as required by the standard.

Example 2-22 Positional references

<workflow:Workflow xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:workflow="http://www.redbooks.ibm.com/sal330r/workflow">

<nodes xsi:type="workflow:Task" name="Task 1">
<outputs name="output" edges="//@edges.0"/>
<inputs name="input"/>

</nodes>
<nodes xsi:type="workflow:Task" name="Task 2">

<outputs name="output1"/>
<inputs name="input1" edges="//@edges.0"/>

</nodes>
<edges target="//@nodes.1/@inputs.0" source="//@nodes.0/@outputs.0"/>

</workflow:Workflow>

You can customize the way that references are represented in the XMI by
overriding the eURIFragmentSegment() and eObjectForURIFragmentSegment()
methods in your model implementation classes. The default positional
references are provided by these methods in EObjectImpl, which is a superclass
of all the implementation classes generated from a model.

When the references are to objects contained by another resource, then the
scheme for finding the file that is the serialization of the resource (for example,
http) and the name of the file is also added to the reference. An example of this is
when we use cross-package references and serialize the containing Ecore
EPackages into separate files, such as the following snippet taken from
Example 2-4:

<eReferences name="model"
eType="ecore:EClass WorkflowWithCommonSupertype.ecore#//Task"/>

Each model instance that is created by the generated editor plug-in is added to a
Resource, which can later be used to serialize that instance. Within any
 Chapter 2. EMF examples 69

EMF-based application, we can use an XMIResource to serialize or deserialize
instance objects. In the sample application discussed in Chapter 7,
“Implementing the sample” on page 207, we use XMIResources to contain
WorkflowModel instances. To create or get each resource, we first create a
ResourceSet, as Example 2-23 shows.

Example 2-23 Set up the ResourceSet

// Initialize the workflow package
WorkflowPackageImpl.init();

// Register the XMI resource factory for the .workflow extension
Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;
Map m = reg.getExtensionToFactoryMap();
m.put("workflow", new XMIResourceFactoryImpl());

// Obtain a new resource set
ResourceSet resSet = new ResourceSetImpl();

ResourceSets are used to group related Resources. A Resource can contain
instances of any object from a model, and a ResourceSet is used to group
related Resources, that is, Resources that contain objects that reference each
other. For the Workflow example, we use Resources to contain Workflow
instances. We can use the ResourceSet created in Example 2-23 to create a
new Resource as shown in Example 2-24.

Example 2-24 Create an XMIResource

// Create a resource
Resource resource =

resSet.createResource(URI.createPlatformResourceURI(path.toString()));

If we want to load from an existing resource, we use the getResource() method
instead, as shown in Example 2-25.

Example 2-25 Load an XMIResource

// Get a resource
Resource resource =

resSet.getResource(URI.createPlatformResourceURI(path.toString()),true);

Once we have the resource, we can add objects to the contents of the resource.
Objects contained by the same resource will be serialized to the same file.
Example 2-26 shows how we create and add a Workflow object to a resource.

Example 2-26 Add a model object to a resource

Workflow workflow = wfFactory.createWorkflow();
70 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

resource.getContents().add(workflow);

Many models are based on an inheritance hierarchy, with a single top-level
container. One of the advantages of this approach is that you need only add the
top-level object to the resource explicitly. All of the other objects contained in the
hierarchy will be serialized as elements within that top-level element. If you are
using a model without a top-level container, then any objects that are not
contained need to be added to the Resource explicitly.

2.3.3 Using the XSD plug-in to customize serialization
In this section, we demonstrate how to use a custom serialization to XML, by
annotating our model with information used by the XSD plug-in.

Whenever we create an Ecore model from an XML Schema using the XSD
plug-in, annotations that describe how each object is serialized to XML are
added to the model, so that serialized model instances conform to the source
schema. Use of these annotations is not limited to models imported from XML
Schema; we show how to use the same annotations on any Ecore model to
control how its instances are serialized.

We make the following changes to improve the readability of XML representing
WorkflowModel instances:

� Use an XML element instead of an XML attribute to represent EAttributes that
potentially have lengthy values, including

– comment from WorkflowElement,

– transformExpression from Transformation,

– condition from ConditionalOutputPort and

– whileCondition from LoopTask.

� Use the singular form of the name of multi-valued containment EReferences
to prevent the plural form being used for an elements that represent single
objects. Note that we do not make this change for non-containment
EReferences, as the default serialization is to an XML attribute that
represents the entire list of values, and so using the plural form of the name is
appropriate. For example, within Workflow:

Note: Although the XML produced by using techniques described in this
section may look very similar to the XMI described in 2.3.2, “Default
serialization of model instances” on page 67, it is important to note that it does
not conform to the XMI 2.0 standard.
 Chapter 2. EMF examples 71

– comments becomes comment,

– edges becomes edge and

– nodes becomes node.

� Change the Workflow element to be lower case, to provide consistent
capitalization throughout the document.

We begin by annotating the workflow EPackage, as shown in Example 2-27,
indicating to the XSD plug-in that instances of this package use elements and
attributes from the namespace http://www.redbooks.ibm.com/sal330r/workflowXSD.
The annotations on the objects contained by the package indicate how each
object maps to elements and attributes from this namespace.

Example 2-27 XSD annotation on workflow EPackage

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" nsPrefix="workflow"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="workflow"
nsURI="http://www.redbooks.ibm.com/sal330r/workflowXSD">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="schema"/>
<details key="targetNamespace"

value="http://www.redbooks.ibm.com/sal330r/workflowXSD"/>
</eAnnotations>
... existing content ...

</ecore:EPackage>

Example 2-28 shows the eAnnotations element that we use to annotate the
comment EAttribute of WorkflowElement, to indicate that it should be
represented as an element, rather than as an attribute. This is acheived by
setting the value of the representation key to element. To force serialization as
an attribute, we would use the value attribute instead. We add similar
eAnnotations to the eAttributes elements representing transformExpression,
condition and whileCondition so that they are also represented as XML
elements.

Example 2-28 XSD annotation on comment EAttribute

<eAttributes name="comment" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString">
<eAnnotations

source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">
<details key="representation" value="element"/>
<details key="name" value="comment"/>
<details key="targetNamespace"/>

</eAnnotations>
</eAttributes>
72 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

We use a similar annotation to change the names of elements used to represent
EReferences with pluralized names. For example, to use an element called node
instead of nodes to represent each node contained by a Workflow, we add the
EAnnotation shown in Example 2-29. We provide the new element name node as
the value of the name key. We add similar annotations for all of the other
multi-valued containment EReferences in our model.

Example 2-29 XSD annotation on nodes EReference

<eReferences name="nodes" eType="#//WorkflowNode" upperBound="-1"
containment="true" eOpposite="#//WorkflowNode/workflow">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="element"/>
<details key="name" value="node"/>
<details key="targetNamespace"/>

</eAnnotations>
</eReferences>

We use the same technique to ensure that a lower-case element name is used
for Workflow, however we have to be careful to make sure we specify the
targetNamespace correctly, as the workflow element is the top-level element of
our XML instance documents, so we cannot rely on XML namespace scoping for
this value. Because we have constraints in the WorkflowModel that mean that all
other objects are contained either directly or indirectly by a Workflow, we do not
have to specify targetNamespace for any other elements, however, if you are
using this technique to customize serialization for other models, make sure you
specify this value for any elements that could appear as the top-level element in
a serialized instance. Example 2-30 shows how we annotate the eClassifiers
element representing the Workflow class. The targetNamspace that we specify in
this annotation should match the nsURI of the containing package exactly.

Example 2-30 XSD annotation on Workflow EClass

<eClassifiers xsi:type="ecore:EClass" name="Workflow"
eSuperTypes="#//WorkflowElement">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="element"/>
<details key="name" value="workflow"/>
<details key="targetNamespace"

value="http://www.redbooks.ibm.com/sal330r/workflowXSD"/>
</eAnnotations>
... existing content ...

</eClassifiers>

Having annotated our model, we re-generate the model plug-in as follows:
 Chapter 2. EMF examples 73

1. Create or reload the GenModel from the annotated WorkflowModel, as
described in XXX. To reload, select Reload... from the context menu that
appears when you right-click on the GenModel file in the Navigator or
Package Explorer view, and then open the GenModel file.

2. We modify the GenModel so the regenerated code supports our
customizations. Refer to 2.2.2, “Customizing code generation through
GenModel properties” on page 49 for more information about setting
properties in the GenModel. Select the workflow package from the GenModel
tree and set Resource Type to XML.

3. Save the GenModel and then select Generate Model Code from the
right-click context menu of the top-level element in the GenModel. You may
wish to select Generate All instead if you do not have an up-to-date editor
generated from your model. If adding these annotations is the only change
that you have made to the model since generating the edit and editor
plug-ins, you do not need to regenerate them.

The model plug-in now includes code that supports serializing to our custom
XML syntax. When we run our editor and create new model instances as
described in Chapter 1, “Introduction to EMF” on page 3, the object instances are
represented as elements or attributes according to the annotations that we
added to the model. If we take a look at a new instance in a text editor, such as
the instance shown in Example 2-31, and compare this to the default serialization
shown in Example 2-21, we can see evidence of the changes that we have made
to the serialization format.

Example 2-31 Custom serialization of a Workflow instance

<workflow:workflow xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:workflow="http://www.redbooks.ibm.com/sal330r/workflowXSD"
id="w105966221898456">
<node xsi:type="workflow:Task" name="Task 1" x="31" y="82"

id="w105966222103157" isStart="true">
<output xsi:type="workflow:FaultPort" name="fault"

id="w105966226568760"/>
<output name="output" id="w105966226568761" edges="w105966226568762"/>
<input name="input" id="w105966226568763"/>

</node>
<node xsi:type="workflow:Task" name="Task 2" x="265" y="81"

id="w105966222451558" isFinish="true">
<output xsi:type="workflow:FaultPort" name="fault"

id="w105966226568764"/>
<output name="output" id="w105966226568765"/>
<input name="input" id="w105966226568766" edges="w105966226568762"/>

</node>
<edge id="w105966226568762" target="w105966226568766"

source="w105966226568761"/>
74 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

<comment x="24" y="20" id="w105966223168759">
<comment>This is a sample Workflow instance</comment>

</comment>
</workflow:workflow>

You can find the completed annotated model in the WorkflowXSD folder in the
examples for this section. This example demonstrates how to control whether
model objects are serialized as XML elements or attributes, and allows us to
provide names of our choosing for those elements and attributes. There are
other annotations that are used by XSD to control feature-order and map XML
Schema types to model objects, as discussed in 2.1.2, “Migrating existing
models” on page 41, which you may also use to customize the serialization
further.

2.3.4 Customizing XMI serialization using an XMLMap
When we customize the serialization using XSD annotations, we are using the
XSD plug-in to generate an XMLMap that specifies the mapping between model
objects and their serialization. We can perform similar customizations when we
serialize without annotating the model.

The XMI 2.0 production rules allow features to be serialized either as elements or
attributes. We can control whether each feature is serialized as an element or as
an attribute by creating an XMLMap and adding appropriate mappings, as the
following example illustrates. You can find the code for this example in the
XMLMapExample directory in the examples for this section.

In this example, we change the serialization of the comment attribute of
WorkflowElement, so that an XML element rather than an attribute is used to
represent the value. We modify the execute() method within the
WorkspaceModifyOperation in the doSave() method of the generated editor as
shown in Example 2-32, to customize the serialization.

Example 2-32 Using an XMLMap to customize serialization of XMI

XMLMapImpl map = new XMLMapImpl();
XMLInfoImpl x = new XMLInfoImpl();
x.setXMLRepresentation(XMLInfoImpl.ELEMENT);
map.add(WorkflowPackage.eINSTANCE.getWorkflowElement_Comment(), x);
Map options = new HashMap();
options.put(XMLResource.OPTION_XML_MAP, map);
Resource savedResource =

(Resource)editingDomain.getResourceSet().getResources().get(0);
savedResources.add(savedResource);
savedResource.save(options);
 Chapter 2. EMF examples 75

We perform the following steps to customize the serialization of a type or feature
from the model:

1. Create an XMLMap to store the information about mapping the model to XML.

2. For each model object with a custom serialization:

a. Create an XMLInfo and use the setName(), setTargetNamespace() and
setXMLRepresentation() method to specify the how the object is
represented in the XML.

b. Add the XMLInfo to the XMLMap, using the object for which you want to
customize serialization as the key. We do this in the example with:
map.add(WorkflowPackage.eINSTANCE.getWorkflowElement_Comment(), x);

3. Put the XMLMap as the OPTION_XML_MAP in the options map that you use
to save the resource.

Use the setName() method on the XMLInfoImpl to customize the name of the
element or attribute tag used in the XML, and setTargetNamespace() to set the
namespace for that element or attribute.

Use setXMLRepresentation() to specify whether the object is represented as an
ELEMENT, ATTRIBUTE or CONTENT. Specifying CONTENT results in the value
of object being contained directly by its parent. For example, we might use
CONTENT to represent the condition attribute of a ConditionalOutputPort so that
serialized instances look something like this:

<outputs xsi:type="workflow:ConditionalOutputPort" id="w1">
This is the condition
</outputs>

instead of looking like this:

<outputs xsi:type="workflow:ConditionalOutputPort" id="w1" condition="This
is the condition"/>

2.3.5 Providing a custom resource implementation
When we use the XSD plug-in to customize serialization, we are using an
XMLResource to contain our model objects rather than an XMIResource.

If we set the Resource Type property of a package to Basic, XMI or XML in the
GenModel, when we generate the model plug-in from the model, a ResourceImpl
and ResourceFactoryImpl are generated for our model in the util package. By
modifying the implementation of the ResourceImpl generated for our model, we
can customize the serialization. If we have chosen XMI or XML as the Resource
Type the generated ResourceImpl will be a sublcass of XMIResource or
XMLResource, respectively. We can override methods in that subclass to
customize serialization to XMI or XML. If we have chosen to use a Basic
76 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Resource Type then we can serialize to any format by providing the necessary
methods to implement ResourceImpl.

Customizing XMI serialization
When customizing XMI serialization, it is important to remember that if you
customize the serialization format too much, it will no longer be standard XMI.
However, there are some customizations that you can make without breaking
conformance to the XMI 2.0 standard. One such customization is to use an
element instead of an attribute to represent features, as we demonstrate in 2.3.4,
“Customizing XMI serialization using an XMLMap” on page 75.

Another change that you can make while still complying with the standard is to
modify how ids are generated in the serialization. Instead of using an attribute
with the id property set to true in the model, you may wish to generate ids for all
elements in the serialization. Although the ids are not accessible from the model,
the advantage of generating them is that you can ensure that they remain
unique. Be aware however, that generating ids means that elements can
potentially have a different id each time they are serialized.

Ids are mapped to objects from the model by the resource, which uses a map to
map ids to each EObject. You can assign ids specifically to particular objects
before you serialize by using the setID() method on the resource, as shown in
Example 2-33.

Example 2-33 Set object ids via setID()

Resource resouce = ...
EObject myobject =
resource.setId(myobject, “id1”);

If you want ids to be generated automatically for your objects, you can override
the getID() in your resource implementation to do this, as Example 2-34 shows.

Example 2-34 Override getId() to generate ids

public String getId(EObject obj){

String id = super.getID(obj);
if (id == null){

id = generateID();
setID(obj,id);

}
return id;

}

 Chapter 2. EMF examples 77

Customizing XML serialization
The XML that we generated in 2.3.3, “Using the XSD plug-in to customize
serialization” on page 71, used the names of references to contained objects for
the XML elements representing those objects. A different representation would
be to use a name that identifes the type of the reference, particularly in a model
where there is usally only a single reference between objects of each type.

The mapping of element and attribute names to model objects is taken care of by
an XMLHelper. We provide our own custom XMLHelper, to override the default
names for references, replacing reference names with the name of the type
instead. Example 2-35 shows how we override this method in our XMLHelper
implementation.

Example 2-35 Customized XMLHelper

public class WorkflowXMLHelperImpl extends XMLHelperImpl implements XMLHelper {
...
public String getName(ENamedElement obj) {

XMLResource.XMLInfo info = null;
if (xmlMap != null) {

info = xmlMap.getInfo(obj);
}
if (info != null && info.getName() != null) {

return info.getName();
} else {

if (obj instanceof EReference
 && ((EReference) obj).getEType() != null)

return ((EReference) obj).getEType().getName();
else

return obj.getName();
}

}
}

Note that when there are multiple references to a type from the same object, we
have to be careful, for example in the case of CompoundTask, because it has
two references to Workflow we have to be able to distinguish between the two,
so we might need to add additional information to the serialization to do this.
Generally you would only want to use a serialization such as this one if the type
implied the reference.

To use the XMLHelper from our XMLResourceImpl, we simply override the
method that creates the helper, to create an instance of our WorkflowXMLHelper
instead, as Example 2-36 shows.

Example 2-36 Overriding the createXMLHelper() method
78 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

protected XMLHelper createXMLHelper()
{
 return new WorkflowXMLHelperImpl(this);
}

The file XMLResourceCustomization.workflow contains an example of a
Workflow serialized using WorkflowXMLResource.

So far we have only dealt with serializing to the custom format, we would also
have to override the getFeatureWithoutMap() method to map the types back to
features, however we leave this an exercise for the reader.

Customizing XMLHelper allows us to use the names of the types of the
references for element names, however because XMLHelper is creating names
from the model itself, rather than from instances, it cannot create specific type
names for subtypes. An example of using more specific type names for the
WorkflowModel would be to use element names FaultPort or
ConditionalOutputPort instead of just using OutputPort for those types, or to use
Task, Comment or Choice instead of WorkflowNode, such as the fragment
shown in Example 2-37.

Example 2-37 A more readable representation of contained objects

<Task name="Task 2" x="265" y="81" id="w105966222451558" isFinish="true">
<FaultPort name="fault" id="w105966226568764"/>
<OutputPort name="output" id="w105966226568765"/>

...
</Task>

The serialization would produce such elements if you added explicit references
to each class with specific names for each reference, in the same way that we
already have specific references to OutputPort and InputPort rather than a
general reference to Port.

However, then you would need to maintain all of these references separately or
lose the benefits of polymorphism, and your model would be cluttered. However,
we could implement such a serialization by providing our own subclasses of
XMLSaveImpl and XMLLoadImpl and use them within WorkflowResourceImpl,
as these are the classes that actually serialize our instances, and override
methods such as saveElement() to provide a more specific name.

These examples are provided to give you an idea of the types of things you can
customize by providing your own XMLHelper, XMLSave or XMLLoad
implementations. You may choose to override the methods from those classes to
produce any XML serialization.
 Chapter 2. EMF examples 79

Other serializations
To serialize to other formats, all you need to do is to implement your own
versions of the doSave() and doLoad() methods in your ResourceImpl subclass.

2.4 Using JET to customize code generation
In this section we provide examples that illustrate how to use the Java Emitter
Templates (JET) framework provided with EMF to customize code generation.
We describe how JET is used to generate the model, edit and editor plug-ins that
we examine in “The generated plug-ins” on page 46, as well as how to approach
customizing this code generation.

For an introduction to JET in general, refer to the two part JET Tutorial by Remko
Popma, available from Eclipse Corner, at:

http://eclipse.org/articles/Article-JET/jet_tutorial1.html

and

http://eclipse.org/articles/Article-JET/jet_tutorial2.html

2.4.1 .JET-related GenModel properties
In 2.2.1, “The generated plug-ins” on page 46, we described the model, edit and
editor plug-ins that are generated from EMF models. These plug-ins are
generated using JET, and we can control this generation by setting the
GenModel properties of the model from which we are generating the plug-ins.

The JET-related GenModel properties are described in Table 2-5. All of these
properties are represented at the top-level of the GenModel, and are grouped by
the GenModel editor into the Templates & Merge category. Setting these
properties allows us to override the default JET templates used to generate the
model, edit and editor plug-ins. Descriptions of the properties are provided by the
GenModel editor in the status bar whenever you select one of the properties.

Table 2-5 Templates & Merge GenModel properties

Property XMI attribute Default

Dynamic Templates dynamicTemplates false

Force Overwrite forceOverwrite false

Redirection Pattern redirection

Runtime Jar runtimeJar false

Template Directory templateDirectory
80 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://eclipse.org/articles/Article-JET/jet_tutorial1.html
http://eclipse.org/articles/Article-JET/jet_tutorial1.html

The most interesting of these to us are the dynamicTemplates and template
Directory properties:

The dynamicTemplates property indicates that the precompiled templates
provided by org.eclipse.emf.codegen.ecore.genmodel should be ignored, and
that the template implementation should be translated and compiled from
dynamic templates.

The templateDirectory indicates the location to look for new templates. A
template placed in this location will override the default template with the same
name from org.eclipse.emf.codegen.ecore.genmodel.

2.4.2 Writing JET templates
In this section, we customize the generation of the plug-ins described in 2.2.1,
“The generated plug-ins” on page 46. By default, these plug-ins are generated
from templates located in
<ECLIPSEHOME>/plugins/org.eclipse.emf.codegen.ecore_<EMFVERSION>/te
mplates
where <ECLIPSEHOME> is the location where you installed Eclipse and
<EMFVERSION> is the version of the EMF plug-in that you have installed.

The org.eclipse.emf.codegen.ecore templates directory contains sub-directories
for the model, edit and editor plug-ins. The files with the extension javajet are the
templates. The file extension follows the JET convention of using the extension
of the file that is generated by the template concatenated with jet. In this
example, we customize the Java code generated for the model plug-in by
providing our own version of some of the model templates.

The header template provides the comment that is located at the head of each
generated class file. We begin by creating our own templates directory, and by
supplying a new Header.javajet. To do this, perform the following steps:

1. Add a directory called templates to the WorkflowModel project.

2. Create a new text file called Header.javajet in the templates directory. If you
prefer, you can copy the existing Header.javajet file as a basis for your
template.

3. Edit Header.javajet to contain the comment that is to be included at the top of
every generated class file. We edit the file to read as shown in Example 2-38:

Update Classpath updateClasspath true

Property XMI attribute Default
 Chapter 2. EMF examples 81

Example 2-38 Our version of Header.javajet

/**
 * WorkflowModel
 *
 * Copyright (c) 2000, 2003 IBM Corporation and others.
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Common Public License v1.0
 * which accompanies this distribution, and is available at
 * http://www.eclipse.org/legal/cpl-v10.html
 *
 */

4. Generate the GenModel for the WorkflowModel. This step may be skipped if
you already have a GenModel for the WorkflowModel.

5. Edit the GenModel properties:

a. Set the dynamicTemplates property to true.

b. Set the templateDirectory property to the location of your templates
directory, for example, /WorkflowModel/templates.

By default, the header is only generated the first time the code is generated from
your model, so if you already have a version of the model plug-in in your project,
you will need to override this behaviour. The merging of existing content with new
content is handled by EMF’s jmerge. The rules for merging the model, edit and
editor code generated from EMF models are expressed in the file
emf-merge.xml. Copy emf-merge.xml into your templates directory from the
org.eclipse.emf.ecore.codegen plug-in’s templates directory and modify the file
so that it includes an additional rule to set the header each time the code is
generated, as shown in Example 2-39.

Example 2-39 Merge rules for code generation from WorkflowModel

<merge:options ... >
... existing content ...
<merge:pull sourceGet="CompilationUnit/getHeader"

targetPut="CompilationUnit/setHeader"/>
</merge:options>

Now when you generate the model plug-in and take a look at the generated
code, the contents of Header.javajet should appear in place of the default
header.

Tip: Whenever you modify a template, you may need to close and then
re-open the GenModel file before regenerating code so that the new version of
the template is used.
82 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

JET templates use a simplified Java Server Pages (JSP) syntax. You can get a
feel for how JET templates work by examining and modifying the templates used
to generate the interface and implementation corresponding to each class in a
model. Begin by making a copy of the templates into the WorkflowModel
project’s templates directory:

1. Create a model sub-directory within the templates directory in the
WorkflowModel project.

2. Copy the files Interface.javajet Class.javajet and from the model directory in
the org.eclipse.emf.codegen.ecore plug-in’s templates directory to the
directory created in the previous step.

We are mirroring the templates directory structure used by the
org.eclipse.emf.codegen.ecore plug-in, as we are essentially replacing its
templates with our own versions.

At the first line in Interface.javajet, we see the tag shown in Example 2-40.

Example 2-40 The jet directive

<%@ jet package="org.eclipse.emf.codegen.ecore.templates.model"
imports="java.util.* org.eclipse.emf.codegen.ecore.genmodel.*"
class="Interface" %>

The tags used within JET templates are identified by an opening <% and a closing
%>. Inside the tags, you can use Java code to script what is generated from the
template, or you can use special tags to represent JET directives or expressions.
The jet tag shown in Example 2-40 is a directive. Expression tags are used to
create values based on expressions in the files generated from the templates.
Directives start with <%@ and a name that identifies them, and expressions start
with <%=. We can see examples of each of these types of tags just a few lines
further down in Interface.javajet, as shown in Example 2-41.

Example 2-41 JET scriptlet, directive and expression tags

<%GenClass genClass = (GenClass)argument; GenPackage genPackage =
genClass.getGenPackage(); GenModel genModel=genPackage.getGenModel();%>
<%@ include file="../Header.javajet"%>
package <%=genPackage.getInterfacePackageName()%>;

The first tag shown in Example 2-41, is a scriptlet that declares and initializes
variables that can be referenced from other tags in the rest of the template. In this
case, we see genClass, which represents the class for which the interface is
being generated using this template, genPackage, which represents its containing
package, and genModel, which is the model that contains genPackage.
 Chapter 2. EMF examples 83

The second tag shown in Example 2-41 is another directive; this one indicates
that the code produced from the Header.javajet template is included at this point
in the code generated from this Interface template. The include directive has a
single attribute, file, that indicates the location of the file to be included. There
are two directives that can be used within JET templates; the include directive,
seen in this example, and the jet directive seen in Example 2-40. The jet
directive may appear only on the first line of a template, and every template must
have a jet directive. The attributes of the jet directive are described in the JET
Tutorial part one, (Introduction to JET). Note Header.javajet did not have a jet
directive, because it is just a fragment included into other templates.

The third tag from Example 2-41 is an expression tag, which in this case provides
the expression used to get the package name for the interface that is generated
using the template.

You may notice that the names of most of the types and methods that end up in
the generated code come from expression tags that call methods provided by the
GenModel. The reason for this is that the code is generated from GenModel
objects that are provided as arguments to each template. We can change the
structure or the literal content of the generated code by editing the templates,
however changing the names of the methods and types in the generated code
would require providing our own implementation of the interfaces in
org.eclipse.emf.codegen.ecore.genmodel and then providing those objects as
arguments to the templates. For our additions to the generated code, we edit the
templates only. If you would like to find out more about providing different objects
as arguments to a JET template, please refer to the JET Tutorial.

We modify the templates to add additional methods for multi-valued features to
get an element from the list of values by position. Because
WorkflowModelElement is the supertype of every other class in the
WorkflowModel, and it has an name attribute, we know that every object in the
model can have a name, hence we also add template methods to get list
members by name.

In Interface.javajet, we can see that the section of the template that generates
accessor methods for features is contained within a for-loop that iterates over the
features of the class. We are adding template to generate additional methods for
some features, so we make our additions within this loop.

Example 2-42 shows concrete examples of the method signatures that we are
adding to the generated interfaces. In this case, the methods are for the inputs
feature of the class WorkflowNode.

Example 2-42 Concrete example of additional method signatures
84 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

InputPort getInputs(int index);
InputPort getInputs(String name);

To generate similar methods for all mult-valued features using the templates, we
substitute types and methods specific to the inputs reference with expression
tags. We use method calls on genFeature, which represents each feature, to
provide the values. We also add @generated to indicate that these methods are
now generated. Example 2-43 shows the code that we add to Interface.javajet to
generate the extra methods in the interface for each generated type. We wrap the
template for the new methods inside conditions, to make sure that we only
generate these methods for multi-valued features, that is, features that are
regular list types.

Example 2-43 Interface template fragment for additional methods

<%for (Iterator i=genClass.getGenFeatures().iterator(); i.hasNext();)
{GenFeature genFeature = (GenFeature)i.next();%>

... existing content ...
<%if (genFeature.isListType()) {%>
<%if (!genFeature.isMapType()){%>

/**
 * Get an item from the list by position
 * @generated
 */
<%=genFeature.getQualifiedListItemType()%>

<%=genFeature.getGetAccessor()%>(int index);
/**
 * Get an item from the list by name
 * @generated
 */
<%=genFeature.getQualifiedListItemType()%>

<%=genFeature.getGetAccessor()%>(String name);
<%}//if%>
<%}//if%>
<%}//for%>

We use a similar process to template the implementation of the additional
methods in Class.javajet. Example 2-44 shows concrete examples of the
implementation of the methods that we wish to add.

Example 2-44 Concrete example of addiitonal methods

public InputPort getInputs(int index) {
return (InputPort) this.getInputs().get(index);

}

public InputPort getInputs(String name) {
Iterator i = this.getInputs().iterator();
 Chapter 2. EMF examples 85

while (i.hasNext()) {
InputPort input = (InputPort) i.next();
if (true == name.equals(input.getName()))

return input;
}
return null;

}

Again, we generalize by substituting expression tags for the parts of the method
implementations that are specific to the feature. Example 2-45 shows the code
that we add to Class.javajet. We add the method templates to the existing
for-loop that iterates over all of the implemented features. Note that because we
introduce the class java.util.Iterator into the generated code in the second
additional method, we need to use the getImportedName method from the
GenModel to make sure it is added to the imports in the generated class.

Example 2-45 Class template fragment for additional methods

<%for (Iterator i=genClass.getImplementedGenFeatures().iterator();
i.hasNext();) {GenFeature genFeature = (GenFeature)i.next();%>

... existing content ...
<%if (genFeature.isListType()) {%>
<%if (!genFeature.isMapType()){%>

/**
 * Get an item from the list by index
 * @generated
 */
public <%=genFeature.getQualifiedListItemType()%>

<%=genFeature.getGetAccessor()%>(int index){
return (<%=genFeature.getQualifiedListItemType()%>)

this.<%=genFeature.getGetAccessor()%>().get(index);
}

/**
 * Get an item from the list by name
 * @generated
 */
public <%=genFeature.getQualifiedListItemType()%>

<%=genFeature.getGetAccessor()%>(String name){
<%=genModel.getImportedName("java.util.Iterator")%> i =

this.<%=genFeature.getGetAccessor()%>().iterator();
while (i.hasNext()) {

<%=genFeature.getQualifiedListItemType()%> l =
(<%=genFeature.getQualifiedListItemType()%>) i.next();

if (name.equals(l.getName()))
return l;

}
return null;
86 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

}
<%}//if%>
<%}//if%>
<%}//for%>

Now, when you generate the model plug-in, you should see the additional
methods in the generated interfaces and implementation classes. You may also
notice a new project .JETEmitters appear in your workspace in the resource
view. This project is created by default when the templates are translated, as
described in the JET Tutorial part two, and it contains the actual implementations
of our templates.
 Chapter 2. EMF examples 87

88 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Chapter 3. Introduction to GEF

In this chapter you will get an introduction to GEF and Draw2D. You will be able
to read about the basics of the frameworks and to get some first tips about using
them.

After the introduction we will show you how to build a graphical editor skeleton
using our step-by-step instructions and then explain how to map your model into
GEF edit parts.

3

© Copyright IBM Corp. 2003. All rights reserved. 89

3.1 What is GEF
The Graphical Editing Framework allows us to easily develop graphical
representations for existing models. It is possible to develop feature rich
graphical editors using GEF.

All graphical visualization is done via the Draw2D framework, which is a standard
2D drawing framework based on SWT from eclipse.org.

The editing possibilities of the Graphical Editing Framework allow you to build
graphical editors for nearly every model. With these editors, it is possible to do
simple modifications to your model, like changing element properties or complex
operations like changing the structure of your model in different ways at the same
time.

All these modifications to your model can be handled in a graphical editor using
very common functions like drag and drop, copy and paste, and actions invoked
from menus or toolbars.

For our demonstration code and for explanations of the GEF API we used the
latest code releases that were available during the creation of this redbook. We
used Eclipse 2.1.1 and GEF 2.1.1.

3.1.1 Additional documents and resources
Basicly there are two kinds of additional resources available - one that ships with
the Graphical Editing Framework and other freely available on the Internet.

Integrated Eclipse help
The Graphical Editing Framework SDK provides online help that is integrated
into Eclipse. This should be used as a starting point. It is available by clicking
Help -> Help Contents and then clicking the topic Draw2D Developers Guide
or GEF Developer Guide on the left side of the new window.

Resource on the Web
The GEF website at http://www.eclipse.org/gef provides access to a wide
range of resources related to the Graphical Editing Framework including code
releases, examples and documentation.

Note: Only the GEF SDK is shipped with the developer documentation of GEF
and Draw2D.
90 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.eclipse.org/gef

Any questions and topics not answered by the frequently asked questions (FAQ)
available at the GEF website can be asked and discusses in the GEF newsgroup
(eclipse.tools.gef), which is available at the Eclipse news server
news.eclipse.org.

A public community driven pool is available at http://eclipsewiki.swiki.net.
The Eclipse Wiki also has a section for GEF related topics, which provides an
additional list of answers for frequently asked questions and additional examples
and other resources.

3.1.2 Applications suitable for GEF
We found a lot of applications developed with GEF. Thanks to the authors of
these applications, we are able to show you the following screenshots of sample
applications using GEF. As you will see there is no limit on using a graphical
editor for nearly every case.

The most common case might be modelling applications. You can build graphical
editors for modelling nearly every kind of model (for example business
processes, application models or even UI screens).

There are also graphical editors available for designing documents like reports,
Web sites or forms. It is also possible to develop graphical editors for modifying
environments (for example configuration files of applications or servers or
deployment descriptors for enterprise applications or even routing trains).

Its up to you what you can imagine.
 Chapter 3. Introduction to GEF 91

http://eclipsewiki.swiki.net

MDE for Struts

Figure 3-1 Struts MDE

Available as an Eclipse-based IDE or plug-in, MDE for Struts enables
model-driven development of Struts 1.1 applications using standard UML. From
simple class diagrams, MDE for Struts creates JSPs, Java classes,
struts-config.xml, validator.xml, Application Resource, ANT build scripts and
J2EE deployment files. Take control of the architecture by changing Java
MetaPrograms that translate the model to code. A free evaluation version is
available at http://www.metanology.com.
92 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.metanology.com

AcmeStudio

Figure 3-2 AcmeStudio

AcmeStudio is a customizable editing environment and visualization tool for
software architecture designs based on the Acme architectural description
language (ADL). With AcmeStudio, you can define new Acme families for
specific domains and customize the environment to work with those families by
defining new diagram styles. AcmeStudio is an adaptable front-end that may be
used in a variety of modeling and analysis applications. Written as an Eclipse
plug-in, AcmeStudio provides the opportunity to integrate third-party architectural
analysis tools.

AcmeStudio is being developed at the School of Computer Science at Carnegie
Mellon University. This work is supported in part by DARPA under Grants
N66001-99-2-8918 and F30602-00-2-0616, and by the High Dependability
Computing Program from NASA Ames, cooperative agreement NCC-2-11298.

ThrottleSensorCruiseSensor Actuator

CruiseController MiscController ThrottleController

ExternalOut

Scheduler

Plant

Externalinputs

MiscSensor

HLAex.Plant
 Chapter 3. Introduction to GEF 93

EclipseDesigner

Figure 3-3 EclipseDesigner

EclipseDesigner is a two-way visual designer for SWT. Design editing can be
done in Java editor or visually on a design page using property tables and mouse
manipulations in a GEF editor.

It is freely available at http://eclipsedesigner.sourceforge.net.
94 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://eclipsedesigner.sourceforge.net

Jeez Report Designer

Figure 3-4 Jeez Report Designer

Jeez Report Designer allows visual designing of reports that can be executed
using a report engine.

It is freely available at http://jeez.sourceforge.net.

3.2 Introduction to Draw2D
Draw2D provides the lightweight graphical system that GEF depends on for its
display. It is packaged in Eclipse as a separate plug-in, org.eclipse.draw2d.
Draw2D is hosted in a SWT canvas heavyweight control and manages the
painting and mouse events that occur in the host canvas by delegating them to
Draw2D figures. Figures are analogous to windows in a heavyweight graphics
system. They can have arbitrary, nonrectangular shapes and can be nested in
order to compose complex scenes or custom controls. Figures can be
transparent or opaque and can be ordered into layers which allows parts of a
diagram to be hidden or excluded from certain operations. Draw2D is a
standalone graphics library that can be used by itself to create graphical views in
Eclipse. It is a large topic to cover Draw2D in depth and this is beyond the scope
 Chapter 3. Introduction to GEF 95

http://jeez.sourceforge.net

of this book. Instead we will discuss some key Draw2D concepts and focus on
the Draw2D features and classes that are most important to GEF developers.

3.2.1 What is a lightweight system?
A lightweight system is a graphics systems that is hosted inside a single
heavyweight control. The graphics objects in the lightweight system, Figures in
Draw2D, are treated as if they are nomal windows. They can have focus and
selection, get mouse events, have their own coordinate system, and have a
cursor. They each get a graphics context for rendering. The advantage of
lightweight systems is that they are much more flexible than the native
windowing system, which is generally composed of rectangular components.
They allow you to create and manipulate arbitrarily shaped graphics objects.
Because they simulate a heavyweight graphics system within a single
heavyweight window, they allow you to create a graphically complex display
without consuming a lot of system resources.

3.2.2 Architectural overview
As we said earlier, Draw2D is a self-contained graphics library and can be used
independently of GEF or even of Eclipse. You can see the basic structure of a
standalone Draw2D application in Example 3-1

Example 3-1 A standalone Draw2D application

Shell shell = new Shell();
shell.open();
shell.setText("A Draw2d application");
LightweightSystem lws = new LightweightSystem(shell);

// add your application’s root figure
IFigure panel = new Figure();
panel.setLayoutManager(new FlowLayout());
lws.setContents(panel);
...

// add your application’s figures here
panel.add(...);

while (!shell.isDisposed ()) {
if (!display.readAndDispatch ())

display.sleep ();
}

96 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

In Example 3-1 the shell serves as the SWT canvas that is needed to host
Draw2D. The LightweightSystem class provides the bridge between SWT and
Draw2D by routing mouse and paint events to the figures it contains. A root
figure is then added to the LightweightSystem. The root figure is configured with
a layout manager which controls the layout of any child figures that are
subsequently added to it.

3.2.3 Figures
In this section we go into more detail on the capabilities of figures in general and
introduce some of the specialized figures that Draw2D provides.

Methods
Everything that is visible in a Draw2D window is drawn on a figure. The figure
class contains a number of methods that provide the following functionality:

� registering or deregistering listeners on a figure. The figure will notify listeners
of mouse events within the figure,

� structural events, to structural changes in the figures hierarchy, and to
movement or resizing of the figure

� specifying the cursor to display when the mouse passes over it
� operations to manage the figure's place in the figure hierarchy, including

adding and removing children and accessing them or its parent figure
� accessors for the figure's layout manager
� set and get focus
� specify the figure's transparency and visibility
� accessors for the figures size and location
� accessors for tooltips
� perform coordinate conversion, intersection & hit testing
� painting
� validating

Subclasses
Draw2D provides many subclasses of figure that provide useful additional
functionality, such as:

Tip: When you create a standalone Draw2D application you need to make
sure that your operating system is able to locate the SWT native library. For
instance in Microsoft Windows make sure that the
ECLIPSE_HOME\plugins\org.eclipse.swt.win32_2.1.1\os\win32\x86swt32.dll
file is added to your class path
 Chapter 3. Introduction to GEF 97

Shapes
Subclasses of the Shape class contain non-rectangular figures that know how to
fill themselves and provide a border of configurable width and line style, and
include support for XOR drawing. Some examples are the Ellipse, Polyline,
Polygon, Rectangle, Rounded rectangle, and Triangle classes.

Widgets
Draw2D includes figures which allow you to create lightweight widgets that can
be used when you need an input control within your Draw2D application. These
include various buttons, Checkbox,and the text entry figure, Label.

Layers and panes
These are figures designed to host child figures. They providing scaling,
scrolling, and the ability to place figures into different layers.

The graphics context
Figures have a paint method that is called by the LightweightSystem when the
figure needs to be rendered. Each figure gets a graphical context, an instance of
the Graphics class, that is passed as argument to the figure's paint method. The
graphics context supports graphics operations including drawing and filling
shapes and drawing text. It also maintains the graphics state that influences
these operations, such as the current font, background and foreground colors,
etc. This analogous to many other graphics systems.

3.2.4 Mechanism
This section introduces the core classes of the Draw2D architecture.

LightweightSystem
The LightweightSystem class is the heart of Draw2D. It performs the mapping
between an SWT canvas and the Draw2D system that is hosted within it. It
contains three main components:

� The root figure

is an instance of the LightweightSystem$RootFigure class, this top level
figure is the parent of your application's root figure. It inherits some of the
graphical environment of the hosting SWT Canvas, such as font, background
and foreground colors.

� The event dispatcher

The SWTEventDispatcher class translates SWT events to the corresponding
Draw2D events in the root figure. It tracks which figure has focus, which figure
is being targeted by mouse events, and handles tool tip activation. It provides
support for figures that want to capture the mouse.
98 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

� The update manager

The update manager is responsible for painting and updating Draw2D figures.
The LightweightSystem calls the update manager's performUpdate() method
when a paint request is received from the underlying SWT canvas. The
update manager typically maintains a worklist of figures that are invalid or
need repainting. The update manger tries to coalesce its work lists so that it
can be as efficient as possible. The default update manager,
DeferredUpdateManager, allows updates to be performed asynchronously by
queuing work on the Display's user interface thread.

The main processes in a figure's life cycle are painting and validating. Draw2D
asks a figure to render itself by calling the figures paint methods. The paint()
method invokes three more specific paint methods:

� paintfigure() - the figure should render itself

� paintclientarea() - figure should render its children

� paintborder() - figure should render its border, if any. Clipping is used to
protect the border

Validating occurs when a figure's size or location needs to be calculated.

� validate - asks the figure's layout manager to relayout it's children

� revalidate - calls invalidate, adds a figure and it's predecessors to the update
managers invalid list

3.2.5 Major features
In the following section we summarize some of the main features and
functionality provided by Draw2D.

Borders
It is frequently necessary to provide a visual border to figures. The Draw2D
package contains several classes, derived from the Border class, that provide a
variety of border effects. These include:

� GroupBoxBorder - creates a labeled border similar to group boxes in native
window systems

� TitleBarBorder - creates a titled border that resembles a titled window

� CompoundBorder - a border composed of two borders

� FrameBorder - similar to TitleBarBorder, it can be used to create figures with
titles

� FocusBorder - surrounds a figure with a focus rectangle
 Chapter 3. Introduction to GEF 99

� LineBorder - creates an outline around a figure of the width you specify

� MarginBorder - a border for creating padding around the edges of a figure

� SchemeBorder - a base class for borders whose borders simulate shadows
and highlights

� ButtonBorder - used with a Clickable figure to create lightweight button-like
controls

� SimpleLoweredBorder and SimpleRaisedBorder

Examples of some of these border types are illustrated in Figure 3-5

Figure 3-5 Some Draw2D border types

The Insets class is used to represent the space within a figure that is allocated to
the border. Note that the border does not have to be symmetrical. It can be
occupy any combination of a figure's edges, and can be a different size on any
edge. The paint method clips the client area so that painting is constrained to the
area of the figure inside the inset. The border, when present, is the last part of the
figure to be painted.

Layouts
LayoutManagers are used to manage the position and size of a figure's child
figures. They interrogate each child figure to obtain its preferred size, and then
apply some layout algorithm to calculate the final size and placement of the child
figures. LayoutManagers also support constraints, which are data attached to
each figure that gives additional guidance to the layout manager. The Figure has
accessor methods for its constraints, and the layout manager maintains a map of
constraints for the figures it is managing. The constraint accessors use the
Object type for constraints since the type of the constraint depends on the layout
manager being used. For instance the XYLayout layout manager requires that
the figures it manages have a constraint of type Rectangle, and the
DelegatingLayout manager expects its figures to have a constraint which
100 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

implements the Locator interface. All Draw2D layout managers derive from the
AbstractLayout abstract class. Some of the provided layout managers include:

� FlowLayout - Lays out its children into either rows or columns, which is
configurable either by using the constructor:

public FlowLayout(boolean isHorizontal)

or by calling the method:

setHorizontal(isHorizontal)

The manager causes its children to wrap when the current row or column is
full. There are also methods to control the alignment and spacing of rows in
both the major and minor axes.

� DelegatingLayout - delegates the layout of its child figures to the child figures'
locators. The children must provide a Locator subclass as their constraint.

� XYLayout - places its children at the location and dimensions specified for the
child. The childs' constraint must be a Rectangle object that specifies this
information.

Draw2D provides a scrollable pane via the ScrollPane class. To implement this
functionality it uses the ScrollPaneLayout, which manages the layout of the scroll
bars and Viewport that comprise the ScrollPane. In addition the Viewport uses
the ViewportLayout manager to manage the viewport's visible region and
maintain the scroll position state.

Layers
Layers are transparent figures intended specifically for use in LayerPanes. They
override the figure's containsPoint() and findFigureAt() methods so that hit
testing will "pass through" the layer. The FreeformLayer class adds additional
specialization to Layer to provide a layer that can extend indefinitely in all four
directions.

The ConnectionLayer class implements a FreeformLayer that is designed to
contain connections. It Insures that any Connection figures added to the layer will
have their connection router set correctly to the layer's connection router.
Similarly when the layer's connection router is changed it will update the
connection router of all it connection figures.

Note: the term “Freeform” when used in Draw2D class names indicates that
the class supports figures which can expand in all directions, that is they do
not have a fixed size or origin, which also implies that the child figures can
have negative coordinates. Some examples are the FreeformLayer,
FreeformLayeredPane, and ScalableFreeformLayeredPane classes.
 Chapter 3. Introduction to GEF 101

LayerPanes are figures designed to contain layers (they can only contain layers).
The layers in a LayerPane are stored in a map whose key is typically a String.
LayerPanes contain methods to add,insert,remove, and reorder the layers they
contain.

Two subclasses of LayerPane provide additional flexibility. The
FreeformLayeredPane provides a set of layers that can expand in all directions.
The ScalableFreeformLayeredPane adds support for zooming.

Finally, the ScalableLayeredPane provides a LayerPane that is scalable but is
not free form but instead has a finite, fixed size.

Locators
Implementors of the Locator interface are used in Draw2D to position figures.
The interface consists of a single method:

void relocate(IFigure target)

Subclasses of ConnectionLocator are used for locating figures that are attached
to a Connection. These can be used for placing arrowheads on the ends of
connections or placing labels or other decorations or annotations on a
Connection. The locator ensures that the figure stays "attached" to the
Connection in the designated location as the Connection is moved.

The available locators include:

� ArrowLocator

This Locator is used to position decorations, such as arrowheads, on the
ends of connections. Any figure that implements RotatableDecoration can be
located. Implementors of RotatableDecoration are given a position and a
reference point so that they can rotate their visual representation based on
the angle of the connection they are decorating.

� BendpointLocator

A locator that is used to position bendpoint handles on a Connection

� MidpointLocator

The MidpointLocator is used to place figures at the midpoint of a Connection

� ConnectionEndpointLocator

This class locates a figure near either the start or end of a connection.

� RelativeLocator

The RelativeLocator locates a figure using a 0 to 1 floating point value
representing its affinity for the a weighting of the figure's affinity for the upper
102 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

left corner (0) or lower right corner (1) of a reference figure. This class is
generally intended for calculating the placement of handles.

Connection anchors
Draw2D provides classes that provide various styles of anchor points which are
used to represent the ends of a connection. The basic function of these classes
is to contain the location of a Connection's endpoints and to register listeners that
will be notified if the end of a connection is moved.

The AbstractConnectionAnchor class is the base class for anchors whose
position is associated with a figure. It notifies its listeners when the figure it is
associated with is moved.

Acvailable anchors include:

� ChopboxAnchor

Chopbox anchors are located at the point on their figure's border where the
Connection would intersects the figure if the connection continued to the
figure's center point.

� LabelAnchor

LabelAnchor is a subclass of ChopboxAnchor that is designed solely for node
figures that are Draw2D Labels. Rather than projecting the connection to the
center of the figure, the location of the anchor depends on the center of the
Label's icon.

� EllipseAnchor

The EllipseAnchor is a variant of the ChopboxAnchor (but it is not a
subclass). It locates the anchor on the edge of an elliptical figure at the point
where a connection to the center of the node would intersect the edge.

� XYAnchor

The XYAnchor is used for anchors that are placed at a fixed position.

Connection routers
Connection routers are used to calculate the path that a connection takes in
getting from one anchor to the other. AbstractRouter is the base class for
connection routers that implement the ConnectionRouter interface. Available
connection routers include:

� NullConnectionRouter

By default this simply draws a straight line between the anchors of a
connection. This is shown in Figure 3-6 using a diagram created using the
logic sample application.However Draw2D also provides more sophisticated
 Chapter 3. Introduction to GEF 103

routers that use different criteria to determine the path that a connection will
take.

Figure 3-6 NullConnectionRouter

� AutomaticRouter

provides a base class for routers that want to prevent two connections from
overlaying each other. For instance its FanRouter subclass spreads two
connections which have the same starting and ending points so that they are
not superimposed.

� BendpointConnectionRouter

The BendpointConnectionRouter shown in Figure 3-7, allows the user to
manually insert bendpoints into a connection. The connection is routed to
follow a set of points that the user specifies by manually dragging the
Connection’s segments.

Figure 3-7 Bendpoint router

� ManhattanConnectionRouter
104 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

The ManhattanConnectionRouter (Figure 3-8) routes a connection using only
vertical and horizontal line segments. It also maintains separation between
Connections that would otherwise overlap.

Figure 3-8 Manhattan router

Summary of Draw2D’s support for connections
Many of the features in Draw2D that we have discussed are part of Draw2D’s
support for connections. It is worthwhile to summarize this set of features.

� PolylineConnection, a polyline figure that listens for anchor movement and
supports start and end-point decorations, and has an associated connection
router

� a connection layer exclusively for drawing connections
� Anchors for specifying and tracking the connection points of connections
� Routers to determine the path of connections
� Locators to find the ends and midpoint of connections, and more specialized

ones to support connections with multiple bendpoints
� Rotatable decorations to place decorations on connections that can realign

themselves as the angle of the connection changes.

3.3 The GEF framework
This sections covers the basic framework classes and concept of the Graphical
Editing Framework.

3.3.1 Prerequisites
We assume that you already have good knowledge and experience in Eclipse
plug-in development. You should have understand the concepts of Eclipse views
and editors.
 Chapter 3. Introduction to GEF 105

The following articles from eclipse.org are very useful for understanding terms
and concepts mentioned in this chapter.

� Eclipse Platform Technical Overview

� Notes on the Eclipse Plug-in Architecture by Azad Bolour

� How to Use the Eclipse API by Jim des Rivieres

� Creating an Eclipse View by Dave Springgay

� Getting Started with the Graphical Editing Framework by Randy Hudson

You should have installed Eclipse SDK 2.1.1 including GEF SDK 2.1.1 and you
should be familiar with Draw2D concepts and terms provided by the developers
guides which are available in the Eclipse online help.

3.3.2 EditParts
EditParts are the central elements in GEF applications. They are the controllers
that specify how model elements are mapped to visual figures and how these
figure behave in different situations.

Usually you will have to create an EditPart class for every model element class
so you will have likely the same class hierarchy for the EditParts like you have for
your model. The process of creating EditPart instances is not covered here. It will
be explained in a later section.

EditParts are defined through the interface org.eclipse.gef.EditPart. An abstract
base implementation of this interface is provided by
org.eclipse.gef.AbstractEditPart. We strongly recommend (as do the GEF
development team)that you do not implement the interface yourself. Instead
subclass the provided abstract base class AbstractEditPart.

Actually there are three different types of EditParts. For now we will focus only on
two of them inside this section. They are GraphicalEditParts and
ConnectionEditParts. GraphicalEditParts are those EditParts that provide a
graphical representation for their model. These graphical representations are
figures. ConnectionEditParts represent connections between
GraphicalEditParts.

Note: In general you should always subclass a provided base implementation
rather then implementing the interface yourself. This pretends you from
unexpected API changes and reduces your work in case of API changes (for
example when new methods were added to interface). It helps your software
staying compatible to future versions.
106 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

The third type, TreeEditParts, is only interesting for building trees of your model
with SWT tree widgets. This is not the primary intention of a graphical editor but
is probably useful for the outline view. Our redbook sample application will show
you an introduction into this.

The EditPart interfaces provide a lot of methods. Your are not expected to call
them except get/setModel when necessary. Nearly all methods are used by the
Graphical Editing Framework to handle the edit parts. But you are allowed and
we encourage you to add your own methods to your EditPart implementations to
ease your access to model elements and properties.

Life-cycle of EditParts
We already know that EditParts will be created somewhere and somehow by a
factory (details about the factory will be explained later in 3.5.3, “Creating
EditParts” on page 139). We will now focus on the methods involved in EditPart
life-cycles.

When an EditPart was created it is not yet visible or active. It becomes active
when the Graphical Editing Framework gets informed about it. If an EditPart
becomes obsolete for some reason (either the editor is closed or the model
object represented by the EditPart was deleted) and the framework no longer
needs it, it will be deactivated. There are two methods, EditPart#activate and
EditPart#deactivate, which will be called by the framework when the state of an
EditPart changes. A third method, EditPart#isActive, always returns the current
activation state.

We suggest not to develop with the reuse of EditParts in mind. You should not try
to keep track of EditPart instances across editor sessions. If an EditPart gets
deactivated, throw it away. Allow it to get garbage collected by the virtual
machine. By handling EditPart instances this way you do not need to worry about
the memory overhead. It will be solved for you and you can enjoy the advantages
of Java.

EditPart#deactivate is a good point to release resources used by your EditPart
(for example SWT images or fonts). We strongly suggest you to read the section
about SWT resource management 4.2.6, “Resource management” on page 152.

Note: Although the JavaDoc of these methods indicates that an EditPart may
be reactivated after it was obsolete, we have not experienced such situations
during our development.
 Chapter 3. Introduction to GEF 107

Figures
GraphicalEditParts have a figure that is the visual part of the model. The
GraphicalEditPart need to create the figure, update it on model changes and
dispose it (if necessary) if the EditPart is deactivated.

The figure is created by AbstractGraphicalEditPart#createFigure only once and
will be cached by the abstract base implementation - remember, you should
always inherit from abstract base implementations if possible.
AbstractGraphicalEditPart#createFigure is called when a figure is requested via
AbstractGraphicalEditPart#getFigure for the first time.

Updating the figure is done in AbstractEditPart#refreshVisuals. You need to
overwrite this method and update your figure according to the model changes
you encountered. We will explain this later.

More about figures can be found in the Draw2D developers guide (see the
Eclipse online help) and in 3.2.3, “Figures” on page 97 of this book.

Connections
A ConnectionEditPart, which represents a connection between two EditParts, is
nothing more than a GraphicalEditPart, which has a source and a target EditPart.
Connections are connected to ConnectionAnchors. These anchors should be
provided by the EditParts the ConnectionEditPart points to/comes from.

The recommend way is that each GraphicalEditPart that could be a source or a
target for connections implements the NodeEditPart interface. It is the most
common way of how application models work. Connections usually points to
some locations of the figure and this figure is provided by an GraphicalEditPart.

3.3.3 Requests
Requests are the communication objects used in the Graphical Editing
Framework. They contain information that might be necessary for executing the
request later. There are several type of requests available. The three main types
that are used most often in typical GEF applications, are CreateRequests,
GroupRequests and LocationRequests.
108 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 3-9 Communication chain Request - EditPart - Command

Figure 3-9 shows the typical communication chain of a request and the objects
involved. As you can see, someone (typically a tool, an action or some drag or
drop handler) creates a request. This request is forwarded to an EditPart. The
EditPart doesn’t process the request itself. Instead it delegates it to an EditPolicy,
which understands the request. The EditPolicy itselfs creates a command for the
request, which will be executed to fullfill the request.

CreateRequests
CreateRequests are used everywhere a new model object should be created.
For connections the subclass CreateConnectionRequest is used. A
CreateRequest has a CreationFactory, which you have to provide. This
CreationFactory is responsible for creating the new model objects.

Tip: Actually your CreationFactory implementation does not need to create
new model objects. We suggest only submitting the type of the new model
object and creating it later in a Command.

Forward
Command

Forward
Request

Command

EditPolicies

Request Creators

EditPart

Forward
Command

Forward
Request

Create Command
for Request
 Chapter 3. Introduction to GEF 109

GroupRequests
GroupRequests are Requests that can span more than one EditPart into one
single request. A typical GroupRequest is the ChangeBoundsRequests, which is
responsible for moving and/or resizing EditParts.

LocationRequests
LocationRequests are requests that simple needs to keep track of a location. For
example the SelectionRequest, which is responsible for selecting an EditPart.
You can always determine where the user clicked into an EditPart to select it.
This allows you to provide special behavior on different locations inside your
EditPart.

3.3.4 EditPolicies
We already know that the communication inside the Graphical Editing
Framework is done via requests and that these requests are forwarded to
EditPolicies. What are EditPolicies and why is this done in this way?

Actually, EditPolicies are those parts in the Graphical Editing Framework, which
brings the editing functionallity into EditParts and this is done because it is a
good object oriented design.

An EditPolicy defines what can be done with an EditPart. EditParts without
EditPolicies will do nothing. They won’t even be selectable. EditPolicies are also
responsible for feedback management (for example what should be shown when
an EditPart is moved or resized) and they are allowed to delegate work (forward
requests) to other EditParts (for example children).

EditPolicies are categorized into roles (see constants in interface
org.eclipse.gef.EditPolicy) and EditParts are limited to have only one EditPolicy
per role.

Component role
The component role is defined as EditPolicy#COMPONENT_ROLE and the
base class for these kind of EditPolicies is ComponentEditPolicy.

It is the main role for all fundamental operations, which involve the model
element of an EditPart directly (for example, deletion of the model element).
Whenever a request has nothing to do with UI interaction and only does
something on the model element it is best handled by a command delivered from
a ComponentEditPolicy.
110 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Connection role
The connection role is defines as EditPolicy#CONNECTION_ROLE and the
base class is ConnectionEditPolicy. It is the corresponing component role for
ConnectionEditParts.

Container role
The container role (EditPolicy#CONTAINER_ROLE, ContainerEditPolicy) is
responsible for operations typically performend on containers (for example the
creation of children). Each EditPart with children would have a
ContainerEditPolicy.

Layout role
The layout role (EditPolicy#LAYOUT_ROLE, LayoutEditPolicy) is responsible for
containers that have a layout associated to them. It can calculate proper
locations for requests and define where children should be placed.

Tree container role
The tree container role (EditPolicy#TREE_CONTAINER_ROLE,
TreeContainerEditPolicy) is the corresponding container role for TreeEditParts.

Graphical node role
The graphical node role (EditPolicy#GRAPHICAL_NODE_ROLE,
GraphicalNodeEditPolicy) is used for establishing and managing connections on
EditParts. Whenever your EditPart deals with connections, he will need a
GraphicalNodeEditPolicy.

Direct edit role
The direct edit role (EditPolicy#DIRECT_EDIT_ROLE, DirectEditPolicy) is used
to bring direct editing behavior into EditParts. Thus, when the user double clicks
an EditPart he will be able to directly edit properties on the figure.

Additional roles
More documentation about additional roles is available in the GEF developers
guide available in the Eclipse online help.

Note: There is some overlap between ContainerEditPolicy and
LayoutEditPolicy. ContainerEditPolicy is intended to be used in simple
environments where it does not matter how children are placed. There is not
any location information available inside ContainerEditPolicy.
 Chapter 3. Introduction to GEF 111

3.3.5 Commands
A command is the part that actually modifies your model. Commands simplify the
way of modifying your model because they provide support for:

� execution limitations
� undo and redo
� combining and chaining

There is nothing more to say about commands than what can be found in the
JavaDoc. You need to implement them and you need to instantiate them. The
abstract base class is org.eclipse.gef.commands.Command.

3.3.6 GraphicalViewers
From the Draw2D developers guide we know that figures are drawn by a
LightweightSystem. But that is not all. There are some more components
involved, which we do not want to take care of when we are developing our
editor. That is why the Graphical Editing Framework provides the
GraphicalViewer.

A GraphicalViewer provides a seamless (JFace like integration of EditParts into
the Eclipse workbench.

Typically a JFace viewer only needs some content, a factory and some
configuration and it is done. It already provides all necessary implementation for
drag and drop support, event and update handling and other complicated tasks.
A GEF GraphicalViewer does exactly the same.

There are two GraphicalViewer implementations available. One that does
support native scrolling (ScrollingGraphicalViewer) and one that does not
(GraphicalViewerImpl). The most common case is to use a viewer that supports
native scrolling. It is even possible to have a ScrollingGraphicalViewer never
showing its scrollbars. Thus, we will focus on this implementation.

A GraphicalViewer can be created out of the box. It has a parameter less
constructor and provides the method createControl to create the SWT control of
this viewer. You do not even need an editor for this. A GraphicalViewer can be
used anywhere a SWT control is available.

After the viewer was instantiated and the control was created you only need to
attach a RootEditPart (EditPartViewer#setRootEditPart) and an EditPartFactory
(EditPartViewer#setEditPartFactory) to it and set the content
(EditPartViewer#setContents). The content is a model element that is the root of
your model.
112 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

A GraphicalViewer maintains a registry of all EditParts it contains. This map can
be accessed by EditPartViewer#getEditPartRegistry. We are responsible for the
key and the registration process but the Graphical Editing Framework provides a
default implementation, which automatically registers and unregisters EditParts
using the model element they represent as key.

If you want to change the key mapping you should look at
AbstractEditPart#registerModel and AbstractEditPart#unregisterModel.

3.3.7 RootEditParts
A RootEditPart is a special kind of an EditPart. It has absolutely no relation to
your model and should not be understood as a typical EditPart.

The task of a RootEditPart is to provide a suitable and homogeneous
environment for the real EditParts that represents your model. Thus, it can be
understood as an interface between a GraphicalViewer and your model
EditParts.

There are several implementations available but actually only two of them should
be used - ScalableRootEditPart and ScalableFreeformRootEditPart. All other
implementations are either deprecated or provide only a subset of functionality of
the implementations mentioned above.

Both implementations provide the possibility of scalability (zoom) support and
introduce several layers to a GraphicalViewer. The only difference is that the
ScalableFreeformRootEditPart can be extended in all directions, which enables
negative coordinates.

Layers
Figure 3-10 gives an overview of the layers introduced by ScalableRootEditPart
and ScalableFreeformRootEditPart.

Note: Please do not be confused by RootEditPart and the root of your model.
Both are completely different and have no relation to each other.

Important: ScalableRootEditPart and ScalableFreeformRootEditPart can only
be used inside a ScrollingGraphicalViewer.
 Chapter 3. Introduction to GEF 113

Figure 3-10 Layers of ScalableRootEditPart and ScalableFreeformRootEditPart

Layers are used to separate and/or group figures of EditParts to better control
their overlapping. Actually all figures are placed into the primary layer. Figures
representing connections are placed on the connection layer and so they are
always painted above the other figures. Special figures (like drag or drop
feedback or handles) are painted into special layers above the scalable layers.
This is impotant because if you ever like to paint something in the feedback or
handle layer you mast be aware that you need to scale this manually before
painting.

Freeform or not
When using the ScalableFreeformRootEditPart your editor can extend in all
directions. Thus, it is even possible to have negative coordinates. The
(non-freeform) ScalableRootEditPart only allows extension in positive directions.

3.4 Building an editor
We now know the base classes and concepts of the Graphical Editing
Framework and we are ready to build our first graphical editor skeleton. In this
section we explain how to get started start and then go forward steb-by-step.

Restriction: When using the ScalableFreeformRootEditPart the EditPart of
your root model object must use a figure of type FreeformFigure.

Feedback Layer

Handle Layer

Scalable Layers

Primary Layer

Connection Layer

Printable Layers

Root Layered Pane
114 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

3.4.1 The editor class
First, we have to create the plug-in and then define the editor extension. We do
not describe this here because it is a common process of the Eclipse plug-in
programming model. The Eclipse documentation provides detailed information
about this.

The editor class is created the default way by extending
org.eclipse.ui.part.EditorPart. It is the main class of the editor and responsible for
receiving the input, creating and configuring the viewer, handling the input and
saving the input.

Typically you will already have an save option in your model so we do not
discuss the implementation of the methods save, isSaveAsAllowed and saveAs
here.

As a result we will have the class skeleton shown in Example 3-2.

Example 3-2 ExampleGEFEditor.java (initial stage)

/**
 * This is the example editor skeleton that is build
 * in <i>Building an editor</i> in chapter <i>Introduction to GEF</i>.
 *
 * @see org.eclipse.ui.part.EditorPart
 */
public class ExampleGEFEditor extends EditorPart
{

public ExampleGEFEditor()
{}

public void createPartControl(Composite parent)
{}

public void setFocus()
{

// what should be done if the editor gains focus?
// it's your part

}

public void doSave(IProgressMonitor monitor)
{

// your save implementation here
}

Note: JavaDoc comments are removed for readability reasons.
 Chapter 3. Introduction to GEF 115

public void doSaveAs()
{

// your save as implementation here
}

public boolean isDirty()
{

return false;
}

public boolean isSaveAsAllowed()
{

// your implementation here
return false;

}

public void gotoMarker(IMarker marker)
{}

public void init(IEditorSite site, IEditorInput input)
throws PartInitException

{}
}

3.4.2 EditDomain
Next we need an EditDomain. An EditDomain is an interface that logically
bundles an editor, viewers and tools. Therefore it defines the real editor
application.

An EditDomain provides a CommandStack, which keeps track of all executed
commands. This is necessary for undo and redo opertions and useful to
determine if the model was modified (is dirty) or not.

Usually you will have one EditDomain per editor but it is also possible to share an
EditDomain across several editors in a multi page editor.

It is up to you when to create the EditDomain. It is possible to create it lazily. You
can use the class EditDomain directly, however, the Graphical Editing
Framework provides an implementation, which additionally knows about the
editor that created it. This implementation is called DefaultEditDomain and used
in our example shown in Example 3-3

Example 3-3 Adding EditDomain to the editor

/** the <code>EditDomain</code>, will be initialized lazily */
private EditDomain editDomain;
116 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

/**
* Returns the <code>EditDomain</code> used by this editor.
* @return the <code>EditDomain</code> used by this editor
*/
public EditDomain getEditDomain()
{

if (editDomain == null)
editDomain = new DefaultEditDomain(this);

return editDomain;
}

3.4.3 CommandStack
After adding the EditDomain we have access to the CommandStack. We will use
the CommandStack to indicate when an editor is dirty.

The CommandStack contains the method isDirty, which indicates if a
CommandStack has executed commands after the last save. How does the
CommandStack know about the last save? A CommandStack knows about this
because we have to tell it whenever the editor is saved.

This is not done by simply delegating the editors isDirty method to the
CommandStack, instead we need a listerner that listens to CommandStack
changes and updates the dirty state of our editor. Whenever the dirty state of our
editor changes we need to inform the Eclipse workbench. But do not worry about
this. The superclass EditorPart provides methods for thew last part.

We start with the last part as it is the easiest task. We simply add a flag for the
dirty state and a setter that automatically fires an event as shown in Example 3-4.

Example 3-4 Indicating the dirty state of our editor (part 1)

/** the dirty state */
private boolean isDirty;

/**
* Indicates if the editor has unsaved changes.
* @see EditorPart#isDirty
*/
public boolean isDirty()
{

return isDirty;

Note: If you ever execute a command yourself please ensure that you
execute it through the CommandStack.
 Chapter 3. Introduction to GEF 117

}

/**
* Sets the dirty state of this editor.
*
* <p>An event will be fired immediately if the new
* state is different than the current one.
*
* @param dirty the new dirty state to set
*/
protected void setDirty(boolean dirty)
{

if(isDirty != dirty)
{

isDirty = dirty;
firePropertyChange(IEditorPart.PROP_DIRTY);

}
}

Now we implement the listener and attach it to the CommandStack as shown in
Example 3-5.

Example 3-5 The CommandStackListener

/**
* The <code>CommandStackListener</code> that listens for
* <code>CommandStack </code>changes.
*/
private CommandStackListener commandStackListener = new CommandStackListener()
{

public void commandStackChanged(EventObject event)
{

setDirty(getCommandStack().isDirty());
}

};

/**
* Returns the <code>CommandStack</code> of this editor's
* <code>EditDomain</code>.
*
* @return the <code>CommandStack</code>
*/
public CommandStack getCommandStack()
{

return getEditDomain().getCommandStack();
}

/**
* Returns the <code>CommandStackListener</code>.
118 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

* @return the <code>CommandStackListener</code>
*/
protected CommandStackListener getCommandStackListener()
{

return commandStackListener;
}

Attaching the listener should be done when the editor gets it input and removing
it should be done in the editor’s dispose method.See Example 3-6

Example 3-6 Attaching and removing the CommandStackListener

/**
* Initializes the editor.
* @see EditorPart#init
*/
public void init(IEditorSite site, IEditorInput input)

throws PartInitException
{

// store site and input
setSite(site);
setInput(input);

// add CommandStackListener
getCommandStack().addCommandStackListener(getCommandStackListener());

}

/* (non-Javadoc)
* @see org.eclipse.ui.IWorkbenchPart#dispose()
*/
public void dispose()
{

// remove CommandStackListener
getCommandStack().removeCommandStackListener(getCommandStackListener());

// important: always call super implementation of dispose
super.dispose();

}

Do not forget to update the CommandStack when the editor content is saved.
See Example 3-7

Example 3-7 Update CommandStack on editor save

/**
* TODO: Implement "doSave".
* @see EditorPart#doSave
*/
 Chapter 3. Introduction to GEF 119

public void doSave(IProgressMonitor monitor)
{

// your implementation here

// update CommandStack
getCommandStack().markSaveLocation();

}

/**
* TODO: Implement "doSaveAs".
* @see EditorPart#doSaveAs
*/
public void doSaveAs()
{

// your implementation here

// update CommandStack
getCommandStack().markSaveLocation();

}

3.4.4 Attaching the viewer
The GraphicalViewer is the next element that must be integrated into our editor.
The method createPartControl is the best location to do this. First we create a
GraphicalViewer ,then we configure this instance, and add it to the EditDomain.
See Example 3-8

Please do not be confused by the RootEditPart. We have chosen to use
ScalableFreeformRootEditPart here , but you are free to use whatever
RootEditPart you like.

Example 3-8 Attaching a GraphicalViewer to our editor

/** the graphical viewer */
private GraphicalViewer graphicalViewer;

/**
* Creates the controls of the editor.
* @see EditorPart#createPartControl
*/
public void createPartControl(Composite parent)
{

graphicalViewer = createGraphicalViewer(parent);
}

/**
* Creates a new <code>GraphicalViewer</code>, configures, registers
* and initializes it. *
120 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

* @param parent the parent composite
* @return a new <code>GraphicalViewer</code>
*/
private GraphicalViewer createGraphicalViewer(Composite parent)
{

// create graphical viewer
GraphicalViewer viewer = new ScrollingGraphicalViewer();
viewer.createControl(parent);

// configure the viewer
viewer.getControl().setBackground(parent.getBackground());
viewer.setRootEditPart(new ScalableFreeformRootEditPart());

// hook the viewer into the EditDomain
getEditDomain().addViewer(viewer);

// acticate the viewer as selection provider for Eclipse
getSite().setSelectionProvider(viewer);

// initialize the viewer with input
viewer.setEditPartFactory(getEditPartFactory());
viewer.setContents(getContent());

return viewer;
}

/**
* Returns the <code>GraphicalViewer</code> of this editor.
* @return the <code>GraphicalViewer</code>
*/
public GraphicalViewer getGraphicalViewer()
{

return graphicalViewer;
}

/**
* Returns the content of this editor
* @return the model object
*/
protected Object getContent()
{

// todo return your model here
return null;

}

/**
* Returns the <code>EditPartFactory</code> that the
* <code>GraphicalViewer</code> will use.
* @return the <code>EditPartFactory</code>
 Chapter 3. Introduction to GEF 121

*/
protected EditPartFactory getEditPartFactory()
{

// todo return your EditPartFactory here
return null;

}

3.4.5 Be adaptable
One of the key concepts inside Eclipse is the IAdaptable technology. It is also
used within the Graphical Editing Framework.That is why we have to ensure that
our editor implements this interface so that the GEF elements we have created
provide adaptable behavior, that may be interesting to the Graphical Editing
Framework itself or other Eclipse code.

We have created the following GEF elements so far:

� EditDomain
� GraphicalViewer

Both are important GEF elements and EditDomain also provides access to a
CommandStack, which is a third important element too.

Example 3-9 shows how to provide adapter access to the elements in our sample
editor.

Example 3-9 Overwriting the getAdapter method

/* (non-Javadoc)
* @see org.eclipse.core.runtime.IAdaptable#getAdapter(java.lang.Class)
*/
public Object getAdapter(Class adapter)
{

// we need to handle common GEF elements we created
if (adapter == GraphicalViewer.class || adapter == EditPartViewer.class)

return getGraphicalViewer();
else if (adapter == CommandStack.class)

return getCommandStack();
else if (adapter == EditDomain.class)

return getEditDomain();

// the super implementation handles the rest
return super.getAdapter(adapter);

}

122 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

3.4.6 Introducing the palette
The plalette in GEF editors is the home for tools. Before we talk about tools we
need to create a palette inside our editor. The GEF palette is implemented
reusing GEF technology. Thus it has a model presented in a viewer (the
PaletteViewer).

The palette model
The palette model is a simple model. It starts with a PaletteRoot. Each
PaletteViewer needs a PaletteRoot. The PaletteRoot is a PaletteContainer.
Palette containers are used to organize palette entries (PaletteEntry).

Besides the PaletteRoot there are two additional palette containers -
PaletteGroup and PaletteDrawer. We suggest you use both of them to organize
your palette. Both provide a container for palette entries but the PaletteGroup is
not collapsable and the PaletteDrawer is collapsable.

Additional information can be found in the GEF JavaDoc.

Attaching the palette
Attaching a palette is similar to attaching a viewer. First, we need to create a new
PaletteViewer as shown in Example 3-10

Example 3-10 Creating a PaletteViewer

/**
* Creates a new <code>PaletteViewer</code>, configures, registers
* and initializes it.
* @param parent the parent composite
* @return a new <code>PaletteViewer</code>
*/
private PaletteViewer createPaletteViewer(Composite parent)
{

// create graphical viewer
PaletteViewer viewer = new PaletteViewer();
viewer.createControl(parent);

// hook the viewer into the EditDomain (only one palette per EditDomain)
getEditDomain().setPaletteViewer(viewer);

// important: the palette is initialized via EditDomain
getEditDomain().setPaletteRoot(getPaletteRoot());

return viewer;
}

/**
 Chapter 3. Introduction to GEF 123

* Returns the <code>PaletteRoot</code> this editor's palette uses.
* @return the <code>PaletteRoot</code>
*/
protected PaletteRoot getPaletteRoot()
{

// todo add your palette entries here
return null;

}

Next, we need to add this viewer to the editor’s composite. The SWT SashForm
is used to have the palette’s width modifiable as shown in Example 3-11.

Example 3-11 Adding the PaletteViewer to the editor’s composite

/**
* Creates the controls of the editor.
* @see EditorPart#createPartControl
*/
public void createPartControl(Composite parent)
{

SashForm sashForm = new SashForm(parent, SWT.HORIZONTAL);
sashForm.setWeights(new int[] {30,70});
paletteViewer = createPaletteViewer(sashForm);
graphicalViewer = createGraphicalViewer(sashForm);

}

/** the palette viewer */
private PaletteViewer paletteViewer;

/**
* Returns the <code>PaletteViewer</code> of this editor.
* @return the <code>PaletteViewer</code>
*/
public PaletteViewer getPaletteViewer()
{

return paletteViewer;
}

There are several default tools available and we should add them so we have a
initial PaletteRoot. See Example 3-12.

Example 3-12 Inital PaletteRoot with default tools

/** the palette root */
private PaletteRoot paletteRoot;

/**
* Returns the <code>PaletteRoot</code> this editor's palette uses.
124 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

* @return the <code>PaletteRoot</code>
*/
protected PaletteRoot getPaletteRoot()
{

if (null == paletteRoot)
{

// create root
paletteRoot = new PaletteRoot();

List categories = new ArrayList();

// a group of default control tools
PaletteGroup controls = new PaletteGroup("Controls");

// the selection tool
ToolEntry tool = new SelectionToolEntry();
controls.add(tool);

// use selection tool as default entry
paletteRoot.setDefaultEntry(tool);

// the marquee selection tool
controls.add(new MarqueeToolEntry());

// a separator
PaletteSeparator separator =

new PaletteSeparator(
EditorExamplePlugin.PLUGIN_ID + ".palette.seperator");

separator.setUserModificationPermission(
PaletteEntry.PERMISSION_NO_MODIFICATION);

controls.add(separator);

// a tool for creating connection
controls.add(

new ConnectionCreationToolEntry(
"Connections",
"Create Connections",
null,
ImageDescriptor.createFromFile(

getClass(),
"icons/connection16.gif"),

ImageDescriptor.createFromFile(
getClass(),
"icons/connection24.gif")));

// todo add your palette drawers and entries here

// add all categroies to root
paletteRoot.addAll(categories);
 Chapter 3. Introduction to GEF 125

}
return paletteRoot;

}

Palette customizer
It is possible to attach a palette customizer to the palette. This will enable the
users of your editor to modify the palette to work the way they like. For
implementation details please see our completed redbook sample application as
described in Chapter 7, “Implementing the sample” on page 207 or the Logic
example application provided from the GEF development team.

3.4.7 Actions
Actions are common objects in the Eclipse workbench to do something when
user requests are initiated through menu items, toolbar buttons or context menu
items. The Graphical Editing Framework provides a set of standard actions and
an infrastructure for using these actions within the Graphical Editing Framework.

ActionRegistry
The class org.eclipse.gef.actions.ActionRegistry serves as a container for editor
actions. The editor is responsible for providing and maintaning an ActionRegistry.
Example 3-13.

Example 3-13 Adding an ActionRegistry to the editor

/** the editor's action registry */
private ActionRegistry actionRegistry;

/**
* Returns the action registry of this editor.
* @return the action registry
*/
public ActionRegistry getActionRegistry()
{

if (actionRegistry == null)
actionRegistry = new ActionRegistry();

return actionRegistry;
}

/* (non-Javadoc)
* @see org.eclipse.core.runtime.IAdaptable#getAdapter(java.lang.Class)
*/
public Object getAdapter(Class adapter)
{

// we need to handle common GEF elements we created
126 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

if (adapter == GraphicalViewer.class
|| adapter == EditPartViewer.class)
return getGraphicalViewer();

else if (adapter == CommandStack.class)
return getCommandStack();

else if (adapter == EditDomain.class)
return getEditDomain();

else if (adapter == ActionRegistry.class)
return getActionRegistry();

// the super implementation handles the rest
return super.getAdapter(adapter);

}

/* (non-Javadoc)
* @see org.eclipse.ui.IWorkbenchPart#dispose()
*/
public void dispose()
{

// remove CommandStackListener
getCommandStack().removeCommandStackListener(getCommandStackListener());

// disposy the ActionRegistry (will dispose all actions)
getActionRegistry().dispose();

// important: always call super implementation of dispose
super.dispose();

}

Managing Actions
As soon as we have the ActionRegistry we are able to create actions and to
register them.

The Graphical Editing Framework provides a set of default actions (redo, undo,
delete, print and save). These actions need some special handling to stay
up-to-date with the editor, the CommandStack or the EditParts. The GEF default
actions are not implemented as listeners to some events. Instead they have to be
updated manually. This can be done from within the editor as shown in
Example 3-14.

Example 3-14 Added infrastructure for supporting different actions

/** the list of action ids that are to EditPart actions */
private List editPartActionIDs = new ArrayList();

/** the list of action ids that are to CommandStack actions */
private List stackActionIDs = new ArrayList();
 Chapter 3. Introduction to GEF 127

/** the list of action ids that are editor actions */
private List editorActionIDs = new ArrayList();

/**
* Adds an <code>EditPart</code> action to this editor.
*
* <p><code>EditPart</code> actions are actions that depend
* and work on the selected <code>EditPart</code>s.
*
* @param action the <code>EditPart</code> action
*/
protected void addEditPartAction(SelectionAction action)
{

getActionRegistry().registerAction(action);
editPartActionIDs.add(action.getId());

}

/**
* Adds an <code>CommandStack</code> action to this editor.
*
* <p><code>CommandStack</code> actions are actions that depend
* and work on the <code>CommandStack</code>.
*
* @param action the <code>CommandStack</code> action
*/
protected void addStackAction(StackAction action)
{

getActionRegistry().registerAction(action);
stackActionIDs.add(action.getId());

}

/**
* Adds an editor action to this editor.
*
* <p><Editor actions are actions that depend
* and work on the editor.
*
* @param action the editor action
*/
protected void addEditorAction(EditorPartAction action)
{

getActionRegistry().registerAction(action);
editorActionIDs.add(action.getId());

}

/**
* Adds an action to this editor's <code>ActionRegistry</code>.
* (This is a helper method.)
128 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

*
* @param action the action to add.
*/
protected void addAction(IAction action)
{

getActionRegistry().registerAction(action);
}

Now that we have the action infrastucture, we must implement the automatic
updating of the different actions. Editor actions must be updated when the editor
changes, CommandStack actions when the CommandStack changes and
EditPart actions when the selection changes. Example 3-15 shows how to add
update support for actions to our sample editor.

Example 3-15 Adding update support for the actions

/**
* Updates the specified actions.
*
* @param actionIds the list of ids of actions to update
*/
private void updateActions(List actionIds)
{

for (Iterator ids = actionIds.iterator(); ids.hasNext();)
{

IAction action = getActionRegistry().getAction(ids.next());
if (null != action && action instanceof UpdateAction)

((UpdateAction) action).update();

}
}

/**
* The <code>CommandStackListener</code> that listens for
* <code>CommandStack </code>changes.
*/
private CommandStackListener commandStackListener =

new CommandStackListener()
{

public void commandStackChanged(EventObject event)
{

updateActions(stackActionIDs);
setDirty(getCommandStack().isDirty());

}
};

/** the selection listener */
private ISelectionListener selectionListener = new ISelectionListener()
 Chapter 3. Introduction to GEF 129

{
public void selectionChanged(IWorkbenchPart part, ISelection selection)
{

updateActions(editPartActionIDs);
}

};

/**
* Returns the selection listener.
*
* @return the <code>ISelectionListener</code>
*/
protected ISelectionListener getSelectionListener()
{

return selectionListener;
}

/**
* Initializes the editor.
* @see EditorPart#init
*/
public void init(IEditorSite site, IEditorInput input)

throws PartInitException
{

// store site and input
setSite(site);
setInput(input);

// add CommandStackListener
getCommandStack().addCommandStackListener(getCommandStackListener());

// add selection change listener
getSite()

.getWorkbenchWindow()

.getSelectionService()

.addSelectionListener(
getSelectionListener());

}

/* (non-Javadoc)
* @see org.eclipse.ui.IWorkbenchPart#dispose()
*/
public void dispose()
{

// remove CommandStackListener
getCommandStack().removeCommandStackListener(getCommandStackListener());

// remove selection listener
getSite()
130 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

.getWorkbenchWindow()

.getSelectionService()

.removeSelectionListener(
getSelectionListener());

/ disposy the ActionRegistry (will dispose all actions)
getActionRegistry().dispose();

// important: always call super implementation of dispose
super.dispose();

}

/* (non-Javadoc)
* @see org.eclipse.ui.part.WorkbenchPart#firePropertyChange(int)
*/
protected void firePropertyChange(int propertyId)
{

super.firePropertyChange(propertyId);
updateActions(editorActionIDs);

}

Now when all the infrastructure is ready we are able to create and add our
actions as shown in Example 3-16

Example 3-16 Adding actions to the editor

/**
* Initializes the editor.
* @see EditorPart#init
*/
public void init(IEditorSite site, IEditorInput input)

throws PartInitException
{

// store site and input
setSite(site);
setInput(input);

// add CommandStackListener
getCommandStack().addCommandStackListener(getCommandStackListener());

// add selection change listener
getSite()

.getWorkbenchWindow()

.getSelectionService()

.addSelectionListener(
getSelectionListener());

// initialize actions
createActions();
 Chapter 3. Introduction to GEF 131

}

/**
* Creates actions and registers them to the ActionRegistry.
*/
protected void createActions()
{

addStackAction(new UndoAction(this));
addStackAction(new RedoAction(this));

addEditPartAction(new DeleteAction((IWorkbenchPart) this));

addEditorAction(new SaveAction(this));
addEditorAction(new PrintAction(this));

}

3.4.8 Adapting to the properties view
EditParts are responsible for delivering IPropertySource adapters for the
properties view but this is not discussed here.

The Graphical Editing Framework provides a solution to cover modifications
occured in the properties view into the CommandStack. This enabled the
possibility to undo and redo changes.

The enable this the editor must deliver its own IPropertySheetPage. This
IPropertySheetPage is a default PropertySheetPage customized with an
undoable root entry provided by GEF. See Example 3-17.

Example 3-17 Making the properties view undoable

/* (non-Javadoc)
* @see org.eclipse.core.runtime.IAdaptable#getAdapter(java.lang.Class)
*/
public Object getAdapter(Class adapter)
{

// we need to handle common GEF elements we created
if (adapter == GraphicalViewer.class

|| adapter == EditPartViewer.class)
return getGraphicalViewer();

else if (adapter == CommandStack.class)
return getCommandStack();

else if (adapter == EditDomain.class)
return getEditDomain();

else if (adapter == ActionRegistry.class)
return getActionRegistry();

else if (adapter == IPropertySheetPage.class)
return getPropertySheetPage();
132 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

// the super implementation handles the rest
return super.getAdapter(adapter);

}

/** the undoable <code>IPropertySheetPage</code> */
private PropertySheetPage undoablePropertySheetPage;

/**
* Returns the undoable <code>PropertySheetPage</code> for
* this editor.
*
* @return the undoable <code>PropertySheetPage</code>
*/
protected PropertySheetPage getPropertySheetPage()
{

if (null == undoablePropertySheetPage)
{

undoablePropertySheetPage = new PropertySheetPage();
undoablePropertySheetPage.setRootEntry(

GEFPlugin.createUndoablePropertySheetEntry(getCommandStack()));
}

return undoablePropertySheetPage;
}

3.4.9 Providing an outline view
Providing an outline view is handled in the typical Eclipse way. We need to
provide an adapter of type IContentOutlinePage. We can do this in several ways.

One way is to create a complete SWT based outline view without using the
Graphical Editing Framework. In many cases this is suitable and can be easily
done because a lot components like content and label providers or even tree
viewers can be reused to show a tree of your model objects.

If you do not have these reusable components available you can adopt a second
way and build a tree with GEF components. The Graphical Editing Framework
provides a TreeViewer and TreeEditParts for this case. You can also reuse
actions created for your graphical editor. For details about implementing a model
tree with the GEF TreeViewer and TreeEditParts please see our redbook sample
sample application.

A third way is to provide an overview of your graphical editor. Example 3-18 and
Example 3-19 shows a possible implementation of this.
 Chapter 3. Introduction to GEF 133

Example 3-18 An overview outline page

/**
* This is a sample implementation of an outline page showing an
* overview of a graphical editor.
*
* @author Gunnar Wagenknecht
*/
public class OverviewOutlinePage extends Page implements IContentOutlinePage
{

/** the control of the overview */
private Canvas overview;

/** the root edit part */
private ScalableFreeformRootEditPart rootEditPart;

/** the thumbnail */
private Thumbnail thumbnail;

/ **
* Creates a new OverviewOutlinePage instance.
* @param rootEditPart the root edit part to show the overview from
*/
public OverviewOutlinePage(ScalableFreeformRootEditPart rootEditPart)
{

super();
this.rootEditPart = rootEditPart;

}

/* (non-Javadoc)
* @see ISelectionProvider#addSelectionChangedListener
* (ISelectionChangedListener)
*/
public void addSelectionChangedListener(ISelectionChangedListener listener)
{}

/* (non-Javadoc)
* @see IPage#createControl(Composite)
*/
public void createControl(Composite parent)
{

// create canvas and lws
overview = new Canvas(parent, SWT.NONE);
LightweightSystem lws = new LightweightSystem(overview);

// create thumbnail
thumbnail =

new ScrollableThumbnail((Viewport) rootEditPart.getFigure());
134 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

thumbnail.setBorder(new MarginBorder(3));
thumbnail.setSource(

rootEditPart.getLayer(LayerConstants.PRINTABLE_LAYERS));
lws.setContents(thumbnail);

}

/* (non-Javadoc)
* @see org.eclipse.ui.part.IPage#dispose()
*/
public void dispose()
{

if (null != thumbnail)
thumbnail.deactivate();

super.dispose();
}

/* (non-Javadoc)
* @see org.eclipse.ui.part.IPage#getControl()
*/
public Control getControl()
{

return overview;
}

/* (non-Javadoc)
* @see org.eclipse.jface.viewers.ISelectionProvider#getSelection()
*/
public ISelection getSelection()
{

return StructuredSelection.EMPTY;
}

/* (non-Javadoc)
* @see ISelectionProvider#removeSelectionChangedListener
* (ISelectionChangedListener)
*/
public void removeSelectionChangedListener(

ISelectionChangedListener listener)
{}

/* (non-Javadoc)
* @see org.eclipse.ui.part.IPage#setFocus()
*/
public void setFocus()
{

if (getControl() != null)
getControl().setFocus();

}

 Chapter 3. Introduction to GEF 135

/* (non-Javadoc)
* @see ISelectionProvider#setSelection(ISelection)
*/
public void setSelection(ISelection selection)
{}

}

Now this page can be used in the editor as shown in Example 3-19.

Example 3-19 Attaching the overview to the editor

/* (non-Javadoc)
* @see org.eclipse.core.runtime.IAdaptable#getAdapter(java.lang.Class)
*/
public Object getAdapter(Class adapter)
{

// we need to handle common GEF elements we created
if (adapter == GraphicalViewer.class

|| adapter == EditPartViewer.class)
return getGraphicalViewer();

else if (adapter == CommandStack.class)
return getCommandStack();

else if (adapter == EditDomain.class)
return getEditDomain();

else if (adapter == ActionRegistry.class)
return getActionRegistry();

else if (adapter == IPropertySheetPage.class)
return getPropertySheetPage();

else if (adapter == IContentOutlinePage.class)
return getOverviewOutlinePage();

// the super implementation handles the rest
return super.getAdapter(adapter);

}

/** the overview outline page */
private OverviewOutlinePage overviewOutlinePage;

/**
* Returns the overview for the outline view.
*
* @return the overview
*/
protected OverviewOutlinePage getOverviewOutlinePage()
{

if (null == overviewOutlinePage && null != getGraphicalViewer())
{

RootEditPart rootEditPart = getGraphicalViewer().getRootEditPart();
136 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

if (rootEditPart instanceof ScalableFreeformRootEditPart)
{

overviewOutlinePage =
new OverviewOutlinePage(

(ScalableFreeformRootEditPart) rootEditPart);
}

}

return overviewOutlinePage;
}

3.4.10 Controling your editor with the keyboard
The Graphical Editing Framework uses the concept of KeyHandlers to answer
key strokes. By default anGEF GraphicalViewer does not answer key strokes.
We have to enable this.

This is not a hard task, because as with all other GEF concepts, there is a default
implementation available, which provides a very feature rich set of keys for
interacting with a GraphicalViewer. The default implementation is the class
org.eclipse.gef.ui.parts.GraphicalViewerKeyHandler. Example 3-20 shows how
to use this key handler with our editor sample.

Example 3-20 Enabling our editor for keyboard interaction

/**
* Creates a new <code>GraphicalViewer</code>, configures, registers
* and initializes it.
* @param parent the parent composite
* @return a new <code>GraphicalViewer</code>
*/
private GraphicalViewer createGraphicalViewer(Composite parent)
{

// create graphical viewer
GraphicalViewer viewer = new ScrollingGraphicalViewer();
viewer.createControl(parent);

// configure the viewer
viewer.getControl().setBackground(parent.getBackground());
viewer.setRootEditPart(new ScalableFreeformRootEditPart());
viewer.setKeyHandler(new GraphicalViewerKeyHandler(viewer));

// hook the viewer into the EditDomain
getEditDomain().addViewer(viewer);

// acticate the viewer as selection provider for Eclipse
getSite().setSelectionProvider(viewer);
 Chapter 3. Introduction to GEF 137

// initialize the viewer with input
viewer.setEditPartFactory(getEditPartFactory());
viewer.setContents(getContent());

return viewer;
}

3.5 Managing your model
Now that the editor base is built, you probably need to start reflecting your model.
In this section we provide an overview of things to consider and describe some
important issues related to handling mmodels with our editor.

3.5.1 Reflecting a model
First we have to think about the architecture of our EditParts. The easiest way is
usually to build the EditParts according to our model, but sometimes you may
like another kind of representation of the model.

Whether you wnat a simple one-to-one representation or not, you need to have
one main EditPart. This main EditPart is also called content EditPart and serves
as the main entry point for your representation. It is important to understand this
because each EditPartViewer can only have one content EditPart.

A content EditPart has nothing to do with a RootEditPart but it might be possible
that a RootEditPart defines some restrictions on the figure of the content EditPart
(for example ScalableFreeformRootEditPart).

The figure of a content EditPart serves as the background figure of your
graphical editor. Children can only be placed inside a figure.

Graphical model properties
A graphical editor presents your model in a graphical way. It is quite common for
editors to allow users to layout things the way they like. We have to think about
this and decide, which kind of support we will provide for layout.

Tip: If you like to attach actions to your own key strokes you do not need to
overwrite the GraphicalViewerKeyHandler. It is simply possible to attach a
parent to KeyHandlers. Thus, you simply create your own KeyHandler
instance (not GraphicalViewerKeyHandler), configure this KeyHandler
instance and set it as the parent of the GraphicalViewerKeyHandler you
created for the GraphicalViewer.
138 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

The Graphical Editing Framework can use any Draw2D layout manager that is
available. Some layouts requires the use of constraints (for example location and
size). These constraints belongs to a certain graphical representation of a model
element. You have to decide if these constraints are persistent or not. If they are
persistent you have to find a location where you can store the constraint
information.

The best way to do this depends on your preference and what fits best with your
model. Mostly it is possible to store constraints togehter with the model element,
either as a model property or as some kind of element annotation. If you do not
like doing this it is also possible to store them separately from your model.

3.5.2 Communication
If a model element is changed somehow or somewhere; a new issue arises - we
have to ensure that all graphical representations of the model are updated
accordingly. This requires communication between the model and the controller,
which represents it.

It is not acceptable practice for your model to knows about its controller, but i a
model can call attention to itself and to the change which has affected it.

It is up to you how you like to implement this, but a common way is to create
some kind of event object, that is fired everytime a change in done in the model.
Then every controller can register with the model element itself or with an event
manager and listen for such events.

As already mentioned in 3.3.2, “EditParts” on page 106 this is done best in
EditPart#activate and EditPart#deactivate. When an EditPart receives an event
for its model element it has to decide whether it was a simple property change
that only affect the figure (UI represention) or a structural change. In the first
case you would simply call EditPart#refreshVisual and in the second case you
need to call EditPart#refreshChildren.

There are some dependencies that have to be considered in event based
communication for EditParts, for example when connections are reconnected to
another EditPart both the old and the new EditParts need to be refreshed. You
need to work out which parts need to be refreshed, but this is logically quite easy.
For example, if a connection is reconnected to a new element elements affected
by this change should also fire events in this case.

3.5.3 Creating EditParts
As mentioned in 3.3.2, “EditParts” on page 106 creating EditParts is best done
through a factory. The EditPartFactory interface is simple to implement. It has
 Chapter 3. Introduction to GEF 139

only one method. In that method you need to create an EditPart for a given
model element in a specified context. The context might be useful if you consider
a different UI representation than your model actually shows. Of course it is also
necessary that you accociate the specified model element with the created
EditPart before you return the new EditPart.

You may consider building a map for between the created EditParts and the
model elements, but we do not recommend this. The EditPartViewer maintains
an EditPart registry. EditParts register themself to that registry. The default
EditPart implementation already does this for you by using the model element as
the key. Using the EditPart registry is a safe way to map between EditParts and
the model elements.

One possible need for an EditPart registry is a domain based (global) listener
model where there is only one listener, which does not belong to the model. This
stener receives all the events from all model objects and therefore it needs to find
EditParts.

Note: If your model elements need to locate EditParts you are probably not
using the model-view-controler paradigm and should consider another
solution.
140 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Chapter 4. GEF examples

This chapter covers some more advanced Graphical Editing Framework subjects
and presents solutions and example code for useful or frequently requested
techniques.

4

© Copyright IBM Corp. 2003. All rights reserved. 141

4.1 Additional Concepts
In this section we look at some GEF and Draw2D concepts and features in
greater detail.

4.1.1 RootEditParts
The RootEditPart is at the root of the EditPart hierarchy. It is the link between
your application’s root edit part and the EditPartViewer. GEF provides a handful
of RootEditPart implementations that you can use. In order to clear up any
potential confusion about which RootEditPart is appropriate for your application,
we summarize the features of the various implementations below.

The code snippet in Example 4-1 illustrates the essential steps in initializing a
GEF application. Note that in an actual application these steps may be
distributed across more than one method. It shows an instance of the root
EditPart being created and used to initialize the GraphicalViewer.

Example 4-1 Configuring a RootEditPart

EditDomain editDomain = new DefaultEditDomain(null);
ScalableFreeformRootEditPart root = new ScalableFreeformRootEditPart();
GraphicalViewer viewer = new ScrollingGraphicalViewer();
viewer.createControl(parent);
editDomain.addViewer(viewer);

viewer.setRootEditPart(root);
viewer.setEditPartFactory(new EditPartFactory());

In selecting a root EditPart, we can first eliminate the GraphicalRootEditPart
class. This implementation has been deprecated and will eventually be removed
from GEF. The equivalent functionality of this EditPart can be achieved by using
a ScrollingGraphicalViewer with a ScalableRootEditPart.

The three root EditParts to consider using are:

� ScalableRootEditPart,

� FreeformGraphicalRootEditPart,

� and ScalableFreeformRootEditPart.

All three of these EditParts must be used with a ScrollingGraphicalViewer, and
therefore they all support scrolling using scrollbars. The main deciding criteria
are whether your application requires scalability or a freeform diagram.
142 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Remember that a freeform diagram expands automatically in all directions as the
user drags figures beyond the current bounds of the diagram. This feature is
generally desirable whenever you want the user to control the placement of the
figures in your application. On the other hand if your application constrains the
placement of graphical objects, for example into cells of a grid, then the freeform
feature might not be desirable. Table 4-1 summarizes the main characteristics of
the three root EditParts.

Table 4-1 Root EditPart characteristics

4.1.2 Coordinate systems
Figures have a protected method, useLocalCoordinates(), that allows subclasses
of figure to choose a coordinate system for their child figures that is either
absolute or relative to the parent figure. A figure whose parent uses local
coordinates will have a bounds whose upper left coordinate will be (0,0).

A figure’s getClientArea returns the rectangle in which child figures are visible. It
is cropped by any border/insets that are in effect for the figure, and the origin of
the rectangle is set to (0,0) if the figure is using local coordinates.

The figure class includes four methods for translating coordinates between
relative and absolute coordinates:

� translateToParent() - translates a point in the figure’s coordinates to its value
in the parent’s coordinates

� ttranslateFromParent() - translates a point in the parent’s coordinates to it’s
coordinates in this figure

� translateToRelative(), translate an absolute coordinate to a coordinate that is
relative to this figure, that is, recursively translate from parent

� translateToAbsolute() - translate a coordinate that is relative to this figure to
an absolute coordinate, that is, recursively translate to parent

Anchors and locator reference points work with absolute coordinates. Hit testing
uses local coordinates.

EditPart Primary Figure is freeform? is scalable?

ScalableRootEditP
art

Viewport no yes

FreeformGraphical
RootEditPart

FreeformViewport yes no

ScalableFreeform
RootEditPart

FreeformViewport yes yes
 Chapter 4. GEF examples 143

4.1.3 Layers
In the 3.2, “Introduction to Draw2D” on page 95 we discussed support for
graphical layers using the LayeredPanes and layers classes. This feature allows
us to segregate graphical elements into layers based on their functionality, and
then control their visibility, z-order, and targetability. In this section we look at
some of the specific ways that layers are configured in GEF’s root EditParts, and
possibilities for customizing this behavior.

GEF’s root EditPart classes, ScalableRootEditPart,
FreeformGraphicalRootEditPart, and ScalableFreeformRootEditPart classes all
expose methods that allow subclasses to modify the structure of their layers. The
protected methods createLayers() and createPrintableLayers() are where these
classes set up their layers. The implementation of these methods in
FreeformGraphicalRootEditPart is shown in Example 4-2. This is similar to the
other EditPart classes, except that it does not include scaling support. Examining
this code reveals the default layer organization in GEF:

� Only the primary and connection layers are printable

� the feedback layer is on the top of the z-order, followed by the handle layer
and finally the printable layers

� within the printable layers the connection layer is on top of the primary
drawing layer

Example 4-2 Layer creation methods in FreeformGraphicalRootEditPart

protected void createLayers(LayeredPane layeredPane) {
layeredPane.add(getPrintableLayers(), PRINTABLE_LAYERS);
layeredPane.add(new FreeformLayer(), HANDLE_LAYER);
layeredPane.add(new FeedbackLayer(), FEEDBACK_LAYER);

}

/**
 * Creates a layered pane and the layers that should be printed.
 * @see org.eclipse.gef.print.PrintGraphicalViewerOperation
 * @return a new LayeredPane containing the printable layers
 */
protected LayeredPane createPrintableLayers() {

FreeformLayeredPane layeredPane = new FreeformLayeredPane();
layeredPane.add(new FreeformLayer(), PRIMARY_LAYER);
layeredPane.add(new ConnectionLayer(), CONNECTION_LAYER);
return layeredPane;

}

144 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

The EditParts that support scaling, that is,ScalableRootEditPart and
ScalableFreeformRootEditPart, also contain the method:

protected ScalableFreeformLayeredPane createScaledLayers();

By subclassing these root EditPart classes you can gain control over the ordering
of layers or customize which layers are printable or scalable. There are probably
few cases where it would be useful to modify the configuration of the “stock”
layers. One application that has been discussed is to place connections under
rather than over the primary figure layer. Although this can have some aesthetic
advantages, keep in mind if you are considering this, that it will be possible for
your figures to completely cover connections, making them difficult to access. It
becomes more problematic when your application includes container nodes,
because connections between nodes in a container will be occluded.

A more likely customization scenario is to create additional, custom layers, for
example to provide annotation layers that can be turned on and off, and
selectively printed.
 Chapter 4. GEF examples 145

4.2 Techniques
In this section we discuss some GEF and Draw2d techniques which are useful
when developing a GEF application.

4.2.1 Drag and drop
One of the most essential parts in today’s desktop applications is drag and drop.
In this section we are going to discuss drag and drop inside GEF applications.

As you might know drag and drop is organized in SWT around Transfers. They
are the base representation of something that is transfered between the SWT
controls in an drag and drop operation. Basically there is no difference compared
in GEF.

The Graphical Editing Framework provides some classes and concepts to ease
the development of drag and drop in GEF applications. For example, you won’t
have to deal with SWT DragSource objects and other lower level classes.

The base concept in GEF is that you add TransferDragSourceListener and/or
TransferDropTargetListener to an EditPartViewer. TransferDragSourceListeners
are used to enable EditPartViewers as a source for drag operations and
TransferDropTargetListener are used to enable EditPartViewers as target for
drop operations.

When implementing drag and drop listeners for the viewers in your GEF
application be sure to inherit from the abstract base classes. A good point to look
for further implementation information is the template drag and drop palette
demonstrated in the Logic example application provided by GEF.

Our sample application will also provide an introduction into implementing drag
and drop.

4.2.2 Palette - implementing a sticky tool preference
The default behavior for GEF tools is to unload a tool after it is used once. This
then causes the EditDomain’s default tool, which is typically the SelectionTool, to
be reactivated. This behavior is desirable for some types of operations and not
for others. In addition, sometimes a tool that is normally used sporadically needs
to be repeated several times, and then the default behavior becomes
cumbersome. In these cases it is useful to customize each tool’s unloading
behavior based on the type of tool or based on user preference. The base class
for GEF tools, org.eclipse.gef.tools.AbstractTool, contains the method
setUnloadWhenFinished(boolean), which is used to control the unloading
behavior. Because tools are not instantiated until they are ready to use, setting
146 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

this property requires gaining access to tool instances, either in the factory that
creates them, or by obtaining them from the EditDomain as they become
activated.

The latter technique can be used in applications that use the GEF palette and
whose editor class is derived from GraphicalEditorWithPalette.

1. Create a class that implements the org.eclipse.gef.palette.PaletteListener
interface, which contains the single method:

void activeToolChanged(PaletteViewer palette, ToolEntry tool)

Add your listener to the palette by calling the palette’s method:

public void addPaletteListener(PaletteListener paletteListener);

The code inside your listener then needs to get the actual active tool from the
EditDomain’s getActiveTool() method. Then you can set the active tool’s
setUnloadWhenFinished() method to set this behavior based on whatever
criteria your application wants to use, such as a user setting or preference, or
based on what tool is active.

4.2.3 Printing
Starting with GEF version 2.0 there is built-in support for printing from GEF
applications. You simply need to add a PrintAction to your editor’s action registry
as shown in Example 4-3.

Example 4-3 Adding a PrinterAction

ActionRegistry registry = getActionRegistry();
IAction action;

action = new PrintAction(this); // “this” is your IEditorPart-derived editor
registry.registerAction(action);

In your application’s action bar contributor class you can provide keyboard or
menu access to the PrintAction by calling:

addGlobalActionKey(IWorkbenchActionConstants.PRINT);

The Draw2D class PrintOperation and its subclasses PrintFigureOperation,
PrintGraphicalViewerOperation provide support for printing in Draw2D, ultimately
using a Graphics context, PrinterGraphics, that is created using an instance of
SWT’s org.eclipse.swt.printing.Printer.
 Chapter 4. GEF examples 147

The PrintGraphicalViewerOperation class locates the printable layers in your
editor’s viewer. The current selection in your editor is saved, then disabled while
printing, and restored after printing. Only the contents of the printable layers are
printed.Also the parent figure’s background color is set to white for printing, then
restored. Figures are scaled by the ratio of the printer’s resolution (in DPI) to that
of the display, so that the actual size of a figure is maintained.

4.2.4 Zooming
Support for zooming was added to GEF in version 2.0. The scaling functionality
is built into ScalableLayeredPane and ScalableFreeformLayeredPane. These
classes support scaling by maintaining the current scaling level, and by taking
the scaling factor into account when doing point translations and calculating their
client area and preferred size. They use the ScaledGraphics subclass of
Graphics as the their graphics context for painting their child figures.

The ScaledGraphics class applies the current scale factor to the normal graphics
operations, performing transformations on point lists and rectangles before
painting them. It also scales fonts, stretches or shrinks bitmaps, and scales the
line width for line drawing operations.

The ZoomManager class is used to manage zoom operations on ScalableFigure
figures, that is, ScalableLayeredPane or ScalableFreeformLayeredPane. It
provides several methods to control the zooming operations:

� it supports a zoom style, which currently cab be either a "jump" zoom or
animated zoom

� you can set a list of zoom levels, which is used be the zoomIn and zoomOut
methods to determine the next of zoom

� can set view location

� you can set the zoom level to a specified magnification, or zoom in or out 1
level

� supports zoom listeners - controls that allow for zooming up or down can
register themselves as zoom listeners, so that when the zoom level changes
they can determine their enablement

The root EditParts ScalableFreeformRootEditPart and ScalableRootEditPart
contain a ZoomManager, which is accessible via their getZoomManager()
method. You can access the ZoomManager through your editor's
GraphicalViewer:

ZoomManager zoomManager =
((ScalableFreeformRootEditPart)getGraphicalViewer().getRootEditPart()).getZoomM
anager();
148 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

if you need to modify the ZoomManager's configuration, such as to set the
supported zoom levels.

When you want to add zoom controls to your editor's user interface, GEF
includes classes for zoom actions and a ContributionItem, named
ZoomComboContributionItem. These are shown in Figure 4-1.

Figure 4-1 Zoom controls provided by GEF

The ZoomComboContributionItem creates a combo box interface that controls
the zoom level for the active workbench part. It uses the IAdapter interface to
locate the ZoomManager for the current IWorkbenchPart. Your editor should
include code similar to the following, in Example 4-4, in order to allow it's zoom
level to be controlled by this mechanism:

Example 4-4 Returning the ZoomManager via the IAdapater interface

public Object getAdapter(Class type) {
 Chapter 4. GEF examples 149

if (type == ZoomManager.class)
return ((ScalableFreeformRootEditPart)getGraphicalViewer()

.getRootEditPart()).getZoomManager();
return null;

}

The actions supplied by GEF, ZoomInAction and ZoomOutAction, enable you to
easily add menu items or tool bar buttons that let the user zoom in or out, one
level at a time. These actions are derived from the base class ZoomAction, which
saves the current ZoomManager and registers itself as a ZoomListener. The
actions call ZoomManager.zoomIn() or zoomOut() each time they are invoked,
until the minimum or maximum zoom level is reached. They detect this by
implementing the zoomChanged() method of the ZoomListener interface. They
then update their enablement each time the zoom level is changed.

Adding zoom support
To add zoom support to your GEF application you must first make your root
EditPart either ScalableFreeformRootEditPart and ScalableRootEditPart. Then
you only need to add some user interface access to set the current zoom level.

To add the zoom combo box, add it to the tool bar manager in the class that
implements your application's ActionBarContributor, as shown in Example 4-5:

Example 4-5 Adding ZoomComboContributionItem to the tool bar

public void contributeToToolBar(IToolBarManager toolBarManager)
 {
 super.contributeToToolBar(toolBarManager);

// other items added here...

 toolBarManager.add(new Separator());
 toolBarManager.add(new ZoomComboContributionItem(getPage()));
 }

To add the zoom actions, add code in your EditorPart-derived editor class that
registers the actions with the action registry. See Example 4-6.

Example 4-6 Registering the zoom actions

IAction zoomIn = new ZoomInAction(zoomManager);
IAction zoomOut = new ZoomOutAction(zoomManager);
getActionRegistry().registerAction(zoomIn);
150 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

getActionRegistry().registerAction(zoomOut);

// also bind the actions to keyboard shortcuts
getSite().getKeyBindingService().registerAction(zoomIn);
getSite().getKeyBindingService().registerAction(zoomOut);

Finally, to add menu items for the zoom actions to the action bar menu, you add
them to the MenuManager as shown in Example 4-7.

Example 4-7 Adding a menu for the zoom actions

public void contributeToMenu(IMenuManager menuManager) {
super.contributeToMenu(menuManager);

// add a "View" menu after "Edit"
MenuManager viewMenu = new MenuManager("View");
viewMenu.add(getAction(GEFActionConstants.ZOOM_IN));
viewMenu.add(getAction(GEFActionConstants.ZOOM_OUT));

}

4.2.5 Decorating connections
The connections in Draw2d, and therefore also in GEF, are generally drawn
using the PolylineConnection figure. In many cases you will want more than a
plain line connecting the nodes in your GEF application, and the
PolylineConnection class has built-in support for decorating connections that you
can take advantage of.

You can decorate the ends of a PolylineConnection by specifying a
RotatableDecoration for either the source, target, or both ends of the connection
figure. The RotableDecoration interface is designed to allow a figure to rotate
itself based on the position of a specified reference point. This allows the
decoration to stay aligned with the line it is decorating as the line changes its
angle, such as if one of the nodes that the line connects is moved. The classic
endpoint decoration is the arrowhead. Draw2d includes two implementations of
RotatableDecoration; RotatablePolyline and RotatablePolygon. The default
constructors for both these classes create an arrowhead. These can be attached
to a PolylineConnection by calling its setSourceDecoration or
setTargetDecoration methods. If you want a more customized decoration you
can call either classes’ setTemplate method passing it a list of points for your
custom polyline or polygon figure. You can also control the size of your
decoration by calling its setScale method.
 Chapter 4. GEF examples 151

PolylineConnections use a DelegatingLayout for their layout manager, which
means that its child figures must provide a constraint which is a subclass of
Locator. When you place a decoration on a connection using
setSourceDecoration or setTargetDecoration the these methods will
automatically create an ArrowHeadLocator and set it as the constraint on the
decoration. The arrowhead locator will ensure that the decoration is placed
correctly on the ends of the connection.

In some applications you may want to attach additional figures to a
PolylineConnection. One example is to add a label to a PolylineConnection to
display some annotation text. Since the PolylineConnection has a
DelegatingLayout manager, all you need to do is to create a Label figure and add
it as a child of the PolylineConnection, and then set the constraint to position
your label. The code shown in Example 4-8 places a label at the connection’s
midpoint:

Example 4-8 Placing a label in the center of a connection

PolylineConnection connection = new PolylineConnection();
Label connectionLabel = new Label();
connection.add(connectionLabel);
connection.getLayoutManager().setConstraint(connectionLabel,

new MidpointLocator());

4.2.6 Resource management
When implementing your GEF application it is important that you pay attention to
you application’s usage of the underlying graphics system’s resources. You must
take care to manage your use of graphics objects including images, bitmaps,
colors, fonts, and so on. There are several techniques that can help to control
your application’s use of resources:

� Create static variables for resources that you will use frequently throughout
the life span of your application. In the case of colors, the class
org.eclipse.draw2d.ColorConstants provides many useful constants.

� Manage graphics resources that you want to create dynamically using the
EditPart life cycle. Override the EditPart’s activate() and deactivate() methods
to handle creating and disposing of the EditPart’s graphics resources.

� When your application has graphics objects that may not be used in every
session use a lazy loading scheme, deferring the object(s) creation until they
are needed.

� If there are resources that are used across different parts of the application,
consider implementing a cache that manages the objects. Different parts of
your application can then share the same instance of these objects.
152 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

4.2.7 Feedback techniques
Visual feedback is an important part of a graphical editor’s user interface. GEF
allows for a number of techniques for proving feedback to the user:

� Changing the cursor when targeting parts to indicate whether the part
supports the tool’s operation. Similarly the cursor graphic is changed to
indicate where drag and drop operations are supported.

� Indication of a part’s selection and focus state. Typically a selected part
should be clearly differentiated from unselected parts of the same type. This
can be accomplished by enclosing the part with a selection figure or by
changing the part’s color or shape.

� Display of handles, graphical elements that visually indicate the targets for
operations that allow the user to move or reshape a graphical object.

In GEF commands most feedback effects are controlled by EditPolicies. In this
section we examine in more detail the various EditPolicies that contribute visual
feedback to the editor framework, and we discuss where these effects can be
customized. EditPolicies that contribute feedback effects are subclasses of
GraphicalEditPolicy. This base class provides access to the EditPart’s figure. It
also declares addFeedback() and removeFeedback() methods that draw
feedback figures on the root figure’s root feedback layer,
LayerConstants.FEEDBACK_LAYER.

Note that all EditPolicies can disallow operations by returning null when
requested to create a command. This will cause the tool to display a “disallowed
operation” cursor. Similarly commands which return false from their canExecute()
will also cause this feedback.

DirectEditPolicy
Direct Editing allows for visual editing of graphical elements by launching a cell
editor in response to mouse clicks on the target EditPart. Creating a direct edit
implementation is discussed in detail in “4.2.9, “Using Direct Edit” on page 162” ,
and is demonstrated in our redbook sample application.

Customization:

� You can expose different properties of your model to editing based on where
the user clicked.

� You can respond differently to double clicks.

� You can create custom cell editors

GraphicalNodeEditPolicy
This class provides visual feedback while creating or reconnecting connections.
It works in conjunction with NodeEditPart-derived EditParts to provide a
 Chapter 4. GEF examples 153

simulated connection while the connection is being dragged to a target. The
NodeEditPart returns the best potential anchor point given the current mouse
position. The simulated connection, drawn on the feedback layer, will snap to
anchor proposed by the NodeEditPart. In typical implementations this will be the
source anchor that is closest to the current mouse position.

Customization:

� override createDummyConnection() to return a customized figure for showing
the creation feedback, possibly by changing the color, or line style or weight.

� In your NodeEditPart-derived EditPart’s implementation of
getTargetConnectionAnchor or getSourceConnectionAnchor, apply additional
filtering criteria to hide anchors that are not appropriate sources or targets for
the current request. These anchors will then be ignored.

� Add target connection feedback. The default implementation has no visual
effect for highlighting the target connection.

LayoutEditPolicy
This is a base class for EditPolicies that place their child EditParts using some
type of LayoutManager. Subclasses should provide visual feedback that shows
how the layout constraints will determine where a new element can be inserted.
Key methods include:

� showLayoutTargetFeedback - this method gives visual feedback showing
where the current operation will place the resulting figure. Subclasses will
typically be constraining the placement of new figures to certain locations,
and this feedback should make those constraints clear to the user. The figure
returned by this method is effectively a type of cursor showing where the
insertion point for the operation is located.

� getSizeOnDropFeedback - shows the size that the new figure will assume if
the drag operation is completed.

Customizing:

� the default implementation of showLayoutTargetFeedback does nothing.
Implement this in a subclass to show the insertion point for new objects

� the default implementation of getSizeOnDropFeedback() can be changed to
use a different shape or color, and so on.

� override getSizeOnDropFeedback() if you want to provide visual feedback
indicating the size of the new figure is constrained to some minimum and/or
maximum size.
154 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

FlowLayoutEditPolicy
This EditPolicy is used in conjunction with EditParts whose figure uses a
FlowLayout layout manager. This class provides an insertion point indicator
which is a two pixel thick solid line.

Customizing:

� the getLineFeedback() method can be called to get the default line figure, and
then some of its attributes can be modified, such as thickness, line style, or
thickness. If you want to use a different figure altogether than you will
probably need to override the showLayoutTargetFeedback() to do the math
required to locate and size your figure correctly.

SelectionEditPolicy
This is an abstract base for EditPolicies that provide visual feedback for the focus
selection state of EditParts. Note that the feedback figures are drawn on the
feedback layer (LayerConstants.FEEDBACK_LAYER). The methods in this class
include:

� protected void showFocus()

� protected abstract void showSelection()

� showPrimarySelection()

� hideFocus()

� hideSelection()

The purpose of these methods is clear from the method names. Custom
subclasses could be used to:

� Provide a non-standard focus or selection indicator, perhaps to conform to a
non-rectangular figure.

� Provide an implementation for figures that can be selected but not moved

� Render the selection indicator of the primary selection in a way that
distinguishes it from the other selections

SelectionHandlesEditPolicy
This EditPolicy supplies a specialization of the SelectionEditPolicy that supports
selections with handles. Subclasses provide the list of Handles that should
decorate the selected EditPart. For instance GEF includes the following
SelectionHandlesEditPolicy-derived subclasses:

� BendpointEditPolicy

This SelectionEditPolicy displays bendpoint handles when a Connection is
selected.
 Chapter 4. GEF examples 155

� ConnectionEndpointEditPolicy

This EditPolicy displays handles on the ends of a Connection when it is
selected to support disconnecting and reconnecting connections.

� NonResizableEditPolicy

This EditPolicy, which prevents resizing, surrounds the selected EditPart with
a simple outline and places a small square in each corner that allows for
dragging

� ResizableEditPolicy

This class extends the NonResizableEditPolicy class by adding handles on
each side of the selection rectangle to allow for resizing.

Customize these classes to:

– Indicate that resizing is limited to one dimension, or maybe constrained to
maintain the part’s aspect ration is maintained. Implementing this would
also require customizing the DragTracker to enforce these constraints.

– provide a selection effect that is more visually harmonious with unusually
shaped parts

– create a “lighter weight” visual for selection that may work better for
showing the selection on small parts

– use custom handles

4.2.8 Palette-less applications
For many applications it may be desirable to display a GEF viewer without the
palette. For instance this may be useful when:

� The GEF view is read-only, but the user is allowed to select objects in the
view in order to view their properties.

� The GEF application lays out it’s graphical objects automatically and the user
is not allowed to add or rearrange these objects. However the user may be
able to modify the model state by selecting objects, modifying their properties,
and so on.

� There are a small number of tools in the application which do not justify the
screen real estate that the palette would consume.

The EditDomain class is designed to integrate with the palette when it is present.
There are two methods that are used to establish its connection to the palette:

� When the EditDomain’s PaletteRoot is set by calling
setPaletteRoot(PaletteRoot root), the EditDomain will then obtain it’s default
Tool from the PaletteRoot
156 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

� Setting the EditDomain’s PaletteViewer by calling its
setPaletteViewer(PaletteViewer palette) method will cause it to register itself
as a listener for tool selection changes in the palette.

Therefore, the first step in creating a palette-less application is to omit setting the
EditDomain’s PaletteRoot and PaletteViewer. This EditDomain will then return
the SelectionTool when it’s getActiveTool() method is called. This can be
achieved simply by constructing your editor as a subclass of
org.eclipse.ui.parts.GraphicalEditor.

For some types of applications the SelectionTool may be the only tool needed. In
that case there is no additional user interface needed to select tools, since the
SectionTool is already selected by default. Other applications may have a need
to change the active tool through some other user interface mechanism besides
the palette. In these case the EditDomain’s setActiveTool(Tool tool) method can
be called by the actions you create for the tools your application requires.

In this section we demonstrate how to add a toolbar button that sets the
EditDomain’s active tool. The action we create could also be used to make the
tool available on the editor’s context menu if desired. For the purposes of this
example we use the Graphical Editing Framework logic editor example program.
We modify it so that the tool to create a “Flow Container“ is available as a button
on the tool bar, as show in Figure 4-2.
 Chapter 4. GEF examples 157

Figure 4-2 The Flow Container tool bar button

The steps required to make this change are::

1. Create an Action for the tool

Create the new class AddFlowContainerAction in the package
org.eclipse.gef.examples.logicdesigner.actions. An abbreviated version of the
Java code appears below in Example 4-9. Notice that this is a fairly
generic-looking action implementation. The constructor includes calls to set
the action’s image, description, and title to the same values that were formally
set in the palette entry. The run() method creates a new tool instance and
uses it to call the editor’s setActiveTool method, which in turn sets the
ditDomain’s active tool via it’s own setActiveTool method.
158 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Example 4-9 The AddFlowContainerAction class

package org.eclipse.gef.examples.logicdesigner.actions;

import org.eclipse.gef.Tool;
import org.eclipse.gef.examples.logicdesigner.LogicEditor;
import org.eclipse.gef.examples.logicdesigner.LogicMessages;
import org.eclipse.gef.examples.logicdesigner.ToolActivationListener;
import org.eclipse.gef.examples.logicdesigner.model.Circuit;
import org.eclipse.gef.examples.logicdesigner.model.LogicFlowContainer;
import org.eclipse.gef.requests.CreationFactory;
import org.eclipse.gef.requests.SimpleFactory;
import org.eclipse.gef.tools.CreationTool;
import org.eclipse.gef.ui.actions.EditorPartAction;
import org.eclipse.jface.action.Action;
import org.eclipse.jface.resource.ImageDescriptor;
import org.eclipse.ui.IEditorPart;

public class AddFlowContainerAction extends EditorPartAction {
private CreationFactoryfactory;
private Tool tool;
static public StringADD_CONTAINER = “add container”;

/**
 * @param editor
 */
public AddFlowContainerAction(IEditorPart editor) {

super(editor);

setDescription(
LogicMessages.LogicPlugin_Tool_CreationTool_FlowContainer_Description);

setImageDescriptor(ImageDescriptor.createFromFile(Circuit.class,
“icons/logicflow16.gif”));

setText(LogicMessages.LogicPlugin_Tool_CreationTool_FlowContainer_Label
);

factory = new SimpleFactory(LogicFlowContainer.class);
}

/* (non-Javadoc)
 * @see org.eclipse.jface.action.IAction#run()
 */
public void run() {

tool = new CreationTool(factory);

((LogicEditor)getEditorPart()).setActiveTool(tool);
}

 Chapter 4. GEF examples 159

protected boolean calculateEnabled() {
return getEditorPart() != null;

}

protected void init() {
super.init();

setId(ADD_CONTAINER);
}

}

2. Add the button to the action bar

Modify the class LogicActionBarContributor in the same package,
org.eclipse.gef.examples.logicdesigner.actions, first adding the member
variable addFlowContainerAction, as shown in Example 4-10. Note that the
constructor’s IEditorPart argument is passed as null. This is because there is
no active editor when the buildActions method is called. This is the reason for
storing a reference to the action. Its setEditorPart method is called whenever
the active editor changes. This is done by overriding the setActiveEditor
method, and after calling the super class implementation calling:

addFlowContainerAction.setEditorPart(editor)

The only other change we make in the LogicActionBarContributor class is
adding the code in the contributeToToolBar method which appends a
separator and the button for our AddFlowContainerAction action.

Example 4-10 Modifications to the LogicActionBarContributor class

private AddFlowContainerActionaddFlowContainerAction;

/**
 * @see org.eclipse.gef.ui.actions.ActionBarContributor#createActions()
 */
protected void buildActions() {

addRetargetAction(...);

// existing actions here...

addFlowContainerAction = new AddFlowContainerAction(null);
addAction(addFlowContainerAction);

}

public void contributeToToolBar(IToolBarManager tbm) {
tbm.add(..);
// existing tbm.add() calls here
160 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

tbm.add(new Separator());
tbm.add(getAction(AddFlowContainerAction.ADD_CONTAINER));

}

// override this so that the addFlowContainerAction instance can track the
current editor

public void setActiveEditor(IEditorPart editor) {
super.setActiveEditor(editor);

addFlowContainerAction.setEditorPart(editor);
}

}

At this point you should have a functioning tool bar button whose function is
identical to the palette entry that adds a flow container.

Another user interface option for a palette-less application is to add
commands to a menu. The AddFlowConterAction that we developed can also
be used for this purpose. As shown in Figure 4-3, a new Tools menu item has
been added which contains a submenu item that invokes our
AddFlowConterAction action.

Figure 4-3 The AddFlowContainerAction added to the menu

The code fragment in Example 4-11 shows the changes you must make to
the contributeToMenu method of the LogicActionBarContributor class.

Example 4-11 Adding a Tools menu in contributeToMenu

public void contributeToMenu(IMenuManager menubar) {
super.contributeToMenu(menubar);

// existing menu insertion code here...

MenuManager toolsMenu = new MenuManager("Tools");
toolsMenu.add(getAction(AddFlowContainerAction.ADD_CONTAINER));
menubar.insertAfter(IWorkbenchActionConstants.M_EDIT, toolsMenu);

}

 Chapter 4. GEF examples 161

4.2.9 Using Direct Edit
Direct edit is a feature of the Graphical Editing Framework which allows you to
open a cell editor on a selected EditPart using a mouse gesture. There three
ways for a user to invoke direct edit:

� Double click the mouse on an EditPart.

� Click once on an EditPart that is already selected. This method is analogous
to the Windows Explorer file name editing capability, which opens a text edit
box if you click on selected file name, allowing you to then edit the file’s name.

� Pressing the F2 key when an EditPart is selected.

Figure 4-4 shows a simple Label figure when it’s cell editor is activated. This
simple example can be seen in the GEF logic example application. However
direct edit can be used for much more visually complex EditParts in which
clicking in areas of your EditPart invokes different cell editors, including dialogs.

Figure 4-4 A Label figure showing the selected and cell editing states

The behavior of direct edit in your application is customizable. You specify what
cell editor to open, and your application can determine this dynamically
depending on criteria such as where the user clicked on your EditPart as well as
the current state of your model, and so on. Direct Edit supports activating cell
editors derived from org.eclipse.jface.viewers.CellEditor. Eclipse includes
several useful subclasses that provide cell editors for booleans, combo boxes,
text, and dialogs. By subclassing the DialogCellEditor you have full flexibility to
create dialogs that allow for the display or editing of your EditPart’s properties.

This section outlines the steps you take to implement Direct Edit for one of your
application’s EditParts:

1. First modify your EditPart’s createEditPolicies to install a new edit policy with
the key EditPolicy.DIRECT_EDIT_ROLE, as shown in Example 4-12.

Example 4-12 Install the DIRECT_EDIT_ROLE edit policy

protected void createEditPolicies(){
162 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

super.createEditPolicies();
installEditPolicy(..);

installEditPolicy(EditPolicy.DIRECT_EDIT_ROLE, new
LabelDirectEditPolicy());
}

2. Add code in performRequest, as in Example 4-13, that invokes your
DirectEditManager-derived edit manager class. The second argument to your
DirectEditManager constructor determines what type of CellEditor will be
created. For the third argument you provide a class derived from

org.eclipse.gef.tools.CellEditorLocator

that will calculate where you want the cell editor to appear within your
EditPart. The example code shown here checks for a request type of
RequestConstants.REQ_DIRECT_EDIT. The value of the request type allows
you determine which of the two mouse gestures was used to request the
direct edit function. A request type of RequestConstants.REQ_DIRECT_EDIT
indicates that the user single clicked on a selected edit part, whereas the
request type RequestConstants. REQ_OPEN indicates that the user double
clicked on the edit part. You have the option to handle both request types as
the same operation, ignore one of the types, or respond with different user
interfaces for each type.

Example 4-13 Calling DirectEditManager.show() in performRequest

public void performRequest(Request request){
if (request.getType() == RequestConstants.REQ_DIRECT_EDIT) {

if(manager == null)
manager = new LogicLabelEditManager(this,

TextCellEditor.class, new
LabelCellEditorLocator((Label)getFigure()));

manager.show();
}

}

3. The EditPolicyclass you create must be a subclass of
org.eclipse.gef.editpolicies.DirectEditPolicy.

Your subclass must minimally provide implementations of the two abstract
methods:

protected abstract Command getDirectEditCommand(DirectEditRequest request);

This method constructs the command for the direct edit request. It should
return a class, subclassed from org.eclipse.gef.commands.Command that
updates your model with the results of the cell editing session. It should also
support undo operations by caching the pre-edited state of you EditPart’s
model.

protected abstract void showCurrentEditValue(DirectEditRequest request);
 Chapter 4. GEF examples 163

The showCurrentEditValue method is called to update your EditPart’s figure
with the current value obtained from the request’s cell editor. See Figure 4-5
for an example.

Figure 4-5 Current edit value

4.2.10 Accessibility
Designing an accessible application is fundamentally about allowing for choice
and flexibility in both input and output methods. An accessible application may
receive input from the keyboard or serial port rather than the mouse. It needs to
support accessibility clients that use sound, speech synthesis, or screen
magnification to convey the output to the user.

Tip: Normally during direct edit your EditPart’s selection handles will be
shown, because the EditPart had to be selected in order to enter direct edit
mode. This may not be aesthetically desirable. There are a couple of
approaches to address this.

In the show() method of your DirectEditManager subclass you can save the
current selection state:

List savedSelection = source getSelectedEditParts();

and then temporarily remove the selections:

source.deselectAll();

Then override the bringDown() so that the saved selection state is restored
when the cell editor is closed.

A second option is to customize the graphics that indicate your EditPart’s
selected state, changing them to something that doesn’t interfere visually with
the cell editor.
164 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

GEF provides built-in support for accessibility, allowing you to create visual
editors that can be controlled with little or no mouse interaction. The editor and
palette are preconfigured to understand several keyboard navigation commands.
Examples are the ability to select objects and palette entries, cycle through an
object’s selection handles, and drag or resize an object using the arrow keys

� Support the use of keyboard commands for users with limited dexterity

� Provide annotations for the selected part, such as name, description, help
text, and so on. that can be used by accessibility clients which may magnify or
speak these strings for the user.

� Map between the EditPart in focus and the accessibility client’s view of the
screen. This allows applications such as the Windows magnifier to track the
user’s actions within a GEF editor. This assists sight-impaired users.

� GEF supports autoscrolling, which allows the editor to scroll automatically to
expose parts of a diagram that may be outside of the viewable area as the
user drags their mouse to the edge of the view.

GEF’s accessibility implementation
In this section we describe the classes that implement GEF’s accessibility
support. We describe the roles they play and what you need to do to include
accessibility in your GEF application.

Accessible EditParts
Accessible EditParts are able to participate in the accessibility support that is
included in SWT and ultimately in the underlying operating system on which that
your GEF application is running. Accessibility client applications can listen for
selection changes in your GEF application and then obtain accessibility
information about the selected EditPart via the EditPartViewer. The
AccessibleEditPart abstract class declares the methods that accessibility clients
may use to interrogate your EditPart. These methods mirror the interface in
org.eclipse.swt.accessibility.AccessibleAdapter, which defines the equivalent
interface for SWT parts. The Javadoc in that class is a good source for
documentation of the semantics of each of these methods. These methods allow
your EditPart to enhance its accessibility by returning information such as its
name, help string, keyboard shortcut, description, its selection and focus state,
and by providing access to its child parts.

Tip: WIndows users can experiment with the accessibility features in the logic
example by launching the Windows Magnifier application. Launch the
Windows Magnifier by selecting Programs -> Accessories -> Accessibility
->Magnifier
 Chapter 4. GEF examples 165

When you create an EditPart you override the getAccessibleEditPart method in
AbstractEditPart in order make your EditPart accessible.
AccessibleGraphicalEditPart provides much of the default behavior needed by a
custom EditPart. You will typically need to override the methods to return your
part’s name, description, and so on.

AccessibleGraphicalEditPart
The class AccessibleGraphicalEditPart is an inner class of
AbstractGraphicalEditPart that provides GEF’s implementation for the underlying
SWT accessibility API, defined in org.eclipse.swt.accessibility package. This an
abstract class, so EditParts supporting accessibility must provide a concrete
subclass that is returned when the AbstractEditPart.getAccessibleEditPart() is
called.

Accessible handles
Making a handle accessible requires that the handle provide a single point, in
absolute coordinates, at which it can be selected. Keyboard navigation can then
use this coordinate when selecting the handle, effectively simulating a mouse
click at that location. Accessible handles are obtained from the EditPolicies that
are responsible for handle management, such as subclasses of
SelectionEditPolicy.

The AccessibleHandleProvider interface is used to collect a list of accessible
handles for a Handle or EditPart. The AccessibleGraphicalEditPart implements
this interface through its IAdaptable implementation. It collects a merged list of all
the accessible handles contributed by its EditPolicy instances which also
implement the AccessibleHandleProvider interface. Ultimately each Handle
interface’s getAccessibleLocation method returns the coordinate that indicates
the location of its accessible handle. The AbstractHandle class provides most
handles with a default implementation of this method that returns the center point
of the handle. Other handle types can override this as appropriate.

The SelectionHandlesEditPolicy is an abstract class that is adaptable to a
AccessibleHandleProvider, providing accessibility for subclasses that use GEF’s
default handles. If you design your own handles, you will need to provide an
implementation of the getAccessibleLocation that returns a point inside your
handle.

Accessible anchors
Accessible anchors work similarly to accessible handles. An EditPart provides an
implementation of the AccessibleAnchorProvider interface by implementing the
IAdaptable interface. The AccessibleAnchorProvider interface contains methods
to return a list of source and target anchor locations. These points will be used to
programmatically simulate a mouse event at that location. The targeting tool will
then provide the same targeting behavior and feedback as if a mouse was used.
166 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

To implement this capability in your own EditParts, you will need to traverse all
the ConnectionAnchor-derived children of your EditPart’s parent figure, and
return an appropriate point for each one.

AbstractTool
The AbstractTool class serves as the base class for contains the state machine
which interprets accessible actions such as translating arrow keys into drags,
and so on. Pressing the Enter key commits a drag

SelectionTool
When an edit part is selected, the SelectionTool’s accessibility support enables
the user to traverse the EditPart’s available selection handles, select one, and
perform drag operations all by using the keyboard. The keyboard commands
supported by this class are summarized in Table 4-2.

Table 4-2 Keyboard commands provided by the SelectionTool class

ConnectionCreationTool
The keyboard handling in this class allows the user to indicate the start and end
of connections using the Enter key. The user can cycle through the available
anchor points of accessible EditParts by using the arrow keys. The tool will snap
the connection to the next available anchor.

GraphicalViewerKeyHandler
This key handler class provides keyboard-based navigation for the
GraphicalViewer. Table 4-3 lists the key bindings provided by the
GraphicalViewerKeyHandler class. Note that SHIFT and CTRL keys can be used
to modify the navigation keys. Pressing the CTRL key will cause the focus, rather
than the selection, to move. Pressing the SHIFT key while using one of the
navigation keys will extend the selection.

Key Action

Period Select next handle

‘>’ Select previous handle

Left Arrow Drag left

Right Arrow Drag right

Up Arrow Drag up

Down Arrow Drag down

Enter Commit the drag operation

Esc Abort the drag operation
 Chapter 4. GEF examples 167

Table 4-3 Navigation key bindings defined in GraphicalViewerKeyHandler

PaletteViewerKeyHandler
This class, the keyhandler for the palette, supports keyboard commands in the
palette.It supports moving between palette entries and moving into and out of
palette drawers. The commands are summarized in Table 4-4.

Table 4-4 Arrow key bindings to palette navigation

Key Action

SPACE select

LEFT_ARROW navigate to EditPart on left

RIGHT_ARROW navigate to EditPart on right

UP_ARROW navigate to EditPart above

DOWN_ARROW navigate to EditPart below

‘/’ or ‘?’ navigate to EditParts’s next connection

‘\’ or ‘|’ navigate to EditPart’s previous connection

ALT + DOWN_ARROW navigate into a container node

ALT + UP_ARROW navigate out of a container node

Key Action

LEFT_ARROW If the focus is on an expanded drawer,
then collapse it, otherwise sets focus on
the drawer.

RIGHT_ARROW if focus is on a collapsed drawer then
expands it. If the focus is on an expanded
draw then it moves into it.

UP_ARROW If focus is inside a drawer, sets focus on
the drawer.

DOWN_ARROW move to next container
168 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Chapter 5. Using GEF with EMF

In this chapter, we discuss developing graphical editors based on EMF and GEF,
and provide examples of how to use the two frameworks together. We also
discuss how to use JET to assist in developing a GEF-based editor from an EMF
model.

5

© Copyright IBM Corp. 2003. All rights reserved. 169

5.1 Overview
As GEF is based on an MVC architecture, every GEF-based application uses a
model to represent the state of the diagrams being created and edited. GEF
allows you to use any objects as model objects within your application, however,
using an EMF model provides some advantages over using arbitrary objects:

� You can use EMF’s code generation facilities to produce consistent, efficient
and easily customizable implementations of your model objects. If your model
evolves during development, you can regenerate the code to reflect changes
to the model, while preserving your customizations.

� The MVC architecture used by GEF relies on controllers that listen for model
changes and update the view in response. If you use an EMF model,
notification of model change is already in place, as all EMF model objects
notify change via EMF’s notification framework.

� The implementations generated for your model objects ensure that the model
remains consistent, for example, when a reference is updated, the opposite
reference is also updated.

� EMF provides support for persisting model instances, and the serialization
format is easily customizable.

� Your applications can use the reflective API provided by EMF to work with any
EMF model generically.

Although we can generate EMF.Edit-based editors from EMF models using the
org.eclipse.emf.codegen.ecore plug-in, these editors use JFace viewers, such as
the TreeViewer to display model instances, and typically provide a view that has
a one-to-one correspondence with the model. Sometimes we may wish to create
editors where the view is more loosely coupled with the model. This is often the
case when we want to use a graphical notation that may hide some of the detail
of the underlying model objects, or may impose additional or a different structure
to the model, for visualization purposes.

We can think about using GEF and EMF together from two different
perspectives; using an EMF model within a GEF application, and augmenting
EMF.Edit-based editors using GEF. In this book, we focus on the first perspective
only, due to time constraints. The second approach deserves a book of its own,
as integrating an EMF.Edit-based editor with GEF provides its own challenges.
For an example of an application that uses GEF and EMF.Edit together, take a
look at the Jeez report designer, available from: http://jeez.sourceforge.net.
170 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://jeez.sourceforge.net

5.2 Using an EMF model within a GEF-based application
This section describes how to use model interfaces and implementations
generated from an EMF model as the model within a GEF-based application.
This is the approach that we have used for our sample application, described in
Chapter 7, “Implementing the sample” on page 207. We assume that you have
read Chapter 3, “Introduction to GEF” on page 89and that you have a basic
understanding of how an arbitrary (not necessarily EMF-based) model is usually
integrated into a GEF-based application. Because GEF can use almost any type
of model, integrating an EMF model into an editor is much the same as
integrating any other sort of model into a GEF-based application. When tying our
model into our editor, we can take advantage of mechanisms provided by EMF
for notification, reflection and serialization.

We use a simple application to illustrate our approach for using GEF and EMF
together. The application is an editor that allows us to define networks consisting
of nodes that may be linked together. We discuss how to implement an example
application based on the model shown in Figure 5-1.

Figure 5-1 Simple NetworkModel

5.2.1 Mapping from the model to the graphical representation
In a GEF-based editor, EditParts are the controllers that bridge objects from the
model and their representation in the view, however, there does not have to be a
one-to-one correspondence between model objects and EditParts. Hence, the
first step in developing our application is to decide which EditParts to provide to
represent objects from the model.

Mapping to EditParts
The first EditPart that we consider is the contents EditPart. This is the part that
contains all of the other EditParts, that is, it represents a diagram that is edited
 Chapter 5. Using GEF with EMF 171

within our editor. In our example, the contents EditPart corresponds to the
Network class.

In general, if a model has a top-level element that contains all other model
objects, as is the case with the NetworkModel, and the WorkflowModel used for
our sample application, then the contents EditPart corresponds directly to that
container. For models that do not have a top-level container, you can think of the
contents EditPart as corresponding to the contents of a ResourceSet that
contains model objects, rather than corresponding directly to an EObject from
the model.

GEF provides two base implementations of EditPart that are used in graphical
viewers; AbstractGraphicalEditPart and AbstractConnectionEditPart. We can
subclass either of these classes for the EditParts that correspond to the objects
from our model. For the NetworkEditor example, we subclass
AbstractGraphicalEditPart as NetworkEditPart, our contents EditPart. As an
AbstractEditPart, NetworkEditPart has methods getModel() and setModel() for
getting and setting the corresponding model object with the EditPart. We
implement NetworkEditPart so that the Network associated with the part is
supplied to the constructor, as shown in Example 5-1.

Example 5-1 NetworkEditPart constructor

public NetworkEditPart(Network network) {
setModel(network);

}

We implement the getModelChildren() method for NetworkEditPart, as shown in
Example 5-2. This method returns all of the objects directly contained by the
EditPart’s model object, in this case, all of the Nodes contained by the Network.
This method needs to be implemented by any EditPart that contains children
EditParts.

Example 5-2 NetworkEditPart’s getModelChildren() method

protected List getModelChildren(){
return getNetwork().getNodes();

}

Tip: When basing an editor on an EMF model, most of the objects returned by
the getModel() methods of the EditParts will be EObjects, however, you can
use any object as the model for an EditPart. This is one way to provide
EditParts that do not correspond directly to EObjects from the EMF model.
172 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Usually, the containment hierarchy of EditParts mirrors the containment
hierarchy present in the model, so the getModelChildren() method often returns
the objects contained by the EditPart’s model object. When this is the case, we
can call the methods generated by EMF for each containment EReference to
construct a List of all contained objects, as we also see in the sample application
in Example 7-3 on page 214. However, if your EditPart containment hierarchy
differs from your model hierarchy, remember that this method needs to return all
of the objects corresponding to children EditParts, and only the objects
corresponding to children EditParts.

How you choose to map the other objects from your model to EditParts will
depend on how each object is to be represented graphically. The graphical
representation for some objects may be simple, but for others, it may be
composed of multiple graphical components. These components will either be
implemented as child EditParts, or as children of the figure that represents the
model object in the view. An example of an appropriate use of child figures is to
represent object attributes with simple string or number values. An EditPart is
typically used to represent something with which the user interacts, that can be
selected and manipulated in its own right.

One approach for mapping from the model is to provide an EditPart for each
class, and then decide if you need any extra EditParts to represent its features.
For the NetworkEditor, we use an AbstractGraphicalEditPart for both the Network
and the Node class. Objects referenced by a containment reference are
represented as child EditParts, that is, NetworkNodeEditParts are children of
NetworkEditPart, and Links between Nodes are represented as LinkEditParts,
which subclass AbstractConnectionEditPart.

In addition to implementing the EditParts, we also subclass EditPartFactory as
GraphicalEditPartFactory. It is from this class that EditParts are created and
associated with their corresponding model objects, as shown in Example 5-3.

Example 5-3 The createEditPart() method

public class GraphicalEditPartsFactory implements EditPartFactory{
public EditPart createEditPart(EditPart context, Object obj){

if(obj instanceof Network)
return new NetworkEditPart((Network)obj);

Note: While it is usual for an EditPart to have a direct correspondence to a
single object in the model, this is not a requirement. You can choose to use
more than one EditPart to represent an object from the model, use a single
EditPart to represent multiple model objects, or even create EditParts that
have no direct correspondence to model objects. See “Indirect mappings” on
page 175 for examples.
 Chapter 5. Using GEF with EMF 173

else if(obj instanceof Node)
return new NetworkNodeEditPart((Node)obj);

else if (obj instanceof Link)
return new LinkEditPart((Link)obj);

return null;
}

}

Figures
Each EditPart has a corresponding figure which is created and returned by the
EditPart’s createFigure() method. For each EditPart that you implement, you will
need to decide if you also need to provide a specialized figure to represent that
EditPart. EditParts that have simple graphical representations can often be
represented using one of the figures provided by Draw2D, such as a label or a
shape. We use a layer as the figure for NetworkEditPart in the NetworkEditor, as
Example 5-4 shows.

Example 5-4 NetworkEditPart’s createFigure() method

protected IFigure createFigure(){
FreeformLayer layer = new FreeformLayer();
layer.setLayoutManager(new FreeformLayout());
layer.setBorder(new LineBorder(1));
return layer;

}

EditParts with visual representations consisting of multiple parts will usually
require a custom Figure to contain all of the child figures. We implement
NodeFigure to represent NetworkNodeEditParts. The id attribute of each Node is
represented as a child Label of the NodeFigure, as shown in Example 5-5.

Example 5-5 NodeFigure with child Label for id attribute

public class NodeFigure extends Ellipse {
protected EllipseAnchor incomingConnectionAnchor;
protected EllipseAnchor outgoingConnectionAnchor;
protected Label label;
protected XYLayout layout;
public NodeFigure() {

layout = new XYLayout();
setLayoutManager(layout);
setBackgroundColor(ColorConstants.white);
setOpaque(false);
incomingConnectionAnchor = new EllipseAnchor(this);
outgoingConnectionAnchor = new EllipseAnchor(this);
label = new Label(" ");
add(label);
174 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

}
public void setId(String id){

label.setText(id);
}
...

}

Indirect mappings
There are few restrictions on how you may map your model objects to EditParts,
however, if you decide to map a single model object into multiple EditParts, you
will need to contain those parts by a (possibly invisible) parent EditPart that
corresponds to the model object. The reason why your model object can only
correspond to a single EditPart is because the viewer uses a java.util.Map to
map model objects to their corresponding EditParts, using the model object as
the key. If grouping the parts is not appropriate for the graphical representation
that you have chosen to use, this usually indicates a mismatch between the
model and the graphical representation, and you may need to reconsider the
representation or refactor your model.

Using this approach, when a new object is created, your EditPartFactory
implementation can simply return an instance of the parent EditPart as the result
of the createEditPart() method. Then the getModelChildren() method of the
parent EditPart can construct appropriate Java objects for the children that only
contain the data that is relevant to each child EditPart. Usually such objects
would represent some subpart of the EObject, such as a feature or collection of
features. Grouping the EditParts within a parent can make it easier to update the
parts in response to model change, as only the parent EditPart needs to listen for
changes to the model object and can then selectively update its children
EditParts. We discuss how EditParts listen for and respond to model change in
5.2.4, “Reflecting model changes” on page 179.

It is common for multiple model objects to be mapped to a single EditPart in the
graphical representation, particularly where containment relationships exist in the
model. An example is provided in the sample application and discussed in
Chapter 7, “Implementing the sample” on page 207, where ports that are
contained by a WorkflowNode are represented as child figures rather than as
separate EditParts.

Sometimes, you may wish to implement EditParts that do not directly represent
an instance of a class from the model, for example, EditParts that represent state
that is derived from model objects. In this case, you still need to provide an object
to the EditPart via the setModel() method, but it does not have to be an EObject
from your model.
 Chapter 5. Using GEF with EMF 175

A common example of an EditPart that does not have a direct correspondence to
a class from the model is a ConnectionEditPart used to represent a reference. In
the following example, we demonstrate how you can implement this mapping.
Figure 5-2 shows a modified version of the NetworkModel. In this model, there is
no Link class to represent the links between nodes explicitly. Instead, the
references upstreamLinks and downstreamLinks are used to maintain the
relationships between nodes.

Figure 5-2 NetworkModel without the Link class

Each LinkEditPart still needs to correspond to an object so that it can be looked
up in the EditPartRegistry of the viewer whenever refreshSourceConnections()
or refreshTargetConnections() is called in NetworkNodeEditPart, to create or
update the connected links. The corresponding object can be any Java object,
and in our example, we use a String that identifies the source and target of the
LinkEditPart as its model object.

We modify the NetworkEditor as follows:

� Modify LinkEditPart so that it takes a String argument in the constructor and
uses that String as the model object instead of a Link.

� Modify GraphicalEditPartFactory so that it provides a String to the
LinkEditPart constructor when creating a new LinkEditPart.

� Remove references to Link from the ModelCreationFactory, and use null
instead of a ModelCreationFactory in the NetworkPaletteRoot when creating
the tool entry for link creation.
176 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

� Provide new implementations of getModelSourceConnections() and
getModelTargetConnections() in NetworkNodeEditPart, to return the Strings
that we use to identify the links. The String that we use to identify a Link is
constructed using toString() on the source and target Nodes. An example of
how we construct the identifying String is shown in Example 5-6.

Example 5-6 Returning derived objects from getModelSourceConnections()

protected List getModelSourceConnections() {
Vector s = new Vector();
Iterator i = getNetworkNode().getDownstreamLinks().iterator();
Node n;
while(i.hasNext()){

n = (Node)i.next();
s.add(getNetworkNode().toString() + "->" + n.toString());

}
return s;

}

Remember that you can use any Java object as the model for your EditParts.
You can create parts with more complex derivations from the model by providing
your own objects to represent those values. You should only use this technique
for transient or derived values, as any data that is not stored in the model will not
be persisted by default. As we have seen in Example 5-6, you can then associate
your custom objects with their corresponding EditParts from within
getModelChildren(), getModelSourceConnections() or
getModelTargetConnections(), depending on whether you are using child or
connection EditParts to represent those objects.

Fitting the graphical representation to the model
Sometimes you may wish to modify your model so that it corresponds more
closely to the graphical representation that you choose to use in your GEF-based
application.

GEF assumes that all of the information that you need to store about the
diagrams that you are editing is represented in the model. For this reason, you
may also need to augment your model to include information such as
co-ordinates or dimensions.

There are several approaches for constructing the model that you will use in your
application (the view model) from your original model (the business model):

� Create a modified version of the original model, with the additional view
information added directly to your original model objects. This approach is
straight forward to implement, however, the correspondences between the
view model and the business model are not explicit, as there is no tangible
 Chapter 5. Using GEF with EMF 177

link between the two models. This is the approach that we use in the sample
application.

� Use two separate models, the business model, and a new model for
view-specific information. This is the approach used by the Omondo UML
Editor.

� Use modelling techniques to make the link between the view and business
model explicit. For example, create a new package that imports the business
model, and subclasses all of the business model objects, adding the
necessary view information in the subclasses.

We discuss examples of the latter two approaches in Chapter 1, “Introduction to
EMF” on page 3

5.2.2 Displaying properties
In the sample application, and also in the NetworkEditor example, we use
reflection to construct property sheets for our model objects.“Register the
EditPart as a property source” on page 209 describes the implementation in
more detail.

5.2.3 Support for editing the model
Changes to the model are made via commands. Remember that commands only
know about model objects. It is the responsibility of EditParts to listen for
changes made to model objects by commands and update the view accordingly.

When you are using a hand-coded model, usually when you use commands to
change the model, you know exactly how the changes effect the state of the
model. An important thing to note when using an EMF model is that changes that
are made to the model sometimes have consequences that you may not take
into consideration when implementing undo functionality.

For example, if you remove a reference to an object, the reference back from the
opposite will also be removed. If you delete an object that contains others, they
will also be deleted. This is because the EMF types are implemented to ensure
that the model remains consistent. When you are using EMF for the first time,
these behind the scenes changes are convenient, as they save you from having
to enforce these constraints manually, however they can come as a surprise if
you are not aware of how the underlying objects behave.

If you are not expecting such changes, you can run into problems, for example
when undoing multiple changes in the sample application, if you delete an edge
and then the node it was connected to, the port that the edge was connected to
will be deleted with the node, so you need to store enough information about the
178 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

ports and the edge, so that the edge can find the right ports to reconnect to if
those deletions are undone. When you are working with a known model it is not
usually a problem to know how much information you need to store to facilitate
undo, however, if you are working with models generically using the reflective
API, the safest way to ensure that undo restores the model exactly how it was
before the change, is to snapshot the model each time a command executes.
You can either represent each snapshot as a separate serialization, or use diffs
to reconstruct model state.

5.2.4 Reflecting model changes
EditParts are the representation of model objects in the editor, hence they need
to listen for any changes that are made to their corresponding objects in the
model and update their representation accordingly. EMF provides a Notification
framework: Every EObject is a Notifier that can be adapted (or observed) by any
class that implements the Adapter interface provided by
org.eclipse.emf.common.notify. You will notice that in the implementation classes
generated from an Ecore model, whenever the state of the object is modified by
setting or unsetting a feature or adding or removing contained objects, any
adapters are notified by a call to eNotify() that provides details of the change.
Each Adapter receives these notifications via the notifyChanged() method. The
EditParts in our Network editor adapt their corresponding model objects and
implement notifyChanged() to respond accordingly to the changes.

Each EditPart adds itself to the adapters of any objects that it represents in its
activate() method, and removes itself from the adapters of those objects in its
deactivate() method. Example 5-7 shows how NetworkEditPart adds itself as an
adapter of the Network it represents in its activate() method.

Example 5-7 The activate() method of NetworkEditPart

public void activate(){
if (isActive())

return;
((Notifier)getNetwork()).eAdapters().add(this);
super.activate();

}

Each EditPart also implements the notifyChanged() method. Depending on what
has changed, the EditPart may need to update its children, connections or visual
representation to reflect the changed state of the model, by calling the
refreshChildren(), refreshSourceConnections(), refreshTargetConnections() or
refreshVisuals() methods. We outline the methods that we might typically call in
our implementation of the notifyChanged() method of an EditPart, in response to
the different types of Notification, in Table 5-1.
 Chapter 5. Using GEF with EMF 179

Table 5-1 Typical response to change Notifications

When the graphical representation corresponds closely to the model, as is the
case in our Network editor example, the notifyChanged() method is straight
forward, as we see in Example 5-8. In this case, the EditPart needs only to
refresh its children when the contents of the Network that it represents changes,
or to refresh its visual representation when a feature of the Network is changed.

Example 5-8 NetworkEditPart refreshing children EditParts

public void notifyChanged(Notification notification) {
int type = notification.getEventType();
switch(type) {

case Notification.ADD:
case Notification.ADD_MANY:
case Notification.REMOVE:
case Notification.REMOVE_MANY:

refreshChildren();
break;

case Notification.SET:
refreshVisuals();
break;

}
}

If an EditPart does not use all of the features of the model object in its visual
representation, additional code could be added so that refreshVisuals() is only
called when features that are visualized change. If the visualization is made up of
many parts, you may want to provide methods that will only refresh specific parts
of the view, and use them from notifyChanged() instead of refreshVisuals().

Notification type Circumstances Response

ADD
ADD_MANY

Added objects are represented
as a child EditPart

refreshChildren()

Added objects are represented
as connected
ConnectionEditParts

refreshSourceConnections() or
refreshTargetConnections()

REMOVE
REMOVE_MANY

Notifier object is represented
by a child EditPart

refreshChildren()

Notifier is represented by a
connected ConnectionEditPart

refreshSourceConnections() or
refreshTargetConnections()

SET
UNSET

Notifier is the model object of
this EditPart

refreshVisuals()
180 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Refreshing source or target connections is similar to refreshing children. For
example, whenever a NetworkNodeEditPart receives notification of changes to
its upstreamLinks or downstreamLinks features, it refreshes the connections that
represent that link, as we see in Example 5-9.

Example 5-9 NetworkNodeEditPart refreshing connected EditParts

public void notifyChanged(Notification notification) {
int featureId = notification.getFeatureID(NetworkPackage.class);
switch(featureId) {

case NetworkPackage.NODE__UPSTREAM_LINKS:
refreshTargetConnections();
break;

case NetworkPackage.NODE__DOWNSTREAM_LINKS:
refreshSourceConnections();
break;

default:
refreshVisuals();
break;

}
}

In summary, EditParts need to know whenever their corresponding model
objects change, so that they can update their children, connections, and visuals
appropriately. We can implement this by making each EditPart an Adapter on its
corresponding model object, and this works well if the model corresponds closely
to the graphical representation, that is, if most EditParts correspond directly to
model objects, and the EditPart containment hierarchy mirrors the hierarchy in
the model. If the correspondence between objects from your model and the
EditParts that you choose to represent them is not so close, you will need to
customize this approach. You may wish to consider the following guidelines:

� If an EditPart represents multiple objects from the model, that EditPart needs
to listen for changes to all of those model objects. If the group of objects that it
represents can change, it may be necessary for the EditPart to also add or
remove itself from the adapters of those objects in response to the objects
being added or removed, in notifyChanged(). The sample application
provides an example of this for WorkflowNodeEditPart, which represents
WorkflowNodes and their Ports and which is described in 7.2.2, “Tracking
model events in the editor” on page 211.

� For EditParts that contain or connect to EditParts that do not correspond
directly to objects contained by the parent EditPart’s model object, the
EditPart must listen for changes to all model objects that contribute to the
state of objects represented by its children, and then update its children or
connections whenever those objects change.
 Chapter 5. Using GEF with EMF 181

� EditParts that do not directly correspond to model objects do not need to
implement the Adapter interface as they rely on their parent to refresh them.

5.2.5 Loading and saving model instances
2.3, “Model instances and serialization” on page 65 demonstrates how to
serialize model instances via resources. In the NetworkEditor example, we use
the default XMI serialization provided by XMIResource, however the way that we
load and save models from the editor is the same regardless of the type of
resource that we choose to represent our network instances.

We provide a class NetworkModelManager, which manages an XMIResource
containing a network, and which provides methods that create, load and save
that resource. Using a different serialization would simply require another
implementation of the NetworkModelManager class that used a custom resource
type and factory, instead of XMIResource.

The NetworkEditor class uses NetworkModelManager, creating one per file that
is open in the multi-page editor, and provides methods to get and save the
Network instance currently being edited via the NetworkModelManager.

Example 5-10 shows how the editor uses the NetworkModelManager instance to
get a network from a file opened in the editor. This method is called when the
editor is initialized from its init() method.

Example 5-10 Getting an instance from the ModelManager

private Network create(IFile file) throws CoreException{
Network network = null;
modelManager = new NetworkModelManager();
if (file.exists()){

try{
modelManager.load(file.getFullPath());

}
catch (Exception e)
{

modelManager.createNetwork(file.getFullPath());
}
network = modelManager.getModel();
if (null == network){

throw new CoreException(
new Status(

IStatus.ERROR,
NetworkEditorPlugin.PLUGIN_ID,
0,
"Error loading the worklow.",
null));
182 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

}
}
return network;

}

The editor uses a similar mechanism to save Networks via the
NetworkModelManager, using the following method call:
modelManager.save(file.getFullPath());

When the save() method is called, the NetworkModelManager calls the save()
method on the Resource containing the Network, and it is serialized into an XMI
document and saved to the path supplied.

5.2.6 Putting it all together
We complete the editor by integrating the model-specific code into a multi-page
editor that we package as a plug-in.

We subclass MultiPageEditorPart as NetworkEditor. This class sets up
commands, actions and the palette used in the editor. As this is standard GEF,
and is very similar to the code described for the sample application, we do not
describe these details of the NetworkEditor implementation here.

Finally we hook our model and corresponding EditParts into the viewer when we
create the GraphicalViewer within the NetworkPage class, as shown in
Example 5-11.

Example 5-11 Hooking the model into the GraphicalViewer

private void createGraphicalViewer(Composite parent){
viewer = new ScrollingGraphicalViewer();
...
// initialize the viewer with input
viewer.setEditPartFactory(new GraphicalEditPartsFactory());
viewer.setContents(getNetworkEditor().getNetwork());

}

Figure 5-3 shows a screen shot of the graphical view of the completed
NetworkEditor application.
 Chapter 5. Using GEF with EMF 183

Figure 5-3 The NetworkEditor

5.3 Using JET in GEF-based editor development
In this section, we discuss how JET may be used to speed up development of an
editor based on EMF and GEF.

We provide an example that generates skeletons for some classes that are used
in a GEF editor, from a model. We can use the technique described in this
section regardless of whether we take the approach described in 5.2, “Using an
EMF model within a GEF-based application” on page 171, or whether we are
using GEF to augment an EMF.Edit-based editor.You can flesh out the generated
code into an application as described in Chapter 3, “Introduction to GEF” on
page 89.

When developing your GEF-based application based on an EMF model, you will
notice that you are usually creating many similar classes, for example, often you
will create NodeEditParts for most of the classes in your model, perhaps using
ConnectionEditParts for some of them. Often you will use a custom figure for
your NodeEditParts. In the following example, we use JET templates to generate
184 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

EditParts and Figures from classes in our model. This is a very basic example, to
illustrate concepts. We do not provide a complete example due to time
constraints, as the templates required to generate more complete
implementations would be non-trivial. You would probably want to provide more
detail in the templates if you wanted to generate EditParts specific to your
application.

Refer to the JET Tutorial, Part one for an introduction to using JET. We use a
similar process to the example described to generate our skeleton EditParts and
Figures from the WorkflowModel. We take the following steps:

1. To begin with, we create a project, and add a JET Nature to the project from
the right-click context menu. This sets up the template directory.

2. In the template directory, we create a new file NodeEditPart.javajet.

3. We edit the NodeEditPart to create all of the required methods. We base the
content of the template on the NetworkNodeEditPart from the NetworkEditor
described in 5.2, “Using an EMF model within a GEF-based application” on
page 171. Example 5-12 shows an excerpt from the template. Our example
only really uses the name of the class so far to generate the skeleton,
however you could use methods on the EClass to get more detail. For
example, you might want to generate a skeleton notifyChanged() method with
a switch that selected from all of the features of the class.

Example 5-12 NodeEditPart template

<%@ jet package="com.ibm.itso.sal330r.codegen"
imports="org.eclipse.emf.ecore.*" class="NodeEditPartTemplate" %>
<%EClass eClass = (EClass) argument;%>
... imports ...
<%String name = eClass.getName();%>
public class <%=name%>EditPart

extends AbstractGraphicalEditPart
implements NodeEditPart, Adapter

{
private IPropertySource propertySource = null;
private Notifier target;

 public <%=name%>EditPart(<%=name%> o)
 {

setModel(o);
 }

public <%=name%> get<%=name%>() {
 return (<%=name%>)getModel();
 }

/* (non-Javadoc)
 * @see

org.eclipse.gef.editparts.AbstractGraphicalEditPart#getModelSourceConnections()
 Chapter 5. Using GEF with EMF 185

 */
protected List getModelSourceConnections() {

// TODO: implement to return the objects represented by the connections
sourcing from this node

throw new UnsupportedOperationException();
}
/* (non-Javadoc)
 * @see

org.eclipse.gef.editparts.AbstractGraphicalEditPart#getModelTargetConnections()
...
}

4. We also create NodeFigure.javajet, to generate a figure for each EditPart.

5. We change the JET properties for our project to ensure that the translated
templates are compiled into the src directory. To do this, we open the
properties of the project, select JET Settings, and then set Source
Container to src.

6. We compile each template by selecting the template and then selecting
Compile Template from the right-click context menu. Now, we should see the
translated templates appear in the src directory.

7. We create a class EditPartGenerator in the com.ibm.itso.sal330r.codegen
package that was created for the translated templates.

8. In the main method of EditPartGenerator, we add code to get classes from
the model, and use them as arguments to the generate() method of our
compiled templates. Example 5-13 shows the code that we add to facilitate
this. Note that we must use the init() method on the NetworkPackage to
initialize it before use.

Example 5-13 Using the templates

NodeEditPartTemplate n = new NodeEditPartTemplate();
NodeFigureTemplate f = new NodeFigureTemplate();
WorkflowPackageImpl.init();
Map registry = EPackage.Registry.INSTANCE;
String workflowURI = WorkflowPackage.eNS_URI;
WorkflowPackage workflowPackage = (WorkflowPackage) registry.get(workflowURI);
// Generate TaskEditPart
EClass taskClass = workflowPackage.getTask();
String result = n.generate(taskClass));

9. The result of calling generate() on the template is a string containing the text
generated from the template. In our simple example, we print this to
System.out, however if you were really generating code, you would want to
create a resouce containing the contents of the String.
186 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

10.If you run the EditPartGenerator as a Java application, you will see the
resulting code printed to the console.

Using a similar approach to the EMF codegen for the model, edit and editor
plug-ins, you could generate a generic graphical editor for any model using JET.
You would probably want to use your own GenModel to represent options such
as whether a class maps to a Node or Connection EditPart, whether it can
contain other nodes, and possibly also to specify the type of Figure used to
represent the class. You could then generate from instances of that model rather
than from the application model directly.
 Chapter 5. Using GEF with EMF 187

188 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Part 2 Sample le
application

In this part we describe our redbook sample application.

Part 2
© Copyright IBM Corp. 2003. All rights reserved. 189

190 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Chapter 6. Sample requirements and
design

In this chapter, we introduce our redbook sample application, and describe its
objectives. We define the requirements and explain our design decisions.

6

© Copyright IBM Corp. 2003. All rights reserved. 191

6.1 Sample application requirements
In this section we introduce the sample application and we describe its features.

6.1.1 The application
The problem space we have chosen to demonstrate model construction is
workflow. It has a few key concepts and is general enough so that all our readers
should understand and be interested in the key concepts.

A workflow is a collection of tasks. Two types of task have been defined: simple
and complex.

Simple task
A simple task as represented in Figure 6-1 has one input, one output and one
fault output. A simple task does some sort of processing on the data given to it.
Two tasks are linked together with an edge. Data on the input is processed by
the task and made available on the output.

Figure 6-1 Task representation

Complex tasks
The complex tasks, we use in our sample application are:

� compound task

A compound task is a kind of container. It follows the composite pattern. It
contains a containment reference to a worklow, which can contain other
simple or compound tasks.

� loop task

The loop task gives us the ability to iterate, as long the condition, a predicate
is true.

� choice

The choice task implements branching.
192 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

� transformation.

Transformation has been introduced in order to enable a task to do
combination of its multiple inputs.

Figure 6-2 show the representation we use for complex tasks.

Figure 6-2 Complex task representation

Edge
An edge is used to link two tasks together. The output of the first task is
redirected to the input of the second task. An edge represents both control and
 Chapter 6. Sample requirements and design 193

data flow. This means that once the first task has completed, the data made
available to and the control flow is transferred to the second task.

Multiple edges can end to a task input slot. It means that the task has to wait for
all former tasks to reach the completion stage, before being able to process the
multiple data set available.

Figure 6-3 shows our representation of edges

Figure 6-3 Concurrency and edge representation

Variables and labels
The final two concepts that we introduce are the use of labels and the use of
variables.Labels can be used to decorate any of the input, output and fault slots
of a task, to decorate conditions on a conditional edge from a conditional task,
and to decorate variable.s

Variables are used to store data, usually coming from the output of a task and to
hold it until another task in the workflow makes use of it. Variables can be seen
as a way to separate the control flow from the data flow. Control goes to the next
task while the data is held in the variable.

Start and end tasks
In order to run the workflow, we define a start and end point as a decoration of a
task. The start icon is a green triangle while the stop icon is a little red square.
See Figure 6-4 for an example

Figure 6-4 Data flow, variable, start and stop tasks representation
194 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

6.2 Sample application design
The EMF and GEF sample application is an Eclipse plug-in. It is an editor. It uses
a property view to capture user input and provides an outline view to more easily
navigate through the model. It has multiple level of undo and redo, and provides
several Eclipse plug-in extension points.

The plug-in extension points are:

� The view menu, which contains the Zoom In and Zoom Out menu items

� The undo, redo tool bar

At the editor level, additional context dependant features have been defined:

� Inplace editing for compound tasks.

– Task can be added to compound task by means of drag and drop.

– A sub-workflow can be accessed through the compound task itself.

� Separated editor tab for compound task editing.

– Provide an extended work space to work on a sub-workflow defined in a
compound task.

� During edge creation, which is a link between two nodes, the link creation tool
is smart enough to recognize where the link can be connected.

– No loop on a single task is allowed.

– No link from a task of a sub-workflow to a task in the main workflow is
allowed.

– Link cursor is dynamically updated to represent the ability to connect to a
given endpoint.

� Dynamic update of the main and properties view, to reflect the user action on
the outline view.

� Drag and drop from the palette into the viewer.

� Right-click contextual menu

– For example, the Choice right click menu contains undo, delete, add
condition to choice and save actions.

6.2.1 Design decisions
During the design process, we made some important decisions including:

� One top level workflow per file.

� The sub-workflow of a compound tasks is contained in the workflow itself. No
reference to an external workflow or sub-workflow is supported.
 Chapter 6. Sample requirements and design 195

6.2.2 The workflow model
This section documents the WorkflowModel, shown in Figure 6-5.

Figure 6-5 The WorkflowModel

Note: In Eclipse, only one editor can be opened on a workflow at a time, but
multiple workflows can be edited in different Eclipse workflow editors.
196 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

WorkflowElement
The WorkflowElement class provides features common to all elements present in
a workflow. It is the common abstract supertype of the Workflow, WorkflowNode
Port, Edge and Comment classes. Table 6-1 provides a summary of the
WorkflowElement class.

Table 6-1 WorkflowElement summary

Workflow
The Workflow class represents the description of a process. A Workflow contains
WorkflowNodes representing the steps in the process and Edges that represent
data and control flow between the nodes. A Workflow may also contain
comments that annotate the process described by the Workflow. Table 6-2
provides a summary of the Workflow class

Table 6-2 Workflow summary

WorkflowNode
The class WorkflowNode represents a step in a Workflow. WorkflowNodes have
ports and may be connected to other WorkflowNodes via those ports. Table 6-3
provides a summary of the WorkflowNode class

Owned By

Inheritance

Features name: identifies the Workflow
comment: an optional comment string
x: coordinate used for layout
y: coordinate used for layout
width: used for layout of container elements
height: used for layout of conatiner elements
id: used to uniquely identify a workflow element

Constraints

Owned By

Inheritance WorkflowElement

Features nodes: the WorkflowNodes contained within this Workflow
edges: the Edges contained within the Workflow
comments: the Comments contained within the Workflow

Constraints
 Chapter 6. Sample requirements and design 197

Table 6-3 WorkflowNode summary

Task
The class Task represents an action or unit of work within the Workflow.

The start and end icons in the documentation are differents from the ones
currently implemented. In the application, the start task’s InputPort is replaced by
a green square and the end task’s OutputPort is replaced by a red square as
shown in Figure 6-6.

Table 6-4 provides a summary of the Task class

Figure 6-6 Task visual

Table 6-4 Task summary

Owned By

Inheritance WorkflowElement

Features isStart: indicates whether this is the starting node of a Workflow
isFinish: indicates whether this is the finishing node of a Workflow
workflow: a reference to the Workflow that contains the node
outputs: the output ports (including fault ports) owned by the node
inputs: the input ports owned by the node

Constraints WorkflowNodes have no more than one Fault port.

Owned By

Inheritance WorkflowNode

Features

Constraints A Task has exactly one input port and one (non-fault) output port.
198 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

CompoundTask
The class CompoundTask is a Task that is defined by a sub-workflow . The
CompoundTask is complete when the sub-workflow that composes it is
complete. As CompoundTask inherits from Task, it has a single input port, output
port and fault port. When a CompoundTask begins, the inputs to the start nodes
of the sub-workflow are the inputs that are received at the input port of the
CompoundTask. Similarly, when the sub-workflow completes, the output data
from the finishing nodes of the sub-workflow provide the data that is output from
the output port of the CompoundTask. Figure 6-7 shows the visual
representation of a CompoundTask.

Figure 6-7 Compound task visual

Table 6-5 provides a summary of the CompoundTask class

Table 6-5 CompoundTask summary

LoopTask
LoopTask represents actions that are repeated while a condition is true. The
actions that are repeated are contained by the sub-workflow of the LoopTask.
The data received at the Input of the LoopTask is provided as the input to the first
execution of the start node in the LoopTask’s sub-workflow . For each repetition
of the sub-workflow , the output from the previous execution becomes the input
to the current one. The output from the finishing nodes from the final execution of
the loop becomes the output of the LoopTask. Figure 6-8 shows the visual
representaion of the LoopTask

Owned By

Inheritance Task

Features subworkflow: the Workflow that defines the CompoundTask

Constraints
 Chapter 6. Sample requirements and design 199

Figure 6-8 LoopTask visual

Table 6-6 provides a summary of the LoopTask class

Table 6-6 LoopTask summary

Choice
The class Choice represents a switch between alternative execution and data
flow paths. Data and control flow is only activated for Edges that source from
output ports of the Choice where the condition of the OutputPort evaluates to
true. Conditions must be unique in a Choice. The default name for a condition is
false.

The way conditions are represented in the workflow editor differ a little bit from
the present documentation, where a condition is drawn close to the
corresponding edge. In the editor, they are drawn inside the Choice visual itself.
A condition is placed in front of the corresponding ConditionalOutputPort port,
see Figure 6-9.

Owned By

Inheritance CompoundTask

Features whileCondition: while this holds, the sub-workflow is repeated

Constraints
200 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 6-9 Choice visual

Table 6-7 provides a summary of the Choice class

Table 6-7 Choice summary

Transformation
The class Transformation takes multiple inputs and performs a transformation on
that data to produce a single result. Figure 6-10 shows the visual representation
of a Transformation.

Note: The little icon on the upper right corner of the Choice is used for adding
a condition to it. If you click on it and nothing happens, check if the default
false condition is not already defined in the Choice.

Owned By

Inheritance WorkflowNode

Features

Constraints Choice has only one input port, but may have multiple output
ports. Non-fault OutputPorts owned by a Choice must be
ConditionalOutputPorts.
 Chapter 6. Sample requirements and design 201

Figure 6-10 Transformation task visual

Table 6-8 provides a summary of the Transformation class

Table 6-8 TransformationTask summary

Edge
The class Edge represents a connection between an output port and an input
port, that is, a flow of data from the output of one WorkflowNode to the input of
another. Table 6-9 provides a summary of the Edge class

Table 6-9 Edge summary

Port
The abstract class Port is the common supertype for InputPort and
OutputPort.Table 6-10 provides a summary of the Port class

Table 6-10 Port summary

Owned By

Inheritance WorkflowNode

Features transformExpression: expresses how the input data is
transformed into the output data

Constraints Transformation has only one (non-fault) output port, but may
have multiple input ports

Owned By Workflow

Inheritance WorkflowElement

Features workflow: the containing Workflow
source: the output port from which the Edge begins
target: the input port at which the Edge terminates

Constraints

Owned By

Inheritance WorkflowElement
202 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

InputPort
The class InputPort represents the Port at which data and control is received by
a node in the Workflow. Table 6-11 provides a summary of the InputPort class

Table 6-11 Input Port summary

OutputPort
The class OutputPort represents the Port at which data and control is provided
by a WorkflowNode upon completion. Table 6-12 provides a summary of the
OutputPort class

Table 6-12 OutputPort summary

FaultPort
FaultPort represents the output of a node that terminates under exceptional
conditions. The exception may be handled by another node if there is an Edge
linking the FaultPort with the InputPort of the handling WorkflowNode, otherwise
the Workflow containing the WorkflowNode that owns the FaultPort fails.
Table 6-13 provides a summary of the FaultPort class

Table 6-13 FaultPort summary

Features

Constraints

Owned By WorkflowNode

Inheritance Port

Features edges: the edges that target the InputPort
node: the WorkflowNode that owns the InputPort

Constraints

Owned By WorkflowNode

Inheritance Port

Features node: the WorkflowNode that owns the OutputPort
edges: the edges for which the OutputPort is the source

Constraints

Owned By

Inheritance OutputPort
 Chapter 6. Sample requirements and design 203

ConditionalOutputPort

The ConditionalOutputPort class represents an output of a Choice. For any
Choice, the conditions of its ConditionalOutputs determine the execution paths
that are taken upon evalutation of the Choice, as only Edges sourcing from a
ConditionalOutputPort where the condition evaluates to true will be activated
when the Choice completes. Table 6-14 provides a summary of the
ConditionalOuputPort class

Table 6-14 ConditionalOutputPort summary

Comment
The Comment class represents a free-standing comment within a Workflow. The
text of the comment is represented in the comment attribute inherited from
WorkflowElement. The Comment class provides a mechanism for including
comments in the workflow that are not attached to the Ports, Edges or
WorkflowNodes. Table 6-15 provides a summary of the Comment class

Table 6-15 Comment summary

6.3 Sample application demo
The sample application workflow editor is the default editor for file with a
.workflow extension.

To run the workflow sample application, we need to first create a simple project,
than create a workflow file using the simple file creation wizard or the workflow

Features

Constraints

Owned By

Inheritance OutputPort

Features condition: the condition used to determine the execution path

Constraints

Owned By Workflow

Inheritance WorkflowElement

Features

Constraints
204 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

wizard. The workflow wizard provides workflow file extension handling and
control.

Create a simple project

1. Click File -> New -> Other..., select Simple -> Project, click Next.

2. Give project name, click Finish.

Create a workflow model with the simple file creation wizard

1. Click File -> New -> Other..., select Simple -> File, click Next.

2. Give the file name, for example myworkflow.workflow, click Finish.

Create a workflow model with the simple file with the workflow wizard:

1. Click File -> New -> Other..., select Other -> Workflow, click Next.

2. Give the file name, for example My.workflow, click Finish.

In both case, the workflow editor opens automatically on a new empty workflow.
Figure 6-11 shows a workflow model built using our redbook sample application.
 Chapter 6. Sample requirements and design 205

Figure 6-11 Workflow sample application window

Note:

1. If your starting point is the additional material, which contains the plug-in
code, you have to run the plug-in on a Run-time Workbench. Eclipse
automatically opens the editor on the workflow file, created during the
simple file creation process.

2. The Edge creation tool was considered as a composite of the model. It was
presented in a way similar to Tasks, with an Edges menu and an Edge
entry. Later on, it has been considered not as being a composant, but more
like a link between two composites. As such, it was moved to the top of the
menu, just after the Select and Marquee tools.
206 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Chapter 7. Implementing the sample

This chapter describes the implementation of our workflow editor sample
application.

7

© Copyright IBM Corp. 2003. All rights reserved. 207

7.1 Overview
In this section we provide an overview of the sample application. We provide a
summary of the packages and classes in the implementation, along with
instructions for how to run the sample application. We also highlight notable
sections from the JavaDoc.

7.2 Architecture
In this section we describe the architecture of the sample application. We discuss
the techniques that we use to connect the EMF model with the editor framework.

7.2.1 Mapping the EMF model to GEF EditParts
One of the key tasks in creating a GEF application is the process of mapping
your applications EditParts with your model. In this section we discuss the
process that we took to bind our sample application's EMF-based model with the
editor framework. The GEF provides a lot of flexibility as far as how its EditParts
relate to the underlying model. There are no strict requirements on how EditParts
map to actual objects in the model. The first step then is to decide what this
mapping will be in your application. In general there will probably be fewer
EditParts then there are object classes in your model. For instance in our sample
application we created the WorkflowNodeEditPart to be the base class for model
elements that have connections. In the model the ports are separate objects, but
in the editor we chose to have the WorkflowNodeEditPart represent both the
node and all it's ports. One criterion for making a determination about this
mapping is to consider how dynamic the visual behavior of a component needs
to be. For instance if a model object needs a visual representation that can be
moved, resized, or can be individually added or deleted, then it may be a good
candidate for mapping it to it's own EditPart.
208 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

In our sample application we designed the EditPart class hierarchy shown in
figure Figure 7-1

Figure 7-1 The Sample application’s EditPart class hierarchy

EditPart functionality
The base class for our EditParts is the WorkflowElementEditPart class. This
class provides the following three main functions that are needed by all its
subclasses:

� Register the EditPart a listener of its model

The WorkflowElementEditPart class implements the

org.eclipse.emf.common.notify.Adapter

interface that is used by listeners of EMF's notification mechanism. The ability
to track changes in the model is crucial to the EditPart's function. We will
discuss this in more detail in 7.2.2, “Tracking model events in the editor” on
page 211. We override the EditPart's life cycle methods activate() and
deactivate() to manage the registration of the EditPart as an Adapter on its
model.

� Register the EditPart as a property source

All EditParts inherit the IAdaptable interface from their AbstractEditPart base
class. This Eclipse interface supports a kind of multiple inheritance in which a
class can offer a proxy object to implement an interface requested by the
Eclipse framework. In our case we want all of our EditParts to provide an
implementation of the IPropertySource interface. By doing so the Eclipse
property page viewer will display the properties of our EditParts as they are
selected, and also allow them to be edited. The implementation of the
IPropertySource interface requires adding Eclipse-specific code. While we
 Chapter 7. Implementing the sample 209

could have extended our model's objects to implement this interface directly,
we felt that it would be preferable to keep the Eclipse properties handling out
of the model classes. Fortunately the EMF-generated classes provide a lot of
metadata. This made it simple to create a proxy class that provides a generic
IPropertySource implementor, WorkflowElementPropertySource, that can
provide the requisite IPropertyDescriptor's for any of our model's classes. It
also provides for editing property values. Most of the work happens in this
class’s getPropertyDescriptors() method, shown in Example 7-1

Example 7-1 A generic getPropertyDescriptors implementation for EMF classes

public IPropertyDescriptor[] getPropertyDescriptors() {
Iteratorit;

EClass cls = element.eClass();
Collectiondescriptors = new Vector();

it = cls.getEAllAttributes().iterator();
while(it.hasNext()) {

EAttributeattr = (EAttribute)it.next();

EDataTypetype = attr.getEAttributeType();
if(attr.isID()) {

// shouldn't be editable
descriptors.add(new PropertyDescriptor(Integer.toString(

attr.getFeatureID()),
 attr.getName()));

}
else if(type.getInstanceClass() == String.class) {

descriptors.add(new TextPropertyDescriptor(Integer.toString(
attr.getFeatureID()),

 attr.getName()));
}
else if(type.getInstanceClass() == boolean.class) {

descriptors.add(new CheckboxPropertyDescriptor(Integer.toString(
attr.getFeatureID()),

 attr.getName()));
}

}

return (IPropertyDescriptor[])descriptors.toArray(new
IPropertyDescriptor[] {});

}

Using metadata in the EAttribute and EDataType classes we construct a
property descriptor for each property (attribute) of a model object. The
EAttribute provides a unique ID and displayable name for each attribute. The
type information in the EDataType is used to create subclasses of
210 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

PropertyDescriptor that will provide cell editors appropriate for the data type
of each attribute. Note the special case for ids, which are identified by testing
the EAttribute.isID() method. This attribute is the unique ID that is generated
for each object in the model. We don't want this attribute to be editable, so we
create an instance of PropertyDescriptor, which results in a read-only entry in
the property page.

� Provide a default implementation of the refreshVisuals method

Our implementation of this method handles changes to an EditPart's size and
position. In our sample application all of our EditParts can be moved, and
most of them can be resized. Therefore we provide this functionality in our
EditPart base class. The refreshVisuals() method simply applies the changed
position and extent values in the model to the EditPart's figure by updating its
layout constraint accordingly.

The WorkflowNodeEditPart derives from WorkflowElementEditPart and its
purpose is to support EditParts that have connections. This is the base
EditPart for EditParts that map to the model classes derived from
WorkflowNode. This class implements GEF’s NodeEditPart interface, which
supports the connection feedback mechanism in GraphicalNodeEditPolicy.
This gives user feedback when Connections are initially connected and also if
they are later disconnected and reconnected.

7.2.2 Tracking model events in the editor
Once your EditPart to model mapping strategy has been designed the next step
is to enable your EditParts to be able to track changes in your model. As we have
said, GEF itself does not provide nor require any specific event notification
mechanism. If you are working with a model that does not include an event
mechanism, one approach is to use the Java beans event support provided by
the java.beans.PropertyChangeSupport and
java.beans.PropertyChangeListener classes. This is the approach taken in the
logic example that the GEF project provides. In our case we are fortunate to have
the full-featured notification mechanism that is generated automatically in EMF
classes. Recall that all the EditParts in our sample are registered as adapters on
the EMF model class(es) that they represent. Each EditPart then provides an
override of the notification method:

public void notifyChanged(Notification notification)

which will be called when any attribute of a model class is changed, or when a
child object is added or removed. The Notification class provides extensive
context describing the model change that has occurred. It includes information
such as:

� the notifier, that is, which object's property has changed, or had a child added
or removed
 Chapter 7. Implementing the sample 211

� the new and previous values of the target attribute

� data type information for the affected attribute

� an identifier for the attribute

This information is used to filter out events so that each EditPart only processes
changes that are unique to properties of that particular part. Processing of more
generic changes, for instance a change to a part's size or location, should be
delegated to the superclasses implementations of notifyChanged(). Note that the
notification mechanism provided by EMF is very thorough, so that a change to
any attribute will result in a notification event. This means that a more
complicated model operation, in which several attributes are manipulated, results
in a large number of notification events. Ideally the EditPart's implementation will
filter these events accordingly so that the visual representation is maintained
accurately while events that do not require a change to the visual representation
are ignored.

Remember that a single EditPart may be responsible for the representation of
more than one object in the underlying model. In our sample application this is
the case with WorkflowNodeEditParts, which represent a WorkflowNode with
some number of Ports. In our model the action of adding or removing a
connection is something that happens to ports, not the WorkflowNode to which it
is attached. Therefore our WorkflowNodeEditPart needs to perform some
additional registration to make itself a listener on its WorkflowNode's ports.
Otherwise it will not be notified of connection changes to its ports. This is done in
the notifyChanged() method of the WorkflowNodeEditPart, which is a base class
for all the EditParts in our sample application that support connections. When a
port is added to any WorkflowNode model element, the WorkflowNodeEditPart
adds itself as a listener on the new port.

7.2.3 Refreshing
Once we have ensured that our EditParts are receiving all the notifications they
require to track their model, we then need to add code in our EditParts that acts
on this information. The implications of a model event to an EditPart can be
distilled into three general operations. The EditPart must interpret the notification
to decide which of these operations are required:

� Updating the visual representation

Underlying attributes of the model are often represented visually using
colored indicators, text annotations, or other graphical effects. For example,
in the sample application the name of an element is drawn inside a task
rectangle or on the title bar of a compound task. The ports change color to
indicate when a task is a start or finish task. The EditPart class provides the
method refreshVisuals(). Its implementation should provide a full update of
212 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

every graphical feature that is mapped to a model attribute. This method will
be called once when the EditPart is first activated so that the model and figure
are synchronized. Subsequently it is the responsibility of the application to
decide when a model change event requires an update to the visualization. It
is not required, or always advisable, to update the entire visualization if only a
single attribute has changed. This is a judgement call depending on the
complexity of the figure. With a detailed notification mechanism such as the
one provided by EMF, it is easy to determine exactly what has changed in the
model and decide whether to update details of the figure vs. calling
refreshVisuals() to update the entire figure.

� Updating children

In our sample application, our model has containment relationships that
are mirrored in our EditPart hierarchy, which is a common situation in GEF
applications. In our case the Workflow object may contain Task,
CompoundTasks, Choice and LoopTask objects, and so on. Our model
supports nesting, so that there are sub-workflows within CompoundTasks
and LoopTasks. The EditParts that represent these objects maintain a
similar structure. When a container EditPart is notified that a child model
element has been added or removed from its model, it must interact with
the GEF framework to synchronize by either adding or removing the
EditParts that represent the affected model children. GEF provides the
EditPart method refreshChildren() for this purpose. GEF provides the
implementation of this method. Our notification just needs to call it when
appropriate, as we do in the WorkflowNodeEditPart, shown in
Example 7-2:

Example 7-2 The notifyChanged() implementation in WorkflowNodeEditPart

public void notifyChanged(Notification notification) {
int type = notification.getEventType();
int featureId;

switch(type) {
case Notification.ADD:
case Notification.ADD_MANY:

if(notification.getNewValue() instanceof Edge) {
if(notification.getNotifier() instanceof InputPort) {
refreshTargetConnections();

}
else {

refreshSourceConnections();
}

}
else {

// listen for connection changes on the port
if(notification.getNewValue() instanceof Port) {
 Chapter 7. Implementing the sample 213

Port port = (Port)notification.getNewValue();
port.eAdapters().add(this);

}
refreshChildren();

}
break;

case Notification.REMOVE:
case Notification.REMOVE_MANY:

if(notification.getOldValue() instanceof Edge) {
if(notification.getNotifier() instanceof InputPort) {

refreshTargetConnections();
}
else {

refreshSourceConnections();
}

}
else {

if(notification.getNewValue() instanceof Port) {
((Port)notification.getNewValue()).eAdapters().remove(this

);
}
refreshChildren();

}
break;

We detect the addition or removal of children using the
Notification.getEVentType() method. GEF’s refreshChildren() method it will
need to know what parts of the model the EditPart considers to be its model’s
children. Therefore EditParts that contain other EditParts must provide an
implementation of the EditPart.getModelChildren, which returns a list of the
child model elements. GEF then reconciles the model children against the list
of EditParts that it maintains. If a there is a new child element then an EditPart
will be created for it, or if one has been deleted than the corresponding
EditPart will be removed. The implementation of getModelChildren() for
CompoundTaskEditParts is show here Example 7-3:

Example 7-3 The getModelChildren implementation in CompoundTaskEditParts

protected List getModelChildren() {
List result = new ArrayList();

if(getCompoundTask().getSubworkflow() != null) {
Iterator it;

it = getCompoundTask().getSubworkflow().getNodes().iterator();
while(it.hasNext()) {
214 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

result.add(it.next());
}
it = getCompoundTask().getSubworkflow().getComments().iterator();
while(it.hasNext()) {

result.add(it.next());
}

}

return result;
}

Note that the Comment objects are also added here because they are owned
by the containing workflow (but are not part of the node hierarchy).

� Updating connections

EditParts must notify GEF when they detect model changes indicating the
making and breaking of connections. The mechanism for this is very similar to
the mechanism described above for child additions and deletions. In the case
of our sample application we do this processing in the example Example 7-2
above. GEF provides two methods for refreshing connections, depending on
whether the affected EditPart is the source or target of the connection. The
methods are named EditPart.refreshSourceConnections and
EditPart.refreshTargetConnections. As it does when refreshing children, GEF
then asks our EditPart to provide a list of the connections for which our
EditPart is the source or target. For our model we simply need to return the
result of the WorkflowNode class's getOutputEdges or getInputEdges, which
conveniently return a List as required by GEF (see Example 7-4)

Example 7-4 Returning a node’s connections

protected List getModelSourceConnections() {
return getWorkflowNode().getOutputEdges();

}

protected List getModelTargetConnections() {
return getWorkflowNode().getInputEdges();

}

7.2.4 Factories
We use two factories in order to integrate between GEF and our EMF-based
model. First we need to use the EMF-generated factory, WorkflowFactory,
whenever we are creating new model objects. Typically this happens when a
creation command is either initialized by a policy or when the creation command
 Chapter 7. Implementing the sample 215

is executed. The factory is made available to these functions by setting it as the
factory for the creation tools created in the palette, as we do in the
WorkflowPaletteRoot class. The factory is set in the constructor for the
CreationToolEntry class. The class ModelCreationFactory, which implements
CreationFactory, is where the EMF factory is invoked. The getNewObject()
method in this class is where objects are actually created, as show in the snippet
in Example 7-5

Example 7-5 A snippet of the getNewObject() factory method

public Object getNewObject() {
Map registry = EPackage.Registry.INSTANCE;
String workflowURI = WorkflowPackage.eNS_URI;
WorkflowPackage workflowPackage =
(WorkflowPackage) registry.get(workflowURI);
WorkflowFactory factory = workflowPackage.getWorkflowFactory();

Object result = null;

if(targetClass.equals(Task.class)) {
result = factory.createTask();

}
else if(targetClass.equals(CompoundTask.class)) {

result = factory.createCompoundTask();
}
else if(...)) {
}

return result;
}

In 7.2.3, “Refreshing” on page 212, we discussed the reconciliation process that
GEF performs when our EditParts call refreshModelChildren,
refreshTargetConnections or refreshSourceConnections. If GEF detects that
there are model elements without an associated EditPart, it uses the graphical
viewer’s factory to create the missing EditPart. In the sample application the
class GraphicalEditPartsFactory is our implementation of EditPartFactory that
performs this function. This simple class is what ultimately specifies how our
model’s objects will be mapped to our application’s EditParts.

7.2.5 Policies and commands
GEF editors only become interactive when the appropriate EditPolicy
implementations are added to EditParts. The EditPolicies are responsible for
creating commands to operate on the model and to provide feedback behaviors
216 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

that allow figures to be selected, dragged, added, deleted, and edited. The
sample uses the following EditPolicies:

� WorkflowContainerXYLayoutEditPolicy

One of the main function of this policy is to construct creation commands in
response to a CreateRequest request. Most of the objects in the sample
application’s model that map to EditParts are subclasses of WorkflowNode.
The class CreateWorkflowNodeCommand is the command that handles
creation of these objects. In the policy’s getCreateCommand the command is
initialized with parent workflow, and then the factory is called to get a new
child instance (Example 7-6). Note the special handling when the host is a
CompoundTask. In that case the parent workflow is obtained by calling the
CompoundTask’s getSubworkflow() method.

Example 7-6 Initializing the CreateWorkflowNodeCommand

CreateWorkflowNodeCommand create = new CreateWorkflowNodeCommand();
if(getHost().getModel() instanceof Workflow) {

create.setParent((Workflow)getHost().getModel());
}
else {

create.setParent(((CompoundTask)getHost().getModel()).getSubworkflow());
}
create.setChild((WorkflowNode)request.getNewObject());

The Comment object has its own creation command,
CreateCommentCommand, because it is not a WorkflowNode; it has no
connections and is always contained by a workflow.

Other functionality provided by the WorkflowContainerXYLayoutEditPolicy
includes providing a ChangeConstraintCommand. This command is executed
when the user changes the size or location of a model element. The policy
also determines the SelectionHandlesEditPolicy for new EditPart children,
making CommentEditParts nonresizeable, while the other EditParts are
allowed to be resizeable.

� ChoiceDirectEditPolicy

This class supports the direct edit mechanism that the sample application
uses for editing the expressions in ChoiceEditParts. It constructs a
ChoiceExpressionCommand for a DirectEditRequest. It also performs some
ancillary functions such as saving the current value of an expression and
implementing the showCurrentEditValue() method to take into account which
label the user is attempting to edit.

� CompoundHighlightEditPolicy
 Chapter 7. Implementing the sample 217

We created this subclass of GraphicalEditPolicy to provide visual feedback
when a CompoundTask is the target of an operation, such as when a Task is
being dragged into it. The feedback is simply to change the background color
of the figure which contains the sub-workflow figures.

� EdgeEditPolicy

This policy supports the deletion of Edges from the model by constructing a
ConnectionCommand for the host Edge with null specified for the source and
target.

� EdgeEndpointEditPolicy

We override the ConnectionEndpointEditPolicy to provide some extra visual
feedback when an EdgeEditPart is selected. The feedback is simply to double
the width of the connection’s polyline figure, and to return its width to a single
pixel again when it is deselected.

� EdgeSelectionHandlesEditPolicy

We must provide a concrete implementation of the abstract base class
SelectionHandlesEditPolicy that returns the selection handles for our
connection EditParts. Since in the sample we do not support a bendpoint
router, we just return handles for the start and end of the connection.

� WorkflowContainerEditPolicy

� WorkflowNodeEditPolicy

This policy creates commands for connection initiation and completion
(ConnectionCommand). Its superclass, GraphicalNodeEditPolicy, provides
visual feedback while a connection is being drawn.

7.3 The model
In this section, we describe the model used by the sample application.

7.3.1 Modifying the WorkflowModel
In this section we describe the modifications made to the WorkflowModel in order
to use it in the workflow editor sample application.

Choosing the naming convention for references
A reference between two classes has usually two names associated with it. One
for each of the navigation paths between them.

The one-to-one association names are singular and are always easily chosen.
For the one-to-many association names, we have an extra level of freedom,
218 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

because we can choose the Modeling or the Java naming convention to give it a
name. The main difference between the two is that Modeling uses singular while
Java uses plural.

Java coding conventions are strong. By respecting them, code is generally more
readable and understandable. It is not that those conventions are the only way or
the best way to go, but when you follow them, code become more easily familiar
to developers. Modeling uses different conventions, because the interests are
not the same.

Knowing that the convention choice has some effect on the generated code, the
result is that you rapidly end up with some sort of decision like, do we privilegize
the modeling or Java standpoint? When implementing the sample application,
with Java code as the only mapping, we decide to use the Java standpoint.

To help you visualize the potential implications of the choice of one view, we use
the Workflow to WorkflowNode association, called node(s) from Workflow to
WorkflowNode.

In Java, the association is implemented by a collection called nodes.See
Example 7-7:

Example 7-7 Java reference implementation

package com.ibm.itso.sal330r.workflow.impl;

public class WorkflowImpl extends WorkflowElementImpl implements Workflow {
 /**
 * The cached value of the '{@link #getNodes() Nodes}' containment
reference list.
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @see #getNodes()
 * @generated
 * @ordered
 */
 protected EList nodes = null;

 /**
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @generated
 */
 public EList getNodes() {

if (nodes == null) {
 nodes = new EObjectContainmentWithInverseEList(

WorkflowNode.class,
this,
 Chapter 7. Implementing the sample 219

WorkflowPackage.WORKFLOW__NODES,
WorkflowPackage.WORKFLOW_NODE__WORKFLOW);

}
return nodes;

 }
}

In XML, a look to a file containing the result of a workflow serialization reveals
that there is an extra ‘s’ at the end of each node entity, which is unusual for an
XML entity. See any ecore file, to have more example of eClassifiers or
eReferences XML entities. See Example 7-8.

Example 7-8 Workflow XMI file serialization

<?xml version="1.0" encoding="ASCII"?>
<workflow:Workflow xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:workflow="http://www.redbooks.ibm.com/sal330r/workflow"
id="w10606325114530">
 <nodes xsi:type="workflow:Task" x="99" y="80" id="w10606325138591">
 <outputs xsi:type="workflow:FaultPort" name="fault" id="w10606325257817"/>
 <outputs name="output" id="w10606325257818"/>
 <inputs name="input" id="w10606325257819"/>
 </nodes>
 <nodes xsi:type="workflow:Choice" x="83" y="213" id="w10606325189373">
 <outputs xsi:type="workflow:FaultPort" name="fault" id="w106063252578110"/>
 <outputs xsi:type="workflow:ConditionalOutputPort" name="ConditionalPort0"
id="w106063252578111" condition="false"/>
 <inputs name="input" id="w106063252578112"/>
 </nodes>
 <nodes xsi:type="workflow:LoopTask" x="293" y="184" id="w10606325204534">
 <outputs xsi:type="workflow:FaultPort" name="fault" id="w106063252578113"/>
 <outputs name="output" id="w106063252578114"/>
 <inputs name="input" id="w106063252578115"/>
 <subworkflow id="w106063252578116"/>
 </nodes>
</workflow:Workflow>

7.3.2 Modifying the code generated from the model
This section describes additions and customizations made to the interfaces and
implementations generated from the WorkflowModel, in order to use this
generated code as the model for the workflow editor sample application.
220 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

7.3.3 Respecting model constraints in the editor
Use the connectTo method in the Workflow class to discuss model object
relationships. Explain the execute and undo method of the ConnectionCommand
class. Describe the containment relationship between Workflow and Edge and
the relationship between InputPort and OutputPort and Edge.

Enforcing model constraint in the model implementation
WorkflowNodes have Ports. The application requires Task, CompoundTask and
LoopTask tasks to have only one Input and one Output. Transformations can
have multiple Inputs and Conditionals can have multiple Outputs. All nodes have
a default FaultPort.

The model as designed, tell us that the association between tasks and ports are
inherited from the WorkflowNode, where two one-to-many associations are
defined between WorkflowNode and InputPort on one side and WorkflowNode
and OutputPort on the other side. The reference named outputs contains all the
OutputPort, all the ConditionalOutputPort and the default FaultPort ports

With those elements in mind, we directly see that we have a problem to reduce
the visibility of the inherited methods for outputs and inputs relationships. The
model provides methods dealing with a collection, where methods dealing only
with one object should be defined.

Nothing prevents the following code to be written in the case of a
CoumpoundTask:

this.getInputs().addAll(collection);

Several solutions have been investigated and evaluated, here is a short
description of the most important ones:

1. A model redesign, which consists to move the inputs and outputs references
to the subclasses: Task, Transformation and Choice would have solved the
problem elegantly, but at a price of three time the number of references. Task
would have three one-to-one references for the InputPort, the OutputPort and
the FaultPort port. Transformation would have a one-to-many reference for
the InputPort, a one-to-one reference for the OutputPort and a one-to-one for
the FaultPort port. Choice would have a one-to-one reference for the
InputPort, a one-to-many reference for the OutputPort ports and a one-to-one
for the FaultPort port.

The main problem with this approach is that the WorkflowNode loses its
knowledge of Ports, which means there is no easy way to loop on all the
ports, or to connect an OutputPort, or a FaultPort port to an InputPort with an
Edge.
 Chapter 7. Implementing the sample 221

2. The Java way of manually implementing the model, would have required the
inputs and outputs associations to be left at the same place and to be
private. The corresponding accessor methods handling the many cardinality
of the reference would be private or protected. All subclasses would have to
redefine the methods accessing the collection in order to enforce the
constraints. Unfortunately, this solution cannot be implemented easily in EMF,
because the serialization process requires the reference to be publicly
accessible. There is no way to have a private reference in EMF.

3. The existence of a constraint language, integrated with the code generation
tools taking could have been a good solution. We could have kept the
associations at the WorkflowNode level and be able to express the
constraints.

4. The solution we implemented, has the following goals:

a. To keep the model as designed in order to minimize the number of
association and to benefit of the polymorphism for the ports,

b. To not to use the default methods generated. including the one giving
direct access to the underlying collection.

c. To use the method we provided to support and enforce the application
constraints.

Figure 7-2 shows the resulting WorkFlowNode hierarchy.
222 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Figure 7-2 WorkflowNode hierarchy

Note: At the moment, the design can be split in three simple implementation
lanes. The first is one input and one output, the second is the many inputs and
one output and the third is the one input and many outputs. Once we have
more than one class in a lane, basically two classes with no direct inheritance
in between, it would be nice to create an abstract intermediate class in order
to provide the one-one, the many-one or one-many behavior.
 Chapter 7. Implementing the sample 223

The connectTo method
The algorithm to connect an OutputPort port to an InputPort port with an Edge
consists of:

1. Checking if the link does not already exist.

2. Adding the Edge to the Workflow in order to have the object created in the
Workflow entity context, because of the containment reference between
them.

3. Linking the OutputPort to the Edge.

4. Linking the InputPort to the Edge.

The Java code for the connectTo method is found in the WorkflowImpl class as
shown in Example 7-9:

Example 7-9 TaskImpl connectTo method.

/**
* Connects the output port to the given input port.
* From an edge standpoint, the source is an output port
* and the target an input port.
*
* @param outputPort
* @param inputPort
* @param res
*/
public Edge connectTo(OutputPort outputPort, InputPort inputPort) {

// Check to see if input and output are not already
// connected by an edge.
Edge edge = outputPort.findEdgeTo(inputPort);

if (edge == null) {
// No connection found
WorkflowFactory workflowFactory = WorkflowModelManager.getFactory();

// Create an edge
edge = workflowFactory.createEdge();
// Add the edge to the workflow, to benefit
// of the containment link between workflow and edge
this.getEdges().add(edge);

// Link input and output to the edge
inputPort.getEdges().add(edge);
outputPort.getEdges().add(edge);

}
return edge;

}

224 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

The EMF eOpposite attribute of the eReferences entity help us a lot when
making a connection btween two ports with an edge, because for all the
references with an eOpposite attribute, EMF keeps track of the changes on the
other side of the reference. This means, for example, that if you add an Edge to
an OutputPort:

outputPort.getEdges().add(edge);

EMF will do the opposite set up automatically and transparently for you:

edge.setSource(outputPort);

When creating an association in the EMF Class Diagram in the UML plug-in. The
Navigable checkbox, see Figure 1-12 on page 21, drives the access to the
association features. Once an association is navigable on both ends, a change
on one side is reflected on the other side, because the eReferences’ eOpposite
attributes are used.
 Chapter 7. Implementing the sample 225

7.4 Implementing the multi-page editor
When implementing a multi page editor there are several issues which have to
be discussed before and during development. This section gives you an
introduction to a possible multi page editor implementation. It also discusses
some issues encountred during our development of the sample application.

Our multi page editor consists of only two pages One page is for editing a whole
workflow and the second page is for editing compound tasks of the same
workflow. This provides an alternative way of editing compound tasks because
in-place editing might not be suitable in all situations.

7.4.1 Getting started
First we start creating our multi page editor by extending
org.eclipse.ui.parts.MultiPageEditorPart. Thus, our main editor class is the class
WorkflowEditor, which has to be registered as an Eclipse extension in the
plugin.xml in the regular way.

The MultiPageEditorPart uses regular IEditorPart implementations or simple
controls as editor pages. Because we expected that there will be some code that
is shared between our editor pages, we created an abstract editor page
AbstractEditorPage.

7.4.2 Sharing an EditDomain

One of the most important questions is what to share within your pages.
However you decide to do this, you will have to consider some issues.

We decided not to share a single EditDomain within our editor pages. Our
reasons were clear because our editor would only have two pages. The

Note: The source code of our sample application is available together with
this book. See Appendix A, “Additional material” on page 231 for details on
obtaining the sample code. We suggest to look into the code for
implementation details. We tried to document it as often as possible. Because
of that we are not going to reproduce a lot of example code within this section.
Instead we give you an overview of the implementation and what and why
implementation decisions were made.

Note: In general we reuse as much code as possible from the concepts
described in Chapter 3, “Introduction to GEF” on page 89.
226 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

functionallity of each page might be similar but the concept of each page is
different.

On one page you should be able to edit the workflow and on the second page
you should edit the content of compound tasks. We thought that changes on one
page should not affect the other page except updating the UI. Thus, we wanted
to have completly different undo/redo stacks for each page.

If you want all your pages using the same undo/redo stack (CommandStack) you
will have to share the EditDomain between your pages.

Because of some current limitations in GEF, you have to think about a solution
for the following issues:

� If you share an EditDomain within several pages you have to remember that
an EditDomain can have several EditPartViewers but only one palette.

� Thus, you might consider a concept of sharing one palette or attaching a new
palette with every page switch.

7.4.3 The editor’s dirty state
You have two options for resolving this for a multi page editor. Either you
delegate this to every page or you implement this only once for the whole editor.

We decided to implement this dircetly into the multi page editor because we think
it might be less expensive to calculate this once for all pages rather than let each
page calculate it itself and asking each page.

The concept is basically the same like we would used for a simple editor. The
editor listens for CommandStack changes and updates its dirty state according
to the state of the CommandStack.

Our WorkflowEditor provides a MultiPageCommandStackListener, which is
capable of listening to multiple CommandStacks. All CommandStacks that need
to be observed can be registered to it. We do this at the same time we create our
pages.

7.4.4 Actions
Our multi page editor provides one ActionRegistry for the whole editor. Thus, all
actions are available on all pages. We don’t need to have different actions for
different pages. Again the concept is similar to a single editor. Actions are
registered to an ActionRegistry.
 Chapter 7. Implementing the sample 227

The ActionBarContributor
The GEF ActionBarContributor is not able to provide support for tracking page
changes in a multi page editor. If you need this, you can either implement the
functionality from org.eclipse.ui.part.MultiPageEditorActionBarContributor or
inherit from this class. But if you inherit from this class you don’t have the action
handling support provided by the GEF ActionBarContributor.

7.4.5 Support for the properties view
The base concept is similar to an single editor. Our multi page editor uses the
undoable poperty sheet root entry provided by GEF. But this is only capable of
commiting to one CommandStack. If you share only one EditDomain within all
pages there is no special work necessary and you can stop here.

Due to internal chaching in Eclipse it is not possible to have a separate property
sheet page for every single page. There can be only one for the whole editor. But
somehow the property sheet page needs to keep track of the active page to
commit to the correct CommandStack.

We are handling this with a workaround. Our undoable property sheet page root
entry gets a delegating CommandStack. The DelegatingCommandStack is a
CommandStack that delegates work to a current CommandStack, which can be
changed. Thus, we only need to update the DelegatingCommandStack when the
current page changes and this can be easiey done from within our multi page
editor.

7.4.6 The oultine view
We had a little bit more work to do for the outline view but basically the concept is
the same as seen before. The oultine view is updated every time the page
changes. Although it is strongly connected to our multi page editor we tried to
keep the implementation as generic as possible to allow you reusing it for your
projects.

The implementation can be found in WorkflowEditorOutlinePage. It provides
both, a tree outline and an overview figure. You only need to call one method on
each page change to reinitialize the outline view with a new content. This can be
easily done from withing our multi page editor.

7.4.7 The palette
Each page has its own PaletteViewer. You can’t share one PaletteViewer
instance within several pages. It is possible to have only one PaletteViewer for
228 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

the whole editor but this must be implemented in the multi page editor class
because the SWT control needs to be created there.

However, having multiple PaletteViewers is no issue because you can share a
single PaletteRoot between them, like we did. Our multi page editor provides the
same PaletteRoot for every page. If you’d like to have different PaletteRoots for
your pages it is no problem, too. You just have to implement it that way.
 Chapter 7. Implementing the sample 229

7.5 Additional features
In the sample application, we demonstrate GEF features such as Drag and Drop.
This section describes how those features were implemented.
230 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246302

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246302.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
sg246302.zip Zipped Code Samples

A

© Copyright IBM Corp. 2003. All rights reserved. 231

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 15 MB minimum
Operating System: Windows
Processor: 1Ghz or higher
Memory: 1GB or higher

How to use the Web material
Unzip the contents of the Web material zip files into the plug-in folder of your
Eclipse SDK. The material is organized around the chapters and sections of our
redbook and the source code can be imported into your Eclipse SDK as an
existing project.

Note to readers of this draft: We have provided the additional material with
this draft even though we still have testing to complete, on the sample code,
as we believe that our book is more useful with the associated code. We will
provide more detailed installation instructions for the sample code in
subsequent drafts.
232 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

acronyms
MOF Meta Object Facility

OMG Object Modeeling Group

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

EMF Eclipse Modeling Framework

GEF Graphical Editing Framework

MDA Model Driven Architecture

XMI XML Metadata Interchange

XML eXtensible Markup Language

XSL Extensible Stylesheet
Language

XSD XML Schema Definition

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

JET Java Emitter Templates

NLS National Language Support

SWT Standard Widget Toolkit

Abbreviations and
© Copyright IBM Corp. 2003. All rights reserved.
FAQ frequently asked questions

ADL architectural description
language

MDE mode driven environment
 233

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol
234 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 236. Note that some of the documents referenced here may be available
in softcopy only.

� ????full title???????, xxxx-xxxx

� ????full title???????, SG24-xxxx

� ????full title???????, REDP-xxxx

� ????full title???????, TIPS-xxxx

Other publications
These publications are also relevant as further information sources:

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

� ????full title???????, xxxx-xxxx

Online resources
These Web sites and URLs are also relevant as further information sources:

� eclipse.org main page

http://www.eclipse.org

� Eclipse Modeling Framework home page

http://www.eclipse.org/emf

� Graphical Editing Framework home page

http://www.eclipse.org/gef

� Omondo EclipseUML page
© Copyright IBM Corp. 2003. All rights reserved. 235

http://www.eclipse.org
http://www.eclipse.org/emf
http://www.eclipse.org/gef

http://www.eclipseuml.com

� Object, view and interaction design

http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/589

� Eclipse XML Schema Infoset Model

http://www.eclipse.org/xsd

� XML Metadata Interchange

http://www.omg.org/technology/documents/formal/xmi.htm

� JET tutorial part 1

http://eclipse.org/articles/Article-JET/jet_tutorial1.html

� JET tutorial part 2

http://eclipse.org/articles/Article-JET2/jet_tutorial2.html

� Eclipse Wiki

http://eclipsewiki.swiki.net

� Metanology MDE

http://www.metanology.com

� Eclipse designer plug-in

http://eclipsedesigner.sourceforge.net

� eSuite project

http://jeez.sourceforge.net

�

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services
236 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.eclipseuml.com
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/589
http://www.eclipse.org/xsd
http://www.omg.org/technology/documents/formal/xmi.htm
http://eclipse.org/articles/Article-JET/jet_tutorial1.html
http://eclipse.org/articles/Article-JET2/jet_tutorial2.html
http://eclipsewiki.swiki.net
http://www.metanology.com
http://eclipsedesigner.sourceforge.net
http://jeez.sourceforge.net

ibm.com/services
 Related publications 237

http://www.ibm.com/services/
http://www.ibm.com/services/

238 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling

Index

R
Redbooks Web site 236

Contact us xi
© Copyright IBM Corp. 2003. All rights reserved.
 239

240 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

(0.1”spine)
0.1”<->

0.169”
53<->

89 pages

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

(0.5” spine)
0.475”<->

0.875”
250 <->

 459 pages

(1.0” spine)
0.875”<->

1.498”
460 <->

 788 pages

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

Eclipse Developm
ent using the Graphical Editing Fram

ew
ork

Eclipse Developm
ent

using the Graphical Editing

Eclipse Developm
ent

using the Graphical Editing
Fram

ew
ork

Eclipse Developm
ent using the Graphical Editing Fram

ew
ork and the

(2.0” spine)
2.0” <->

 2.498”
1052 <->

 1314 pages

(2.5” spine)
2.5”<->

nnn.n”
1315<

->
 nnnn pages

Eclipse Developm
ent

using the Graphical
Editing Fram

ew
ork

Eclipse Developm
ent

using the Graphical
Editing Fram

ew
ork

®

SG24-6302-00 ISBN 0738453161

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Eclipse Development
using the Graphical
Editing Framework

Understanding the
GEF and EMF
frameworks

Developing with GEF
and EMF

Code examples

Eclipse Development using the Graphical Editing Framework
and the Eclipse Modelling Framework is written for
developers who use the Eclipse SDK to develop plug-in code.
It is intended for a technical readership and for developers
who already have good knowledge and experience in Eclipse
plug-in development. In this redbook, we examine two
frameworks that are developed by the Eclipse Tools Project
for use with the Eclipse Platform:
the Graphical Editing Framework(GEF) and
the Eclipse Modeling Framework(EMF).
This redbook covers both the Graphical Editing Framework
and the Eclipse Modeling Framework, but these frameworks
can be used separately and there is no dependency between
the two frameworks.
It provides a high level introduction to these frameworks so
that Eclipse plug-in developers can consider whether the
frameworks will be useful for the requirements of their
particular development and then it details tips and techniques
for writing code that uses GEF and EMF.
A detailed exampleis developed to illustrate a GEF editor that
uses an EMF model.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 EMF and GEF introduced
	Chapter 1. Introduction to EMF
	1.1 What is the Eclipse Modeling Framework?
	1.1.1 Positioning of the framework
	1.1.2 Objectives
	1.1.3 Where to find documents and resources

	1.2 Frameworks basics
	1.2.1 Prerequisites
	1.2.2 Product installation
	1.2.3 Getting help in Eclipse

	1.3 Building a simple model
	1.3.1 Different ways of making the model
	1.3.2 The EclipseUML plug-in
	1.3.3 Initial project set up
	1.3.4 Modeling using the EclipseUML plug-in
	1.3.5 Modeling using Java interface annotation
	1.3.6 EMF Features
	1.3.7 EMF model creation
	1.3.8 Code generation facility
	1.3.9 Compiling the code
	1.3.10 Conclusion

	Chapter 2. EMF examples
	2.1 EMF modeling techniques
	2.1.1 Creating new models
	2.1.2 Migrating existing models

	2.2 EMF.Edit-based editors and code generation
	2.2.1 The generated plug-ins
	2.2.2 Customizing code generation through GenModel properties
	2.2.3 Modifying the generated code

	2.3 Model instances and serialization
	2.3.1 Creating model instances
	2.3.2 Default serialization of model instances
	2.3.3 Using the XSD plug-in to customize serialization
	2.3.4 Customizing XMI serialization using an XMLMap
	2.3.5 Providing a custom resource implementation

	2.4 Using JET to customize code generation
	2.4.1 .JET-related GenModel properties
	2.4.2 Writing JET templates

	Chapter 3. Introduction to GEF
	3.1 What is GEF
	3.1.1 Additional documents and resources
	3.1.2 Applications suitable for GEF

	3.2 Introduction to Draw2D
	3.2.1 What is a lightweight system?
	3.2.2 Architectural overview
	3.2.3 Figures
	3.2.4 Mechanism
	3.2.5 Major features

	3.3 The GEF framework
	3.3.1 Prerequisites
	3.3.2 EditParts
	3.3.3 Requests
	3.3.4 EditPolicies
	3.3.5 Commands
	3.3.6 GraphicalViewers
	3.3.7 RootEditParts

	3.4 Building an editor
	3.4.1 The editor class
	3.4.2 EditDomain
	3.4.3 CommandStack
	3.4.4 Attaching the viewer
	3.4.5 Be adaptable
	3.4.6 Introducing the palette
	3.4.7 Actions
	3.4.8 Adapting to the properties view
	3.4.9 Providing an outline view
	3.4.10 Controling your editor with the keyboard

	3.5 Managing your model
	3.5.1 Reflecting a model
	3.5.2 Communication
	3.5.3 Creating EditParts

	Chapter 4. GEF examples
	4.1 Additional Concepts
	4.1.1 RootEditParts
	4.1.2 Coordinate systems
	4.1.3 Layers

	4.2 Techniques
	4.2.1 Drag and drop
	4.2.2 Palette - implementing a sticky tool preference
	4.2.3 Printing
	4.2.4 Zooming
	4.2.5 Decorating connections
	4.2.6 Resource management
	4.2.7 Feedback techniques
	4.2.8 Palette-less applications
	4.2.9 Using Direct Edit
	4.2.10 Accessibility

	Chapter 5. Using GEF with EMF
	5.1 Overview
	5.2 Using an EMF model within a GEF-based application
	5.2.1 Mapping from the model to the graphical representation
	5.2.2 Displaying properties
	5.2.3 Support for editing the model
	5.2.4 Reflecting model changes
	5.2.5 Loading and saving model instances
	5.2.6 Putting it all together

	5.3 Using JET in GEF-based editor development

	Part 2 Sample application
	Chapter 6. Sample requirements and design
	6.1 Sample application requirements
	6.1.1 The application

	6.2 Sample application design
	6.2.1 Design decisions
	6.2.2 The workflow model

	6.3 Sample application demo

	Chapter 7. Implementing the sample
	7.1 Overview
	7.2 Architecture
	7.2.1 Mapping the EMF model to GEF EditParts
	7.2.2 Tracking model events in the editor
	7.2.3 Refreshing
	7.2.4 Factories
	7.2.5 Policies and commands

	7.3 The model
	7.3.1 Modifying the WorkflowModel
	7.3.2 Modifying the code generated from the model
	7.3.3 Respecting model constraints in the editor

	7.4 Implementing the multi-page editor
	7.4.1 Getting started
	7.4.2 Sharing an EditDomain
	7.4.3 The editor’s dirty state
	7.4.4 Actions
	7.4.5 Support for the properties view
	7.4.6 The oultine view
	7.4.7 The palette

	7.5 Additional features

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

